Weld Extensions

T4 Yo [T o o Y,

= Lo TS = L =T P 1
I. Extensions and ULlities fOr DEVEIOPEIS ui e e e e e e et e e 3
2. Enhancements to the CDI Programming Modelcooiiiiiiiii e 5

2.1. Preventing a class from being ProCeSSEdo.uiiiiitiii e 5

2.0 0 @VEEO ettt 5

A B (21 3 L= o [N L =2 PR 5

2.2, @EXACT ..ttt e 6

2 T (21 1= o | S 7

2.4, NAMEA PACKAGES ..ttt et 7

3. ANNOTALION LItEIalS .ttt 9

4, Evaluating Unified EL ..ot et 11

ST R T Yo 10T fod S o - To Lo o [PP 13

5.1. Extending the reSoUrCe l0aderoiuiiuiii e 14

S I T o | 2 o 15

1. Utilities for Framework AULNOIS et 19
7. Annotation and AnnotatedType ULIHTIeS ... e 21

7.1. Annotated TYPE BUIIHET ... e e 21

7.2. ANNotation INStANCE PrOVIAEY ...t 21

4 R AN g o) = 1T o I 1 TS o1 od o P 22

7.4, Synthetic QUANIIEIS ... e 23

7.5. Reflection ULIILIES e 23

8. Obtaining a handle on the BeanManageroiiiiiiii i 25

9. BAN UtHlItiES ottt 27

O o o o 1T 4 A= T P 29

10.1. WOrking With PrOPEIIESunie ittt 29

10.2. QUETYING fOr PrOPEITIES ... e et e e 30

O TR T o (0T 0 T= 4 Y2 1 (= £ T- 30

10.3.1. ANNotatedPropertyCriteraooeie e 30

10.3.2. NamedPropertyCritEIIAeut ettt ittt ans 30

10.3.3. TYPedPIOPErtyCIItEIIAttt e e aeenees 31

10.3.4. Creating a Custom Property CritEIIAuuueine ittt et eeanees 31

10.4. Fetching the rESUILSo e et eens 32

IIl. Configuration Extensions for Framework AULhOIS ... e 33
11. Unwrapping Producer MethOods ... e 35

12, DEfAUIt BEANS ..ottt e 37

13, GBNEIIC BBANS ..ttt e 39

13.1. USING GENEIIC DEANS ...\ttt ettt ans 39

13.2. Defining GENEIIC BEANSitii ittt e et e e e aaeeas 40

14, SErviCe HaNIEr ... e e 43

Introduction

Weld Extensions is a library of Generally Useful Stuff (tm), particularly if you are developing an application based on
CDI (JSR-299 Java Contexts and Dependency Injection), or a CDI based library or framework.

This guide is split into three parts. Part |, “Extensions and Utilities for Developers” details extensions and utilities which
are likely to be of use to any developer using CDI; Part |1, “Utilities for Framework Authors” describes utilities which are
likely to be of use to developers writing libraries and frameworks that work with CDI; Part lll, “Configuration Extensions
for Framework Authors” discusses extensions which can be used to implement configuration for a framework

vi

Chapter 1.

Getting Started

Getting started with Weld Extensions is easy. If you are using Maven, then you can declare a dependency on
Weld Extensions (or g. j boss. wel d: wel d- ext ensi ons: ${wel d. ext ensi ons. ver si on}, make sure
you have the JBoss Maven repository enabled). Otherwise, add the jar to your compile time and runtime classpath.

Most of Weld Extensions has very few dependencies:

e javax. enterprise: cdi-api

e org.slf4j:slf4j-api

e org.j boss. | oggi ng:jboss-1o0ggi ng- api
e javax. el : el - api

e javax.inject:javax.inject

e javax.transaction:jta

Tip

The POM for Weld Extensions specifies the versions required. If you are using Maven 3, you can
easily import the dependencyManagenent into your POM by declaring the following in your
depdendencyManagenent section:

<dependency>
<groupl d>or g. j boss. wel d</ gr oupl d>
<artifact!|d>wel d-extensions</artifactld>
<ver si on>${wel d. ext ensi ons. ver si on} </ ver si on>
<t ype>ponx/type>
<scope>i nport </ scope>

</ dependency>

Some features of Weld Extensions require additional dependencies (which are declared optional, so will not be
added as transitive dependencies):

org.javassi st:javassi st
Service Handlers, Unwrapping Producer Methods

javax. servl et:servl et-api
Accessing resources from the Servlet Context

Part |. Extensions and
Utilities for Developers

Chapter 2.

Enhancements to the CDI
Programming Model

Weld Extensions provides a number enhancements to the CDI programming model which are under trial and may
be included in later releases of Contexts and Dependency Injection.

2.1. Preventing a class from being processed

2.1.1. @Veto

Annotating a class @/et o will cause the type to be ignored, such that any definitions on the type will not be
processed, including:

« the managed bean, decorator, interceptor or session bean defined by the type
« any producer methods or producer fields defined on the type
« any observer methods defined on the type

For example:

@let o
class Uilities {

}

2.1.2. @Requires

Annotating a class @Requi r es will cause the type to be ignored if the class dependencies can be satisfied. Any
definitions on the type will not be processed:

« the managed bean, decorator, interceptor or session bean defined by the type
« any producer methods or producer fields defined on the type

« any observer methods defined on the type

Tip

Weld will use the Thread Context ClassLoader, as well as the classloader of the type annotated
@Requi r es to attempt to satisfy the class dependency.

Chapter 2. Enhancements to th...

For example:

@Requi res(EntityManager. cl ass)
class EntityManager Producer {

@r oduces
EntityManager get EntityManager() {

2.2. @Exact

Annotating an injection point with @xact allows you to select an exact implementation of the injection point type
to inject. For example:

interface PaynentService {

cl ass ChequePaynent Service inplements Paynment Service {

cl ass CardPaynent Service inplements Paynent Service {

cl ass Payment Processor {

@ nj ect @Exact (Car dPaynent Servi ce. cl ass)
Paynent Servi ce paynent Servi ce;

@Client

2.3. @Client

It is common to want to qualify a bean as belonging to the current client (for example we want to differentiate the
default system locale from the current client's locale). Weld Extensions provides a built in qualifier, @ i ent for
this purpose.

2.4. Named packages

Weld Extensions allows you to annotate the package @Named, which causes every bean defined in the package
to be given its default name. Package annotations are defined in the file package- i nf 0. j ava. For example, to
cause any beans defined in com acne to be given their default name:

@\aned
package com acne

Chapter 3.

Annotation Literals

Weld extensions provides a complete set of AnnotationLiterals for every annotation type
defined by the CDI (JSR-299) and Injection (JSR-330) specification. These are located in the
org.j boss. wel d. extensi ons. | i t eral package. Annotations without listitems provide a static | NSTANCE
listitem that should be used rather than creating a new instance every time.

Literals are provided for the following annotations from Context and Dependency Injection:

e @Nternative

+ @ny

e @\pplicationScoped
e @onver sati onScoped
* @ecor at or

e @efault

- @el egate

« @ependent

+ @i sposes

e @nject

+ @bdel

« @laned

. @ew

e @lonbi ndi ng

e @\or mal Scope

« @Xserves

« @Pr oduces

e @Request Scoped
« @essi onScoped
» @peci al i zes

- @Bt ereotype

* @vyped

Literals are provided for the following annotations from Weld Extensions:

« @ ient
 @ef aul t Bean

* @xact

Chapter 3. Annotation Literals

e @=neric

e @=xnericType

+ @mpper

« @fkssageBundl e
e @Requires

* @Resol ver

e @esource

e @Jnwr aps

« @eto

10

Chapter 4.

Evaluating Unified EL

Weld extensions provides a method to evaluate EL that is not dependent on JSF or JSP, a facility sadly missing
in Java EE. To use it inject Expr essi ons into your bean. You can evaluate value expressions, or method
expressions. The Weld Extensions API provides type inference for you. For example:

class FruitBow {
@ nj ect Expressions expressions;
public void run() {

String fruitNane = expressions. eval uat eVal ueExpressi on("#{fruitBow . fruitNane}");
Appl e fruit = expressions. eval uat eMet hodExpressi on("#{fruitBown. getFruit}");

11

12

Chapter 5.

Resource Loading

Weld Extensions provides an extensible, injectable resource loader. The resource loader can provide URLs or
managed input streams. By default the resource loader will look at the classpath, and the servlet context if available.

If the resource name is known at development time, the resource can be injected, either as a URL or an InputStream:

@ nj ect
@Resour ce("WEB- | NF/ beans. xm ")
URL beansXm ;

@ nj ect
@Resour ce(" VWEB- | NF/ web. xm ")
I nput St r eam webXm ;

If the resource name is not known, the Resour ceProvi der can be injected, and the resource looked up
dynamically:

@ nj ect
voi d readXm (ResourceProvider provider, String fileNane) {
Input Streamis = provider.| oadResourceStrean(fil eName);

If you need access to all resources under a given name known to the resource loader (as opposed to first resource
loaded), you can inject a collection of resources:

@ nj ect
@Resour ce(" VEB- | NF/ beans. xmi ")
Col | ecti on<URL> beansXnl s;

@ nj ect
@Resour ce(" VEB- | NF/ web. xm ")
Col | ecti on<l nput Strean> webXm s;

Tip

Any input stream injected, or created directly by the Resour cePr ovi der is managed, and will
be automatically closed when the bean declaring the injection point of the resource or provider
is destroyed.

If the resource is a Properties bundle, you can also inject it as a set of Pr operti es:

@ nj ect
@Resour ce(" META- | NF/ aws. properties")
Properties awsProperties;

13

Chapter 5. Resource Loading

5.1. Extending the resource loader

If you want to load resources from another location, you can provide an additional resource loader. First, create the
resource loader implementation:

cl ass MyResour ceLoader inplenents ResourcelLoader {

And then register it as a service by placing the fully qualified class name of the implementation in a file called META-
| NF/ services/org. jboss. wel d. ext ensi ons. resour ceLoader . Resour ceLoader .

14

Chapter 6.

Logging

Weld Extensions integrates JBoss Logging 3 as it's logging framework of choice. JBoss Logging 3 is a modern
logging framework offering:

« Abstracts away from common logging backends and frameworks (such as JDK Logging, log4j and slf4j)
« Provides a innovative, typed logger (see below for examples)
« Full support for internationalization and localization

« Developers can work with interfaces and annotations only

« Translators can work with message bundles in properties files

¢ Build time tooling to generate typed loggers for production, and runtime generation of typed loggers for
development

¢ Access to MDC and NDC (if underlying logger supports it)

« Loggers are serializable

To use a typed logger, first create the logger definition:

@kssagelogger
interface TrainSpotterLog {

/1 Define log call with nessage, using printf-style interpolation of paraneters
@ogMessage @kessage("Spotted % diesel trains")
voi d di esel Trai nsSpotted(int nunber);

You can then inject the typed logger with no further configuration:

/1 Use the train spotter log, with the log category "trains"
@nject @ategory("trains") TrainSpotterLog | og;

and use it:

| og. di esel Trai nsSpotted(7);

15

Chapter 6. Logging

JBoss Logging will use the default locale unless overridden:

/1 Use the train spotter log, with the log category "trains", and select the UK |l ocale
@nject @ategory("trains") @ocale("en_GB") TrainSpotterLog | og;

You can also log exceptions:

@kssagelogger

interface TrainSpotterLog {
/1 Define log call with nessage, using printf-style interpolation of paraneters
/1 The exception paraneter will be | ogged as an exception

@ogMessage @kssage("Failed to spot train %")
void m ssedTrain(String trai nNunber, @ause Exception exception);

You can then log a message with an exception:

| og. m ssedTrai n("RHL", cause);

You can also inject a "plain old" Logger:

@nj ect Logger |og;

Typed loggers also provide internationalization support, simply add the @MessageBundle annotation to the logger

interface (not currently supported).

Sometimes you need to access the message directly (for example to localize an exception message). Weld

Extensions let's you inject a typed message bundle. First, declare the message bundle:

@kssageBundl e
interface Trai nMessages {

/'l Define a nmessage using printf-style interpolation of paraneters
@kssage("No trains spotted due to ¥%")
String noTrainsSpotted(String cause);

Inject it:

@nj ect @kssageBundl e Trai nMessages nessages;

16

And use it:

t hrow new BadDayExcepti on(nmessages. noTrai nsSpotted("|eaves on the line"));

17

18

Part Il. Utilities for
Framework Authors

Chapter 7.

Annotation and AnnotatedType
Utilities

Weld Extensions provides a number of utilility classes to make working with Annotations and AnnotatedTypes easier.
This chapter will walk you each utility, and give you an idea of how to use it. For more detail, take a look at the
javaodoc on each class.

7.1. Annotated Type Builder

Weld Extensions provides an Annot at edType implementation that should be suitable for most portable extensions
needs. The Annot at edType is created from Annot at edTypeBui | der as follows:

Annot at edTypeBui | der buil der = new Annot at edTypeBui | der ()
. readFronType(baseType,true) /* readFroniType can read from an Annot atedType or a class */
.addToCd ass(Model Literal . I NSTANCE) /* add the @wmbdel annotation */
.create();

Here we create a new builder, and initialize it using an existing Annot at edType. We can then add or remove
annotations from the class, and it's members. When we have finished modifying the type, we call cr eat e() to spit
out a new, immutable, Annot at edType.

Annot at edTypeBui | der also allows you to specify a "redefinition" which can be applied to the type, a type of
member, or all members. The redefiner will receive a callback for any annotations present which match the annotation
type for which the redefinition is applied. For example, to remove the qualifier @Jni que from any class member
and the type:

Annot at edTypeBui | der buil der = new Annot at edTypeBui | der ()
. readFr onilype(baseType, true)
.redefi ne(Uni que. cl ass, new Annot ati onRedefi ner <Uni que>() {

public void redefine(RedefinitionContext<A> ctx) {
ct x. get Annot at i onBui | der (). renove(Uni que. cl ass);

}

.create();

7.2. Annotation Instance Provider

Sometimes you may need an annotation instance for an annotation whose type is not known at development time.
Weld extends provides a Annot ati onl nst ancePr ovi der class that can create an Annot ati onLi t er al

instance for any annotation at runtime. Annotation attributes are passed in via a Map<Stri ng, Cbj ect >. For
example given the follow annotation:

@Ret enti on(Ret enti onPol i cy. RUNTI ME)
public @nterface Miultipl eMenbers {

21

Chapter 7. Annotation and Ann...

int intMenber();

I ong | ongMenber () ;

short short Menber () ;
float floatMenber();
doubl e doubl eMenber () ;
byt e byt eMenber ();

char char Menber () ;

bool ean bool eanMenber () ;

int[] intArrayMenber();

We can create an annotation instance as follows:

/* Create a new provider */
Annot ati onl nst anceProvi der provider = new Annot ati onl nstanceProvider();

/* Set the value for each of attributes */
Map<String, Cbject> values = new HashMap<String, Object>();
val ues. put ("i nt Menber", 1);

val ues. put ("l ongMenber", 1);

val ues. put ("short Menber", 1);

val ues. put ("f | oat Menber", 0);

val ues. put (" doubl eMenber", 0);

val ues. put (" byt eMenber", ((byte) 1));

val ues. put (" char Menber", 'c');

val ues. put (" bool eanMenber", true);

val ues. put ("int ArrayMenber”, newint[] { O, 1 1});

/* Cenerate the instance */
Mil ti pl eMenbers an = provider.get (Ml tipleMenbers. cl ass, val ues);

7.3. Annotation Inspector

The Annotation Inspector allows you to easily discover annotations which are meta-annotated. For example:

/* Discover all annotations on type which are neta-annotated @onstraint */

Set <Annot at i on> constrai nts = Annotati onl nspector. get Annot ati ons(type, Constraint.class);

/* Load t he annot ation i nstance for @acesValidator the annotation nay decl ared on the type,
/* or, if the type has any stereotypes, on the stereotypes */
FacesVal i dator validator = Annotationl nspector.get Annotati on(

type,

FacesVal i dator. cl ass,

true,

*/

22

Synthetic Qualifiers

beanManager) ;

7.4. Synthetic Qualifiers

When developing an extension to CDlI, it can be useful to detect certain injection points, or bean definitions and based
on annotations or other metadata, add qualifiers to further disambiguate the injection point or bean definition for the
CDI bean resolver. Weld Extension's synthetic qualifers can be used to easily generate and track such qualifers.

In this example, we will create a synthetic qualifier provider, and use it to create a qualifier. The provider will track
the qualifier, and if a qualifier is requested again for the same original annotation, the same instance will be returned.

/* Create a provider, giving it a unique namespace */
Synt heti c. Provi der provider = new Synthetic. Provider("comacne");

/* Get the a synthetic qualifier for the original annotation instance */
Synthetic synthetic = provider.get(original Annotation);

/* Later calls with the same original annotation instance will return the sane instance */
/* Alternatively, we can "get and forget" */

Synthetic synthetic2 = provider.get();

7.5. Reflection Utilities

Weld Extensions comes with a number miscellaneous reflection utilities; these extend JDK reflection, and some also
work on CDI's Annotated metadata. See the javadoc on Ref | ect i ons for more.

I nj ect abl eMet hod allows an Annot at edMet hod to be injected with parameter values obtained by following
the CDI type safe resolution rules, as well as allowing the defautl aparameter values to be overridden.

23

24

Chapter 8.

Obtaining a handle on the
BeanManager

When developing a framework that builds on CDI, you may need to obtain the BeanManager for the application,
can't simply inject it as you are not working in an object managed by the container. The CDI specification allows
lookup of j ava: conp/ BeanManager in JNDI, however some environments don't support binding to this location
(e.g. servlet containers such as Tomcat and Jetty) and some environments don't support JNDI (e.g. the Weld SE
container). For this reason, most framework developers will prefer to avoid a direct INDI lookup.

Often it is possible to pass the correct BeanManager to the object in which you require it, for example via a context
object. For example, you might be able to place the BeanManager in the Ser vl et Cont ext , and retrieve it at
a later date.

On some occasions however there is no suitable context to use, and in this case, you can take advantage of the
abstraction over BeanManager lookup provided by Weld Extensions. To lookup up a BeanManager, you can
extend the BeanManager Awar e class, and call get BeanManager :

cl ass Wcketlntegration extends BeanManager Anar e {

public W cket Manager get W cket Manager () {
Bean<?> bean = get BeanManager . get Bean(| nst ance. cl ass);

Occasionally you will be working in an existing class hierarchy, in which case you can use the static accessors on
BeanManager Accessor . For example:

cl ass ResourceServl et extends HtpServlet {

protected void doCet (HttpServl et Request req, HttpServl et Response resp)
throws Servl et Exception, |COException {
BeanManager beanManager = BeanManager Accessor . get BeanManager () ;

25

26

Chapter 9.

Bean Utilities

Weld Extensions provides a number of base classes which can be extended to create custom beans. Weld
Extensions also provides bean builders which can be used to dynamically create beans using a fluent API.

Abst ract | mrut abl eBean
An immutable (and hence thread-safe) bean, whose constructor will substitute specification defaults if nul | is
passed for a particular attribute. Subclasses must implement the cr eat e() and dest r oy() methods.

Abst ract | mut abl eProducer
An immutable (and hence thread-safe) abstract class for creating producers. Subclasses must implement
produce() and di spose().

BeanBui | der
A builder for creating immutable beans which can read the type and annotations from an Annot at edType.

Beans
A set of utilities for working with beans.

For war di ngBean
A base class for implementing Bean which forwards all calls to del egat e() .

For war di ngl nj ecti onTar get
A base class for implementing | nj ect i onTar get which forwards all calls to del egat e() .

For war di ngQbser ver Met hod
A base class for implementing Cbser ver Met hod which forwards all calls to del egat e() .

| mut abl eBean
An immutable (and hence thread-safe) bean, whose constructor will substitute specification defaults if nul | is
passed for a particular attribute. An implementation of Cont ext ual Li f ecycl e may be registered to receive
lifecycle callbacks.

| nrut abl el nj ecti onPoi nt
An immutable (and hence thread-safe) injection point.

| nmrut abl eNar r owi ngBean
An immutable (and hence thread-safe) narrowing bean. Narrowing beans allow you to build a general purpose
bean (likely a producer method), and register it for a narrowed type (or qualifiers).

| mut abl ePassi vat i onCapabl eBean
An immutable (and hence thread-safe) bean, whose constructor will substitute specification defaults if nul | is
passed for a particular attribute. An implementation of Cont ext ual Li f ecycl e may be registered to receive
lifecycle callbacks. The bean implements Passi vat i onCapabl e, and an id must be provided.

| mrut abl ePassi vat i onCapabl eNar r owi ngBean
An immutable (and hence thread-safe) narrowing bean. Narrowing beans allow you to build a general purpose
bean (likely a producer method), and register it for a narrowed type (or qualifiers). The bean implements
Passi vat i onCapabl e, and an id must be provided.

Nar r owi ngBeanBui | der
A builder for creating immutable narrowing beans which can read the type and annotations from an
Annot at edType.

The use of these classes is in general trivially understood with an understanding of basic programming patterns
and the CDI specification, so no in depth explanation is provided here. The JavaDoc for each class and method
provides more detail.

27

28

Chapter 10.

Properties

Properties are a convenient way of locating and working with JavaBean [http://en.wikipedia.org/wiki/JavaBean]
properties. They can be used with properties exposed via a getter/setter method, or directly via the field of a bean,
providing a uniform interface that allows you all properties in the same way.

Property queries allow you to interrogate a class for properties which match certain criteria.

10.1. Working with properties

The Pr oper t y<V> interface declares a number of methods for interacting with bean properties. You can use these

methods to read or set the property value, and read the property type information. Properties may be readonly.

Table 10.1. Property methods

Method
String get Name();
Type get BaseType();
Cl ass<V> get Javad ass();

Annot at edEl enent
get Annot at edEl ermrent () ;

V get Val ue();
voi d set Val ue(V val ue);

Cl ass<?>
get Decl ari ngQ ass();

bool ean i sReadOnl y():

Description
Returns the name of the property.
Returns the property type.
Returns the property class.

Returns the annotated element -
either the Fi el d or Met hod that
the property is based on.

Returns the value of the property.
Sets the value of the property.

Gets the class declaring the
property.

Check if the property can be written
as well as read.

Given a class with two properties, per sonNane and post code:’

class Person {

Per sonNane per sonNane;

Addr ess address;

voi d set Postcode(String postcode) {
addr ess. set Post code(post code) ;

String get Postcode() {

return address. get Post code();

You can create two properties:

29

http://en.wikipedia.org/wiki/JavaBean
http://en.wikipedia.org/wiki/JavaBean

Chapter 10. Properties

Propert y<Per sonName> per sonNaneProperty = Properties. createProperty(Person.cl ass. getFi el d("personNane");
Property<Stri ng> postcodeProperty = Properties.createProperty(Person.class. get Met hod("get Post code"));

10.2. Querying for properties

To create a property query, use the Pr opert yQuer i es class to create a new Pr opert yQuery instance:

PropertyQuery<?> query = PropertyQueries. createQuery(Foo. cl ass);
If you know the type of the property that you are querying for, you can specify it via a type parameter:

PropertyQuery<String> query = PropertyQueries.<String>createQuery(identityd ass);

10.3. Property Criteria

Once you have created the Pr oper t yQuer y instance, you can add search criteria. Weld Extensions provides three
built-in criteria types, and it is very easy to add your own. A criteria is added to a query via the addCriteri a()
method. This method returns an instance of the Pr oper t yQuer y, so multiple addCri t eri a() invocations can
be stacked.

10.3.1. AnnotatedPropertyCriteria

This criteria is used to locate bean properties that are annotated with a certain annotation type. For example, take
the following class:

public class Foo {
private String account Nunber;
private @cranbl ed String account Password;
private String account Nane;

To query for properties of this bean annotated with @scranbled, you can use an
Annot at edPr opertyCriteri a, like so:

PropertyQuery<String> query = PropertyQueries.<String>createQuery(Foo.cl ass)
.addCriteria(new Annot at edPropertyCriteria(Scranbl ed. cl ass));

This query matches the account Passwor d property of the Foo bean.

10.3.2. NamedPropertyCriteria

This criteria is used to locate a bean property with a particular name. Take the following class:

30

TypedPropertyCriteria

public class Foo {
public String getBar() {
return "foobar";

The following query will locate properties with a name of " bar " :

PropertyQuery<String> query = PropertyQueries. <String>createQuery(Foo.class)
.addCriteria(new NanmedPropertyCriteria("bar"));

10.3.3. TypedPropertyCriteria

This criteria can be used to locate bean properties with a particular type.

public class Foo {
private Bar bar;

The following query will locate properties with a type of Bar :

PropertyQuery<Bar> query = PropertyQueries. <Bar >creat eQuery(Foo. cl ass)
.addCriteria(new TypedPropertyCriteria(Bar.class));

10.3.4. Creating a custom property criteria

To create your own property criteria, simply implement the
org.jboss.wel d. extensions. util.properties.query.PropertyCriteria interface, which
declares the two methods f i el dvat ches() and net hodMat ches. In the following example, our custom criteria
implementation can be used to locate whole number properties:

public class Wol eNunber PropertyCriteria i nplenents PropertyCriteria {
public boolean fieldvatches(Field f) {
return f.getType() == Integer.class || f.getType() == Integer.TYPE. class ||
f.getType() == Long.class || f.getType() == Long. TYPE. cl ass ||
f.get Type() == Biglnteger.class;

bool ean net hodMvat ches(Met hod n) {
return mget ReturnType() == Integer.class || mgetReturnType() == Integer.TYPE. class ||
m get ReturnType() == Long.class || mgetReturnType() == Long. TYPE.class ||
m get Ret urnType() == Bi gl nteger. cl ass;

31

Chapter 10. Properties

10.4. Fetching the results

After creating the Pr opertyQuery and setting the criteria, the query can be executed by invoking either the
get Resul tLi st () or get FirstResult() methods. The get Resul t Li st () method returns a Li st of
Pr oper t y objects, one for each matching property found that matches all the specified criteria:

Li st <Property<String>> results = PropertyQueries. <String>createQuery(Foo. cl ass)
.addCriteria(TypedPropertyCriteria(String.class))
.getResul tList();

If no matching properties are found, get Resul t Li st () will return an empty Li st . If you know that the query will
return exactly one result, you can use the get Fi r st Resul t () method instead:

Property<String> result = PropertyQueries.<String>createQery(Foo. cl ass)
.addCriteri a(NamedPropertyCriteria("bar"))
.getFirstResult();

If no properties are found, then get Fi r st Resul t () will return null. Alternatively, if more than one result is found,
then get Fi r st Resul t () will return the first property found.

32

Part Ill. Configuration Extensions
for Framework Authors

Chapter 11.

Unwrapping Producer Methods

Unwrapping producer methods allow you to create injectable objects that have "self-managed™ lifecycles, and are
particularly useful if you have need a bean whose lifecycle does not exactly match one of the lifecycle of one of
the existing scopes. The lifecycle of the bean is are managed by the bean that defines the producer method, and
changes to the unwrapped object are immediately visible to all clients.

You can declare a method to be an unwrapping producer method by annotating it @Jnwr aps. The return type of
the managed producer must be proxyable (see Section 5.4.1 of the CDI specification, "Unproxyable bean types").
Every time a method is called on unwrapped object the invocation is forwarded to the result of calling the unwrapping
producer method.

For example consider a permission manager (that manages the current permission), and a security manager (that
checks the current permission level). Any changes to permission in the permission manager are immediately visible
to the security manager.

@essi onScoped
cl ass Perm ssi onManager {

Per mi ssi on perm ssion;
voi d set Perm ssi on(Perm ssion perm ssion) {

this. perm ssi on=perm ssi on;

@nwr aps @cur r ent
Per m ssi on get Permi ssion() {
return this.perm ssion;

cl ass SecurityManager {

@nj ect @urrent
Per mi ssi on perm ssion;

bool ean checkAdm nPermi ssion() {
return perm ssion. get Name().equal s("adnin");

When per m ssi on. get Name() is called, the unwrapped Permission forwards the invocation of get Nane() to
the result of calling Per mi ssi onManager . get Per mi ssi on() .

For example you could raise the permission level before performing a sensitive operation, and then lower it again
afterwards:

public class SomeSensitiveOperation {

@ nj ect

35

Chapter 11. Unwrapping Produc...

Per mi ssi onManager perm ssi onManager ;

public void perforn() {

try {
per mi ssi onManager . set Per m ssi on(Per m ssi ons. ADM N) ;
/] Do sone sensitive operation

} finally {
per m ssi onManager . set Per m ssi on(Per m ssi ons. USER) ;

Unwrapping producer methods can have parameters injected, including | nj ect i onPoi nt (which repreents) the
calling method.

36

Chapter 12.

Default Beans

Suppose you have a situation where you want to provide a default implementation of a particular service and allow
the user to override it as needed. Although this may sound like a job for an alternative, they have some restrictions
that may make them undesirable in this situation. If you were to use an alternative it would require an entry in every
beans. xml file in an application.

Developers consuming the extension will have to open up the any jar file which references the default bean, and
edit the beans. xnl file within, in order to override the service. This is where default beans come in.

Default beans allow you to create a default bean with a specified type and set of qualifiers. If no other bean is installed
that has the same type and qualifiers, then the default bean will be installed.

Let's take a real world example - a module that allows you to evaluate EL (something that Weld Extensions provides!).
If JSF is available we want to use the Funct i onMapper provided by the JSF implementation to resolve functions,
otherwise we just want to use a a default Funct i onMapper implementation that does nothing. We can achieve
this as follows:

@ef aul t Bean(type = FunctionMapper. cl ass)

@mbpper
cl ass FunctionMapper | npl extends Functi onMapper {

@verride
Met hod resol veFunction(String prefix, String |ocal Nane) {
return null;

And in the JSF module:

cl ass Functi onMapper Provi der {

@°r oduces

@apper
Functi onMapper produceFuncti onMapper () {
return FacesCont ext.get Currentlnstance().get ELCont ext (). get Functi onMapper();

If Functi onMapper Provi der is present then it will be used by default, otherwise the default
Functi onMapper | npl is used.

A producer method or producer field may be defined to be a default producer by placing the @ef aul t Bean
annotation on the producer. For example:

cl ass CacheManager {

@ef aul t Bean(Cache. cl ass)
Cache get Cache() {

37

Chapter 12. Default Beans

Any producer methods or producer fields declared on a default managed bean are automatically registered as default
producers, with Met hod. get Generi cRet urnType() or Fi el d. get Generi cType() determining the type
of the default producer. The default producer type can be overridden by specifying @ef aul t Bean on the producer
method or field.

38

Chapter 13.

Generic Beans

Many common services and API's require the use of more than just one class. When exposing these services via
CDI, it would be time consuming and error prone to force the end developer to provide producers for all the different
classes required. Generic beans provides a solution, allowing a framework author to provide a set of related beans,
one for each single configuration point defined by the end developer. The configuration points specifies the qualifiers
which are inherited by all beans in the set.

To illustrate the use of generic beans, we'll use the following example. Imagine we are writing an extension to
integrate our custom messaging solution "ACME Messaging" with CDI. The ACME Messaging API for sending
messages consists of several interfaces:

MessageQueue
The message queue, onto which messages can be placed, and acted upon by ACME Messaging

MessageDi spat cher
The dispatcher, responsible for placing messages created by the user onto the queue

Di spat cher Pol i cy
The dispatcher policy, which can be used to tweak the dispatch policy by the client

MessageSyst emConf i gurati on
The messaging system configuration

We want to be able to create as many MessageQueue configurations's as they need, however we do not want to
have to declare each producers and the associated plumbing for every queue. Generic beans are an ideal solution
to this problem.

13.1. Using generic beans

Before we take a look at creating generic beans, let's see how we will use them.

Generic beans are configured via producer methods and fields. We want to create two queues to interact with
ACME Messaging, a default queue that is installed with qualifier @ef aul t and a durable queue that has qualifier
@ur abl e:

cl ass MyMessageQueues {

@°r oduces
@\CVEQueue("def aul t Queue")
MessageSyst enConfi guration defaul t Queue = new MessageSyst enConfi guration();

@r oduces @ur abl e @onversati onScoped

@\CVEQueue(" dur abl eQueue")

MessageSyst enConfi gurati on producer Def aul t Queue() {
MessageSyst enConfi gurati on config = new MessageSyst enConfi guration();
config. set Durabl e(true);
return config;

Looking first at the default queue, in addition to the @r oduces annotation, the generic configuration annotation
ACMEQuUeuUe, is used, which defines this to be a generic configuration point for ACME messaging (and cause a whole

39

Chapter 13. Generic Beans

set of beans to be created, exposing for example the dispatcher). The generic configuration annotation specifies the
gueue name, and the value of the producer field defines the messaging system's configuration (in this case we use
all the defaults). As no qualifier is placed on the definition, @ef aul t qualifier is inherited by all beans in the set.

The durable queue is defined as a producer method (as we want to alter the configuration of the queue before having
Weld Extensions use it). Additionally, it specifies that the generic beans created (that allow for their scope to be
overridden) should be placed in the conversation scope. Finally, it specifies that the generic beans created should
inherit the qualifier @ur abl e.

We can now inject our generic beans as normal, using the qualifiers specified on the configuration point:

cl ass Messagelogger {

@ nj ect
MessageDi spat cher di spatcher;

voi d | ogMessage(Payl oad payl oad) {
/* Add netaddata to the nessage */

Col | ecti on<Header > headers = new ArraylLi st <Header>();

Message nessage = new Message(headers, payl oad);
di spat cher. send(nmessage) ;

cl ass Durabl eMessagelLogger {

@nject @urable
MessageDi spat cher di spatcher;

@ nj ect @urable
Di spat cherPol i cy policy;

/* Tweak the dispatch policy to enable duplicate renmoval */

@nj ect

voi d tweakPol i cy(@urabl e DispatcherPolicy policy) {
policy.renmoveDuplicates();

voi d | ogMessage(Payl oad payl oad) {

13.2. Defining Generic Beans

Having seen how we use the generic beans, let's look at how to define them. We start by creating the generic
configuration annotation:

@Ret ent i on(RUNTI VE)

40

Defining Generic Beans

@=neri cType(MessageSyst enConfi gurati on. cl ass)
@nterface ACMEQueue {

String nane();

The generic configuration annotation a defines the generic configuration type (in this case
MessageSyst enConf i gur at i on); the type produced by the generic configuration point must be of this type.
Additionally it defines the member nane, used to provide the queue name.

Important

All generic configuration annotations should have at least one member. Each configuration must
specify a unique value for this member.

Next, we define the queue manager bean. The manager has one producer method, which creates the queue from
the configuration:

@=neri cConfi gurati on(ACVEQueue. cl ass) @\ppl yScope
cl ass QueueManager {

@nject @=xneric
MessageSyst enConf i gurati on systentConfi g;

@ nj ect
ACMEQueue config;

MessageQueueFactory factory;

@ost Const ruct
void init() {
factory = systentConfig.createMessageQueueFactory();

@rroduces @\ppl yScope
public MessageQueue nessageQueueProducer () {
return factory. createMessageQueue(config. nane());

The bean is declared to be a generic bean for the GACMEQuUeue generic configuration type annotation by placing
the @eneri cConfi gur ati on annotation on the class. We can inject the generic configuration type using the
@ener i ¢ qualifier, as well the annotation used to define the queue.

Placing the @\ppl yScope annotation on the bean causes it to inherit the scope from the generic configuration
point. As creating the queue factory is a heavy operation we don't want to do it more than necessary.

Having created the MessageQueueFact ory, we can then expose the queue, obtaining it's name from the
generic configuration annotation. Additionally, we define the scope of the producer method to be inherited from the
generic configuration point by placing the annotation @\ppl y Scope on the producer method. The producer method
automatically inherits the qualifiers specified by the generic configuration point.

41

Chapter 13. Generic Beans

Finally we define the message manager, which exposes the message dispatcher, as well as allowing the client to
inject an object which exposes the policy the dispatcher will use when enqueing messages. The client can then
tweak the policy should they wish.

@zener i c(ACMEQueue. cl ass)
cl ass MessageManager {

@nj ect @xneric
MessageQueue queue;

@roduces @\ppl yScope
MessageDi spat cher nmessageDi spat cher Producer () {
return queue. creat eMessageDi spatcher();

@°r oduces
Di spat cher Pol i cy getPolicy() {
return queue. get Di spat cherPolicy();

42

Chapter 14.

Service Handler

The service handler facility allow you to declare interfaces and abstract classes as automatically implemented beans.
Any call to an abstract method on the interface or abstract class will be forwarded to the invocation handler for
processing.

If you wish to convert some non-type-safe lookup to a type-safe lookup, then service handlers may be useful for you,
as they allow the end user to map a lookup to a method using domain specific annotations.

We will work through using this facility, taking the example of a service which can execute JPA queries upon abstract
method calls. First we define the annotation used to mark interfaces as automatically implemented beans. We meta-
annotate it, defining the invocation handler to use:

@Ber vi ceHandl er (Quer yHandl er. cl ass)
@ret ent i on(RUNTI ME)

@ar get ({ TYPE})

@nterface QueryService {}

We now define an annotation which provides the query to execute:

@Ret ent i on(RUNTI MVE)
@rar get ({ METHOD})
@nterface Query {

String val ue();

And finally, the invocation handler, which simply takes the query, and executes it using JPA, returning the result:

class QueryHandl er {

@nject EntityManager em

@\r oundl nvoke
bj ect handl e(I nvocati onCont ext ctx) {
return em creat eQuery(ctx.get Met hod().get Annot ati on(Query. cl ass).value()).getResultList();

}

43

Chapter 14. Service Handler

Finally, we can define (any number of) interfaces which define our queries:

@ueryService
interface UserQuery {

@uery("select u fromUser u");
public List<User> getAll Users();

Finally, we can inject the query interface, and call methods, automatically executing the JPA query.

cl ass UserLi st Manager {
@ nj ect
User Query user Query;

Li st <User > users;
@Post Const ruct

void create() {
user s=user Query. get Al | Users();

44

	Weld Extensions
	Table of Contents
	Introduction
	Chapter 1. Getting Started
	Part I. Extensions and Utilities for Developers
	Chapter 2. Enhancements to the CDI Programming Model
	2.1. Preventing a class from being processed
	2.1.1. @Veto
	2.1.2. @Requires

	2.2. @Exact
	2.3. @Client
	2.4. Named packages

	Chapter 3. Annotation Literals
	Chapter 4. Evaluating Unified EL
	Chapter 5. Resource Loading
	5.1. Extending the resource loader

	Chapter 6. Logging

	Part II. Utilities for Framework Authors
	Chapter 7. Annotation and AnnotatedType Utilities
	7.1. Annotated Type Builder
	7.2. Annotation Instance Provider
	7.3. Annotation Inspector
	7.4. Synthetic Qualifiers
	7.5. Reflection Utilities

	Chapter 8. Obtaining a handle on the BeanManager
	Chapter 9. Bean Utilities
	Chapter 10. Properties
	10.1. Working with properties
	10.2. Querying for properties
	10.3. Property Criteria
	10.3.1. AnnotatedPropertyCriteria
	10.3.2. NamedPropertyCriteria
	10.3.3. TypedPropertyCriteria
	10.3.4. Creating a custom property criteria

	10.4. Fetching the results

	Part III. Configuration Extensions for Framework Authors
	Chapter 11. Unwrapping Producer Methods
	Chapter 12. Default Beans
	Chapter 13. Generic Beans
	13.1. Using generic beans
	13.2. Defining Generic Beans

	Chapter 14. Service Handler

