
Weld Extensions

iii

Introduction ... v

1. Getting Started ... 1

I. Extensions and Utilities for Developers .. 3

2. Enhancements to the CDI Programming Model .. 5

2.1. Preventing a class from being processed .. 5

2.1.1. @Veto ... 5

2.1.2. @Requires ... 5

2.2. @Exact .. 6

2.3. @Client .. 7

2.4. Named packages .. 7

3. Annotation Literals .. 9

4. Evaluating Unified EL ... 11

5. Resource Loading .. 13

5.1. Extending the resource loader .. 14

6. Logging ... 15

II. Utilities for Framework Authors .. 19

7. Annotation and AnnotatedType Utilities .. 21

7.1. Annotated Type Builder .. 21

7.2. Annotation Instance Provider .. 21

7.3. Annotation Inspector .. 22

7.4. Synthetic Qualifiers .. 23

7.5. Reflection Utilities .. 23

8. Obtaining a handle on the BeanManager .. 25

9. Bean Utilities .. 27

10. Properties ... 29

10.1. Working with properties ... 29

10.2. Querying for properties .. 30

10.3. Property Criteria .. 30

10.3.1. AnnotatedPropertyCriteria .. 30

10.3.2. NamedPropertyCriteria .. 30

10.3.3. TypedPropertyCriteria ... 31

10.3.4. Creating a custom property criteria ... 31

10.4. Fetching the results .. 32

III. Configuration Extensions for Framework Authors ... 33

11. Unwrapping Producer Methods ... 35

12. Default Beans .. 37

13. Generic Beans ... 39

13.1. Using generic beans ... 39

13.2. Defining Generic Beans ... 40

14. Service Handler ... 43

iv

v

Introduction

Weld Extensions is a library of Generally Useful Stuff (tm), particularly if you are developing an application based on

CDI (JSR-299 Java Contexts and Dependency Injection), or a CDI based library or framework.

This guide is split into three parts. Part I, “Extensions and Utilities for Developers” details extensions and utilities which

are likely to be of use to any developer using CDI; Part II, “Utilities for Framework Authors” describes utilities which are

likely to be of use to developers writing libraries and frameworks that work with CDI; Part III, “Configuration Extensions

for Framework Authors” discusses extensions which can be used to implement configuration for a framework

vi

Chapter 1.

1

Getting Started
Getting started with Weld Extensions is easy. If you are using Maven, then you can declare a dependency on

Weld Extensions (org.jboss.weld:weld-extensions:${weld.extensions.version}, make sure

you have the JBoss Maven repository enabled). Otherwise, add the jar to your compile time and runtime classpath.

Most of Weld Extensions has very few dependencies:

• javax.enterprise:cdi-api

• org.slf4j:slf4j-api

• org.jboss.logging:jboss-logging-api

• javax.el:el-api

• javax.inject:javax.inject

• javax.transaction:jta

Tip

The POM for Weld Extensions specifies the versions required. If you are using Maven 3, you can

easily import the dependencyManagement into your POM by declaring the following in your

depdendencyManagement section:

 <dependency>

 <groupId>org.jboss.weld</groupId>

 <artifactId>weld-extensions</artifactId>

 <version>${weld.extensions.version}</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

Some features of Weld Extensions require additional dependencies (which are declared optional, so will not be

added as transitive dependencies):

org.javassist:javassist

Service Handlers, Unwrapping Producer Methods

javax.servlet:servlet-api

Accessing resources from the Servlet Context

2

Part I. Extensions and

Utilities for Developers

Chapter 2.

5

Enhancements to the CDI

Programming Model
Weld Extensions provides a number enhancements to the CDI programming model which are under trial and may

be included in later releases of Contexts and Dependency Injection.

2.1. Preventing a class from being processed

2.1.1. @Veto

Annotating a class @Veto will cause the type to be ignored, such that any definitions on the type will not be

processed, including:

• the managed bean, decorator, interceptor or session bean defined by the type

• any producer methods or producer fields defined on the type

• any observer methods defined on the type

For example:

@Veto

class Utilities {

 ...

}

Note

The ProcessAnnotatedType container lifecycle event will be called for vetoed types.

2.1.2. @Requires

Annotating a class @Requires will cause the type to be ignored if the class dependencies can be satisfied. Any

definitions on the type will not be processed:

• the managed bean, decorator, interceptor or session bean defined by the type

• any producer methods or producer fields defined on the type

• any observer methods defined on the type

Tip

Weld will use the Thread Context ClassLoader, as well as the classloader of the type annotated

@Requires to attempt to satisfy the class dependency.

Chapter 2. Enhancements to th...

6

For example:

@Requires(EntityManager.class)

class EntityManagerProducer {

 @Produces

 EntityManager getEntityManager() {

 ...

 }

}

Note

The ProcessAnnotatedType container lifecycle event will be called for vetoed types.

2.2. @Exact

Annotating an injection point with @Exact allows you to select an exact implementation of the injection point type

to inject. For example:

interface PaymentService {

 ...

}

class ChequePaymentService implements PaymentService {

 ...

}

class CardPaymentService implements PaymentService {

 ...

}

class PaymentProcessor {

 @Inject @Exact(CardPaymentService.class)

 PaymentService paymentService;

 ...

}

@Client

7

2.3. @Client

It is common to want to qualify a bean as belonging to the current client (for example we want to differentiate the

default system locale from the current client's locale). Weld Extensions provides a built in qualifier, @Client for

this purpose.

2.4. Named packages

Weld Extensions allows you to annotate the package @Named, which causes every bean defined in the package

to be given its default name. Package annotations are defined in the file package-info.java. For example, to

cause any beans defined in com.acme to be given their default name:

@Named

package com.acme

8

Chapter 3.

9

Annotation Literals
Weld extensions provides a complete set of AnnotationLiterals for every annotation type

defined by the CDI (JSR-299) and Injection (JSR-330) specification. These are located in the

org.jboss.weld.extensions.literal package. Annotations without listitems provide a static INSTANCE

listitem that should be used rather than creating a new instance every time.

Literals are provided for the following annotations from Context and Dependency Injection:

• @Alternative

• @Any

• @ApplicationScoped

• @ConversationScoped

• @Decorator

• @Default

• @Delegate

• @Dependent

• @Disposes

• @Inject

• @Model

• @Named

• @New

• @Nonbinding

• @NormalScope

• @Observes

• @Produces

• @RequestScoped

• @SessionScoped

• @Specializes

• @Stereotype

• @Typed

Literals are provided for the following annotations from Weld Extensions:

• @Client

• @DefaultBean

• @Exact

Chapter 3. Annotation Literals

10

• @Generic

• @GenericType

• @Mapper

• @MessageBundle

• @Requires

• @Resolver

• @Resource

• @Unwraps

• @Veto

Chapter 4.

11

Evaluating Unified EL
Weld extensions provides a method to evaluate EL that is not dependent on JSF or JSP, a facility sadly missing

in Java EE. To use it inject Expressions into your bean. You can evaluate value expressions, or method

expressions. The Weld Extensions API provides type inference for you. For example:

class FruitBowl {

 @Inject Expressions expressions;

 public void run() {

 String fruitName = expressions.evaluateValueExpression("#{fruitBowl.fruitName}");

 Apple fruit = expressions.evaluateMethodExpression("#{fruitBown.getFruit}");

 }

}

12

Chapter 5.

13

Resource Loading
Weld Extensions provides an extensible, injectable resource loader. The resource loader can provide URLs or

managed input streams. By default the resource loader will look at the classpath, and the servlet context if available.

If the resource name is known at development time, the resource can be injected, either as a URL or an InputStream:

 @Inject

 @Resource("WEB-INF/beans.xml")

 URL beansXml;

 @Inject

 @Resource("WEB-INF/web.xml")

 InputStream webXml;

If the resource name is not known, the ResourceProvider can be injected, and the resource looked up

dynamically:

 @Inject

 void readXml(ResourceProvider provider, String fileName) {

 InputStream is = provider.loadResourceStream(fileName);

 }

If you need access to all resources under a given name known to the resource loader (as opposed to first resource

loaded), you can inject a collection of resources:

 @Inject

 @Resource("WEB-INF/beans.xml")

 Collection<URL> beansXmls;

 @Inject

 @Resource("WEB-INF/web.xml")

 Collection<InputStream> webXmls;

Tip

Any input stream injected, or created directly by the ResourceProvider is managed, and will

be automatically closed when the bean declaring the injection point of the resource or provider

is destroyed.

If the resource is a Properties bundle, you can also inject it as a set of Properties:

 @Inject

 @Resource("META-INF/aws.properties")

 Properties awsProperties;

Chapter 5. Resource Loading

14

5.1. Extending the resource loader

If you want to load resources from another location, you can provide an additional resource loader. First, create the

resource loader implementation:

class MyResourceLoader implements ResourceLoader {

 ...

}

And then register it as a service by placing the fully qualified class name of the implementation in a file called META-

INF/services/org.jboss.weld.extensions.resourceLoader.ResourceLoader.

Chapter 6.

15

Logging
Weld Extensions integrates JBoss Logging 3 as it's logging framework of choice. JBoss Logging 3 is a modern

logging framework offering:

• Abstracts away from common logging backends and frameworks (such as JDK Logging, log4j and slf4j)

• Provides a innovative, typed logger (see below for examples)

• Full support for internationalization and localization

• Developers can work with interfaces and annotations only

• Translators can work with message bundles in properties files

• Build time tooling to generate typed loggers for production, and runtime generation of typed loggers for

development

• Access to MDC and NDC (if underlying logger supports it)

• Loggers are serializable

Note

A number of the features of JBoss Logging 3 are still under development - at the moment only

runtime generation of typed is supported, and these loggers only support the default message

placed on the typed logger, and will not look up a localized message.

To use a typed logger, first create the logger definition:

@MessageLogger

interface TrainSpotterLog {

 // Define log call with message, using printf-style interpolation of parameters

 @LogMessage @Message("Spotted %s diesel trains")

 void dieselTrainsSpotted(int number);

}

You can then inject the typed logger with no further configuration:

 // Use the train spotter log, with the log category "trains"

 @Inject @Category("trains") TrainSpotterLog log;

and use it:

log.dieselTrainsSpotted(7);

Chapter 6. Logging

16

JBoss Logging will use the default locale unless overridden:

 // Use the train spotter log, with the log category "trains", and select the UK locale

 @Inject @Category("trains") @Locale("en_GB") TrainSpotterLog log;

You can also log exceptions:

@MessageLogger

interface TrainSpotterLog {

 // Define log call with message, using printf-style interpolation of parameters

 // The exception parameter will be logged as an exception

 @LogMessage @Message("Failed to spot train %s")

 void missedTrain(String trainNumber,@Cause Exception exception);

}

You can then log a message with an exception:

log.missedTrain("RH1", cause);

You can also inject a "plain old" Logger:

 @Inject Logger log;

Typed loggers also provide internationalization support, simply add the @MessageBundle annotation to the logger

interface (not currently supported).

Sometimes you need to access the message directly (for example to localize an exception message). Weld

Extensions let's you inject a typed message bundle. First, declare the message bundle:

@MessageBundle

interface TrainMessages {

 // Define a message using printf-style interpolation of parameters

 @Message("No trains spotted due to %s")

 String noTrainsSpotted(String cause);

}

Inject it:

@Inject @MessageBundle TrainMessages messages;

17

And use it:

 throw new BadDayException(messages.noTrainsSpotted("leaves on the line"));

18

Part II. Utilities for

Framework Authors

Chapter 7.

21

Annotation and AnnotatedType

Utilities
Weld Extensions provides a number of utilility classes to make working with Annotations and AnnotatedTypes easier.

This chapter will walk you each utility, and give you an idea of how to use it. For more detail, take a look at the

javaodoc on each class.

7.1. Annotated Type Builder

Weld Extensions provides an AnnotatedType implementation that should be suitable for most portable extensions

needs. The AnnotatedType is created from AnnotatedTypeBuilder as follows:

AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()

 .readFromType(baseType,true) /* readFromType can read from an AnnotatedType or a class */

 .addToClass(ModelLiteral.INSTANCE) /* add the @Model annotation */

 .create();

Here we create a new builder, and initialize it using an existing AnnotatedType. We can then add or remove

annotations from the class, and it's members. When we have finished modifying the type, we call create() to spit

out a new, immutable, AnnotatedType.

AnnotatedTypeBuilder also allows you to specify a "redefinition" which can be applied to the type, a type of

member, or all members. The redefiner will receive a callback for any annotations present which match the annotation

type for which the redefinition is applied. For example, to remove the qualifier @Unique from any class member

and the type:

AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()

 .readFromType(baseType,true)

 .redefine(Unique.class, new AnnotationRedefiner<Unique>() {

 public void redefine(RedefinitionContext<A> ctx) {

 ctx.getAnnotationBuilder().remove(Unique.class);

 }

 }

 .create();

7.2. Annotation Instance Provider

Sometimes you may need an annotation instance for an annotation whose type is not known at development time.

Weld extends provides a AnnotationInstanceProvider class that can create an AnnotationLiteral

instance for any annotation at runtime. Annotation attributes are passed in via a Map<String,Object>. For

example given the follow annotation:

@Retention(RetentionPolicy.RUNTIME)

public @interface MultipleMembers {

Chapter 7. Annotation and Ann...

22

 int intMember();

 long longMember();

 short shortMember();

 float floatMember();

 double doubleMember();

 byte byteMember();

 char charMember();

 boolean booleanMember();

 int[] intArrayMember();

}

We can create an annotation instance as follows:

/* Create a new provider */

 AnnotationInstanceProvider provider = new AnnotationInstanceProvider();

 /* Set the value for each of attributes */

 Map<String, Object> values = new HashMap<String, Object>();

 values.put("intMember", 1);

 values.put("longMember", 1);

 values.put("shortMember", 1);

 values.put("floatMember", 0);

 values.put("doubleMember", 0);

 values.put("byteMember", ((byte) 1));

 values.put("charMember", 'c');

 values.put("booleanMember", true);

 values.put("intArrayMember", new int[] { 0, 1 });

 /* Generate the instance */

 MultipleMembers an = provider.get(MultipleMembers.class, values);

7.3. Annotation Inspector

The Annotation Inspector allows you to easily discover annotations which are meta-annotated. For example:

 /* Discover all annotations on type which are meta-annotated @Constraint */

 Set<Annotation> constraints = AnnotationInspector.getAnnotations(type, Constraint.class);

 /* Load the annotation instance for @FacesValidator the annotation may declared on the type, */

 /* or, if the type has any stereotypes, on the stereotypes */

 FacesValidator validator = AnnotationInspector.getAnnotation(

 type,

 FacesValidator.class,

 true,

Synthetic Qualifiers

23

 beanManager);

7.4. Synthetic Qualifiers

When developing an extension to CDI, it can be useful to detect certain injection points, or bean definitions and based

on annotations or other metadata, add qualifiers to further disambiguate the injection point or bean definition for the

CDI bean resolver. Weld Extension's synthetic qualifers can be used to easily generate and track such qualifers.

In this example, we will create a synthetic qualifier provider, and use it to create a qualifier. The provider will track

the qualifier, and if a qualifier is requested again for the same original annotation, the same instance will be returned.

 /* Create a provider, giving it a unique namespace */

 Synthetic.Provider provider = new Synthetic.Provider("com.acme");

 /* Get the a synthetic qualifier for the original annotation instance */

 Synthetic synthetic = provider.get(originalAnnotation);

 /* Later calls with the same original annotation instance will return the same instance */

 /* Alternatively, we can "get and forget" */

 Synthetic synthetic2 = provider.get();

7.5. Reflection Utilities

Weld Extensions comes with a number miscellaneous reflection utilities; these extend JDK reflection, and some also

work on CDI's Annotated metadata. See the javadoc on Reflections for more.

InjectableMethod allows an AnnotatedMethod to be injected with parameter values obtained by following

the CDI type safe resolution rules, as well as allowing the defautl aparameter values to be overridden.

24

Chapter 8.

25

Obtaining a handle on the

BeanManager
When developing a framework that builds on CDI, you may need to obtain the BeanManager for the application,

can't simply inject it as you are not working in an object managed by the container. The CDI specification allows

lookup of java:comp/BeanManager in JNDI, however some environments don't support binding to this location

(e.g. servlet containers such as Tomcat and Jetty) and some environments don't support JNDI (e.g. the Weld SE

container). For this reason, most framework developers will prefer to avoid a direct JNDI lookup.

Often it is possible to pass the correct BeanManager to the object in which you require it, for example via a context

object. For example, you might be able to place the BeanManager in the ServletContext, and retrieve it at

a later date.

On some occasions however there is no suitable context to use, and in this case, you can take advantage of the

abstraction over BeanManager lookup provided by Weld Extensions. To lookup up a BeanManager, you can

extend the BeanManagerAware class, and call getBeanManager:

class WicketIntegration extends BeanManagerAware {

 public WicketManager getWicketManager() {

 Bean<?> bean = getBeanManager.getBean(Instance.class);

 ...

 }

 ...

}

Occasionally you will be working in an existing class hierarchy, in which case you can use the static accessors on

BeanManagerAccessor. For example:

class ResourceServlet extends HttpServlet {

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 BeanManager beanManager = BeanManagerAccessor.getBeanManager();

 ...

 }

}

26

Chapter 9.

27

Bean Utilities
Weld Extensions provides a number of base classes which can be extended to create custom beans. Weld

Extensions also provides bean builders which can be used to dynamically create beans using a fluent API.

AbstractImmutableBean

An immutable (and hence thread-safe) bean, whose constructor will substitute specification defaults if null is

passed for a particular attribute. Subclasses must implement the create() and destroy() methods.

AbstractImmutableProducer

An immutable (and hence thread-safe) abstract class for creating producers. Subclasses must implement

produce() and dispose().

BeanBuilder

A builder for creating immutable beans which can read the type and annotations from an AnnotatedType.

Beans

A set of utilities for working with beans.

ForwardingBean

A base class for implementing Bean which forwards all calls to delegate().

ForwardingInjectionTarget

A base class for implementing InjectionTarget which forwards all calls to delegate().

ForwardingObserverMethod

A base class for implementing ObserverMethod which forwards all calls to delegate().

ImmutableBean

An immutable (and hence thread-safe) bean, whose constructor will substitute specification defaults if null is

passed for a particular attribute. An implementation of ContextualLifecycle may be registered to receive

lifecycle callbacks.

ImmutableInjectionPoint

An immutable (and hence thread-safe) injection point.

ImmutableNarrowingBean

An immutable (and hence thread-safe) narrowing bean. Narrowing beans allow you to build a general purpose

bean (likely a producer method), and register it for a narrowed type (or qualifiers).

ImmutablePassivationCapableBean

An immutable (and hence thread-safe) bean, whose constructor will substitute specification defaults if null is

passed for a particular attribute. An implementation of ContextualLifecycle may be registered to receive

lifecycle callbacks. The bean implements PassivationCapable, and an id must be provided.

ImmutablePassivationCapableNarrowingBean

An immutable (and hence thread-safe) narrowing bean. Narrowing beans allow you to build a general purpose

bean (likely a producer method), and register it for a narrowed type (or qualifiers). The bean implements

PassivationCapable, and an id must be provided.

NarrowingBeanBuilder

A builder for creating immutable narrowing beans which can read the type and annotations from an

AnnotatedType.

The use of these classes is in general trivially understood with an understanding of basic programming patterns

and the CDI specification, so no in depth explanation is provided here. The JavaDoc for each class and method

provides more detail.

28

Chapter 10.

29

Properties
Properties are a convenient way of locating and working with JavaBean [http://en.wikipedia.org/wiki/JavaBean]

properties. They can be used with properties exposed via a getter/setter method, or directly via the field of a bean,

providing a uniform interface that allows you all properties in the same way.

Property queries allow you to interrogate a class for properties which match certain criteria.

10.1. Working with properties

The Property<V> interface declares a number of methods for interacting with bean properties. You can use these

methods to read or set the property value, and read the property type information. Properties may be readonly.

Table 10.1. Property methods

Method Description

String getName(); Returns the name of the property.

Type getBaseType(); Returns the property type.

Class<V> getJavaClass(); Returns the property class.

AnnotatedElement

getAnnotatedElement();

Returns the annotated element -

either the Field or Method that

the property is based on.

V getValue(); Returns the value of the property.

void setValue(V value); Sets the value of the property.

Class<?>

getDeclaringClass();

Gets the class declaring the

property.

boolean isReadOnly(); Check if the property can be written

as well as read.

Given a class with two properties, personName and postcode:'

class Person {

 PersonName personName;

 Address address;

 void setPostcode(String postcode) {

 address.setPostcode(postcode);

 }

 String getPostcode() {

 return address.getPostcode();

 }

}

You can create two properties:

http://en.wikipedia.org/wiki/JavaBean
http://en.wikipedia.org/wiki/JavaBean

Chapter 10. Properties

30

 Property<PersonName> personNameProperty = Properties.createProperty(Person.class.getField("personName");

 Property<String> postcodeProperty = Properties.createProperty(Person.class.getMethod("getPostcode"));

10.2. Querying for properties

To create a property query, use the PropertyQueries class to create a new PropertyQuery instance:

 PropertyQuery<?> query = PropertyQueries.createQuery(Foo.class);

If you know the type of the property that you are querying for, you can specify it via a type parameter:

 PropertyQuery<String> query = PropertyQueries.<String>createQuery(identityClass);

10.3. Property Criteria

Once you have created the PropertyQuery instance, you can add search criteria. Weld Extensions provides three

built-in criteria types, and it is very easy to add your own. A criteria is added to a query via the addCriteria()

method. This method returns an instance of the PropertyQuery, so multiple addCriteria() invocations can

be stacked.

10.3.1. AnnotatedPropertyCriteria

This criteria is used to locate bean properties that are annotated with a certain annotation type. For example, take

the following class:

 public class Foo {

 private String accountNumber;

 private @Scrambled String accountPassword;

 private String accountName;

 }

To query for properties of this bean annotated with @Scrambled, you can use an

AnnotatedPropertyCriteria, like so:

 PropertyQuery<String> query = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(new AnnotatedPropertyCriteria(Scrambled.class));

This query matches the accountPassword property of the Foo bean.

10.3.2. NamedPropertyCriteria

This criteria is used to locate a bean property with a particular name. Take the following class:

TypedPropertyCriteria

31

public class Foo {

 public String getBar() {

 return "foobar";

 }

}

The following query will locate properties with a name of "bar":

 PropertyQuery<String> query = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(new NamedPropertyCriteria("bar"));

10.3.3. TypedPropertyCriteria

This criteria can be used to locate bean properties with a particular type.

public class Foo {

 private Bar bar;

}

The following query will locate properties with a type of Bar:

PropertyQuery<Bar> query = PropertyQueries.<Bar>createQuery(Foo.class)

 .addCriteria(new TypedPropertyCriteria(Bar.class));

10.3.4. Creating a custom property criteria

To create your own property criteria, simply implement the

org.jboss.weld.extensions.util.properties.query.PropertyCriteria interface, which

declares the two methods fieldMatches() and methodMatches. In the following example, our custom criteria

implementation can be used to locate whole number properties:

public class WholeNumberPropertyCriteria implements PropertyCriteria {

 public boolean fieldMatches(Field f) {

 return f.getType() == Integer.class || f.getType() == Integer.TYPE.class ||

 f.getType() == Long.class || f.getType() == Long.TYPE.class ||

 f.getType() == BigInteger.class;

 }

 boolean methodMatches(Method m) {

 return m.getReturnType() == Integer.class || m.getReturnType() == Integer.TYPE.class ||

 m.getReturnType() == Long.class || m.getReturnType() == Long.TYPE.class ||

 m.getReturnType() == BigInteger.class;

 }

}

Chapter 10. Properties

32

10.4. Fetching the results

After creating the PropertyQuery and setting the criteria, the query can be executed by invoking either the

getResultList() or getFirstResult() methods. The getResultList() method returns a List of

Property objects, one for each matching property found that matches all the specified criteria:

 List<Property<String>> results = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(TypedPropertyCriteria(String.class))

 .getResultList();

If no matching properties are found, getResultList() will return an empty List. If you know that the query will

return exactly one result, you can use the getFirstResult() method instead:

 Property<String> result = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(NamedPropertyCriteria("bar"))

 .getFirstResult();

If no properties are found, then getFirstResult() will return null. Alternatively, if more than one result is found,

then getFirstResult() will return the first property found.

Part III. Configuration Extensions

for Framework Authors

Chapter 11.

35

Unwrapping Producer Methods
Unwrapping producer methods allow you to create injectable objects that have "self-managed"" lifecycles, and are

particularly useful if you have need a bean whose lifecycle does not exactly match one of the lifecycle of one of

the existing scopes. The lifecycle of the bean is are managed by the bean that defines the producer method, and

changes to the unwrapped object are immediately visible to all clients.

You can declare a method to be an unwrapping producer method by annotating it @Unwraps. The return type of

the managed producer must be proxyable (see Section 5.4.1 of the CDI specification, "Unproxyable bean types").

Every time a method is called on unwrapped object the invocation is forwarded to the result of calling the unwrapping

producer method.

For example consider a permission manager (that manages the current permission), and a security manager (that

checks the current permission level). Any changes to permission in the permission manager are immediately visible

to the security manager.

@SessionScoped

class PermissionManager {

 Permission permission;

 void setPermission(Permission permission) {

 this.permission=permission;

 }

 @Unwraps @Current

 Permission getPermission() {

 return this.permission;

 }

}

class SecurityManager {

 @Inject @Current

 Permission permission;

 boolean checkAdminPermission() {

 return permission.getName().equals("admin");

 }

}

When permission.getName() is called, the unwrapped Permission forwards the invocation of getName() to

the result of calling PermissionManager.getPermission().

For example you could raise the permission level before performing a sensitive operation, and then lower it again

afterwards:

public class SomeSensitiveOperation {

 @Inject

Chapter 11. Unwrapping Produc...

36

 PermissionManager permissionManager;

 public void perform() {

 try {

 permissionManager.setPermission(Permissions.ADMIN);

 // Do some sensitive operation

 } finally {

 permissionManager.setPermission(Permissions.USER);

 }

 }

}

Unwrapping producer methods can have parameters injected, including InjectionPoint (which repreents) the

calling method.

Chapter 12.

37

Default Beans
Suppose you have a situation where you want to provide a default implementation of a particular service and allow

the user to override it as needed. Although this may sound like a job for an alternative, they have some restrictions

that may make them undesirable in this situation. If you were to use an alternative it would require an entry in every

beans.xml file in an application.

Developers consuming the extension will have to open up the any jar file which references the default bean, and

edit the beans.xml file within, in order to override the service. This is where default beans come in.

Default beans allow you to create a default bean with a specified type and set of qualifiers. If no other bean is installed

that has the same type and qualifiers, then the default bean will be installed.

Let's take a real world example - a module that allows you to evaluate EL (something that Weld Extensions provides!).

If JSF is available we want to use the FunctionMapper provided by the JSF implementation to resolve functions,

otherwise we just want to use a a default FunctionMapper implementation that does nothing. We can achieve

this as follows:

@DefaultBean(type = FunctionMapper.class)

@Mapper

class FunctionMapperImpl extends FunctionMapper {

 @Override

 Method resolveFunction(String prefix, String localName) {

 return null;

 }

}

And in the JSF module:

class FunctionMapperProvider {

 @Produces

 @Mapper

 FunctionMapper produceFunctionMapper() {

 return FacesContext.getCurrentInstance().getELContext().getFunctionMapper();

 }

}

If FunctionMapperProvider is present then it will be used by default, otherwise the default

FunctionMapperImpl is used.

A producer method or producer field may be defined to be a default producer by placing the @DefaultBean

annotation on the producer. For example:

class CacheManager {

 @DefaultBean(Cache.class)

 Cache getCache() {

 ...

Chapter 12. Default Beans

38

 }

}

Any producer methods or producer fields declared on a default managed bean are automatically registered as default

producers, with Method.getGenericReturnType() or Field.getGenericType() determining the type

of the default producer. The default producer type can be overridden by specifying @DefaultBean on the producer

method or field.

Chapter 13.

39

Generic Beans
Many common services and API's require the use of more than just one class. When exposing these services via

CDI, it would be time consuming and error prone to force the end developer to provide producers for all the different

classes required. Generic beans provides a solution, allowing a framework author to provide a set of related beans,

one for each single configuration point defined by the end developer. The configuration points specifies the qualifiers

which are inherited by all beans in the set.

To illustrate the use of generic beans, we'll use the following example. Imagine we are writing an extension to

integrate our custom messaging solution "ACME Messaging" with CDI. The ACME Messaging API for sending

messages consists of several interfaces:

MessageQueue

The message queue, onto which messages can be placed, and acted upon by ACME Messaging

MessageDispatcher

The dispatcher, responsible for placing messages created by the user onto the queue

DispatcherPolicy

The dispatcher policy, which can be used to tweak the dispatch policy by the client

MessageSystemConfiguration

The messaging system configuration

We want to be able to create as many MessageQueue configurations's as they need, however we do not want to

have to declare each producers and the associated plumbing for every queue. Generic beans are an ideal solution

to this problem.

13.1. Using generic beans

Before we take a look at creating generic beans, let's see how we will use them.

Generic beans are configured via producer methods and fields. We want to create two queues to interact with

ACME Messaging, a default queue that is installed with qualifier @Default and a durable queue that has qualifier

@Durable:

class MyMessageQueues {

 @Produces

 @ACMEQueue("defaultQueue")

 MessageSystemConfiguration defaultQueue = new MessageSystemConfiguration();

 @Produces @Durable @ConversationScoped

 @ACMEQueue("durableQueue")

 MessageSystemConfiguration producerDefaultQueue() {

 MessageSystemConfiguration config = new MessageSystemConfiguration();

 config.setDurable(true);

 return config;

 }

}

Looking first at the default queue, in addition to the @Produces annotation, the generic configuration annotation

ACMEQueue, is used, which defines this to be a generic configuration point for ACME messaging (and cause a whole

Chapter 13. Generic Beans

40

set of beans to be created, exposing for example the dispatcher). The generic configuration annotation specifies the

queue name, and the value of the producer field defines the messaging system's configuration (in this case we use

all the defaults). As no qualifier is placed on the definition, @Default qualifier is inherited by all beans in the set.

The durable queue is defined as a producer method (as we want to alter the configuration of the queue before having

Weld Extensions use it). Additionally, it specifies that the generic beans created (that allow for their scope to be

overridden) should be placed in the conversation scope. Finally, it specifies that the generic beans created should

inherit the qualifier @Durable.

We can now inject our generic beans as normal, using the qualifiers specified on the configuration point:

class MessageLogger {

 @Inject

 MessageDispatcher dispatcher;

 void logMessage(Payload payload) {

 /* Add metaddata to the message */

 Collection<Header> headers = new ArrayList<Header>();

 ...

 Message message = new Message(headers, payload);

 dispatcher.send(message);

 }

}

class DurableMessageLogger {

 @Inject @Durable

 MessageDispatcher dispatcher;

 @Inject @Durable

 DispatcherPolicy policy;

 /* Tweak the dispatch policy to enable duplicate removal */

 @Inject

 void tweakPolicy(@Durable DispatcherPolicy policy) {

 policy.removeDuplicates();

 }

 void logMessage(Payload payload) {

 ...

 }

}

13.2. Defining Generic Beans

Having seen how we use the generic beans, let's look at how to define them. We start by creating the generic

configuration annotation:

@Retention(RUNTIME)

Defining Generic Beans

41

@GenericType(MessageSystemConfiguration.class)

@interface ACMEQueue {

 String name();

}

The generic configuration annotation a defines the generic configuration type (in this case

MessageSystemConfiguration); the type produced by the generic configuration point must be of this type.

Additionally it defines the member name, used to provide the queue name.

Important

All generic configuration annotations should have at least one member. Each configuration must

specify a unique value for this member.

Next, we define the queue manager bean. The manager has one producer method, which creates the queue from

the configuration:

@GenericConfiguration(ACMEQueue.class) @ApplyScope

class QueueManager {

 @Inject @Generic

 MessageSystemConfiguration systemConfig;

 @Inject

 ACMEQueue config;

 MessageQueueFactory factory;

 @PostConstruct

 void init() {

 factory = systemConfig.createMessageQueueFactory();

 }

 @Produces @ApplyScope

 public MessageQueue messageQueueProducer() {

 return factory.createMessageQueue(config.name());

 }

}

The bean is declared to be a generic bean for the @ACMEQueue generic configuration type annotation by placing

the @GenericConfiguration annotation on the class. We can inject the generic configuration type using the

@Generic qualifier, as well the annotation used to define the queue.

Placing the @ApplyScope annotation on the bean causes it to inherit the scope from the generic configuration

point. As creating the queue factory is a heavy operation we don't want to do it more than necessary.

Having created the MessageQueueFactory, we can then expose the queue, obtaining it's name from the

generic configuration annotation. Additionally, we define the scope of the producer method to be inherited from the

generic configuration point by placing the annotation @ApplyScope on the producer method. The producer method

automatically inherits the qualifiers specified by the generic configuration point.

Chapter 13. Generic Beans

42

Finally we define the message manager, which exposes the message dispatcher, as well as allowing the client to

inject an object which exposes the policy the dispatcher will use when enqueing messages. The client can then

tweak the policy should they wish.

@Generic(ACMEQueue.class)

class MessageManager {

 @Inject @Generic

 MessageQueue queue;

 @Produces @ApplyScope

 MessageDispatcher messageDispatcherProducer() {

 return queue.createMessageDispatcher();

 }

 @Produces

 DispatcherPolicy getPolicy() {

 return queue.getDispatcherPolicy();

 }

}

Chapter 14.

43

Service Handler
The service handler facility allow you to declare interfaces and abstract classes as automatically implemented beans.

Any call to an abstract method on the interface or abstract class will be forwarded to the invocation handler for

processing.

If you wish to convert some non-type-safe lookup to a type-safe lookup, then service handlers may be useful for you,

as they allow the end user to map a lookup to a method using domain specific annotations.

We will work through using this facility, taking the example of a service which can execute JPA queries upon abstract

method calls. First we define the annotation used to mark interfaces as automatically implemented beans. We meta-

annotate it, defining the invocation handler to use:

@ServiceHandler(QueryHandler.class)

@Retention(RUNTIME)

@Target({TYPE})

@interface QueryService {}

We now define an annotation which provides the query to execute:

@Retention(RUNTIME)

@Target({METHOD})

@interface Query {

 String value();

}

And finally, the invocation handler, which simply takes the query, and executes it using JPA, returning the result:

class QueryHandler {

 @Inject EntityManager em;

 @AroundInvoke

 Object handle(InvocationContext ctx) {

 return em.createQuery(ctx.getMethod().getAnnotation(Query.class).value()).getResultList();

 }

}

Note

• The invocation handler is similar to an intercepter. It must have an @AroundInvoke method

that returns and object and takes an InvocationContext as an argument.

• Do not call InvocationContext.proceed() as there is no method to proceed to.

Chapter 14. Service Handler

44

• Injection is available into the handler class, however the handler is not a bean definition, so

observer methods, producer fields and producer methods defined on the handler will not be

registered.

Finally, we can define (any number of) interfaces which define our queries:

@QueryService

interface UserQuery {

 @Query("select u from User u");

 public List<User> getAllUsers();

}

Finally, we can inject the query interface, and call methods, automatically executing the JPA query.

class UserListManager {

 @Inject

 UserQuery userQuery;

 List<User> users;

 @PostConstruct

 void create() {

 users=userQuery.getAllUsers();

 }

}

	Weld Extensions
	Table of Contents
	Introduction
	Chapter 1. Getting Started
	Part I. Extensions and Utilities for Developers
	Chapter 2. Enhancements to the CDI Programming Model
	2.1. Preventing a class from being processed
	2.1.1. @Veto
	2.1.2. @Requires

	2.2. @Exact
	2.3. @Client
	2.4. Named packages

	Chapter 3. Annotation Literals
	Chapter 4. Evaluating Unified EL
	Chapter 5. Resource Loading
	5.1. Extending the resource loader

	Chapter 6. Logging

	Part II. Utilities for Framework Authors
	Chapter 7. Annotation and AnnotatedType Utilities
	7.1. Annotated Type Builder
	7.2. Annotation Instance Provider
	7.3. Annotation Inspector
	7.4. Synthetic Qualifiers
	7.5. Reflection Utilities

	Chapter 8. Obtaining a handle on the BeanManager
	Chapter 9. Bean Utilities
	Chapter 10. Properties
	10.1. Working with properties
	10.2. Querying for properties
	10.3. Property Criteria
	10.3.1. AnnotatedPropertyCriteria
	10.3.2. NamedPropertyCriteria
	10.3.3. TypedPropertyCriteria
	10.3.4. Creating a custom property criteria

	10.4. Fetching the results

	Part III. Configuration Extensions for Framework Authors
	Chapter 11. Unwrapping Producer Methods
	Chapter 12. Default Beans
	Chapter 13. Generic Beans
	13.1. Using generic beans
	13.2. Defining Generic Beans

	Chapter 14. Service Handler

