Seam Remoting

ST T o I (=T o 1 1o} 1 Lo R 1

0 O @ 1T 1] = U1 T) o 1
1.1.1. Dynamic type [0AdINGoiniiii e 2

2 I L= ST T] o] 1= ot 2
1.2.1. A Hello WOrld e@Xample e e 2

1.2.2. Seam.CreateBeano 3

T T I L= T 00 (= S PP 4
1.3.1. Setting and reading the Conversation IDc.oieiiiiii e 4

1.3.2. Remote calls within the current conversation SCOPEciiiiiiiiiiiiii i 4

1.4. WOrKing With Data tyPES euiitiitiite ittt e e e e e et ettt et 4
1.4.1. PrimitiVES / BaSIC TYPES .ttt ettt et et e e e e e 4

L1.4.2. JAVABEANSvititt e 4

1.4.3. DAES ANA TiMES ...ttt ettt ettt e 5

LA A, ENUMIS e 5
R 0] | [=T o 1o o 5

ST I 7= o o o | T P 6
G o FoTaTo [T o I el =T) o] £ P 6
1.7. The LOAAING MESSAUEeutiniiii ettt ettt e e ettt ettt r e et enae s 6
1.7.1. Changing the MESSAQE ... uiiitii ittt as 6

1.7.2. Hiding the 10ading MESSAGEouiitiitiit it 6

1.7.3. A Custom Loading INQICALOFoiuiiii e e e ee e 7

1.8. Controlling what data iS FetUINE ..o e 7
1.8.1. Constraining normal flelds ..o e 8

1.8.2. Constraining Maps and CollECHIONS ..ot 8

1.8.3. Constraining objects of @ SPeCific tYPeoouiiiii i 8

1.8.4. CombiNING CONSITAINTS ...\ttt et e e eneenes 9

2. BeaN Validation ...t 11
2.1. Validating a Single ODJECTo 11
2.2. Validating @ SiNgle PrOPEILYottt ettt et et et et e e et aaes 12
2.3. Validating multiple objects and/or PrOPErtieSvuiiuiriie e 12
A V- 1 [e F= Vi To T Bo | £o 10 o < TN TR 13
2.5. Handling validation failUrESo e e 14
3. Seam Remoting - MOl AP ... e e 15
30 B [oo [F Tt o] o IR PP RPPRPIN 15
IV Y, (o To [T I @ o 1= = 1T o - PP 15
3.3, FetChing @ MOGEI .. . e 18
3.3.1. Fetching @ bean ValUe ... 21

3.4. Modifying MOEl VAIUESottt et 21
3.5, EXPanding @ MOGEL e 21
3.6, APPIYING CRANGES ...ttt e e e s 23

Chapter 1.

Seam Remoting

Seam provides a convenient method of remotely accessing CDI beans from a web page, using AJAX (Asynchronous
Javascript and XML). The framework for this functionality is provided with almost no up-front development effort -
your beans only require simple annotating to become accessible via AJAX. This chapter describes the steps required
to build an AJAX-enabled web page, then goes on to explain the features of the Seam Remoting framework in more
detail.

1.1. Configuration

To use remoting, the Seam Remoting servlet must first be configured in your web. xmi file:

<servl et>
<servl et - nane>Renpti ng Servl et </servl et - nane>
<servl et-cl ass>org.j boss. seam renoti ng. Renot i ng</ servl et -cl ass>
<l oad- on- st art up>1</I| oad- on- st art up>

</servlet>

<ser vl et - mappi ng>
<servl et - nane>Renoti ng Servl et </ servl et - nane>
<url-pattern>/seam resource/ renmoting/*</url-pattern>
</ servl et - mappi ng>

The next step is to import the necessary Javascript into your web page. There are a minimum of two scripts that
must be imported. The first one contains all the client-side framework code that enables remoting functionality:

<script type="text/javascript" src="seanlresource/renoting/resource/renote.js"></script>

For a production environment, you may wish to use a compressed version of r enot e. j s. To do this, simply add
the conpr ess=t r ue parameter to the end of the url:

<scri pt type="text/javascript" src="seani resource/ renoting/resource/ renote.js?
conpress=true"></script>

The compressed version has its white space compacted and JavaScript comments removed. For development and
debugging purposes it is recommended that you use the non-compacted version.

The second script that you need contains the stubs and type definitions for the beans you wish to call. It is generated
dynamically based on the method signatures of your beans, and includes type definitions for all of the classes that
can be used to call its remotable methods. The name of the script reflects the name of your bean. For example, if
you have a named bean annotated with @\aned, then your script tag should look like this (for a bean class called
Cust oner Acti on):

<script type="text/javascript"
src="seam resource/ renoting/interface.js?custonerActi on"></script>

Chapter 1. Seam Remoting

Otherwise, you can simply specify the fully qualified class name of the bean:

<script type="text/javascript"
src="seam resource/renoting/interface.js?com acne. nyapp. Cust oner Acti on"></scri pt>

If you wish to access more than one bean from the same page, then include them all as parameters of your script tag:

<script type="text/javascript"
src="seaniresource/ renmoting/interface.js?custonerActi on&ccountActi on"></script>

1.1.1. Dynamic type loading

If you forget to import a bean or other class that is required by your bean, don't worry. Seam Remoting has a dynamic
type loading feature that automatically loads any JavaScript stubs for bean types that it doesn't recognize.

1.2. The "Seam" object

Client-side interaction with your beans is all performed via the Seam Javascript object. This object is defined in
renot e. j s, and you'll be using it to make asynchronous calls against your bean. It contains methods for creating
client-side bean objects and also methods for executing remote requests. The easiest way to become familiar with
this object is to start with a simple example.

1.2.1. A Hello World example

Let's step through a simple example to see how the Seamobject works. First of all, let's create a new bean called
hel | oActi on:

@\aned
public class HelloAction inplenents HelloLocal {
@¥bRenpte public String sayHell o(String name) {
return "Hello, " + nane;

Take note of the @\é&bRendt e annotation on the sayHel | o() method in the above listing. This annotation makes
the method accessible via the Remoting API. Besides this annotation, there's nothing else required on your bean
to enable it for remoting.

Now for our web page - create a new JSF page and import the hel | 0Act i on bean:

<script type="text/javascript"
src="seant resource/ renmoting/interface.js?hell oAction

To make this a fully interactive user experience, let's add a button to our page:

Seam.createBean

<button onclick="javascript:sayHello()">Say Hell o</ button>

We'll also need to add some more script to make our button actually do something when it's clicked:

<script type="text/javascript">
/1 <!'[CDATA[

function sayHello() {
var name = pronpt ("Wiat is your name?");
Seam cr eat eBean(" hel | oActi on"). sayHel | o(name, sayHel | oCal | back);

function sayHel | oCal | back(result) {
alert(result);

111>
</script>

We're done! Deploy your application and open the page in a web browser. Click the button, and enter a name when
prompted. A message box will display the hello message confirming that the call was successful. If you want to save
some time, you'll find the full source code for this Hello World example in the / exanpl es/ hel | owor | d directory.

So what does the code of our script actually do? Let's break it down into smaller pieces. To start with, you can
see from the Javascript code listing that we have implemented two methods - the first method is responsible for
prompting the user for their name and then making a remote request. Take a look at the following line:

Seam cr eat eBean(" hel | oActi on"). sayHel | o(name, sayHel | oCal | back);

The first section of this line, Seam cr eat eBean("hel | oActi on") returns a proxy, or "stub" for our
hel | oAct i on bean. We can invoke the methods of our bean against this stub, which is exactly what happens with
the remainder of the line: sayHel | o(name, sayHel | oCal | back) ;.

What this line of code in its completeness does, is invoke the sayHel | 0 method of our bean, passing in name as
a parameter. The second parameter, sayHel | oCal | back isn't a parameter of our bean's sayHel | o method,
instead it tells the Seam Remoting framework that once it receives the response to our request, it should pass it to
the sayHel | oCal | back Javascript method. This callback parameter is entirely optional, so feel free to leave it
out if you're calling a method with a voi d return type or if you don't care about the result.

The sayHel | oCal | back method, once receiving the response to our remote request then pops up an alert
message displaying the result of our method call.

1.2.2. Seam.createBean

The Seam cr eat eBean JavaScript method is used to create client-side instances of both action and "state" beans.
For action beans (which are those that contain one or more methods annotated with @\¥bRenot e), the stub object
provides all of the remotable methods exposed by the bean. For "state" beans (i.e. beans that simply carry state,
for example Entity beans) the stub object provides all the same accessible properties as its server-side equivalent.
Each property also has a corresponding getter/setter method so you can work with the object in JavaScript in much
the same way as you would in Java.

Chapter 1. Seam Remoting

1.3. The Context

The Seam Remoting Context contains additional information which is sent and received as part of a remoting
request/response cycle. It currently contains the conversation ID and Call ID, and may be expanded to include other
properties in the future.

1.3.1. Setting and reading the Conversation ID

If you intend on using remote calls within the scope of a conversation then you need to be able to read or
set the conversation ID in the Seam Remoting Context. To read the conversation ID after making a remote
request call Seam cont ext . get Conver sati onl d() . To set the conversation ID before making a request, call
Seam cont ext . set Conversationld().

If the conversation ID hasn't been explicitly set with Seam cont ext . set Conver sati onl d(), then it will be
automatically assigned the first valid conversation ID that is returned by any remoting call. If you are working with
multiple conversations within your page, then you may need to explicitly set the conversation ID before each call. If
you are working with just a single conversation, then you don't need to do anything special.

1.3.2. Remote calls within the current conversation scope

In some circumstances it may be required to make a remote call within the scope of the current view's conversation.
To do this, you must explicitly set the conversation ID to that of the view before making the remote call. This small
snippet of JavaScript will set the conversation ID that is used for remoting calls to the current view's conversation ID:

Seam cont ext . set Conversati onl d(#{conversation.id});

1.4. Working with Data types

1.4.1. Primitives / Basic Types

This section describes the support for basic data types. On the server side these values as a rule are compatible
with either their primitive type or their corresponding wrapper class.

1.4.1.1. String

Simply use Javascript String objects when setting String parameter values.

1.4.1.2. Number

There is support for all number types supported by Java. On the client side, number values are always serialized as
their String representation and then on the server side they are converted to the correct destination type. Conversion
into either a primitive or wrapper type is supported for Byt e, Doubl e, Fl oat, | nt eger, Long and Shor t types.

1.4.1.3. Boolean

Booleans are represented client side by Javascript Boolean values, and server side by a Java boolean.

1.4.2. JavaBeans

In general these will be either entity beans or JavaBean classes, or some other non-bean class. Use
Seam cr eat eBean() to create a new instance of the object.

Dates and Times

1.4.3. Dates and Times

Date values are serialized into a String representation that is accurate to the millisecond. On the client side, use a

JavaScript Dat e object to work with date values. On the server side, use any j ava. uti | . Dat e (or descendent,
such asj ava. sql . Dat e orj ava. sql . Ti nest anp class.
1.4.4. Enums

On the client side, enums are treated the same as St r i hgs. When setting the value for an enum parameter, simply
use the St r i ng representation of the enum. Take the following bean as an example:

@\aned
public class paintAction {
public enum Col or {red, green, blue, yellow, orange, purple}

public void paint(Color color) {
/'l code

To call the pai nt () method with the color r ed, pass the parameter value as a St r i ng literal:

Seam cr eat eBean(" pai nt Action"). paint("red")

The inverse is also true - that is, if a bean method returns an enum parameter (or contains an enum field anywhere
in the returned object graph) then on the client-side it will be converted to a St r i ng.

1.4.5. Collections

1.4.5.1. Bags

Bags cover all collection types including arrays, collections, lists, sets, (but excluding Maps - see the next section
for those), and are implemented client-side as a JavaScript array. When calling a bean method that accepts one of
these types as a parameter, your parameter should be a JavaScript array. If a bean method returns one of these
types, then the return value will also be a JavaScript array. The remoting framework is clever enough on the server
side to convert the bag to an appropriate type (including sophisticated support for generics) for the bean method call.

1.4.5.2. Maps

As there is no native support for Maps within JavaScript, a simple Map implementation is provided with the Seam
Remoting framework. To create a Map which can be used as a parameter to a remote call, create a new Seam Map
object:

var map = new Seam Map();

This JavaScript implementation provides basic methods for working with Maps: si ze() ,i SEmpt y() ,keySet (),
val ues(), get (key), put (key, val ue), remove(key) and cont ai ns(key) . Each of these methods
are equivalent to their Java counterpart. Where the method returns a collection, such as keySet () andval ues(),
a JavaScript Array object will be returned that contains the key or value objects (respectively).

Chapter 1. Seam Remoting

1.5. Debugging
To aid in tracking down bugs, it is possible to enable a debug mode which will display the contents of all the packets

send back and forth between the client and server in a popup window. To enable debug mode, set the Seam debug
property to t r ue in Javascript:

Seam debug = true;

If you want to write your own messages to the debug log, call Seam | og(nessage) .

1.6. Handling Exceptions
When invoking a remote bean method, it is possible to specify an exception handler which will process the response

in the event of an exception during bean invocation. To specify an exception handler function, include a reference
to it after the callback parameter in your JavaScript:

var callback = function(result) { alert(result); };
var exceptionHandl er = function(ex) { alert("An exception occurred: " + ex.getMessage()); };:
Seam cr eat eBean("hel | oActi on"). sayHel | o(nane, call back, exceptionHandl er);

If you do not have a callback handler defined, you must specify nul | in its place:

var exceptionHandl er = function(ex) { alert("An exception occurred: " + ex.getMessage()); };:
Seam cr eat eBean("hel | oActi on"). sayHel | o(nane, null, exceptionHandl er);

The exception object that is passed to the exception handler exposes one method, get Message() that returns
the exception message which is produced by the exception thrown by the @\ébRenot e method.

1.7. The Loading Message

The default loading message that appears in the top right corner of the screen can be modified, its rendering
customised or even turned off completely.

1.7.1. Changing the message

To change the message from the default "Please Wait..." to something different, set the value of
Seam | oadi ngMessage:

Seam | oadi ngMessage = "Loading...";

1.7.2. Hiding the loading message

To completely suppress the display of the Iloading message, override the implementation of
di spl ayLoadi ngMessage() and hi deLoadi ngMessage() with functions that instead do nothing:

A Custom Loading Indicator

/1 don't display the |oading indicator
Seam di spl ayLoadi ngMessage = function() {};
Seam hi deLoadi ngMessage = function() {};

1.7.3. A Custom Loading Indicator

It is also possible to override the loading indicator to display an animated icon, or anything else that you want. To
do this override the di spl ayLoadi ngMessage() and hi deLoadi ngMessage() messages with your own
implementation:

Seam di spl ayLoadi ngMessage = function() {
/Il Wite code here to display the indicator

bé

Seam hi deLoadi ngMessage = function() {
/Il Wite code here to hide the indicator

bé

1.8. Controlling what data is returned

When a remote method is executed, the result is serialized into an XML response that is returned to the client. This
response is then unmarshaled by the client into a JavaScript object. For complex types (i.e. Javabeans) that include
references to other objects, all of these referenced objects are also serialized as part of the response. These objects
may reference other objects, which may reference other objects, and so forth. If left unchecked, this object "graph”
could potentially be enormous, depending on what relationships exist between your objects. And as a side issue
(besides the potential verbosity of the response), you might also wish to prevent sensitive information from being
exposed to the client.

Seam Remoting provides a simple means to "constrain" the object graph, by specifying the excl ude field of the
remote method's @¥bRenbt e annotation. This field accepts a String array containing one or more paths specified
using dot notation. When invoking a remote method, the objects in the result's object graph that match these paths
are excluded from the serialized result packet.

For all our examples, we'll use the following W dget class:

public class Wdget
{
private String val ue;
private String secret;
private Wdget child;
private Map<String, Wdget> w dget Map;
private List<Wdget> wi dgetList;

/] getters and setters for all fields

Chapter 1. Seam Remoting

1.8.1. Constraining normal fields

If your remote method returns an instance of W dget , but you don't want to expose the secr et field because it
contains sensitive information, you would constrain it like this:

@\ébRenpt e(exclude = {"secret"})
public Wdget getWdget();

The value "secret" refers to the secr et field of the returned object. Now, suppose that we don't care about exposing
this particular field to the client. Instead, notice that the W dget value that is returned has a field chi | d that is also
a W dget . What if we want to hide the chi | d's secr et value instead? We can do this by using dot notation to
specify this field's path within the result's object graph:

@\ébRenpt e(exclude = {"child.secret"})
public Wdget getWdget();

1.8.2. Constraining Maps and Collections

The other place that objects can exist within an object graph are within a Map or some kind of collection (Li st
Set, Arr ay, etc). Collections are easy, and are treated like any other field. For example, if our W dget contained
a list of other W dget s in its wi dget Li st field, to constrain the secr et field of the W dget s in this list the
annotation would look like this:

@\ébRenot e(excl ude = {"wi dget Li st.secret"})
public Wdget getWdget();

To constrain a Map's key or value, the notation is slightly different. Appending [key] after the Map's field name will
constrain the Map's key object values, while [val ue] will constrain the value object values. The following example
demonstrates how the values of the wi dget Map field have their secr et field constrained:

@\ebRenpt e(excl ude = {"wi dget Map[val ue].secret"})
public Wdget getWdget();

1.8.3. Constraining objects of a specific type

There is one last notation that can be used to constrain the fields of a type of object no matter where in the result's
object graph it appears. This notation uses either the name of the bean (if the object is a named bean) or the fully
qualified class name (only if the object is not a named bean) and is expressed using square brackets:

@\ebRenot e(excl ude = {"[w dget].secret"})
public Wdget getWdget();

Combining Constraints

1.8.4. Combining Constraints

Constraints can also be combined, to filter objects from multiple paths within the object graph:

@¥bRenot e(excl ude = {"w dget Li st.secret", "w dgetMap[val ue].secret"})
public Wdget getWdget();

10

Chapter 2.

Bean Validation

Seam Remoting provides integrated support for JSR-303 Bean Validation, which defines a standard approach for
validating Java Beans no matter where they are used; web tier or persistence tier, server or client. Bean validation
for remoting delivers JSR-303's vision by making all of the validation constraints declared by the server-side beans
available on the client side, and allows developers to perform client-side bean validation in an easy to use, consistent
fashion.

Client-side validation by its very nature is an asynchronous operation, as it is possible that the client may encounter
a custom validation constraint for which it has no knowledge of the corresponding validation logic. Under these
circumstances, the client will make a request to the server for the validation to be performed server-side, after which it
receives the result will forward it to the client-side callback method. All built-in validation types defined by the JSR-303
specification are executed client-side without requiring a round-trip to the server. It is also possible to provide the
client-side validation API with custom JavaScript to allow client-side execution of custom validations.

2.1. Validating a single object

The Seam val i dat eBean() method may be used to validate a single object. It accepts the following parameter
values:

Seam val i dat eBean(bean, call back, groups);

The bean parameter is the object to validate.
The cal | back parameter should contain a reference to the callback method to invoke once validation is complete.

The gr oups parameter is optional, however may be specified if only certain validation groups should be validated.
The gr oups parameter may be a Stri ng or an array of St ri ng values for when multiple groups are to be
validated.

Here's an example showing how a bean called cust oner is validated:

function test() {
var custonmer = Seam creat eBean("com acne. nodel . Cust oner");
cust omer. set Fi r st Nane("John") ;
cust oner. set Last Nane("Sm th");
Seam val i dat eBean(cust oner, vali dationCal |l back);

function validationCallback(violations) {
if (violations.length == 0) alert("All validations passed!");

Tip

By default, when Seam Remoting performs validation for a single bean it will traverse the entire
object graph for that bean and validate each unique object that it finds. If you don't wish to validate

11

Chapter 2. Bean Validation

the entire object graph, then please refer to the section on validating multiple objects later in this

chapter for an alternative.

2.2. Validating a single property

Sometimes it might not be desirable to perform validation for all properties of a bean. For example, you might have
a dynamic form which displays validation errors as the user tabs between fields. In this situation, you may use the
Seam val i dat eProperty() method to validate a single bean property.

Seam val i dat eProperty(bean, property, callback, groups)

The bean parameter is the object containing the property that is to be validated.
The pr oper t 'y parameter is the name of the property to validate.
The cal | back parameter is a reference to the callback function to invoke once the property has been validated.

The gr oups parameter is optional, however may be specified if validating the property against a certain validation
group. The gr oups parameter may be a St ri ng or an array of St r i ng values for multiple groups.

Here's an example showing how to validate the f i r st Name property of a bean called cust oner :

function test() {
var custonmer = Seam creat eBean("com acne. nodel . Cust oner") ;
cust omer. set Fi r st Nane("John");
Seam val i dat eProperty(custoner, "firstName", validationCall back);

function validationCall back(violations) {
if (violations.length == 0) alert("All validations passed!");

2.3. Validating multiple objects and/or properties

It is also possible to perform multiple validations for beans and bean properties in one go. This might be useful
for example to perform validation of forms that present data from more than one bean. The Seam val i dat e()
method takes the following parameters:

Seam val i date(val i dations, callback, groups);

The val i dat i ons parameter should contain a list of the validations to perform. It may either be an associative
array (for a single validation), or an array of associative arrays (for multiple validations) which define the validations
that should be performed. We'll look at this parameter more closely in just a moment.

The cal | back parameter should contain a reference to the callback function to invoke once validation is complete.
The optional gr oups parameter should contain the group name/s for which to perform validation.

12

Validation groups

The gr oups parameter allows one or more validation groups (specified by providinga St ri ng or array of St ri ng
values) to be validated. The validation groups specified here will be applied to all bean values contained in the
val i dat i ons parameter.

The simplest example, in which we wish to validate a single object would look like this:
Seam val i dat e({bean: cust omer}, call back);

In the above example, validation will be performed for the cust omer object, after which the function named
val i dati onCal | back will be invoked.

Validate multiple beans is done by passing in an array of validations:
Seam val i dat e([{ bean: customer}, {bean:order}], call back);

Single properties can be validated by specifying a pr oper t y name:
Seam val i dat e({ bean: cust omer, property: "“firstNane"}, callback);

To prevent the entire object graph from being validated, the t r aver se property may be setto f al se:
Seam val i dat e({bean: cust omer, traverse: false}, callback);

Validation groups may also be set for each individual validation, by setting the gr oups property to a St ri ng or
array of St ri ngs value:

Seam val i dat e({bean: cust omer, groups: "default"}, callback);

2.4. Validation groups

Validation group names should be the unqualified class name of the group class. For example, for
the class com acne. | nt ernal Regi stration, the client-side group name should be specified as
I nt ernal Regi strati on:

Seam val i dat eBean(user, callback, "Internal Registration"

It is also possible to set the default validation groups against which all validations will be performed, by setting the
Seam Val i dati onGr oups property:

Seam Val i dati onGroups = ["Default", "External Registration"];

13

Chapter 2. Bean Validation

If no explicit group is set for the default, and no group is specified when performing validation, then the validation
process will be executed against the 'Default’ group.

2.5. Handling validation failures

If any validations fail during the validation process, then the callback method specified in the validation function will
be invoked with an array of constraint violations. If all validations pass, this array will be empty. Each object in the
array represents a single constraint violation, and contains the following property values:

bean - the bean object for which the validation failed.

property -the name of the property that failed validation

val ue - the value of the property that failed validation

nmessage - a message string describing the nature of the validation failure

The callback method should contain business logic that will process the constraint violations and update the user
interface accordingly to inform the user that validation has failed. The following minimalistic example demonstrates
how the validation errors can be displayed to the user as popup alerts:

function validationCallback(violations) {

for (var i =0; i <violations.length; i++) {
alert(violations[i].property + "=" + violations[i].value +

violations[i].nessage);

[violation] ->

14

Chapter 3.

Seam Remoting - Model API

3.1. Introduction

The Model API builds on top of Seam Remoting's object serialization features to provide a component-based
approach to working with a server-side object model, as opposed to the RPC-based approach provided by the
standard Remoting API. This allows a client-side representation of a server-side object graph to be modified ad
hoc by the client, after which the changes made to the objects in the graph can be applied to the corresponding
server-side objects. When applying the changes the client determines exactly which objects have been modified by
recursively walking the client-side object tree and generating a delta by comparing the original property values of
the objects with their new property values.

This approach, when used in conjunction with the extended persistence context provided by Seam elegantly solves
a number of problems faced by AJAX developers when working remotely with persistent objects. A persistent,
managed object graph can be loaded at the start of a new conversation, and then across multiple requests (and
within the same transaction) the client can fetch the objects, make changes to them and apply those changes to the
same managed objects after which the long-running transaction can be committed when the conversation ends.

One other useful feature of the Model API is its ability to expand a model. For example, if you are working with
entities with lazy-loaded associations it is usually not a good idea to blindly fetch the associated objects (which may
in turn themselves contain associations to other entities, ad nauseum), as you may inadvertently end up fetching the
bulk of your database. Seam Remoting already knows how to deal with lazy-loaded associations by automatically
excluding them when marshalling instances of entity beans, and assigning them a client-side value of undef i ned
(which is a special JavaScript value, distinct from nul |). The Model API goes one step further by giving the client the
option of manipulating the associated objects also. By providing an expand operation, it allows for the initialization of
a previously-uninitialized object property (such as a lazy-loaded collection), by dynamically "grafting" the initialized
value onto the object graph. By expanding the model in this way, we have at our disposal a powerful tool for building
dynamic client interfaces.

3.2. Model Operations

For the methods of the Model API that accept action parameters, an instance of Seam Act i on should be used.
The constructor for Seam Act i on takes no parameters:

var action = new Seam Action();

The following table lists the methods used to define the action. Each of the following methods return a reference to
the Seam Act i on object, so methods can be chained.

Table 3.1. Seam.Action method reference

Method Description

set BeanType(beanType) Sets the class name of the bean to be invoked.

- beanType - the fully qualified class name of the bean type to
be invoked.

setQualifiers(qualifiers) Sets the qualifiers for the bean to be invoked.

15

Chapter 3. Seam Remoting - Mo...

Method Description

e qual i fiers -acomma-separated list of bean qualifier names.
The names may either be the simple or fully qualified names of
the qualifier classes.

set Met hod(et hod) Sets the name of the bean method.

« net hod - the name of the bean method to invoke.

addPar an(par am Adds a parameter value for the action method. This method should
be called once for each parameter value to be added, in the correct
parameter order.

e par am- the parameter value to add.
The following table describes the methods provided by the Seam Model object. To work with the Model API in

JavaScript you must first create a new Model object:

var nodel = new Seam Model ();

Table 3.2. Seam.Model method reference

Method Description
addBean(al i as, bean, Adds a bean value to the model. When the model is fetched, the
qualifiers) value of the specified bean will be read and placed into the model,

where it may be accessed by using the get Val ue() method with
the specified alias.

Can only be used before the model is fetched.

» al i as - the local alias for the bean value.

» bean - the name of the bean, either specified by the @Naned
annotation or the fully qualified class name.

e qualifiers (optional) - a list of bean qualifiers.

addBeanProperty(ali as, bean, Adds a bean property value to the model. When the model is

property, qualifiers) fetched, the value of the specified property on the specified bean
will be read and placed into the model, where it may be accessed
by using the get Val ue() method with the specified alias.

Can only be used before the model is fetched.

Example:

addBeanProperty("account", "Account Acti on",
“account", "@ualifierl", "@ualifier2");

« al i as - the local alias for the bean value.

16

Model Operations

Method

fetch(action, call back)

get Val ue(al i as)

expand(val ue,
cal | back)

property,

Description

» bean - the name of the bean, either specified by the @Naned
annotation or the fully qualified class name.

e property -the name of the bean property.

e qual i fi ers (optional) - alist of bean qualifiers. This parameter
(and any after it) are treated as bean qualifiers.

Fetches the model - this operation causes an asynchronous
request to be sent to the server. The request contains a list of
the beans and bean properties (set by calling the addBean()
and addBeanPr operty() methods) for which values will be
returned. Once the response is received, the callback method (if
specified) will be invoked, passing in a reference to the model as
a parameter.

A model should only be fetched once.

» acti on (optional) - a Seam Act i on instance representing the
bean action to invoke before the model values are read and
stored in the model.

« cal | back (optional) - a reference to a JavaScript function that
will be invoked after the model has been fetched. A reference
to the model instance is passed to the callback method as a
parameter.

This method returns the value of the object with the specified alias.

» al i as - the alias of the value to return.

Expands the model by initializing a property value that was
previously uninitialized. This operation causes an asynchronous
request to be sent to the server, where the uninitialized property
value (such as a lazy-loaded collection within an entity bean
association) is initialized and the resulting value is returned to
the client. Once the response is received, the callback method (if
specified) will be invoked, passing in a reference to the model as
a parameter.

« val ue - a reference to the value containing the uninitialized
property to fetch. This can be any value within the model, and
does not need to be a "root" value (i.e. it doesn't need to be a
value specified by addBean() or addBeanPr operty(), it
can exist anywhere within the object graph.

e property - the name of the uninitialized property to be
initialized.

« cal | back (optional) - a reference to a JavaScript function that
will be invoked after the model has been expanded. A reference
to the model instance is passed to the callback method as a
parameter.

17

Chapter 3. Seam Remoting - Mo...

a

3

Method Description

ppl yUpdat es(acti on, cal | back) Applies the changes made to the objects contained in the model.
This method causes an asynchronous request to be sent to the
server containing a delta consisting of a list of the changes made
to the client-side objects.

e acti on (optional) - a Seam Act i on instance representing a
bean method to be invoked after the client-side model changes
have been applied to their corresponding server-side objects.

» cal | back (optional) - a reference to a JavaScript function that
will be invoked after the updates have been applied. A reference
to the model instance is passed to the callback method as a
parameter.

.3. Fetching a model

To fetch a model, one or more values must first be specified using addBean() or addBeanPr operty() before
invoking the f et ch() operation. Let's work through an example - here we have an entity bean called Cust oner :

@

ntity Custoner inplenments Serializable {
private Integer custonerld;

private String firstNane;

private String |astNane;

@d @eneratedVal ue public Integer getCustonmerld() { return custonerld; }
public void setCustonerld(lnteger custonerlid) { this.custonerld = custonerld; }

public String getFirstName() { return firstNanme; }
public void setFirstNane(String firstNane) { this.firstName = firstName; }

public String getLastName() { return |astNane; }
public void setLastName(String |lastNane) { this.lastName = | ast Nanme; }

We also have a bean called Cust orrer Act i on, which is responsible for creating and editing Cust oner instances.
Since we're only interested in editing a customer right now, the following code only shows the edi t Cust ornrer ()
method:

@onver sati onScoped @\aned

pu

blic class CustomerAction {

@nj ect Conversation conversation;

@er si st enceCont ext EntityManager entityManager;
public Custoner custoner;

public void editCustoner(lnteger custonerld) {

conver sati on. begi n();
custonmer = entityManager.find(Customner.class, custonerld);

public void saveCustoner() {

18

Fetching a model

entityManager. merge(cust oner);
conversation. end();

In the client section of this example, we wish to make changes to an existing Cust oner instance, so we
need to use the edi t Cust omer () method of Cust omrer Act i on to first load the customer entity, after which
we can access it via the public cust omer field. Our model object must therefore be configured to fetch the
Cust oner Acti on. cust oner property, and to invoke the edit Cust oner () method when the model is
fetched. We start by using the addBeanPr opert y() method to add a bean property to the model:

var nmodel = new Seam Model ();
nodel . addBeanProperty("custoner"”, "CustonerAction", "custoner");

The first parameter of addBeanPr operty() is the alias (in this case cust omer), which is used to access the
value via the get Val ue() method. The addBeanPr operty() and addBean() methods can be called multiple
times to bind multiple values to the model. An important thing to note is that the values may come from multiple
server-side beans, they aren't all required to come from the same bean.

19

Chapter 3. Seam Remoting - Mo...

CLIENT SERVER

Customer

+customerId: I ntegerl
+firstName: 5tring

Model
+lastName: 5tring
Values (Entity Bean) |
cugmmerh CustomerAction
[-conversation: Conversation

\ -entityManager: EntityManager
M1 |+customer: Customer I
+createCustomer(): wvoid

+editCustomer (customer: Custome
+saveCustomer(): wvold

(Conversation-scoped actior

We also specify the action that we wish to invoke (i.e. the edi t Cust oner () method). In this example we know
the value of the cust oner | d that we wish to edit, so we can specify this value as an action method parameter:

var action = new Seam Action()
. set BeanType(" Cust oner Acti on")
. set Met hod(" edi t Cust onmer ")
. addPar an{ 123) ;

Once we've specified the bean properties we wish to fetch and the action to invoke, we can then fetch the model.
We pass in a reference to the action object as the first parameter of the f et ch() method. Also, since this is an
asynchronous request we need to provide a callback method to deal with the response. The callback method is
passed a reference to the model object as a parameter.

var cal | back = function(nodel) { al ert ("Fetched cust oner:

nodel . get Val ue("customer”).firstNane +
" + nodel . get Val ue("custoner").| ast Nane); };

20

Fetching a bean value

nodel . fetch(action, callback);

When the server receives a model fetch request, it first invokes the action (if one is specified) before reading the
requested property values and returning them to the client.

3.3.1. Fetching a bean value

Alternatively, if you don't wish to fetch a bean property but rather a bean itself (such as a value created by a producer
method) then the addBean() method is used instead. Let's say we have a producer method that returns a qualified
User Set ti ngs value:

@r oduces @onversationScoped @ettings UserSettings getUserSettings() {
/* snip code */

We would add this value to our model with the following code:
nodel . addBean("settings", "UserSettings", "@ettings");

The first parameter is the local alias for the value, the second parameter is the fully qualified class of the bean, and
the third (and subsequent) parameter/s are optional bean qualifiers.

3.4. Modifying model values

Once a model has been fetched its values may be read using the get Val ue() method. Continuing on with the
previous example, we would retrieve the Cust oner object via it's local alias (cust oner) like this:

var custonmer = nodel.getVal ue("custoner");
We are then free to read or modify the properties of the value (or any of the other values within its object graph).

alert("Custonmer nane is: " + custoner.firstName + " " + custoner.| astNane);
cust oner. set Last Nane("Jones"); // was Snmith, but Peggy got married on the weekend

3.5. Expanding a model

We can use the Model API's ability to expand a model to load uninitialized branches of the objects in the model's
object graph. To understand how this works exactly, let's flesh out our example a little more by adding an Addr ess
entity class, and creating a one-to-many relationship between Cust onmer and Addr ess.

21

Chapter 3. Seam Remoting - Mo...

Customer

+customerld: Integer
+firstName: 5tring

+lastName:
+addresses:

5tring
List=Address=>

customer

addresses

Ad dresl

@ntity Address inplenents Serializable {

private |Integer addressld;
private Custoner custoner;

private String
private String
private String
private String
private String
private String
private String

@d @xneratedValue public Integer getAddresslid() {
public void set Addressld(Integer addressid) { this.addressld

uni t Nunber ;

st reet Nunber ;

st reet Nane;
subur b;

zi p;

state;
country;

1

@manyToOne public Custoner getCustomer() { return custoner;
public void setCustoner(Custoner customer) { this.custoner

/* Sni pped other getter/setter nethods */

Here's the new field and methods that we also need to add to the Cust oner class:

private Coll ection<Address> addresses;

@neToMany(fetch = FetchType. LAZY, nappedBy = "custoner",
public Collection<Address> get Addresses() { return addresses;
public void set Addresses(Col | ecti on<Address> addresses) { this.addresses = addresses;

= cust omer;

¥

return addressld; }
addressld; }

}

cascade = CascadeType. ALL)

+addressId: In-
+customer: Cus
+unitNumber: 5%
+s5treetNumber:
t+streetName: 5
+suburb: Strin
+zip: 5tring

+state: 5tring
+country: Stri

}

As we can see, the @neToMany annotation on the get Addr esses() method specifies a f et ch attribute of
LAZY, meaning that by default the customer's addresses won't be loaded automatically when the customer is. When
reading the uninitialized addr esses property value from a newly-fetched Cust onmer object in JavaScript, a value
of undef i ned will be returned.

22

Applying Changes

get Val ue("customer"). addresses == undefined; // returns true

We can expand the model by making a special request to initialize this uninitialized property value. The expand()
operation takes three parameters - the value containing the property to be initialized, the name of the property and
an optional callback method. The following example shows us how the customer's addr esses property can be
initialized:

nodel . expand(nbdel . get Val ue("custoner"), "addresses");

The expand() operation makes an asynchronous request to the server, where the property value is initialized and
the value returned to the client. When the client receives the response, it reads the initialized value and appends
it to the model.

/1l The addresses property now contains an array of address objects
al ert (nodel . get Val ue("custonmer") . addresses. |l ength + " addresses | oaded");

3.6. Applying Changes

Once you have finished making changes to the values in the model, you can apply them with the appl yUpdat es()
method. This method scans all of the objects in the model, compares them with their original values and generates
a delta which may contain one or more changesets to send to the server. A changeset is simply a list of property
value changes for a single object.

Like the f et ch() command you can also specify an action to invoke when applying updates, although the action
is invoked after the model updates have been applied. In a typical situation the invoked action would do things like
commit a database transaction, end the current conversation, etc.

Since the appl yUpdat es() method sends an asynchronous request like the f et ch() and expand() methods,
we also need to specify a callback function if we wish to do something when the operation completes.

var action = new Seam Action();
. set BeanType(" Cust oner Acti on")
. set Met hod(" saveCust oner");

var call back = function() { alert("Custonmer saved."); };

nodel . appl yUpdat es(acti on, call back);

The appl yUpdat es() method performs a refresh of the model, retrieving the latest state of the objects contained
in the model after all updates have been applied and the action method (if specified) invoked.

23

24

	Seam Remoting
	Table of Contents
	Chapter 1. Seam Remoting
	1.1. Configuration
	1.1.1. Dynamic type loading

	1.2. The "Seam" object
	1.2.1. A Hello World example
	1.2.2. Seam.createBean

	1.3. The Context
	1.3.1. Setting and reading the Conversation ID
	1.3.2. Remote calls within the current conversation scope

	1.4. Working with Data types
	1.4.1. Primitives / Basic Types
	1.4.1.1. String
	1.4.1.2. Number
	1.4.1.3. Boolean

	1.4.2. JavaBeans
	1.4.3. Dates and Times
	1.4.4. Enums
	1.4.5. Collections
	1.4.5.1. Bags
	1.4.5.2. Maps

	1.5. Debugging
	1.6. Handling Exceptions
	1.7. The Loading Message
	1.7.1. Changing the message
	1.7.2. Hiding the loading message
	1.7.3. A Custom Loading Indicator

	1.8. Controlling what data is returned
	1.8.1. Constraining normal fields
	1.8.2. Constraining Maps and Collections
	1.8.3. Constraining objects of a specific type
	1.8.4. Combining Constraints

	Chapter 2. Bean Validation
	2.1. Validating a single object
	2.2. Validating a single property
	2.3. Validating multiple objects and/or properties
	2.4. Validation groups
	2.5. Handling validation failures

	Chapter 3. Seam Remoting - Model API
	3.1. Introduction
	3.2. Model Operations
	3.3. Fetching a model
	3.3.1. Fetching a bean value

	3.4. Modifying model values
	3.5. Expanding a model
	3.6. Applying Changes

