Infinispan 9.2 User Guide

The Infinispan community

Table of Contents

1 INTrOdUCTION ..ottt ettt e 1
1.1. What is Infinispan 2. e 1
1.2. Why use INfinispan 2.t e 1

1.21. Asalocalcacheo o 1
1.2.2. Asaclustered cache. oo e 1
1.2.3. As a clustering building block for your applications................cooiiiiiiiiiinnn.. 1
1.2.4. Asaremote CaChie.o i e 1
125 . Asadatagrid.ooiiiiiiii i 2
1.2.6. As a geographical backup foryourdatacoooiiiiiiiiiiiiiii i 2

2. The Embedded CacheManagerttt ittt inaaas 3

2.1, Configurationon e e 3
2.1.1. Configuring caches declaratively i 4
2.1.2. Configuring caches programmaticallyo i, 7
2.1.3. Configuration Migration TOOIScoiiiiiiiiii i et 11
2.1.4. Clustered COonfigurationttt 12

2.2.0btalning CaChes i i e 15

2.3. Clustering INformationoi it e 16
2.3.1. Member Information. e 16
2.3.2.0ther methods. 16

2.4. The Cache Interfaceot et 16
2.4.1. Performance Concerns of Certain Map Methodsot 16
2.4.2. Mortal and Immortal Datat 17
2.4.3. Example of Using Expiryand Mortal Data................ooiiiiiiiiiiiie... 17
2.4.4. putForExternalRead Operationuuuuiiinnni it 17

2.5. The AdvancedCache interface. e 18
20 T I = - ¥ 18
2.5.2. Custom INtEICEPLOTS .. v vttt it ittt et 19

2.6. Listeners and Notifications e 19
2.6.1. Cache-level NOtIficatioNnS.t e 19
2.6.2. Cache manager-level notifications.ooiiiiii i 22
2.6.3. SYyNChroniCity Of @VENTS.o e 22

2.7. ASYNChronouS API e 23
277.1.Whyuse such an API? 23
2.7.2. Which processes actually happen asynchronously?cooivi.t. 23
2.7.3. NOtifyIng fUtUTesSo e e 24
274 . Further readingttt 24

2.8. Invocation Flagsot e 24

2.8 1 EXAINPILES oottt 25

2.9.Tree API MOAUIE . . .ottt ettt e e e e e e e e e e e e e e e 25

2.9.1. Whatis Tree APL about?ttt e e e et iiaee e 25
2.9.2.Using the Tree APlt e ettt et 26
2.9.3.Creating a Tree Cacheottt e e et e 26
2.9.4. Manipulating dataina Tree Cache ...ttt 26
2.9.5. CommMON OPETAtIONS . . v v ottt ettt et e e e et e e e e ee e e iee et iiae e 28
2.9.6. Locking in the Tree APL.t et et et as 29
2.9.7. Listeners for tree CaChe EVENTSottt et 30
2.10. Functional Map APL.ttt e e 30
2.10.1. Asynchronous and Lazyottt it e i e 30
2.10.2. FUNCHON tranNSPATEIICY . . v v v vttt ettt e ettt eee ettt ee e et ae et iiae e 30
2.10.3. Constructing FuUNCtional Mapsuuutttttie ettt iiiee e 30
2.10.4. Read-Only Map AP e e e e 31
2.10.5. Write-Only Map APL.ttt et ettt e 32
2.10.6. Read-Write Map APIttt ettt e e 33
2.10.7. Metadata Parameter Handlingouuuiiitiiinn i iiiiie i 35
2.10.8. INVOCAtION ParaImeterottt ettt et ettt e ee e e 36
2.10.9. FUNCHioNAl LIStEIETS . .. vttt ittt ettt ettt e et e e ettt 37
2.10.10. Marshalling of FUNCHIONSottt e it iiee e 40
2.10.11. Use cases for Functional APIttt et a 43

3. Eviction and Data CONtaINer.ttt ittt et ettt e e e e ie et 44
3.1, ENabling EVICHION . . . oottt ettt ettt e et e e e e e e e 44
T 0 O A 2 (ot o)] = L (=77 PP 44

T 00 oA V4 (ot (o) 1 174 1= PP 44
200 0 TN (0) =¥ 17 < 45
314 More defaulls.ot e 45
3.2 EXPITAtION ..ttt ettt ettt e e e e 45
3.2.1. Difference between Eviction and EXpirationooiuiiniiiiineeennnnnnn 46
3.3 EXpiration detailS. covrt i e 46
3.3.1. ConfigUrationttt e ettt e e e 46
3.3.2. Memory Based Eviction Configurationouuuiiniiiiiineeiiineeinnnnn 47
3.3.3. Default ValUuesottt e 47
3.3.4. USING @XPITAtION . . o ottt t ettt et et e e et e e it e i e 47
3.4, EXPIration AeSiIS . . o oottt ettt et ettt e e e e e e 48
T o) 3] (=) ¢ Lol P 49
4.1, CONFIGUIATION . .ttt ettt et e e ettt e ettt e e i e e et 49
4.2, Cache PassiVation.ottt e e e 52
4.2.1. Cache Loader Behavior with Passivation Disabled vs Enabled 52
4.3. Cache Loaders and transactional caches i 53
4.4. Write-Through And Write-Behind Caching........... ...t 53

4.4.1. Write-Through (SyNnchronous)couuimiiiiiin ittt 54

4.4.2. Write-Behind (ASYNCRIONOUS).o vttt e et 54

4.5. Filesystem based Cache StOresS.ttt e ittt 55
4.5.1.SIngle FIle StOre . ..ot e e e 55
4.5.2. Soft-Index File StOTe. . ..ottt e e e 56

4.6. JDBC String based Cache StOrettt i i 57
4.6.1. Connection management (POOLING)couriiiiin it 58
4.6.2. Sample CONfIUIatiONSttt et i et 58
4.6.3. JDBC MIZTator . ..ottt ettt ettt et e e et e e 60

R A=) ¢ 010 =] (o) = P 63

4.8. Cluster cache loadert e i e e 64

4.9. Command-Line Interface cacheloader........ ... it it 65

4.10. ROCKSDB CaChe StOre. . ..ottt et e et et e i et 65
4.70.1. INtrOAUCTION. .« . ottt ittt ettt et e e e e e e e e e e 65
4.710.2. CONFIGUIAtIONo vttt e e e et e et 66
4.10.3. Additional ReferencCesottt i e 67

4.11. LevelDB Cache StOreo ottt e e e e e e e 67

412, JPA CaChe STOTE ..ottt e e e 67
4120, SAMPLE USAZE . ittt ettt et 67
4.12.2. CONFIGUIAtION . ..ottt et e et e i et 69
4.12.3. Additional ReferencCesttt e 70

4.13. CuStOM CaChe StOTeS . . ottt ittt e e e e e e e 70
4.13.1. HOtROd DePIOYIMENtttt et i et 71

4.14.Data MIgrationttt et ettt e e e 71

A LS. AP o 72

4.16. More iImplementationsottt e e 73

FS TR 0 10) () 1 = PP 74

5.1. Which cache mode should T Use?ttt e i e 74

5.2, L0CAl MOGE. . . o e ettt ettt et e et e e e 75
5.2.1.8Imple Cachiet e 75

5.3. Invalidation MOEttt et et e e e 76

5.4, Replicated MOGe . . . o oottt ettt e e e 78

5.5. DIstribution MOAeot 78
5.5.1. Read COMSISIEIICY ..ttt ittt ettt et ettt et e e e e et e e e ie e et 79
5.5.2. KeY OWNeTSNID ..ttt e e 80
5.5.3. Initial ClUSTEY SIZE . ..ottt e e 81
5.5.4. L1 CaChingo 82
5.5.5. Server HINtiNg . ..ottt e et e e e e 83
5.5.6. Key affinity SEIVICEttt et et et 83
5.5.7. The Grouping APttt et e et ettt et as 85

5.6. SCattered MOGe oottt ettt et et e e e e e 88

5.7. ASYNChronous OPLIONS . . .ot v vttt ettt et et et et e e e e e i iae s 89

5.7.1. Asynchronous COmMmMUNICATIONS. . . .ot vutt ittt ettt e et ie e iie e iinneans 89

5.7.2. ASYNCATONOUS API . ..ottt et ettt et e 89
5.7.3. RetUIN VALUESo e e 89
5.8. Partition handlingt e e e 90
5.8.0. SPIt Brain . . . oo e 91
5.8.2. SuCCessive NOAES StOPPEA. . . oottt ettt e 93
5.8.3. CONTLICE MaANAZET ...ttt ettt ettt ettt ettt e e e e e et 94
TR T B 13- =P 95
5.8.5. Configuring partition handling.o i i 95
5.8.6. Monitoring and adminiStrationuueetitineeetineeeine e 96

6. Marshallingt e e e 97
6.1. The Role Of JBoss Marshallinguiiiininni i et 97
6.2. Support For Non-Serializable ODjJectsvoitit i i e 97
6.2.1. STOTE AS BINaATY ..ottt t ettt e e e 98
6.3. Advanced CONfigurationcoouiitetinine ettt et iiine e 99
6.3.1. TroubleShOOtiNgo ottt e e e e e e 99
6.4. User Defined EXternalizers ittt i 102
6.4.1. Benefits of EXternalizersuiiiiiiiii i e 102
6.4.2. User Friendly EXternalizers.uitiuint ettt iiiaeeeann 103
6.4.3. Advanced EXternaliZersttt e 104

7. TLANSACTIONS . . o ottt ettt et e et et ettt e ettt et et e e e e e e 110
7.1. Configuring tranSacCtionso v vttt ittt ettt e e e e e e 110
7.2.1s0lation LeVels . ..o o 113
7.3. Transaction IoCKINGot e et e 113
7.3.1. Pessimistic transactional cache i 113
7.3.2. Optimistic transactional cache o i e 114
7.3.3. What do I need - pessimistic or optimistic transactions?ovuine.n. 114
7.4, WTIte SROW .. 115
7.5. Deadlock deteCtionuuun ittt 116
7.6. Dealing With eXCepPtioNSottt e 116
7.7. Enlisting SyNChronizationsutt ittt 116
7.8, BatChn g . . oo e 117
7. L. AP o 117
7.8.2. Batching and JTAt e e 118
7.9. TranSaACtION TECOVETY . .ttt ttti et ettt ee ettt ee e e et te e e et tee e e iee e e iaa e e 118
7.9.1. WHEN t0 USE FECOVETY . . o vttt ettt ettt et ettt e e e et e et e e tie e e iiae e ianeeans 118
7.9.2. HOW d0eS It WOTKo ottt e 119
7.9.3. CONLIUIING TECOVEIY .ttt ettt ettt ettt e e et et iia e iiianeeans 119
7.9.4. RECOVEIY CaChe . ..ot i e e 119
7.9.5. Integration with the transaction manager.oviuiiiieeiiiinneeennneenn. 119

7.9.6. RECONCIIATION . v vttt ettt e e e e e e e e e e 120

7.9.7. WaNT t0 KN OW 10T . ottt ettt e e e e e e e e e e et ettt e e e 122

7.10. Total Order based commit Protocolcoiuiriiiiie it 122
700,10, OVEIVIEBW . .ottt ettt ettt e e ettt e e e e ettt 122
7.10.2. Configurationiiii e 125
7.10.3. When t0 USe 12o ottt 126

8. LoCKING aNd CONCUITEICY & . . vttt ti e ettt ee ettt e e e e et e et e i ee e et iae e iae e eennns 127

8.1. Locking implementation details.ottt e 127
8.1.1. How does it work in clustered caches?......... ... i 127
8.1.2. Transactional caches e 128
8.1.3. Isolation levels o e 128
8.1.4. The LOCKMaANAgeT ottt e et ettt ettt e e et e e et iiae s 128
8.1.5. LOCK StIIPINE . ot e ettt et et e et e e e e 128
8.1.6. ConcurrencCy leVels e 128
8.1.7. LOCK tIMEOUL . . .o oottt ettt e e 129
8. 1.8 COMSISTEIICY . vttt ettt ettt ettt e e e et e e e e 129

8.2.Data VEIrSIONINEottt ittt ettt e e e e e e e e e 129

9. Executing code inthe Gridoi it e ettt e 131

9.1, CIUSEET EXECULOT . . . o e ettt et ettt ettt ettt ettt e e et e 131
9.1.1. Filtering eXeCUtiON NOGES oottt ettt ettt e et e e e iaa e iiae e eennns 131
0. 1.2 TIMEOUL. . . oottt ettt e e et e e e e e e e e 132
9.1.3. Single Node SUDMISSIONottt e e e 132
9.1.4. Example: PI APProximationoeeuuineettnine et iiineeeinneeennns 133

LT/ < U1 (P 134
9.2.1. Common Stream OPETAtIONIS uvuui ettt ettt ettt ee e iiae e iaeeeennns 135
9.2.2. Key fIllerin g . . oottt e 135
9.2.3.Segment based filteringttt e e 135
9.2.4. Local/Invalidationuuuii e 135
0.2, 5. EXAIMPIE . oottt e 135

9.3. Distribution/Replication/Scatteredouuuirieiiie ittt 136
9.3.1. Rehash AWareot e 136
9.3.2. Serialization. oottt 136
9.3.3. Parallel Computation.ttt ettt et e e e e 139
9.3.4. Task tIMEOULottt e 140
LT T8 TR 01 =016 () ¢ 140
9.3.6. Distributed Stream eXeCUtionttt e 140
9.3.7. Key based rehash aware Operatorsuuuuineetinineeeenneeeinneennnn. 141
9.3.8. Intermediate operation eXCePLiONSvvut ettt iie i 142
0.3.0. EXAIM IS .\ttt e 142

9.4. LOCKed Strea@msottt 145

9.5. Distributed EXECULIONttt et 145

9.5.1. DistributedCallable API.ttt e e e e 146

9.5.2. Callable and CD I . ..ottt e e e e e 147

9.5.3. DistributedExecutorService, DistributedTaskBuilder and DistributedTask API 147
9.5.4. Distributed task failover. i e 148
9.5.5. Distributed task eXecution POLICY ovtt ittt e 149
0.5.6. EXaAIM IS . .\ttt e 150

10. Indexing and QUETYINGttt ettt ettt e ettt e ettt ie et iaa e ineeeennns 152
200 R =) 7 L) 152
10.2. Embedded QUETYINGo ovtt ettt ittt et e ettt e et 152
10.2.1. Quick eXampPle e 152
10.2.2. INAEXINIE o v vttt ettt e ettt e e et e e e e e e e e e 155
10.2.3. QUETYING APIS . . oottt e 169
10.3. REMOTE QUETYINE .« .. o vt ettt et ettt e e e ettt e e ettt e e e et e e e e iee e i 184
10.3.1. Storing Protobuf encoded entitiest ttiinr it 184
10.3.2. USING @NNOTATIONIS .\ttt t et ittt ettt et et e et e et et iie e e iae e ianeeans 187
10.3.3. Indexing of Protobuf encoded entriesc.c.iiiiiiiiiiiiiii i 187
10.3.4. Aremote qUEry eXamPlettt e 188
104, StATISTICS . . oo ettt ettt 188
10.5. Performance TUNING oo vttt ettt et e e ettt et 189
10.5.1. Batch writing in SYNC IMOAeo o vttt ettt iiee e ea 189
10.5.2. Writing using asynNC MOGeo vttt ettt ettt ee e iie e iiaeeean 189
10.5.3. Index reader aSYNC Strategyvvuuun ettt et ee et iie e iia e 190
10.5.4. LUCENE OPTIOMIS . o vttt et ettt et ettt et e et e e e e e et e et ie e et 190

RO 0 =3 = G000 4L =) 191
11.1. Installation and Configurationiiiimiin it et 191
11.1.1. LISt COUNTET NMAITES . . oottt ettt et e ettt e ettt ettt e e 194
11.2. The CounterManager INterface.ttt e i et 194
11.2.1. Remove a counter via COUNterManager.vvtttrine e eiiee e iiaeeeeianeennn 194
11.3. The COUNLET. . . .o o ettt ettt et e e ettt ettt e et e e 195
11.3.1. The StrongCounter interface: when the consistency or bounds matters. 195
11.3.2. The WeakCounter interface: when speedisneededccoiiiiiiiiii.n. 198
11.4. Notifications and EVENtSttt e 200
12. ClUSTEred LOCK . . o oottt e e e e e 202
12.1. Installationt 202
12.2. The ClusteredLockConfiguration.oiiuiiniiiiiin i, 202
12, 2.1, QWL S I v\ttt e et e e e e 202
12.2.2. REEIITAIICY . « . e v ottt e et et e e e e e e e e e e e e e e e e e e 202
12.3. The ClusteredLockManager interface. ...ttt i, 203
12.4. The Clustered LOCKo vt e e 204
Usage EXaImPIes. .. oot e 205

13. MUultimap Cache. e e 206

13.1. Installation and configurationoouiiiiinttii i et 206

13.2. MultimapCache APL.ttt e e ettt e e 206

13.2.1. CompletableFuture<Void> put(Kkey, Vvalue) iiiiiiiiiiiina.n. 207
13.2.2. CompletableFuture<Collection<V>> get(Kkey)ccoiiiiiiiiiniiiinnaann. 207
13.2.3. CompletableFuture<Boolean> remove(KKey)o iiiiinaann. 207
13.2.4. CompletableFuture<Boolean> remove(K key, Vvalue)t 207
13.2.5. CompletableFuture<Void> remove(Predicate<? super V>p)cvinnn. 207
13.2.6. CompletableFuture<Boolean> containsKey(KKkey), 207
13.2.7. CompletableFuture<Boolean> containsValue(Vvalue)o.t. 208
13.2.8. CompletableFuture<Boolean> containsEntry(K key, Vvalue) 208
13.2.9. CompletableFuture<Long> Size() ovvettin e e e 208
13.2.10. boolean supportsDUPLICAtES() . .« v v v ettt et e e 208
13.3. Creating a Multimap Cache i e et e 208
13.3.1. Embedded mode.ooot it 208
13.3.2. SEIVEI INOGE . ..ottt ittt et e e e e 208
13.4. LIMITATIONS .. oottt ettt ettt e e e et e ettt et 208
13.4.1. Support for dupliCatesot e e 209
1342, EVICHION. . ..ttt e e e e e e e e 209
13.4.3. TranSACHIONS . ..ottt ettt ettt ettt e e e et et 209
13.5. Maven DePendencCiesuunt ittt ettt et et e e e 209
13.6. Embedded cache INtegrationouunittiuiin ettt iiiie et eennnn, 210
13.6.1. Inject an embedded cache o it e 210
13.6.2. Override the default embedded cache manager and configuration................. 211
13.6.3. Configure the transport for clustered usec.ovviiiiiniiiiiniiiinneen. 212
13.7. Remote cache INteZrationuuut ittt e, 212
13.7.1. Inject aremote CAChettt e e 212
13.7.2. Override the default remote cache managero viiiiiiniiiiinnnann. 214
13.8. Use a custom remote/embedded cache manager for one or more cache 214
13.9. Use JCache caching annotations.ouuirtttiie i it 215
13.10. Use Cache events and CDIttt e 216
14. JCache (JSR-107) PIrOVIAETttt ettt et et e e e e e i e et 218
I O D T 0= o (=) (o 1= P 218
14.2. Create alocal cache. 218
14.3. Create aremote cache i e e 219
14.4. Store and retrieVe data.ttt 219
14.5. Comparing java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs 220
14.6. Clustering JCache INStanCeS.ot vttt e et e 221
15. Management TOOLINGttt e et e e ettt 223
1 700 R 11 GO 223
15.1.1. Understanding The EXposed MBEANSuittinineetiine e iineeeinneennn 223
15.1.2. Enabling JMX StatistiCSo vttt e e e 224

15.1.3. Monitoring cluster health i e 225

15.1.4. Multiple JMX DOIMAINS . . oottt ettt ettt et e et e et e iie e e iia e ian e e 225

15.1.5. Registering MBeans In Non-Default MBean Servers.............c.ccviveiinnnnnnn. 225
15.1.6. MBeans added in Infinispan 5.0ottt e 226
15.2. Command-Line Interface (CLI)coittttiim e 226
15.2.0. COMIMANAS . . . o oottt ettt ettt et e e e e e e e e e 228
15,2, 2. UPBTAdE .ottt e e e e e e 234
15.2.3. VETSIOIL . .ottt ettt ettt ettt e ettt e e e e e e e 234
15, 2.4, DaAtA Ty PO . o ettt ettt et e e e e e e e e 234
15.2.5. TIME Valueso e 235
15,3 HaAWE A0 . oottt 235
15.4. Writing plugins for other management tools............ ...t nnn... 235
16. CUSTOM INTEICEPLOTS « . . o ettt et e e e et e e e e e e et e et e ettt 236
16.1. Adding custom interceptors declarativelyt 236
16.2. Adding custom interceptors programatically............ ... 236
16.3. Custom INterceptor deSIZIo vttt ittt ittt ettt 237
17. Running on CloUd SEIVICES . . . oo vttt ettt ettt et e ettt e et eieae s 238
17.1. AmMazon Web SEIVICESt 238
17.1.1. TCPPing, GossipRouter, S3_PINGcouuiitit ittt iiiaee e 238
17.01.2. GOSSIPROULET . . o ettt ettt et e e e et e e e e e 239
17.1.3.S3_PING ..ottt 239
1704 JDBC PING . . oottt e e 239
17.2. Kubernetes and OpenShift i i et 239
17.2.1. Using Kubernetes and OpenShift Rolling Updates...............ccooiiviiiina.n. 240
17.2.2. Rolling upgrades with Kubernetes and OpenShift...............ot 242
SO0 =) L] 74> 243
18.1. Why ClieNt/SeIVEL? . .ttt ettt et et e e et e et et i 243
18.2. Why use embedded moOde?ttt e 247
18.3. Server ModUIest e 247
18.4. Which protocol should I USe?t e et 248
18.5. USING HOt RO SEIVET . ..ottt ettt e ettt 249
18.6. HOt ROA ProtOCOlottt e 249
18.6.1. HOt ROA Protocol 1.0 . ..o oottt e 250
18.6.2. HOt ROd Protocol 1.1 . ..o e e 266
18.6.3. HOt ROA Protocol 1.2 . ..ottt e e 268
18.6.4. HOt ROd Protocol 1.3 . ..ot e e 270
18.6.5. HOt ROd Protocol 2.0o oottt et 271
18.6.6. HOt ROd Protocol 2.1ottt 279
18.6.7. HOt ROA Protocol 2.2o e 280
18.6.8. HOt ROd Protocol 2.3o e 281
18.6.9. HOt ROA Protocol 2.4ot e e 283

18.6.10. HOt ROA ProtOCOl 2.5 . oot vttt e ettt e e e e e e e e e e 286

18.6.11. HOt ROA ProtOCOL 2.6 . oot vttt et et e e e e e e e e et ettt et e et 288

18.6.12. HOt ROA ProtoCOl 2.7 ..ottt e et e et et ea 291
18.6.13. Hot Rod Hash FUNCHONS.ottt e i ea 299
18.6.14. Hot Rod Admin Tasksttt e et eas 300
18.7.Java HOt ROA CLIENtttt e e e et 301
18.7.1. Configurationiiii e e e 301
18.7.2. BaSIC AP 302
18.7.3. RemoteCache(.keySet|.entrySet|.values).........ccouiuiiiiinniiiiiie i 303
18.7.4. Remote Iteratort e e e e e 304
18.7.5. Versioned APo e 305
18.7.6. ASYIIC APl . .. 306
18.7.7. Streaming APl e 306
18.7.8. Creating EVENt LIStENETSttt ettt et et iie et eiianeean 307
18.7.9. Removing EVent LIStENersSottt ittt et i iie e eiiae e ean 309
18.7.10. FIltering EVENTSttt ettt ettt e it iae e ea 309
18.7.11. CuStOMIZING EVENLS . . . oottt ettt ettt et ettt 311
18.7.12. Filter and CuStOmM EVENLSottt ittt ettt i i ie e iiae e ean 314
18.7.13. Event Marshallingttt e et e ea 316
18.7.14. Listener State Handlingouuitit ittt it et eiianeean 316
18.7.15. Listener Failure Handlingooiiiiiii i it ean 317
18.7.16. Near CaChing. ovi et et et e e e e 317
18.7.17. Unsupported methodscouuiiit i et ean 318
18.7.18. REtUIN VAlUES . . . oottt et ettt e e et e 318
18.7.19. Client INtElligENCEottt ettt ettt e e e it 319
18.7.20. Request BalanCingutttii e e e 319
18.7.21. PersiStent CONNECTIONSttt ettt ettt e et e iie e e iie e eianeeans 320
18.7.22. Marshalling datattt et e e 320
187,23, StAtISTICS « v vttt ettt et e e e e 321
18.7.24. MUlti-Get OPerations. . ..o v vttt ittt ettt et e it 321
18.7.25. Failover capabilitiesoviiiuir i e e e 321
18.7.26. Site Cluster FAllOVeTttt e et ea 321
18.7.27. Manual Site Cluster SWitCho it i e e 322
18.7.28. Concurrent UPdatesttt ettt e et 322
18.7.29. JAVAUOCS « « v v v et ettt et ettt e e ettt e e e e e e e 325
18.8. REST ST VT . . .ottt et e ettt 325
18.8.1. SUPPOTtEd ProtOCOLS . ..ttt ettt et et e e e 325
18.8.2. REST AP . .. e 326
18.8.3. ClieNt SIde COUL.ttt ettt ettt e e et e e e e it iiaa e eas 328
18.9. MemcCaChed SeIVerttt e e 332
18.9.1. Command Clarifications.ottt e e e 332

18.9.2. Unsupported FEatUresttt i iiaaeean 332

18.9.3. Talking To Infinispan Memcached Servers From Non-Java Clients 333

18.10. WeDSOCKEL SEIVET . . . oottt e 334
18.10.1. JaVaSCIIPt AP . . .ottt e e e e e 334
18.10.2. SAMPLE COUE ..ottt ettt ettt e e e et ettt e 336
L18.10.3. SCIEEICAST .« . vttt ettt et et et e e e 336
18104, STATUS. . ..ttt t ettt ettt e 336
L18.10.5. SOULCE . . ottt e e e e e e 336

19. Executing code in the Remote Grid.coutiniiiiii i it 337

S 200 10§ 010 0 2 P 337
19.1.1. InStalling SCIIPES . « v vttt ettt e et ettt e e e 337
19.1.2. Script metadatattt e 337
19.1.3. SCript BINAINGS . . o oot e 338
19.1.4. SCIIPt PATAIMELETS .. ettt ettt ettt e e et e e e et e e e e et ee e e iiae e iianeeas 338
19.1.5. Running Scripts using the Hot Rod Javaclientt 339
19.1.6. Distributed eXeCUtIONo vttt e 339

19.2. SerVer TasKs ... ottt 339

20. Embedded/Remote Compatibilityt e e 340

20.1. Enable Compatibility MOe. . .. oottt e et e 340
20.1.1. Optional: Configuring Compatibility Marshaller 341

20.2. CoAe BXAIMPLES . o\t ittt ettt e e 341

0 LT od D P 342

21.1. Embedded SeCULItY . ..ot v ittt e e e 342
21.1.1. Embedded PermiSSIONSttt 342
21.1.2. Embedded API e 343
21.1.3. Embedded Configuration.oouuuiiiiiiine ittt eiiine e, 344

21.2. SECUTILY AUIL . . oottt ettt ettt et e e e e e e 346

0 S TR O 10 1= T od 0 o /2 PP 347

08 1 (L= 4 = 1 (o) P 349

22,1, APachie SPaTK ..o e 349

22.2. Apache Hadoop . ..ottt e 349

22.3. APAChe LUCEINEottt e e e e e 349
22.3.1. Lucene compatibility.ot e 349
22.3.2. Maven dePendenCies.ttt ettt e ettt 349
22.3.3. HOW tO USE It . . o oottt ettt et 350
22.3.4. CONfigUrationttt et e e 351
22.3.5.Using a CacheLoader.ttt e et e 352
22.3.6. Storing the indexin a databasec..iuiiiininn ittt 352
22.3.7. Loading an existing Lucene IndexX.ooiitiinit i e 353
22.3.8. Architectural imitationsttt e 353
22.3.9. Suggestions for optimal performance.ottt 354

22.3.00. DeIMO . . ottt e e e e 355

22.3.11. Additional LinKS . . oottt et e e 355

22.4. Directory Provider for Hibernate Search i, 355
22.4.1. Maven dePendenCies.ttt ettt e ettt e et e 355
22.4.2. HOW B0 USE It . o oottt ettt e e e 355
22.4.3. Configurationttt e e e e 356
22.4.4. Architecture consSiderationsoiiiiiiiiiiiiiiii i 356

22.5. JPA/Hibernate 2L Cacheo e 356
22.5.1. Deployment SCENATIOSttt ettt et e e e e e e i 358
22.5.2. Configuration Referenceooiiiiiiii i it 360
22.5.3. Cache Strategies .« ..ottt ittt 366
22.5.4. Remote Infinispan Cachingcouuiiiiiiint ittt e 367

22.6. JPA [HIbernate OGM.ttt ettt e ettt e e 368

22.7. Using Infinispan with SPring BOOt.ttt i e 369

22.8. Using Infinispan as a Spring Cache providerou ittt iinnnenn. 369
22.8.1. Activating Spring Cache SUPPOTITotut it e e 369
22.8.2. Telling Spring to use Infinispan as its caching provider 371
22.8.3. Adding caching to your application code.ooiiriiiiiiinn i, 371
22.8.4. Externalizing session using SPring SeSSiONvuurinitiiinneerninneennnn. 372
22.8.5. COMCIUSION . . o oot ettt et e e e e e 373

22.9. Infinispan modules for WildFly e e 374
22.9.0. Installation.o ottt 374
22.9.2. Application DependencCiesttt ittt 374
R TS TR 0T (P 376
22.9.4. TroubleshOOtiNgo ottt et e e 379

23, GIrid FIle SYSteIM . . .ttt ettt ettt et e e et e e e e 380

23.1. WEDDAV AEIMO . . o e vttt ettt e ettt ettt et e e 381

24. Cross Site rePliCatiONttt et e e et e e e e 382

24.1. Sample deployIMent. . . . oottt e e 382
24.1.1. Local cluster’s jgroups .xml configuration.c.cooiiiiiiiinneiinneeennn. 385
24.1.2. RELAY2 configuration file i e 385

24.2. Data rePliCAtION . . .ottt e e 386
24.2.1. Non transactional caches. i 386
24.2.2. Transactional caches. e 386

24.3. Taking a site Offlineottt e e 387
24.3.1. Configurationottt et e 387
24.3.2. Taking a site back online it i et 388

24.4. State Transfer DetWeen SIteSottt e 388
24.4.1. Handling join/leave NOAESottt e et et e e e et 389
24.4.2. Handling broken link between sitesttt 389
24.4.3. System Administrator OPerationsoeuuineetiineeeenneeeennnneeennn. 389

24.4.4. CONfIGUIAtiON\ttt et e e et e e 389

24,5, RO O O ICE . . ot ettt e e e e 390

25. ROIING UPGLrades . ..ottt ettt ettt et et e e e e e e e i i 391
25.1. Rolling upgrades for Infinispan library/embedded mode.................... 391
S 00 B] (] o1 PP 391
25.2. Rolling upgrades for Infinispan SErversouuiiiiiiiin i 392
TR T (=3 o1 P 392
26. Extending INfINiSPant 394
26.1. Custom COMIMANASt v ettt et ettt ettt ettt e e e ettt 394
26. 1.1 AN EXaIPIe . . oot 394
26.1.2. Preassigned Custom Command Id Ranges............ouuuiiiiiiinnennneennnn. 394
26.2. Extending the configuration builders and parsersc.c.ooiviiiiiinneiinneenn. 395
26.3. Cache hierarChy e e e 395
26.4. COMIMANAS. . . oottt ettt e e et e e ettt e e 395
26.5. VISIEOTS . oo ettt ettt e e 396
26.6. TN O CO P OIS . . o ottt ettt e e e e e e e 396
26.7. Putting it all together o i e 397
26.8. SUDSYSTEIM MaANAZETS . .t vttt et te ettt ettt et e e ettt e e e i 397
26.8.1. DistribUutioNManager.ttt ettt e 397
26.8.2. TranSaCtioNIMaANAZET . . .« v vttt et ettt et e e e et e e e e e e 397
26.8.3. RPCMaANaZeT . ..ottt 397
26.8.4. LOCKMANAZET .ottt ettt et ettt et et e e e et e e e e 397
26.8.5. PersSiSteNCEMANAGET . ..o vttt ettt ettt e e e e e e 397
26.8.6. DataContalnerottt e 397
26.8.7. CONLIGUIratiONttt e et e e 398

26.9. COMPONENERE ISy . . oottt e e 398

Chapter 1. Introduction

Welcome to the official Infinispan user guide. This comprehensive document will guide you
through every last detail of Infinispan. Because of this, it can be a poor starting point if you are new
to Infinispan.

Q For newbies, starting with the Getting Started Guide or one of the Quickstarts is
probably a better bet.

The Frequently Asked Questions and Glossary are also useful documents to have alongside this user
guide.

1.1. What is Infinispan ?

Infinispan is a distributed in-memory key/value data store with optional schema, available under
the Apache License 2.0. It can be used both as an embedded Java library and as a language-
independent service accessed remotely over a variety of protocols (Hot Rod, REST, Memcached and
WebSockets). It offers advanced functionality such as transactions, events, querying and distributed
processing as well as numerous integrations with frameworks such as the JCache API standard, CD],
Hibernate, WildFly, Spring Cache, Spring Session, Lucene, Spark and Hadoop.

1.2. Why use Infinispan ?

1.2.1. As alocal cache

The primary use for Infinispan is to provide a fast in-memory cache of frequently accessed data.
Suppose you have a slow data source (database, web service, text file, etc): you could load some or
all of that data in memory so that it’s just a memory access away from your code. Using Infinispan
is better than using a simple ConcurrentHashMap, since it has additional useful features such as
expiration and eviction.

1.2.2. As a clustered cache

If your data doesn’t fit in a single node, or you want to invalidate entries across multiple instances
of your application, Infinispan can scale horizontally to several hundred nodes.

1.2.3. As a clustering building block for your applications

If you need to make your application cluster-aware, integrate Infinispan and get access to features
like topology change notifications, cluster communication and clustered execution.

1.2.4. As a remote cache

If you want to be able to scale your caching layer independently from your application, or you need
to make your data available to different applications, possibly even using different languages /
platforms, use Infinispan Server and its various clients.

../getting_started/getting_started.html
http://www.infinispan.org/documentation
../faqs/faqs.html
../glossary/glossary.html

1.2.5. As a data grid

Data you place in Infinispan doesn’t have to be temporary: use Infinispan as your primary store
and use its powerful features such as transactions, notifications, queries, distributed execution,
distributed streams, analytics to process data quickly.

1.2.6. As a geographical backup for your data

Infinispan supports replication between clusters, allowing you to backup your data across
geographically remote sites.

Chapter 2. The Embedded CacheManager

The CacheManager is Infinispan’s main entry point. You use a CacheManager to

 configure and obtain caches

* manage and monitor your nodes

 execute code across a cluster

* more...
Depending on whether you are embedding Infinispan in your application or you are using it
remotely, you will be dealing with either an EmbeddedCacheManager or a RemoteCacheManager. While
they share some methods and properties, be aware that there are semantic differences between

them. The following chapters focus mostly on the embedded implementation. For details on the
remote implementation refer to Java Hot Rod client.

CacheManagers are heavyweight objects, and we foresee no more than one CacheManager being
used per JVM (unless specific setups require more than one; but either way, this would be a
minimal and finite number of instances).

The simplest way to create a CacheManager is:
EmbeddedCacheManager manager = new DefaultCacheManager();

which starts the most basic, local mode, non-clustered cache manager with no caches.
CacheManagers have a lifecycle and the default constructors also call start(). Overloaded versions
of the constructors are available, that do not start the CacheManager, although keep in mind that
CacheManagers need to be started before they can be used to create Cache instances.

Once constructed, CacheManagers should be made available to any component that require to
interact with it via some form of application-wide scope such as JNDI, a ServletContext or via some
other mechanism such as an IoC container.

When you are done with a CacheManager, you must stop it so that it can release its resources:
manager.stop();

This will ensure all caches within its scope are properly stopped, thread pools are shutdown. If the
CacheManager was clustered it will also leave the cluster gracefully.

2.1. Configuration

Infinispan offers both declarative and programmatic configuration.

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#start--

2.1.1. Configuring caches declaratively

Declarative configuration comes in a form of XML document that adheres to a provided Infinispan
configuration XML schema.

Every aspect of Infinispan that can be configured declaratively can also be configured
programmatically. In fact, declarative configuration, behind the scenes, invokes the programmatic
configuration API as the XML configuration file is being processed. One can even use a combination
of these approaches. For example, you can read static XML configuration files and at runtime
programmatically tune that same configuration. Or you can use a certain static configuration
defined in XML as a starting point or template for defining additional configurations in runtime.

There are two main configuration abstractions in Infinispan: global and cache.

Global configuration

Global configuration defines global settings shared among all cache instances created by a single
EmbeddedCacheManager. Shared resources like thread pools, serialization/marshalling settings,
transport and network settings, JMX domains are all part of global configuration.

Cache configuration

Cache configuration is specific to the actual caching domain itself: it specifies eviction, locking,
transaction, clustering, persistence etc. You can specify as many named cache configurations as you
need. One of these caches can be indicated as the default cache, which is the cache returned by the
CacheManager.getCache() API, whereas other named caches are retrieved via the
CacheManager.getCache(String name) API.

Whenever they are specified, named caches inherit settings from the default cache while additional
behavior can be specified or overridden. Infinispan also provides a very flexible inheritance
mechanism, where you can define a hierarchy of configuration templates, allowing multiple caches
to share the same settings, or overriding specific parameters as necessary.

Embedded and Server configuration use different schemas, but we strive to
maintain them as compatible as possible so that you can easily migrate between
the two.

One of the major goals of Infinispan is to aim for zero configuration. A simple XML configuration
file containing nothing more than a single infinispan element is enough to get you started. The
configuration file listed below provides sensible defaults and is perfectly valid.

infinispan.xml
<infinispan />
However, that would only give you the most basic, local mode, non-clustered cache manager with

no caches. Non-basic configurations are very likely to use customized global and default cache
elements.

Declarative configuration is the most common approach to configuring Infinispan cache instances.
In order to read XML configuration files one would typically construct an instance of

http://www.infinispan.org/schemas/infinispan-config-9.2.xsd
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/manager/EmbeddedCacheManager.html

DefaultCacheManager by pointing to an XML file containing Infinispan configuration. Once the
configuration file is read you can obtain reference to the default cache instance.

EmbeddedCacheManager manager = new DefaultCacheManager("my-config-file.xml");
Cache defaultCache = manager.getCache();

or any other named instance specified in my-config-file.xml.

Cache someNamedCache = manager.getCache("someNamedCache");

The name of the default cache is defined in the <cache-container> element of the XML configuration
file, and additional caches can be configured using the <local-cache><distributed-cache>
,<invalidation-cache> or <replicated-cache> elements.

The following example shows the simplest possible configuration for each of the cache types
supported by Infinispan:

<infinispan>
<cache-container default-cache="local">
<transport cluster="mycluster"/>
<local-cache name="local"/>
<invalidation-cache name="invalidation" mode="SYNC"/>
<replicated-cache name="repl-sync" mode="SYNC"/>
<distributed-cache name="dist-sync" mode="SYNC"/>
</cache-container>
</infinispan>

Cache configuration templates

As mentioned above, Infinispan supports the notion of configuration templates. These are full or
partial configuration declarations which can be shared among multiple caches or as the basis for
more complex configurations.

The following example shows how a configuration named local-template is used to define a cache
named local.

<infinispan>
<cache-container default-cache="local">
<!-- template confiqurations -->
<local-cache-configuration name="local-template">
<expiration interval="10000" 1ifespan="10" max-idle="10"/>
</local-cache-configuration>

<!-- cache definitions -->
<local-cache name="1local" configuration="1local-template" />
</cache-container>
</infinispan>

Templates can inherit from previously defined templates, augmenting and/or overriding some or
all of the configuration elements:

<infinispan>
<cache-container default-cache="local">
<!-- template confiqurations -->
<local-cache-configuration name="base-template">
<expiration interval="10000" 1ifespan="10" max-idle="10"/>
</local-cache-configuration>

<local-cache-configuration name="extended-template" configuration="base-

template">
<expiration lifespan="20"/>
<memory>
<object size="2000"/>
</memory>

</local-cache-configuration>

<!-- cache definitions -->
<local-cache name="local" configuration="base-template" />
<local-cache name="local-bounded" configuration="extended-template" />
</cache-container>
</infinispan>

In the above example, base-template defines a local cache with a specific expiration configuration.
The extended-template configuration inherits from base-template, overriding just a single parameter
of the expiration element (all other attributes are inherited) and adds a memory element. Finally,
two caches are defined: local which uses the base-template configuration and local-bounded which
uses the extended-template configuration.

Be aware that for multi-valued elements (such as properties) the inheritance is
A additive, i.e. the child configuration will be the result of merging the properties
from the parent and its own.

Cache configuration wildcards

An alternative way to apply templates to caches is to use wildcards in the template name, e.g.
basecache*. Any cache whose name matches the template wildcard will inherit that configuration.

<infinispan>
<cache-container>
<local-cache-configuration name="basecache*">
<expiration interval="10500" 1lifespan="11" max-idle="11"/>
</local-cache-configuration>
<local-cache name="basecache-1"/>
<local-cache name="basecache-2"/>
</cache-container>
</infinispan>

Above, caches basecache-1 and basecache-2 will use the basecache* configuration. The configuration
will also be applied when retrieving undefined caches programmatically.

0 If a cache name matches multiple wildcards, i.e. it is ambiguous, an exception will
be thrown.

Declarative configuration reference

For more details on the declarative configuration schema, refer to the configuration reference. If
you are using XML editing tools for configuration writing you can use the provided Infinispan
schema to assist you.

2.1.2. Configuring caches programmatically

Programmatic Infinispan configuration is centered around the CacheManager and
ConfigurationBuilder API. Although every single aspect of Infinispan configuration could be set
programmatically, the most usual approach is to create a starting point in a form of XML
configuration file and then in runtime, if needed, programmatically tune a specific configuration to
suit the use case best.

EmbeddedCacheManager manager = new DefaultCacheManager("my-config-file.xml");
Cache defaultCache = manager.getCache();

Let’s assume that a new synchronously replicated cache is to be configured programmatically. First,
a fresh instance of Configuration object is created using ConfigurationBuilder helper object, and the
cache mode is set to synchronous replication. Finally, the configuration is defined/registered with a
manager.

http://docs.jboss.org/infinispan/9.2/configdocs
http://infinispan.org/schemas/infinispan-config-9.2.xsd

Configuration ¢ = new ConfigurationBuilder().clustering().cacheMode(CacheMode
.REPL_SYNC).build();

String newCacheName = "repl";
manager .defineConfiguration(newCacheName, c);
Cache<String, String> cache = manager.getCache(newCacheName);

The default cache configuration (or any other cache configuration) can be used as a starting point
for creation of a new cache. For example, lets say that infinispan-config-file.xml specifies a
replicated cache as a default and that a distributed cache is desired with a specific L1 lifespan while
at the same time retaining all other aspects of a default cache. Therefore, the starting point would
be to read an instance of a default Configuration object and use ConfigurationBuilder to construct
and modify cache mode and L1 lifespan on a new Configuration object. As a final step the
configuration is defined/registered with a manager.

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan-config-file.xml");
Configuration dcc = manager.getDefaultCacheConfiguration();

Configuration ¢ = new ConfigurationBuilder().read(dcc).clustering().cacheMode
(CacheMode.DIST_SYNC).11().lifespan(60000L).build();

String newCacheName = "distributedWithL1";
manager .defineConfiguration(newCacheName, c);
Cache<String, String> cache = manager.getCache(newCacheName);

As long as the base configuration is the default named cache, the previous code works perfectly
fine. However, other times the base configuration might be another named cache. So, how can new
configurations be defined based on other defined caches? Take the previous example and imagine
that instead of taking the default cache as base, a named cache called "replicatedCache" is used as
base. The code would look something like this:

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan-config-file.xml");
Configuration rc = manager.getCacheConfiguration("replicatedCache");

Configuration ¢ = new ConfiqurationBuilder().read(rc).clustering().cacheMode(
CacheMode .DIST_SYNC).11().1lifespan(60000L).build();

String newCacheName = "distributedWithL1";
manager .defineConfiguration(newCacheName, c);
Cache<String, String> cache = manager.getCache(newCacheName);

Refer to CacheManager , ConfigurationBuilder , Configuration , and GlobalConfiguration javadocs
for more details.

ConfigurationBuilder Programmatic Configuration API

While the above paragraph shows how to combine declarative and programmatic configuration,
starting from an XML configuration is completely optional. The ConfigurationBuilder fluent

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/manager/CacheManager.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/configuration/cache/ConfigurationBuilder.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/configuration/cache/Configuration.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/configuration/global/GlobalConfiguration.html

interface style allows for easier to write and more readable programmatic configuration. This
approach can be used for both the global and the cache level configuration. GlobalConfiguration
objects are constructed using GlobalConfigurationBuilder while Configuration objects are built
using ConfigurationBuilder. Let’s look at some examples on configuring both global and cache level
options with this API:

One of the most commonly configured global option is the transport layer, where you indicate how
an Infinispan node will discover the others:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder().transport()
.defaultTransport()
.clusterName("qa-cluster")
.addProperty("configurationFile", "jgroups-tcp.xml")
.machineld("qa-machine").rackId("qa-rack")
.build();

Sometimes you might also want to enable collection of global JMX statistics at cache manager level
or get information about the transport. To enable global JMX statistics simply do:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
.globalJmxStatistics()
.enable()
.build();

Please note that by not enabling (or by explicitly disabling) global JMX statistics your are just
turning off statistics collection. The corresponding MBean is still registered and can be used to
manage the cache manager in general, but the statistics attributes do not return meaningful values.

Further options at the global JMX statistics level allows you to configure the cache manager name
which comes handy when you have multiple cache managers running on the same system, or how
to locate the JMX MBean Server:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
.globalJmxStatistics()
.cacheManagerName("SalesCacheManager")
.mBeanServerLookup(new JBossMBeanServerLookup())
.build();

Some of the Infinispan features are powered by a group of the thread pool executors which can
also be tweaked at this global level. For example:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
.replicationQueueThreadPool()
.threadPoolFactory(ScheduledThreadPoolExecutorFactory.create())
.build();

https://docs.jboss.org/infinispan/9.2/apidocs/jmxComponents.html

You can not only configure global, cache manager level, options, but you can also configure cache
level options such as the cluster mode:

Configuration config = new ConfigurationBuilder()
.clustering()
.cacheMode(CacheMode.DIST_SYNC)
.sync()
L11().lifespan(25000L)
.hash().numOwners(3)
.build();

Or you can configure eviction and expiration settings:

Configuration config = new ConfigurationBuilder()
.memory()
.Si1ze(20000)
.expiration()
.wakeUpInterval(5000L)
.maxIdle(120000L)
.build();

An application might also want to interact with an Infinispan cache within the boundaries of JTA
and to do that you need to configure the transaction layer and optionally tweak the locking settings.
When interacting with transactional caches, you might want to enable recovery to deal with
transactions that finished with an heuristic outcome and if you do that, you will often want to
enable JMX management and statistics gathering too:

Configuration config = new ConfigurationBuilder()

.locking()
.concurrencylLevel(10000).isolationLevel(IsolationLevel.REPEATABLE_READ)
.lockAcquisitionTimeout(12000L).useLockStriping(false).writeSkewCheck(true)
.versioning().enable().scheme(VersioningScheme.SIMPLE)

.transaction()
.transactionManagerLookup(new GenericTransactionManagerLookup())
.recovery()

.jmxStatistics()

.build();

Configuring Infinispan with chained cache stores is simple too:

Configuration config = new ConfigurationBuilder()
.persistence().passivation(false)
.addSingleFileStore().location("/tmp").async().enable()
.preload(false).shared(false).threadPoolSize(20).build();

10

Advanced programmatic configuration

The fluent configuration can also be used to configure more advanced or exotic options, such as
advanced externalizers:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
.serialization()
.addAdvancedExternalizer (998, new PersonExternalizer())
.addAdvancedExternalizer (999, new AddressExternalizer())
.build();

Or, add custom interceptors:

Configuration config = new ConfigurationBuilder()
.customInterceptors().addInterceptor()
.interceptor(new FirstInterceptor()).position(InterceptorConfiguration.Position
.FIRST)
.interceptor(new LastInterceptor()).position(InterceptorConfiguration.Position
.LAST)
.interceptor(new FixPositionInterceptor()).index(8)
.interceptor(new AfterInterceptor()).after(NonTransactionallockingInterceptor
.class)
.interceptor(new BeforeInterceptor()).before(CallInterceptor.class)
.build();

For information on the individual configuration options, please check the configuration guide .

2.1.3. Configuration Migration Tools

The configuration format of Infinispan has changed since version 6.0 in order to align the
embedded schema with the one used by the server. For this reason, when upgrading to Infinispan
7.x or later, you should use the configuration converter included in the all distribution. Simply
invoke it from the command-line passing the old configuration file as the first parameter and the
name of the converted file as the second parameter.

To convert on Unix/Linux/macOS:
bin/config-converter.sh oldconfig.xml newconfig.xml
on Windows:

bin\config-converter.bat oldconfig.xml newconfig.xml

Q If you wish to help write conversion tools from other caching systems, please
contact infinispan-dev.

11

http://docs.jboss.org/infinispan/9.2/configdocs/
https://lists.jboss.org/mailman/listinfo/infinispan-dev

2.1.4. Clustered Configuration

Infinispan uses JGroups for network communications when in clustered mode. Infinispan ships
with pre-configured JGroups stacks that make it easy for you to jump-start a clustered configuration.

Using an external JGroups file

If you are configuring your cache programmatically, all you need to do is:

GlobalConfiguration gc = new GlobalConfigurationBuilder()
.transport().defaultTransport()
.addProperty("configurationFile", "jgroups.xml")
.build();

and if you happen to use an XML file to configure Infinispan, just use:

<infinispan>
<jgroups>
<stack-file name="external-file" path="jgroups.xml"/>
</jgroups>
<cache-container default-cache="replicatedCache">
<transport stack="external-file" />
<replicated-cache name="replicatedCache"/>
</cache-container>

</infinispan>

In both cases above, Infinispan looks for jgroups.xml first in your classpath, and then for an
absolute path name if not found in the classpath.

Use one of the pre-configured JGroups files

Infinispan ships with a few different JGroups files (packaged in infinispan-core.jar) which means
they will already be on your classpath by default. All you need to do is specify the file name, e.g.,
instead of jgroups.xml above, specify /default-configs/default-jgroups-tcp.xml.

The configurations available are:

* default-jgroups-udp.xml - Uses UDP as a transport, and UDP multicast for discovery. Usually
suitable for larger (over 100 nodes) clusters or if you are using replication or invalidation.
Minimises opening too many sockets.

 default-jgroups-tcp.xml - Uses TCP as a transport and UDP multicast for discovery. Better for
smaller clusters (under 100 nodes) only if you are using distribution, as TCP is more efficient as
a point-to-point protocol

* default-jgroups-ec2.xml - Uses TCP as a transport and S3_PING for discovery. Suitable on

12

http://www.jgroups.org
#replicated_mode
#invalidation_mode
#distribution_mode
http://jgroups.org/manual/index.html#_s3_ping

Amazon EC2 nodes where UDP multicast isn’t available.

* default-jgroups-kubernetes.xml - Uses TCP as a transport and KUBE_PING for discovery.
Suitable on Kubernetes and OpenShift nodes where UDP multicast is not always available.

Tuning JGroups settings

The settings above can be further tuned without editing the XML files themselves. Passing in
certain system properties to your JVM at startup can affect the behaviour of some of these settings.
The table below shows you which settings can be configured in this way. E.g.,

$ java -cp ... -Djgroups.tcp.port=1234 -Djgroups.tcp.address=10.11.12.13

Table 1. default-jgroups-udp.xml

System Property Description Default Required?
jgroups.udp.mcast_add IP address to use for 228.6.7.8 No
r multicast (both for

communications and
discovery). Must be a
valid Class D IP
address, suitable for IP
multicast.

jgroups.udp.mcast_port Port to use for 46655 No
multicast socket

jgroups.udp.ip_ttl Specifies the time-to- 2 No
live (TTL) for IP
multicast packets. The
value here refers to the
number of network
hops a packet is
allowed to make before
it is dropped

Table 2. default-jgroups-tcp.xml

System Property Description Default Required?
jgroups.tcp.address IP address to use for 127.0.0.1 No
the TCP transport.
jgroups.tcp.port Port to use for TCP 7800 No
socket
jgroups.udp.mcast_add IP address to use for 228.6.7.8 No
r multicast (for
discovery). Must be a
valid Class D IP
address, suitable for IP
multicast.

13

http://aws.amazon.com/ec2/
https://github.com/jgroups-extras/jgroups-kubernetes
http://kubernetes.io/
https://www.openshift.org/
http://compnetworking.about.com/od/workingwithipaddresses/l/aa042400b.htm
http://compnetworking.about.com/od/workingwithipaddresses/l/aa042400b.htm

jgroups.udp.mcast_port

jgroups.udp.ip_ttl

Port to use for 46655
multicast socket

Specifies the time-to- 2
live (TTL) for IP

multicast packets. The
value here refers to the
number of network

hops a packet is

allowed to make before

it is dropped

Table 3. default-jgroups-ec2.xml

System Property

jeroups.tcp.address

jgroups.tcp.port

jgroups.s3.access_key

jgroups.s3.secret_access
_key

jeroups.s3.bucket

Description Default

IP address to use for 127.0.0.1
the TCP transport.

Port to use for TCP 7800
socket

The Amazon S3 access
key used to access an
S3 bucket

The Amazon S3 secret
key used to access an
S3 bucket

Name of the Amazon S3
bucket to use. Must be
unique and must
already exist

Table 4. default-jgroups-kubernetes.xml

System Property

jgroups.tcp.address

jgroups.tcp.port

Further reading

JGroups also supports more system property overrides, details of which can be found on this page:

SystemProps

In addition, the JGroups configuration files shipped with Infinispan are intended as a jumping off
point to getting something up and running, and working. More often than not though, you will
want to fine-tune your JGroups stack further to extract every ounce of performance from your
network equipment. For this, your next stop should be the JGroups manual which has a detailed

Description Default

IP address to use for ethO
the TCP transport.

Port to use for TCP 7800
socket

No

No

Required?

No

No

No

No

No

Required?

No

No

section on configuring each of the protocols you see in a JGroups configuration file.

14

http://www.jgroups.org/manual4/index.html#SystemProperties
http://jgroups.org/manual/html/protlist.html
http://jgroups.org/manual/html/protlist.html

2.2. Obtaining caches

Once you have configured the CacheManager, the main thing you will want to do is to use it to
control and obtain caches. The main way to get to a cache is to just invoke getCache():

Cache<String, String> myCache = manager.getCache("myCache");

The above code will create the cache myCache (if it doesn’t already exist) and return it. One
important thing to remember is that using this method, cache creation is only performed on the
local node. This means that, in order for the cache to exist on all nodes, this operation must be
invoked locally everywhere. In a typical application deployed across multiple nodes, where you
obtain caches during initialization, this ensures that the caches are symmetric, i.e. they exist on
every node.

If you need to create caches dynamically across the whole cluster, you should invoke the following
operation:

Cache<String, String> myCache = manager.administration().createCache("myCache",
"myTemplate");

Caches created using the above API will also be automatically created on any new nodes which
subsequently join the cluster. The configuration of such caches, however, will be ephemeral:
shutting down the entire cluster and restarting it will not automatically recreate them. To make
these caches permanent, i.e. ensure that they are recreated after a cluster is shutdown and
restarted, use the PERMANENT flag as follows:

Cache<String, String> myCache = manager.administration().withFlags(AdminFlag.
PERMANENT) .createCache("myCache", "myTemplate");

In order for the above to work, global state must be enabled and a suitable configuration storage
selected. The available configuration stores are:

VOLATILE: as the name implies, this configuration storage does not support PERMANENT caches.

OVERLAY: this stores configurations in the global shared state persistent path in a file named
caches.xml.

MANAGED: this is only supported in server deployments, and will store PERMANENT caches in the
server model.

CUSTOM: a custom configuration store.

See
Jink:https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/configuration/global/GlobalStateCo
nfigurationBuilder.html# for details.

15

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getCache--

2.3. Clustering Information

The EmbeddedCacheManager has quite a few methods to provide information as to how the cluster is
operating. The following methods only really make sense when being used in a clustered
environment (that is when a Transport is configured).

2.3.1. Member Information

When you are using a cluster it is very important to be able to find information about membership
in the cluster including who is the owner of the cluster.

getMembers()

The getMembers() method returns all of the nodes in the current cluster.

getCoordinator()

The getCoordinator() method will tell you which one of the members is the coordinator of the
cluster. For most intents you shouldn’t need to care who the coordinator is. You can use
isCoordinator() method directly to see if the local node is the coordinator as well.

2.3.2. Other methods

getTransport()

This method provides you access to the underlying Transport that is used to send messages to other
nodes. In most cases a user wouldn’t ever need to go to this level, but if you want to get Transport
specific information (in this case JGroups) you can use this mechanism.

getStats()

The stats provided here are coalesced from all of the active caches in this manager. These stats can
be useful to see if there is something wrong going on with your cluster overall. == The Cache API

2.4. The Cache interface

Infinispan’s Caches are manipulated through the Cache interface.

A Cache exposes simple methods for adding, retrieving and removing entries, including atomic
mechanisms exposed by the JDK’s ConcurrentMap interface. Based on the cache mode used,
invoking these methods will trigger a number of things to happen, potentially even including
replicating an entry to a remote node or looking up an entry from a remote node, or potentially a
cache store.

For simple usage, using the Cache API should be no different from using the JDK

Map API, and hence migrating from simple in-memory caches based on a Map to
Infinispan’s Cache should be trivial.

2.4.1. Performance Concerns of Certain Map Methods

Certain methods exposed in Map have certain performance consequences when used with

16

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getMembers--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getCoordinator--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#isCoordinator--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getTransport--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getStats--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/Cache.html

Infinispan, such as size() , values() , keySet() and entrySet() . Specific methods on the keySet, values
and entrySet are fine for use please see their Javadoc for further details.

Attempting to perform these operations globally would have large performance impact as well as
become a scalability bottleneck. As such, these methods should only be used for informational or
debugging purposes only.

It should be noted that using certain flags with the withFlags method can mitigate some of these
concerns, please check each method’s documentation for more details.

For more performance tips, have a look at our Performance Guide.

2.4.2. Mortal and Immortal Data

Further to simply storing entries, Infinispan’s cache API allows you to attach mortality information
to data. For example, simply using put(key, value) would create an immortal entry, i.e., an entry
that lives in the cache forever, until it is removed (or evicted from memory to prevent running out
of memory). If, however, you put data in the cache using put(key, value, lifespan, timeunit) , this
creates a mortal entry, i.e., an entry that has a fixed lifespan and expires after that lifespan.

In addition to lifespan , Infinispan also supports maxldle as an additional metric with which to
determine expiration. Any combination of lifespans or maxIdles can be used.

2.4.3. Example of Using Expiry and Mortal Data

See these examples of using mortal data with Infinispan.

2.4.4. putForExternalRead operation

Infinispan’s Cache class contains a different 'put' operation called putForExternalRead . This
operation is particularly useful when Infinispan is used as a temporary cache for data that is
persisted elsewhere. Under heavy read scenarios, contention in the cache should not delay the real
transactions at hand, since caching should just be an optimization and not something that gets in
the way.

To achieve this, putForExternalRead acts as a put call that only operates if the key is not present in
the cache, and fails fast and silently if another thread is trying to store the same key at the same
time. In this particular scenario, caching data is a way to optimise the system and it’s not desirable
that a failure in caching affects the on-going transaction, hence why failure is handled differently.
putForExternalRead is consider to be a fast operation because regardless of whether it’s successful
or not, it doesn’t wait for any locks, and so returns to the caller promptly.

To understand how to use this operation, let’s look at basic example. Imagine a cache of Person
instances, each keyed by a Personld , whose data originates in a separate data store. The following
code shows the most common pattern of using putForExternalRead within the context of this
example:

17

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/Cache.html#size--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/Cache.html#values--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/Cache.html#keySet--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/Cache.html#entrySet--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
../performance_guide/performance_guide.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/BasicCache.html#put-K-V-long-java.util.concurrent.TimeUnit-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-

// 1d of the person to look up, provided by the application
PersonId id = ...;

// Get a reference to the cache where person instances will be stored
Cache<PersonId, Person> cache = ...;

// First, check whether the cache contains the person instance
// associated with with the given id
Person cachedPerson = cache.get(id);

if (cachedPerson == null) {
// The person is not cached yet, so query the data store with the id
Person person = dataStore.lookup(id);

// Cache the person along with the id so that future requests can
// retrieve it from memory rather than going to the data store
cache.putForExternalRead(id, person);

} else {
// The person was found in the cache, so return it to the application
return cachedPerson;

Please note that putForExternalRead should never be used as a mechanism to update the cache
with a new Person instance originating from application execution (i.e. from a transaction that
modifies a Person’s address). When updating cached values, please use the standard put operation,
otherwise the possibility of caching corrupt data is likely.

2.5. The AdvancedCache interface

In addition to the simple Cache interface, Infinispan offers an AdvancedCache interface, geared
towards extension authors. The AdvancedCache offers the ability to inject custom interceptors,
access certain internal components and to apply flags to alter the default behavior of certain cache
methods. The following code snippet depicts how an AdvancedCache can be obtained:

AdvancedCache advancedCache = cache.getAdvancedCache();

2.5.1. Flags

Flags are applied to regular cache methods to alter the behavior of certain methods. For a list of all
available flags, and their effects, see the Flag enumeration. Flags are applied using
AdvancedCache.withFlags() . This builder method can be used to apply any number of flags to a
cache invocation, for example:

advancedCache.withFlags(Flag.CACHE_MODE_LOCAL, Flag.SKIP_LOCKING)
.withFlags(Flag.FORCE_SYNCHRONOUS)
.put("hello", "world");

18

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/AdvancedCache.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/context/Flag.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-

2.5.2. Custom Interceptors

The AdvancedCache interface also offers advanced developers a mechanism with which to attach
custom interceptors. Custom interceptors allow developers to alter the behavior of the cache API
methods, and the AdvancedCache interface allows developers to attach these interceptors
programmatically, at run-time. See the AdvancedCache Javadocs for more details.

For more information on writing custom interceptors, see this chapter.

2.6. Listeners and Notifications

Infinispan offers a listener API, where clients can register for and get notified when events take
place. This annotation-driven API applies to 2 different levels: cache level events and cache
manager level events.

Events trigger a notification which is dispatched to listeners. Listeners are simple POJO s
annotated with @Listener and registered using the methods defined in the Listenable interface.

Both Cache and CacheManager implement Listenable, which means you can
attach listeners to either a cache or a cache manager, to receive either cache-level
or cache manager-level notifications.

For example, the following class defines a listener to print out some information every time a new
entry is added to the cache:

public class PrintWhenAdded {

public void print(CacheEntryCreatedEvent event) {
System.out.println("New entry " + event.getKey() + " created in the cache");

}

For more comprehensive examples, please see the Javadocs for @Listener.

2.6.1. Cache-level notifications

Cache-level events occur on a per-cache basis, and by default are only raised on nodes where the
events occur. Note in a distributed cache these events are only raised on the owners of data being
affected. Examples of cache-level events are entries being added, removed, modified, etc. These
events trigger notifications to listeners registered to a specific cache.

Please see the Javadocs on the org.infinispan.notifications.cachelistener.annotation package for a
comprehensive list of all cache-level notifications, and their respective method-level annotations.

19

http://en.wikipedia.org/wiki/Plain_Old_Java_Object
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/notifications/Listener.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/notifications/Listenable.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/notifications/Listener.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html

Please refer to the Javadocs on the
org.infinispan.notifications.cachelistener.annotation package for the list of cache-
level notifications available in Infinispan.

Cluster Listeners

The cluster listeners should be used when it is desirable to listen to the cache events on a single
node.

To do so all that is required is set to annotate your listener as being clustered.

(clustered = true)
public class MyClusterListener { }

There are some limitations to cluster listeners from a non clustered listener.

1. A cluster listener can only listen to @CacheEntryModified, @CacheEntryCreated, @CacheEntryRemoved
and @CacheEntryExpired events. Note this means any other type of event will not be listened to
for this listener.

2. Only the post event is sent to a cluster listener, the pre event is ignored.

Event filtering and conversion

All applicable events on the node where the listener is installed will be raised to the listener. It is
possible to dynamically filter what events are raised by using a KeyFilter (only allows filtering on
keys) or CacheEventFilter (used to filter for keys, old value, old metadata, new value, new metadata,
whether command was retried, if the event is before the event (ie. isPre) and also the command

type).

The example here shows a simple KeyFilter that will only allow events to be raised when an event
modified the entry for the key Only Me.

20

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/filter/KeyFilter.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/notifications/cachelistener/filter/CacheEventFilter.html

public class SpecificKeyFilter implements KeyFilter<String> {
private final String keyToAccept;

public SpecificKeyFilter(String keyToAccept) {
if (keyToAccept == null) {
throw new NullPointerException();

}
this.keyToAccept = keyToAccept;

}

boolean accept(String key) {
return keyToAccept.equals(key);
}

cache.addListener(listener, new SpecificKeyFilter("Only Me"));

This can be useful when you want to limit what events you receive in a more efficient manner.

There is also a CacheEventConverter that can be supplied that allows for converting a value to
another before raising the event. This can be nice to modularize any code that does value
conversions.

The mentioned filters and converters are especially beneficial when used in
conjunction with a Cluster Listener. This is because the filtering and conversion

o is done on the node where the event originated and not on the node where event
is listened to. This can provide benefits of not having to replicate events across
the cluster (filter) or even have reduced payloads (converter).

Initial State Events

When a listener is installed it will only be notified of events after it is fully installed.

It may be desirable to get the current state of the cache contents upon first registration of listener
by having an event generated of type @CacheEntryCreated for each element in the cache. Any
additionally generated events during this initial phase will be queued until appropriate events have
been raised.

o This only works for clustered listeners at this time. ISPN-4608 covers adding this
for non clustered listeners.

Duplicate Events

It is possible in a non transactional cache to receive duplicate events. This is possible when the
primary owner of a key goes down while trying to perform a write operation such as a put.

21

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/notifications/cachelistener/filter/CacheEventConverter.html
https://issues.jboss.org/browse/ISPN-4608

Infinispan internally will rectify the put operation by sending it to the new primary owner for the
given key automatically, however there are no guarantees in regards to if the write was first
replicated to backups. Thus more than 1 of the following write events (CacheEntryCreatedEvent,
CacheEntryModifiedEvent & CacheEntryRemovedEvent) may be sent on a single operation.

If more than one event is generated Infinispan will mark the event that it was generated by a
retried command to help the user to know when this occurs without having to pay attention to view
changes.

public class MyRetryListener {

public void entryModified(CacheEntryModifiedEvent event) {
if (event.isCommandRetried()) {
// Do something
}
}
}

Also when using a CacheEventFilter or CacheEventConverter the EventType contains a method
isRetry to tell if the event was generated due to retry.

2.6.2. Cache manager-level notifications

Cache manager-level events occur on a cache manager. These too are global and cluster-wide, but
involve events that affect all caches created by a single cache manager. Examples of cache
manager-level events are nodes joining or leaving a cluster, or caches starting or stopping.

Please see the Javadocs on the org.infinispan.notifications.cachemanagerlistener.annotation
package for a comprehensive list of all cache manager-level notifications, and their respective
method-level annotations.

2.6.3. Synchronicity of events

By default, all notifications are dispatched in the same thread that generates the event. This means
that you must write your listener such that it does not block or do anything that takes too long, as it
would prevent the thread from progressing. Alternatively, you could annotate your listener as
asynchronous , in which case a separate thread pool will be used to dispatch the notification and
prevent blocking the event originating thread. To do this, simply annotate your listener such:

(sync = false)
public class MyAsyncListener { }

Asynchronous thread pool

To tune the thread pool used to dispatch such asynchronous notifications, use the <listener-
executor />XML element in your configuration file.

22

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/notifications/cachelistener/filter/EventType.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/notifications/cachemanagerlistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/notifications/cachemanagerlistener/annotation/package-summary.html
http://docs.jboss.org/infinispan/9.2/configdocs/infinispan-config-9.2.html
http://docs.jboss.org/infinispan/9.2/configdocs/infinispan-config-9.2.html

2.7. Asynchronous API

In addition to synchronous API methods like Cache.put() , Cache.remove() , etc., Infinispan also has
an asynchronous, non-blocking API where you can achieve the same results in a non-blocking
fashion.

These methods are named in a similar fashion to their blocking counterparts, with "Async"
appended. E.g., Cache.putAsync() , Cache.removeAsync() , etc. These asynchronous counterparts
return a Future containing the actual result of the operation.

For example, in a cache parameterized as Cache<String, String>, Cache.put(String key, String
value) returns a String. Cache.putAsync(String key, String value) would return a Future<String>.

2.7.1. Why use such an API?

Non-blocking APIs are powerful in that they provide all of the guarantees of synchronous
communications - with the ability to handle communication failures and exceptions - with the ease
of not having to block until a call completes. This allows you to better harness parallelism in your
system. For example:

Set<Future<?>> futures = new HashSet<Future<?>>();

futures.add(cache.putAsync(key1, valuel)); // does not block
futures.add(cache.putAsync(key2, value2)); // does not block
futures.add(cache.putAsync(key3, value3)); // does not block

// the remote calls for the 3 puts will effectively be executed

// 1in parallel, particularly useful if running in distributed mode
// and the 3 keys would typically be pushed to 3 different nodes
// in the cluster

// check that the puts completed successfully
for (Future<?> f: futures) f.qget();

2.7.2. Which processes actually happen asynchronously?

There are 4 things in Infinispan that can be considered to be on the critical path of a typical write
operation. These are, in order of cost:

* network calls

* marshalling

* writing to a cache store (optional)

* locking
As of Infinispan 4.0, using the async methods will take the network calls and marshalling off the
critical path. For various technical reasons, writing to a cache store and acquiring locks, however,

still happens in the caller’s thread. In future, we plan to take these offline as well. See this
developer mail list thread about this topic.

23

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#remove-java.lang.Object-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/AsyncCache.html#putAsync-K-V-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/AsyncCache.html#removeAsync-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html
http://lists.jboss.org/pipermail/infinispan-dev/2010-January/002219.html
http://lists.jboss.org/pipermail/infinispan-dev/2010-January/002219.html

2.7.3. Notifying futures

Strictly, these methods do not return JDK Futures, but rather a sub-interface known as a
NotifyingFuture . The main difference is that you can attach a listener to a NotifyingFuture such
that you could be notified when the future completes. Here is an example of making use of a
notifying future:

FuturelListener futurelListener = new FuturelListener() {

public void futureDone(Future future) {

try {
future.get();

} catch (Exception e) {
// Future did not complete successfully
System.out.println("Help!");

}
+

cache.putAsync("key", "value").attachListener(futureListener);

2.7.4. Further reading

The Javadocs on the Cache interface has some examples on using the asynchronous API, as does
this article by Manik Surtani introducing the APIL.

2.8. Invocation Flags

An important aspect of getting the most of Infinispan is the use of per-invocation flags in order to
provide specific behaviour to each particular cache call. By doing this, some important
optimizations can be implemented potentially saving precious time and network resources. One of
the most popular usages of flags can be found right in Cache API, underneath the
putForExternalRead() method which is used to load an Infinispan cache with data read from an
external resource. In order to make this call efficient, Infinispan basically calls a normal put
operation passing the following flags: FAIL SILENTLY , FORCE_ASYNCHRONOUS ,
ZERO_LOCK_ACQUISITION_TIMEOUT

What Infinispan is doing here is effectively saying that when putting data read from external read,
it will use an almost-zero lock acquisition time and that if the locks cannot be acquired, it will fail
silently without throwing any exception related to lock acquisition. It also specifies that regardless
of the cache mode, if the cache is clustered, it will replicate asynchronously and so won’t wait for
responses from other nodes. The combination of all these flags make this kind of operation very
efficient, and the efficiency comes from the fact this type of putForExternalRead calls are used with
the knowledge that client can always head back to a persistent store of some sorts to retrieve the
data that should be stored in memory. So, any attempt to store the data is just a best effort and if not
possible, the client should try again if there’s a cache miss.

24

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/util/concurrent/NotifyingFuture.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/Cache.html
http://infinispan.blogspot.com/2009/05/whats-so-cool-about-asynchronous-api.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/context/Flag.html#FAIL_SILENTLY
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/context/Flag.html#FORCE_ASYNCHRONOUS
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/context/Flag.html#ZERO_LOCK_ACQUISITION_TIMEOUT

2.8.1. Examples

If you want to use these or any other flags available, which by the way are described in detail the
Flag enumeration , you simply need to get hold of the advanced cache and add the flags you need
via the withFlags() method call. For example:

Cache cache = ...

cache.getAdvancedCache()
.withFlags(Flag.SKIP_CACHE_STORE, Flag.CACHE_MODE_LOCAL)
.put("local”, "only");

It’s worth noting that these flags are only active for the duration of the cache operation. If the same
flags need to be used in several invocations, even if they’re in the same transaction, withFlags()
needs to be called repeatedly. Clearly, if the cache operation is to be replicated in another node, the
flags are carried over to the remote nodes as well.

Suppressing return values from a put() or remove()

Another very important use case is when you want a write operation such as put() to not return the
previous value. To do that, you need to use two flags to make sure that in a distributed
environment, no remote lookup is done to potentially get previous value, and if the cache is
configured with a cache loader, to avoid loading the previous value from the cache store. You can
see these two flags in action in the following example:

Cache cache = ...

cache.getAdvancedCache()
.withFlags(Flag.SKIP_REMOTE_LOOKUP, Flag.SKIP_CACHE_LOAD)
.put("local”, "only")

For more information, please check the Flag enumeration javadoc.

2.9. Tree API Module

Infinispan’s tree API module offers clients the possibility of storing data using a tree-structure like
API. This API is similar to the one provided by JBoss Cache, hence the tree module is perfect for
those users wanting to migrate their applications from JBoss Cache to Infinispan, who want to limit
changes their codebase as part of the migration. Besides, it’s important to understand that
Infinispan provides this tree API much more efficiently than JBoss Cache did, so if you’re a user of
the tree API in JBoss Cache, you should consider migrating to Infinispan.

2.9.1. What is Tree API about?

The aim of this API is to store information in a hierarchical way. The hierarchy is defined using
paths represented as Fqn or fully qualified names , for example: /this/is/a/fqn/path or /another/path .
In the hierarchy, there’s a special path called root which represents the starting point of all paths
and it’s represented as: /

25

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/context/Flag.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/context/Flag.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/tree/package-summary.html
http://docs.jboss.org/jbosscache/3.2.1.GA/apidocs/org/jboss/cache/package-summary.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/tree/Fqn.html

Each FQN path is represented as a node where users can store data using a key/value pair style API
(i.e. a Map). For example, in /persons/john , you could store information belonging to John, for
example: surname=Smith, birthdate=05/02/1980...etc.

Please remember that users should not use root as a place to store data. Instead, users should
define their own paths and store data there. The following sections will delve into the practical
aspects of this API.

2.9.2. Using the Tree API

Dependencies

For your application to use the tree API, you need to import infinispan-tree.jar which can be located
in the Infinispan binary distributions, or you can simply add a dependency to this module in your
pom.xml:

pom.xml
<dependencies>

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-tree</artifactId>
<version>$put-infinispan-version-here</version>
</dependency>

</dependencies>

2.9.3. Creating a Tree Cache

The first step to use the tree API is to actually create a tree cache. To do so, you need to create an
Infinispan Cache as you’d normally do, and using the TreeCacheFactory , create an instance of
TreeCache . A very important note to remember here is that the Cache instance passed to the
factory must be configured with invocation batching. For example:

import org.infinispan.config.Configuration;
import org.infinispan.tree.TreeCacheFactory;
import org.infinispan.tree.TreeCache;

Configuration config = new Configuration();
config.setInvocationBatchingEnabled(true);

Cache cache = new DefaultCacheManager(config).getCache();
TreeCache treeCache = TreeCacheFactory.createTreeCache(cache);

2.9.4. Manipulating data in a Tree Cache

The Tree API effectively provides two ways to interact with the data:

26

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/tree/TreeCacheFactory.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/tree/TreeCache.html

Via TreeCache convenience methods: These methods are located within the TreeCache interface
and enable users to store, retrieve , move , remove ...etc data with a single call that takes the Fqn,
in String or Fqn format, and the data involved in the call. For example:

treeCache.put("/persons/john", "surname", "Smith");
Or:

import org.infinispan.tree.Fqgn;

Fqn johnFgn = Fgn.fromString("persons/john");

Calendar calendar = Calendar.getInstance();
calendar.set(1980, 5, 2);

treeCache.put(johnFqn, "birthdate", calendar.getTime()));

Via Node API: It allows finer control over the individual nodes that form the FQN, allowing
manipulation of nodes relative to a particular node. For example:

import org.infinispan.tree.Node;
TreeCache treeCache = ...
Fqn johnFgn = Fqn.fromElements("persons”, "john");

Node<String, Object> john = treeCache.getRoot().addChild(johnFqgn);
john.put("surname", "Smith");

Or:

Node persons = treeCache.getRoot().addChild(Fgn.fromString("persons"));
Node<String, Object> john = persons.addChild(Fqn.fromString("john"));
john.put("surname", "Smith");

Or even:

Fqn personsFqn = Fgn.fromString("persons");

Fqn johnFgn = Fgn.fromRelative(personsFgn, Fqn.fromString("john"));
Node<String, Object> john = treeCache.getRoot().addChild(johnFqn);
john.put("surname", "Smith");

A node also provides the ability to access its parent or children . For example:

Node<String, Object> john = ...
Node persons = john.getParent();

Or:

27

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/tree/TreeCache.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/tree/TreeCache.html#put-java.lang.String-K-V-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/tree/TreeCache.html#get-org.infinispan.tree.Fqn-K-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/tree/TreeCache.html#move-org.infinispan.tree.Fqn-org.infinispan.tree.Fqn-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/tree/TreeCache.html#remove-org.infinispan.tree.Fqn-K-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/tree/Fqn.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/tree/Node.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/tree/Node.html#getParent--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/tree/Node.html#getChildren--

Set<Node<String, Object>> personsChildren = persons.getChildren();

2.9.5. Common Operations

In the previous section, some of the most used operations, such as addition and retrieval, have been
shown. However, there are other important operations that are worth mentioning, such as remove:

You can for example remove an entire node, i.e. /persons/john , using:
treeCache.removeNode("/persons/john");

Or remove a child node, i.e. persons that a child of root, via:
treeCache.getRoot().removeChild(Fqn.fromString("persons"));

You can also remove a particular key/value pair in a node:

Node john = treeCache.getRoot().getChild(Fqn.fromElements("persons”, "john"));
john.remove("surname");

Or you can remove all data in a node with:

Node john = treeCache.getRoot().getChild(Fqn.fromElements("persons”, "john"));
john.clearData();

Another important operation supported by Tree API is the ability to move nodes around in the tree.
Imagine we have a node called "john" which is located under root node. The following example is
going to show how to we can move "john" node to be under "persons" node:

Current tree structure:

/persons
/john

Moving trees from one FQN to another:

Node john = treeCache.getRoot().addChild(Fgn.fromString("john"));
Node persons = treeCache.getRoot().getChild(Fqn.fromString("persons"));
treeCache.move(john.getFgn(), persons.getFqn());

Final tree structure:

28

/persons/john

2.9.6. Locking in the Tree API

Understanding when and how locks are acquired when manipulating the tree structure is
important in order to maximise the performance of any client application interacting against the
tree, while at the same time maintaining consistency.

Locking on the tree API happens on a per node basis. So, if you’re putting or updating a key/value
under a particular node, a write lock is acquired for that node. In such case, no write locks are
acquired for parent node of the node being modified, and no locks are acquired for children nodes.

If you're adding or removing a node, the parent is not locked for writing. In JBoss Cache, this
behaviour was configurable with the default being that parent was not locked for insertion or
removal.

Finally, when a node is moved, the node that’s been moved and any of its children are locked, but
also the target node and the new location of the moved node and its children. To understand this
better, let’s look at an example:

Imagine you have a hierarchy like this and we want to move c/ to be underneath b/:

® — N -

a— o — oo

The end result would be something like this:

DS
D — N -

To make this move, locks would have been acquired on:

* /a/b - because it’s the parent underneath which the data will be put

29

» /c and /c/e - because they’re the nodes that are being moved

* /a/b/c and /a/b/c/e - because that’s new target location for the nodes being moved

2.9.7. Listeners for tree cache events

The current Infinispan listeners have been designed with key/value store notifications in mind, and
hence they do not map to tree cache events correctly. Tree cache specific listeners that map directly
to tree cache events (i.e. adding a child...etc) are desirable but these are not yet available. If you’re
interested in this type of listeners, please follow this issue to find out about any progress in this
area.

2.10. Functional Map API

Infinispan 8 introduces a new experimental API for interacting with your data which takes
advantage of the functional programming additions and improved asynchronous programming
capabilities available in Java 8.

Infinispan’s Functional Map API is a distilled map-like asynchronous API which uses functions to
interact with data.

2.10.1. Asynchronous and Lazy

Being an asynchronous API, all methods that return a single result, return a CompletableFuture
which wraps the result, so you can use the resources of your system more efficiently by having the
possibility to receive callbacks when the CompletableFuture has completed, or you can chain or
compose them with other CompletableFuture.

For those operations that return multiple results, the API returns instances of a Traversable
interface which offers a lazy pull-style API for working with multiple results. Traversable , being a
lazy pull-style API, can still be asynchronous underneath since the user can decide to work on the
traversable at a later stage, and the Traversable implementation itself can decide when to compute
those results.

2.10.2. Function transparency

Since the content of the functions is transparent to Infinispan, the API has been split into 3
interfaces for read-only (ReadOnlyMap), read-write (ReadWriteMap) and write-only (WriteOnlyMap)
operations respectively, in order to provide hints to the Infinispan internals on the type of work
needed to support functions.

2.10.3. Constructing Functional Maps

To construct any of the read-only, write-only or read-write map instances, an Infinispan
AdvancedCache is required, which is retrieved from the Cache Manager, and using the AdvancedCache ,
static method factory methods are used to create ReadOnlyMap , ReadWriteMap or WriteOnlyMap :

30

https://issues.jboss.org/browse/ISPN-1935
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/AdvancedCache.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/AdvancedCache.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html

import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.functional.impl.*;

AdvancedCache<String, String> cache = ...

FunctionalMapImpl<String, String> functionalMap = FunctionalMapImpl.create(cache);
ReadOnlyMap<String, String> readOnlyMap = ReadOnlyMapImpl.create(functionalMap);
WriteOnlyMap<String, String> writeOnlyMap = WriteOnlyMapImpl.create(functionalMap);
ReadWriteMap<String, String> readWriteMap = ReadWriteMapImpl.create(functionalMap);

At this stage, the Functional Map API is experimental and hence the way
A FunctionalMap, ReadOnlyMap, WriteOnlyMap and ReadWriteMap are
constructed is temporary.

2.10.4. Read-Only Map API

Read-only operations have the advantage that no locks are acquired for the duration of the
operation. Here’s an example on how to the equivalent operation for Map.get(K) :

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadOnlyMap<String, String> readOnlyMap = ...
CompletableFuture<Optional<String>> readFuture = readOnlyMap.eval("key1",
ReadEntryView::find);

readFuture.thenAccept(System.out::println);

Read-only map also exposes operations to retrieve multiple keys in one go:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Traversable;

ReadOnlyMap<String, String> readOnlyMap = ...
Set<String> keys = new HashSet<>(Arrays.asList("key1", "key2"));

Traversable<String> values = readOnlyMap.evalMany(keys, ReadEntryView::get);
values.forEach(System.out::println);

Finally, read-only map also exposes methods to read all existing keys as well as entries, which
include both key and value information.

Read-Only Entry View

The function parameters for read-only maps provide the user with a read-only entry view to
interact with the data in the cache, which include these operations:

31

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#get-java.lang.Object-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html

key() method returns the key for which this function is being executed.

find() returns a Java 8 Optional wrapping the value if present, otherwise it returns an empty
optional. Unless the value is guaranteed to be associated with the key, it’s recommended to use
find() to verify whether there’s a value associated with the key.

get() returns the value associated with the key. If the key has no value associated with it, calling
get() throws a NoSuchElementException. get() can be considered as a shortcut of
ReadEntryView.find().get() which should be used only when the caller has guarantees that
there’s definitely a value associated with the key.

o findMetaParam(Class<T> type) allows metadata parameter information associated with the cache

entry to be looked up, for example: entry lifespan, last accessed time...etc. See Metadata
Parameter Handling section to find out more.

2.10.5. Write-Only Map API

Write-only operations include operations that insert or update data in the cache and also removals.
Crucially, a write-only operation does not attempt to read any previous value associated with the
key. This is an important optimization since that means neither the cluster nor any persistence
stores will be looked up to retrieve previous values. In the main Infinispan Cache, this kind of
optimization was achieved using a local-only per-invocation flag, but the use case is so common
that in this new functional API, this optimization is provided as a first-class citizen.

Using write-only map API, an operation equivalent to javax.cache.Cache (JCache) 's void returning
put can be achieved this way, followed by an attempt to read the stored value using the read-only
map APL:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

WriteOnlyMap<String, String> writeOnlyMap = ...
ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", "valuel",
(v, view) -> view.set(v));

CompletableFuture<String> readFuture = writeFuture.thenCompose(r ->
readOnlyMap.eval("key1", ReadEntryView::get));

readFuture.thenAccept(System.out::println);

Multiple key/value pairs can be stored in one go using evalMany API:

32

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#key--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#find--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#get--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html#findMetaParam-java.lang.Class-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java#L194
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#evalMany-java.util.Map-java.util.function.BiConsumer-

WriteOnlyMap<String, String> writeOnlyMap = ...

Map<K, String> data = new HashMap<>();

data.put("key1", "valuel");

data.put("key2", "value2");

CompletableFuture<Void> writerAllFuture = writeOnlyMap.evalMany(data, (v, view) ->
view.set(v));

writerAllFuture.thenAccept(x -> "Write completed");

To remove all contents of the cache, there are two possibilities with different semantics. If using
evalAll each cached entry is iterated over and the function is called with that entry’s information.
Using this method also results in listeners (see functional listeners section for more information)
being invoked:

WriteOnlyMap<String, String> writeOnlyMap = ...

CompletableFuture<Void> removeAllFuture = writeOnlyMap.evalAll(WriteEntryView::remove
)i

removeAllFuture.thenAccept(x -> "All entries removed");

The alternative way to remove all entries is to call truncate operation which clears the entire cache
contents in one go without invoking any listeners and is best-effort:

WriteOnlyMap<String, String> writeOnlyMap = ...

CompletableFuture<Void> truncateFuture = writeOnlyMap.truncate();
truncateFuture.thenAccept(x -> "Cache contents cleared");

Write-Only Entry View

The function parameters for write-only maps provide the user with a write-only entry view to
modify the data in the cache, which include these operations:

* set(V, MetaParam.Writable::*) method allows for a new value to be associated with the cache
entry for which this function is executed, and it optionally takes zero or more metadata
parameters to be stored along with the value (see Metadata Parameter Handling section to find
out more).

* remove() method removes the cache entry, including both value and metadata parameters
associated with this key.

2.10.6. Read-Write Map API

The final type of operations we have are readwrite operations, and within this category CAS-like
(CompareAndSwap) operations can be found. This type of operations require previous value
associated with the key to be read and for locks to be acquired before executing the function. The
vast majority of operations within ConcurrentMap and JCache APIs fall within this category, and they

33

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#evalAll-java.util.function.Consumer-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#truncate--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#remove--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java

can easily be implemented using the read-write map API . Moreover, with read-write map API, you
can make CASlike comparisons not only based on value equality but based on metadata parameter
equality such as version information, and you can send back previous value or boolean instances to
signal whether the CASlike comparison succeeded.

Implementing a write operation that returns the previous value associated with the cache entry is
easy to achieve with the read-write map API:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadWriteMap<String, String> readWriteMap = ...

CompletableFuture<Optional<String>> readWriteFuture = readWriteMap.eval("key1",
"valuel",
(v, view) -> {
Optional<V> prev = rw.find();
view.set(v);
return prev;

i)
readWriteFuture.thenAccept(System.out::println);

ConcurrentMap.replace(K, V, V) is a replace function that compares the value present in the map
and if it’s equals to the value passed in as first parameter, the second value is stored, returning a
boolean indicating whether the replace was successfully completed. This operation can easily be
implemented using the read-write map API:

ReadWriteMap<String, String> readWriteMap = ...

String oldValue = "old-value";
CompletableFuture<Boolean> replaceFuture = readWriteMap.eval("key1", "valuel", (v,
view) -> {
return view.find().map(prev -> {
if (prev.equals(oldValue)) {
rw.set(v);
return true; // previous value present and equals to the expected one
}
return false; // previous value associated with key does not match
}).orElse(false); // no value associated with this key
};
replacefFuture.thenAccept(replaced -> System.out.printf("Value was replaced? %s%n",
replaced));

0 The function in the example above captures oldValue which is an external value
to the function which is valid use case.

Read-write map API contains evalMany and evalAll operations which behave similar to the write-
only map offerings, except that they enable previous value and metadata parameters to be read.

34

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-

Read-Write Entry View

The function parameters for read-write maps provide the user with the possibility to query the
information associated with the key, including value and metadata parameters, and the user can
also use this read-write entry view to modify the data in the cache.

The operations are exposed by read-write entry views are a union of the operations exposed by
read-only entry views and write-only entry views

2.10.7. Metadata Parameter Handling

Metadata parameters provide extra information about the cache entry, such as version
information, lifespan, last accessed/used time...etc. Some of these can be provided by the user, e.g.
version, lifespan...etc, but some others are computed internally and can only be queried, e.g. last
accessed/used time.

The functional map API provides a flexible way to store metadata parameters along with an cache
entry. To be able to store a metadata parameter, it must extend MetaParam.Writable interface, and
implement the methods to allow the internal logic to extra the data. Storing is done via the set(V,
MetaParam.Writable::-) method in write-only entry view or read-write entry view function
parameters.

Querying metadata parameters is available via the findMetaParam(Class) method available via read-
write entry view or read-only entry view or function parameters.

Here is an example showing how to store metadata parameters and how to query them:

import java.time.Duration;

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.MetaParam.*;

WriteOnlyMap<String, String> writeOnlyMap = ...
ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", "valuel",
(v, view) -> view.set(v, new Metalifespan(Duration.ofHours(1).toMillis())));
CompletableFuture<Metalifespan> readFuture = writeFuture.thenCompose(r ->
readOnlyMap.eval("key1", view -> view.findMetaParam(Metalifespan.class).get()));
readFuture.thenAccept(System.out::println);

If the metadata parameter is generic, for example MetaEntryVersion<T> , retrieving the metadata
parameter along with a specific type can be tricky if using .class static helper in a class because it
does not return a Class<T> but only (Class, and hence any generic information in the class is lost:

35

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/EntryView.ReadWriteEntryView.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/MetaParam.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html#findMetaParam-java.lang.Class-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/MetaParam.MetaEntryVersion.html

ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<String> readFuture = readOnlyMap.eval("key1", view -> {
// If caller depends on the typed information, this is not an ideal way to retrieve
it
// If the caller does not depend on the specific type, this works just fine.
Optional<MetaEntryVersion> version = view.findMetaParam(MetaEntryVersion.class);
return view.get();

b

When generic information is important the user can define a static helper method that coerces the
static class retrieval to the type requested, and then use that helper method in the call to
findMetaParam:

class MetaEntryVersion<T> implements MetaParam.Writable<EntryVersion<T>> {
public static <T> T type() { return (T) MetaEntryVersion.class; }

}
ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<String> readFuture = readOnlyMap.eval("key1", view -> {
// The caller wants quarantees that the metadata parameter for version is numeric
// e.g. to query the actual version information
Optional<MetaEntryVersion<Long>> version = view.findMetaParam(MetaEntryVersion.

type());
return view.get();

H;

Finally, users are free to create new instances of metadata parameters to suit their needs. They are
stored and retrieved in the very same way as done for the metadata parameters already provided
by the functional map API.

2.10.8. Invocation Parameter

Per-invocation parameters are applied to regular functional map API calls to alter the behaviour of
certain aspects. Adding per invocation parameters is done using the withParams(Param<?>::)
method.

Param.FutureMode tweaks whether a method returning a CompletableFuture will span a thread to
invoke the method, or instead will use the caller thread. By default, whenever a call is made to a
method returning a CompletableFuture , a separate thread will be span to execute the method
asynchronously. However, if the caller will immediately block waiting for the CompletableFuture to
complete, spanning a different thread is wasteful, and hence Param.FutureMode.COMPLETED can be
passed as per-invocation parameter to avoid creating that extra thread. Example:

36

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Param.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Param.FutureMode.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Param.FutureMode.html#COMPLETED

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Param.*;

ReadOnlyMap<String, String> readOnlyMap = ...

ReadOnlyMap<String, String> readOnlyMapCompleted = readOnlyMap.withParams(FutureMode
.COMPLETED);

Optional<String> readFuture = readOnlyMapCompleted.eval("key1", ReadEntryView::find)

.get();

Param.PersistenceMode controls whether a write operation will be propagated to a persistence
store. The default behaviour is for all write-operations to be propagated to the persistence store if
the cache is configured with a persistence store. By passing PersistenceMode.SKIP as parameter, the
write operation skips the persistence store and its effects are only seen in the in-memory contents
of the cache. PersistenceMode.SKIP can be used to implement an Cache.evict() method which
removes data from memory but leaves the persistence store untouched:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Param.*;

WriteOnlyMap<String, String> writeOnlyMap = ...

WriteOnlyMap<String, String> skiPersistMap = writeOnlyMap.withParams(PersistenceMode
.SKIP);

CompletableFuture<Void> removeFuture = skiPersistMap.eval("key1", WriteEntryView:
‘remove);

Note that there’s no need for another PersistenceMode option to skip reading from the persistence
store, because a write operation can skip reading previous value from the store by calling a write-
only operation via the WriteOnlyMap.

Finally, new Param implementations are normally provided by the functional map API since they
tweak how the internal logic works. So, for the most part of users, they should limit themselves to
using the Param instances exposed by the API The exception to this rule would be advanced users
who decide to add new interceptors to the internal stack. These users have the ability to query
these parameters within the interceptors.

2.10.9. Functional Listeners

The functional map offers a listener API, where clients can register for and get notified when events
take place. These notifications are post-event, so that means the events are received after the event
has happened.

The listeners that can be registered are split into two categories: write listeners and read-write
listeners.

37

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/Cache.html#evict-K-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html

Write Listeners

Write listeners enable user to register listeners for any cache entry write events that happen in
either a read-write or write-only functional map.

Listeners for write events cannot distinguish between cache entry created and cache entry
modify/update events because they don’t have access to the previous value. All they know is that a
new non-null entry has been written.

However, write event listeners can distinguish between entry removals and cache entry
create/modify-update events because they can query what the new entry’s value via
ReadEntryView.find() method.

Adding a write listener is done via the WriteListeners interface which is accessible via both
ReadWriteMap.listeners() and WriteOnlyMap.listeners() method.

A write listener implementation can be defined either passing a function to
onWrite(Consumer<ReadEntryView<K, V>>) method, or passing a WriteListener implementation to
add(WritelListener<K, V>) method. Either way, all these methods return an AutoCloseable instance
that can be used to de-register the function listener:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Listeners.WritelListeners.WritelListener;

WriteOnlyMap<String, String> woMap = ...

AutoCloseable writeFunctionCloseHandler = woMap.listeners().onWrite(written -> {
// ‘written' is a ReadEntryView of the written entry
System.out.printf("Written: %s%n", written.get());

b

AutoCloseable writeCloseHanlder = woMap.listeners().add(new WritelListener<String,

String>() {

public void onWrite(ReadEntryView<K, V> written) {
System.out.printf("Written: %s%n", written.get());

}
1

// Either wrap handler in a try section to have it auto close...
try(writeFunctionCloseHandler) {
// Write entries using read-write or write-only functional map API

}
// Or close manually

writeCloseHanlder.close();

Read-Write Listeners

Read-write listeners enable users to register listeners for cache entry created, modified and

38

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#find--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html#listeners--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#listeners--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html#onWrite-java.util.function.Consumer-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html#add-org.infinispan.commons.api.functional.Listeners.WriteListeners.WriteListener-
https://docs.oracle.com/javase/8/docs/api/java/lang/AutoCloseable.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html

removed events, and also register listeners for any cache entry write events.

Entry created, modified and removed events can only be fired when these originate on a read-write
functional map, since this is the only one that guarantees that the previous value has been read,
and hence the differentiation between create, modified and removed can be fully guaranteed.

Adding a read-write listener is done via the ReadWritelListeners interface which is accessible via
ReadWriteMap.listeners() method.

If interested in only one of the event types, the simplest way to add a listener is to pass a function to
either onCreate , onModify or onRemove methods. All these methods return an AutoCloseable instance
that can be used to de-register the function listener:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadWriteMap<String, String> rwMap = ...

AutoCloseable createClose = rwMap.listeners().onCreate(created -> {
// ‘created’ is a ReadEntryView of the created entry
System.out.printf("Created: %s%n", created.get());

3

AutoCloseable modifyClose = rwMap.listeners().onModify((before, after) -> {
// ‘before' is a ReadEntryView of the entry before update
// ‘after’ is a ReadEntryView of the entry after update
System.out.printf("Before: %s%n", before.get());
System.out.printf("After: %s%n", after.get());

1)

AutoCloseable removeClose = rwMap.listeners().onRemove(removed -> {
// ‘removed' is a ReadEntryView of the removed entry
System.out.printf("Removed: %s%n", removed.get());

Ik

AutoCloseable writeClose = woMap.listeners().onWrite(written -> {
// ‘written' is a ReadEntryView of the written entry
System.out.printf("Written: %s%n", written.get());

b

// Either wrap handler in a try section to have it auto close...
try(createClose) {
// Create entries using read-write functional map API

}

// Or close manually
modifyClose.close();

If listening for two or more event types, it’s better to pass in an implementation of
ReadWritelListener interface via the ReadWritelListeners.add() method. ReadWritelListener offers the
same onCreate/onModify/onRemove callbacks with default method implementations that are empty:

39

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html#listeners--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onCreate-org.infinispan.commons.api.functional.EntryView.ReadEntryView-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onModify-org.infinispan.commons.api.functional.EntryView.ReadEntryView-org.infinispan.commons.api.functional.EntryView.ReadEntryView-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onRemove-org.infinispan.commons.api.functional.EntryView.ReadEntryView-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.WriteListener.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html#add-org.infinispan.commons.api.functional.Listeners.ReadWriteListeners.ReadWriteListener-

import org.infinispan.commons.api.functional.EntryView.*;

import org.infinispan.commons.api.functional.FunctionalMap.*;

import
org.infinispan.commons.api.functional.Listeners.ReadWritelisteners.ReadWritelistener;

ReadWriteMap<String, String> ruwMap = ...
AutoCloseable readWriteClose = rwMap.listeners.add(new ReadWritelistener<String,
String>() {

public void onCreate(ReadEntryView<String, String> created) {
System.out.printf("Created: %s%n", created.get());
}

public void onModify(ReadEntryView<String, String> before, ReadEntryView<String,
String> after) {
System.out.printf("Before: %s%n", before.get());
System.out.printf("After: %s%n", after.get());
}

public void onRemove(ReadEntryView<String, String> removed) {
System.out.printf("Removed: %s%n", removed.get());

}
)

AutoCloseable writeClose = rwMap.listeners.add(new WriteListener<String, String>() {

public void onWrite(ReadEntryView<K, V> written) {
System.out.printf("Written: %s%n", written.qget());

}
)

// Either wrap handler in a try section to have it auto close...
try(readWriteClose) {
// Create/update/remove entries using read-write functional map API

}
// Or close manually

writeClose.close();

2.10.10. Marshalling of Functions

Running functional map in a cluster of nodes involves marshalling and replication of the operation
parameters under certain circumstances.

To be more precise, when write operations are executed in a cluster, regardless of read-write or
write-only operations, all the parameters to the method and the functions are replicated to other
nodes.

40

There are multiple ways in which a function can be marshalled. The simplest way, which is also the
most costly option in terms of payload size, is to mark the function as Serializable:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

WriteOnlyMap<String, String> writeOnlyMap

// Force a function to be Serializable
Consumer<WriteEntryView<String>> function
(Consumer<WriteEntryView<String>> & Serializable) wv -> wv.set("one");

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", function);

Since version 9.1 Infinispan provides overloads for all functional methods that make lambdas
passed directly to the API serializable by default; the compiler automatically selects this overload if
that’s possible. Therefore you can call

WriteOnlyMap<String, String> writeOnlyMap = ...
CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", wv -> wv.set("one"));

without doing the cast described above.

A more economical way to marshall a function is to provide an Infinispan Externalizer for it:

41

https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/marshall/Externalizer.html

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.marshall.Externalizer;

import org.infinispan.commons.marshall.SerializeFunctionWith;

WriteOnlyMap<String, String> writeOnlyMap = ...

// Force a function to be Serializable
Consumer<WriteEntryView<String>> function = new SetStringConstant<>();
CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", function);

(value = SetStringConstant.Externalizer@.class)
class SetStringConstant implements Consumer<WriteEntryView<String>> {

public void accept(WriteEntryView<String> view) {
view.set("valuel");

}

public static final class Externalizer® implements Externalizer<Object> {
public void writeObject(ObjectOutput oo, Object o) {
// No-op
}
public Object readObject(ObjectInput input) {
return new SetStringConstant<>();

}

To help users take advantage of the tiny payloads generated by Externalizer-based functions, the
functional API comes with a helper class called
org.infinispan.commons.marshall.MarshallableFunctions which provides marshallable functions for
some of the most commonly user functions.

In fact, all the functions required to implement ConcurrentMap and JCache using the functional map
API have been defined in MarshallableFunctions. For example, here is an implementation of
JCache’s boolean putIfAbsent(K, V) using functional map API which can be run in a cluster:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.marshall.MarshallableFunctions;

ReadWriteMap<String, String> readWriteMap = ...
CompletableFuture<Boolean> future = readWriteMap.eval("key1,

MarshallableFunctions.setValuelfAbsentReturnBoolean());
future.thenAccept(stored -> System.out.printf("Value was put? %s%n", stored));

42

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/marshall/MarshallableFunctions.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/marshall/MarshallableFunctions.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java#L283

2.10.11. Use cases for Functional API

This new API is meant to complement existing Key/Value Infinispan API offerings, so you’ll still be
able to use ConcurrentMap or JCache standard APIs if that’s what suits your use case best.

The target audience for this new API is either:

* Distributed or persistent caching/inmemorydatagrid users that want to benefit from
CompletableFuture and/or Traversable for async/lazy data grid or caching data manipulation.
The clear advantage here is that threads do not need to be idle waiting for remote operations to
complete, but instead these can be notified when remote operations complete and then chain
them with other subsequent operations.

» Users wanting to go beyond the standard operations exposed by ConcurrentMap and JCache , for
example, if you want to do a replace operation using metadata parameter equality instead of
value equality, or if you want to retrieve metadata information from values...etc.

43

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java

Chapter 3. Eviction and Data Container

Infinispan supports eviction of entries, such that you do not run out of memory. Eviction is typically
used in conjunction with a cache store, so that entries are not permanently lost when evicted, since
eviction only removes entries from memory and not from cache stores or the rest of the cluster.

Infinispan supports storing data in a few different formats. Data can be stored as the object iself,
binary as a byte[], and off-heap which stores the byte[] in native memory.

Passivation is also a popular option when using eviction, so that only a single
copy of an entry is maintained - either in memory or in a cache store, but not

Q both. The main benefit of using passivation over a regular cache store is that
updates to entries which exist in memory are cheaper since the update doesn’t
need to be made to the cache store as well.

Eviction occurs on a local basis, and is not cluster-wide. Each node runs an
eviction thread to analyse the contents of its in-memory container and decide
what to evict. Eviction does not take into account the amount of free memory in

o the JVM as threshold to starts evicting entries. You have to set size attribute of
the eviction element to be greater than zero in order for eviction to be turned on.
If size is too large you can run out of memory. The size attribute will probably
take some tuning in each use case.

3.1. Enabling Eviction

Eviction is configured by adding the <memory /> element to your <*-cache /> configuration sections
or using MemoryConfigurationBuilder API programmatic approach.

All cache entry are evicted by piggybacking on user threads that are hitting the cache.

3.1.1. Eviction strategy

Eviction is handled by Caffeine utilizing the TinyLFU algorithm with an additional admission
window. This was chosen as provides high hit rate while also requiring low memory overhead.
This provides a better hit ratio than LRU while also requiring less memory than LIRS.

3.1.2. Eviction types

COUNT

This type of eviction will remove entries based on how many there are in the cache. Once the count
of entries has grown larger than the size then an entry will be removed to make room.

MEMORY

This type of eviction will estimate how much each entry will take up in memory and will remove an
entry when the total size of all entries is larger than the configured size. This type only works with
primitive wrapper, String and byte[] types, thus if custom types are desired you must enable
storeAsBinary. Also MEMORY based eviction only works with LRU policy.

44

http://docs.jboss.org/infinispan/9.2/configdocs/infinispan-config-9.2.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/configuration/cache/MemoryConfigurationBuilder.html
https://github.com/ben-manes/caffeine

3.1.3. Storage type

Infinispan allows the user to configure in what form their data is stored. Each form supports the
same features of Infinispan, however eviction can be limited for some forms. There are currently
three storage formats that Infinispan provides, they are:

0BJECT

Stores the keys and values as objects in the Java heap Only COUNT eviction type is supported.

BINARY

Stores the keys and values as a byte[] in the Java heap. This will use the configured marshaller for
the cache if there is one. Both COUNT and MEMORY eviction types are supported.

OFF-HEAP

Stores the keys and values in native memory outside of the Java heap as bytes. The configured
marshaller will be used if the cache has one. Both COUNT and MEMORY eviction types are supported.

Q Both BINARY and OFF-HEAP violate equality in that equality is dictated by
equivalence of the resulting byte[] they generate instead of the object instance.

3.1.4. More defaults

By default when no <memory /> element is specified, no eviction takes place and 0BJECT storage type
is used.

In case there is an memory element, this table describes the behaviour of eviction based on
information provided in the xml configuration ("-" in Supplied size or Supplied strategy column
means that the attribute wasn’t supplied)

Supplied size Example Eviction behaviour

- <memory /> no eviction as an object

>0 <memory> <object size="100" /> eviction takes place and stored
</memory> as objects

>0 <memory> <off-heap size="100" eviction takes place and stored
/> </memory> in off-heap

0 <memory> <object size="0" /> no eviction
</memory>

<0 <memory> <object size="-1" /> no eviction
</memory>

3.2. Expiration

Similar to, but unlike eviction, is expiration. Expiration allows you to attach lifespan and/or
maximum idle times to entries. Entries that exceed these times are treated as invalid and are
removed. When removed expired entries are not passivated like evicted entries (if passivation is
turned on).

45

Q Unlike eviction, expired entries are removed globally - from memory, cache
stores, and cluster-wide.

By default entries created are immortal and do not have a lifespan or maximum idle time. Using
the cache API, mortal entries can be created with lifespans and/or maximum idle times. Further,
default lifespans and/or maximum idle times can be configured by adding the <expiration />
element to your <*-cache /> configuration sections.

When an entry expires it will reside in the data container or cache store until it is accessed again by
a user request. There is also an optional expiration reaper that can run at a given configurable
interval of milliseconds which will check for expired entries and remove them.

3.2.1. Difference between Eviction and Expiration

Both Eviction and Expiration are means of cleaning the cache of unused entries and thus guarding
the heap against OutOfMemory exceptions, so now a brief explanation of the difference.

With eviction you set maximal number of entries you want to keep in the cache and if this limit is
exceeded, some candidates are found to be removed according to a choosen eviction strategy (LRU,
LIRS, etc...). Eviction can be setup to work with passivation (evicting to a cache store).

With expiration you set time criteria for entries, how long you want to keep them in cache. Either
you set maximum lifespan of the entry - time it is allowed to stay in the cache or maximum idle time
, time it’s allowed to be untouched (no operation performed with given key).

3.3. Expiration details

1. Expiration is a top-level construct, represented in the configuration as well as in the cache APIL

2. While eviction is local to each cache instance , expiration is cluster-wide . Expiration lifespans
and maxlIdle values are replicated along with the cache entry.

3. While maxIdle is replicated, expiration due to maxIdle is not cluster wide, only lifespan. As
such it is not recommended to use maxIdle in a clustered cache.

4. Expiration lifespan and maxlIdle are also persisted in CacheStores, so this information survives
eviction/passivation.

3.3.1. Configuration
Eviction may be configured using the Configuration bean or the XML file. Eviction configuration is

on a per-cache basis. Valid eviction-related configuration elements are:

<memory>
<object size="2000"/>
</memory>
<expiration lifespan="1000" max-idle="500" interval="1000" />

Programmatically, the same would be defined using:

46

http://docs.jboss.org/infinispan/9.2/configdocs/infinispan-config-9.2.html

Configuration ¢ = new ConfigurationBuilder()
.memory().size(2000)
.expiration().wakeUpInterval(50001).1ifespan(10001).maxIdle(5001)
.build();

3.3.2. Memory Based Eviction Configuration

Memory based eviction may require some additional configuration options if you are using your
own custom types (as Infinispan is normally used). In this case Infinispan cannot estimate the
memory usage of your classes and as such you are required to use storeAsBinary when memory
based eviction is used.

<!-- Enable memory based eviction with 1 GB/>
<memory>

<binary size="1000000000" eviction="MEMORY"/>
</memory>

Configuration ¢ = new ConfigurationBuilder()
.memory()
.storageType(StorageType.BINARY)
.evictionType(EvictionType.MEMORY)
.size(1_000_000_000)

.build();

3.3.3. Default values

Eviction is disabled by default. Default values are used:

* size: -1 is used if not specified, which means unlimited entries.

* 0 means no entries, and the eviction thread will strive to keep the cache empty.

Expiration lifespan and maxIdle both default to -1.

3.3.4. Using expiration

Expiration allows you to set either a lifespan or a maximum idle time on each key/value pair stored
in the cache. This can either be set cache-wide using the configuration, as described above, or it
can be defined per-key/value pair using the Cache interface. Any values defined per key/value pair
overrides the cache-wide default for the specific entry in question.

For example, assume the following configuration:

<expiration lifespan="1000" />

47

// this entry will expire in 1000 millis
cache.put("pinot noir", pinotNoirPrice);

// this entry will expire in 2000 millis
cache.put("chardonnay", chardonnayPrice, 2, TimeUnit.SECONDS);

// this entry will expire 1000 millis after it is last accessed
cache.put("pinot grigio", pinotGrigioPrice, -1,
TimeUnit.SECONDS, 1, TimeUnit.SECONDS);

// this entry will expire 1000 millis after it is last accessed, or
// in 5000 millis, which ever triggers first
cache.put("riesling", rieslingPrice, 5,

TimeUnit.SECONDS, 1, TimeUnit.SECONDS);

3.4. Expiration designs

Central to expiration is an ExpirationManager.

The purpose of the ExpirationManager is to drive the expiration thread which periodically purges
items from the DataContainer. If the expiration thread is disabled (wakeuplnterval set to -1)
expiration can be kicked off manually using ExprationManager.processExpiration(), for example
from another maintenance thread that may run periodically in your application.

The expiration manager processes expirations in the following manner:

1. Causes the data container to purge expired entries

2. Causes cache stores (if any) to purge expired entries

48

Chapter 4. Persistence

Persistence allows configuring external (persistent) storage engines complementary to the default
in memory storage offered by Infinispan. An external persistent storage might be useful for several
reasons:

* Increased Durability. Memory is volatile, so a cache store could increase the life-span of the
information store in the cache.

* Write-through. Interpose Infinispan as a caching layer between an application and a (custom)
external storage engine.

* Overflow Data. By using eviction and passivation, one can store only the "hot" data in memory
and overflow the data that is less frequently used to disk.

The integration with the persistent store is done through the following SPI: CacheLoader,
CacheWriter, AdvancedCacheLoader and AdvancedCacheWriter (discussed in the following
sections).

These SPIs allow for the following features:

* Alignment with JSR-107. The CacheWriter and CacheLoader interface are similar to the the
loader and writer in JSR 107. This should considerably help writing portable stores across
JCache compliant vendors.

» Simplified Transaction Integration. All necessary locking is handled by Infinispan automatically
and implementations don’t have to be concerned with coordinating concurrent access to the
store. Even though concurrent writes on the same key are not going to happen (depending
locking mode in use), implementors should expect operations on the store to happen from
multiple/different threads and code the implementation accordingly.

* Parallel Iteration. It is now possible to iterate over entries in the store with multiple threads in
parallel.

* Reduced Serialization. This translates in less CPU usage. The new API exposes the stored entries
in serialized format. If an entry is fetched from persistent storage for the sole purpose of being
sent remotely, we no longer need to deserialize it (wWhen reading from the store) and serialize it
back (when writing to the wire). Now we can write to the wire the serialized format as read
from the storage directly.

4.1. Configuration

Stores (readers and/or writers) can be configured in a chain. Cache read operation looks at all of the
specified Cacheloader s, in the order they are configured, until it finds a valid and non-null element
of data. When performing writes all cache CacheWlriter s are written to, except if the
ignoreModifications element has been set to true for a specific cache writer.

49

http://jcp.org/en/jsr/detail?id=107
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/spi/CacheWriter.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/spi/CacheLoader.html

Implementing both a CacheWriter and CacheLoader

o it is possible and recommended for a store provider to implement both the
CacheWriter and the Cacheloader interface. The stores that do this are considered
both for reading and writing(assuming read-only=false) data.

This is the confiquration of a custom(not shipped with infinispan) store:
<local-cache name="myCustomStore">
<persistence passivation="false">
<store
class="org.acme.CustomStore"
fetch-state="false" preload="true" shared="false"
purge="true" read-only="false" singleton="false">

<write-behind modification-queue-size="123" thread-pool-size="23" />

<property name="myProp">${system.property}</property>
</store>
</persistence>
</local-cache>

Explanation of the configuration options:

* passivation (false by default) has a significant impact on how Infinispan interacts with the

loaders, and is discussed in the Cache Passivation section.

* class defines the class of the store and must implement CacheLoader, CacheWriter or both

» fetch-state (false by default) determines whether or not to fetch the persistent state of a cache

when joining a cluster. The aim here is to take the persistent state of a cache and apply it to the
local cache store of the joining node. Fetch persistent state is ignored if a cache store is
configured to be shared, since they access the same data. Only one configured cache loader may
set this property to true; if more than one cache loader does so, a configuration exception will
be thrown when starting your cache service.

 preload (false by default) if true, when the cache starts, data stored in the cache loader will be

pre-loaded into memory. This is particularly useful when data in the cache loader is needed
immediately after startup and you want to avoid cache operations being delayed as a result of
loading this data lazily. Can be used to provide a 'warm-cache' on startup, however there is a
performance penalty as startup time is affected by this process. Note that preloading is done in
a local fashion, so any data loaded is only stored locally in the node. No replication or
distribution of the preloaded data happens. Also, Infinispan only preloads up to the maximum
configured number of entries in eviction.

» shared (false by default) indicates that the cache loader is shared among different cache

instances, for example where all instances in a cluster use the same JDBC settings to talk to the
same remote, shared database. Setting this to true prevents repeated and unnecessary writes of
the same data to the cache loader by different cache instances.

* purge (false by default) empties the specified cache loader (if read-only is false) when the cache

50

loader starts up.

» read-only (false by default) prevents new data to be persisted to the store.

* max-batch-size (#100 by default) The maximum size of a batch to be inserted/deleted from the
store. If the value is less than one, then no upper limit is placed on the number of operations in
a batch.

* write-behind (disabled by default) element has to do with a persisting data asynchronously to
the actual store. It is discussed in detail here.

* singleton (disabled by default) attribute enables modifications to be stored by only one node in
the cluster, the coordinator. Essentially, whenever any data comes in to some node it is always
replicated(or distributed) so as to keep the caches in-memory states in sync; the coordinator,
though, has the sole responsibility of pushing that state to disk. This functionality must be
configured by setting the enabled attribute to true in all nodes. Only the coordinator of the
cluster will persist data, but all nodes must have this configured to prevent others from
persisting as well. You cannot configure a store as shared and singleton.

 additional attributes can be configures within the properties section. These attributes configure
aspects specific to each cache loader, e.g. the myProp attribute in the previous example. Other
loaders, with more complex configuration, also introduce additional sub-elements to the basic
configuration. See for example the JDBC cache store configuration examples below

The configuration above is used for a generic store implementation. However the store
implementation provided by default with Infinispan have a more rich configuration schema, in
which the properties section is replaced with XML attributes:

<persistence passivation="false">
<!-- note that class is missing and is induced by the fileStore element name -->
<file-store
shared="false" preload="true"
fetch-state="true"
read-only="false"
purge="false"
path="${java.io.tmpdir}">
<write-behind thread-pool-size="5" />
</file-store>
</persistence>

The same configuration can be achieved programmatically:

51

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence()
.passivation(false)
.addSingleFileStore()
.preload(true)
.shared(false)
.fetchPersistentState(true)
.ignoreModifications(false)
.purgeOnStartup(false)
.location(System.getProperty("java.io.tmpdir"))

.async()
.enabled(true)
.threadPoolSize(5)

.singleton()
.enabled(true)
.pushStateWhenCoordinator(true)
.pushStateTimeout(20000);

4.2. Cache Passivation

A CacheWriter can be used to enforce entry passivation and activation on eviction in a cache. Cache
passivation is the process of removing an object from in-memory cache and writing it to a
secondary data store (e.g., file system, database) on eviction. Cache activation is the process of
restoring an object from the data store into the in-memory cache when it’s needed to be used. In
order to fully support passivation, a store needs to be both a CacheWriter and a CacheLoader. In
both cases, the configured cache store is used to read from the loader and write to the data writer.

When an eviction policy in effect evicts an entry from the cache, if passivation is enabled, a
notification that the entry is being passivated will be emitted to the cache listeners and the entry
will be stored. When a user attempts to retrieve a entry that was evicted earlier, the entry is (lazily)
loaded from the cache loader into memory. When the entry has been loaded a notification is
emitted to the cache listeners that the entry has been activated. In order to enable passivation just
set passivation to true (false by default). When passivation is used, only the first cache loader
configured is used and all others are ignored.

Entries which have been activated, i.e. brought back from the store to memory,
will still continue to exist in the cache store if this has been configured as shared.
This happens because backup owners might still need to access it.

4.2.1. Cache Loader Behavior with Passivation Disabled vs Enabled

When passivation is disabled, whenever an element is modified, added or removed, then that
modification is persisted in the backend store via the cache loader. There is no direct relationship
between eviction and cache loading. If you don’t use eviction, what’s in the persistent store is
basically a copy of what’s in memory. If you do use eviction, what’s in the persistent store is
basically a superset of what’s in memory (i.e. it includes entries that have been evicted from
memory). When passivation is enabled, and with an unshared store, there is a direct relationship

52

between eviction and the cache loader. Writes to the persistent store via the cache loader only
occur as part of the eviction process. Data is deleted from the persistent store when the application
reads it back into memory. In this case, what’s in memory and what’s in the persistent store are two
subsets of the total information set, with no intersection between the subsets. With a shared store,
entries which have been passivated in the past will continue to exist in the store, although they may
have a stale value if this has been overwritten in memory.

The following is a simple example, showing what state is in RAM and in the persistent store after

each step of a 6 step process:

Operation

Insert keyOne

Insert keyTwo

Eviction thread runs,
evicts keyOne

Read keyOne

Eviction thread runs,
evicts keyTwo

Remove keyTwo

Passivation Off

Memory: keyOne
Disk: keyOne

Memory: keyOne,
keyTwo
Disk: keyOne, keyTwo

Memory: keyTwo
Disk: keyOne, keyTwo

Memory: keyOne,
keyTwo
Disk: keyOne, keyTwo

Memory: keyOne
Disk: keyOne, keyTwo

Memory: keyOne
Disk: keyOne

Passivation On,
Shared Off

Memory: keyOne
Disk: (none)

Memory: keyOne,
keyTwo
Disk: (none)

Memory: keyTwo
Disk: keyOne

Memory: keyOne,
keyTwo
Disk: (none)

Memory: keyOne
Disk: keyTwo

Memory: keyOne
Disk: (none)

Passivation On,
Shared On

Memory: keyOne
Disk: (none)

Memory: keyOne,
keyTwo
Disk: (none)

Memory: keyTwo
Disk: keyOne

Memory: keyOne,
keyTwo
Disk: keyOne

Memory: keyOne

Disk: keyOne, keyTwo

Memory: keyOne
Disk: keyOne

4.3. Cache Loaders and transactional caches

When a cache is transactional and a cache loader is present, the cache loader won’t be enlisted in
the transaction in which the cache is part. That means that it is possible to have inconsistencies at
cache loader level: the transaction to succeed applying the in-memory state but (partially) fail
applying the changes to the store. Manual recovery would not work with caches stores.

4.4. Write-Through And Write-Behind Caching

Infinispan can optionally be configured with one or several cache stores allowing it to store data in
a persistent location such as shared JDBC database, a local filesystem, etc. Infinispan can handle
updates to the cache store in two different ways:

* Write-Through (Synchronous)

* Write-Behind (Asynchronous)

53

4.4.1. Write-Through (Synchronous)

In this mode, which is supported in version 4.0, when clients update a cache entry, i.e. via a
Cache.put() invocation, the call will not return until Infinispan has gone to the underlying cache
store and has updated it. Normally, this means that updates to the cache store are done within the
boundaries of the client thread.

The main advantage of this mode is that the cache store is updated at the same time as the cache,
hence the cache store is consistent with the cache contents. On the other hand, using this mode
reduces performance because the latency of having to access and update the cache store directly
impacts the duration of the cache operation.

Configuring a write-through or synchronous cache store does not require any particular
configuration option. By default, unless marked explicitly as write-behind or asynchronous, all
cache stores are write-through or synchronous. Please find below a sample configuration file of a
write-through unshared local file cache store:

<persistence passivation="false">
<file-store fetch-state="true"
read-only="false"
purge="false" path="${java.io.tmpdir}"/>
</persistence>

4.4.2. Write-Behind (Asynchronous)

In this mode, updates to the cache are asynchronously written to the cache store. Normally, this
means that updates to the cache store are done by a separate thread to the client thread interacting
with the cache.

One of the major advantages of this mode is that the performance of a cache operation does not get
affected by the update of the underlying store. On the other hand, since the update happens
asynchronously, there’s a time window during the which the cache store can contain stale data
compared to the cache. Even within write-behind, there are different strategies that can be used to
store data:

Unscheduled Write-Behind Strategy

In this mode, which is supported in version 4.0, Infinispan tries to store changes as quickly as
possible by taking the pending changes and applying them in parallel. Normally, this means that
there are several threads waiting for modifications to occur and once they’re available, they apply
them to underlying cache store.

This strategy is suited for cache stores with low latency and cheap operation cost. One such
example would a local unshared file based cache store, where the cache store is local to the cache
itself. With this strategy, the window of inconsistency between the contents of the cache and the
cache store are reduced to the lowest possible time. Please find below a sample configuration file of
this strategy:

54

<persistence passivation="false">
<file-store fetch-state="true"
read-only="false"
purge="false" path="${java.io.tmpdir}">
<!-- write behind confiquration starts here -->
<write-behind />
<!-- write behind configuration ends here -->
</file-store>
</persistence>

Scheduled Write-Behind Strategy

First of all, please note that this strategy is not included in version 4.0 but it will be implemented at
a later stage. ISPN-328 has been created to track this feature request. If you want it implemented,
please vote for it on that page, and watch it to be notified of any changes. The following explanation
refers to how we envision it to work.

In this mode, Infinispan would periodically store changes to the underlying cache store. The
periodicity could be defined in seconds, minutes, days, etc.

Since this strategy is oriented at cache stores with high latency or expensive operation cost, it
makes sense to coalesce changes, so that if there are multiple operations queued on the same key,
only the latest value is applied to cache store. With this strategy, the window of inconsistency
between the contents of the cache and the cache store depends on the delay or periodicity
configured. The higher the periodicity, the higher the chance of inconsistency.

4.5. Filesystem based cache stores

A filesystem-based cache store is typically used when you want to have a cache with a cache store
available locally which stores data that has overflowed from memory, having exceeded size and/or
time restrictions.

Usage of filesystem-based cache stores on shared filesystems like NFS, Windows
shares, etc. should be avoided as these do not implement proper file locking and

A can cause data corruption. File systems are inherently not transactional, so when
attempting to use your cache in a transactional context, failures when writing to
the file (which happens during the commit phase) cannot be recovered.

4.5.1. Single File Store

Starting with Infinispan 6.0, a new file cache store has been created called single file cache store.
The old pre-6.0 file cache store has been completely removed, and it’s no longer configurable.

o Check Data Migration section for information on how to migrate old file based
cache store data to the new single file cache store.

The new single file cache store keeps all data in a single file. The way it looks up data is by keeping

55

https://jira.jboss.org/jira/browse/ISPN-328

an in-memory index of keys and the positions of their values in this file. This results in greater
performance compared to old file cache store. There is one caveat though. Since the single file
based cache store keeps keys in memory, it can lead to increased memory consumption, and hence
it’s not recommended for caches with big keys.

In certain use cases, this cache store suffers from fragmentation: if you store larger and larger
values, the space is not reused and instead the entry is appended at the end of the file. The space
(now empty) is reused only if you write another entry that can fit there. Also, when you remove all
entries from the cache, the file won’t shrink, and neither will be de-fragmented.

These are the available configuration options for the single file cache store:

* path where data will be stored. (e.g., path="/tmp/myDataStore"). By default, the location is
Infinispan-SingleFileStore.

» max-entries specifies the maximum number of entries to keep in this file store. As mentioned
before, in order to speed up lookups, the single file cache store keeps an index of keys and their
corresponding position in the file. To avoid this index resulting in memory consumption
problems, this cache store can bounded by a maximum number of entries that it stores. If this
limit is exceeded, entries are removed permanently using the LRU algorithm both from the in-
memory index and the underlying file based cache store. So, setting a maximum limit only
makes sense when Infinispan is used as a cache, whose contents can be recomputed or they can
be retrieved from the authoritative data store. If this maximum limit is set when the Infinispan
is used as an authoritative data store, it could lead to data loss, and hence it’s not recommended
for this use case. The default value is -1 which means that the file store size is unlimited.

<persistence>
<file-store path="/tmp/myDataStore" max-entries="5000"/>
</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence()
.addSingleFileStore()
.location("/tmp/myDataStore")
.maxEntries(5000);

4.5.2. Soft-Index File Store

In Infinispan 7.0 we have added a new experimental local file-based cache store - Soft-Index File
Store. It is a pure Java implementation that tries to get around Single File Store’s drawbacks by
implementing a variant of B+ tree that is cached in-memory using Java’s soft references - here’s
where the name Soft-Index File Store comes from. This B+ tree (called Index) is offloaded on
filesystem to single file that does not need to be persisted - it is purged and rebuilt when the cache
store restarts, its purpose is only offloading.

The data that should be persisted are stored in a set of files that are written in append-only way -
that means that if you store this on conventional magnetic disk, it does not have to seek when
writing a burst of entries. It is not stored in single file but set of files. When the usage of any of

56

these files drops below 50% (the entries from the file are overwritten to another file), the file starts
to be collected, moving the live entries into different file and in the end removing that file from
disk.

Most of the structures in Soft Index File Store are bounded, therefore you don’t have to be afraid of
OOMEs. For example, you can configure the limits for concurrently open files as well.

Configuration

Here is an example of Soft-Index File Store configuration via XML:

<persistence>
<soft-index-file-store xmlns="urn:infinispan:config:store:soft-index:8.0">
<index path="/tmp/sifs/testCache/index" />
<data path="/tmp/sifs/testCache/data" />
</soft-index-file-store>
</persistence>

Programmatic configuration would look as follows:

ConfigurationBuilder b = new ConfiqgurationBuilder();
b.persistence()
.addStore(SoftIndexFileStoreConfigurationBuilder.class)
.indexLocation("/tmp/sifs/testCache/index");
.datalocation("/tmp/sifs/testCache/data")

Current limitations

Size of a node in the Index is limited, by default it is 4096 bytes, though it can be configured. This
size also limits the key length (or rather the length of the serialized form): you can’t use keys longer
than size of the node - 15 bytes. Moreover, the key length is stored as 'short’, limiting it to 32767
bytes. There’s no way how you can use longer keys - SIFS throws an exception when the key is
longer after serialization.

When entries are stored with expiration, SIFS cannot detect that some of those entries are expired.
Therefore, such old file will not be compacted (method AdvancedStore.purgeExpired() is not
implemented). This can lead to excessive file-system space usage.

4.6. JDBC String based Cache Store

A cache store which relies on the provided JDBC driver to load/store values in the underlying
database.

Each key in the cache is stored in its own row in the database. In order to store each key in its own
row, this store relies on a (pluggable) bijection that maps the each key to a String object. The
bijection is defined by the Key2StringMapper interface. Infinispans ships a default implementation

57

(smartly named DefaultTwoWayKey2StringMapper) that knows how to handle primitive types.

By default Infinispan shares are not stored, meaning that all nodes in the cluster

o will write to the underlying store upon each update. If you wish for an operation
to only be written to the underlying database once, you must configure the JDBC
store to be shared.

4.6.1. Connection management (pooling)

In order to obtain a connection to the database the JDBC cache store relies on a ConnectionFactory
implementation. The connection factory is specified programmatically using one of the
connectionPool(), dataSource() or simpleConnection() methods on the
JdbcStringBasedStoreConfigurationBuilder class or declaratively using one of the <connectionPool
/>, <dataSource /> or <simpleConnection /> elements.

Infinispan ships with three ConnectionFactory implementations:

* PooledConnectionFactory is a factory based on HikariCP. Additional properties for HikariCP can
be provided by a properties file, either via placing a hikari.properties file on the classpath or
by specifying the path to the file via PooledConnectionFactoryConfiguration.propertyFile or
properties-file in the connection pool’s xml config. N.B. a properties file specified explicitly in
the configuration is loaded instead of the hikari.properties file on the class path and
Connection pool characteristics which are explicitly set in
PooledConnectionFactoryConfiguration always override the values loaded from a properties
file.

Refer to the official documentation for details of all configuration properties.

* ManagedConnectionFactory is a connection factory that can be used within managed
environments, such as application servers. It knows how to look into the JNDI tree at a certain
location (configurable) and delegate connection management to the DataSource. Refer to
javadoc javadoc for details on how this can be configured.

» SimpleConnectionFactory is a factory implementation that will create database connection on a

per invocation basis. Not recommended in production.

The PooledConnectionFactory is generally recommended for stand-alone deployments (i.e. not
running within AS or servlet container). ManagedConnectionFactory can be used when running in a
managed environment where a DataSource is present, so that connection pooling is performed
within the DataSource.

4.6.2. Sample configurations

Below is a sample configuration for the JdbcStringBasedStore. For detailed description of all the
parameters used refer to the JdbcStringBasedStore.

58

http://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/jdbc/connectionfactory/ConnectionFactory.html
http://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/jdbc/connectionfactory/PooledConnectionFactory.html
https://github.com/brettwooldridge/HikariCP
https://github.com/brettwooldridge/HikariCP
http://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/jdbc/connectionfactory/ManagedConnectionFactory.html
http://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/jdbc/connectionfactory/ManagedConnectionFactory.html
http://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/jdbc/connectionfactory/SimpleConnectionFactory.html
http://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/jdbc/stringbased/JdbcStringBasedStore.html
http://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/jdbc/stringbased/JdbcStringBasedStore.html

<persistence>
<string-keyed-jdbc-store xmlns="urn:infinispan:config:store:jdbc:9.2" shared="true'
fetch-state="false" read-only="false" purge="false">
<connection-pool connection-url=
"jdbc:h2:mem:infinispan_string_based;DB_CLOSE_DELAY=-1" username="sa" driver=
"org.h2.Driver"/>
<string-keyed-table drop-on-exit="true" create-on-start="true" prefix=
"ISPN_STRING_TABLE">
<id-column name="ID_COLUMN" type="VARCHAR(255)" />
<data-column name="DATA_COLUMN" type="BINARY" />
<timestamp-column name="TIMESTAMP_COLUMN" type="BIGINT" />
</string-keyed-table>
</string-keyed-jdbc-store>
</persistence>

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence().addStore(JdbcStringBasedStoreConfigurationBuilder.class)
.fetchPersistentState(false)
.ignoreModifications(false)
.purgeOnStartup(false)
.shared(true)
.table()
.dropOnExit(true)
.createOnStart(true)
.tableNamePrefix("ISPN_STRING_TABLE")
.idColumnName ("ID_COLUMN").idColumnType("VARCHAR(255)")
.dataColumnName("DATA_COLUMN").dataColumnType("BINARY")
.timestampColumnName ("TIMESTAMP_COLUMN").timestampColumnType("BIGINT")
.connectionPool()
.connectionUr1("jdbc:h2:mem:infinispan_string_based;DB_CLOSE_DELAY=-1")
.username("sa")
.driverClass("org.h2.Driver");

Finally, below is an example of a JDBC cache store with a managed connection factory, which is
chosen implicitly by specifying a datasource JNDI location:

<string-keyed-jdbc-store xmlns="urn:infinispan:config:store:jdbc:9.2" shared="true"
fetch-state="false" read-only="false" purge="false">
<data-source jndi-url="java:/StringStoreWithManagedConnectionTest/DS" />
<string-keyed-table drop-on-exit="true" create-on-start="true" prefix=
"ISPN_STRING_TABLE">
<id-column name="ID_COLUMN" type="VARCHAR(255)" />
<data-column name="DATA_COLUMN" type="BINARY" />
<timestamp-column name="TIMESTAMP_COLUMN" type="BIGINT" />
</string-keyed-table>
</string-keyed-jdbc-store>

59

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence().addStore(JdbcStringBasedStoreConfigurationBuilder.class)
.fetchPersistentState(false)
.ignoreModifications(false)
.purgeOnStartup(false)
.shared(true)
.table()
.dropOnExit(true)
.createOnStart(true)
.tableNamePrefix("ISPN STRING TABLE")
.idColumnName("ID_COLUMN").idColumnType("VARCHAR(255)")
.dataColumnName("DATA_COLUMN").dataColumnType("BINARY")
.timestampColumnName ("TIMESTAMP_COLUMN").timestampColumnType("BIGINT")
.dataSource()
.jndiUr1("java:/StringStoreWithManagedConnectionTest/DS");

Apache Derby users

0 If you’re connecting to an Apache Derby database, make sure you set
dataColumnType to BLOB: <data-column name="DATA_COLUMN" type="BLOB"/>

4.6.3. JDBC Migrator

The JDBC Mixed and Binary stores have been removed in Infinispan 9.0.0 due to the poor
performance associated with storing entries in buckets. Storing entries in buckets is non-optimal as
each read/write to the store requires an existing bucket for a given hash to be retrieved,
deserialised, updated, serialised and then re-inserted back into the db. To assist users, we have
created a migration tool JDBCMigrator.java, that reads data from an existing Mixed/Binary store and
then stores it in a string keyed table via the JdbcStringBasedStore.

The marshaller changes introduced in Infinispan 9 mean that existing stores that

0 were populated by 8.x are no longer compatible. The JDBCMigrator can be used to
migrate existing JdbcStringBasedStores from the legacy 8.x marshaller to the
latest 9.x compatible marshaller.

Usage

The Jdbc migrator org.infinispan.tools.jdbc.migrator.JDBCMigrator takes a single argument, the
path to a .properties file which must contain the configuration properties for both the source and
target stores. An example properties file containing all applicable configuration options can be
found here.

To use the migrator, you need the infinispan-tools-9.2.jar as well as the jdbc drivers required by
your source and target databases on your classpath. An example maven pom, that will execute the
migrator via mvn exec:java is presented below:

60

https://github.com/infinispan/infinispan/blob/master/tools/src/main/resources/migrator.properties

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.orqg/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.infinispan.example</groupId>
<artifactId>jdbc-migrator-example</artifactId>
<version>1.0-SNAPSHOT</version>

<dependencies>
<dependency>
<groupId>org.infinispan</groupIld>
<artifactId>infinispan-tools</artifactId>
<version>9.0.0-SNAPSHOT</version>
</dependency>

<!-- ADD YOUR REQUIRED JDBC DEPENDENCIES HERE -->
</dependencies>

<build>
<plugins>
<plugin>
<groupId>org.codehaus.mojo</groupIld>
<artifactId>exec-maven-plugin</artifactId>
<version>1.2.1</version>
<executions>
<execution>
<goals>
<goal>java</goal>
</goals>
</execution>
</executions>
<configuration>
<mainClass>
org.infinispan.tools.jdbc.migrator.JDBCMigrator</mainClass>
<arguments>
<argument><!-- PATH TO YOUR MIGRATOR.PROPERTIES FILE --
></arqgument>
</arquments>
</confiquration>
</plugin>
</plugins>
</build>
</project>

61

Properties

All migrator properties are configured within the context of a source or target store and so each
properties must start with either source. or target.. All of the properties listed below are
applicable to both source and target stores, with the exception of table.binary.* properties as it is
not possible to migrate to a binary table.

The property *.marshaller.type denotes whether the marshaller from infinispan 8.2x (LEGACY), 9.x
(CURRENT) or a custom marshaller should be utilised. Note, that the LEGACY marshaller can only
be specified for the source store.

Property Description Example value Required

type [STRING,BINARY MIXE MIXED TRUE
D]

cache _name The name of the cache persistentMixedCache TRUE
associated with the
store

dialect The dialect of the POSTGRES TRUE
underlying database

marshaller.type [LEGACY,CURRENT,CUS CURRENT TRUE
TOM]

marshaller.class The class of the org.example.CustomMa
marshaller if rshaller

type=CUSTOM

marshaller.externalizer A comma-separated list 25:Externalizerl,org.ex
S of custom ample.Externalizer2
AdvancedExternalizer
implementations to
load[id]:<Externalizer
class>

connection_pool.conne The JDBC connection jdbc:postgresql:postgre TRUE
ction_url url S

connection_pool.driver The class of the JDBC org.postrgesql.Driver = TRUE
_class driver

connection_pool.userna Database username TRUE
me
connection_pool.passw Database password TRUE
ord
db.major_version Database major version 9
db.minor_version Database minor 5
version
db.disable_upsert Disable db upsert false

62

Property Description Example value Required

db.disable_indexing Prevent table index false
being created

table.<binary|string>.ta Additional prefix for tablePrefix

ble_name_prefix table name

table.<binary|string>.<i Name of the column id_column TRUE
d|data|timestamp>.nam

e

table.<binary|string>.<i Type of the column VARCHAR TRUE

d|data|timestamp>.type

key_to_string mapper TwoWayKey2StringMa 0rg.infinispan.persist

ence.keymappers.
pper Class DefaultTwoWayKey2Strin

gMapper

4.7. Remote store

The RemoteStore is a cache loader and writer implementation that stores data in a remote infinispan
cluster. In order to communicate with the remote cluster, the RemoteStore uses the HotRod
client/server architecture. HotRod bering the load balancing and fault tolerance of calls and the
possibility to fine-tune the connection between the RemoteCacheStore and the actual cluster. Please
refer to Hot Rod for more information on the protocol, client and server configuration. For a list of
RemoteStore configuration refer to the javadoc . Example:

<persistence>
<remote-store xmlns="urn:infinispan:config:store:remote:8.0" cache="mycache" raw-
values="true">
<remote-server host="one" port="12111" />
<remote-server host="two" />
<connection-pool max-active="10" exhausted-action="CREATE_NEW" />
<write-behind />
</remote-store>
</persistence>

63

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/remote/configuration/RemoteStoreConfigurationBuilder.html

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence().addStore(RemoteStoreConfigurationBuilder.class)
.fetchPersistentState(false)
.ignoreModifications(false)
.purgeOnStartup(false)
.remoteCacheName("mycache")
.rawValues(true)
.addServer()
.host("one").port(12111)
.addServer()
Lhost("two")
.connectionPool()
.maxActive(10)
.exhaustedAction(ExhaustedAction.CREATE_NEW)
.async().enable();

In this sample configuration, the remote cache store is configured to use the remote cache named
"mycache" on servers "one" and "two". It also configures connection pooling and provides a custom
transport executor. Additionally the cache store is asynchronous.

4.8. Cluster cache loader

The ClusterCacheLoader is a cache loader implementation that retrieves data from other cluster
members.

It is a cache loader only as it doesn’t persist anything (it is not a Store), therefore features like
fetchPersistentState (and like) are not applicable.

A cluster cache loader can be used as a non-blocking (partial) alternative to stateTransfer : keys not
already available in the local node are fetched on-demand from other nodes in the cluster. This is a
kind of lazy-loading of the cache content.

<persistence>
<cluster-loader remote-timeout="500"/>
</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence()

.addClusterlLoader()

.remoteCallTimeout(500);

For a list of ClusterCacheLoader configuration refer to the javadoc .

o The ClusterCacheLoader does not support preloading(preload=true). It also won’t
provide state if fetchPersistentSate=true.

64

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/configuration/cache/ClusterLoaderConfiguration.html

4.9. Command-Line Interface cache loader

The Command-Line Interface (CLI) cache loader is a cache loader implementation that retrieves
data from another Infinispan node using the CLI. The node to which the CLI connects to could be a
standalone node, or could be a node that it’s part of a cluster. This cache loader is read-only, so it
will only be used to retrieve data, and hence, won’t be used when persisting data.

The CLI cache loader is configured with a connection URL pointing to the Infinispan node to which
connect to. Here is an example:

o Details on the format of the URL and how to make sure a node can receive
invocations via the CLI can be found in the Command-Line Interface chapter.

<persistence>
<cli-loader connection="jmx://1.2.3.4:4444/MyCacheManager/myCache" />
</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();

b.persistence()
.addStore(CLInterfacelLoaderConfigurationBuilder.class)
.connectionString("jmx://1.2.3.4:4444/MyCacheManager/myCache");

4.10. RocksDB Cache Store

The Infinispan Community

4.10.1. Introduction

RocksDB is a fast key-value filesystem-based storage from Facebook. It started as a fork of Google’s
LevelDB, but provides superior performance and reliability, especially in highly concurrent
scenarios.

Sample Usage

The RocksDB cache store requires 2 filesystem directories to be configured - each directory contains
a RocksDB database: one location is used to store non-expired data, while the second location is
used to store expired keys pending purge.

Configuration cacheConfig = new ConfigurationBuilder().persistence()
.addStore(RocksDBStoreConfigurationBuilder.class)
.build();

EmbeddedCacheManager cacheManager = new DefaultCacheManager(cacheConfig);

Cache<String, User> usersCache = cacheManager.getCache("usersCache");
usersCache.put("raytsang", new User(...));

65

http://rocksdb.org/

4.10.2. Configuration

Sample Programatic Configuration

Configuration cacheConfig = new ConfiqurationBuilder().persistence()

Parameter

location

expiredLocation

expiryQueueSize

clearThreshold

compressionType

blockSize

cacheSize

.addStore(RocksDBStoreConfigurationBuilder.class)
.location("/tmp/rocksdb/data")
.expiredLocation("/tmp/rocksdb/expired")
.build();

Description

Directory to use for RocksDB to store primary
cache store data. The directory will be auto-
created if it does not exit.

Directory to use for RocksDB to store expiring
data pending to be purged permanently. The
directory will be auto-created if it does not exit.

Size of the in-memory queue to hold expiring
entries before it gets flushed into expired
RocksDB store

There are two methods to clear all entries in
RocksDB. One method is to iterate through all
entries and remove each entry individually. The
other method is to delete the database and re-
init. For smaller databases, deleting individual
entries is faster than the latter method. This
configuration sets the max number of entries
allowed before using the latter method

Configuration for RocksDB for data
compression, see CompressionType enum for
options

Configuration for RocksDB - see documentation
for performance tuning

Configuration for RocksDB - see documentation
for performance tuning

Sample XML Configuration

66

https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide

infinispan.xml

<local-cache name="vehicleCache">
<persistence>
<rocksdb-store path="/tmp/rocksdb/data">
<expiration path="/tmp/rocksdb/expired"/>
</rocksdb-store>
</persistence>
</local-cache>

4.10.3. Additional References
Refer to the test case for code samples in action.

Refer to test configurations for configuration samples.

4.11. LevelDB Cache Store

The LevelDB Cache Store has been deprecated in Infinispan 9.0 and has been

A replaced with the RocksDB Cache Store. If you have existing data stored in a
LevelDB Cache Store, the RocksDB Cache Store will convert it to the new SST-
based format on the first run.

4.12. JPA Cache Store

The implementation depends on JPA 2.0 specification to access entity meta model.

In normal use cases, it’s recommended to leverage Infinispan for JPA second level cache and/or
query cache. However, if you’d like to use only Infinispan API and you want Infinispan to persist
into a cache store using a common format (e.g., a database with well defined schema), then JPA
Cache Store could be right for you.

Things to note

* When using JPA Cache Store, the key should be the ID of the entity, while the value should be
the entity object.

* Only a single @Id or @EmbeddedId annotated property is allowed.
» Auto-generated ID is not supported.
 Lastly, all entries will be stored as immortal entries.

4.12.1. Sample Usage

For example, given a persistence unit "myPersistenceUnit", and a JPA entity User:

67

https://github.com/infinispan/infinispan/blob/master/persistence/rocksdb/src/test/java/org/infinispan/persistence/rocksdb/config/ConfigurationTest.java
https://github.com/infinispan/infinispan/tree/master/persistence/rocksdb/src/test/resources/config/

persistence.xml
<persistence-unit name="myPersistenceUnit">

</persistence-unit>

User entity class

User.java

public class User implements Serializable {

private String username;
private String firstName;
private String lastName;

Then you can configure a cache "usersCache" to use JPA Cache Store, so that when you put data into
the cache, the data would be persisted into the database based on JPA configuration.

EmbeddedCacheManager cacheManager = ...;

Confiquration cacheConfig = new ConfiqurationBuilder().persistence()
.addStore(JpaStoreConfigurationBuilder.class)
.persistenceUnitName("org.infinispan.loaders.jpa.configurationTest")
.entityClass(User.class)

.build();
cacheManager.defineCache("usersCache", cacheConfig);

Cache<String, User> usersCache = cacheManager.getCache("usersCache");
usersCache.put("raytsang”, new User(...));

Normally a single Infinispan cache can store multiple types of key/value pairs, for example:

Cache<String, User> usersCache = cacheManager.getCache("myCache");
usersCache.put("raytsang”, new User());

Cache<Integer, Teacher> teachersCache = cacheManager.getCache("myCache");
teachersCache.put(1, new Teacher());

It’s important to note that, when a cache is configured to use a JPA Cache Store, that cache would
only be able to store ONE type of data.

68

Cache<String, User> usersCache = cacheManager.getCache("myJPACache"); // configured
for User entity class

usersCache.put("raytsang", new User());

Cache<Integer, Teacher> teachersCache = cacheManager.getCache("myJPACache"); // cannot
do this when this cache is configured to use a JPA cache store

teachersCache.put(1, new Teacher());

Use of @EmbeddedId is supported so that you can also use composite keys.

@Entity

public class Vehicle implements Serializable {
@EmbeddedId
private Vehicleld id;
private String color;

}

@Embeddable
public class VehicleId implements Serializable

{

private String state;
private String licensePlate;

Lastly, auto-generated IDs (e.g., @GeneratedValue) is not supported. When putting things into the
cache with a JPA cache store, the key should be the ID value!

4.12.2. Configuration

Sample Programatic Configuration

Configuration cacheConfig = new ConfigurationBuilder().persistence()
.addStore(JpaStoreConfigurationBuilder.class)
.persistenceUnitName("org.infinispan.loaders.jpa.configurationTest")
.entityClass(User.class)

.build();
Parameter Description
persistenceUnitName JPA persistence unit name in JPA configuration
(persistence.xml) that contains the JPA entity
class
entityClass JPA entity class that is expected to be stored in

this cache. Only one class is allowed.

69

Sample XML Configuration

<local-cache name="vehicleCache">

<persistence passivation="false">

<jpa-store xmlns="urn:infinispan:config:store:jpa:7.0"
persistence-unit="org.infinispan.persistence.jpa.configurationTest"
entity-class="org.infinispan.persistence.jpa.entity.Vehicle">

/>

</persistence>
</local-cache>

Parameter

persistence-unit

entity-class

4.12.3. Additional References

Description

JPA persistence unit name in JPA configuration
(persistence.xml) that contains the JPA entity

class

Fully qualified JPA entity class name that is
expected to be stored in this cache. Only one

class is allowed.

Refer to the test case for code samples in action.

Refer to test configurations for configuration samples.

4.13. Custom Cache Stores

If the provided cache stores do not fulfill all of your requirements, it is possible for you to
implement your own store. The steps required to create your own store are as follows:

1. Write your custom store by implementing one of the following interfaces:

org

org.
org.
org.
org.
org.

org.

.infinispan.

infinispan.
infinispan.
infinispan.
infinispan.
infinispan.

infinispan.

persistence.spi.
persistence.
persistence.
persistence.
persistence.
persistence.

persistence.

spi
spi
spi
spi
spi

spi

AdvancedCacheWriter

.AdvancedCacheloader
.Cacheloader
.CachelWriter
.ExternalStore
.AdvancedLoadWriteStore

.TransactionalCacheWriter

2. Annotate your store class with the @Store annotation and specify the properties relevant to your
store, e.g. is it possible for the store to be shared in Replicated or Distributed mode:
@Store(shared = true).

3. Create a custom cache

store

configuration and builder. This requires

extending

AbstractStoreConfiguration and AbstractStoreConfigurationBuilder. As an optional step, you
should add the following annotations to your configuration - @ConfigurationFor, @BuiltBy as well

70

https://github.com/infinispan/infinispan/blob/master/persistence/jpa/src/test/java/org/infinispan/persistence/jpa/JpaConfigurationTest.java
https://github.com/infinispan/infinispan/blob/master/persistence/jpa/src/test/resources/config/jpa-config.xml

as adding @ConfiguredBy to your store implementation class. These additional annotations will
ensure that your custom configuration builder is used to parse your store configuration from
xml. If these annotations are not added, then the CustomStoreConfigurationBuilder will be used
to parse the common store attributes defined in AbstractStoreConfiguration and any additional
elements will be ignored. If a store and its configuration do not declare the @Store and
@ConfigurationFor annotations respectively, a warning message will be logged upon cache
initialisation.
4. Add your custom store to your cache’s configuration:

a. Add your custom store to the ConfigurationBuilder, for example:

Configuration config = new ConfigurationBuilder()
.persistence()
.addStore(CustomStoreConfigurationBuilder.class)
.build();

b. Define your custom store via xml:

<local-cache name="customStoreExample">
<persistence>
<store class="org.infinispan.persistence.dummy.DummyInMemoryStore" />
</persistence>
</local-cache>

4.13.1. HotRod Deployment

A Custom Cache Store can be packaged into a separate JAR file and deployed in a HotRod server
using the following steps:

1. Follow steps 1-3 in the previous section and package your implementations in a JAR file (or use
a Custom Cache Store Archetype).

2. In your Jar create a proper file under META-INF/services/, which contains the fully qualified
class name of your store implementation. The name of this service file should reflect the
interface that your store implements. For example, if your store implements the
AdvancedCacheWlriter interface than you need to create the following file:

o /META-INF/services/org.infinispan.persistence.spi.AdvancedCacheWriter

3. Deploy the JAR file in the Infinispan Server.

4.14. Data Migration

The format in which data is persisted has changed in Infinispan 6.0, so this means that if you stored
data using Infinispan 4.x or Infinispan 5., Infinispan 6.0 won’t be able to read it. The best way to
upgrade persisted data from Infinispan 4.x/5.x to Infinispan 6.0 is to use the mechanisms explained
in the Rolling Upgrades section. In other words, by starting a rolling upgrade, data stored in

71

Infinispan 4.x/5.X can be migrated to a Infinispan 6.0 installation where persitence is configured
with a different location for the data. The location configuration varies according to the specific
details of each cache store.

Following sections describe the SPI and also discuss the SPI implementations that Infinispan ships
out of the box.

4.15. API

The following class diagram presents the main SPI interfaces of the persistence API:

MarshalledEntry ByteBuffer
+ getkeyBytes() : ByteBuffer + getBuf() : byte[]
+ getValueBytes() : ByteBuffer e tiethudindintile e + getOffset() : int
+ getkey() : Object + getLength) : int
+ getvalue() : Object + copy() : ByteBuffer
+ getMetadataBytes() : ByteBuffer
+ getMetadata() : InternalMetadata

Lifecycle

+ start() : void
+ stop() : void

Q‘
CacheWriter CacheLoader

+ write(e : MarshalledEntry) : void + load(k : Object) : MarshalledEntry

+ delete(key : Object) : boolean + contains(k : Object) : boolean

+ inti(i : InitializationContext) : void + initi : InitializationContext) : void

AdvancedCacheWriter AdvancedCacheLoader

+ clear() : void + process(f : KeyFilter, t : CacheloaderTask, e : Executor, fetchValue : boolean, fetchMetatda : boolean) : void
+ purgele : Executor, p : Purgelistener) : void + size() :int

Figure 1. Persistence SPI
Some notes about the classes:

» ByteBuffer - abstracts the serialized form of an object

* MarshalledEntry - abstracts the information held within a persistent store corresponding to a
key-value added to the cache. Provides method for reading this information both in serialized
(ByteBuffer) and deserialized (Object) format. Normally data read from the store is kept in
serialized format and lazily deserialized on demand, within the MarshalledEntry
implementation

* CacheWriter and CacheLoader provide basic methods for reading and writing to a store

* AdvancedCacheLoader and AdvancedCacheWriter provide operations to manipulate the
underlaying storage in bulk: parallel iteration and purging of expired entries, clear and size.

72

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/io/ByteBuffer.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/spi/MarshalledEntry.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/io/ByteBuffer.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/spi/MarshalledEntry.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/spi/CacheWriter.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/spi/CacheLoader.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/spi/AdvancedCacheLoader.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/spi/AdvancedCacheWriter.html

A provider might choose to only implement a subset of these interfaces:

* Not implementing the AdvancedCacheWriter makes the given writer not usable for purging
expired entries or clear

* If aloader does not implement the AdvancedCacheWriter inteface, then it will not participate in
preloading nor in cache iteration (required also for stream operations).

If you’re looking at migrating your existing store to the new API or to write a new store
implementation, the SingleFileStore might be a good starting point/example.

4.16. More implementations

Many more cache loader and cache store implementations exist. Visit this website for more details.

73

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/spi/AdvancedCacheWriter.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/persistence/spi/AdvancedCacheWriter.html
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/persistence/file/SingleFileStore.java
http://infinispan.org/cache-store-implementations

Chapter 5. Clustering

A cache manager can be configured to be either local (standalone) or clustered. When clustered,
manager instances use JGroups' discovery protocols to automatically discover neighboring
instances on the same local network and form a cluster.

Creating a local-only cache manager is trivial: just use the no-argument DefaultCacheManager
constructor, or supply the following XML configuration file.

<infinispan/>
To start a clustered cache manager, you need to create a clustered configuration.

GlobalConfigurationBuilder gcb = GlobalConfigurationBuilder.defaultClusteredBuilder();
DefaultCacheManager manager = new DefaultCacheManager(gcb.build());

<infinispan>
<cache-container>
<transport/>
</cache-container>
</infinispan>

Individual caches can then be configured in different modes:

* Local: changes and reads are never replicated. This is the only mode available in non-clustered
cache managers.

» Invalidation: changes are not replicated, instead the key is invalidated on all nodes; reads are
local.

* Replicated: changes are replicated to all nodes, reads are always local.

* Distributed: changes are replicated to a fixed number of nodes, reads request the value from at
least one of the owner nodes.

5.1. Which cache mode should I use?

Which cache you should use depends on the qualities/guarantees you need for your data. The
following table summarizes the most important ones:

Simple Local Invalidatio Replicated Distributed Scattered
n
Clustered No No Yes Yes Yes Yes
Read Highest High High High Medium Medium
performance (local) (local) (local) (local) (owners) (primary)

74

Simple Local Invalidatio Replicated Distributed Scattered

n

Write Highest High Low Lowest Medium Higher
performance (local) (local) (all nodes, (all nodes) (owner (single RPC)

no data) nodes)

Capacity Single node Single node Single node Smallest Cluster Cluster
node (sum_@G=1DA" (sum_(@G=1)A"
nodes"'nod nodes"'nod
e_capacity")/ e_capacity")/

"owners" "2

Availability Single node Single node Single node All nodes Owner Owner

nodes nodes

Features No TX, All All All All No TX

persistence
, indexing

5.2. Local Mode

While Infinispan is particularly interesting in clustered mode, it also offers a very capable local
mode. In this mode, it acts as a simple, in-memory data cache similar to a ConcurrentHashMap.

But why would one use a local cache rather than a map? Caches offer a lot of features over and
above a simple map, including write-through and write-behind to a persistent store, eviction of
entries to prevent running out of memory, and expiration.

Infinispan’s Cache interface extends JDK’s ConcurrentMap— making migration from a map to
Infinispan trivial.

Infinispan caches also support transactions, either integrating with an existing transaction
manager or running a separate one. Local caches transactions have two choices:

1. When to lock? Pessimistic locking locks keys on a write operation or when the user calls
AdvancedCache.lock(keys) explicitly. Optimistic locking only locks keys during the transaction
commit, and instead it throws a WriteSkewCheckException at commit time, if another transaction
modified the same keys after the current transaction read them.

2. Isolation level. We support read-committed and repeatable read.

5.2.1. Simple Cache

Traditional local caches use the same architecture as clustered caches, i.e. they use the interceptor
stack. That way a lot of the implementation can be reused. However, if the advanced features are
not needed and performance is more important, the interceptor stack can be stripped away and
simple cache can be used.

So, which features are stripped away? From the configuration perspective, simple cache does not
support:

75

 transactions and invocation batching

* persistence (cache stores and loaders)

* custom interceptors (there’s no interceptor stack!)
* indexing

» compatibility (embedded/server mode)

* store as binary (which is hardly useful for local caches)
From the API perspective these features throw an exception:

* adding custom interceptors

e Distributed Executors Framework
So, what’s left?

* basic map-like API

* cache listeners (local ones)
* expiration

* eviction

* security

* JMX access

* statistics (though for max performance it is recommended to switch this off using statistics-
available=false)

Declarative configuration

<local-cache name="mySimpleCache" simple-cache="true">
<!-- expiration, eviction, security... -->
</local-cache>

Programmatic configuration

CacheManager cm = getCacheManager();

ConfigurationBuilder builder = new ConfigurationBuilder().simpleCache(true);
cm.defineConfiguration("mySimpleCache", builder.build());

Cache cache = cm.getCache("mySimpleCache");

Simple cache checks against features it does not support, if you configure it to use e.g. transactions,
configuration validation will throw an exception.

5.3. Invalidation Mode

In invalidation, the caches on different nodes do not actually share any data. Instead, when a key is

76

written to, the cache only aims to remove data that may be stale from other nodes. This cache mode
only makes sense if you have another, permanent store for your data such as a database and are
only using Infinispan as an optimization in a read-heavy system, to prevent hitting the database for
every read. If a cache is configured for invalidation, every time data is changed in a cache, other
caches in the cluster receive a message informing them that their data is now stale and should be
removed from memory and from any local store.

originator

7%

|

put(K, V

Figure 2. Invalidation mode

Sometimes the application reads a value from the external store and wants to write it to the local
cache, without removing it from the other nodes. To do this, it must call
Cache.putForExternalRead(key, value) instead of Cache.put(key, value).

Invalidation mode can be used with a shared cache store. A write operation will both update the
shared store, and it would remove the stale values from the other nodes' memory. The benefit of
this is twofold: network traffic is minimized as invalidation messages are very small compared to
replicating the entire value, and also other caches in the cluster look up modified data in a lazy
manner, only when needed.

O Never use invalidation mode with a local store. The invalidation message will not
remove entries in the local store, and some nodes will keep seeing the stale value.

An invalidation cache can also be configured with a special cache loader, ClusterLoader. When
(lusterLoader is enabled, read operations that do not find the key on the local node will request it

77

from all the other nodes first, and store it in memory locally. In certain situation it will store stale
values, so only use it if you have a high tolerance for stale values.

Invalidation mode can be synchronous or asynchronous. When synchronous, a write blocks until
all nodes in the cluster have evicted the stale value. When asynchronous, the originator broadcasts
invalidation messages but doesn’t wait for responses. That means other nodes still see the stale
value for a while after the write completed on the originator.

Transactions can be used to batch the invalidation messages. They won’t behave like regular
transactions though, as locks are only acquired on the local node, and entries can be invalidated by
other transactions at any time.

5.4. Replicated Mode

Entries written to a replicated cache on any node will be replicated to all other nodes in the cluster,
and can be retrieved locally from any node. Replicated mode provides a quick and easy way to
share state across a cluster, however replication practically only performs well in small clusters
(under 10 nodes), due to the number of messages needed for a write scaling linearly with the
cluster size. Infinispan can be configured to use UDP multicast, which mitigates this problem to
some degree.

Each key has a primary owner, which serializes data container updates in order to provide
consistency. To find more about how primary owners are assigned, please read the Key Ownership
section.

Replicated mode can be synchronous or asynchronous.

* Synchronous replication blocks the caller (e.g. on a cache.put(key, value)) until the
modifications have been replicated successfully to all the nodes in the cluster.

* Asynchronous replication performs replication in the background, and write operations return
immediately. Asynchronous replication is not recommended, because communication errors, or
errors that happen on remote nodes are not reported to the caller.

If transactions are enabled, write operations are not replicated through the primary owner.

» With pessimistic locking, each write triggers a lock message, which is broadcast to all the nodes.
During transaction commit, the originator broadcasts a one-phase prepare message and an
unlock message (optional). Either the one-phase prepare or the unlock message is fire-and-
forget.

* With optimistic locking, the originator broadcasts a prepare message, a commit message, and an
unlock message (optional). Again, either the one-phase prepare or the unlock message is fire-
and-forget.

5.5. Distribution Mode

Distribution tries to keep a fixed number of copies of any entry in the cache, configured as
numOwners. This allows the cache to scale linearly, storing more data as nodes are added to the

78

cluster.

As nodes join and leave the cluster, there will be times when a key has more or less than numOwners
copies. In particular, if numOwners nodes leave in quick succession, some entries will be lost, so we
say that a distributed cache tolerates numOwners - 1 node failures.

The number of copies represents a trade-off between performance and durability of data. The more
copies you maintain, the lower performance will be, but also the lower the risk of losing data due to
server or network failures. Regardless of how many copies are maintained, distribution still scales
linearly, and this is key to Infinispan’s scalability.

The owners of a key are split into one primary owner, which coordinates writes to the key, and
zero or more backup owners. To find more about how primary and backup owners are assigned,
please read the Key Ownership section.

A read operation will request the value from the primary owner, but if it doesn’t respond in a
reasonable amount of time, we request the value from the backup owners as well. (The
infinispan.stagger.delay system property, in milliseconds, controls the delay between requests.) A
read operation may require @ messages if the key is present in the local cache, or up to 2 *
numOwners messages if all the owners are slow.

A write operation will also result in at most 2 * numOwners messages: one message from the
originator to the primary owner, numOwners - 1 messages from the primary to the backups, and the
corresponding ACK messages.

0 Cache topology changes may cause retries and additional messages, both for
reads and for writes.

Just as replicated mode, distributed mode can also be synchronous or asynchronous. And as in
replicated mode, asynchronous replication is not recommended because it can lose updates. In
addition to losing updates, asynchronous distributed caches can also see a stale value when a
thread writes to a key and then immediately reads the same key.

Transactional distributed caches use the same kinds of messages as transactional replicated caches,
except lock/prepare/commit/unlock messages are sent only to the affected nodes (all the nodes that
own at least one key affected by the transaction) instead of being broadcast to all the nodes in the
cluster. As an optimization, if the transaction writes to a single key and the originator is the
primary owner of the key, lock messages are not replicated.

5.5.1. Read consistency

Even with synchronous replication, distributed caches are not linearizable. (For transactional
caches, we say they do not support serialization/snapshot isolation.) We can have one thread doing
a single put:

79

cache.get(k) -> v1
cache.put(k, v2)
cache.get(k) -> v2

But another thread might see the values in a different order:

cache.get(k) -> v2
cache.get(k) -> v1

The reason is that read can return the value from any owner, depending on how fast the primary
owner replies. The write is not atomic across all the owners—in fact, the primary commits the
update only after it receives a confirmation from the backup. While the primary is waiting for the
confirmation message from the backup, reads from the backup will see the new value, but reads
from the primary will see the old one.

5.5.2. Key ownership

Distributed caches split entries into a fixed number of segments, and assign each segment to a list
of owner nodes. Replicated caches do the same, except every node is an owner.

The first node in the owners list is called the primary owner, and the others are called backup
owners. The segment ownership table is broadcast to every node when the cache topology changes
(i.e. a node joins or leaves the cluster). This way, a node can compute the location of a key itself,
without resorting to multicast requests or maintaining per-key metadata.

The number of segments is configurable (numSegments), but it cannot be changed without restarting
the cluster. The mapping of keys to segments is also fixed —a key must map to the same segment,
regardless of how the topology of the cluster changes. The key-to-segment mapping can be
customized by configuring a KeyPartitioner or by using the Grouping API.

There is no hard rule on how segments must be mapped to owners, but the goal is to balance the
number of segments allocated to each node and at the same time minimize the number of segments
that have to move after a node joins or leaves the cluster. The segment mapping is customizable,
and in fact there are five implementations that ship with Infinispan:

SyncConsistentHashFactory

An algorithm based on consistent hashing. It always assigns a key to the same node in every
cache as long as the cluster is symmetric (i.e. all caches run on all nodes). It does have some
weaknesses: the load distribution is a bit uneven, and it also moves more segments than strictly
necessary on a join or leave. Selected by default when server hinting is disabled.

TopologyAwareSyncConsistentHashFactory

Similar to SyncConsistentHashFactory, but adapted for Server Hinting. Selected by default when
server hinting is enabled.

DefaultConsistentHashFactory

It achieves a more even distribution than SyncConsistentHashFactory, but it has one

80

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/distribution/ch/KeyPartitioner.html
http://en.wikipedia.org/wiki/Consistent_hashing

disadvantage: the mapping of segments to nodes depends on the order in which caches joined
the cluster, so a key’s owners are not guaranteed to be the same in all the caches running in a
cluster. Used to be the default from version 5.2 to version 8.1 (with server hinting disabled).

TopologyAwareConsistentHashFactory

Similar to DefaultConsistentHashFactory, but adapted for Server Hinting. Used to be the default
with from version 5.2 to version 8.1 (with server hinting enabled).

ReplicatedConsistentHashFactory

This algorithm is used internally to implement replicated caches. Users should never select this
explicitly in a distributed cache.

Capacity Factors

Capacity factors are another way to customize the mapping of segments to nodes. The nodes in a
cluster are not always identical. If a node has 2x the memory of a "regular" node, configuring it
with a capacityFactor of 2 tells Infinispan to allocate 2x segments to that node. The capacity factor
can be any non-negative number, and the hashing algorithm will try to assign to each node a load
weighted by its capacity factor (both as a primary owner and as a backup owner).

One interesting use case is nodes with a capacity factor of 0. This could be useful when some nodes
are too short-lived to be useful as data owners, but they can’t use HotRod (or other remote
protocols) because they need transactions. With cross-site replication as well, the "site master"
should only deal with forwarding commands between sites and shouldn’t handle user requests, so
it makes sense to configure it with a capacity factor of 0.

Hashing Configuration

This is how you configure hashing declaratively, via XML:

<distributed-cache name="distributedCache" owners="2" segments="100" capacity-
factor="2" />

And this is how you can configure it programmatically, in Java:

Configuration ¢ = new ConfigurationBuilder()
.clustering()
.cacheMode (CacheMode.DIST_SYNC)
.hash()
.numOwners(2)
.numSegments(100)
.capacityFactor(2)
.build();

5.5.3. Initial cluster size

Infinispan’s very dynamic nature in handling topology changes (i.e. nodes being added / removed

81

at runtime) means that, normally, a node doesn’t wait for the presence of other nodes before
starting. While this is very flexible, it might not be suitable for applications which require a specific
number of nodes to join the cluster before caches are started. For this reason, you can specify how
many nodes should have joined the cluster before proceeding with cache initialization. To do this,
use the initialClusterSize and initialClusterTimeout transport properties. The declarative XML
configuration:

<transport initial-cluster-size="4" initial-cluster-timeout="30000" />
The programmatic Java configuration:

GlobalConfiguration global = new GlobalConfigurationBuilder()
.transport()
.initialClusterSize(4)
.initialClusterTimeout(30000)
.build();

The above configuration will wait for 4 nodes to join the cluster before initialization. If the initial
nodes do not appear within the specified timeout, the cache manager will fail to start.

5.5.4. L1 Caching

When L1 is enabled, a node will keep the result of remote reads locally for a short period of time
(configurable, 10 minutes by default), and repeated lookups will return the local L1 value instead of
asking the owners again.

originator primary

get(K)
. ST N S

get(K)

82

Figure 5. L1 caching

L1 caching is not free though. Enabling it comes at a cost, and this cost is that every entry update
must broadcast an invalidation message to all the nodes. L1 entries can be evicted just like any
other entry when the the cache is configured with a maximum size. Enabling L1 will improve
performance for repeated reads of non-local keys, but it will slow down writes and it will increase
memory consumption to some degree.

Is L1 caching right for you? The correct approach is to benchmark your application with and
without L1 enabled and see what works best for your access pattern.

5.5.5. Server Hinting
The following topology hints can be specified:

Machine

This is probably the most useful, when multiple JVM instances run on the same node, or even
when multiple virtual machines run on the same physical machine.

Rack

In larger clusters, nodes located on the same rack are more likely to experience a hardware or
network failure at the same time.

Site
Some clusters may have nodes in multiple physical locations for extra resilience. Note that Cross
site replication is another alternative for clusters that need to span two or more data centres.

All of the above are optional. When provided, the distribution algorithm will try to spread the
ownership of each segment across as many sites, racks, and machines (in this order) as possible.

Configuration

The hints are configured at transport level:

<transport
cluster="MyCluster"
machine="LinuxServer@1"
rack="Rack01"
site="US-WestCoast" />

5.5.6. Key affinity service

In a distributed cache, a key is allocated to a list of nodes with an opaque algorithm. There is no
easy way to reverse the computation and generate a key that maps to a particular node. However,
we can generate a sequence of (pseudo-)random keys, see what their primary owner is, and hand
them out to the application when it needs a key mapping to a particular node.

83

API

Following code snippet depicts how a reference to this service can be obtained and used.

// 1. 0btain a reference to a cache
Cache cache = ...
Address address = cache.getCacheManager().getAddress();

// 2. Create the affinity service
KeyAffinityService keyAffinityService = KeyAffinityServiceFactory
.newLocalKeyAffinityService(

cache,

new RndKeyGenerator(),

Executors.newSingleThreadExecutor(),

100);

// 3. Obtain a key for which the local node is the primary owner
Object localKey = keyAffinityService.getKeyForAddress(address);

// 4. Insert the key in the cache
cache.put(localKey, "yourValue");

The service is started at step 2: after this point it uses the supplied Executor to generate and queue
keys. At step 3, we obtain a key from the service, and at step 4 we use it.

Lifecycle

KeyAffinityService extends Lifecycle, which allows stopping and (re)starting it:

public interface Lifecycle {
void start();
void stop();

The service is instantiated through KeyAffinityServiceFactory. All the factory methods have an
Executor parameter, that is used for asynchronous key generation (so that it won’t happen in the
caller’s thread). It is the user’s responsibility to handle the shutdown of this Executor.

The KeyAffinityService, once started, needs to be explicitly stopped. This stops the background key
generation and releases other held resources.

The only situation in which KeyAffinityService stops by itself is when the cache manager with
which it was registered is shutdown.

Topology changes

When the cache topology changes (i.e. nodes join or leave the cluster), the ownership of the keys
generated by the KeyAffinityService might change. The key affinity service keep tracks of these
topology changes and doesn’t return keys that would currently map to a different node, but it won’t

84

do anything about keys generated earlier.

As such, applications should treat KeyAffinityService purely as an optimization, and they should
not rely on the location of a generated key for correctness.

In particular, applications should not rely on keys generated by KeyAffinityService for the same
address to always be located together. Collocation of keys is only provided by the Grouping API.

5.5.7. The Grouping API

Complementary to Key affinity service and similar to AtomicMap, the grouping API allows you to
co-locate a group of entries on the same nodes, but without being able to select the actual nodes.

How does it work?

By default, the segment of a key is computed using the key’s hashCode(). If you use the grouping API,
Infinispan will compute the segment of the group and use that as the segment of the key. See the
Key Ownership section for more details on how segments are then mapped to nodes.

When the group API is in use, it is important that every node can still compute the owners of every
key without contacting other nodes. For this reason, the group cannot be specified manually. The
group can either be intrinsic to the entry (generated by the key class) or extrinsic (generated by an
external function).

How do I use the grouping API?
First, you must enable groups. If you are configuring Infinispan programmatically, then call:
Configuration ¢ = new ConfigurationBuilder()

.clustering().hash().groups().enabled()
.build();

Or, if you are using XML:

<distributed-cache>
<groups enabled="true"/>
</distributed-cache>

If you have control of the key class (you can alter the class definition, it’s not part of an
unmodifiable library), then we recommend using an intrinsic group. The intrinsic group is
specified by adding the @Group annotation to a method. Let’s take a look at an example:

85

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/atomic/AtomicMap.html

class User {

String office;

public int hashCode() {
// Defines the hash for the key, normally used to determine location

}

// Override the location by specifying a group
// A1l keys in the same group end up with the same owners
@Group
public String getOffice() {
return office;

}
}

0 The group method must return a String

If you don’t have control over the key class, or the determination of the group is an orthogonal
concern to the key class, we recommend using an extrinsic group. An extrinsic group is specified by
implementing the Grouper interface.

public interface Grouper<T> {
String computeGroup(T key, String group);

Class<T> getKeyType();

If multiple Grouper classes are configured for the same key type, all of them will be called, receiving
the value computed by the previous one. If the key class also has a @Group annotation, the first
Grouper will receive the group computed by the annotated method. This allows you even greater
control over the group when using an intrinsic group. Let’s take a look at an example Grouper
implementation:

86

public class KXGrouper implements Grouper<String> {

// The pattern requires a String key, of length 2, where the first character is
// "k" and the second character is a digit. We take that digit, and perform

// modular arithmetic on it to assign it to group "@" or group "1".

private static Pattern kPattern = Pattern.compile("(”k)(<a>\\d)$");

public String computeGroup(String key, String group) {
Matcher matcher = kPattern.matcher(key);
if (matcher.matches()) {
String g = Integer.parselnt(matcher.group(2)) % 2 + "";
return g,
} else {
return null;
}
}

public Class<String> getKeyType() {
return String.class;

}

Grouper implementations must be registered explicitly in the cache configuration. If you are
configuring Infinispan programmatically:

Configuration ¢ = new ConfiqurationBuilder()
.clustering().hash().groups().enabled().addGrouper(new KXGrouper())
.build();

Or, if you are using XML:

<distributed-cache>
<groups enabled="true">
<grouper class="com.acme.KXGrouper" />
</groups>
</distributed-cache>

Advanced Interface

AdvancedCache has two group-specific methods:

getGroup(groupName)

Retrieves all keys in the cache that belong to a group.

removeGroup(groupName)

Removes all the keys in the cache that belong to a group.

87

http://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/AdvancedCache.html#getGroup-java.lang.String-
http://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/AdvancedCache.html#removeGroup-java.lang.String-

Both methods iterate over the entire data container and store (if present), so they can be slow when
a cache contains lots of small groups.

0 This interface is available since Infinispan 7.0.0.

5.6. Scattered Mode

Scattered mode is very similar to Distribution Mode as it allows linear scaling of the cluster. It
allows single node failure by maintaining two copies of the data (as Distribution Mode with
numOwners=2). Unlike Distributed, the location of data is not fixed; while we use the same
Consistent Hash algorithm to locate the primary owner, the backup copy is stored on the node that
wrote the data last time. When the write originates on the primary owner, backup copy is stored on
any other node (the exact location of this copy is not important).

This has the advantage of single RPC for any write (Distribution Mode requires one or two RPCs),
but reads have to always target the primary owner. That results in faster writes but possibly slower
reads, and therefore this mode is more suitable for write-intensive applications.

Storing multiple backup copies also results in slightly higher memory consumption. In order to
remove out-of-date backup copies, invalidation messages are broadcast in the cluster, which
generates some overhead. This makes scattered mode less performant in very big clusters (this
behaviour might be optimized in the future).

When a node crashes, the primary copy may be lost. Therefore, the cluster has to reconcile the
backups and find out the last written backup copy. This process results in more network traffic
during state transfer.

Since the writer of data is also a backup, even if we specify machine/rack/site ids on the transport
level the cluster cannot be resilient to more than one failure on the same machine/rack/site.

Currently it is not possible to use scattered mode in transactional cache. Asynchronous replication
is not supported either; use asynchronous Cache API instead. Functional commands are not
implemented neither but these are expected to be added soon.

The cache is configured in a similar way as the other cache modes, here is an example of
declarative configuration:

<scattered-cache name="scatteredCache" />
And this is how you can configure it programmatically:

Configuration ¢ = new ConfigurationBuilder()
.clustering().cacheMode(CacheMode.SCATTERED_SYNC)
.build();

Scattered mode is not exposed in the server configuration as the server is usually accessed through
the Hot Rod protocol. The protocol automatically selects primary owner for the writes and

88

therefore the write (in distributed mode with two owner) requires single RPC inside the cluster, too.
Therefore, scattered cache would not bring the performance benefit.

5.7. Asynchronous Options

5.7.1. Asynchronous Communications

All clustered cache modes can be configured to use asynchronous communications with the
mode="ASYNC" attribute on the <replicated-cache/>, <distributed-cache>, or <invalidation-cache/>
element.

With asynchronous communications, the originator node does not receive any acknowledgement
from the other nodes about the status of the operation, so there is no way to check if it succeeded
on other nodes.

We do not recommend asynchronous communications in general, as they can cause inconsistencies
in the data, and the results are hard to reason about. Nevertheless, sometimes speed is more
important than consistency, and the option is available for those cases.

5.7.2. Asynchronous API

The Asynchronous API allows you to use synchronous communications, but without blocking the
user thread.

There is one caveat: The asynchronous operations do NOT preserve the program order. If a thread
calls cache.putAsync(k, v1); cache.putAsync(k, v2), the final value of k may be either v1 or v2. The
advantage over using asynchronous communications is that the final value can’t be v1 on one node
and v2 on another.

0 Prior to version 9.0, the asynchronous API was emulated by borrowing a thread
from an internal thread pool and running a blocking operation on that thread.

5.7.3. Return Values

Because the (ache interface extends java.util.Map, write methods like put(key, value) and
remove(key) return the previous value by default.

In some cases, the return value may not be correct:
1. When using AdvancedCache.withFlags() with Flag.IGNORE_RETURN_VALUE, Flag.SKIP_REMOTE_LOOKUP,
or Flag.SKIP_CACHE_LOAD.
2. When the cache is configured with unreliable-return-values="true".
3. When using asynchronous communications.

4. When there are multiple concurrent writes to the same key, and the cache topology changes.
The topology change will make Infinispan retry the write operations, and a retried operation’s
return value is not reliable.

89

http://docs.jboss.org/infinispan/9.2/configdocs/infinispan-config-9.2.html

Transactional caches return the correct previous value in cases 3 and 4. However, transactional
caches also have a gotcha: in distributed mode, the read-committed isolation level is implemented
as repeatable-read. That means this example of "double-checked locking" won’t work:

Cache cache = ...
TransactionManager tm = ...

tm.begin();
try {
Integer v1 = cache.get(k);
// Increment the value
Integer v2 = cache.put(k, v1 + 1);
if (Objects.equals(v1, v2) {

// success
} else {
// retry
}
} finally {
tm.commit();
}
The correct way to implement this is to use

cache.getAdvancedCache().withFlags(Flag.FORCE_WRITE_LOCK).get (k).

In caches with optimistic locking writes can return a stale previous value as well, and the only way
protect against it is to enable write-skew checks and to catch WriteSkewException.

5.8. Partition handling

An Infinispan cluster is built out of a number of nodes where data is stored. In order not to lose
data in the presence of node failures, Infinispan copies the same data— cache entry in Infinispan
parlance — over multiple nodes. This level of data redundancy is configured through the numOwners
configuration attribute and ensures that as long as fewer than numOwners nodes crash
simultaneously, Infinispan has a copy of the data available.

However, there might be catastrophic situations in which more than numOwners nodes disappear
from the cluster:

Split brain
Caused e.g. by a router crash, this splits the cluster in two or more partitions, or sub-clusters that
operate independently. In these circumstances, multiple clients reading/writing from different
partitions see different versions of the same cache entry, which for many application is
problematic. Note there are ways to alleviate the possibility for the split brain to happen, such as
redundant networks or IP bonding. These only reduce the window of time for the problem to
occur, though.

numOwners nodes crash in sequence

When at least numOwners nodes crash in rapid succession and Infinispan does not have the time to

90

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-networkscripts-interfaces-chan.html

properly rebalance its state between crashes, the result is partial data loss.

The partition handling functionality discussed in this section allows the user to configure what
operations can be performed on a cache in the event of a split brain occurring. Infinispan provides
multiple partition handling strategies, which in terms of Brewer’s CAP theorem determine whether
availability or consistency is sacrificed in the presence of partition(s). Below is a list of the provided
strategies:

Strategy Description CAP

DENY READ WRITES If the partition does not have all Consistency
owners for a given segment,
both reads and writes are
denied for all keys in that
segment.

ALLOW_READS Allows reads for a given key if it Availability
exists in this partition, but only
allows writes if this partition
contains all owners of a
segment.

ALLOW_READ WRITES Allow entries on each partition Availability
to diverge, with conflicts
resolved during merge.

The requirements of your application should determine which strategy is appropriate. For example,
DENY_READ_WRITES is more appropriate for applications that have high consistency
requirements; i.e. when the data read from the system must be accurate. Whereas if Infinispan is
used as a best-effort cache, partitions maybe perfectly tolerable and the ALLOW_READ_WRITES
might be more appropriate as it favours availability over consistency.

The following sections describe how Infinispan handles split brain and successive failures for each
of the partition handling strategies. This is followed by a section describing how Infinispan allows
for automatic conflict resolution upon partition merges via merge policies. Finally, we provide a
section describing how to configure partition handling strategies and merge policies.

5.8.1. Split brain

In a split brain situation, each network partition will install its own JGroups view, removing the
nodes from the other partition(s). We don’t have a direct way of determining whether the has been
split into two or more partitions, since the partitions are unaware of each other. Instead, we
assume the cluster has split when one or more nodes disappear from the JGroups cluster without
sending an explicit leave message.

Split Strategies

In this section, we detail how each partition handling strategy behaves in the event of split brain
occurring.

91

http://en.wikipedia.org/wiki/CAP_theorem

ALLOW_READ_WRITES

Each partition continues to function as an independent cluster, with all partitions remaining in
AVAILABLE mode. This means that each partition may only see a part of the data, and each
partition could write conflicting updates in the cache. During a partition merge these conflicts are
automatically resolved by utilising the ConflictManager and the configured EntryMergePolicy.

DENY_READ_WRITES

When a split is detected each partition does not start a rebalance immediately, but first it checks
whether it should enter DEGRADED mode instead:

* If at least one segment has lost all its owners (meaning at least numOwners nodes left since the
last rebalance ended), the partition enters DEGRADED mode.

* If the partition does not contain a simple majority of the nodes (floor(numNodes/2) + 1) in the
latest stable topology, the partition also enters DEGRADED mode.

* Otherwise the partition keeps functioning normally, and it starts a rebalance.

The stable topology is updated every time a rebalance operation ends and the coordinator
determines that another rebalance is not necessary.

These rules ensures that at most one partition stays in AVAILABLE mode, and the other partitions
enter DEGRADED mode.

When a partition is in DEGRADED mode, it only allows access to the keys that are wholly owned:

* Requests (reads and writes) for entries that have all the copies on nodes within this partition
are honoured.

* Requests for entries that are partially or totally owned by nodes that disappeared are rejected
with an AvailabilityException.

This guarantees that partitions cannot write different values for the same key (cache is consistent),
and also that one partition can not read keys that have been updated in the other partitions (no
stale data).

To exemplify, consider the initial cluster M = {A, B, C, D}, configured in distributed mode with
numOwners = 2. Further on, consider three keys k1, k2 and k3 (that might exist in the cache or not)
such that owners(k1) = {A,B}, owners(k2) = {B,C} and owners(k3) = {C,D}. Then the network splits in
two partitions, N1 = {A, B} and N2 = {C, D}, they enter DEGRADED mode and behave like this:

* on N1, k1 is available for read/write, k2 (partially owned) and k3 (not owned) are not available
and accessing them results in an AvailabilityException
e on N2, k1 and k2 are not available for read/write, k3 is available
A relevant aspect of the partition handling process is the fact that when a split brain happens, the
resulting partitions rely on the original segment mapping (the one that existed before the split

brain) in order to calculate key ownership. So it doesn’t matter if k1, k2, or k3 already existed cache
or not, their availability is the same.

92

If at a further point in time the network heals and N1 and N2 partitions merge back together into the
initial cluster M, then M exits the degraded mode and becomes fully available again.

As another example, the cluster could split in two partitions 01 = {A, B, (} and 02 = {D}, partition
01 will stay fully available (rebalancing cache entries on the remaining members). Partition 02,
however, will detect a split and enter the degraded mode. Since it doesn’t have any fully owned
keys, it will reject any read or write operation with an AvailabilityException.

If afterwards partitions 01 and 02 merge back into M, then the cache entries on D will be wiped (since
they could be stale). D will be fully available, but it will not hold any data until the cache is
rebalanced.

ALLOW_READS

Partitions are handled in the same manner as DENY_READ_WRITES, except that when a partition is
in DEGRADED mode read operations on a partially owned key WILL not throw an
AvailabilityException.

Current limitations

Two partitions could start up isolated, and as long as they don’t merge they can read and write
inconsistent data. In the future, we will allow custom availability strategies (e.g. check that a certain
node is part of the cluster, or check that an external machine is accessible) that could handle that
situation as well.

5.8.2. Successive nodes stopped

As mentioned in the previous section, Infinispan can’t detect whether a node left the JGroups view
because of a process/machine crash, or because of a network failure: whenever a node leaves the
JGroups cluster abruptly, it is assumed to be because of a network problem.

If the configured number of copies (numOwners) is greater than 1, the cluster can remain available
and will try to make new replicas of the data on the crashed node. However, other nodes might
crash during the rebalance process. If more than numOwners nodes crash in a short interval of time,
there is a chance that some cache entries have disappeared from the cluster altogether. In this case,
with the DENY_READ_WRITES or ALLOW_READS strategy enabled, Infinispan assumes (incorrectly)
that there is a split brain and enters DEGRADED mode as described in the split-brain section.

The administrator can also shut down more than numOwners nodes in rapid succession, causing the
loss of the data stored only on those nodes. When the administrator shuts down a node gracefully,
Infinispan knows that the node can’t come back. However, the cluster doesn’t keep track of how
each node left, and the cache still enters DEGRADED mode as if those nodes had crashed.

At this stage there is no way for the cluster to recover its state, except stopping it and repopulating
it on restart with the data from an external source. Clusters are expected to be configured with an
appropriate numOwners in order to avoid numOwners successive node failures, so this situation should
be pretty rare. If the application can handle losing some of the data in the cache, the administrator
can force the availability mode back to AVAILABLE via JMX.

93

5.8.3. Conflict Manager

The conflict manager is a tool that allows users to retrieve all stored replica values for a given key.
In addition to allowing users to process a stream of cache entries whose stored replicas have
conflicting values. Furthermore, by utilising implementations of the EntryMergePolicy interface it
is possible for said conflicts to be resolved automatically.

Detecting Conflicts

Conflicts are detected by retrieving each of the stored values for a given key. The conflict manager
retrieves the value stored from each of the key’s write owners defined by the current consistent
hash. The .equals method of the stored values is then used to determine whether all values are
equal. If all values are equal then no conflicts exist for the key, otherwise a conflict has occurred.
Note that null values are returned if no entry exists on a given node, therefore we deem a conflict
to have occurred if both a null and non-null value exists for a given key.

Merge Policies

In the event of conflicts arising between one or more replicas of a given CacheEntry, it is necessary
for a conflict resolution algorithm to be defined, therefore we provide the EntryMergePolicy
interface. This interface consists of a single method, "merge", whose returned CacheEntry is utilised
as the "resolved" entry for a given key. When a non-null CacheEntry is returned, this entries value
is "put” to all replicas in the cache. However when the merge implementation returns a null value,
all replicas associated with the conflicting key are removed from the cache.

The merge method takes two parameters: the "preferredEntry” and "otherEntries". In the context of
a partition merge, the preferredEntry is the CacheEntry associated with the partition whose
coordinator is conducting the merge (or if multiple entries exist in this partition, it’s the primary
replica). However, in all other contexts, the preferredEntry is simply the primary replica. The
second parameter, "otherEntries" is simply a list of all other entries associated with the key for
which a conflict was detected.

0 EntryMergePolicy::merge is only called when a conflict has been detected, it is
not called if all CacheEntrys are the same.

Currently Infinispan provides the following implementations of EntryMergePolicy:

Policy Description

MergePolicies. PREFERRED_ALWAYS Always utilise the "preferredEntry".

MergePolicies. PREFERRED_NON_NULL Utilise the "preferredEntry" if it is non-null,
otherwise utilise the first entry from
"otherEntries".

MergePolicies. REMOVE_ALL Always remove a key from the cache when a

conflict is detected.

94

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/conflict/EntryMergePolicy.html

5.8.4. Usage

During a partition merge the ConflictManager automatically attempts to resolve conflicts utilising
the configured EntryMergePolicy, however it is also possible to manually search for/resolve
conflicts as required by your application.

The code below shows how to retrieve an EmbeddedCacheManager’s ConflictManager, how to
retrieve all versions of a given key and how to check for conflicts across a given cache.

EmbeddedCacheManager manager = new DefaultCacheManager("example-config.xml");
Cache<Integer, String> cache = manager.getCache("testCache");
ConflictManager<Integer, String> crm = ConflictManagerFactory.get(cache
.getAdvancedCache());

// Get A1l Versions of Key
Map<Address, InternalCacheValue<String>> versions = crm.getAllVersions(1);

// Process conflicts stream and perform some operation on the cache
Stream<Map<Address, InternalCacheEntry<Integer, String>>> stream = crm.getConflicts();
stream.forEach(map -> {

CacheEntry<Object, Object> entry = map.values().iterator().next();

Object conflictKey = entry.getKey();

cache.remove(conflictKey);

b

// Detect and then resolve conflicts using the confiqured EntryMergePolicy
crm.resolveConflicts();

// Detect and then resolve conflicts using the passed EntryMergePolicy instance
crm.resolveConflicts((preferredEntry, otherEntries) -> preferredEntry);

Although the ConflictManager::getConflicts stream is processed per entry, the
underlying spliterator is in fact lazily-loading cache entries on a per segment
basis.

5.8.5. Configuring partition handling

Unless the cache is distributed or replicated, partition handling configuration is ignored. The
default partition handling strategy is ALLOW_READ_WRITES and the default EntryMergePolicy is
MergePolicies::PREFERRED_ALWAYS.

<distributed-cache name="the-default-cache">

<partition-handling when-split="ALLOW_READ_WRITES" merge-policy="
PREFERRED_NON_NULL"/>
</distributed-cache>

The same can be achieved programmatically:

95

ConfigurationBuilder dcc = new ConfigurationBuilder();

dcc.clustering().partitionHandling()
.whenSplit(PartitionHandling.ALLOW_READ_WRITES)
.mergePolicy(MergePolicies.PREFERRED_ALWAYS);

It’s also possible to provide custom implementations of the EntryMergePolicy:

3.

<distributed-cache name="the-default-cache">

<partition-handling when-split="ALLOW_READ_WRITES" merge-policy=
"org.example.CustomMergePolicy"/>
</distributed-cache>

ConfigurationBuilder dcc = new ConfigurationBuilder();

dcc.clustering().partitionHandling()
.whenSplit(PartitionHandling.ALLOW_READ_WRITES)
.mergePolicy(new CustomMergePolicy());

8.6. Monitoring and administration

The availability mode of a cache is exposed in JMX as an attribute in the Cache MBean. The
attribute is writable, allowing an administrator to forcefully migrate a cache from DEGRADED
mode back to AVAILABLE (at the cost of consistency).

The availability mode is also accessible via the AdvancedCache interface:

96

AdvancedCache ac = cache.getAdvancedCache();

// Read the availability
boolean available = ac.getAvailability() == AvailabilityMode.AVAILABLE;

// Change the availability

if (lavailable) {
ac.setAvailability(AvailabilityMode.AVAILABLE);

}

https://docs.jboss.org/infinispan/9.2/apidocs/jmxComponents.html#Cache
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/AdvancedCache.html

Chapter 6. Marshalling

Marshalling is the process of converting Java POJOs into something that can be written in a format
that can be transferred over the wire. Unmarshalling is the reverse process whereby data read
from a wire format is transformed back into Java POJOs. Infinispan uses
marshalling/unmarshalling in order to:

* Transform data so that it can be send over to other Infinispan nodes in a cluster.
* Transform data so that it can be stored in underlying cache stores.

« Store data in Infinispan in a wire format to provide lazy deserialization capabilities.

6.1. The Role Of JBoss Marshalling

Since performance is a very important factor in this process, Infinispan uses JBoss Marshalling
framework instead of standard Java Serialization in order to marshall/unmarshall Java POJOs.
Amongst other things, this framework enables Infinispan to provide highly efficient ways to
marshall internal Infinispan Java POJOs that are constantly used. Apart from providing more
efficient ways to marshall Java POJOs, including internal Java classes, JBoss Marshalling uses highly
performant java.io.ObjectOutput and java.io.ObjectInput implementations compared to standard
java.io.0bjectOutputStream and java.io.0ObjectInputStream.

6.2. Support For Non-Serializable Objects

From a users perspective, a very common concern is whether Infinispan supports storing non-
Serializable objects. In 4.0, an Infinispan cache instance can only store non-Serializable key or
value objects if, and only if:

* cache is configured to be a local cache and...
* cache is not configured with lazy serialization and...
* cache is not configured with any write-behind cache store

If either of these options is true, key/value pairs in the cache will need to be marshalled and
currently they require to either to extend java.io.Serializable or java.io.Externalizable.

Since Infinispan 5.0, marshalling non-Serializable key/value objects are
supported as long as wusers can to provide meaningful Externalizer
implementations for these non-Seralizable objects. This section has more details.

If you’re unable to retrofit Serializable or Externalizable into the classes whose instances are stored
in Infinispan, you could alternatively use something like XStream to convert your Non-Serializable
objects into a String that can be stored into Infinispan. The one caveat about using XStream is that it
slows down the process of storing key/value objects due to the XML transformation that it needs to
do.

97

http://x-stream.github.io/

6.2.1. Store As Binary

Store as binary enables data to be stored in its serialized form. This can be useful to achieve lazy
deserialization, which is the mechanism by which Infinispan by which serialization and
deserialization of objects is deferred till the point in time in which they are used and needed. This
typically means that any deserialization happens using the thread context class loader of the
invocation that requires deserialization, and is an effective mechanism to provide classloader
isolation. By default lazy deserialization is disabled but if you want to enable it, you can do it like
this:

e Via XML at the Cache level, either under <*-cache /> element:

<memory>
<binary />
</memory>

* Programmatically:

ConfigurationBuilder builder = ...
builder.memory().storageType(StorageType.BINARY);

Equality Considerations

When using lazy deserialization/storing as binary, keys and values are wrapped as WrappedBytes.
It is this wrapper class that transparently takes care of serialization and deserialization on demand,
and internally may have a reference to the object itself being wrapped, or the serialized, byte array
representation of this object.

This has a particular effect on the behavior of equality. The equals() method of this class will either
compare binary representations (byte arrays) or delegate to the wrapped object instance’s equals()
method, depending on whether both instances being compared are in serialized or deserialized
form at the time of comparison. If one of the instances being compared is in one form and the other
in another form, then one instance is either serialized or deserialized.

This will affect the way keys stored in the cache will work, when storeAsBinary is used, since
comparisons happen on the key which will be wrapped by a MarshalledValue. Implementers of
equals() methods on their keys need to be aware of the behavior of equality comparison, when a
key is wrapped as a MarshalledValue, as detailed above.

Store-by-value via defensive copying

The configuration storeAsBinary offers the possibility to enable defensive copying, which allows for
store-by-value like behaviour.

Infinispan marshalls objects the moment they’re stored, hence changes made to object references
are not stored in the cache, not even for local caches. This provides store-by-value like behaviour.
Enabling storeAsBinary can be achieved:

98

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/marshall/

e Via XML at the Cache level, either under <*-cache /> or <default /> elements:
<store-as-binary keys="true" values="true"/>
* Programmatically:

ConfigurationBuilder builder = ...
builder.storeAsBinary().enable().storeKeysAsBinary(true).storeValuesAsBinary(true);

6.3. Advanced Configuration

Internally, Infinispan uses an implementation of this Marshaller interface in order to
marshall/unmarshall Java objects so that they’re sent other nodes in the grid, or so that they’re
stored in a cache store, or even so to transform them into byte arrays for lazy deserialization.

By default, Infinispan uses the GlobalMarshaller. Optionally, Infinispan users can provide their own
marshaller, for example:

* Via XML at the CacheManager level, under <cache-manager /> element:
<serialization marshaller="com.acme.MyMarshaller"/>
* Programmatically:

GlobalConfigurationBuilder builder = ...
builder.serialization().marshaller(myMarshaller); // needs an instance of the
marshaller

6.3.1. Troubleshooting

Sometimes it might happen that the Infinispan marshalling layer, and in particular JBoss
Marshalling, might have issues marshalling/unmarshalling some user object. In Infinispan 4.0,
marshalling exceptions will contain further information on the objects that were being marshalled.
Example:

java.io.NotSerializableException: java.lang.Object

at org.jboss.marshalling.river.RiverMarshaller.doWriteObject(RiverMarshaller.java:857)
at org.jboss.marshalling.AbstractMarshaller.writeObject(AbstractMarshaller.java:407)
at
org.infinispan.marshall.exts.ReplicableCommandExternalizer.writeObject(ReplicableComma
ndExternalizer.java:54)

at
org.infinispan.marshall.jboss.ConstantObjectTable$ExternalizerAdapter.writeObject(Cons
tantObjectTable.java:267)

99

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/marshall/Marshaller.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/marshall/core/GlobalMarshaller.html

at org.jboss.marshalling.river.RiverMarshaller.doWriteObject(RiverMarshaller.java:143)
at org.jboss.marshalling.AbstractMarshaller.writeObject(AbstractMarshaller.java:407)
at
org.infinispan.marshall.jboss.JBossMarshaller.objectToObjectStream(JBossMarshaller.jav
a:167)
at
org.infinispan.marshall.VersionAwareMarshaller.objectToBuffer(VersionAwareMarshaller.j
ava:92)
at
org.infinispan.marshall.VersionAwareMarshaller.objectToByteBuffer(VersionAwareMarshall
er.java:170)
at
org.infinispan.marshall.DefaultMarshallerTest.testNestedNonSerializable(VersionAwareMa
rshallerTest.java:415)
Caused by: an exception which occurred:
in object java.lang.Object@b40ec4
in object org.infinispan.commands.write.PutKeyValueCommand@df661da7

. Removed 22 stack frames

The way the "in object" messages are read is the same in which stacktraces are read. The highest "in
object” being the most inner one and the lowest "in object" message being the most outer one. So,
the above example indicates that a java.lang.Object instance contained in an instance of
org.infinispan.commands.write.PutKeyValueCommand could not be serialized because
java.lang.Object@b40ec4 is not serializable.

This is not all though! If you enable DEBUG or TRACE logging levels, marshalling exceptions will
contain show the toString() representations of objects in the stacktrace. For example:

java.io.NotSerializableException: java.lang.Object

Caused by: an exception which occurred:

in object java.lang.Object@b4@ec4

-> toString = java.lang.0Object@b40ec4

in object org.infinispan.commands.write.PutKeyValueCommand@df661da7

-> toString = PutKeyValueCommand{key=k, value=java.lang.Object@b40ec4,
putIfAbsent=false, lifespanMillis=0, maxIdleTimeMillis=0}

With regards to unmarshalling exceptions, showing such level of information it’s a lot more
complicated but where possible. Infinispan will provide class type information. For example:

java.io.IOException: Injected failure!

at
org.infinispan.marshall.DefaultMarshallerTest$1.readExternal(VersionAwareMarshallerTes
t.java:426)

at
org.jboss.marshalling.river.RiverUnmarshaller.doReadNewObject(RiverUnmarshaller.java:1
172)

at

100

org.jboss.marshalling.river.RiverUnmarshaller.doReadObject(RiverUnmarshaller.java:273)
at
org.jboss.marshalling.river.RiverUnmarshaller.doReadObject(RiverUnmarshaller.java:210)
at org.jboss.marshalling.AbstractUnmarshaller.readObject(AbstractUnmarshaller.java:85)
at
org.infinispan.marshall.jboss.JBossMarshaller.objectFromObjectStream(JBossMarshaller.j
ava:210)

at
org.infinispan.marshall.VersionAwareMarshaller.objectFromByteBuffer(VersionAwareMarsha
1ler.java:104)

at
org.infinispan.marshall.VersionAwareMarshaller.objectFromByteBuffer(VersionAwareMarsha
1ler.java:177)

at
org.infinispan.marshall.DefaultMarshallerTest.testErrorUnmarshalling(VersionAwareMarsh
allerTest.java:431)

Caused by: an exception which occurred:

in object of type org.infinispan.marshall.DefaultMarshallerTest$1

In this example, an IOException was thrown when trying to unmarshall a instance of the inner
class org.infinispan.marshall.DefaultMarshallerTest$1. In similar fashion to marshalling
exceptions, when DEBUG or TRACE logging levels are enabled, classloader information of the class
type is provided. For example:

java.io.I0Exception: Injected failure!

Caused by: an exception which occurred:

in object of type org.infinispan.marshall.DefaultMarshallerTest$1

-> classloader hierarchy:

-> type classloader = sun.misc.Launcher§AppClasslLoader@198dfaf
->...file:/opt/eclipse/configuration/org.eclipse.osgi/bundles/285/1/.cp/eclipse
-testng.jar
->...file:/opt/eclipse/configuration/org.eclipse.osgi/bundles/285/1/.cp/1ib/testng
-jdk15.jar
->...file:/home/galder/jboss/infinispan/code/trunk/core/target/test-classes/
->...file:/home/galder/jboss/infinispan/code/trunk/core/target/classes/
->...file:/home/galder/.m2/repository/org/testng/testng/5.9/testng-5.9-jdk15.jar
->...file:/home/galder/.m2/repository/net/jcip/jcip-annotations/1.0/jcip-annotations
-1.0.jar
->...file:/home/galder/.m2/repository/org/easymock/easymockclassextension/2.4/easymock
classextension-2.4.jar
->...file:/home/galder/.m2/repository/org/easymock/easymock/2.4/easymock-2.4.jar
->...file:/home/galder/.m2/repository/cglib/cglib-nodep/2.1_3/cglib-nodep-2.1_3.jar
->...file:/home/galder/.m2/repository/javax/xml/bind/jaxb-api/2.1/jaxb-api-2.1.jar
->...file:/home/galder/.m2/repository/javax/xml/stream/stax-api/1.0-2/stax-api-1.0
-2.jar
->...file:/home/galder/.m2/repository/javax/activation/activation/1.1/activation
-1.1.jar
->...file:/home/galder/.m2/repository/jgroups/jgroups/2.8.0.CR1/jgroups-2.8.0.CR1.jar
->...file:/home/galder/.m2/repository/org/jboss/javaee/jboss-transaction

101

-api/1.0.1.6A/jboss-transaction-api-1.0.1.GA.jar
->...file:/home/galder/.m2/repository/org/jboss/marshalling/river/1.2.0.CR4
-SNAPSHOT/river-1.2.0.CR4-SNAPSHOT. jar
->...file:/home/galder/.m2/repository/org/jboss/marshalling/marshalling-api/1.2.0.CR4
-SNAPSHOT/marshalling-api-1.2.0.CR4-SNAPSHOT. jar
->...file:/home/galder/.m2/repository/org/jboss/jboss-common-core/2.2.14.GA/jboss
-common-core-2.2.14.GA. jar
->...file:/home/galder/.m2/repository/org/jboss/logging/jboss-1logging
-spi/2.0.5.G6A/jboss-1ogging-spi-2.0.5.GA.jar
->...file:/home/galder/.m2/repository/log4j/1og4j/1.2.14/10g4j-1.2.14.jar
->...file:/home/galder/.m2/repository/com/thoughtworks/xstream/xstream/1.2/xstream
-1.2.jar
->...file:/home/galder/.m2/repository/xpp3/xpp3_min/1.1.3.4.0/xpp3_min-1.1.3.4.0.jar
->...file:/home/galder/.m2/repository/com/sun/xml/bind/jaxb-impl/2.1.3/jaxb-impl
-2.1.3.jar
-> parent classloader = sun.misc.Launcher$ExtClasslLoader@1858610
->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/localedata.jar
->...file:/usr/java/jdk1.5.0_19/jre/1lib/ext/sunpkes11.jar
->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/sunjce_provider.jar
->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/dnsns.jar

. Removed 22 stack frames
</code>

Finding the root cause of marshalling/unmarshalling exceptions can sometimes be really daunting
but we hope that the above improvements would help get to the bottom of those in a more quicker
and efficient manner.

6.4. User Defined Externalizers

One of the key aspects of Infinispan is that it often needs to marshall/unmarshall objects in order to
provide some of its functionality. For example, if it needs to store objects in a write-through or
write-behind cache store, the stored objects need marshalling. If a cluster of Infinispan nodes is
formed, objects shipped around need marshalling. Even if you enable lazy deserialization, objects
need to be marshalled so that they can be lazily unmarshalled with the correct classloader.

Using standard JDK serialization is slow and produces payloads that are too big and can affect
bandwidth usage. On top of that, JDK serialization does not work well with objects that are
supposed to be immutable. In order to avoid these issues, Infinispan uses JBoss Marshalling for
marshalling/unmarshalling objects. JBoss Marshalling is fast, produces very space efficient
payloads, and on top of that during unmarshalling, it enables users to have full control over how to
construct objects, hence allowing objects to carry on being immutable.

Starting with 5.0, users of Infinispan can now benefit from this marshalling framework as well, and
they can provide their own externalizer implementations, but before finding out how to provide
externalizers, let’s look at the benefits they bring.

6.4.1. Benefits of Externalizers

The JDK provides a simple way to serialize objects which, in its simplest form, is just a matter of

102

http://jboss.org/jbossmarshalling

extending java.io.Serializable , but as it’s well known, this is known to be slow and it generates
payloads that are far too big. An alternative way to do serialization, still relying on JDK
serialization, is for your objects to extend java.io.Externalizable . This allows for users to provide
their own ways to marshall/unmarshall classes, but has some serious issues because, on top of
relying on slow JDK serialization, it forces the class that you want to serialize to extend this
interface, which has two side effects: The first is that you’re forced to modify the source code of the
class that you want to marshall/unmarshall which you might not be able to do because you either,
don’t own the source, or you don’t even have it. Secondly, since Externalizable implementations do
not control object creation, you’re forced to add set methods in order to restore the state, hence
potentially forcing your immutable objects to become mutable.

Instead of relying on JDK serialization, Infinispan uses JBoss Marshalling to serialize objects and
requires any classes to be serialized to be associated with an Externalizer interface implementation
that knows how to transform an object of a particular class into a serialized form and how to read
an object of that class from a given input. Infinispan does not force the objects to be serialized to
implement Externalizer. In fact, it is recommended that a separate class is used to implement the
Externalizer interface because, contrary to JDK serialization, Externalizer implementations control
how objects of a particular class are created when trying to read an object from a stream. This
means that readObject() implementations are responsible of creating object instances of the target
class, hence giving users a lot of flexibility on how to create these instances (whether direct
instantiation, via factory or reflection), and more importantly, allows target classes to carry on
being immutable. This type of externalizer architecture promotes good OOP designs principles,
such as the principle of single responsibility .

It’s quite common, and in general recommended, that Externalizer implementations are stored as
inner static public classes within classes that they externalize. The advantages of doing this is that
related code stays together, making it easier to maintain. In Infinispan, there are two ways in which
Infinispan can be plugged with user defined externalizers:

6.4.2. User Friendly Externalizers

In the simplest possible form, users just need to provide an Externalizer implementation for the
type that they want to marshall/unmarshall, and then annotate the marshalled type class with
{@link SerializeWith} annotation indicating the externalizer class to use. For example:

import org.infinispan.commons.marshall.Externalizer;
import org.infinispan.commons.marshall.SerializeWith;

(Person.PersonExternalizer.class)
public class Person {

final String name;
final int age;

public Person(String name, int age) {

this.name = name;
this.age = age;

103

https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://docs.oracle.com/javase/8/docs/api/java/io/Externalizable.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/marshall/Externalizer.html
http://en.wikipedia.org/wiki/Single_responsibility_principle
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/marshall/Externalizer.html

public static class PersonExternalizer implements Externalizer<Person> {

public void writeObject(ObjectOutput output, Person person)
throws IOException {
output.writeObject(person.name);
output.writeInt(person.age);

public Person readObject(ObjectInput input)
throws IOException, ClassNotFoundException {
return new Person((String) input.readObject(), input.readInt());

At runtime JBoss Marshalling will inspect the object and discover that it’s marshallable (thanks to
the annotation) and so marshall it using the externalizer class passed. To make externalizer
implementations easier to code and more typesafe, make sure you define type <T> as the type of
object that’s being marshalled/unmarshalled.

Even though this way of defining externalizers is very user friendly, it has some disadvantages:

* Due to several constraints of the model, such as support for different versions of the same class
or the need to marshall the Externalizer class, the payload sizes generated via this method are
not the most efficient.

* This model requires that the marshalled <class be annotated with
link:https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/marshall/Serialize Wit
h.html but a user might need to provide an Externalizer for a class for which source code is not
available, or for any other constraints, it cannot be modified.

* The use of annotations by this model might be limiting for framework developers or service
providers that try to abstract lower level details, such as the marshalling layer, away from the
user.

If you’re affected by any of these disadvantages, an alternative method to provide externalizers is
available via more advanced externalizers:

6.4.3. Advanced Externalizers

AdvancedExternalizer provides an alternative way to provide externalizers for
marshalling/unmarshalling user defined classes that overcome the deficiencies of the more user-
friendly externalizer definition model explained in Externalizer. For example:

import org.infinispan.marshall.AdvancedExternalizer;
public class Person {

final String name;

104

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/marshall/AdvancedExternalizer.html

final int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}
public static class PersonExternalizer implements AdvancedExternalizer<Person> {

public void writeObject(ObjectOutput output, Person person)
throws IOException {
output.writeObject(person.name);
output.writeInt(person.age);

}

public Person readObject(ObjectInput input)
throws IOException, ClassNotFoundException {
return new Person((String) input.readObject(), input.readInt());

public Set<Class<? extends Person>> getTypeClasses() {
return Util.<Class<? extends Person>>asSet(Person.class);

}

public Integer getId() {
return 2345;

}

The first noticeable difference is that this method does not require user classes to be annotated in
anyway, so it can be used with classes for which source code is not available or that cannot be
modified. The bound between the externalizer and the classes that are marshalled/unmarshalled is
set by providing an implementation for getTypeClasses() which should return the list of classes that
this externalizer can marshall:

Linking Externalizers with Marshaller Classes

Once the Externalizer’s readObject() and writeObject() methods have been implemented, it’s time to
link them up together with the type classes that they externalize. To do so, the Externalizer
implementation must provide a getTypeClasses() implementation. For example:

105

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/marshall/AdvancedExternalizer.html#getTypeClasses--

import org.infinispan.commons.util.Util;

public Set<(Class<? extends ReplicableCommand>> getTypeClasses() {
return Util.asSet(LockControlCommand.class, RehashControlCommand.class,

StateTransferControlCommand.class, GetKeyValueCommand.class,
ClusteredGetCommand.class,
SingleRpcCommand.class, CommitCommand.class,
PrepareCommand.class, RollbackCommand.class,
ClearCommand.class, EvictCommand.class,
InvalidateCommand.class, Invalidatel1Command.class,
PutKeyValueCommand.class, PutMapCommand.class,
RemoveCommand.class, ReplaceCommand.class);

In the code above, ReplicableCommandExternalizer indicates that it can externalize several type of
commands. In fact, it marshalls all commands that extend ReplicableCommand interface, but
currently the framework only supports class equality comparison and so, it’s not possible to
indicate that the classes to marshalled are all children of a particular class/interface.

However there might sometimes when the classes to be externalized are private and hence it’s not
possible to reference the actual class instance. In this situations, users can attempt to look up the
class with the given fully qualified class name and pass that back. For example:

public Set<Class<? extends List>> getTypeClasses() {
return Util.<Class<? extends List>>asSet(
Util.loadClass("java.util.Collections$SingletonList"));

Externalizer Identifier

Secondly, in order to save the maximum amount of space possible in the payloads generated,
advanced externalizers require externalizer implementations to provide a positive identified via
getld() implementations or via XML/programmatic configuration that identifies the externalizer
when unmarshalling a payload. In order for this to work however, advanced externalizers require
externalizers to be registered on cache manager creation time via XML or programmatic
configuration which will be explained in next section. On the contrary, externalizers based on
Externalizer and SerializeWith require no pre-registration whatsoever. Internally, Infinispan uses
this advanced externalizer mechanism in order to marshall/unmarshall internal classes.

So, getld() should return a positive integer that allows the externalizer to be identified at read time
to figure out which Externalizer should read the contents of the incoming buffer, or it can return
null. If getld() returns null, it is indicating that the id of this advanced externalizer will be defined
via XML/programmatic configuration, which will be explained in next section.

Regardless of the source of the the id, using a positive integer allows for very efficient variable
length encoding of numbers, and it's much more efficient than shipping externalizer

106

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/marshall/AdvancedExternalizer.html#getId--

implementation class information or class name around. Infinispan users can use any positive
integer as long as it does not clash with any other identifier in the system. It’s important to
understand that a user defined externalizer can even use the same numbers as the externalizers in
the Infinispan Core project because the internal Infinispan Core externalizers are special and they
use a different number space to the user defined externalizers. On the contrary, users should avoid
using numbers that are within the pre-assigned identifier ranges which can be found at the end of
this article. Infinispan checks for id duplicates on startup, and if any are found, startup is halted
with an error.

When it comes to maintaining which ids are in use, it’s highly recommended that this is done in a
centralized way. For example, getld() implementations could reference a set of statically defined
identifiers in a separate class or interface. Such class/interface would give a global view of the
identifiers in use and so can make it easier to assign new ids.

Registering Advanced Externalizers

The following example shows the type of configuration required to register an advanced
externalizer implementation for Person object shown earlier stored as a static inner class within it:

infinispan.xml

<infinispan>
<cache-container>
<serialization>
<advanced-externalizer class="Person$PersonExternalizer"/>
</serialization>
</cache-container>

</infinispan>
Programmatically:

GlobalConfigurationBuilder builder = ...
builder.serialization()
.addAdvancedExternalizer(new Person.PersonExternalizer());

As mentioned earlier, when listing these externalizer implementations, users can optionally
provide the identifier of the externalizer via XML or programmatically instead of via getld()
implementation. Again, this offers a centralized way to maintain the identifiers but it’s important
that the rules are clear: An AdvancedExternalizer implementation, either via XML/programmatic
configuration or via annotation, needs to be associated with an identifier. If it isn’t, Infinispan will
throw an error and abort startup. If a particular AdvancedExternalizer implementation defines an
id both via XML/programmatic configuration and annotation, the value defined via
XML/programmatically is the one that will be used. Here’s an example of an externalizer whose id
is defined at registration time:

107

infinispan.xml

<infinispan>
<cache-container>
<serialization>
<advanced-externalizer id="123"
class="Person$PersonExternalizer"/>
</serialization>
</cache-container>

</infinispan>
Programmatically:

GlobalConfigurationBuilder builder = ...
builder.serialization()
.addAdvancedExternalizer(123, new Person.PersonExternalizer());

Finally, a couple of notes about the programmatic configuration.
GlobalConfiguration.addExternalizer() takes varargs, so it means that it is possible to register
multiple externalizers in just one go, assuming that their ids have already been defined via
@Marshalls annotation. For example:

builder.serialization()
.addAdvancedExternalizer(new Person.PersonExternalizer(),
new Address.AddressExternalizer());

Preassigned Externalizer Id Ranges

This is the list of Externalizer identifiers that are used by Infinispan based modules or frameworks.
Infinispan users should avoid using ids within these ranges.

Infinispan Tree Module: 1000 - 1099
Infinispan Server Modules: 1100 -1199
Hibernate Infinispan Second Level Cache: 1200 - 1299
Infinispan Lucene Directory: 1300 - 1399
Hibernate OGM: 1400 - 1499
Hibernate Search: 1500 - 1599
Infinispan Query Module: 1600 - 1699
Infinispan Remote Query Module: 1700 -1799
Infinispan Scripting Module: 1800 - 1849
Infinispan Server Event Logger Module: 1850 - 1899

108

Infinispan Remote Store:
Infinispan Counters:
Infinispan Multimap:

Infinispan Locks:

1900 - 1999

2000 - 2049

2050 - 2099

2100 - 2149

109

Chapter 7. Transactions

Infinispan can be configured to use and to participate in JTA compliant transactions. Alternatively,
if transaction support is disabled, it is equivalent to using autocommit in JDBC calls, where
modifications are potentially replicated after every change (if replication is enabled).

On every cache operation Infinispan does the following:

1. Retrieves the current Transaction associated with the thread

2. If not already done, registers XAResource with the transaction manager to be notified when a
transaction commits or is rolled back.

In order to do this, the cache has to be provided with a reference to the environment’s
TransactionManager. This is usually done by configuring the cache with the class name of an
implementation of the TransactionManagerLookup interface. When the cache starts, it will create
an instance of this class and invoke its getTransactionManager () method, which returns a reference
to the TransactionManager.

Infinispan ships with several transaction manager lookup classes:

Transaction manager lookup implementations

* EmbeddedTransactionManagerLookup: This provides with a basic transaction manager which
should only be used for embedded mode when no other implementation is available. This
implementation has some severe limitations to do with concurrent transactions and recovery.

* JBossStandalone]TAManagerLookup: If you’re running Infinispan in a standalone environment,
this should be your default choice for transaction manager. It’s a fully fledged transaction
manager based on JBoss Transactions which overcomes all the deficiencies of the
EmbeddedTransactionManager.

* GenericTransactionManagerLookup: This is a lookup class that locate transaction managers in
the most popular Java EE application servers. If no transaction manager can be found, it
defaults on the EmbeddedTransactionManager.

WARN: DummyTransactionManagerLookup has been deprecated in 9.0 and it will be removed in the
future. Use EmbeddedTransactionManagerLookup instead.

Once initialized, the TransactionManager can also be obtained from the Cache itself:

//the cache must have a transactionManagerlLookupClass defined
Cache cache = cacheManager.getCache();

//equivalent with calling TransactionManagerLookup.getTransactionManager();
TransactionManager tm = cache.getAdvancedCache().getTransactionManager();

7.1. Configuring transactions

Transactions are configured at cache level. Below is the configuration that affects a transaction

110

https://docs.oracle.com/javaee/7/api/javax/transaction/Transaction.html
https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/transaction/lookup/TransactionManagerLookup.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/transaction/lookup/EmbeddedTransactionManagerLookup.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/transaction/lookup/JBossStandaloneJTAManagerLookup.html
http://narayana.io/
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/transaction/lookup/GenericTransactionManagerLookup.html

behaviour and a small description of each configuration attribute.

<locking
isolation="READ_COMMITTED"
write-skew="false"/>
<transaction
locking="0OPTIMISTIC"
auto-commit="true"
complete-timeout="60000"
mode="NONE"
notifications="true"
protocol="DEFAULT"
reaper-interval="30000"
recovery-cache="__recoveryInfoCacheName__
stop-timeout="30000"
transaction-manager-Tlookup=
"org.infinispan.transaction.lookup.GenericTransactionManagerLookup"/>
<versioning
scheme="NONE" />

or programmatically:

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.locking()
.isolationLevel(IsolationLevel.READ_COMMITTED)
.writeSkewCheck(false);
builder.transaction()
.LlockingMode(LockingMode.OPTIMISTIC)
.autoCommit(true)
.completedTxTimeout(60000)
.transactionMode(TransactionMode.NON_TRANSACTIONAL)
.useSynchronization(false)
.notifications(true)
.transactionProtocol(TransactionProtocol.DEFAULT)
.reaperWakeUpInterval(30000)
.cacheStopTimeout(30000)
.transactionManagerLookup(new GenericTransactionManagerLookup())
.recovery()
.enabled(false)
.recoveryInfoCacheName("__recoveryInfoCacheName__");
builder.versioning()
.enabled(false)
.scheme(VersioningScheme.NONE);

* isolation - configures the isolation level. Check section Isolation levels for more details. Default
is READ_COMMITTED.

e write-skew - enables the write skew check. Check section Write Skew for more details. Default is
false.

111

locking - configures whether the cache uses optimistic or pessimistic locking. Check section
Transaction locking for more details. Default is OPTIMISTIC.

auto-commit - if enable, the user does not need to start a transaction manually for a single
operation. The transaction is automatically started and committed. Default is true.

complete-timeout - the duration in milliseconds to keep information about completed
transactions. Default is 60000.

mode - configures whether the cache is transactional or not. Default is NONE. The available options
are:

¢ NONE - non transactional cache

FULL_XA - XA transactional cache with recovery enabled. Check section Transaction recovery
for more details about recovery.

NON_DURABLE_XA - XA transactional cache with recovery disabled.

NON_XA - transactional cache with integration via Synchronization instead of XA. Check
section Enlisting Synchronizations for details.

BATCH- transactional cache using batch to group operations. Check section Batching for
details.

notifications - enables/disables triggering transactional events in cache listeners. Default is
true.
protocol - configures the protocol uses. Default is DEFAULT. Values available are:

* DEFAULT - uses the traditional Two-Phase-Commit protocol. It is described below.

» TOTAL_ORDER - uses total order ensured by the Transport to commit transactions. Check section

Total Order based commit protocol for details.

reaper-interval - the time interval in millisecond at which the thread that cleans up transaction
completion information kicks in. Defaults is 30000.

recovery-cache - configures the cache name to store the recovery information. Check section
Transaction recovery for more details about recovery. Default is recoveryInfoCacheName.

stop-timeout - the time in millisecond to wait for ongoing transaction when the cache is
stopping. Default is 30000.

transaction-manager-lookup - configures the fully qualified class name of a class that looks up a
reference to a javax.transaction.TransactionManager. Default is
org.infinispan.transaction.lookup.GenericTransactionManagerLookup.

Versioning scheme - configure the version scheme to use when write skew is enabled with
optimistic or total order transactions. Check section Write Skew for more details. Default is NONE.

For more details on how Two-Phase-Commit (2PC) is implemented in Infinispan and how locks are
being acquired see the section below. More details about the configuration settings are available in
Configuration reference.

112

https://docs.oracle.com/javaee/7/api/javax/transaction/Synchronization.html
http://docs.jboss.org/infinispan/9.2/configdocs/

7.2. Isolation levels

Infinispan offers two isolation levels - READ_COMMITTED and REPEATABLE_READ.

These isolation levels determine when readers see a concurrent write, and are internally
implemented using different subclasses of MVCCEntry, which have different behaviour in how state
is committed back to the data container.

Here’s a more detailed example that should help understand the difference between READ_COMMITTED
and REPEATABLE_READ in the context of Infinispan. With READ_COMMITTED, if between two consecutive
read calls on the same key, the key has been updated by another transaction, the second read may
return the new updated value:

Thread1:
Thread1:
Thread?:
Thread?:
Thread?2:
Thread?:
Thread1:
Thread1:

tx1.begin()

cache.get(k) // returns v
tx2.begin()
cache.get(k) // returns v
cache.put(k, v2)
tx2.commit()

cache.get(k) // returns v2!

tx1.commit()

With REPEATABLE_READ, the final get will still return v. So, if you’re going to retrieve the same key
multiple times within a transaction, you should use REPEATABLE _READ.

However, as read-locks are not acquired even for REPEATABLE_READ, this phenomena can occur:

cache.get("A") // returns 1
cache.get("B") // returns 1

Thread1:
Thread1:
Thread1:
Thread?2:
Thread?:
Thread1:
Thread?:
Thread?2:

tx1.begin()
cache.put("A", 2)
cache.put("B", 2)
tx2.begin()
cache.get("A") // returns 1
tx1.commit()
cache.get("B") // returns 2
tx2.commit()

7.3. Transaction locking

7.3.1. Pessimistic transactional cache

From a lock acquisition perspective, pessimistic transactions obtain locks on keys at the time the
key is written.

1. Alock request is sent to the primary owner (can be an explicit lock request or an operation)

113

https://en.wikipedia.org/wiki/Isolation_(database_systems)#Read_committed
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Repeatable_reads

2. The primary owner tries to acquire the lock:
a. If it succeed, it sends back a positive reply;

b. Otherwise, a negative reply is sent and the transaction is rollback.

As an example:

transactionManager.begin();

cache.put(k1,v1); //k1 is locked.
cache.remove(k2); //k2 is locked when this returns
transactionManager.commit();

When cache.put(k1,v1) returns, k1 is locked and no other transaction running anywhere in the
cluster can write to it. Reading k1 is still possible. The lock on k1 is released when the transaction
completes (commits or rollbacks).

0 For conditional operations, the validation is performed in the originator.

7.3.2. Optimistic transactional cache

With optimistic transactions locks are being acquired at transaction prepare time and are only
being held up to the point the transaction commits (or rollbacks). This is different from the 5.0
default locking model where local locks are being acquire on writes and cluster locks are being
acquired during prepare time.
1. The prepare is sent to all the owners.
2. The primary owners try to acquire the locks needed:
a. Iflocking succeeds, it performs the write skew check.

b. If the write skew check succeeds (or is disabled), send a positive reply.

c. Otherwise, a negative reply is sent and the transaction is rolled back.

As an example:

transactionManager.begin();

cache.put(k1,v1);

cache.remove(k2);

transactionManager.commit(); //at prepare time, K1 and K2 is locked until
committed/rolled back.

0 For conditional commands, the validation still happens on the originator.

7.3.3. What do I need - pessimistic or optimistic transactions?

From a use case perspective, optimistic transactions should be used when there is not a lot of

114

contention between multiple transactions running at the same time. That is because the optimistic
transactions rollback if data has changed between the time it was read and the time it was
committed (with write skew check enabled).

On the other hand, pessimistic transactions might be a better fit when there is high contention on
the keys and transaction rollbacks are less desirable. Pessimistic transactions are more costly by
their nature: each write operation potentially involves a RPC for lock acquisition.

7.4. Write Skew

The write skew anomaly occurs when 2 transactions read and update the same key and both of
them can commit successfully without having seen the update performed by the other. To detect
and rollback one of the transaction, write-skew should be enabled.

0 The write skew check is only performed for REPEATABLE_READ isolation.

o Pessimistic transaction does not perform any write skew check. It can be avoided
by locking the key at read time. Look how at the example below.

Locking key before read (Pessimitic Transaction)

if (lcache.getAdvancedCache().lock(key)) {
//key not locked. abort transaction

}
cache.get(key);
cache.put(key, value);

//this code is equivalent
cache.getAdvancedCache().withFlags(Flag.FORCE_WRITE_LOCK).get(key); //will throw an

exception is not locked.
cache.put(key, value);

When operating in LOCAL mode, write skew checks relies on Java object references to compare
differences and this is adequate to provide a reliable write-skew check. However, this technique is
useless in a cluster and a more reliable form of versioning is necessary to provide reliable write
skew checks.

Data version needs to be configured in order to support write skew check:
<versioning scheme="SIMPLE|NONE" />
Or

new ConfigurationBuilder().versioning().scheme(SIMPLE);

115

0 SIMPLE versioning is an implementation of the proposed EntryVersion interface,
backed by a long that is incremented each time the entry is updated.

7.5. Deadlock detection

Deadlocks can significantly (up to one order of magnitude) reduce the throughput of a system,
especially when multiple transactions are operating against the same key set. Deadlock detection is
disabled by default, but can be enabled/configured per cache (i.e. under *-cache config element) by
adding the following:

<local-cache deadlock-detection-spin="1000"/>
or, programmatically

new ConfigurationBuilder().deadlockDetection().enable().spinDuration(1000);

//or

new ConfigurationBuilder().deadlockDetection().enable().spinDuration(1, TimeUnit
.SECONDS);

Some clues on when to enable deadlock detection.
* A high number of transaction rolling back due to TimeoutException is an indicator that this
functionality might help.
* TimeoutException might be caused by other causes as well, but deadlocks will always result in

this exception being thrown.

Generally, when you have a high contention on a set of keys, deadlock detection may help. But the
best way is not to guess the performance improvement but to benchmark and monitor it: you can
have access to statistics (e.g. number of deadlocks detected) through JMX, as it is exposed via the
DeadlockDetectingLockManager MBean. For more details on how deadlock detection works,
benchmarks and design details refer to this article.

o deadlock detection only runs on an a per cache basis: deadlocks that spread over
two or more caches won’t be detected.

7.6. Dealing with exceptions

If a CacheException (or a subclass of it) is thrown by a cache method within the scope of a JTA
transaction, then the transaction is automatically marked for rollback.

7.7. Enlisting Synchronizations

By default Infinispan registers itself as a first class participant in distributed transactions through
XAResource. There are situations where Infinispan is not required to be a participant in the

116

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/util/concurrent/TimeoutException.html
http://infinispan.blogspot.com/2009/07/increase-transactional-throughput-with.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/commons/CacheException.html
https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html

transaction, but only to be notified by its lifecycle (prepare, complete): e.g. in the case Infinispan is
used as a 2nd level cache in Hibernate.

Starting with 5.0 release, Infinispan allows transaction enlistment through Synchronisation. To
enable it just use NON_XA transaction mode.

Synchronizations have the advantage that they allow TransactionManager to optimize 2PC with a 1PC
where only one other resource is enlisted with that transaction (last resource commit optimization).
E.g. Hibernate second level cache: if Infinispan registers itself with the TransactionManager as a
XAResource than at commit time, the TransactionManager sees two XAResource (cache and database)
and does not make this optimization. Having to coordinate between two resources it needs to write
the tx log to disk. On the other hand, registering Infinispan as a Synchronisation makes the
TransactionManager skip writing the log to the disk (performance improvement).

7.8. Batching

Batching allows atomicity and some characteristics of a transaction, but not full-blown JTA or XA
capabilities. Batching is often a lot lighter and cheaper than a full-blown transaction.

Generally speaking, one should use batching API whenever the only participant
in the transaction is an Infinispan cluster. On the other hand, JTA transactions
(involving TransactionManager) should be used whenever the transactions
Q involves multiple systems. E.g. considering the "Hello world!" of transactions:
transferring money from one bank account to the other. If both accounts are
stored within Infinispan, then batching can be used. If one account is in a
database and the other is Infinispan, then distributed transactions are required.

0 You do not have to have a transaction manager defined to use batching.

7.8.1. API

Once you have configured your cache to use batching, you use it by calling startBatch() and
endBatch() on Cache. E.g.,

117

https://docs.oracle.com/javaee/7/api/javax/transaction/Synchronization.html
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html/development_guide/java_transaction_api_jta#about_the_lrco_optimization_for_single_phase_commit_1pc

Cache cache = cacheManager.getCache();
// not using a batch
cache.put("key", "value"); // will replicate immediately

// using a batch

cache.startBatch();

cache.put("k1", "value");

cache.put("k2", "value");

cache.put("k2", "value");

cache.endBatch(true); // This will now replicate the modifications since the batch was
started.

// a new batch

cache.startBatch();

cache.put("k1", "value");

cache.put("k2", "value");

cache.put("k3", "value");

cache.endBatch(false); // This will "discard" changes made in the batch

7.8.2. Batching and JTA

Behind the scenes, the batching functionality starts a JTA transaction, and all the invocations in that
scope are associated with it. For this it uses a very simple (e.g. no recovery) internal
TransactionManager implementation. With batching, you get:

1. Locks you acquire during an invocation are held until the batch completes

2. Changes are all replicated around the cluster in a batch as part of the batch completion process.
Reduces replication chatter for each update in the batch.

3. If synchronous replication or invalidation are used, a failure in replication/invalidation will
cause the batch to roll back.

4. All the transaction related configurations apply for batching as well.

7.9. Transaction recovery

Recovery is a feature of XA transactions, which deal with the eventuality of a resource or possibly
even the transaction manager failing, and recovering accordingly from such a situation.

7.9.1. When to use recovery

Consider a distributed transaction in which money is transferred from an account stored in an
external database to an account stored in Infinispan. When TransactionManager.commit() is invoked,
both resources prepare successfully (1st phase). During the commit (2nd) phase, the database
successfully applies the changes whilst Infinispan fails before receiving the commit request from
the transaction manager. At this point the system is in an inconsistent state: money is taken from
the account in the external database but not visible yet in Infinispan (since locks are only released
during 2nd phase of a two-phase commit protocol). Recovery deals with this situation to make sure

118

data in both the database and Infinispan ends up in a consistent state.

7.9.2. How does it work

Recovery is coordinated by the transaction manager. The transaction manager works with
Infinispan to determine the list of in-doubt transactions that require manual intervention and
informs the system administrator (via email, log alerts, etc). This process is transaction manager
specific, but generally requires some configuration on the transaction manager.

Knowing the in-doubt transaction ids, the system administrator can now connect to the Infinispan
cluster and replay the commit of transactions or force the rollback. Infinispan provides JMX tooling
for this - this is explained extensively in the Reconciliation section.

7.9.3. Configuring recovery

Recovery is not enabled by default in Infinispan. If disabled, the TransactionManager won’t be able to
work with Infinispan to determine the in-doubt transactions. The Configuring transactions section
shows how to enable it.

0 recovery-cache attribute is not mandatory and it is configured per-cache.

O For recovery to work, mode must be set to FULL_XA, since full-blown XA
transactions are needed.

Enable JMX support

In order to be able to use JMX for managing recovery JMX support must be explicitly enabled. More
about enabling JMX in Management Tooling section.

7.9.4. Recovery cache

In order to track in-doubt transactions and be able to reply them, Infinispan caches all transaction
state for future use. This state is held only for in-doubt transaction, being removed for successfully
completed transactions after when the commit/rollback phase completed.

This in-doubt transaction data is held within a local cache: this allows one to configure swapping
this info to disk through cache loader in the case it gets too big. This cache can be specified through
the recovery-cache configuration attribute. If not specified infinispan will configure a local cache
for you.

It is possible (though not mandated) to share same recovery cache between all the Infinispan
caches that have recovery enabled. If the default recovery cache is overridden, then the specified
recovery cache must use a TransactionManagerLookup that returns a different transaction
manager than the one used by the cache itself.

7.9.5. Integration with the transaction manager

Even though this is transaction manager specific, generally a transaction manager would need a
reference to a XAResource implementation in order to invoke XAResource.recover() on it. In order to

119

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/transaction/lookup/class-use/TransactionManagerLookup.html

obtain a reference to an Infinispan XAResource following API can be used:

XAResource xar = cache.getAdvancedCache().getXAResource();

It is a common practice to run the recovery in a different process from the one running the
transaction. At the moment it is not possible to do this with infinispan: the recovery must be run
from the same process where the infinispan instance exists. This limitation will be dropped once
transactions over Hot Rod are available.

7.9.6. Reconciliation

The transaction manager informs the system administrator on in-doubt transaction in a
proprietary way. At this stage it is assumed that the system administrator knows transaction’s XID
(a byte array).

A normal recovery flow is:

» STEP 1: The system administrator connects to an Infinispan server through JMX, and lists the in
doubt transactions. The image below demonstrates JConsole connecting to an Infinispan node
that has an in doubt transaction.

I Overview Memory Threads Classes VM Summary -~ MBeans } =ili=
» [JMimplementation ~Operation invocation
» [com.sun.management . .
» fill java.lang java.lang.String (* showlnDoubtTransactions) |()

» (] java.util.logging
¥ [v.recovery.admin.LocalCacheRecoveryAdminTest

~MBeanOperationinfo

¥ [Cache Name M-
M u Operation:
> InfoCacheN loca
v ﬁﬂl_rezc_wewn B cheName_ ¢ b MName showl ubtTransactions
= es'tlt ist_sync) i Description Showsgll the prepared transactions for which the...
¥ [‘DefaultCacheManager Impact UN N
Each cache that has recovery enabled exposes this MBean Javgglang.string

> @ LockManager
¥ @@ RecoveryAdmin

¥ QOperations

showlnDoubtTransactions

force Commit
forceCommit
forceRollback ~Descriptor
forceRollback Name Current status of the
forger in-doubt transaction
forget
b @ RpcManager
000 Operation return value .I
> 120-5674-21-1174918-6974-103-3529 >] ,Iinternalld = 552952838323201|I;tatu5 = [_PREPARED_]
» (5l .

(Jalr]

Internal Id to be used with
other operations

Figure 6. Show in-doubt transactions

The status of each in-doubt transaction is displayed(in this example " PREPARED "). There might be

120

https://issues.jboss.org/browse/ISPN-375

multiple elements in the status field, e.g. "PREPARED" and "COMMITTED" in the case the transaction
committed on certain nodes but not on all of them.

» STEP 2: The system administrator visually maps the XID received from the transaction manager
to an Infinispan internal id, represented as a number. This step is needed because the XID, a
byte array, cannot conveniently be passed to the JMX tool (e.g. JConsole) and then re-assembled
on infinispan’s side.

* STEP 3: The system administrator forces the transaction’s commit/rollback through the
corresponding jmx operation, based on the internal id. The image below is obtained by forcing
the commit of the transaction based on its internal id.

| Overview = Memory = Threads = Classes VM Summary MB&ansi ==
» [IMimplementation ~Operation invocation
> _com.sun.management [i
» [l java.lang pl 562962838323201)
» [java.util.logging
¥ [tx.recovery.admin.LocalCacheRecoveryAd minTest ~MBeanOperationinfo
¥ [Cache Name Value
» [0 " recoverylnfoCacheName_ (local)” Operation:
¥ Ll “testidist_sync)” Name forceCommit
¥ ["DefaultCacheManager” Description Forces the commit of an in-doubt transaction
- @ Cae e oo,
» @@ DistributionManager P:r:;:]e:epriﬁ' Java.fang.string
b @ LockManager Name e - .
v @ RecoveryAdmin Descript Operation return value
> Atributes Type Commit successful!
¥ QOperations ﬁ
showinDoubtTransactions \,_f
| L
rDescri 0K -
forceRollback ﬁ)! - !_
forget | £
forget
b @ RpcManager
b @@ Statistics
b @@ Transactions
» (L] CacheManager
» [tx.recovery.admin.LocalCacheRecoveryAdminTest2
Figure 7. Force commit
Q All JMX operations described above can be executed on any node, regardless of
where the transaction originated.

Force commit/rollback based on XID

XID-based JMX operations for forcing in-doubt transactions' commit/rollback are available as well:
these methods receive byte[] arrays describing the XID instead of the number associated with the
transactions (as previously described at step 2). These can be useful e.g. if one wants to set up an
automatic completion job for certain in-doubt transactions. This process is plugged into transaction
manager’s recovery and has access to the transaction manager’s XID objects.

121

7.9.7. Want to know more?

The recovery design document describes in more detail the insides of transaction recovery
implementation.

7.10. Total Order based commit protocol

The Total Order based protocol is a multi-master scheme (in this context, multi-master scheme
means that all nodes can update all the data) as the (optimistic/pessimist) locking mode
implemented in Infinispan. This commit protocol relies on the concept of totally ordered delivery of
messages which, informally, implies that each node which delivers a set of messages, delivers them
in the same order.

This protocol comes with this advantages.

1. transactions can be committed in one phase, as they are delivered in the same order by the
nodes that receive them.

2. it mitigates distributed deadlocks.

The weaknesses of this approach are the fact that its implementation relies on a single thread per
node which delivers the transaction and its modification, and the slightly cost of total ordering the
messages in Transport.

Thus, this protocol delivers best performance in scenarios of high contention , in which it can
benefit from the single-phase commit and the deliver thread is not the bottleneck.

Currently, the Total Order based protocol is available only in transactional caches for replicated and
distributed modes.

7.10.1. Overview

The Total Order based commit protocol only affects how transactions are committed by Infinispan
and the isolation level and write skew affects it behaviour.

When write skew is disabled, the transaction can be committed/rolled back in single phase. The
data consistency is guaranteed by the Transport that ensures that all owners of a key will deliver the
same transactions set by the same order.

On other hand, when write skew is enabled, the protocol adapts and uses one phase commit when
it is safe. In XaResource enlistment, we can use one phase if the TransactionManager request a commit
in one phase (last resource commit optimization) and the Infinispan cache is configured in
replicated mode. This optimization is not safe in distributed mode because each node performs the
write skew check validation in different keys subset. When in Synchronization enlistment, the
TransactionManager does not provide any information if Infinispan is the only resource enlisted (last
resource commit optimization), so it is not possible to commit in a single phase.

Commit in one phase

When the transaction ends, Infinispan sends the transaction (and its modification) in total order.

122

https://community.jboss.org/wiki/TransactionRecoveryDesign

This ensures all the transactions are deliver in the same order in all the involved Infinispan nodes.
As a result, when a transaction is delivered, it performs a deterministic write skew check over the
same state (if enabled), leading to the same outcome (transaction commit or rollback).

| Node 1 | ‘ Node 2 \ | Node 3 \ Assuming tx1

and tx2 writes
on the same
(@,
to-send(prepare of tx1) to-send(prepare of tx2)
handle(prepare of tx1) handle(prepare of tx1) handle(prepare of tx1)

validate(tx1) validate(tx1) validate(tx1)

commit(tx1) commit(tx1) commit(tx1)
handle(prepare of tx2) handle(prepare of tx2) handle(prepare of tx2)
validate(tx2) validate(tx2) validate(tx2)

Q rollback(tx2) rollback(tx2) rollback(tx2)

Figure 8. 1-phase commit

The figure above demonstrates a high level example with 3 nodes. Node1 and Node3 are running one
transaction each and lets assume that both transaction writes on the same key. To make it more
interesting, lets assume that both nodes tries to commit at the same time, represented by the first
colored circle in the figure. The blue circle represents the transaction txI and the green the
transaction tx2 . Both nodes do a remote invocation in total order (to-send) with the transaction’s
modifications. At this moment, all the nodes will agree in the same deliver order, for example, tx1
followed by tx2 . Then, each node delivers tx1 , perform the validation and commits the
modifications. The same steps are performed for tx2 but, in this case, the validation will fail and the
transaction is rollback in all the involved nodes.

Commit in two phases

In the first phase, it sends the modification in total order and the write skew check is performed.
The result of the write skew check is sent back to the originator. As soon as it has the confirmation
that all keys are successfully validated, it give a positive response to the TransactionManager. On
other hand, if it receives a negative reply, it returns a negative response to the TransactionManager.
Finally, the transaction is committed or aborted in the second phase depending of the
TransactionManager request.

123

Node 1 | Node 2 | l Node 3 \ Assuming tx1

:: and tx2 writes
on the same
Q. key
to-send(prepare of tx1) to-send(prepare of {x2)
handle(prepare of tx1) handle(prepare of tx1) handle(prepare of tx1)
/
validate(tx1) validate(tx1) % validate(tx1)
handle(prepare of tx2) handle(prepare of tx2) handle(prepare of tx2)
Received enough replies
CX handle(commit of tx1) handle(commit of tx1)
send(commit of tx1)
D commit(tx1) commit(tx1) commit(tx1)
validate(tx2) validate(tx2) validate(tx2)
Received enough replies
handle(rollback of tx2) handle(rollback of tx2)
send(rollback of tx2)
rollback(tx2) rollback(tx2) rollback(tx2)

Figure 9. 2-phase commit

The figure above shows the scenario described in the first figure but now committing the
transactions using two phases. When tx1 is deliver, it performs the validation and it replies to the
TransactionManager. Next, lets assume that tx2 is deliver before the TransactionManager request the
second phase for tx1. In this case, tx2 will be enqueued and it will be validated only when tx1 is
completed. Eventually, the TransactionManager for txI will request the second phase (the commit)
and all the nodes are free to perform the validation of tx2 .

Transaction Recovery

Transaction recovery is currently not available for Total Order based commit protocol.

State Transfer

For simplicity reasons, the total order based commit protocol uses a blocking version of the current
state transfer. The main differences are:

1. enqueue the transaction deliver while the state transfer is in progress;

2. the state transfer control messages (CacheTopologyControlCommand) are sent in total order.

This way, it provides a synchronization between the state transfer and the transactions deliver that
is the same all the nodes. Although, the transactions caught in the middle of state transfer (i.e. sent

124

before the state transfer start and deliver after it) needs to be re-sent to find a new total order

involving the new joiners.

‘Node1|
A

to-send(prepare of tx1)

handle(prepare of tx1)

¢

handle(start state transfer)

handle(prepare of tx2)

handle(end state transfer)

‘NodeZ\

to-send(prepare of tx2)

handle(prepare of tx1)

©

handle(start state transfer)

handle(prepare of tx2)

handle(end state transfer)

handle(prepare of tx2)

to-send(prepare of tx2)

handle(prepare of tx2)

Figure 10. Node joining during transaction

Node 3 joins

topologyld=1

handle(start state transfer)

topologyld=2

handle(end state transfer)

topologyld=3

handle(prepare of tx2)

The figure above describes a node joining. In the scenario, the tx2 is sent in topologyId=1 but when
it is received, it is in topologyld=2 . So, the transaction is re-sent involving the new nodes.

7.10.2. Configuration

To use total order in your cache, you need to add the TOA protocol in your jgroups.xml configuration

file.
jgroups.xml

<tom.TOA />

i
o

manual.

Check the JGroups Manual for more details.

If you are interested in detail how JGroups guarantees total order, check the TOA

125

http://jgroups.org/manual-3.x/html/index.html
:http://jgroups.org/manual/index.html#TOA
:http://jgroups.org/manual/index.html#TOA

Also, you need to set the protocol=TOTAL_ORDER in the <transaction> element, as shown in
Configuration section.

7.10.3. When to use it?

Total order shows benefits when used in write intensive and high contented workloads. It mitigates
the cost associated with deadlock detection and avoids contention in the lock keys.

126

Chapter 8. Locking and Concurrency

Infinispan makes use of multi-versioned concurrency control (MVCC) - a concurrency scheme
popular with relational databases and other data stores. MVCC offers many advantages over coarse-
grained Java synchronization and even JDK Locks for access to shared data, including:

* allowing concurrent readers and writers

 readers and writers do not block one another

» write skews can be detected and handled

internal locks can be striped

8.1. Locking implementation details

Infinispan’s MVCC implementation makes use of minimal locks and synchronizations, leaning
heavily towards lock-free techniques such as compare-and-swap and lock-free data structures
wherever possible, which helps optimize for multi-CPU and multi-core environments.

In particular, Infinispan’s MVCC implementation is heavily optimized for readers. Reader threads
do not acquire explicit locks for entries, and instead directly read the entry in question.

Writers, on the other hand, need to acquire a write lock. This ensures only one concurrent writer
per entry, causing concurrent writers to queue up to change an entry. To allow concurrent reads,
writers make a copy of the entry they intend to modify, by wrapping the entry in an MVCCEntry. This
copy isolates concurrent readers from seeing partially modified state. Once a write has completed,
MVCCEntry.commit() will flush changes to the data container and subsequent readers will see the
changes written.

8.1.1. How does it work in clustered caches?

In clustered caches, each key has a node responsible to lock the key. This node is called primary
owner.

Non Transactional caches

1. The write operation is sent to the primary owner of the key.
2. The primary owner tries to lock the key.
a. If it succeeds, it forwards the operation to the other owners;

b. Otherwise, an exception is thrown.

0 If the operation is conditional and it fails on the primary owner, it is not
forwarded to the other owners.

0 If the operation is executed locally in the primary owner, the first step is skipped.

127

http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Compare-and-swap

8.1.2. Transactional caches

The transactional cache supports optimistic and pessimistic locking mode. Check section
Transaction locking for more information about it.

8.1.3. Isolation levels

Isolation level affects what transactions can read when running concurrently with other
transaction. Check section Isolation levels for more details about it.

8.1.4. The LockManager

The LockManager is a component that is responsible for locking an entry for writing. The LockManager
makes use of a LockContainer to locate/hold/create locks. LockContainers come in two broad flavours,
with support for lock striping and with support for one lock per entry.

8.1.5. Lock striping

Lock striping entails the use of a fixed-size, shared collection of locks for the entire cache, with
locks being allocated to entries based on the entry’s key’s hash code. Similar to the way the JDK’s
ConcurrentHashMap allocates locks, this allows for a highly scalable, fixed-overhead locking
mechanism in exchange for potentially unrelated entries being blocked by the same lock.

The alternative is to disable lock striping - which would mean a new lock is created per entry. This
approach may give you greater concurrent throughput, but it will be at the cost of additional
memory usage, garbage collection churn, etc.

Default lock striping settings

0 From Infinispan 5.0, lock striping is disabled by default, due to potential
deadlocks that can happen if locks for different keys end up in the same lock
stripe. Previously, in Infinispan 4.x lock striping used to be enabled by default.

The size of the shared lock collection used by lock striping can be tuned using the concurrencylLevel
attribute of the "<locking /> configuration element.

Configuration example:
<locking striping="false|true"/>
Or

new ConfigurationBuilder().locking().uselLockStriping(false|true);

8.1.6. Concurrency levels

In addition to determining the size of the striped lock container, this concurrency level is also used
to tune any JDK ConcurrentHashMap based collections where related, such as internal to

128

DataContainers. Please refer to the JDK ConcurrentHashMap Javadocs for a detailed discussion of
concurrency levels, as this parameter is used in exactly the same way in Infinispan.

Configuration example:
<locking concurrency-level="32"/>
Or

new ConfigurationBuilder().locking().concurrencylLevel(32);

8.1.7. Lock timeout
The lock timeout specifies the amount of time, in milliseconds, to wait for a contented lock.

Configuration example:
<locking acquire-timeout="10000"/>
Or

new ConfigurationBuilder().locking().lockAcquisitionTimeout(10000);
//alternatively
new ConfigurationBuilder().locking().lockAcquisitionTimeout(10, TimeUnit.SECONDS);

8.1.8. Consistency

The fact that a single owner is locked (as opposed to all owners being locked) does not break the
following consistency guarantee: if key K is hashed to nodes {A, B} and transaction TX1 acquires a
lock for K, let’s say on A. If another transaction, TX2, is started on B (or any other node) and TX2 tries
to lock K then it will fail with a timeout as the lock is already held by TX1. The reason for this is the
that the lock for a key K is always, deterministically, acquired on the same node of the cluster,
regardless of where the transaction originates.

8.2. Data Versioning

Infinispan supports two forms of data versioning: simple and external. The simple versioning is
used in transactional caches for write skew check. Check section Write Skew section for detail
about it.

The external versioning is used to encapsulate an external source of data versioning within
Infinispan, such as when using Infinispan with Hibernate which in turn gets its data version
information directly from a database.

In this scheme, a mechanism to pass in the version becomes necessary, and overloaded versions of

129

put() and putForExternalRead() will be provided in AdvancedCache to take in an external data
version. This is then stored on the InvocationContext and applied to the entry at commit time.

o Write skew checks cannot and will not be performed in the case of external data
versioning.

130

Chapter 9. Executing code in the Grid

The main benefit of a Cache is the ability to very quickly lookup a value by its key, even across
machines. In fact this use alone is probably the reason many users use Infinispan. However
Infinispan can provide many more benefits that aren’t immediately apparent. Since Infinispan is
usually used in a cluster of machines we also have features available that can help utilize the entire
cluster for performing the user’s desired workload.

This section covers only executing code in the grid using an embedded cache, if
you are using a remote cache you should check out Executing code in the Remote
Grid.

9.1. Cluster Executor

Since you have a group of machines, it makes sense to leverage their combined computing power
for executing code on all of them them. The cache manager comes with a nice utility that allows
you to execute arbitrary code in the cluster. Note this feature requires no Cache to be used. This
Cluster Executor can be retrieved by calling executor() on the EmbeddedCacheManager. This executor is
retrievable in both clustered and non clustered configurations.

The ClusterExecutor is specifically designed for executing code where the code is
not reliant upon the data in a cache and is used instead as a way to help users to
execute code easily in the cluster.

This manager was built specifically using Java 8 and such has functional APIs in mind, thus all
methods take a functional inteface as an argument. Also since these arguments will be sent to other
nodes they need to be serializable. We even used a nice trick to ensure our lambdas are
immediately Serializable. That is by having the arguments implement both Serializable and the
real argument type (ie. Runnable or Function). The JRE will pick the most specific class when
determining which method to invoke, so in that case your lambdas will always be serializable. It is
also possible to use an Externalizer to possibly reduce message size further.

The manager by default will submit a given command to all nodes in the cluster including the node
where it was submitted from. You can control on which nodes the task is executed on by using the
filterTargets methods as is explained in the section.

9.1.1. Filtering execution nodes

It is possible to limit on which nodes the command will be ran. For example you may want to only
run a computation on machines in the same rack. Or you may want to perform an operation once
in the local site and again on a different site. A cluster executor can limit what nodes it sends
requests to at the scope of same or different machine, rack or site level.

131

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/manager/ClusterExecutor.html

SameRack.java

EmbeddedCacheManager manager = ...;
manager .executor().filterTargets(ClusterExecutionPolicy.SAME_RACK).submit(...)

To use this topology base filtering you must enable topology aware consistent hashing through
Server Hinting.

You can also filter using a predicate based on the Address of the node. This can also be optionally
combined with topology based filtering in the previous code snippet.

We also allow the target node to be chosen by any means using a Predicate that will filter out which
nodes can be considered for execution. Note this can also be combined with Topology filtering at
the same time to allow even more fine control of where you code is executed within the cluster.

Predicate.java

EmbeddedCacheManager manager = ...;

// Just filter

manager .executor().filterTargets(a -> a.equals(..)).submit(...)

// Filter only those in the desired topology

manager .executor().filterTargets(ClusterExecutionPolicy.SAME_SITE, a -> a.equals(.
.)).submit(...)

9.1.2. Timeout

Cluster Executor allows for a timeout to be set per invocation. This defaults to the distributed sync
timeout as configured on the Transport Configuration. This timeout works in both a clustered and
non clustered cache manager. The executor may or may not interrupt the threads executing a task
when the timeout expires. However when the timeout occurs any Consumer or Future will be
completed passing back a TimeoutException. This value can be overridden by ivoking the timeout
method and supplying the desired duration.

9.1.3. Single Node Submission

Cluster Executor can also run in single node submission mode instead of submitting the command
to all nodes it will instead pick one of the nodes that would have normally received the command
and instead submit it it to only one. Each submission will possibly use a different node to execute
the task on. This can be very useful to use the ClusterExecutor as a java.util.concurrent.Executor
which you may have noticed that ClusterExecutor implements.

SingleNode.java

EmbeddedCacheManager manager = ...;
manager .executor().singleNodeSubmission().submit(...)

132

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/manager/ClusterExecutor.html#timeout-long-java.util.concurrent.TimeUnit-

Failover

When running in single node submission it may be desirable to also allow the Cluster Executor
handle cases where an exception occurred during the processing of a given command by retrying
the command again. When this occurs the Cluster Executor will choose a single node again to
resubmit the command to up to the desired number of failover attempts. Note the chosen node
could be any node that passes the topology or predicate check. Failover is enabled by invoking the
overridden singleNodeSubmission method. The given command will be resubmitted again to a
single node until either the command completes without exception or the total submission amount
is equal to the provided failover count.

9.1.4. Example: PI Approximation
This example shows how you can use the ClusterExecutor to estimate the value of PI.

Pi approximation can greatly benefit from parallel distributed execution via Cluster Executor.
Recall that area of the square is Sa = 4r2 and area of the circle is Ca=pi*r2. Substituting r2 from the
second equation into the first one it turns out that pi = 4 * Ca/Sa. Now, image that we can shoot very
large number of darts into a square; if we take ratio of darts that land inside a circle over a total
number of darts shot we will approximate Ca/Sa value. Since we know that pi = 4 * Ca/Sa we can
easily derive approximate value of pi. The more darts we shoot the better approximation we get. In
the example below we shoot 1 billion darts but instead of "shooting" them serially we parallelize
work of dart shooting across the entire Infinispan cluster. Note this will work in a cluster of 1 was
well, but will be slower.

public class PiAppx {

public static void main (String [] arg){
EmbeddedCacheManager cacheManager = ..
boolean isCluster = ..

int numPoints = 1_000_000 _000;
int numServers = isCluster ? cacheManager.getMembers().size() : 1;
int numberPerWorker = numPoints / numServers;

ClusterExecutor clusterExecutor = cacheManager.executor();
long start = System.currentTimeMillis();
// We receive results concurrently - need to handle that
AtomicLong countCircle = new AtomiclLong();
CompletableFuture<Void> fut = clusterExecutor.submitConsumer(m -> {
int insideCircleCount = 0;
for (int i = 0; i < numberPerWorker; i++) {
double x = Math.random();
double y = Math.random();
if (insideCircle(x, y))
insideCircleCount++;
}
return insideCircleCount;
}, (address, count, throwable) -> {
if (throwable != null) {

133

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/manager/ClusterExecutor.html#singleNodeSubmission-int-

throwable.printStackTrace();

System.out.println("Address: " + address + " encountered an error: " +
throwable);
} else {
countCircle.getAndAdd(count);
}
});

fut.whenComplete((v, t) -> {
// This is invoked after all nodes have responded with a value or exception
if (t !'= null) {
t.printStackTrace();
System.out.println("Exception encountered while waiting:" + t);
} else {
double appxPi = 4.0 * countCircle.get() / numPoints;

System.out.println("Distributed PI appx is " + appxPi +
" using " + numServers + " node(s), completed in " + (System
.currentTimeMillis() - start) + " ms");

}
i

// May have to sleep here to keep alive if no user threads left

}

private static boolean insideCircle(double x, double y) {
return (Math.pow(x - 0.5, 2) + Math.pow(y - 0.5, 2))
<= Math.pow(0.5, 2);

9.2. Streams

You may want to process a subset or all data in the cache to produce a result. This may bring
thoughts of Map Reduce. Infinispan allows the user to do something very similar but utilizes the
standard JRE APIs to do so. Java 8 introduced the concept of a Stream which allows functional-style
operations on collections rather than having to procedurally iterate over the data yourself. Stream
operations can be implemented in a fashion very similar to MapReduce. Streams, just like
MapReduce allow you to perform processing upon the entirety of your cache, possibly a very large
data set, but in an efficient way.

0 Streams are the preferred method when dealing with data that exists in the
cache. This is because they will automatically changes in topology.

Also since we can control how the entries are iterated upon we can more efficiently perform the
operations in a cache that is distributed if you want it to perform all of the operations across the
cluster concurrently.

A stream is retrieved from the entrySet, keySet or values collections returned from the Cache by
invoking the stream or parallelStream methods.

134

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/Cache.html#entrySet--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/Cache.html#keySet--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/Cache.html#values--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#stream--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#parallelStream--

9.2.1. Common stream operations

This section highlights various options that are present irrespective of what type of underlying
cache you are using.

9.2.2. Key filtering

It is possible to filter the stream so that it only operates upon a given subset of keys. This can be
done by invoking the filterKeys method on the CacheStream. This should always be used over a
Predicate filter and will be faster if the predicate was holding all keys.

If you are familiar with the AdvancedCache interface you may be wondering why you even use getAll
over this keyFilter. There are some small benefits (mostly smaller payloads) to using getAll if you
need the entries as is and need them all in memory in the local node. However if you need to do
processing on these elements a stream is recommended since you will get both distributed and
threaded parallelism for free.

9.2.3. Segment based filtering

This is an advanced feature and should only be used with deep knowledge of

0 Infinispan segment and hashing techniques. These segments based filtering can
be useful if you need to segment data into separate invocations. This can be
useful when integrating with other tools such as Apache Spark.

This option is only supported for replicated and distributed caches. This allows the user to operate
upon a subset of data at a time as determined by the KeyPartitioner. The segments can be filtered
by invoking filterKeySegments method on the CacheStream. This is applied after the key filter but
before any intermediate operations are performed.

9.2.4. Local/Invalidation

A stream used with a local or invalidation cache can be used just the same way you would use a
stream on a regular collection. Infinispan handles all of the translations if necessary behind the
scenes and works with all of the more interesting options (ie. storeAsBinary, compatibility mode,
and a cache loader). Only data local to the node where the stream operation is performed will be
used, for example invalidation only uses local entries.

9.2.5. Example
The code below takes a cache and returns a map with all the cache entries whose values contain the

string "JBoss"

Map<Object, String> jbossValues = cache.entrySet().stream()
.filter(e -> e.getValue().contains("JBoss"))
.collect(Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));

135

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/CacheStream.html#filterKeys-java.util.Set-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html?is-external=true#filter-java.util.function.Predicate-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/AdvancedCache.html#getAll-java.util.Set-
http://spark.apache.org/
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/distribution/ch/KeyPartitioner.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/CacheStream.html#filterKeySegments-java.util.Set-

9.3. Distribution/Replication/Scattered

This is where streams come into their stride. When a stream operation is performed it will send the
various intermediate and terminal operations to each node that has pertinent data. This allows
processing the intermediate values on the nodes owning the data, and only sending the final results
back to the originating nodes, improving performance.

9.3.1. Rehash Aware

Internally the data is segmented and each node only performs the operations upon the data it owns
as a primary owner. This allows for data to be processed evenly, assuming segments are granular
enough to provide for equal amounts of data on each node.

When you are utilizing a distributed cache, the data can be reshuffled between nodes when a new
node joins or leaves. Distributed Streams handle this reshuffling of data automatically so you don’t
have to worry about monitoring when nodes leave or join the cluster. Reshuffled entries may be
processed a second time, and we keep track of the processed entries at the key level or at the
segment level (depending on the terminal operation) to limit the amount of duplicate processing.

It is possible but highly discouraged to disable rehash awareness on the stream. This should only
be considered if your request can handle only seeing a subset of data if a rehash occurs. This can
be done by invoking CacheStream.disableRehashAware() The performance gain for most
operations when a rehash doesn’t occur is completely negligible. The only exceptions are for
iterator and forEach, which will use less memory, since they do not have to keep track of processed
keys.

Q Please rethink disabling rehash awareness unless you really know what you are
doing.

9.3.2. Serialization

Since the operations are sent across to other nodes they must be serializable by Infinispan
marshalling. This allows the operations to be sent to the other nodes.

The simplest way is to use a CacheStream instance and use a lambda just as you would normally.
Infinispan overrides all of the various Stream intermediate and terminal methods to take
Serializable versions of the arguments (ie. SerializableFunction, SerializablePredicate...) You can
find these methods at CacheStream. This relies on the spec to pick the most specific method as
defined here.

In our previous example we used a Collector to collect all the results into a Map. Unfortunately the
Collectors class doesn’t produce Serializable instances. Thus if you need to use these, there are two
ways to do so:

One option would be to use the CacheCollectors class which allows for a Supplier<Collector> to be
provided. This instance could then use the Collectors to supply a Collector which is not serialized.
You can read more details about how the collector peforms in a distributed fashion at distributed
execution.

136

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/CacheStream.html#disableRehashAware--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/stream/CacheStream.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.12.2.5
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/stream/CacheCollectors.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html
user_guide.html#distributed_stream_execution
user_guide.html#distributed_stream_execution

Map<Object, String> jbossValues = cache.entrySet().stream()
.filter(e -> e.getValue().contains("Jboss"))
.collect(CacheCollectors.serializableCollector(() -> Collectors.toMap
(Map.Entry::getKey, Map.Entry::getValue)));

Alternatively, you can avoid the use of CacheCollectors and instead use the overloaded collect
methods that take Supplier<Collector>. These overloaded collect methods are only available via
CacheStream interface.

Map<Object, String> jbossValues = cache.entrySet().stream()

.filter(e -> e.getValue().contains("Jboss"))

.collect(() -> Collectors.toMap(Map.Entry::getKey, Map.Entry::qgetValue)
¥

If however you are not able to use the Cache and CacheStream interfaces you cannot utilize
Serializable arguments and you must instead cast the lambdas to be Serializable manually by
casting the lambda to multiple interfaces. It is not a pretty sight but it gets the job done.

Map<Object, String> jbossValues = map.entrySet().stream()

.filter((Serializable & Predicate<Map.Entry<Object, String>>) e -> e
.getValue().contains("Jboss"))

.collect(CacheCollectors.serializableCollector(() -> Collectors.toMap
(Map.Entry::getKey, Map.Entry::getValue)));

The recommended and most performant way is to use an AdvancedExternalizer as this provides
the smallest payload. Unfortunately this means you cannot use lamdbas as advanced externalizers
require defining the class before hand.

You can use an advanced externalizer as shown below:

Map<Object, String> jbossValues = cache.entrySet().stream()
.filter(new ContainsFilter("Jboss"))
.collect(() -> Collectors.toMap(Map.Entry::getKey, Map.Entry::qgetValue)

class ContainsFilter implements Predicate<Map.Entry<Object, String>> {
private final String target;

ContainsFilter(String target) {
this.target = target;
}

public boolean test(Map.Entry<Object, String> e) {
return e.getValue().contains(target);

}

137

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/stream/CacheCollectors.html
user_guide.html#advanced_externalizers

}

class JbossFilterExternalizer implements AdvancedExternalizer<ContainsFilter> {

public Set<Class<? extends ContainsFilter>> getTypeClasses() {
return Util.asSet(ContainsFilter.class);

}

public Integer getId() {
return CUSTOM_ID;

}

public void writeObject(ObjectOutput output, ContainsFilter object) throws
IOException {
output.writeUTF(object.target);
}

public ContainsFilter readObject(ObjectInput input) throws IOException,
ClassNotFoundException {
return new ContainsFilter(input.readUTF());

}

You could also use an advanced externalizer for the collector supplier to reduce the payload size
even further.

Map<Object, String> jbossValues = cache.entrySet().stream()
.filter(new ContainsFilter("Jboss"))
.collect(ToMapCollectorSupplier.INSTANCE);

class ToMapCollectorSupplier<K, U> implements Supplier<Collector<Map.Entry<K, U>, ?,
Map<K, U>>> {
static final ToMapCollectorSupplier INSTANCE = new ToMapCollectorSupplier();

private ToMapCollectorSupplier() { }
public Collector<Map.Entry<K, U>, 7, Map<K, U>> get() {
return Collectors.toMap(Map.Entry::getKey, Map.Entry::qgetValue);

}
}

class ToMapCollectorSupplierExternalizer implements AdvancedExternalizer
<ToMapCollectorSupplier> {

138

public Set<Class<? extends ToMapCollectorSupplier>> getType(Classes() {
return Util.asSet(ToMapCollectorSupplier.class);
}

public Integer getId() {
return CUSTOM_ID;

}

public void writeObject(ObjectOutput output, ToMapCollectorSupplier object)
throws IOException {
}

public ToMapCollectorSupplier readObject(ObjectInput input) throws IOException,
ClassNotFoundException {
return ToMapCollectorSupplier.INSTANCE;
}

9.3.3. Parallel Computation

Distributed streams by default try to parallelize as much as possible. It is possible for the end user
to control this and actually they always have to control one of the options. There are 2 ways these
streams are parallelized.

Local to each node When a stream is created from the cache collection the end user can choose
between invoking stream or parallelStream method. Depending on if the parallel stream was
picked will enable multiple threading for each node locally. Note that some operations like a
rehash aware iterator and forEach operations will always use a sequential stream locally. This
could be enhanced at some point to allow for parallel streams locally.

Users should be careful when using local parallelism as it requires having a large number of entries
or operations that are computationally expensive to be faster. Also it should be noted that if a user
uses a parallel stream with forEach that the action should not block as this would be executed on
the common pool, which is normally reserved for computation operations.

Remote requests When there are multiple nodes it may be desirable to control whether the remote
requests are all processed at the same time concurrently or one at a time. By default all terminal
operations except the iterator perform concurrent requests. The iterator, method to reduce overall
memory pressure on the local node, only performs sequential requests which actually performs
slightly better.

If a user wishes to change this default however they can do so by invoking the
sequentialDistribution or parallelDistribution methods on the CacheStream.

139

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#stream--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#parallelStream--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/CacheStream.html#sequentialDistribution--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/CacheStream.html#parallelDistribution--

9.3.4. Task timeout

It is possible to set a timeout value for the operation requests. This timeout is used only for remote
requests timing out and it is on a per request basis. The former means the local execution will not
timeout and the latter means if you have a failover scenario as described above the subsequent
requests each have a new timeout. If no timeout is specified it uses the replication timeout as a
default timeout. You can set the timeout in your task by doing the following:

CacheStream<Object, String> stream = cache.entrySet().stream();
stream.timeout(1, TimeUnit.MINUTES);

For more information about this, please check the java doc in timeout javadoc.

9.3.5. Injection

The Stream has a terminal operation called forEach which allows for running some sort of side
effect operation on the data. In this case it may be desirable to get a reference to the Cache that is
backing this Stream. If your Consumer implements the CacheAware interface the injectCache
method be invoked before the accept method from the Consumer interface.

9.3.6. Distributed Stream execution

Distributed streams execution works in a fashion very similiar to map reduce. Except in this case
we are sending zero to many intermediate operations (map, filter etc.) and a single terminal
operation to the various nodes. The operation basically comes down to the following:

1. The desired segments are grouped by which node is the primary owner of the given segment

2. A request is generated to send to each remote node that contains the intermediate and terminal
operations including which segments it should process

a. The terminal operation will be performed locally if necessary

b. Each remote node will receive this request and run the operations and subsequently send
the response back

3. The local node will then gather the local response and remote responses together performing
any kind of reduction required by the operations themselves.

4. Final reduced response is then returned to the user

In most cases all operations are fully distributed, as in the operations are all fully applied on each
remote node and usually only the last operation or something related may be reapplied to reduce
the results from multiple nodes. One important note is that intermediate values do not actually
have to be serializable, it is the last value sent back that is the part desired (exceptions for various
operations will be highlighted below).

Terminal operator distributed result reductions The following paragraphs describe how the
distributed reductions work for the various terminal operators. Some of these are special in that an
intermediate value may be required to be serializable instead of the final result.

140

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/CacheStream.html#timeout-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEach-java.util.function.Consumer-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/stream/CacheAware.html

allMatch noneMatch anyMatch

The allMatch operation is ran on each node and then all the results are logically anded together
locally to get the appropriate value. The noneMatch and anyMatch operations use a logical or
instead. These methods also have early termination support, stopping remote and local
operations once the final result is known.

collect

The collect method is interesting in that it can do a few extra steps. The remote node performs
everything as normal except it doesn’t perform the final finisher upon the result and instead
sends back the fully combined results. The local thread then combines the remote and local
result into a value which is then finally finished. The key here to remember is that the final
value doesn’t have to be serializable but rather the values produced from the supplier and
combiner methods.

count

The count method just adds the numbers together from each node.

findAny findFirst

The findAny operation returns just the first value they find, whether it was from a remote node
or locally. Note this supports early termination in that once a value is found it will not process
others. Note the findFirst method is special since it requires a sorted intermediate operation,
which is detailed in the exceptions section.

max min

The max and min methods find the respective min or max value on each node then a final
reduction is performed locally to ensure only the min or max across all nodes is returned.

reduce

The various reduce methods 1 , 2 , 3 will end up serializing the result as much as the
accumulator can do. Then it will accumulate the local and remote results together locally, before
combining if you have provided that. Note this means a value coming from the combiner
doesn’t have to be Serializable.

9.3.7. Key based rehash aware operators

The iterator, spliterator and forEach are unlike the other terminal operators in that the rehash
awareness has to keep track of what keys per segment have been processed instead of just
segments. This is to guarantee an exactly once (iterator & spliterator) or at least once behavior
(forEach) even under cluster membership changes.

The iterator and spliterator operators when invoked on a remote node will return back batches of
entries, where the next batch is only sent back after the last has been fully consumed. This
batching is done to limit how many entries are in memory at a given time. The user node will hold
onto which keys it has processed and when a given segment is completed it will release those keys
from memory. This is why sequential processing is preferred for the iterator method, so only a
subset of segment keys are held in memory at once, instead of from all nodes.

The forEach method also returns batches, but it returns a batch of keys after it has finished

141

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#allMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#noneMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#anyMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect-java.util.stream.Collector-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#finisher--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#combiner--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#supplier--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#combiner--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#count--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#findAny--
user_guide.html#intermediate_operation_exceptions
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#max-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#min-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-java.util.function.BinaryOperator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-T-java.util.function.BinaryOperator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-U-java.util.function.BiFunction-java.util.function.BinaryOperator-
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/CacheStream.html#iterator--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/CacheStream.html#spliterator--
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/CacheStream.html#forEach-java.util.function.Consumer-

processing at least a batch worth of keys. This way the originating node can know what keys have
been processed already to reduce chances of processing the same entry again. Unfortunately this
means it is possible to have an at least once behavior when a node goes down unexpectedly. In this
case that node could have been processing a batch and not yet completed one and those entries that
were processed but not in a completed batch will be ran again when the rehash failure operation
occurs. Note that adding a node will not cause this issue as the rehash failover doesn’t occur until
all responses are received.

These operations batch sizes are both controlled by the same value which can be configured by
invoking distributedBatchSize method on the CacheStream. This value will default to the chunkSize
configured in state transfer. Unfortunately this value is a tradeoff with memory usage vs
performance vs at least once and your mileage may vary.

Using iterator with a replication cache

Currently if you are using a replicated cache the iterator or spliterator terminal operations will
not perform any of the operations remotely and will instead perform everything on the local node.
This is for performance as doing a remote iteration process is very costly.

9.3.8. Intermediate operation exceptions

There are some intermediate operations that have special exceptions, these are skip, peek, sorted 1
2. & distinct. All of these methods have some sort of artificial iterator implanted in the stream
processing to guarantee correctness, they are documented as below. Note this means these
operations may cause possibly severe performance degradation.

Skip
An artificial iterator is implanted up to the intermediate skip operation. Then results are
brought locally so it can skip the appropriate amount of elements.

Sorted

WARNING: This operation requires having all entries in memory on the local node. An artificial
iterator is implanted up to the intermediate sorted operation. All results are sorted locally.
There are possible plans to have a distributed sort which returns batches of elements, but this is
not yet implemented.

Distinct

WARNING: This operation requires having all or nearly all entries in memory on the local node.
Distinct is performed on each remote node and then an artificial iterator returns those distinct
values. Then finally all of those results have a distinct operation performed upon them.

The rest of the intermediate operations are fully distributed as one would expect.

9.3.9. Examples

Word Count

Word count is a classic, if overused, example of map/reduce paradigm. Assume we have a mapping
of key — sentence stored on Infinispan nodes. Key is a String, each sentence is also a String, and we

142

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/CacheStream.html#distributedBatchSize-int-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#skip-long-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#peek-java.util.function.Consumer-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#sorted-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#sorted--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#distinct--

have to count occurrence of all words in all sentences available. The implementation of such a
distributed task could be defined as follows:

public class WordCountExample {

/**
* In this example replace c1 and c2 with

* real Cache references
*

* @param args

*
/

public static void main(String[] args) {
Cache<String, String> cl1 = ...;
Cache<String, String> ¢2 = ...;

cl.put("1", "Hello world here I am");
c2.put("2", "Infinispan rules the world");
cl.put("3", "JUDCon is in Boston");

c2.put("4", "JBoss World is in Boston as well");
c1.put("12","IBoss Application Server");
c2.put("15", "Hello world");

cl.put("14", "Infinispan community");
c2.put("15", "Hello world");

cl.put("111", "Infinispan open source");
c2.put("112", "Boston is close to Toronto");
cl.put("113", "Toronto is a capital of Ontario");
c2.put("114", "JUDCon is cool");

cl.put("211", "IBoss World is awesome");
c2.put("212", "JBoss rules");

cl.put("213", "JBoss division of RedHat ");
c2.put("214", "RedHat community");

Map<String, Integer> wordCountMap = c1.entrySet().parallelStream()
.map(e -> e.getValue().split("\\s"))
.flatMap(Arrays::stream)
.collect(() -> Collectors.groupingBy(Function.identity(), Collectors.
counting()));

}
}

In this case it is pretty simple to do the word count from the previous example.

However what if we want to find the most frequent word in the example? If you take a second to
think about this case you will realize you need to have all words counted and available locally first.
Thus we actually have a few options.

We could use a finisher on the collector, which is invoked on the user thread after all the results
have been collected. Some redundant lines have been removed from the previous example.

143

public class WordCountExample {
public static void main(String[] args) {
// Lines removed

String mostFrequentWord = c1.entrySet().parallelStream()
.map(e -> e.getValue().split("\\s"))
.flatMap(Arrays::stream)
.collect(() -> Collectors.collectingAndThen(
Collectors.groupingBy(Function.identity(), Collectors.counting()),
wordCountMap -> {
String mostFrequent = null;
long maxCount = 0;
for (Map.Entry<String, Long> e : wordCountMap.entrySet()) {
int count = e.getValue().intValue();
if (count > maxCount) {
maxCount = count;
mostFrequent = e.getKey();
}
}

return mostFrequent;

1);

Unfortunately the last step is only going to be ran in a single thread, which if we have a lot of words
could be quite slow. Maybe there is another way to parallelize this with Streams.

We mentioned before we are in the local node after processing, so we could actually use a stream
on the map results. We can therefore use a parallel stream on the results.

public class WordFrequencyExample {
public static void main(String[] args) {
// Lines removed

Map<String, Long> wordCount = c1.entrySet().parallelStream()
.map(e -> e.getValue().split("\\s"))
.flatMap(Arrays::stream)
.collect(() -> Collectors.groupingBy(Function.identity(), Collectors
.counting()));
Optional<Map.Entry<String, Long>> mostFrequent = wordCount.entrySet()
.parallelStream().reduce(
(e1, e2) -> el.getValue() > e2.getValue() ? el : e2);

This way you can still utilize all of the cores locally when calculating the most frequent element.
Remove specific entries

Distributed streams can also be used as a way to modify data where it lives. For example you may
want to remove all entries in your cache that contain a specific word.

144

public class RemoveBadWords {
public static void main(String[] args) {
// Lines removed
String word = ..

cl.entrySet().parallelStream()
.filter(e -> e.getValue().contains(word))
.forEach((c, e) -> c.remove(e.getKey());

If we carefully note what is serialized and what is not, we notice that only the word along with the
operations are serialized across to other nods as it is captured by the lambda. However the real
saving piece is that the cache operation is performed on the primary owner thus reducing the
amount of network traffic required to remove these values from the cache. The cache is not
captured by the lambda as we provide a special BiConsumer method override that when invoked
on each node passes the cache to the BiConsumer

One thing to keep in mind using the forEach command in this manner is that the underlying stream
obtains no locks. The cache remove operation will still obtain locks naturally, but the value could
have changed from what the stream saw. That means that the entry could have been changed after
the stream read it but the remove actually removed it.

We have specifically added a new variant which is called LockedStream which will be covered in
the next section.

Plenty of other examples

Also remember that Streams are a JRE tool now and there are a multitude of examples that can be
found all over. Just remember that your operations need to be Serializable in some fashion!

9.4. Locked Streams

TODO: need to detail Locked Streams

9.5. Distributed Execution

Distributed Executor has been deprecated as of Infinispan 9.1. You should use
either a Cluster Executor or Distributed Stream to perform the operations they
were doing before.

Infinispan provides distributed execution through a standard JDK ExecutorService interface. Tasks
submitted for execution, instead of being executed in a local JVM, are executed on an entire cluster
of Infinispan nodes. Every DistributedExecutorService is bound to one particular cache. Tasks
submitted will have access to key/value pairs from that particular cache if and only if the task
submitted is an instance of DistributedCallable. Also note that there is nothing preventing users
from submitting a familiar Runnable or Callable just like to any other ExecutorService. However,
DistributedExecutorService, as it name implies, will likely migrate submitted Callable or Runnable
to another JVM in Infinispan cluster, execute it and return a result to task invoker. Due to a

145

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

potential task migration to other nodes every Callable, Runnable and/or DistributedCallable
submitted must be either Serializable or Externalizable. Also the value returned from a callable
must be Serializable or Externalizable as well. If the value returned is not serializable a
NotSerializableException will be thrown.

Infinispan’s distributed task executors use data from Infinispan cache nodes as input for execution
tasks. Most other distributed frameworks do not have that leverage and users have to specify input
for distributed tasks from some well known location. Furthermore, users of Infinispan distributed
execution framework do not have to configure store for intermediate and final results thus
removing another layer of complexity and maintenance.

Our distributed execution framework capitalizes on the fact input data in Infinispan data grid is
already load balanced (in case of DIST mode). Since input data is already balanced execution tasks
will be automatically balanced as well; users do not have to explicitly assign work tasks to specific
Infinispan nodes. However, our framework accommodates users to specify arbitrary subset of
cache keys as input for distributed execution tasks.

9.5.1. DistributedCallable API

In case users needs access to Infinispan cache data for an execution of a task we recommend that
you encapsulate task in DistributedCallable interface. DistributedCallable is a subtype of the
existing Callable from java.util.concurrent package; DistributedCallable can be executed in a
remote JVM and receive input from Infinispan cache. Task’s main algorithm could essentially
remain unchanged, only the input source is changed. Existing Callable implementations most likely
get their input in a form of some Java object/primitive while DistributedCallable gets its input from
an Infinispan cache. Therefore, users who have already implemented Callable interface to describe
their task units would simply extend DistributedCallable and use keys from Infinispan execution
environment as input for the task. Implentation of DistributedCallable can in fact continue to
support implementation of an already existing Callable while simultaneously be ready for
distribited execution by extending DistributedCallable.

public interface DistributedCallable<K, V, T> extends Callable<T> {
/**
* Invoked by execution environment after DistributedCallable

* has been migrated for execution to a specific Infinispan node.

* @param cache

* cache whose keys are used as input data for this

* DistributedCallable task

* @param inputKeys

* keys used as input for this DistributedCallable task
*/

public void setEnvironment(Cache<K, V> cache, Set<K> inputKeys);

146

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/distexec/DistributedCallable.html

9.5.2. Callable and CDI

Users that do not want or can not implement DistributedCallable yet need a reference to input
cache used in DistributedExecutorService have an option of the input cache being injected by CDI
mechanism. Upon arrival of user’s Callable to an Infinispan executing node, Infinispan CDI
mechanism will provide appropriate cache reference and inject it to executing Callable. All one has
to do is to declare a Cache field in Callable and annotate it with org.infinispan.cdi.Input annotation
along with mandatory @Inject annotation.

public class CallableWithInjectedCache implements Callable<Integer>, Serializable {

private Cache<String, String> cache;

public Integer call() throws Exception {
//use injected cache reference
return 1;

}

9.5.3. DistributedExecutorService, DistributedTaskBuilder and
DistributedTask API

DistributedExecutorService is a simple extension of a familiar ExecutorService from
java.util.concurrent package. However, advantages of DistributedExecutorService are not to be
overlooked. Existing Callable tasks, instead of being executed in JDK’s ExecutorService, are also
eligible for execution on Infinispan cluster. Infinispan execution environment would migrate a task
to execution node(s), run the task and return the result(s) to the calling node. Of course, not all
Callable tasks would benefit from parallel distributed execution. Excellent candidates are long
running and computationally intensive tasks that can run concurrently and/or tasks using input
data that can be processed concurrently. For more details about good candidates for parallel
execution and parallel algorithms in general refer to Introduction to Parallel Computing .

The second advantage of the DistributedExecutorService is that it allows a quick and simple
implementation of tasks that take input from Infinispan cache nodes, execute certain computation
and return results to the caller. Users would specify which keys to use as input for specified
DistributedCallable and submit that callable for execution on Infinispan cluster. Infinispan runtime
would locate the appriate keys, migrate DistributedCallable to target execution node(s) and finally
return a list of results for each executed Callable. Of course, users can omit specifying input keys in
which case Infinispan would execute DistributedCallable on all keys for a specified cache.

Lets see how we can use DistributedExecutorService If you already have Callable/Runnable tasks
defined! Well, simply submit them to an instance of DefaultExecutorService for execution!

147

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/distexec/DistributedExecutorService.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html
https://computing.llnl.gov/tutorials/parallel_comp/

ExecutorService des = new DefaultExecutorService(cache);
Future<Boolean> future = des.submit(new SomeCallable());
Boolean r = future.get();

In case you need to specify more task parameters like task timeout, custom failover policy or
execution policy use DistributedTaskBuilder and DistributedTask API.

DistributedExecutorService des = new DefaultExecutorService(cache);
DistributedTaskBuilder<Boolean> taskBuilder = des.createDistributedTaskBuilder (new
SomeCallable());

taskBuilder.timeout(10,TimeUnit.SECONDS);

DistributedTask<Boolean> distributedTask = taskBuilder.build();
Future<Boolean> future = des.submit(distributedTask);
Boolean r = future.get();

9.5.4. Distributed task failover

Distributed execution framework supports task failover. By default no failover policy is installed
and task’s Runnable/Callable/DistributedCallable will simply fail. Failover mechanism is invoked in
the following cases:

a) Failover due to a node failure where task is executing
b) Failover due to a task failure (e.g. Callable task throws Exception).

Infinispan provides random node failover policy which will attempt execution of a part of
distributed task on another random node, if such node is available. However, users that have a
need to implement a more sophisticated failover policy can implement
DistributedTaskFailoverPolicy interface. For example, users might want to use consistent hashing
(CH) mechanism for failover of uncompleted tasks. CH based failover might for example migrate
failed task T to cluster node(s) having a backup of input data that was executed on a failed node F.

/**

* DistributedTaskFailoverPolicy allows pluggable fail over target selection for a
failed remotely

* executed distributed task.

*

*/

public interface DistributedTaskFailoverPolicy {

/**
* As parts of distributively executed task can fail due to the task itself
throwing an exception
* or it can be an Infinispan system caused failure (e.g node failed or left
cluster during task

148

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/distexec/DistributedTaskBuilder.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/distexec/DistributedTask.html
https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/distexec/DistributedTaskFailoverPolicy.html

* execution etc).

* @param failoverContext
* the FailoverContext of the failed execution
* @return result the Address of the Infinispan node selected for fail over
execution
*/
Address failover(FailoverContext context);

/**
* Maximum number of fail over attempts permitted by this
DistributedTaskFailoverPolicy

*

* @return max number of fail over attempts
*/
int maxFailoverAttempts();

Therefore one could for example specify random failover execution policy simply by:

DistributedExecutorService des = new DefaultExecutorService(cache);
DistributedTaskBuilder<Boolean> taskBuilder = des.createDistributedTaskBuilder(new
SomeCallable());
taskBuilder.failoverPolicy(DefaultExecutorService.RANDOM_NODE_FAILOVER);
DistributedTask<Boolean> distributedTask = taskBuilder.build();

Future<Boolean> future = des.submit(distributedTask);

Boolean r = future.get();

9.5.5. Distributed task execution policy

DistributedTaskExecutionPolicy is an enum that allows tasks to specify its custom task execution
policy across Infinispan cluster. DistributedTaskExecutionPolicy effectively scopes execution of
tasks to a subset of nodes. For example, someone might want to exclusively execute tasks on a local
network site instead of a backup remote network centre as well. Others might, for example, use
only a dedicated subset of a certain Infinispan rack nodes for specific task execution.
DistributedTaskExecutionPolicy is set per instance of DistributedTask.

DistributedExecutorService des = new DefaultExecutorService(cache);
DistributedTaskBuilder<Boolean> taskBuilder = des.createDistributedTaskBuilder(new
SomeCallable());
taskBuilder.executionPolicy(DistributedTaskExecutionPolicy.SAME_RACK);
DistributedTask<Boolean> distributedTask = taskBuilder.build();

Future<Boolean> future = des.submit(distributedTask);

Boolean r = future.get();

149

https://docs.jboss.org/infinispan/9.2/apidocs/org/infinispan/distexec/DistributedTaskExecutionPolicy.html

9.5.6. Examples

Pi approximation can greatly benefit from parallel distributed execution in
DistributedExecutorService. Recall that area of the square is Sa = 4r2 and area of the circle is
Ca=pi*r2. Substituting r2 from the second equation into the first one it turns out that pi = 4 * Ca/Sa.
Now, image that we can shoot very large number of darts into a square; if we take ratio of darts
that land inside a circle over a total number of darts shot we will approximate Ca/Sa value. Since
we know that pi = 4 * Ca/Sa we can easily derive approximate value of pi. The more darts we shoot
the better approximation we get. In the example below we shoot 10 million darts but instead of
"shooting" them serially we parallelize work of dart shooting across entire Infinispan cluster.

public class PiAppx {

public static void main (String [] arg){
List<Cache> caches = ...;
Cache cache = ...;

int numPoints = 10000000;
int numServers = caches.size();
int numberPerWorker = numPoints / numServers;

DistributedExecutorService des = new DefaultExecutorService(cache);
long start = System.currentTimeMillis();
CircleTest ct = new CircleTest(numberPerWorker);
List<Future<Integer>> results = des.submitEverywhere(ct);
int countCircle = 0;
for (Future<Integer> f : results) {
countCircle += f.get();
}

double appxPi = 4.0 * countCircle / numPoints;

System.out.println("Distributed PI appx is " + appxPi +
completed in " + (System.currentTimeMillis() - start) +

n n

ms");

}

private static class CircleTest implements Callable<Integer>, Serializable {

/** The serialVersionUID */
private static final long serialVersionUID = 3496135215525904755L;

private final int loopCount;

public CircleTest(int loopCount) {
this.loopCount = loopCount;

}

public Integer call() throws Exception {
int insideCircleCount = 0;
for (int i = 0; i < loopCount; i++) {

150

double x = Math.random();
double y = Math.random();
if (insideCircle(x, y))
insideCircleCount++;
}

return insideCircleCount;

}

private boolean insideCircle(double x, double y) {
return (Math.pow(x - 0.5, 2) + Math.pow(y - 0.5, 2))
<= Math.pow(0.5, 2);

}

151

Chapter 10. Indexing and Querying

10.1. Overview

Infinispan supports indexing and searching of Java Pojo(s) or objects encoded via Protocol Buffers
stored in the grid using powerful search APIs which complement its main Map-like API.

Querying is possible both in library and client/server mode (for Java, C#, Node.js and other clients),
and Infinispan can index data using Apache Lucene, offering an efficient full-text capable search
engine in order to cover a wide range of data retrieval use cases.

Indexing configuration relies on a schema definition, and for that Infinispan can use annotated
Java classes when in library mode, and protobuf schemas for remote clients written in other
languages. By standardizing on protobuf, Infinispan allows full interoperability between Java and
non-Java clients.

Apart from indexed queries, Infinispan can run queries over non-indexed data (indexless queries)
and over partially indexed data (hybrid queries).

In terms of Search APIs, Infinispan has its own query language called Ickle, which is a subset of JP-
QL providing extensions for full-text querying. The Infinispan Query DSL can be used for both
embedded and remote java clients when full-text is not required; for Java embedded clients
Infinispan offers the Hibernate Search Query API which supports running Lucene queries in the
grid, apart from advanced search capabilities like Faceted and Spatial search.

Finally, Infinispan has support for Continuous Queries, which works in a reverse manner to the
other APIs: instead of creating, executing a query and obtain results, it allows a client to register
queries that will be evaluated continuously as data in the cluster changes, generating notifications
whenever the changed data matches the queries.

10.2. Embedded Querying

Embedded querying is available when Infinispan is used as a library. No protobuf mapping is
required, and both indexing and searching are done on top of Java objects. When in library mode, it
is possible to run Lucene queries directly and use all the available Query APIs, and it also allows
flexible indexing configurations to keep latency to a minimal.

10.2.1. Quick example

We’re going to store Book instances in an Infinispan cache called "books". Book instances will be
indexed, so we enable indexing for the cache, letting Infinispan configure the indexing
automatically:

Infinispan configuration:

152

https://developers.google.com/protocol-buffers/
http://lucene.apache.org/
https://en.wikipedia.org/wiki/Full-text_search

infinispan.xml

<infinispan>
<cache-container>
<transport cluster="infinispan-cluster"/>
<distributed-cache name="books">
<indexing index="LOCAL" auto-config="true"/>
</distributed-cache>
</cache-container>
</infinispan>

Obtaining the cache:

import org.infinispan.Cache;
import org.infinispan.manager.DefaultCacheManager;
import org.infinispan.manager.EmbeddedCacheManager;

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan.xml");
Cache<String, Book> cache = manager.getCache("books");

Each Book will be defined as in the following example; we have to choose which properties are
indexed, and for each property we can optionally choose advanced indexing options using the
annotations defined in the Hibernate Search project.

Book.java

import org.hibernate.search.annotations.*;
import java.util.Date;

import java.util.HashSet;

import java.util.Set;

//Values you want to index need to be annotated with @Indexed, then you pick which
fields and how they are to be indexed:
@Indexed
public class Book {
@Field String title;
@Field String description;
@Field @DateBridge(resolution=Resolution.YEAR) Date publicationYear;
@IndexedEmbedded Set<Author> authors = new HashSet<Author>();

Author.java

public class Author {
@Field String name;
@Field String surname;
// hashCode() and equals() omitted

153

Now assuming we stored several Book instances in our Infinispan Cache , we can search them for
any matching field as in the following example.

Using a Lucene Query:

// get the search manager from the cache:
SearchManager searchManager = org.infinispan.query.Search.getSearchManager(cache);

// create any standard Lucene query, via Lucene's QueryParser or any other means:
org.apache.lucene.search.Query fullTextQuery = //any Apache Lucene Query

// convert the Lucene query to a CacheQuery:
CacheQuery cacheQuery = searchManager.getQuery(fullTextQuery);

// get the results:
List<Object> found = cacheQuery.list();

A Lucene Query is often created by parsing a query in text format such as "title:infinispan AND
authors.name:sanne”, or by using the query builder provided by Hibernate Search.

// get the search manager from the cache:
SearchManager searchManager = org.infinispan.query.Search.getSearchManager(cache);

// you could make the queries via Lucene APIs, or use some helpers:
QueryBuilder queryBuilder = searchManager.buildQueryBuilderForClass(Book.class).get();

// the queryBuilder has a nice fluent API which guides you through all options.
// this has some knowledge about your object, for example which Analyzers
// need to be applied, but the output is a fairly standard Lucene Query.
org.apache.lucene.search.Query luceneQuery = queryBuilder.phrase()
.onField("description")
.andField("title")
.sentence("a book on highly scalable query engines")
.createQuery();

// the query API itself accepts any Lucene Query, and on top of that
// you can restrict the result to selected class types:
CacheQuery query = searchManager.getQuery(luceneQuery, Book.class);

// and there are your results!
List objectList = query.list();

for (Object book : objectlList) {
System.out.println(book);

}

Apart from list() you have the option for streaming results, or use pagination.

For searches that do not require Lucene or full-text capabilities and are mostly about aggregation

154

and exact matches, we can use the Infinispan Query DSL API:

import org.infinispan.query.dsl.QueryFactory;
import org.infinispan.query.dsl.Query;
import org.infinispan.query.Search;

// get the query factory:
QueryFactory queryFactory = Search.getQueryFactory(cache);

Query q = queryFactory.from(Book.class)
.having("author.surname").eq("King")

.build();

List<Book> list = g.list();
Finally, we can use an Ickle query directly, allowing for Lucene syntax in one or more predicates:

import org.infinispan.query.dsl.QueryFactory;
import org.infinispan.query.dsl.Query;

// get the query factory:
QueryFactory queryFactory = Search.getQueryFactory(cache);

Query q = queryFactory.create("from Book b where b.author.name = 'Stephen' and " +
"b.description : (+'dark' -'tower')");

List<Book> list = g.list();

10.2.2. Indexing

Indexing in Infinispan happens on a per-cache basis and by default a cache is not indexed. Enabling
indexing is not mandatory but queries using an index will have a vastly superior performance. On
the other hand, enabling indexing can impact negatively the write throughput of a cluster, so make
sure to check the query performance guide for some strategies to minimize this impact depending
on the cache type and use case.

Configuration

General format

To enable indexing via XML, you need to add the <indexing> element plus the index (index mode) to
your cache configuration, and optionally pass additional properties.

155

<infinispan>
<cache-container default-cache="default">
<replicated-cache name="default">
<indexing index="ALL">
<property name="property.name">some value</property>
</indexing>
</replicated-cache>
</cache-container>
</infinispan>

Programmatic:

import org.infinispan.configuration.cache.*;

ConfigurationBuilder cacheCfg = ...
cache(Cfg.indexing().index(Index.ALL)
.addProperty("property name", "propery value")

Index names

Each property inside the index element is prefixed with the index name, for the index named
org.infinispan.sample.Car the directory_provider is local-heap:

<indexing index="ALL">
<property name="org.infinispan.sample.Car.directory_provider">local-
heap</property>
</indexing>

</infinispan>

cacheCfg.indexing()
.index(Index.ALL)
.addProperty("org.infinispan.sample.Car.directory_provider", "local-heap")

Infinispan creates an index for each entity existent in a cache, and it allows to configure those
indexes independently. For a class annotated with @Indexed, the index name is the fully qualified
class name, unless overridden with the name argument in the annotation.

In the snippet below, the default storage for all entities is infinispan, but Boat instances will be
stored on local-heap in an index named boatIndex. Airplane entities will also be stored in local-
heap. Any other entity’s index will be configured with the property prefixed by default.

156

package org.infinispan.sample;

@Indexed(name = "boatIndex")
public class Boat {

}

@Indexed
public class Airplane {

}
<indexing index="ALL">
<property name="default.directory_provider">infinispan</property>
<property name="boatIndex.directory_provider">local-heap</property>
<property name="org.infinispan.sample.Airplane.directory_provider">
ram
</property>
</indexing>
</infinispan>

Specifying indexed Entities

Infinispan can automatically recognize and manage indexes for different entity types in a cache.
Future versions of Infinispan will remove this capability so it’s recommended to declare upfront
which types are going to be indexed (list them by their fully qualified class name). This can be done
via xml:

<infinispan>
<cache-container default-cache="default">
<replicated-cache name="default">
<indexing index="ALL">
<indexed-entities>
<indexed-entity>com.acme.query.test.Car</indexed-entity>
<indexed-entity>com.acme.query.test.Truck</indexed-entity>
</indexed-entities>
</indexing>
</replicated-cache>
</cache-container>
</infinispan>

or programmatically:

157

cacheCfg.indexing()
.index(Index.ALL)
.addIndexedEntity(Car.class)
.addIndexedEntity(Truck.class)

In server mode, the class names listed under the 'indexed-entities' element must use the 'extended’
class name format which is composed of a JBoss Modules module identifier, a slot name, and the
fully qualified class name, these three components being separated by the "' character, (eg.
"com.acme.my-module-with-entity-classes:my-slot:com.acme.query.test.Car"). The entity classes
must be located in the referenced module, which can be either a user supplied module deployed in
the 'modules' folder of your server or a plain jar deployed in the 'deployments' folder. The module
in question will become an automatic dependency of your Cache, so its eventual redeployment will
cause the cache to be restarted.

Only for server, if you fail to follow the requirement of using 'extended' class

0 names and use a plain class name its resolution will fail due to missing class
because the wrong ClassLoader is being used (the Infinispan’s internal class path
is being used).

Index mode

An Infinispan node typically receives data from two sources: local and remote. Local translates to
clients manipulating data using the map API in the same JVM; remote data comes from other
Infinispan nodes during replication or rebalancing.

The index mode configuration defines, from a node in the cluster point of view, which data gets
indexed.

Possible values:

ALL: all data is indexed, local and remote.

LOCAL: only local data is indexed.

PRIMARY_OWNER: Only entries containing keys that the node is primary owner will be
indexed, regardless of local or remote origin.

NONE: no data is indexed. Equivalent to not configure indexing at all.

Index Managers

Index managers are central components in Infinispan Querying responsible for the indexing
configuration, distribution and internal lifecycle of several query components such as Lucene’s
IndexReader and IndexWriter. Each Index Manager is associated with a Directory Provider, which
defines the physical storage of the index.

Regarding index distribution, Infinispan can be configured with shared or non-shared indexes.

158

Shared indexes

A shared index is a single, distributed, cluster-wide index for a certain cache. The main advantage
is that the index is visible from every node and can be queried as if the index were local, there is no
need to broadcast queries to all members and aggregate the results. The downside is that Lucene
does not allow more than a single process writing to the index at the same time, and the
coordination of lock acquisitions needs to be done by a proper shared index capable index
manager. In any case, having a single write lock cluster-wise can lead to some degree of contention
under heavy writing.

Infinispan supports shared indexes leveraging the Infinispan Directory Provider, which stores
indexes in a separate set of caches. Two index managers are available to use shared indexes:
InfinispanIndexManager and AffinityIndexManager.

Effect of the index mode

Shared indexes should not use the ALL index mode since it’d lead to redundant indexing: since there
is a single index cluster wide, the entry would get indexed when inserted via Cache API, and
another time when Infinispan replicates it to another node. The ALL mode is usually associates with
Non-shared indexes in order to create full index replicas on each node.

InfinispanIndexManager

This index manager uses the Infinispan Directory Provider, and is suitable for creating shared
indexes. Index mode should be set to LOCAL in this configuration.

Configuration:

<distributed-cache name="default" >
<indexing index="LOCAL">
<property name="default.indexmanager">
org.infinispan.query.indexmanager.InfinispanIndexManager
</property>
<!-- optional: tailor each index cache -->
<property name="default.locking_cachename">
LuceneIndexesLocking_custom</property>
<property name="default.data_cachename">LuceneIndexesData_custom</property>
<property name="default.metadata_cachename">
LuceneIndexesMetadata_custom</property>
</indexing>
</distributed-cache>

<!-- Optional -->

<replicated-cache name="LuceneIndexeslLocking_custom">
<indexing index="NONE" />
<-- extra confiquration -->

</replicated-cache>

<!-- Optional -->
<replicated-cache name="LuceneIndexesMetadata_custom">

159

<indexing index="NONE" />
<-- extra confiquration -->
</replicated-cache>

<!-- Optional -->

<distributed-cache name="LuceneIndexesData_custom">
<-- extra confiquration -->
<indexing index="NONE" />

</distributed-cache>

Indexes are stored in a set of clustered caches, called by default LucenelndexesData,
LuceneIndexesMetadata and LucenelndexesLocking.

The LuceneIndexesLocking cache is used to store Lucene locks, and it is a very small cache: it will
contain one entry per entity (index).

The LucenelndexesMetadata cache is used to store info about the logical files that are part of the
index, such as names, chunks and sizes and it is also small in size.

The LucenelndexesData cache is where most of the index is located: it is much bigger then the other
two but should be smaller than the data in the cache itself, thanks to Lucene’s efficient storing
techniques.

It’s not necessary to redefine the configuration of those 3 cases, Infinispan will pick sensible
defaults. Reasons re-define them would be performance tuning for a specific scenario, or for
example to make them persistent by configuring a cache store.

In order to avoid index corruption when two or more nodes of the cluster try to write to the index
at the same time, the InfinispanindexManager internally elects a master in the cluster (which is the
JGroups coordinator) and forwards all indexing works to this master.

AffinityIndexManager

The AffinityIndexManager is an experimental index manager used for shared indexes that also
stores indexes using the Infinispan Directory Provider. Unlike the InfinispanIndexManager, it does
not have a single node (master) that handles all the indexing cluster wide, but rather splits the
index using multiple shards, each shard being responsible for indexing data associated with one or
more Infinispan segments. For an in-depth description of the inner workings, please see the design
doc.

The PRIMARY_OWNER index mode is required, together with a special kind of KeyPartitioner.

XML Configuration:

160

https://github.com/infinispan/infinispan/wiki/Index-affinity-proposal
https://github.com/infinispan/infinispan/wiki/Index-affinity-proposal

<distributed-cache name="default"
key-partitioner=
"org.infinispan.distribution.ch.impl.AffinityPartitioner">
<indexing index="PRIMARY_OWNER">
<property name="default.indexmanager">
org.infinispan.query.affinity.AffinityIndexManager
</property>
<!-- optional: control the number of shards -->
<property name="default.sharding_strategy.nbr_of_shards">10</property>
</indexing>
</distributed-cache>

Programmatic:

import org.infinispan.distribution.ch.impl.AffinityPartitioner;
import org.infinispan.query.affinity.AffinityIndexManager;

ConfigurationBuilder cache(Cfg = ...
cacheCfg.clustering().hash().keyPartitioner(new AffinityPartitioner());
cacheCfg.indexing()

.index(Index.PRIMARY_OWNER)

.addProperty("default.indexmanager", AffinityIndexManager.class.getName())

.addProperty("default.sharding_strategy.nbr_of_shards", "4")

The AffinityIndexManager by default will have as many shards as Infinispan segments, but this
value is configurable as seen in the example above.

The number of shards affects directly the query performance and writing throughput: generally
speaking, a high number of shards offers better write throughput but has an adverse effect on
query performance.

Non-shared indexes

Non-shared indexes are independent indexes at each node. This setup is particularly advantageous
for replicated caches where each node has all the cluster data and thus can hold all the indexes as
well, offering optimal query performance with zero network latency when querying. Another
advantage is, since the index is local to each node, there is less contention during writes due to the
fact that each node is subjected to its own index lock, not a cluster wide one.

Since each node might hold a partial index, it may be necessary to broadcast queries in order to get
correct search results, which can add latency. If the cache is REPL, though, the broadcast is not
necessary: each node can hold a full local copy of the index and queries runs at optimal speed
taking advantage of a local index.

Infinispan has two index managers suitable for non-shared indexes: directory-based and near-
real-time. Storage wise, non-shared indexes can be located in ram, filesystem, or Infinispan local
caches.

161

Effect of the index mode

The directory-based and near-real-time index managers can be associated with different index
modes, resulting in different index distributions.

REPL caches combined with the ALL index mode will result in a full copy of the cluster-wide index
on each node. This mode allows queries to become effectively local without network latency. This is
the recommended mode to index any REPL cache, and that’s the choice picked by the auto-config
when the a REPL cache is detected. The ALL mode should not be used with DIST caches.

REPL or DIST caches combined with LOCAL index mode will cause each node to index only data
inserted from the same JVM, causing an uneven distribution of the index. In order to obtain correct
query results, it’s necessary to use broadcast queries.

REPL or DIST caches combined with PRIMARY_OWNER will also need broadcast queries. Differently
from the LOCAL mode, each node’s index will contain indexed entries which key is primarily owned
by the node according to the consistent hash, leading to a more evenly distributed indexes among
the nodes.

directory-based index manager

This is the default Index Manager used when no index manager is configured. The directory-based
index manager is used to manage indexes backed by a local lucene directory. It supports ram,
filesystem and non-clustered infinispan storage.

Filesystem storage

This is the default storage, and used when index manager configuration is omitted. The index is
stored in the filesystem using a MMapDirectory. It is the recommended storage for local indexes.
Although indexes are persistent on disk, they get memory mapped by Lucene and thus offer decent
query performance.

Configuration:

<replicated-cache name="myCache">
<indexing index="ALL">

<!-- Optional: define base folder for indexes -->
<property name="default.indexBase">${java.io.tmpdir}/baseDir</property>
</indexing>

</replicated-cache>

Infinispan will create a different folder under default.indexBase for each entity (index) present in
the cache.

Ram storage

Index is stored in memory using a Lucene RAMDirectory. Not recommended for large indexes or
highly concurrent situations. Indexes stored in Ram are not persistent, so after a cluster shutdown
a re-index is needed. Configuration:

162

https://lucene.apache.org/core/6_0_0/core/org/apache/lucene/store/MMapDirectory.html
https://lucene.apache.org/core/6_0_0/core/org/apache/lucene/store/RAMDirectory.html

<replicated-cache name="myCache">
<indexing index="ALL">
<property name="default.directory_provider">local-heap</property>
</indexing>
</replicated-cache>

Infinispan storage

Infinispan storage makes use of the Infinispan Lucene directory that saves the indexes to a set of
caches; those caches can be configured like any other Infinispan cache, for example by adding a
cache store to have indexes persisted elsewhere apart from memory. In order to use Infinispan
storage with a non-shared index, it’s necessary to use LOCAL caches for the indexes:

<replicated-cache name="default">
<indexing index="ALL">
<property name="default.locking_cachename">
LuceneIndexeslLocking_custom</property>
<property name="default.data_cachename">LuceneIndexesData_custom</property>
<property name="default.metadata_cachename">
LuceneIndexesMetadata_custom</property>
</indexing>
</replicated-cache>

<local-cache name="LuceneIndexeslLocking_custom">
<indexing index="NONE" />
</local-cache>

<local-cache name="LuceneIndexesMetadata_custom">
<indexing index="NONE" />
</local-cache>

<local-cache name="LuceneIndexesData_custom">
<indexing index="NONE" />
</local-cache>

near-real-time index manager

Similar to the directory-based index manager but takes advantage of the Near-Real-Time features of
Lucene. It has better write performance than the directory-based because it flushes the index to the
underlying store less often. The drawback is that unflushed index changes can be lost in case of a
non-clean shutdown. Can be used in conjunction with local-heap, filesystem and local infinispan
storage. Configuration for each different storage type is the same as the directory-based index
manager index manager.

Example with ram:

163

<replicated-cache name="default">
<indexing index="ALL">
<property name="default.indexmanager">near-real-time</property>
<property name="default.directory_provider">local-heap</property>
</indexing>
</replicated-cache>

Example with filesystem:

<replicated-cache name="default">
<indexing index="ALL">
<property name="default.indexmanager">near-real-time</property>
</indexing>
</replicated-cache>

External indexes

Apart from having shared and non-shared indexes managed by Infinispan itself, it is possible to
offload indexing to a third party search engine: currently Infinispan supports Elasticsearch as a
external index storage.

Elasticsearch IndexManager (experimental)

This index manager forwards all indexes to an external Elasticsearch server. This is an
experimental integration and some features may not be available, for example indexNullAs for
@IndexedEmbedded annotations is not currently supported.

Configuration:

<indexing index="LOCAL">
<property name="default.indexmanager">elasticsearch</property>
<property name="default.elasticsearch.host">http://elasticHost:9200</property>
<!-- other elasticsearch configurations -->

</indexing>

The index mode should be set to LOCAL, since Infinispan considers Elasticsearch as a single shared
index. More information about Elasticsearch integration, including the full description of the
configuration properties can be found at the Hibernate Search manual.

Automatic configuration

The attribute auto-config provides a simple way of configuring indexing based on the cache type.
For replicated and local caches, the indexing is configured to be persisted on disk and not shared
with any other processes. Also, it is configured so that minimum delay exists between the moment
an object is indexed and the moment it is available for searches (near real time).

164

https://hibernate.atlassian.net/browse/HSEARCH-2389
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#elasticsearch-integration

<local-cache name="default">
<indexing index="LOCAL" auto-config="true">

</indexing>
</local-cache>

o it is possible to redefine any property added via auto-config, and also add new
properties, allowing for advanced tuning.

The auto config adds the following properties for replicated and local caches:

Prop value
erty
name

defau filesystem
It.dire

ctory_

provi

der

defau true
It.excl
usive

_inde
xX_use

defau near-real-time
It.ind
exma
nager

defau shared
It.rea
der.st
rateg

y

description

Filesystem based index. More details at Hibernate Search
documentation

indexing operation in exclusive mode, allowing Hibernate Search to
optimize writes

make use of Lucene near real time feature, meaning indexed objects
are promptly available to searches

Reuse index reader across several queries, thus avoiding reopening it

For distributed caches, the auto-config configure indexes in infinispan itself, internally handled as a
master-slave mechanism where indexing operations are sent to a single node which is responsible

to write to the index.

The auto config properties for distributed caches are:

165

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration-directory
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration-directory

Prop value description
erty
name

defau infinispan Indexes stored in Infinispan. More details at Hibernate Search
lt.dire documentation

ctory_
provi

der

defau true indexing operation in exclusive mode, allowing Hibernate Search to
It.excl optimize writes

usive

_inde

X_use

defau org.infinispan.quer Delegates index writing to a single node in the Infinispan cluster
Itind y.indexmanager.Inf

exma inispanIndexManag

nager er

defau shared Reuse index reader across several queries, avoiding reopening it
It.rea
der.st
rateg

y

Re-indexing

Occasionally you might need to rebuild the Lucene index by reconstructing it from the data stored
in the Cache. You need to rebuild the index if you change the definition of what is indexed on your
types, or if you change for example some Analyzer parameter, as Analyzers affect how the index is
written. Also, you might need to rebuild the index if you had it destroyed by some system
administration mistake. To rebuild the index just get a reference to the MassIndexer and start it;
beware it might take some time as it needs to reprocess all data in the grid!

// Blocking execution
SearchManager searchManager = Search.getSearchManager(cache);
searchManager.getMassIndexer().start();

// Non blocking execution
CompletableFuture<Void> future = searchManager.getMassIndexer().startAsyc();

This is also available as a start JMX operation on the MassIndexer MBean
registered under the name org.infinispan:type=Query,manager="{name-of-cache-
manager}",cache="{name-of-cache}",component=MassIndexer.

Indexless

TODO

166

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#infinispan-directories
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#infinispan-directories
https://docs.jboss.org/infinispan/9.2/apidocs/jmxComponents.html#MassIndexer

Hybrid

TODO

Mapping Entities

Infinispan relies on the rich API of Hibernate Search in order to define fine grained configuration
for indexing at entity level. This configuration includes which fields are annotated, which analyzers
should be used, how to map nested objects and so on. Detailed documentation is available at the
Hibernate Search manual.

@DocumentId

Unlike Hibernate Search, using @Documentld to mark a field as identifier does not apply to
Infinispan values; in Infinispan the identifier for all @Indexed objects is the key used to store the
value. You can still customize how the key is indexed using a combination of @Transformable ,
custom types and custom FieldBridge implementations.

@Transformable keys

The key for each value needs to be indexed as well, and the key instance must be transformed in a
String. Infinispan includes some default transformation routines to encode common primitives, but
to use a custom key you must provide an implementation of org.infinispan.query.Transformer .

Registering a Transformer via annotations

You can annotate your key type with org.infinispan.query.Transformable :

(transformer = CustomTransformer.class)
public class CustomKey {

}
public class CustomTransformer implements Transformer {
public Object fromString(String s) {

return new CustomKey(...);

public String toString(Object customType) {
CustomKey ck = (CustomKey) customType;
return ...

Registering a Transformer programmatically

Using this technique, you don’t have to annotate your custom key type:

167

http://hibernate.org/search/
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-mapping
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-mapping

org.infinispan.query.SearchManager.registerKeyTransformer(Class<?>, (lass<? extends
Transformer>)

Programmatic mapping

Instead of using annotations to map an entity to the index, it’s also possible to configure it
programmatically.

In the following example we map an object Author which is to be stored in the grid and made
searchable on two properties but without annotating the class.

import org.apache.lucene.search.Query;

import org.hibernate.search.cfg.Environment;

import org.hibernate.search.cfg.SearchMapping;

import org.hibernate.search.query.dsl.QueryBuilder;
import org.infinispan.Cache;

import org.infinispan.configuration.cache.Configuration;
import org.infinispan.configuration.cache.ConfigurationBuilder;
import org.infinispan.confiqguration.cache.Index;

import org.infinispan.manager.DefaultCacheManager;
import org.infinispan.query.CacheQuery;

import org.infinispan.query.Search;

import org.infinispan.query.SearchManager;

import java.io.IOException;
import java.lang.annotation.ElementType;
import java.util.Properties;

SearchMapping mapping = new SearchMapping();
mapping.entity(Author.class).indexed()
.property("name", ElementType.METHOD).field()
.property("surname", ElementType.METHOD).field();

Properties properties = new Properties();
properties.put(Environment.MODEL_MAPPING, mapping);
properties.put("hibernate.search.[other options]", "[...]1");

Configuration infinispanConfiguration = new ConfigurationBuilder()
.indexing().index(Index.LOCAL)
.withProperties(properties)
.build();

DefaultCacheManager cacheManager = new DefaultCacheManager(infinispanConfiguration);

Cache<Long, Author> cache = cacheManager.getCache();
SearchManager sm = Search.getSearchManager(cache);

Author author = new Author(1, "Manik", "Surtani");
cache.put(author.getId(), author);

168

QueryBuilder gb = sm.buildQueryBuilderForClass(Author.class).get();
Query q = gb.keyword().onField("name").matching("Manik").createQuery();
CacheQuery cq = sm.getQuery(q, Author.class);

assert cq.getResultSize() == 1;

10.2.3. Querying APIs

Infinispan allows to query using Lucene queries directly and its own query language called Ickle, a
subset of JP-QL with full-text extensions.

In terms of DSL, Infinispan exposes the Hibernate Search DSL (which produces Lucene queries) and
has its own DSL which internally generates an Ickle query.

Finally, when using Lucene or Hibernate Search Query API, it is possible to query a single node or
to broadcast a query to multiple nodes combining the results.

Hibernate Search

Apart from supporting Hibernate Search annotations to configure indexing, it’s also possible to
query the cache using other Hibernate Search APIs

Running Lucene queries

To run a Lucene query directly, simply create and wrap it in a CacheQuery:

import org.infinispan.query.Search;
import org.infinispan.query.SearchManager;
import org.apache.lucene.Query;

SearchManager searchManager = Search.getSearchManager(cache);

Query query = searchManager.buildQueryBuilderForClass(Book.class).get()
.keyword().wildcard().onField("description").matching("*test*")

.createQuery();

CacheQuery<Book> cacheQuery = searchManager.getQuery(query);

Using the Hibernate Search DSL

The Hibernate Search DSL can be used to create the Lucene Query, example:

169

import org.infinispan.query.Search;
import org.infinispan.query.SearchManager;
import org.apache.lucene.search.Query;

Cache<String, Book> cache = ...
SearchManager searchManager = Search.getSearchManager(cache);

Query luceneQuery = searchManager
.buildQueryBuilderForClass(Book.class).get()
.range().onField("year").from(2005).to0(2010)
.createQuery();

List<Object> results = searchManager.getQuery(luceneQuery).list();

For a detailed description of the query capabilities of this DSL, see the relevant section of the
Hibernate Search manual.

Faceted Search

Infinispan support Faceted Searches by using the Hibernate Search FacetManager:

// Cache is indexed
Cache<Integer, Book> cache = ...

// 0Obtain the Search Manager
SearchManager searchManager = Search.getSearchManager(cache);

// Create the query builder
QueryBuilder queryBuilder = searchManager.buildQueryBuilderForClass(Book.class).get();

// Build any Lucene Query. Here it's using the DSL to do a Lucene term query on a book
name

Query TluceneQuery = queryBuilder.keyword().wildcard().onField("name").matching(
"bitcoin").createQuery();

// Wrap into a cache Query
CacheQuery<Book> query = searchManager.getQuery(luceneQuery);

// Define the Facet characteristics

FacetingRequest request = queryBuilder.facet()
.name("year_facet")
.onField("year")
.discrete()
.orderedBy(FacetSortOrder.COUNT_ASC)
.createFacetingRequest();

// Associated the FacetRequest with the query
FacetManager facetManager = query.getFacetManager().enableFaceting(request);

170

https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#section-building-lucene-queries
https://en.wikipedia.org/wiki/Faceted_search

// Obtain the facets
List<Facet> facetlList = facetManager.getFacets("year_facet");

A Faceted search like above will return the number books that match 'bitcoin’ released on a yearly
basis, for example:

AbstractFacet{facetingName="year_facet', fieldName='year', value='2008', count=1}
AbstractFacet{facetingName="year_facet', fieldName='year', value='2009', count=1}
AbstractFacet{facetingName="year_facet', fieldName='year', value='2010"', count=1}
AbstractFacet{facetingName="'year_facet', fieldName='year', value='2011"', count=1}
AbstractFacet{facetingName="year_facet', fieldName='year', value='2012"', count=1}
AbstractFacet{facetingName="year_facet', fieldName='year', value='2016"', count=1}
AbstractFacet{facetingName="year_facet', fieldName='year', value='2015"', count=2}
AbstractFacet{facetingName="year_facet', fieldName='year', value='2013"', count=3}

For more info about Faceted Search, see Hibernate Search Faceting

Spatial Queries

Infinispan also supports Spatial Queries, allowing to combining full-text with restrictions based on
distances, geometries or geographic coordinates.

Example, we start by using the @Spatial annotation in our entity that will be searched, together
with @Latitude and @Longitude:

public class Restaurant {

private Double latitude;

private Double longitude;

(store = Store.YES)
String name;

// Getters, Setters and other members omitted

to run spatial queries, the Hibernate Search DSL can be used:

171

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#query-faceting
https://en.wikipedia.org/wiki/Spatial_query

// Cache is configured as indexed
Cache<String, Restaurant> cache = ...

// Obtain the SearchManager
Searchmanager searchManager = Search.getSearchManager(cache);

// Build the Lucene Spatial Query
Query query = Search.getSearchManager(cache).buildQueryBuilderForClass(Restaurant
.class).get()
.spatial()
within(2, Unit.KM)
.ofLatitude(centerlLatitude)
.andLongitude(centerLongitude)
.createQuery();

// Wrap in a cache Query
CacheQuery<Restaurant> cacheQuery = searchManager.getQuery(query);

List<Restaurant> nearBy = cacheQuery.list();

More info on Hibernate Search manual

IndexedQueryMode

It’s possible to specify a query mode for indexed queries. IndexedQueryMode.BROADCAST allows to
broadcast a query to each node of the cluster, retrieve the results and combine them before
returning to the caller. It is suitable for use in conjunction with non-shared indexes, since each
node’s local index will have only a subset of the data indexed.

IndexedQueryMode.FETCH will execute the query in the caller. If all the indexes for the cluster
wide data are available locally, performance will be optimal, otherwise this query mode may
involve fetching indexes data from remote nodes.

The IndexedQueryMode is supported for Lucene Queries and Ickle String queries at the moment
(no Infinispan Query DSL).

Example:

CacheQuery<Person> broadcastQuery = Search.getSearchManager(cache).getQuery(new
MatchAl1DocsQuery(), IndexedQueryMode.BROADCAST);

List<Person> result = broadcastQuery.list();

Infinispan Query DSL

Starting with 6.0 Infinispan provides its own query DSL, independent of Lucene and Hibernate
Search. Decoupling the query API from the underlying query and indexing mechanism makes it
possible to introduce new alternative engines in the future, besides Lucene, and still being able to

172

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#spatial

use the same uniform query API. The current implementation of indexing and searching is still
based on Hibernate Search and Lucene so all indexing related aspects presented in this chapter still

apply.

The new API simplifies the writing of queries by not exposing the user to the low level details of
constructing Lucene query objects and also has the advantage of being available to remote Hot Rod
clients. But before delving into further details, let’s examine first a simple example of writing a
query for the Book entity from previous example.

Query example using Infinispan’s query DSL
import org.infinispan.query.dsl.*;

// get the DSL query factory from the cache, to be used for constructing the Query
object:
QueryFactory qf = org.infinispan.query.Search.getQueryFactory(cache);

// create a query for all the books that have a title which contains the word
"engine":
org.infinispan.query.dsl.Query query = qf.from(Book.class)
.having("title").like("%engine%")
.toBuilder().build();

// get the results:
List<Book> list = query.list();

The API is located in the org.infinispan.query.dsl package. A query is created with the help of the
QueryFactory instance which is obtained from the per-cache SearchManager. Each QueryFactory
instance is bound to the same Cache instance as the SearchManager, but it is otherwise a stateless
and thread-safe object that can be used for creating multiple queries in parallel.

Query creation starts with the invocation of the from(Class entityType) method which returns a
QueryBuilder object that is further responsible for creating queries targeted to the specified entity
class from the given cache.

A query will always target a single entity type and is evaluated over the contents
0 of a single cache. Running a query over multiple caches or creating queries that
target several entity types (joins) is not supported.

The QueryBuilder accumulates search criteria and configuration specified through the invocation of
its DSL methods and is ultimately used to build a Query object by the invocation of the
QueryBuilder.build() method that completes the construction. Being a stateful object, it cannot be
used for constructing multiple queries at the same time (except for nested queries) but can be
reused afterwards.

This QueryBuilder is different from the one from Hibernate Search but has a

somewhat similar purpose, hence the same name. We are considering renaming
it in near future to prevent ambiguity.

173

#querying_via_the_java_hot_rod_client
#querying_via_the_java_hot_rod_client
#simple_example
#nested_conditions

Executing the query and fetching the results is as simple as invoking the 1list() method of the
Query object. Once executed the Query object is not reusable. If you need to re-execute it in order to
obtain fresh results then a new instance must be obtained by calling QueryBuilder.build().

Filtering operators

Constructing a query is a hierarchical process of composing multiple criteria and is best explained
following this hierarchy.

The simplest possible form of a query criteria is a restriction on the values of an entity attribute
according to a filtering operator that accepts zero or more arguments. The entity attribute is
specified by invoking the having(String attributePath) method of the query builder which returns
an intermediate context object (FilterConditionEndContext) that exposes all the available operators.
Each of the methods defined by FilterConditionEndContext is an operator that accepts an argument,
except for between which has two arguments and isNull which has no arguments. The arguments
are statically evaluated at the time the query is constructed, so if you’re looking for a feature
similar to SQL’s correlated sub-queries, that is not currently available.

// a single query criterion
QueryBuilder gb = ...
gb.having("title").eq("Infinispan Data Grid Platform");

Table 5. FilterConditionEndContext exposes the following filtering operators:
Filter Arguments Description

in Collection values Checks that the left operand is equal to one of the elements from the
Collection of values given as argument.

in Object... values Checks that the left operand is equal to one of the (fixed) list of values
given as argument.

conta Object value Checks that the left argument (which is expected to be an array or a
ins Collection) contains the given element.

conta Collection values Checks that the left argument (which is expected to be an array or a

insAll Collection) contains all the elements of the given collection, in any
order.

conta Object... values Checks that the left argument (which is expected to be an array or a

insAll Collection) contains all of the the given elements, in any order.

conta Collection values Checks that the left argument (which is expected to be an array or a

insAn Collection) contains any of the elements of the given collection.

y

conta Object... values Checks that the left argument (which is expected to be an array or a
insAn Collection) contains any of the the given elements.

y

isNull Checks that the left argument is null.

like String pattern Checks that the left argument (which is expected to be a String)

matches a w