{brandname} 9.4 User Guide

Table of Contents

1. Introduction
1.1. What is {brandname} ?
1.2. Why use {brandname} ?
1.2.1. As a local cache
1.2.2. As a clustered cache
1.2.3. As a clustering building block for your applications
1.2.4. As a remote cache
1.2.5. As a data grid
1.2.6. As a geographical backup for your data
2. The Embedded CacheManager
2.1. Configuration
2.1.1. Configuring caches declaratively
2.1.2. Configuring caches programmatically
2.1.3. Configuration Migration Tools
2.1.4. Clustered Configuration
2.2. Obtaining caches
2.3. Clustering Information
2.3.1. Member Information
2.3.2. Other methods
3. The Cache API
3.1. The Cache interface
3.1.1. Performance Concerns of Certain Map Methods
3.1.2. Mortal and Immortal Data
3.1.3. Expiration and Mortal Data
3.1.4. putForExternalRead operation
3.2. The AdvancedCache interface
3.2.1. Flags
3.2.2. Custom Interceptors
3.3. Listeners and Notifications
3.3.1. Cache-level notifications
3.3.2. Cache manager-level notifications
3.3.3. Synchronicity of events
3.4. Asynchronous API
3.4.1. Why use such an API?
3.4.2. Which processes actually happen asynchronously?
3.4.3. Notifying futures
3.4.4. Further reading
3.5. Invocation Flags

N R W W NN R R R R) e

DN DN NN DN DN DN DN DNDNDNDNDN R == = = =) =)
G U1 U kR W W, O O O O O 0 0 00 00 oY O O U

3.5.1. Examples

3.6. Tree API Module

3.6.1. What is Tree API about?

3.6.2. Using the Tree API

3.6.3. Creating a Tree Cache

3.6.4. Manipulating data in a Tree Cache
3.6.5. Common Operations

3.6.6. Locking in the Tree API

3.6.7. Listeners for tree cache events

3.7. Functional Map API

3.7.1. Asynchronous and Lazy

3.7.2. Function transparency

3.7.3. Constructing Functional Maps
3.7.4. Read-Only Map API

3.7.5. Write-Only Map API

3.7.6. Read-Write Map API

3.7.7. Metadata Parameter Handling
3.7.8. Invocation Parameter

3.7.9. Functional Listeners

3.7.10. Marshalling of Functions
3.7.11. Use Cases for Functional API

3.8. Encoding

3.8.1. Overview

3.8.2. Default encoders

3.8.3. Overriding programmatically
3.8.4. Defining custom Encoders
3.8.5. MediaType

4, Eviction and Data Container

4.1. Enabling Eviction

4.1.1. Eviction strategy
4.1.2. Eviction types
4.1.3. Storage type
4.1.4. More defaults

4.2. Expiration

4.2.1. Difference between Eviction and Expiration

4.3. Expiration details

4.3.1. Maximum Idle Expiration

4.3.2. Configuration

4.3.3. Memory Based Eviction Configuration
4.3.4. Default values

4.3.5. Using expiration

26
26
27
27
27
28
29
30
31
31
31
32
32
32
33
35
36
38
39
42
45
45
45
46
47
47
49
53
53
53
54
54
54
35
56
56
56
57
58
58
39

4.4. Expiration designs

5. Persistence

5.1. Configuration
5.2. Cache Passivation

5.2.1. Limitations

5.2.2. Cache Loader Behavior with Passivation Disabled vs Enabled

5.3. Cache Loaders and transactional caches

5.4. Write-Through And Write-Behind Caching

5.4.1. Write-Through (Synchronous)
5.4.2. Write-Behind (Asynchronous)
5.4.3. Segmented Stores
5.5. Filesystem based cache stores
5.5.1. Single File Store
5.5.2. Soft-Index File Store
5.6. JDBC String based Cache Store
5.6.1. Connection management (pooling)
5.6.2. Sample configurations
5.7. Remote store
5.7.1. Segmentation support
5.7.2. Sample Usage
5.8. Cluster cache loader
5.9. Command-Line Interface cache loader
5.10. RocksDB Cache Store
5.10.1. Introduction
5.10.2. Segmentation support
5.10.3. Configuration
5.10.4. Additional References
5.11. LevelDB Cache Store
5.12. JPA Cache Store
5.12.1. Sample Usage
5.12.2. Configuration
5.12.3. Additional References
5.13. Custom Cache Stores
5.13.1. HotRod Deployment
5.14. Store Migrator
5.14.1. Migrating Cache Stores
5.14.2. Store Migrator Properties
5.15. SPI

5.16. More implementations

6. Clustering

6.1. Which cache mode should I use?

39
60
60
64
64
64
65
65
66
66
67
67
68
69
70
70
71
73
73
73
74
75
75
75
75
76
77
77
78
78
80
81
81
82
82
82
85
87
89
90
90

6.2. Local Mode
6.2.1. Simple Cache

6.3. Invalidation Mode

6.4. Replicated Mode

6.5. Distribution Mode
6.5.1. Read consistency
6.5.2. Key Ownership
6.5.3. Initial cluster size
6.5.4. L1 Caching
6.5.5. Server Hinting
6.5.6. Key affinity service
6.5.7. The Grouping API

6.6. Scattered Mode

6.7. Asynchronous Options
6.7.1. Asynchronous Communications
6.7.2. Asynchronous API
6.7.3. Return Values

6.8. Partition handling
6.8.1. Split brain
6.8.2. Successive nodes stopped
6.8.3. Conflict Manager
6.8.4. Usage
6.8.5. Configuring partition handling
6.8.6. Monitoring and administration

7. Marshalling

7.1. The Role Of JBoss Marshalling

7.2. Support For Non-Serializable Objects
7.2.1. Store As Binary

7.3. Advanced Configuration
7.3.1. Troubleshooting

7.4. User Defined Externalizers
7.4.1. Benefits of Externalizers
7.4.2. User Friendly Externalizers
7.4.3. Advanced Externalizers

8. Transactions

8.1. Configuring transactions

8.2. Isolation levels

8.3. Transaction locking
8.3.1. Pessimistic transactional cache
8.3.2. Optimistic transactional cache

8.3.3. What do I need - pessimistic or optimistic transactions?

91

91

92

95

97

99
100
102
102
104
104
106
109
110
110
110
110
111
112
114
115
116
117
118
120
120
120
121
122
122
126
126
127
128
134
135
137
137
137
138
138

8.4. Write Skews
8.4.1. Forcing write locks on keys in pessimitic transactions
8.5. Deadlock detection
8.6. Dealing with exceptions
8.7. Enlisting Synchronizations
8.8. Batching
8.8.1. API
8.8.2. Batching and JTA
8.9. Transaction recovery
8.9.1. When to use recovery
8.9.2. How does it work
8.9.3. Configuring recovery
8.9.4. Recovery cache
8.9.5. Integration with the transaction manager
8.9.6. Reconciliation
8.9.7. Want to know more?
8.10. Total Order based commit protocol
8.10.1. Overview
8.10.2. Configuration
8.10.3. When to use it?
9. Locking and Concurrency
9.1. Locking implementation details
9.1.1. How does it work in clustered caches?
9.1.2. Transactional caches
9.1.3. Isolation levels
9.1.4. The LockManager
9.1.5. Lock striping
9.1.6. Concurrency levels
9.1.7. Lock timeout
9.1.8. Consistency
9.2. Data Versioning
10. Executing code in the Grid
10.1. Cluster Executor
10.1.1. Filtering execution nodes
10.1.2. Timeout
10.1.3. Single Node Submission
10.1.4. Example: PI Approximation
10.2. Streams
10.2.1. Common stream operations
10.2.2. Key filtering
10.2.3. Segment based filtering

139
139
140
141
141
141
142
142
142
142
143
143
143
144
144
146
146
146
149
150
151
151
151
152
152
152
152
152
153
153
153
155
155
155
156
156
157
158
159
159
159

10.2.4. Local/Invalidation 159

10.2.5. Example 159
10.3. Distribution/Replication/Scattered 160
10.3.1. Rehash Aware 160
10.3.2. Serialization 160
10.3.3. Parallel Computation 163
10.3.4. Task timeout 164
10.3.5. Injection 164
10.3.6. Distributed Stream execution 164
10.3.7. Key based rehash aware operators 166
10.3.8. Intermediate operation exceptions 166
10.3.9. Examples 167
10.4. Locked Streams 170
10.5. Distributed Execution 170
10.5.1. DistributedCallable API 171
10.5.2. Callable and CDI 172
10.5.3. DistributedExecutorService, DistributedTaskBuilder and DistributedTask API 172
10.5.4. Distributed task failover 173
10.5.5. Distributed task execution policy 174
10.5.6. Examples 175
11. Indexing and Querying 177
11.1. Overview 177
11.2. Embedded Querying 177
11.2.1. Quick example 177
11.2.2. Indexing 180
11.2.3. Querying APIs 194
11.3. Remote Querying 212
11.3.1. Storing Protobuf encoded entities 212
11.3.2. Using annotations 215
11.3.3. Indexing of Protobuf encoded entries 216
11.3.4. A remote query example 216
11.4. Statistics 217
11.5. Performance Tuning 218
11.5.1. Batch writing in SYNC mode 218
11.5.2. Writing using async mode 218
11.5.3. Index reader async strategy 218
11.5.4. Lucene Options 219
12. Clustered Counters 220
12.1. Installation and Configuration 220
12.1.1. List counter names 223

12.2. The CounterManager interface. 223

12.2.1. Remove a counter via CounterManager
12.3. The Counter

12.3.1. The StrongCounter interface: when the consistency or bounds matters.

12.3.2. The WeakCounter interface: when speed is needed
12.4. Notifications and Events
13. Clustered Lock
13.1. Installation
13.2. ClusteredLock Configuration
13.2.1. Ownership
13.2.2. Reentrancy
13.3. ClusteredLockManager Interface
13.4. ClusteredLock Interface
13.4.1. Usage Examples
13.5. ClusteredLockManager Configuration
14. Multimap Cache
14.1. Installation and configuration
14.2. MultimapCache API
14.2.1. CompletableFuture<Void> put(K key, V value)
14.2.2. CompletableFuture<Collection<V>> get(K key)
14.2.3. CompletableFuture<Boolean> remove(K key)
14.2.4. CompletableFuture<Boolean> remove(K key, V value)
14.2.5. CompletableFuture<Void> remove(Predicate<? super V> p)
14.2.6. CompletableFuture<Boolean> containsKey(K key)
14.2.7. CompletableFuture<Boolean> containsValue(V value)
14.2.8. CompletableFuture<Boolean> containsEntry(K key, V value)
14.2.9. CompletableFuture<Long> size()
14.2.10. boolean supportsDuplicates()
14.3. Creating a Multimap Cache
14.3.1. Embedded mode
14.3.2. Server mode
14.4. Limitations
14.4.1. Support for duplicates
14.4.2. Eviction
14.4.3. Transactions
15. CDI Support
15.1. Maven Dependencies
15.2. Embedded cache integration
15.2.1. Inject an embedded cache
15.2.2. Override the default embedded cache manager and configuration
15.2.3. Configure the transport for clustered use

15.3. Remote cache integration

224
224
225
229
230
232
232
232
232
233
233
234
235
235
237
237
237
238
238
238
238
238
238
239
239
239
239
239
239
239
239
240
240
240
241
241
241
241
243
244
245

15.3.1. Inject a remote cache
15.3.2. Override the default remote cache manager
15.4. Use a custom remote/embedded cache manager for one or more cache
15.5. Use JCache caching annotations
15.6. Use Cache events and CDI
16. JCache (JSR-107) provider
16.1. Dependencies
16.2. Create alocal cache
16.3. Create a remote cache
16.4. Store and retrieve data
16.5. Comparing java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs
16.6. Clustering JCache instances
17. Management Tooling
17.1. JMX
17.1.1. Understanding The Exposed MBeans
17.1.2. Enabling JMX Statistics
17.1.3. Monitoring cluster health
17.1.4. Multiple JMX Domains
17.1.5. Registering MBeans In Non-Default MBean Servers
17.1.6. Available MBeans
17.2. Command-Line Interface (CLI)
17.2.1. Commands
17.2.2. upgrade
17.2.3. version
17.2.4. Data Types
17.2.5. Time Values
17.3. Hawt.io
17.4. Writing plugins for other management tools
18. Custom Interceptors
18.1. Adding custom interceptors declaratively
18.2. Adding custom interceptors programatically
18.3. Custom interceptor design
19. Running on Cloud Services
19.1. Generic Discovery protocols
19.1.1. TCPPing
19.1.2. GossipRouter
19.2. Amazon Web Services
19.2.1. S3_PING
19.2.2. JDBC_PING
19.3. Microsoft Azure
19.3.1. AZURE_PING

245
246
247
247
249
250
250
250
251
251
252
253
255
255
255
256
257
257
257
258
258
260
266
266
266
267
267
267
268
268
268
269
270
270
270
271
271
271
271
272
272

19.4. Google Compute Engine 272

19.4.1. GOOGLE_PING 272
19.5. Kubernetes and OpenShift 272
19.5.1. Using Kubernetes and OpenShift Rolling Updates 273
19.5.2. Rolling upgrades with Kubernetes and OpenShift 275
20. Client/Server 276
20.1. Why Client/Server? 276
20.2. Why use embedded mode? 280
20.3. Server Modules 280
20.4. Which protocol should I use? 281
20.5. Using Hot Rod Server 281
20.6. Hot Rod Protocol 282
20.6.1. Hot Rod Protocol 1.0 282
20.6.2. Hot Rod Protocol 1.1 298
20.6.3. Hot Rod Protocol 1.2 300
20.6.4. Hot Rod Protocol 1.3 302
20.6.5. Hot Rod Protocol 2.0 303
20.6.6. Hot Rod Protocol 2.1 311
20.6.7. Hot Rod Protocol 2.2 312
20.6.8. Hot Rod Protocol 2.3 313
20.6.9. Hot Rod Protocol 2.4 314
20.6.10. Hot Rod Protocol 2.5 317
20.6.11. Hot Rod Protocol 2.6 318
20.6.12. Hot Rod Protocol 2.7 322
20.6.13. Hot Rod Protocol 2.8 329
20.6.14. Hot Rod Protocol 2.9 330
20.6.15. Hot Rod Hash Functions 334
20.6.16. Hot Rod Admin Tasks 335
20.7. Java Hot Rod client 336
20.7.1. Configuration 336
20.7.2. Authentication 338
20.7.3. Encryption 342
20.7.4. Basic API 344
20.7.5. RemoteCache(.keySet | .entrySet|.values) 345
20.7.6. Remote Iterator 345
20.7.7. Versioned API 347
20.7.8. Async API 348
20.7.9. Streaming API 348
20.7.10. Creating Event Listeners 349
20.7.11. Removing Event Listeners 351

20.7.12. Filtering Events 351

20.7.13.
20.7.14.

20.7.15

Customizing Events

Filter and Custom Events

. Event Marshalling
20.7.16.
20.7.17.
20.7.18.
20.7.19.
20.7.20.
20.7.21.
20.7.22.
20.7.23.
20.7.24.
20.7.25.
20.7.26.
20.7.27.
20.7.28.
20.7.29.
20.7.30.
20.7.31.
20.7.32.
20.7.33.
20.7.34.

Listener State Handling
Listener Failure Handling
Near Caching

Unsupported methods

Return values

Hot Rod Transactions

Client Intelligence

Request Balancing

Persistent connections
Marshalling data

Reading data in different data formats
Statistics

Multi-Get Operations

Failover capabilities

Site Cluster Failover

Manual Site Cluster Switch
Monitoring the Hot Rod client
Concurrent Updates

Javadocs

20.8. REST Server
20.8.1. Running the REST server
20.8.2. Supported protocols
20.8.3. REST API
20.8.4. CORS
20.8.5. Client side code

20.9. Memcached Server
20.9.1. Client Encoding

20.9.2. Command Clarifications

20.9.3. Unsupported Features

20.9.4. Talking To {brandname} Memcached Servers From Non-Java Clients

20.10. Executing code in the Remote Grid

20.11. Scripting

20.11.1.
20.11.2.
20.11.3.
20.11.4.
20.11.5. Running Scripts using the Hot Rod Java client
20.11.6.

Installing scripts
Script metadata
Script bindings

Script parameters

Distributed execution

353
357
358
359
360
360
361
362
362
369
369
370
370
371
372
372
372
372
373
373
373
376
376
376
377
377
384
385
390
390
390
390
392
393
393
393
393
394
394
395
395

20.12. Server Tasks
21. Compatibility Mode
21.1. Enable Compatibility Mode
21.1.1. Optional: Configuring Compatibility Marshaller
21.2. Code examples
22. Protocol Interoperability
22.1. Considerations with Media Types and Endpoint Interoperability
22.2. REST, Hot Rod, and Memcached Interoperability with Text-Based Storage
22.3. REST, Hot Rod, and Memcached Interoperability with Custom Java Objects
22.4. Java and Non-Java Client Interoperability with Protobuf
22.5. Custom Code Interoperability
22.5.1. Converting Data On Demand
22.5.2. Storing Data as POJOs
22.6. Deploying Entity Classes
22.7. Trying the Interoperability Demo
23. Security
23.1. Embedded Security
23.1.1. Embedded Permissions
23.1.2. Embedded API
23.1.3. Embedded Configuration
23.2. Security Audit
23.3. Cluster security
24. Integrations
24.1. Apache Spark
24.2. Apache Hadoop
24.3. Apache Lucene
24.3.1. Lucene compatibility
24.3.2. Maven dependencies
24.3.3. How to use it
24.3.4. Configuration
24.3.5. Using a CacheLoader
24.3.6. Storing the index in a database
24.3.7. Loading an existing Lucene Index
24.3.8. Architectural limitations
24.3.9. Suggestions for optimal performance
24.3.10. Demo
24.3.11. Additional Links
24.4. Directory Provider for Hibernate Search
24.4.1. Maven dependencies
24.4.2. How to use it
24.4.3. Configuration

395
398
398
398
399
400
400
400
401
402
403
403
404
405
405
406
406
406
407
408
410
411
413
413
413
413
413
413
414
416
417
417
418
418
419
420
420
420
420
420
421

24.4.4. Architecture considerations
24.5. JPA/Hibernate 2L Cache
24.5.1. Deployment Scenarios
24.5.2. Configuration Reference
24.5.3. Cache Strategies
24.5.4. Using minimal puts
24.6. JPA / Hibernate OGM
24.7. Using {brandname} with Spring
24.7.1. Spring Boot Starter
24.7.2. Setting Up {brandname} as a Spring Cache Provider
24.7.3. Adding Caching to Your Application
24.7.4. Configuring Timeouts for Cache Operations
24.7.5. Externalizing Sessions Using Spring Session
24.8. {brandname} modules for WildFly / EAP
24.8.1. Installation
24.8.2. Application Dependencies
24.8.3. Usage
24.8.4. Troubleshooting
25. Grid File System
25.1. WebDAV demo
26. Cross site replication
26.1. Sample deployment
26.1.1. Local cluster’s jgroups .xml configuration
26.1.2. RELAY2 configuration file
26.2. Data replication
26.2.1. Non transactional caches
26.2.2. Transactional caches
26.3. Taking a site offline
26.3.1. Configuration
26.3.2. Bringing Sites Back Online
26.4. Pushing State Transfer to Sites
26.4.1. Handling join/leave nodes
26.4.2. Handling broken link between sites
26.4.3. System Administrator Operations
26.4.4. Configuration
26.5. Reference
27. Performing Rolling Upgrades
27.1. Setting Up a Target Cluster
27.2. Synchronizing Data from the Source Cluster
27.3. Custom Commands
27.3.1. An Example

421
421
423
426
432
433
433
435
435
435
437
438
439
442
442
442
445
448
449
450
451
451
454
454
455
455
455
456
456
457
457
458
458
458
459
460
461
461
462
463
463

27.3.2. Preassigned Custom Command Id Ranges
27.4. Extending the configuration builders and parsers
28. Architectural Overview
28.1. Cache hierarchy
28.2. Commands
28.3. Visitors
28.4. Interceptors
28.5. Putting it all together
28.6. Subsystem Managers
28.6.1. DistributionManager
28.6.2. TransactionManager
28.6.3. RpcManager
28.6.4. LockManager
28.6.5. PersistenceManager
28.6.6. DataContainer
28.6.7. Configuration
28.7. ComponentRegistry

464
464
465
465
465
466
466
467
467
467
467
467
467
467
467
468
468

Chapter 1. Introduction

Welcome to the official {brandname} user guide. This comprehensive document will guide you
through every last detail of {brandname}. Because of this, it can be a poor starting point if you are
new to {brandname}.

Q For newbies, starting with the Getting Started Guide or one of the Quickstarts is
probably a better bet.

The Frequently Asked Questions and Glossary are also useful documents to have alongside this user
guide.

1.1. What is {brandname} ?

{brandname} is a distributed in-memory key/value data store with optional schema, available
under the Apache License 2.0. It can be used both as an embedded Java library and as a language-
independent service accessed remotely over a variety of protocols (Hot Rod, REST, Memcached and
WebSockets). It offers advanced functionality such as transactions, events, querying and distributed
processing as well as numerous integrations with frameworks such as the JCache API standard, CD],
Hibernate, WildFly, Spring Cache, Spring Session, Lucene, Spark and Hadoop.

1.2. Why use {brandname} ?

1.2.1. As alocal cache

The primary use for {brandname} is to provide a fast in-memory cache of frequently accessed data.
Suppose you have a slow data source (database, web service, text file, etc): you could load some or
all of that data in memory so that it’s just a memory access away from your code. Using
{brandname} is better than using a simple ConcurrentHashMap, since it has additional useful
features such as expiration and eviction.

1.2.2. As a clustered cache

If your data doesn’t fit in a single node, or you want to invalidate entries across multiple instances
of your application, {brandname} can scale horizontally to several hundred nodes.

1.2.3. As a clustering building block for your applications

If you need to make your application cluster-aware, integrate {brandname} and get access to
features like topology change notifications, cluster communication and clustered execution.

1.2.4. As a remote cache

If you want to be able to scale your caching layer independently from your application, or you need
to make your data available to different applications, possibly even using different languages /
platforms, use {brandname} Server and its various clients.

../getting_started/getting_started.html
http://www.infinispan.org/documentation
../faqs/faqs.html
../glossary/glossary.html

1.2.5. As a data grid

Data you place in {brandname} doesn’t have to be temporary: use {brandname} as your primary
store and use its powerful features such as transactions, notifications, queries, distributed
execution, distributed streams, analytics to process data quickly.

1.2.6. As a geographical backup for your data

{brandname} supports replication between clusters, allowing you to backup your data across
geographically remote sites.

Chapter 2. The Embedded CacheManager

The CacheManager is {brandname}'s main entry point. You use a CacheManager to

 configure and obtain caches

* manage and monitor your nodes

 execute code across a cluster

* more...
Depending on whether you are embedding {brandname} in your application or you are using it
remotely, you will be dealing with either an EmbeddedCacheManager or a RemoteCacheManager. While
they share some methods and properties, be aware that there are semantic differences between

them. The following chapters focus mostly on the embedded implementation. For details on the
remote implementation refer to Hot Rod Java Client.

CacheManagers are heavyweight objects, and we foresee no more than one CacheManager being
used per JVM (unless specific setups require more than one; but either way, this would be a
minimal and finite number of instances).

The simplest way to create a CacheManager is:
EmbeddedCacheManager manager = new DefaultCacheManager();

which starts the most basic, local mode, non-clustered cache manager with no caches.
CacheManagers have a lifecycle and the default constructors also call start(). Overloaded versions
of the constructors are available, that do not start the CacheManager, although keep in mind that
CacheManagers need to be started before they can be used to create Cache instances.

Once constructed, CacheManagers should be made available to any component that require to
interact with it via some form of application-wide scope such as JNDI, a ServletContext or via some
other mechanism such as an IoC container.

When you are done with a CacheManager, you must stop it so that it can release its resources:
manager.stop();

This will ensure all caches within its scope are properly stopped, thread pools are shutdown. If the
CacheManager was clustered it will also leave the cluster gracefully.

2.1. Configuration

{brandname} offers both declarative and programmatic configuration.

#hotrod_java_client
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#start--

2.1.1. Configuring caches declaratively

Declarative configuration comes in a form of XML document that adheres to a provided
{brandname} configuration XML schema.

Every aspect of {brandname} that can be configured declaratively can also be configured
programmatically. In fact, declarative configuration, behind the scenes, invokes the programmatic
configuration API as the XML configuration file is being processed. One can even use a combination
of these approaches. For example, you can read static XML configuration files and at runtime
programmatically tune that same configuration. Or you can use a certain static configuration
defined in XML as a starting point or template for defining additional configurations in runtime.

There are two main configuration abstractions in {brandname}: global and cache.

Global configuration

Global configuration defines global settings shared among all cache instances created by a single
EmbeddedCacheManager. Shared resources like thread pools, serialization/marshalling settings,
transport and network settings, JMX domains are all part of global configuration.

Cache configuration

Cache configuration is specific to the actual caching domain itself: it specifies eviction, locking,
transaction, clustering, persistence etc. You can specify as many named cache configurations as you
need. One of these caches can be indicated as the default cache, which is the cache returned by the
CacheManager.getCache() API, whereas other named caches are retrieved via the
CacheManager.getCache(String name) API

Whenever they are specified, named caches inherit settings from the default cache while additional
behavior can be specified or overridden. {brandname} also provides a very flexible inheritance
mechanism, where you can define a hierarchy of configuration templates, allowing multiple caches
to share the same settings, or overriding specific parameters as necessary.

Embedded and Server configuration use different schemas, but we strive to
maintain them as compatible as possible so that you can easily migrate between
the two.

One of the major goals of {brandname} is to aim for zero configuration. A simple XML
configuration file containing nothing more than a single infinispan element is enough to get you
started. The configuration file listed below provides sensible defaults and is perfectly valid.

infinispan.xml
<infinispan />
However, that would only give you the most basic, local mode, non-clustered cache manager with

no caches. Non-basic configurations are very likely to use customized global and default cache
elements.

Declarative configuration is the most common approach to configuring {brandname} cache
instances. In order to read XML configuration files one would typically construct an instance of

http://www.infinispan.org/schemas/infinispan-config-9.4.xsd
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/manager/EmbeddedCacheManager.html

DefaultCacheManager by pointing to an XML file containing {brandname} configuration. Once the
configuration file is read you can obtain reference to the default cache instance.

EmbeddedCacheManager manager = new DefaultCacheManager("my-config-file.xml");
Cache defaultCache = manager.getCache();

or any other named instance specified in my-config-file.xml.

Cache someNamedCache = manager.getCache("someNamedCache");

The name of the default cache is defined in the <cache-container> element of the XML configuration
file, and additional caches can be configured using the <local-cache><distributed-cache>
,<invalidation-cache> or <replicated-cache> elements.

The following example shows the simplest possible configuration for each of the cache types
supported by {brandname}

<infinispan>
<cache-container default-cache="local">
<transport cluster="mycluster"/>
<local-cache name="local"/>
<invalidation-cache name="invalidation" mode="SYNC"/>
<replicated-cache name="repl-sync" mode="SYNC"/>
<distributed-cache name="dist-sync" mode="SYNC"/>
</cache-container>
</infinispan>

Cache configuration templates

As mentioned above, {brandname} supports the notion of configuration templates. These are full or
partial configuration declarations which can be shared among multiple caches or as the basis for
more complex configurations.

The following example shows how a configuration named local-template is used to define a cache
named local.

<infinispan>
<cache-container default-cache="local">
<!-- template confiqurations -->
<local-cache-configuration name="local-template">
<expiration interval="10000" 1ifespan="10" max-idle="10"/>
</local-cache-configuration>

<!-- cache definitions -->
<local-cache name="1local" configuration="1local-template" />
</cache-container>
</infinispan>

Templates can inherit from previously defined templates, augmenting and/or overriding some or
all of the configuration elements:

<infinispan>
<cache-container default-cache="local">
<!-- template confiqurations -->
<local-cache-configuration name="base-template">
<expiration interval="10000" 1ifespan="10" max-idle="10"/>
</local-cache-configuration>

<local-cache-configuration name="extended-template" configuration="base-

template">
<expiration lifespan="20"/>
<memory>
<object size="2000"/>
</memory>

</local-cache-configuration>

<!-- cache definitions -->
<local-cache name="local" configuration="base-template" />
<local-cache name="local-bounded" configuration="extended-template" />
</cache-container>
</infinispan>

In the above example, base-template defines a local cache with a specific expiration configuration.
The extended-template configuration inherits from base-template, overriding just a single parameter
of the expiration element (all other attributes are inherited) and adds a memory element. Finally,
two caches are defined: local which uses the base-template configuration and local-bounded which
uses the extended-template configuration.

Be aware that for multi-valued elements (such as properties) the inheritance is
A additive, i.e. the child configuration will be the result of merging the properties
from the parent and its own.

Cache configuration wildcards

An alternative way to apply templates to caches is to use wildcards in the template name, e.g.
basecache*. Any cache whose name matches the template wildcard will inherit that configuration.

<infinispan>
<cache-container>
<local-cache-configuration name="basecache*">
<expiration interval="10500" 1lifespan="11" max-idle="11"/>
</local-cache-configuration>
<local-cache name="basecache-1"/>
<local-cache name="basecache-2"/>
</cache-container>
</infinispan>

Above, caches basecache-1 and basecache-2 will use the basecache* configuration. The configuration
will also be applied when retrieving undefined caches programmatically.

O If a cache name matches multiple wildcards, i.e. it is ambiguous, an exception will
be thrown.

Declarative configuration reference

For more details on the declarative configuration schema, refer to the configuration reference. If
you are using XML editing tools for configuration writing you can use the provided {brandname}
schema to assist you.

2.1.2. Configuring caches programmatically

Programmatic {brandname} configuration is centered around the CacheManager and
ConfigurationBuilder API. Although every single aspect of {brandname} configuration could be set
programmatically, the most usual approach is to create a starting point in a form of XML
configuration file and then in runtime, if needed, programmatically tune a specific configuration to
suit the use case best.

EmbeddedCacheManager manager = new DefaultCacheManager("my-config-file.xml");
Cache defaultCache = manager.getCache();

Let’s assume that a new synchronously replicated cache is to be configured programmatically. First,
a fresh instance of Configuration object is created using ConfigurationBuilder helper object, and the
cache mode is set to synchronous replication. Finally, the configuration is defined/registered with a
manager.

http://docs.jboss.org/infinispan/9.4/configdocs
http://infinispan.org/schemas/infinispan-config-9.4.xsd

Configuration ¢ = new ConfigurationBuilder().clustering().cacheMode(CacheMode
.REPL_SYNC).build();

String newCacheName = "repl";
manager .defineConfiguration(newCacheName, c);
Cache<String, String> cache = manager.getCache(newCacheName);

The default cache configuration (or any other cache configuration) can be used as a starting point
for creation of a new cache. For example, lets say that infinispan-config-file.xml specifies a
replicated cache as a default and that a distributed cache is desired with a specific L1 lifespan while
at the same time retaining all other aspects of a default cache. Therefore, the starting point would
be to read an instance of a default Configuration object and use ConfigurationBuilder to construct
and modify cache mode and L1 lifespan on a new Configuration object. As a final step the
configuration is defined/registered with a manager.

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan-config-file.xml");
Configuration dcc = manager.getDefaultCacheConfiguration();

Configuration ¢ = new ConfigurationBuilder().read(dcc).clustering().cacheMode
(CacheMode.DIST_SYNC).11().lifespan(60000L).build();

String newCacheName = "distributedWithL1";
manager .defineConfiguration(newCacheName, c);
Cache<String, String> cache = manager.getCache(newCacheName);

As long as the base configuration is the default named cache, the previous code works perfectly
fine. However, other times the base configuration might be another named cache. So, how can new
configurations be defined based on other defined caches? Take the previous example and imagine
that instead of taking the default cache as base, a named cache called "replicatedCache" is used as
base. The code would look something like this:

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan-config-file.xml");
Configuration rc = manager.getCacheConfiguration("replicatedCache");

Configuration ¢ = new ConfiqurationBuilder().read(rc).clustering().cacheMode(
CacheMode .DIST_SYNC).11().1lifespan(60000L).build();

String newCacheName = "distributedWithL1";
manager .defineConfiguration(newCacheName, c);
Cache<String, String> cache = manager.getCache(newCacheName);

Refer to CacheManager , ConfigurationBuilder , Configuration , and GlobalConfiguration javadocs
for more details.

ConfigurationBuilder Programmatic Configuration API

While the above paragraph shows how to combine declarative and programmatic configuration,
starting from an XML configuration is completely optional. The ConfigurationBuilder fluent

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/manager/CacheManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/configuration/cache/ConfigurationBuilder.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/configuration/cache/Configuration.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/configuration/global/GlobalConfiguration.html

interface style allows for easier to write and more readable programmatic configuration. This
approach can be used for both the global and the cache level configuration. GlobalConfiguration
objects are constructed using GlobalConfigurationBuilder while Configuration objects are built
using ConfigurationBuilder. Let’s look at some examples on configuring both global and cache level
options with this API:

Configuring the transport

One of the most commonly configured global option is the transport layer, where you indicate how
an {brandname} node will discover the others:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder().transport()
.defaultTransport()
.clusterName("qa-cluster")
.addProperty("configurationFile", "jgroups-tcp.xml")
.machineId("qa-machine").rackId("qa-rack")
.build();

Using a custom JChannel

If you want to construct the JGroups JChannel by yourself, you can do so.

0 The JChannel must not be already connected.

GlobalConfigurationBuilder global = new GlobalConfigurationBuilder();
JChannel jchannel = new JChannel();

// Configure the jchannel to your needs.

JGroupsTransport transport = new JGroupsTransport(jchannel);
global.transport().transport(transport);

new DefaultCacheManager(global.build());

Enabling JMX MBeans and statistics

Sometimes you might also want to enable collection of global JMX statistics at cache manager level
or get information about the transport. To enable global JMX statistics simply do:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
.globalJmxStatistics()
.enable()
.build();

Please note that by not enabling (or by explicitly disabling) global JMX statistics your are just
turning off statistics collection. The corresponding MBean is still registered and can be used to
manage the cache manager in general, but the statistics attributes do not return meaningful values.

Further options at the global JMX statistics level allows you to configure the cache manager name

http://www.jgroups.org/manual4/index.html#JChannel
https://docs.jboss.org/infinispan/9.4/apidocs/jmxComponents.html

which comes handy when you have multiple cache managers running on the same system, or how
to locate the JMX MBean Server:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
.globalJmxStatistics()
.cacheManagerName("SalesCacheManager")
.mBeanServerLookup(new JBossMBeanServerLookup())
.build();

Configuring the thread pools

Some of the {brandname} features are powered by a group of the thread pool executors which can
also be tweaked at this global level. For example:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
.replicationQueueThreadPool()
.threadPoolFactory(ScheduledThreadPoolExecutorFactory.create())
.build();

You can not only configure global, cache manager level, options, but you can also configure cache
level options such as the cluster mode:

Configuration config = new ConfigurationBuilder()
.clustering()
.cacheMode(CacheMode.DIST_SYNC)
.sync()
L11() . lifespan(25000L)
.hash().numOwners(3)
.build();

Or you can configure eviction and expiration settings:

Configuration config = new ConfigurationBuilder()
.memory()
.51ze(20000)
.expiration()
.wakeUpInterval(5000L)
.maxIdle(120000L)
.build();

Configuring transactions and locking

An application might also want to interact with an {brandname} cache within the boundaries of JTA
and to do that you need to configure the transaction layer and optionally tweak the locking settings.
When interacting with transactional caches, you might want to enable recovery to deal with
transactions that finished with an heuristic outcome and if you do that, you will often want to

10

#eviction_anchor

enable JMX management and statistics gathering too:

Configuration config = new ConfigurationBuilder()

.locking()
.concurrencylLevel(10000).isolationLevel(IsolationLevel.REPEATABLE_READ)
.lockAcquisitionTimeout(12000L).useLockStriping(false).writeSkewCheck(true)
.versioning().enable().scheme(VersioningScheme.SIMPLE)

.transaction()
.transactionManagerLookup(new GenericTransactionManagerLookup())
.recovery()

.jmxStatistics()

.build();

Configuring cache stores

Configuring {brandname} with chained cache stores is simple too:

Configuration config = new ConfigurationBuilder()
.persistence().passivation(false)
.addSingleFileStore().location("/tmp").async().enable()
.preload(false).shared(false).threadPoolSize(20).build();

Advanced programmatic configuration

The fluent configuration can also be used to configure more advanced or exotic options, such as
advanced externalizers:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
.serialization()
.addAdvancedExternalizer (998, new PersonExternalizer())
.addAdvancedExternalizer (999, new AddressExternalizer())
.build();

Or, add custom interceptors:

Configuration config = new ConfigurationBuilder()
.customInterceptors().addInterceptor()
.interceptor(new FirstInterceptor()).position(InterceptorConfiguration.Position
.FIRST)
.interceptor(new LastInterceptor()).position(InterceptorConfiguration.Position
.LAST)
.interceptor(new FixPositionInterceptor()).index(8)
.interceptor(new AfterInterceptor()).after(NonTransactionallockingInterceptor
.class)
.interceptor(new BeforeInterceptor()).before(CallInterceptor.class)
.build();

11

For information on the individual configuration options, please check the configuration guide .

2.1.3. Configuration Migration Tools

The configuration format of {brandname} has changed since schema version 6.0 in order to align
the embedded schema with the one used by the server. For this reason, when upgrading to schema
7.x or later, you should use the configuration converter included in the all distribution. Simply
invoke it from the command-line passing the old configuration file as the first parameter and the
name of the converted file as the second parameter.

To convert on Unix/Linux/macOS:
bin/config-converter.sh oldconfig.xml newconfig.xml
on Windows:

bin\config-converter.bat oldconfig.xml newconfig.xml

Q If you wish to help write conversion tools from other caching systems, please
contact infinispan-dev.

2.1.4. Clustered Configuration

{brandname} uses JGroups for network communications when in clustered mode. {brandname}
ships with pre-configured JGroups stacks that make it easy for you to jump-start a clustered
configuration.

Using an external JGroups file

If you are configuring your cache programmatically, all you need to do is:

GlobalConfiguration gc = new GlobalConfigurationBuilder()
.transport().defaultTransport()
.addProperty("configurationFile", "jgroups.xml")
.build();

and if you happen to use an XML file to configure {brandname}, just use:

12

http://docs.jboss.org/infinispan/9.4/configdocs/
https://lists.jboss.org/mailman/listinfo/infinispan-dev
http://www.jgroups.org

<infinispan>
<jgroups>
<stack-file name="external-file" path="jgroups.xml"/>
</jgroups>
<cache-container default-cache="replicatedCache">
<transport stack="external-file" />
<replicated-cache name="replicatedCache"/>
</cache-container>

</infinispan>

In both cases above, {brandname} looks for jgroups.xml first in your classpath, and then for an
absolute path name if not found in the classpath.

Use one of the pre-configured JGroups files

{brandname} ships with a few different JGroups files (packaged in infinispan-core.jar) which
means they will already be on your classpath by default. All you need to do is specify the file name,
e.g., instead of jgroups.xml above, specify /default-configs/default-jgroups-tcp.xml.

The configurations available are:

* default-jgroups-udp.xml - Uses UDP as a transport, and UDP multicast for discovery. Usually
suitable for larger (over 100 nodes) clusters or if you are using replication or invalidation.
Minimises opening too many sockets.

 default-jgroups-tcp.xml - Uses TCP as a transport and UDP multicast for discovery. Better for
smaller clusters (under 100 nodes) only if you are using distribution, as TCP is more efficient as
a point-to-point protocol

* default-jgroups-ec2.xml - Uses TCP as a transport and S3_PING for discovery. Suitable on
Amazon EC2 nodes where UDP multicast isn’t available.

* default-jgroups-kubernetes.xml - Uses TCP as a transport and KUBE_PING for discovery. Suitable
on Kubernetes and OpenShift nodes where UDP multicast is not always available.

Tuning JGroups settings

The settings above can be further tuned without editing the XML files themselves. Passing in
certain system properties to your JVM at startup can affect the behaviour of some of these settings.
The table below shows you which settings can be configured in this way. E.g.,

$ java -cp ... -Djgroups.tcp.port=1234 -Djgroups.tcp.address=10.11.12.13

Table 1. default-jgroups-udp.xml

System Property Description Default Required?

13

#replicated_mode
#invalidation_mode
#distribution_mode
http://jgroups.org/manual/index.html#_s3_ping
http://aws.amazon.com/ec2/
https://github.com/jgroups-extras/jgroups-kubernetes
http://kubernetes.io/
https://www.openshift.org/

jgroups.udp.mcast_add
r

jgroups.udp.mcast_port

jgroups.udp.ip_ttl

IP address to use for 228.6.7.8
multicast (both for
communications and

discovery). Must be a

valid Class D IP

address, suitable for IP

multicast.

Port to use for 46655
multicast socket

Specifies the time-to- 2
live (TTL) for IP

multicast packets. The
value here refers to the
number of network

hops a packet is

allowed to make before

it is dropped

Table 2. default-jgroups-tcp.xml

System Property
jgroups.tcp.address

jgroups.tcp.port

jgroups.udp.mcast_add
r

jgroups.udp.mcast_port

jgroups.udp.ip_ttl

Description Default

IP address to use for 127.0.0.1
the TCP transport.

Port to use for TCP 7800
socket

IP address to use for 228.6.7.8
multicast (for

discovery). Must be a

valid Class D IP

address, suitable for IP

multicast.

Port to use for 46655
multicast socket

Specifies the time-to- 2
live (TTL) for IP

multicast packets. The
value here refers to the
number of network

hops a packet is

allowed to make before

it is dropped

Table 3. default-jgroups-ec2.xml

System Property
jgroups.tcp.address

jgroups.tcp.port

14

Description Default

IP address to use for 127.0.0.1
the TCP transport.

Port to use for TCP 7800
socket

No

No

No

Required?

No

No

No

No

No

Required?

No

No

http://compnetworking.about.com/od/workingwithipaddresses/l/aa042400b.htm
http://compnetworking.about.com/od/workingwithipaddresses/l/aa042400b.htm

jgroups.s3.access_key The Amazon S3 access No
key used to access an

S3 bucket
jgroups.s3.secret_access The Amazon S3 secret No
_key key used to access an

S3 bucket
jgroups.s3.bucket Name of the Amazon S3 No

bucket to use. Must be
unique and must
already exist

Table 4. default-jgroups-kubernetes.xml

System Property Description Default Required?
jgroups.tcp.address IP address to use for ethO No

the TCP transport.
jgroups.tcp.port Port to use for TCP 7800 No

socket

Further reading

JGroups also supports more system property overrides, details of which can be found on this page:
SystemProps

In addition, the JGroups configuration files shipped with {brandname} are intended as a jumping
off point to getting something up and running, and working. More often than not though, you will
want to fine-tune your JGroups stack further to extract every ounce of performance from your
network equipment. For this, your next stop should be the JGroups manual which has a detailed
section on configuring each of the protocols you see in a JGroups configuration file.

2.2. Obtaining caches

After you configure the CacheManager, you can obtain and control caches.

Invoke the getCache() method to obtain caches, as follows:
Cache<String, String> myCache = manager.getCache("myCache");

The preceding operation creates a cache named myCache, if it does not already exist, and returns it.

Using the getCache() method creates the cache only on the node where you invoke the method. In
other words, it performs a local operation that must be invoked on each node across the cluster.
Typically, applications deployed across multiple nodes obtain caches during initialization to ensure
that caches are symmetric and exist on each node.

Invoke the createCache() method to create caches dynamically across the entire cluster, as follows:

15

http://www.jgroups.org/manual4/index.html#SystemProperties
http://jgroups.org/manual/html/protlist.html
http://jgroups.org/manual/html/protlist.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getCache--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/manager/EmbeddedCacheManagerAdmin.html#createCache--

Cache<String, String> myCache = manager.administration().createCache("myCache",
"myTemplate");

The preceding operation also automatically creates caches on any nodes that subsequently join the
cluster.

Caches that you create with the createCache() method are ephemeral by default. If the entire cluster
shuts down, the cache is not automatically created again when it restarts.

Use the PERMANENT flag to ensure that caches can survive restarts, as follows:

Cache<String, String> myCache = manager.administration().withFlags(AdminFlag.
PERMANENT) .createCache("myCache", "myTemplate");

For the PERMANENT flag to take effect, you must enable global state and set a configuration storage
provider.

For more information about configuration storage providers, see
GlobalStateConfigurationBuilder#configurationStorage().

2.3. Clustering Information

The EmbeddedCacheManager has quite a few methods to provide information as to how the cluster is
operating. The following methods only really make sense when being used in a clustered
environment (that is when a Transport is configured).

2.3.1. Member Information

When you are using a cluster it is very important to be able to find information about membership
in the cluster including who is the owner of the cluster.

getMembers()

The getMembers() method returns all of the nodes in the current cluster.

getCoordinator()

The getCoordinator() method will tell you which one of the members is the coordinator of the
cluster. For most intents you shouldn’t need to care who the coordinator is. You can use
isCoordinator() method directly to see if the local node is the coordinator as well.

2.3.2. Other methods

getTransport()

This method provides you access to the underlying Transport that is used to send messages to other
nodes. In most cases a user wouldn’t ever need to go to this level, but if you want to get Transport
specific information (in this case JGroups) you can use this mechanism.

getStats()

16

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/configuration/global/GlobalStateConfigurationBuilder.html#configurationStorage-org.infinispan.globalstate.ConfigurationStorage-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getMembers--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getCoordinator--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#isCoordinator--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getTransport--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getStats--

The stats provided here are coalesced from all of the active caches in this manager. These stats can
be useful to see if there is something wrong going on with your cluster overall.

17

Chapter 3. The Cache API

3.1. The Cache interface

{brandname}'s Caches are manipulated through the Cache interface.

A Cache exposes simple methods for adding, retrieving and removing entries, including atomic
mechanisms exposed by the JDK’s ConcurrentMap interface. Based on the cache mode used,
invoking these methods will trigger a number of things to happen, potentially even including
replicating an entry to a remote node or looking up an entry from a remote node, or potentially a
cache store.

For simple usage, using the Cache API should be no different from using the JDK
ﬂ Map API, and hence migrating from simple in-memory caches based on a Map to
{brandname}'s Cache should be trivial.

3.1.1. Performance Concerns of Certain Map Methods

Certain methods exposed in Map have certain performance consequences when used with
{brandname}, such as size() , values() , keySet() and entrySet() . Specific methods on the keySet,
values and entrySet are fine for use please see their Javadoc for further details.

Attempting to perform these operations globally would have large performance impact as well as
become a scalability bottleneck. As such, these methods should only be used for informational or
debugging purposes only.

It should be noted that using certain flags with the withFlags method can mitigate some of these
concerns, please check each method’s documentation for more details.

For more performance tips, have a look at our Performance Guide.

3.1.2. Mortal and Immortal Data

Further to simply storing entries, {brandname}'s cache API allows you to attach mortality
information to data. For example, simply using put(key, value) would create an immortal entry, i.e.,
an entry that lives in the cache forever, until it is removed (or evicted from memory to prevent
running out of memory). If, however, you put data in the cache using put(key, value, lifespan,
timeunit) , this creates a mortal entry, i.e., an entry that has a fixed lifespan and expires after that
lifespan.

In addition to lifespan , {brandname} also supports maxldle as an additional metric with which to
determine expiration. Any combination of lifespans or maxIdles can be used.

3.1.3. Expiration and Mortal Data

See Expiration for more information about using mortal data with {brandname}.

18

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html#size--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html#values--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html#keySet--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html#entrySet--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
../performance_guide/performance_guide.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/BasicCache.html#put-K-V-long-java.util.concurrent.TimeUnit-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/BasicCache.html#put-K-V-long-java.util.concurrent.TimeUnit-
#expiration_anchor

3.1.4. putForExternalRead operation

{brandname}'s Cache class contains a different 'put' operation called putForExternalRead . This
operation is particularly useful when {brandname} is used as a temporary cache for data that is
persisted elsewhere. Under heavy read scenarios, contention in the cache should not delay the real
transactions at hand, since caching should just be an optimization and not something that gets in
the way.

To achieve this, putForExternalRead acts as a put call that only operates if the key is not present in
the cache, and fails fast and silently if another thread is trying to store the same key at the same
time. In this particular scenario, caching data is a way to optimise the system and it’s not desirable
that a failure in caching affects the on-going transaction, hence why failure is handled differently.
putForExternalRead is considered to be a fast operation because regardless of whether it’s
successful or not, it doesn’t wait for any locks, and so returns to the caller promptly.

To understand how to use this operation, let’s look at basic example. Imagine a cache of Person
instances, each keyed by a Personld , whose data originates in a separate data store. The following
code shows the most common pattern of using putForExternalRead within the context of this
example:

// 1d of the person to look up, provided by the application
Personld id = ...;

// Get a reference to the cache where person instances will be stored
Cache<PersonId, Person> cache = ...;

// First, check whether the cache contains the person instance
// associated with with the given id
Person cachedPerson = cache.get(id);

if (cachedPerson == null) {
// The person is not cached yet, so query the data store with the id
Person person = dataStore.lookup(id);

// Cache the person along with the id so that future requests can
// retrieve it from memory rather than going to the data store
cache.putForExternalRead(id, person);

} else {
// The person was found in the cache, so return it to the application
return cachedPerson;

Please note that putForExternalRead should never be used as a mechanism to update the cache
with a new Person instance originating from application execution (i.e. from a transaction that
modifies a Person’s address). When updating cached values, please use the standard put operation,
otherwise the possibility of caching corrupt data is likely.

19

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-

3.2. The AdvancedCache interface

In addition to the simple Cache interface, {brandname} offers an AdvancedCache interface, geared
towards extension authors. The AdvancedCache offers the ability to inject custom interceptors,
access certain internal components and to apply flags to alter the default behavior of certain cache
methods. The following code snippet depicts how an AdvancedCache can be obtained:

AdvancedCache advancedCache = cache.getAdvancedCache();

3.2.1. Flags

Flags are applied to regular cache methods to alter the behavior of certain methods. For a list of all
available flags, and their effects, see the Flag enumeration. Flags are applied using
AdvancedCache.withFlags() . This builder method can be used to apply any number of flags to a
cache invocation, for example:

advancedCache.withFlags(Flag.CACHE_MODE_LOCAL, Flag.SKIP_LOCKING)
.withFlags(Flag.FORCE_SYNCHRONOUS)
.put("hello", "world");

3.2.2. Custom Interceptors

The AdvancedCache interface also offers advanced developers a mechanism with which to attach
custom interceptors. Custom interceptors allow developers to alter the behavior of the cache API
methods, and the AdvancedCache interface allows developers to attach these interceptors
programmatically, at run-time. See the AdvancedCache Javadocs for more details.

For more information on writing custom interceptors, see Custom Interceptors.

3.3. Listeners and Notifications

{brandname} offers a listener API, where clients can register for and get notified when events take
place. This annotation-driven API applies to 2 different levels: cache level events and cache
manager level events.

Events trigger a notification which is dispatched to listeners. Listeners are simple POJO s annotated
with @Listener and registered using the methods defined in the Listenable interface.

Both Cache and CacheManager implement Listenable, which means you can attach
listeners to either a cache or a cache manager, to receive either cache-level or

cache manager-level notifications.

For example, the following class defines a listener to print out some information every time a new
entry is added to the cache:

20

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/AdvancedCache.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/context/Flag.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
#custom_interceptors_chapter
http://en.wikipedia.org/wiki/Plain_Old_Java_Object
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/notifications/Listener.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/notifications/Listenable.html

public class PrintWhenAdded {

public void print(CacheEntryCreatedEvent event) {
System.out.println("New entry " + event.getKey() + " created in the cache");

}

For more comprehensive examples, please see the Javadocs for @Listener.

3.3.1. Cache-level notifications

Cache-level events occur on a per-cache basis, and by default are only raised on nodes where the
events occur. Note in a distributed cache these events are only raised on the owners of data being
affected. Examples of cache-level events are entries being added, removed, modified, etc. These
events trigger notifications to listeners registered to a specific cache.

Please see the Javadocs on the org.infinispan.notifications.cachelistener.annotation package for a
comprehensive list of all cache-level notifications, and their respective method-level annotations.

Please refer to the Javadocs on the
org.infinispan.notifications.cachelistener.annotation package for the list of cache-
level notifications available in {brandname}.

Cluster Listeners

The cluster listeners should be used when it is desirable to listen to the cache events on a single
node.

To do so all that is required is set to annotate your listener as being clustered.

(clustered = true)
public class MyClusterListener { }

There are some limitations to cluster listeners from a non clustered listener.

1. A cluster listener can only listen to @CacheEntryModified, @CacheEntryCreated, @CacheEntryRemoved
and @CacheEntryExpired events. Note this means any other type of event will not be listened to
for this listener.

2. Only the post event is sent to a cluster listener, the pre event is ignored.

Event filtering and conversion

All applicable events on the node where the listener is installed will be raised to the listener. It is
possible to dynamically filter what events are raised by using a KeyFilter (only allows filtering on

21

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/notifications/Listener.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/filter/KeyFilter.html

keys) or CacheEventFilter (used to filter for keys, old value, old metadata, new value, new metadata,
whether command was retried, if the event is before the event (ie. isPre) and also the command

type).

The example here shows a simple KeyFilter that will only allow events to be raised when an event
modified the entry for the key Only Me.

public class SpecificKeyFilter implements KeyFilter<String> {
private final String keyToAccept;

public SpecificKeyFilter(String keyToAccept) {
if (keyToAccept == null) {
throw new NullPointerException();

}
this.keyToAccept = keyToAccept;

}

boolean accept(String key) {
return keyToAccept.equals(key);
}

cache.addListener(listener, new SpecificKeyFilter("Only Me"));

This can be useful when you want to limit what events you receive in a more efficient manner.

There is also a CacheEventConverter that can be supplied that allows for converting a value to
another before raising the event. This can be nice to modularize any code that does value
conversions.

The mentioned filters and converters are especially beneficial when used in
conjunction with a Cluster Listener. This is because the filtering and conversion is

0 done on the node where the event originated and not on the node where event is
listened to. This can provide benefits of not having to replicate events across the
cluster (filter) or even have reduced payloads (converter).

Initial State Events

When a listener is installed it will only be notified of events after it is fully installed.

It may be desirable to get the current state of the cache contents upon first registration of listener
by having an event generated of type @CacheEntryCreated for each element in the cache. Any
additionally generated events during this initial phase will be queued until appropriate events have
been raised.

22

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/notifications/cachelistener/filter/CacheEventFilter.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/notifications/cachelistener/filter/CacheEventConverter.html

ﬁ This only works for clustered listeners at this time. ISPN-4608 covers adding this
for non clustered listeners.

Duplicate Events

It is possible in a non transactional cache to receive duplicate events. This is possible when the
primary owner of a key goes down while trying to perform a write operation such as a put.

{brandname} internally will rectify the put operation by sending it to the new primary owner for
the given key automatically, however there are no guarantees in regards to if the write was first
replicated to backups. Thus more than 1 of the following write events (CacheEntryCreatedEvent,
CacheEntryModifiedEvent & CacheEntryRemovedEvent) may be sent on a single operation.

If more than one event is generated {brandname} will mark the event that it was generated by a
retried command to help the user to know when this occurs without having to pay attention to view
changes.

public class MyRetryListener {

public void entryModified(CacheEntryModifiedEvent event) {
if (event.isCommandRetried()) {
// Do something
}
}
}

Also when using a CacheEventFilter or CacheEventConverter the EventType contains a method
isRetry to tell if the event was generated due to retry.

3.3.2. Cache manager-level notifications

Cache manager-level events occur on a cache manager. These too are global and cluster-wide, but
involve events that affect all caches created by a single cache manager. Examples of cache
manager-level events are nodes joining or leaving a cluster, or caches starting or stopping.

Please see the Javadocs on the org.infinispan.notifications.cachemanagerlistener.annotation
package for a comprehensive list of all cache manager-level notifications, and their respective
method-level annotations.

3.3.3. Synchronicity of events

By default, all notifications are dispatched in the same thread that generates the event. This means
that you must write your listener such that it does not block or do anything that takes too long, as it
would prevent the thread from progressing. Alternatively, you could annotate your listener as
asynchronous , in which case a separate thread pool will be used to dispatch the notification and
prevent blocking the event originating thread. To do this, simply annotate your listener such:

23

https://issues.jboss.org/browse/ISPN-4608
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/notifications/cachelistener/filter/EventType.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/notifications/cachemanagerlistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/notifications/cachemanagerlistener/annotation/package-summary.html

@Listener (sync = false)
public class MyAsyncListener { }

Asynchronous thread pool

To tune the thread pool used to dispatch such asynchronous notifications, use the <listener-
executor /> XML element in your configuration file.

3.4. Asynchronous API

In addition to synchronous API methods like Cache.put() , Cache.remove() , etc., {brandname} also
has an asynchronous, non-blocking API where you can achieve the same results in a non-blocking
fashion.

These methods are named in a similar fashion to their blocking counterparts, with "Async"
appended. E.g., Cache.putAsync() , Cache.removeAsync() , etc. These asynchronous counterparts
return a Future containing the actual result of the operation.

For example, in a cache parameterized as Cache<String, String>, Cache.put(String key, String
value) returns a String. Cache.putAsync(String key, String value) would return a Future<String>.

3.4.1. Why use such an API?

Non-blocking APIs are powerful in that they provide all of the guarantees of synchronous
communications - with the ability to handle communication failures and exceptions - with the ease
of not having to block until a call completes. This allows you to better harness parallelism in your
system. For example:

Set<Future<?>> futures = new HashSet<Future<?>>();

futures.add(cache.putAsync(key1, valuel)); // does not block
futures.add(cache.putAsync(key2, value2)); // does not block
futures.add(cache.putAsync(key3, value3)); // does not block

// the remote calls for the 3 puts will effectively be executed

// in parallel, particularly useful if running in distributed mode
// and the 3 keys would typically be pushed to 3 different nodes
// in the cluster

// check that the puts completed successfully
for (Future<?> f: futures) f.get();

3.4.2. Which processes actually happen asynchronously?

There are 4 things in {brandname} that can be considered to be on the critical path of a typical
write operation. These are, in order of cost:

e network calls

24

http://docs.jboss.org/infinispan/9.4/configdocs/infinispan-config-9.4.html
http://docs.jboss.org/infinispan/9.4/configdocs/infinispan-config-9.4.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#remove-java.lang.Object-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/AsyncCache.html#putAsync-K-V-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/AsyncCache.html#removeAsync-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

* marshalling
* writing to a cache store (optional)

* locking

As of {brandname} 4.0, using the async methods will take the network calls and marshalling off the
critical path. For various technical reasons, writing to a cache store and acquiring locks, however,
still happens in the caller’s thread. In future, we plan to take these offline as well. See this
developer mail list thread about this topic.

3.4.3. Notifying futures

Strictly, these methods do not return JDK Futures, but rather a sub-interface known as a
NotifyingFuture . The main difference is that you can attach a listener to a NotifyingFuture such
that you could be notified when the future completes. Here is an example of making use of a
notifying future:

FuturelListener futurelListener = new FutureListener() {

public void futureDone(Future future) {
try {
future.qget();
} catch (Exception e) {
// Future did not complete successfully
System.out.println("Help!");

}
+

cache.putAsync("key", "value").attachListener(futurelListener);

3.4.4. Further reading

The Javadocs on the Cache interface has some examples on using the asynchronous API, as does
this article by Manik Surtani introducing the APL

3.5. Invocation Flags

An important aspect of getting the most of {brandname} is the use of per-invocation flags in order
to provide specific behaviour to each particular cache call. By doing this, some important
optimizations can be implemented potentially saving precious time and network resources. One of
the most popular usages of flags can be found right in Cache API, underneath the
putForExternalRead() method which is used to load an {brandname} cache with data read from an
external resource. In order to make this call efficient, {brandname} basically calls a normal put
operation passing the following flags: FAIL _SILENTLY , FORCE_ASYNCHRONOUS |,
ZERO_LOCK_ACQUISITION_TIMEOUT

What {brandname} is doing here is effectively saying that when putting data read from external

25

http://lists.jboss.org/pipermail/infinispan-dev/2010-January/002219.html
http://lists.jboss.org/pipermail/infinispan-dev/2010-January/002219.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/util/concurrent/NotifyingFuture.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html
http://infinispan.blogspot.com/2009/05/whats-so-cool-about-asynchronous-api.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/context/Flag.html#FAIL_SILENTLY
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/context/Flag.html#FORCE_ASYNCHRONOUS
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/context/Flag.html#ZERO_LOCK_ACQUISITION_TIMEOUT

read, it will use an almost-zero lock acquisition time and that if the locks cannot be acquired, it will
fail silently without throwing any exception related to lock acquisition. It also specifies that
regardless of the cache mode, if the cache is clustered, it will replicate asynchronously and so won’t
wait for responses from other nodes. The combination of all these flags make this kind of operation
very efficient, and the efficiency comes from the fact this type of putForExternalRead calls are used
with the knowledge that client can always head back to a persistent store of some sorts to retrieve
the data that should be stored in memory. So, any attempt to store the data is just a best effort and if
not possible, the client should try again if there’s a cache miss.

3.5.1. Examples

If you want to use these or any other flags available, which by the way are described in detail the
Flag enumeration , you simply need to get hold of the advanced cache and add the flags you need
via the withFlags() method call. For example:

Cache cache = ...

cache.getAdvancedCache()
.withFlags(Flag.SKIP_CACHE_STORE, Flag.CACHE_MODE_LOCAL)
.put("local”, "only");

It’s worth noting that these flags are only active for the duration of the cache operation. If the same
flags need to be used in several invocations, even if they’re in the same transaction, withFlags()
needs to be called repeatedly. Clearly, if the cache operation is to be replicated in another node, the
flags are carried over to the remote nodes as well.

Suppressing return values from a put() or remove()

Another very important use case is when you want a write operation such as put() to not return the
previous value. To do that, you need to use two flags to make sure that in a distributed
environment, no remote lookup is done to potentially get previous value, and if the cache is
configured with a cache loader, to avoid loading the previous value from the cache store. You can
see these two flags in action in the following example:

Cache cache = ...

cache.getAdvancedCache()
.withFlags(Flag.SKIP_REMOTE_LOOKUP, Flag.SKIP_CACHE_LOAD)
.put("local”, "only")

For more information, please check the Flag enumeration javadoc.

3.6. Tree API Module

{brandname}'s tree API module offers clients the possibility of storing data using a tree-structure
like API This API is similar to the one provided by JBoss Cache, hence the tree module is perfect for
those users wanting to migrate their applications from JBoss Cache to {brandname}, who want to
limit changes their codebase as part of the migration. Besides, it’s important to understand that

26

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/context/Flag.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/context/Flag.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/tree/package-summary.html
http://docs.jboss.org/jbosscache/3.2.1.GA/apidocs/org/jboss/cache/package-summary.html

{brandname} provides this tree API much more efficiently than JBoss Cache did, so if you’re a user
of the tree API in JBoss Cache, you should consider migrating to {brandname}.

3.6.1. What is Tree API about?

The aim of this API is to store information in a hierarchical way. The hierarchy is defined using
paths represented as Fqn or fully qualified names , for example: /this/is/a/fqn/path or /another/path .
In the hierarchy, there’s a special path called root which represents the starting point of all paths
and it’s represented as: /

Each FQN path is represented as a node where users can store data using a key/value pair style API
(i.e. a Map). For example, in /persons/john , you could store information belonging to John, for
example: surname=Smith, birthdate=05/02/1980...etc.

Please remember that users should not use root as a place to store data. Instead, users should
define their own paths and store data there. The following sections will delve into the practical
aspects of this API.

3.6.2. Using the Tree API

Dependencies

For your application to use the tree API, you need to import infinispan-tree.jar which can be located
in the {brandname} binary distributions, or you can simply add a dependency to this module in
your pom.xml:

pom.xml
<dependencies>

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-tree</artifactId>
<version>${version.infinispan}</version>
</dependency>

</dependencies>

Replace ${version.infinispan} with the appropriate version of {brandname}.

3.6.3. Creating a Tree Cache

The first step to use the tree API is to actually create a tree cache. To do so, you need to create an
{brandname} Cache as you’d normally do, and using the TreeCacheFactory , create an instance of
TreeCache . A very important note to remember here is that the Cache instance passed to the
factory must be configured with invocation batching. For example:

27

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/tree/Fqn.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/tree/TreeCacheFactory.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/tree/TreeCache.html

import org.infinispan.config.Configuration;
import org.infinispan.tree.TreeCacheFactory;
import org.infinispan.tree.TreeCache;

Configuration config = new Configuration();
config.setInvocationBatchingEnabled(true);

Cache cache = new DefaultCacheManager(config).getCache();
TreeCache treeCache = TreeCacheFactory.createTreeCache(cache);

3.6.4. Manipulating data in a Tree Cache
The Tree API effectively provides two ways to interact with the data:

Via TreeCache convenience methods: These methods are located within the TreeCache interface
and enable users to store, retrieve , move , remove ...etc data with a single call that takes the Fqn,
in String or Fgn format, and the data involved in the call. For example:

treeCache.put("/persons/john", "surname", "Smith");
Or:

import org.infinispan.tree.Fqn;

Fqn johnFgn = Fgn.fromString("persons/john");

Calendar calendar = Calendar.getInstance();
calendar.set(1980, 5, 2);

treeCache.put(johnFqn, "birthdate", calendar.getTime()));

Via Node API: It allows finer control over the individual nodes that form the FQN, allowing
manipulation of nodes relative to a particular node. For example:

import org.infinispan.tree.Node;

TreeCache treeCache = ...

Fqn johnFgn = Fgn.fromElements("persons”, "john");

Node<String, Object> john = treeCache.getRoot().addChild(johnFqn);
john.put("surname", "Smith");

Or:

Node persons = treeCache.getRoot().addChild(Fqn.fromString("persons"));
Node<String, Object> john = persons.addChild(Fgn.fromString("john"));
john.put("surname", "Smith");

28

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/tree/TreeCache.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/tree/TreeCache.html#put-java.lang.String-K-V-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/tree/TreeCache.html#get-org.infinispan.tree.Fqn-K-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/tree/TreeCache.html#move-org.infinispan.tree.Fqn-org.infinispan.tree.Fqn-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/tree/TreeCache.html#remove-org.infinispan.tree.Fqn-K-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/tree/Fqn.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/tree/Node.html

Or even:

Fqn personsFqn = Fgn.fromString("persons");

Fqn johnFgn = Fqn.fromRelative(personsFqn, Fqn.fromString("john"));
Node<String, Object> john = treeCache.getRoot().addChild(johnFqgn);
john.put("surname", "Smith");

A node also provides the ability to access its parent or children . For example:

Node<String, Object> john = ...
Node persons = john.getParent();

Or:

Set<Node<String, Object>> personsChildren = persons.getChildren();

3.6.5. Common Operations

In the previous section, some of the most used operations, such as addition and retrieval, have been
shown. However, there are other important operations that are worth mentioning, such as remove:

You can for example remove an entire node, i.e. /persons/john , using:
treeCache.removeNode("/persons/john");

Or remove a child node, i.e. persons that a child of root, via:
treeCache.getRoot().removeChild(Fgn.fromString("persons"));

You can also remove a particular key/value pair in a node:

Node john = treeCache.getRoot().getChild(Fqn.fromElements("persons”, "john"));
john.remove("surname");

Or you can remove all data in a node with:

Node john = treeCache.getRoot().getChild(Fqn.fromElements("persons”, "john"));
john.clearData();

Another important operation supported by Tree API is the ability to move nodes around in the tree.
Imagine we have a node called "john" which is located under root node. The following example is
going to show how to we can move "john" node to be under "persons" node:

29

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/tree/Node.html#getParent--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/tree/Node.html#getChildren--

Current tree structure:

/persons
/john

Moving trees from one FQN to another:

Node john = treeCache.getRoot().addChild(Fqn.fromString("john"));
Node persons = treeCache.getRoot().getChild(Fgn.fromString("persons"));
treeCache.move(john.getFgn(), persons.getFqn());

Final tree structure:

/persons/john

3.6.6. Locking in the Tree API

Understanding when and how locks are acquired when manipulating the tree structure is
important in order to maximise the performance of any client application interacting against the
tree, while at the same time maintaining consistency.

Locking on the tree API happens on a per node basis. So, if you’re putting or updating a key/value
under a particular node, a write lock is acquired for that node. In such case, no write locks are
acquired for parent node of the node being modified, and no locks are acquired for children nodes.

If you're adding or removing a node, the parent is not locked for writing. In JBoss Cache, this
behaviour was configurable with the default being that parent was not locked for insertion or
removal.

Finally, when a node is moved, the node that’s been moved and any of its children are locked, but
also the target node and the new location of the moved node and its children. To understand this
better, let’s look at an example:

Imagine you have a hierarchy like this and we want to move ¢/ to be underneath b/:

Qa— o — oo

The end result would be something like this:

30

a
® — N -

To make this move, locks would have been acquired on:

* /a/b - because it’s the parent underneath which the data will be put
* /c and /c/e - because they’re the nodes that are being moved

* /a/b/c and /a/b/c/e - because that’s new target location for the nodes being moved

3.6.7. Listeners for tree cache events

The current {brandname} listeners have been designed with key/value store notifications in mind,
and hence they do not map to tree cache events correctly. Tree cache specific listeners that map
directly to tree cache events (i.e. adding a child...etc) are desirable but these are not yet available. If
you’re interested in this type of listeners, please follow this issue to find out about any progress in
this area.

3.7. Functional Map API

{brandname} 8 introduces a new experimental API for interacting with your data which takes
advantage of the functional programming additions and improved asynchronous programming
capabilities available in Java 8.

{brandname}'s Functional Map API is a distilled map-like asynchronous API which uses functions to
interact with data.

3.7.1. Asynchronous and Lazy

Being an asynchronous API, all methods that return a single result, return a CompletableFuture
which wraps the result, so you can use the resources of your system more efficiently by having the
possibility to receive callbacks when the CompletableFuture has completed, or you can chain or
compose them with other CompletableFuture.

For those operations that return multiple results, the API returns instances of a Traversable
interface which offers a lazy pull-style API for working with multiple results. Traversable , being a
lazy pull-style API, can still be asynchronous underneath since the user can decide to work on the
traversable at a later stage, and the Traversable implementation itself can decide when to compute
those results.

31

https://issues.jboss.org/browse/ISPN-1935
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Traversable.html

3.7.2. Function transparency

Since the content of the functions is transparent to {brandname}, the API has been split into 3
interfaces for read-only (ReadOnlyMap), read-write (ReadWriteMap) and write-only (WriteOnlyMap)
operations respectively, in order to provide hints to the {brandname} internals on the type of work
needed to support functions.

3.7.3. Constructing Functional Maps

To construct any of the read-only, write-only or read-write map instances, an {brandname}
AdvancedCache is required, which is retrieved from the Cache Manager, and using the AdvancedCache ,
static method factory methods are used to create ReadOnlyMap , ReadWriteMap or WriteOnlyMap

import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.functional.impl.*;

AdvancedCache<String, String> cache = ...

FunctionalMapImpl<String, String> functionalMap = FunctionalMapImpl.create(cache);
ReadOnlyMap<String, String> readOnlyMap = ReadOnlyMapImpl.create(functionalMap);
WriteOnlyMap<String, String> writeOnlyMap = WriteOnlyMapImpl.create(functionalMap);
ReadWriteMap<String, String> readWriteMap = ReadWriteMapImpl.create(functionalMap);

At this stage, the Functional Map API is experimental and hence the way
A FunctionalMap, ReadOnlyMap, WriteOnlyMap and ReadWriteMap are constructed
is temporary.

3.7.4. Read-Only Map API
Read-only operations have the advantage that no locks are acquired for the duration of the

operation. Here’s an example on how to the equivalent operation for Map.get(K):

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadOnlyMap<String, String> readOnlyMap = ...
CompletableFuture<Optional<String>> readFuture = readOnlyMap.eval("key1",

ReadEntryView::find);
readFuture.thenAccept(System.out::println);

Read-only map also exposes operations to retrieve multiple keys in one go:

32

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/AdvancedCache.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/AdvancedCache.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#get-java.lang.Object-

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Traversable;

ReadOnlyMap<String, String> readOnlyMap = ...

Set<String> keys = new HashSet<>(Arrays.asList("key1", "key2"));
Traversable<String> values = readOnlyMap.evalMany(keys, ReadEntryView::get);
values.forEach(System.out::println);

Finally, read-only map also exposes methods to read all existing keys as well as entries, which
include both key and value information.

Read-Only Entry View

The function parameters for read-only maps provide the user with a read-only entry view to
interact with the data in the cache, which include these operations:

* key() method returns the key for which this function is being executed.

» find() returns a Java 8 Optional wrapping the value if present, otherwise it returns an empty
optional. Unless the value is guaranteed to be associated with the key, it’s recommended to use
find() to verify whether there’s a value associated with the key.

* get() returns the value associated with the key. If the key has no value associated with it, calling
get() throws a NoSuchElementException. get() can be considered as a shortcut of
ReadEntryView.find().get() which should be used only when the caller has guarantees that
there’s definitely a value associated with the key.

o findMetaParam(Class<T> type) allows metadata parameter information associated with the cache
entry to be looked up, for example: entry lifespan, last accessed time...etc. See Metadata
Parameter Handling to find out more.

3.7.5. Write-Only Map API

Write-only operations include operations that insert or update data in the cache and also removals.
Crucially, a write-only operation does not attempt to read any previous value associated with the
key. This is an important optimization since that means neither the cluster nor any persistence
stores will be looked up to retrieve previous values. In the main {brandname} Cache, this kind of
optimization was achieved using a local-only per-invocation flag, but the use case is so common
that in this new functional API, this optimization is provided as a first-class citizen.

Using write-only map API, an operation equivalent to javax.cache.Cache (JCache) 's void returning
put can be achieved this way, followed by an attempt to read the stored value using the read-only
map APL:

33

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#key--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#find--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#get--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html#findMetaParam-java.lang.Class-
#meta_parameter
#meta_parameter
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java#L194

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

WriteOnlyMap<String, String> writeOnlyMap = ...
ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", "valuel",
(v, view) -> view.set(v));

CompletableFuture<String> readFuture = writeFuture.thenCompose(r ->
readOnlyMap.eval("key1", ReadEntryView::get));

readFuture.thenAccept(System.out::println);

Multiple key/value pairs can be stored in one go using evalMany API:

WriteOnlyMap<String, String> writeOnlyMap = ...

Map<K, String> data = new HashMap<>();

data.put("key1", "valuel");

data.put("key2", "value2");

CompletableFuture<Void> writerAllFuture = writeOnlyMap.evalMany(data, (v, view) ->
view.set(v));

writerAllFuture.thenAccept(x -> "Write completed");

To remove all contents of the cache, there are two possibilities with different semantics. If using
evalAll each cached entry is iterated over and the function is called with that entry’s information.
Using this method also results in listeners being invoked. See functional listeners for more
information.

WriteOnlyMap<String, String> writeOnlyMap = ...
CompletableFuture<Void> removeAllFuture = writeOnlyMap.evalAll(WriteEntryView::remove

)

removeAllFuture.thenAccept(x -> "All entries removed");

The alternative way to remove all entries is to call truncate operation which clears the entire cache
contents in one go without invoking any listeners and is best-effort:

WriteOnlyMap<String, String> writeOnlyMap = ...

CompletableFuture<Void> truncateFuture = writeOnlyMap.truncate();
truncateFuture.thenAccept(x -> "Cache contents cleared");

Write-Only Entry View

The function parameters for write-only maps provide the user with a write-only entry view to
modify the data in the cache, which include these operations:

34

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#evalMany-java.util.Map-java.util.function.BiConsumer-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#evalAll-java.util.function.Consumer-
#functional_listeners
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#truncate--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html

e set(V, MetaParam.Writable:::) method allows for a new value to be associated with the cache
entry for which this function is executed, and it optionally takes zero or more metadata
parameters to be stored along with the value. See Metadata Parameter Handling for more
information.

* remove() method removes the cache entry, including both value and metadata parameters
associated with this key.

3.7.6. Read-Write Map API

The final type of operations we have are readwrite operations, and within this category CAS-like
(CompareAndSwap) operations can be found. This type of operations require previous value
associated with the key to be read and for locks to be acquired before executing the function. The
vast majority of operations within ConcurrentMap and JCache APIs fall within this category, and they
can easily be implemented using the read-write map API . Moreover, with read-write map API, you
can make CASlike comparisons not only based on value equality but based on metadata parameter
equality such as version information, and you can send back previous value or boolean instances to
signal whether the CASlike comparison succeeded.

Implementing a write operation that returns the previous value associated with the cache entry is
easy to achieve with the read-write map API:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadWriteMap<String, String> readWriteMap = ...

CompletableFuture<Optional<String>> readWriteFuture = readWriteMap.eval("key1",
"valuel",
(v, view) -> {
Optional<V> prev = rw.find();
view.set(v);
return prev;

)
readWriteFuture.thenAccept(System.out::println);

ConcurrentMap.replace(K, V, V) is a replace function that compares the value present in the map
and if it’s equals to the value passed in as first parameter, the second value is stored, returning a
boolean indicating whether the replace was successfully completed. This operation can easily be
implemented using the read-write map API:

35

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
#meta_parameter
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#remove--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-

ReadWriteMap<String, String> readWriteMap = ...

String oldValue = "old-value";
CompletableFuture<Boolean> replaceFuture = readWriteMap.eval("key1", "valuel”, (v,
view) -> {
return view.find().map(prev -> {
if (prev.equals(oldValue)) {
rw.set(v);
return true; // previous value present and equals to the expected one

}

return false; // previous value associated with key does not match
}).orElse(false); // no value associated with this key
};

replaceFuture.thenAccept(replaced -> System.out.printf("Value was replaced? %s%n",
replaced));

O The function in the example above captures oldValue which is an external value to
the function which is valid use case.

Read-write map API contains evalMany and evalAll operations which behave similar to the write-
only map offerings, except that they enable previous value and metadata parameters to be read.

Read-Write Entry View

The function parameters for read-write maps provide the user with the possibility to query the
information associated with the key, including value and metadata parameters, and the user can
also use this read-write entry view to modify the data in the cache.

The operations are exposed by read-write entry views are a union of the operations exposed by
read-only entry views and write-only entry views.

3.7.7. Metadata Parameter Handling

Metadata parameters provide extra information about the cache entry, such as version
information, lifespan, last accessed/used time...etc. Some of these can be provided by the user, e.g.
version, lifespan...etc, but some others are computed internally and can only be queried, e.g. last
accessed/used time.

The functional map API provides a flexible way to store metadata parameters along with an cache
entry. To be able to store a metadata parameter, it must extend MetaParam.Writable interface, and
implement the methods to allow the internal logic to extra the data. Storing is done via the set(V,
MetaParam.Writable::-) method in the write-only entry view or read-write entry view function
parameters.

Querying metadata parameters is available via the findMetaParam(Class) method available via read-
write entry view or read-only entry views or function parameters.

Here is an example showing how to store metadata parameters and how to query them:

36

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/EntryView.ReadWriteEntryView.html
#read_only_entry_view
#write_only_entry_view
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/MetaParam.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html
#write_only_entry_view
#read_write_entry_view
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html#findMetaParam-java.lang.Class-
#read_write_entry_view
#read_write_entry_view
#read_only_entry_view

import java.time.Duration;

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.MetaParam.*;

WriteOnlyMap<String, String> writeOnlyMap = ...
ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", "valuel",
(v, view) -> view.set(v, new Metalifespan(Duration.ofHours(1).toMillis())));
CompletableFuture<Metalifespan> readFuture = writeFuture.thenCompose(r ->
readOnlyMap.eval("key1", view -> view.findMetaParam(Metalifespan.class).get()));
readFuture.thenAccept(System.out::println);

If the metadata parameter is generic, for example MetaEntryVersion<T> , retrieving the metadata
parameter along with a specific type can be tricky if using .class static helper in a class because it
does not return a Class<T> but only (Class, and hence any generic information in the class is lost:

ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<String> readFuture = readOnlyMap.eval("key1", view -> {
// 1f caller depends on the typed information, this is not an ideal way to retrieve
it
// If the caller does not depend on the specific type, this works just fine.
Optional<MetaEntryVersion> version = view.findMetaParam(MetaEntryVersion.class);
return view.get();

1

When generic information is important the user can define a static helper method that coerces the
static class retrieval to the type requested, and then use that helper method in the call to
findMetaParam:

class MetaEntryVersion<T> implements MetaParam.Writable<EntryVersion<T>> {

public static <T> T type() { return (T) MetaEntryVersion.class; }

}
ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<String> readFuture = readOnlyMap.eval("key1", view -> {
// The caller wants quarantees that the metadata parameter for version is numeric
// e.g. to query the actual version information
Optional<MetaEntryVersion<Long>> version = view.findMetaParam(MetaEntryVersion.
type());
return view.get();

1)

37

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/MetaParam.MetaEntryVersion.html

Finally, users are free to create new instances of metadata parameters to suit their needs. They are
stored and retrieved in the very same way as done for the metadata parameters already provided
by the functional map API.

3.7.8. Invocation Parameter

Per-invocation parameters are applied to regular functional map API calls to alter the behaviour of
certain aspects. Adding per invocation parameters is done using the withParams(Param<?>::+)
method.

Param.FutureMode tweaks whether a method returning a CompletablefFuture will span a thread to
invoke the method, or instead will use the caller thread. By default, whenever a call is made to a
method returning a CompletableFuture , a separate thread will be span to execute the method
asynchronously. However, if the caller will immediately block waiting for the CompletableFuture to
complete, spanning a different thread is wasteful, and hence Param.FutureMode.COMPLETED can be
passed as per-invocation parameter to avoid creating that extra thread. Example:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Param.*;

ReadOnlyMap<String, String> readOnlyMap = ...

ReadOnlyMap<String, String> readOnlyMapCompleted = readOnlyMap.withParams(FutureMode
.COMPLETED);

Optional<String> readFuture = readOnlyMapCompleted.eval("key1", ReadEntryView::find)

.get();

Param.PersistenceMode controls whether a write operation will be propagated to a persistence
store. The default behaviour is for all write-operations to be propagated to the persistence store if
the cache is configured with a persistence store. By passing PersistenceMode.SKIP as parameter, the
write operation skips the persistence store and its effects are only seen in the in-memory contents
of the cache. PersistenceMode.SKIP can be used to implement an Cache.evict() method which
removes data from memory but leaves the persistence store untouched:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Param.*;

WriteOnlyMap<String, String> writeOnlyMap = ...

WriteOnlyMap<String, String> skiPersistMap = writeOnlyMap.withParams(PersistenceMode
.SKIP);

CompletableFuture<Void> removeFuture = skiPersistMap.eval("key1", WriteEntryView:
:remove);

Note that there’s no need for another PersistenceMode option to skip reading from the persistence
store, because a write operation can skip reading previous value from the store by calling a write-
only operation via the WriteOnlyMap.

38

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Param.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Param.FutureMode.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Param.FutureMode.html#COMPLETED
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html#evict-K-

Finally, new Param implementations are normally provided by the functional map API since they
tweak how the internal logic works. So, for the most part of users, they should limit themselves to
using the Param instances exposed by the API. The exception to this rule would be advanced users
who decide to add new interceptors to the internal stack. These users have the ability to query
these parameters within the interceptors.

3.7.9. Functional Listeners

The functional map offers a listener API, where clients can register for and get notified when events
take place. These notifications are post-event, so that means the events are received after the event
has happened.

The listeners that can be registered are split into two categories: write listeners and read-write
listeners.

Write Listeners

Write listeners enable user to register listeners for any cache entry write events that happen in
either a read-write or write-only functional map.

Listeners for write events cannot distinguish between cache entry created and cache entry
modify/update events because they don’t have access to the previous value. All they know is that a
new non-null entry has been written.

However, write event listeners can distinguish between entry removals and cache entry
create/modify-update events because they can query what the new entry’s value via
ReadEntryView.find() method.

Adding a write listener is done via the WriteListeners interface which is accessible via both
ReadWriteMap.listeners() and WriteOnlyMap.listeners() method.

A write listener implementation can be defined either passing a function to
onWrite(Consumer<ReadEntryView<K, V>>) method, or passing a WriteListener implementation to
add(WritelListener<K, V>) method. Either way, all these methods return an AutoCloseable instance
that can be used to de-register the function listener:

39

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#find--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html#listeners--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#listeners--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html#onWrite-java.util.function.Consumer-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html#add-org.infinispan.commons.api.functional.Listeners.WriteListeners.WriteListener-
https://docs.oracle.com/javase/8/docs/api/java/lang/AutoCloseable.html

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Listeners.WritelListeners.WritelListener;

WriteOnlyMap<String, String> woMap = ...

AutoCloseable writeFunctionCloseHandler = woMap.listeners().onWrite(written -> {
// ‘written' is a ReadEntryView of the written entry
System.out.printf("Written: %s%n", written.get());

3

AutoCloseable writeCloseHanlder = woMap.listeners().add(new WritelListener<String,
String>() {
@0verride
public void onWrite(ReadEntryView<K, V> written) {
System.out.printf("Written: %s%n", written.get());

}
1

// Either wrap handler in a try section to have it auto close...
try(writeFunctionCloseHandler) {
// Write entries using read-write or write-only functional map API

}
// Or close manually

writeCloseHanlder.close();

Read-Write Listeners

Read-write listeners enable users to register listeners for cache entry created, modified and
removed events, and also register listeners for any cache entry write events.

Entry created, modified and removed events can only be fired when these originate on a read-write
functional map, since this is the only one that guarantees that the previous value has been read,
and hence the differentiation between create, modified and removed can be fully guaranteed.

Adding a read-write listener is done via the ReadWiritelListeners interface which is accessible via
ReadWriteMap.listeners() method.

If interested in only one of the event types, the simplest way to add a listener is to pass a function to
either onCreate , onModify or onRemove methods. All these methods return an AutoCloseable instance
that can be used to de-register the function listener:

40

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html#listeners--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onCreate-org.infinispan.commons.api.functional.EntryView.ReadEntryView-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onModify-org.infinispan.commons.api.functional.EntryView.ReadEntryView-org.infinispan.commons.api.functional.EntryView.ReadEntryView-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onRemove-org.infinispan.commons.api.functional.EntryView.ReadEntryView-

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadWriteMap<String, String> rwMap = ...

AutoCloseable createClose = rwMap.listeners().onCreate(created -> {
// ‘created’ is a ReadEntryView of the created entry
System.out.printf("Created: %s%n", created.get());

19K

AutoCloseable modifyClose = rwMap.listeners().onModify((before, after) -> {
// ‘before' is a ReadEntryView of the entry before update
// ‘after’ is a ReadEntryView of the entry after update
System.out.printf("Before: %s%n", before.get());
System.out.printf("After: %s%n", after.get());

3

AutoCloseable removeClose = rwMap.listeners().onRemove(removed -> {
// ‘removed' is a ReadEntryView of the removed entry
System.out.printf("Removed: %s%n", removed.get());

3

AutoCloseable writeClose = woMap.listeners().onWrite(written -> {
// ‘written' is a ReadEntryView of the written entry
System.out.printf("Written: %s%n", written.get());

1)

// Either wrap handler in a try section to have it auto close...
try(createClose) {
// Create entries using read-write functional map API

}
// Or close manually

modifyClose.close();

If listening for two or more event types, it's better to pass in an implementation of
ReadWritelistener interface via the ReadWritelisteners.add() method. ReadWritelListener offers the
same onCreate/onModify/onRemove callbacks with default method implementations that are empty:

41

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.WriteListener.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html#add-org.infinispan.commons.api.functional.Listeners.ReadWriteListeners.ReadWriteListener-

import org.infinispan.commons.api.functional.EntryView.*;

import org.infinispan.commons.api.functional.FunctionalMap.*;

import
org.infinispan.commons.api.functional.Listeners.ReadWritelisteners.ReadWritelistener;

ReadWriteMap<String, String> ruwMap = ...
AutoCloseable readWriteClose = rwMap.listeners.add(new ReadWritelistener<String,
String>() {

public void onCreate(ReadEntryView<String, String> created) {
System.out.printf("Created: %s%n", created.get());
}

public void onModify(ReadEntryView<String, String> before, ReadEntryView<String,
String> after) {
System.out.printf("Before: %s%n", before.get());
System.out.printf("After: %s%n", after.get());

}

public void onRemove(ReadEntryView<String, String> removed) {
System.out.printf("Removed: %s%n", removed.get());
}
)i

AutoCloseable writeClose = rwMap.listeners.add(new WriteListener<String, String>() {

public void onWrite(ReadEntryView<K, V> written) {
System.out.printf("Written: %s%n", written.qget());

}
)

// Either wrap handler in a try section to have it auto close...
try(readWriteClose) {
// Create/update/remove entries using read-write functional map API

}
// Or close manually

writeClose.close();

3.7.10. Marshalling of Functions

Running functional map in a cluster of nodes involves marshalling and replication of the operation
parameters under certain circumstances.

To be more precise, when write operations are executed in a cluster, regardless of read-write or
write-only operations, all the parameters to the method and the functions are replicated to other
nodes.

42

There are multiple ways in which a function can be marshalled. The simplest way, which is also the
most costly option in terms of payload size, is to mark the function as Serializable:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

WriteOnlyMap<String, String> writeOnlyMap

// Force a function to be Serializable
Consumer<WriteEntryView<String>> function
(Consumer<WriteEntryView<String>> & Serializable) wv -> wv.set("one");

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", function);

{brandname} provides overloads for all functional methods that make lambdas passed directly to
the API serializable by default; the compiler automatically selects this overload if that’s possible.
Therefore you can call

WriteOnlyMap<String, String> writeOnlyMap = ...
CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", wv -> wv.set("one"));

without doing the cast described above.

A more economical way to marshall a function is to provide an {brandname} Externalizer for it:

43

https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/marshall/Externalizer.html

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.marshall.Externalizer;

import org.infinispan.commons.marshall.SerializeFunctionWith;

WriteOnlyMap<String, String> writeOnlyMap = ...

// Force a function to be Serializable
Consumer<WriteEntryView<String>> function = new SetStringConstant<>();
CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", function);

(value = SetStringConstant.Externalizer@.class)
class SetStringConstant implements Consumer<WriteEntryView<String>> {

public void accept(WriteEntryView<String> view) {
view.set("valuel");

}

public static final class Externalizer® implements Externalizer<Object> {
public void writeObject(ObjectOutput oo, Object o) {
// No-op
}
public Object readObject(ObjectInput input) {
return new SetStringConstant<>();

}

To help users take advantage of the tiny payloads generated by Externalizer-based functions, the
functional API comes with a helper class called
org.infinispan.commons.marshall.MarshallableFunctions which provides marshallable functions for
some of the most commonly user functions.

In fact, all the functions required to implement ConcurrentMap and JCache using the functional map
API have been defined in MarshallableFunctions. For example, here is an implementation of
JCache’s boolean putIfAbsent(K, V) using functional map API which can be run in a cluster:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.marshall.MarshallableFunctions;

ReadWriteMap<String, String> readWriteMap = ...
CompletableFuture<Boolean> future = readWriteMap.eval("key1,

MarshallableFunctions.setValuelfAbsentReturnBoolean());
future.thenAccept(stored -> System.out.printf("Value was put? %s%n", stored));

44

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/marshall/MarshallableFunctions.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/marshall/MarshallableFunctions.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java#L283

3.7.11. Use Cases for Functional API

This new API is meant to complement existing Key/Value {brandname} API offerings, so you’ll still
be able to use ConcurrentMap or JCache standard APIs if that’s what suits your use case best.

The target audience for this new API is either:

* Distributed or persistent caching/inmemorydatagrid users that want to benefit from
CompletableFuture and/or Traversable for async/lazy data grid or caching data manipulation.
The clear advantage here is that threads do not need to be idle waiting for remote operations to
complete, but instead these can be notified when remote operations complete and then chain
them with other subsequent operations.

» Users who want to go beyond the standard operations exposed by ConcurrentMap and JCache, for
example, if you want to do a replace operation using metadata parameter equality instead of
value equality, or if you want to retrieve metadata information from values and so on.

3.8. Encoding

3.8.1. Overview

Encoding is the data conversion operation done by {brandname} caches before storing data, and
when reading back from storage.

It allows dealing with a certain data format during API calls (map, listeners, stream, etc) while the
format effectively stored is different.

The data conversions are handled by instances of org.infinispan.commons.dataconversion.Encoder :

45

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java

public interface Encoder {

/**

* Convert data in the read/write format to the storage format.
*
* @param content data to be converted, never null.
* @return Object in the storage format.
*/
Object toStorage(Object content);

/**

* Convert from storage format to the read/write format.
*

* @param content data as stored in the cache, never null.
* @return data in the read/write format
*/

Object fromStorage(Object content);

/**
* Returns the {@link MediaType} produced by this encoder or null if the storage
format is not known.
*/
MediaType getStorageFormat();
}

3.8.2. Default encoders

{brandname} automatically picks the Encoder depending on the cache configuration. The table
below shows which internal Encoder is used for several configurations:

Mode Configuration Encoder Description
Embedded/Server Default IdentityEncoder Passthrough encoder,
no conversion done
Embedded StorageType.OFF_HEAP GlobalMarshallerEncod Use the {brandname}
er internal marshaller to
convert to byte[]. May
delegate to the

configured marshaller
in the cache manager.

Embedded StorageType.BINARY BinaryEncoder Use the {brandname}
internal marshaller to
convert to byte[],
except for primitives
and String.

Server StorageType.OFF_HEAP IdentityEncoder Store byte[]s directly as
received by remote
clients

46

#store_binary

3.8.3. Overriding programmatically

Is is possible to override programmatically the encoding used for both keys and values, by calling
the .withEncoding() method variants from AdvancedCache.

Example, consider the following cache configured as OFF_HEAP:

// Read and write P0JO, storage will be byte[] since for
// OFF_HEAP the GlobalMarshallerEncoder is used internally:
cache.put(1, new Pojo())

Pojo value = cache.get(1)

// Get the content in its stored format by overriding

// the internal encoder with a no-op encoder (IdentityEncoder)

Cache<?,?> rawContent = cache.getAdvancedCache().withValueEncoding(IdentityEncoder
.class)

byte[] marshalled = rawContent.get(1)

The override can be useful if any operation in the cache does not require decoding, such as
counting number of entries, or calculating the size of byte[] of an OFF_HEAP cache.

3.8.4. Defining custom Encoders

A custom encoder can be registered in the EncoderRegistry.

' Ensure that the registration is done in every node of the cluster, before starting the
— caches.

Consider a custom encoder used to compress/decompress with gzip:

public class GzipEncoder implements Encoder {

@0verride

public Object toStorage(Object content) {
assert content instanceof String;
return compress(content.toString());

}

@0verride

public Object fromStorage(Object content) {
assert content instanceof byte[];
return decompress((byte[]) content);

}

private byte[] compress(String str) {
try (ByteArrayOutputStream baos = new ByteArrayOutputStream();
GZIPQutputStream gis = new GZIPOutputStream(baos)) {
gis.write(str.getBytes("UTF-8"));
gis.close();

47

return baos.toByteArray();
} catch (IOException e) {
throw new RuntimeException("Unabled to compress”, e);
}
}

private String decompress(byte[] compressed) {
try (GZIPInputStream gis = new GZIPInputStream(new ByteArrayInputStream
(compressed));
BufferedReader bf = new BufferedReader(new InputStreamReader(gis, "UTF-8")
)) |
StringBuilder result = new StringBuilder();
String line;
while ((Lline = bf.readline()) != null) {
result.append(line);
}
return result.toString();
} catch (IOException e) {
throw new RuntimeException("Unable to decompress", e);

}

public MediaType getStorageFormat() {
return MediaType.parse("application/gzip");
}

public boolean isStorageFormatFilterable() {
return false;

}

public short id() {
return 10000;
}

It can be registered by:

GlobalComponentRegistry registry = cacheManager.getGlobalComponentRegistry();
EncoderRegistry encoderRegistry = registry.qgetComponent(EncoderRegistry.class);
encoderRegistry.registerEncoder(new GzipEncoder());

And then be used to write and read data from a cache:

48

AdvancedCache<String, String> cache = ...

// Decorate cache with the newly registered encoder, without encoding keys
(IdentityEncoder)

// but compressing values

AdvancedCache<String, String> compressingCache = (AdvancedCache<String, String>)
cache.withEncoding(IdentityEncoder.class, GzipEncoder.class);

// A1l values will be stored compressed...
compressingCache.put("297931749", "0412c789a37f5086f743255¢cfa693dd5");

// ... but API calls deals with String
String value = compressingCache.get("297931749");

// Bypassing the value encoder to obtain the value as it is stored
Object value = compressingCache.withEncoding(IdentityEncoder.class).get("297931749");

// value is a byte[] which is the compressed value

3.8.5. MediaType

A Cache can optionally be configured with a org.infinispan.commons.dataconversion.MediaType for
keys and values. By describing the data format of the cache, {brandname} is able to convert data on
the fly during cache operations.

The MediaType configuration is more suitable when storing binary data. When
using server mode, it’s common to have a MediaType configured and clients such

as REST or Hot Rod reading and writing in different formats.

The data conversion between MediaType formats are handled by instances of
org.infinispan.commons.dataconversion.Transcoder

49

public interface Transcoder {

/**

* Transcodes content between two different {@link MediaType}.

* @param content Content to transcode.
* @param contentType The {@link MediaType} of the content.
* @param destinationType The target {@link MediaType} to convert.
* @return the transcoded content.
*/
Object transcode(Object content, MediaType contentType, MediaType destinationType);

/**
* @return all the {@link MediaType} handled by this Transcoder.
*
/
Set<MediaType> getSupportedMediaTypes();
by

Configuration
Declarative:
<cache>
<encoding>
<key media-type="application/x-java-object; type=java.lang.Integer"/>
<value media-type="application/xml; charset=UTF-8"/>

</encoding>
</cache>

Programmatic:

ConfigurationBuilder cfg = new ConfigurationBuilder();
cfg.encoding().key().mediaType("text/plain");
cfg.encoding().value().mediaType("application/json");

Overriding the MediaType Programmatically

It’s possible to decorate the Cache with a different MediaType, allowing cache operations to be
executed sending and receiving different data formats.

Example:

50

DefaultCacheManager cacheManager = new DefaultCacheManager();

// The cache will store P0JO for keys and values

ConfigurationBuilder cfg = new ConfigurationBuilder();
cfg.encoding().key().mediaType("application/x-java-object");
cfg.encoding().value().mediaType("application/x-java-object");
cacheManager.defineConfiguration("mycache", cfg.build());

Cache<Integer, Person> cache = cacheManager.getCache("mycache");

cache.put(1, new Person("John","Doe"));

// Wraps cache using 'application/x-java-object' for keys but JSON for values
Cache<Integer, byte[]> jsonValuesCache = (Cache<Integer, byte[]>) cache
.getAdvancedCache().withMediaType("application/x-java-object", "application/json");

byte[] json = jsonValuesCache.get(1);

Will return the value in JSON format:

{
"_type":"org.infinispan.sample.Person”,
"name":"John",
"surname": "Doe"

}

Most Transcoders are installed when server mode is used; when using library
' mode, an extra dependency, org.infinispan:infinispan-server-core should be added
to the project.

Transcoders and Encoders

Usually there will be none or only one data conversion involved in a cache operation:

* No conversion by default on caches using in embedded or server mode;

* Encoder based conversion for embedded caches without MediaType configured, but using
OFF_HEAP or BINARY;

* Transcoder based conversion for caches used in server mode with multiple REST and Hot Rod
clients sending and receiving data in different formats. Those caches will have MediaType
configured describing the storage.

But it’s possible to have both encoders and transcoders being used simultaneously for advanced use
cases.

Consider an example, a cache that stores marshalled objects (with jboss marshaller) content but for
security reasons a transparent encryption layer should be added in order to avoid storing "plain”

51

data to an external store. Clients should be able to read and write data in multiple formats.

This can be achieved by configuring the cache with the the MediaType that describes the storage
regardless of the encoding layer:

ConfigurationBuilder cfg = new ConfigurationBuilder();
cfg.encoding().key().mediaType("application/x-jboss-marshalling");
cfg.encoding().key().mediaType("application/x-jboss-marshalling");

The transparent encryption can be added by decorating the cache with a special Encoder that
encrypts/decrypts with storing/retrieving, for example:

public class Scrambler implements Encoder {

Object toStorage(Object content) {
// Encrypt data
}

Object fromStorage(Object content) {
// Decrypt data
}

MediaType getStorageFormat() {
return "application/scrambled";

}

To make sure all data written to the cache will be stored encrypted, it’s necessary to decorate the
cache with the Encoder above and perform all cache operations in this decorated cache:

Cache<?,?> secureStorageCache = cache.getAdvancedCache().withEncoding(Scrambler.class
).put(k,v);

The capability of reading data in multiple formats can be added by decorating the cache with the
desired MediaType:

// Obtain a stream of values in XML format from the secure cache
secureStorageCache.getAdvancedCache().withMediaType("application/xml
"Y.values().stream();

, "application/xml

Internally, {brandname} will first apply the encoder fromStorage operation to obtain the entries,
that will be in "application/x-jboss-marshalling" format and then apply a successive conversion to
"application/xml" by using the adequate Transcoder.

52

Chapter 4. Eviction and Data Container

{brandname} supports eviction of entries, such that you do not run out of memory. Eviction is
typically used in conjunction with a cache store, so that entries are not permanently lost when
evicted, since eviction only removes entries from memory and not from cache stores or the rest of
the cluster.

{brandname} supports storing data in a few different formats. Data can be stored as the object iself,
binary as a byte[], and off-heap which stores the byte[] in native memory.

Passivation is also a popular option when using eviction, so that only a single copy
of an entry is maintained - either in memory or in a cache store, but not both. The

Q main benefit of using passivation over a regular cache store is that updates to
entries which exist in memory are cheaper since the update doesn’t need to be
made to the cache store as well.

Eviction occurs on a local basis, and is not cluster-wide. Each node runs an
eviction thread to analyse the contents of its in-memory container and decide
what to evict. Eviction does not take into account the amount of free memory in

o the JVM as threshold to starts evicting entries. You have to set size attribute of the
eviction element to be greater than zero in order for eviction to be turned on. If
size is too large you can run out of memory. The size attribute will probably take
some tuning in each use case.

4.1. Enabling Eviction

Eviction is configured by adding the <memory /> element to your <*-cache /> configuration sections
or using MemoryConfigurationBuilder API programmatic approach.

All cache entry are evicted by piggybacking on user threads that are hitting the cache.

4.1.1. Eviction strategy

Strategies control how the eviction is handled.

The possible choices are

NONE

Eviction is not enabled and it is assumed that the user will not invoke evict directly on the cache. If
passivation is enabled this will cause aa warning message to be emitted. This is the default strategy.

MANUAL

This strategy is just like NONE except that it asssumes the user will be invoking evict
directly. This way if passivation is enabled no warning message is logged.

REMOVE

This strategy will actually evict "old" entries to make room for incoming ones.

53

http://docs.jboss.org/infinispan/9.4/configdocs/infinispan-config-9.4.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/configuration/cache/MemoryConfigurationBuilder.html

Eviction is handled by Caffeine utilizing the TinyLFU algorithm with an additional admission
window. This was chosen as provides high hit rate while also requiring low memory overhead. This
provides a better hit ratio than LRU while also requiring less memory than LIRS.

EXCEPTION

This strategy actually prevents new entries from being created by throwing a
ContainerFullException. This strategy only works with transactional caches that always run with 2
phase commit, that is no 1 phase commit or synchronization optimizations allowed.

4.1.2. Eviction types

Eviction type applies only when the size is set to something greater than 0. The eviction type below
determines when the container will decide to remove entries.

COUNT

This type of eviction will remove entries based on how many there are in the cache. Once the count
of entries has grown larger than the size then an entry will be removed to make room.

MEMORY

This type of eviction will estimate how much each entry will take up in memory and will remove an
entry when the total size of all entries is larger than the configured size. This type does not work
with 0BJECT storage type below.

4.1.3. Storage type

{brandname} allows the user to configure in what form their data is stored. Each form supports the
same features of {brandname}, however eviction can be limited for some forms. There are
currently three storage formats that {brandname} provides, they are:

0BJECT

Stores the keys and values as objects in the Java heap Only COUNT eviction type is supported.

BINARY

Stores the keys and values as a byte[] in the Java heap. This will use the configured marshaller for
the cache if there is one. Both COUNT and MEMORY eviction types are supported.

OFF-HEAP

Stores the keys and values in native memory outside of the Java heap as bytes. The configured
marshaller will be used if the cache has one. Both COUNT and MEMORY eviction types are supported.

9 Both BINARY and OFF-HEAP violate equality and hashCode that they are dictated by
the resulting byte[] they generate instead of the object instance.

4.1.4. More defaults

By default when no <memory /> element is specified, no eviction takes place, 0BJECT storage type is
used, and a strategy of NONE is assumed.

In case there is an memory element, this table describes the behaviour of eviction based on
information provided in the xml configuration ("-" in Supplied size or Supplied strategy column

54

https://github.com/ben-manes/caffeine

means that the attribute wasn’t supplied)

Supplied size Example Eviction behaviour

3 <memory /> no eviction as an object

i <memory> <object no eviction as an object and
strategy="MANUAL™ /> </memory> " \von>t log warning if passivation

is enabled

>0 <memory> <object size="100" /> eviction takes place and stored
</memory> as objects

>0 <memory> <binary size="100" eviction takes place and stored

eviction="MEMORY"/> </memory> .o a binary removing to make

sure memory doens’t go higher

than 100
>0 <memory> <off-heap size="100" eviction takes place and stored
/> </memory> in off-heap
>0 <memory> <off-heap size="100" entries are stored in off-heap
strategy="EXCEPTION" /> and if 100 entries are in
</memory> . . .
container exceptions will be
thrown for additional
0 <memory> <object size="0" /> no eviction
</memory>
<0 <memory> <object size="-1" /> pg eviction
</memory>

4.2. Expiration

Similar to, but unlike eviction, is expiration. Expiration allows you to attach lifespan and/or
maximum idle times to entries. Entries that exceed these times are treated as invalid and are
removed. When removed expired entries are not passivated like evicted entries (if passivation is
turned on).

Q Unlike eviction, expired entries are removed globally - from memory, cache stores,
and cluster-wide.

By default entries created are immortal and do not have a lifespan or maximum idle time. Using the
cache API, mortal entries can be created with lifespans and/or maximum idle times. Further,
default lifespans and/or maximum idle times can be configured by adding the <expiration />
element to your <*-cache /> configuration sections.

When an entry expires it resides in the data container or cache store until it is accessed again by a
user request. An expiration reaper is also available to check for expired entries and remove them at
a configurable interval of milliseconds.

You can enable the expiration reaper declaratively with the reaper-interval attribute or
programmatically with the enableReaper method in the ExpirationConfigurationBuilder class.

55

http://docs.jboss.org/infinispan/9.4/configdocs/infinispan-config-9.4.html

* The expiration reaper cannot be disabled when a cache store is present.

0 * When using a maximum idle time in a clustered cache, you should always
enable the expiration reaper. For more information, see Clustered Max Idle.

4.2.1. Difference between Eviction and Expiration

Both Eviction and Expiration are means of cleaning the cache of unused entries and thus guarding
the heap against OutOfMemory exceptions, so now a brief explanation of the difference.

With eviction you set maximal number of entries you want to keep in the cache and if this limit is
exceeded, some candidates are found to be removed according to a choosen eviction strategy (LRU,
LIRS, etc...). Eviction can be setup to work with passivation, which is eviction to a cache store.

With expiration you set time criteria for entries to specify how long you want to keep them in the
cache.
lifespan

Specifies how long entries can remain in the cache before they expire. The default value is -1,

which is unlimited time.

maximum idle time

Specifies how long entries can remain idle before they expire. An entry in the cache is idle when
no operation is performed with the key. The default value is -1, which is unlimited time.

4.3. Expiration details

1. Expiration is a top-level construct, represented in the configuration as well as in the cache APIL

2. While eviction is local to each cache instance , expiration is cluster-wide . Expiration lifespan
and maxIdle values are replicated along with the cache entry.

3. Maximum idle times for cache entries require additional network messages in clustered
environments. For this reason, setting maxIdle in clustered caches can result in slower operation
times.

4. Expiration lifespan and maxIdle are also persisted in CacheStores, so this information survives
eviction/passivation.

4.3.1. Maximum Idle Expiration

Maximum idle expiration has different behavior in local and clustered cache environments.

Local Max Idle

In non-clustered cache environments, the maxIdle configuration expires entries when:

* accessed directly (Cache.get).
* iterated upon (Cache.size).

* the expiration reaper thread runs.

56

#expiration_maxidle_clustered

Clustered Max Idle

In clustered environments, nodes in the cluster can have different access times for the same entry.
Entries do not expire from the cache until they reach the maxium idle time for all owners across
the cluster.

When a node detects that an entry has reached the maximum idle time and is expired, the node
gets the last time that the entry was accessed from the other owners in the cluster. If the other
owners indicate that the entry is expired, that entry is not returned to the requester and removed
from the cache.

The following points apply to using the maxIdle configuration with clustered caches:

* If one or more owner in the cluster detects that an entry is not expired, then a Cache.get
operation returns the entry. The last access time for that entry is also updated to the current
time.

* When the expiration reaper finds entries that might be expired with the maximum idle time, all
nodes update the last access time for those entries to the most recent access time before the
maxIdle time. In this way, the reaper prevents invalid expiration of entries.

* Clustered transactional caches do not remove entries that are expired with the maximum idle
time on Cache.get operations. These expired entries are removed with the expiration reaper
thread only, otherwise deadlocking can occur.

* Iteration across a clustered cache returns entries that might be expired with the maximum idle
time. This behavior ensures performance because no remote invocations are performed during
the iteration. However this does not refresh any expired entries, which are removed by the
expiration reaper or when accessed directly (Cache.get).

* Clustered caches should always use the expiration reaper with the maxIdle
configuration.

* When using maxIdle expiration with exception-based eviction, entries that are
o expired but not removed from the cache count towards the size of the data
container.

e Entries that are transferred to the cache via state transfer are created on the
new node with a last access time that is equal to the current time. As a result
those entries are refreshed.

4.3.2. Configuration

Eviction and Expiration may be configured using the programmatic or declarative XML
configuration. This configuration is on a per-cache basis. Valid eviction/expiration-related
configuration elements are:

57

<!-- Eviction -->
<memory>
<object size="2000"/>
</memory>
<!-- Expiration -->
<expiration lifespan="1000" max-idle="500" interval="1000" />

Programmatically, the same would be defined using:

Configuration ¢ = new ConfiqurationBuilder()
.memory().size(2000)
.expiration().wakeUpInterval(50001).1ifespan(10001).maxIdle(5001)
.build();

4.3.3. Memory Based Eviction Configuration

Memory based eviction may require some additional configuration options if you are using your
own custom types (as {brandname} is normally used). In this case {brandname} cannot estimate
the memory usage of your classes and as such you are required to use storeAsBinary when memory
based eviction is used.

<!-- Enable memory based eviction with 1 GB/>
<memory>

<binary size="1000000000" eviction="MEMORY"/>
</memory>

Configuration ¢ = new ConfiqurationBuilder()
.memory()
.storageType(StorageType.BINARY)
.evictionType(EvictionType.MEMORY)
.Size(1_000_000_000)

.build();

4.3.4. Default values
Eviction is disabled by default. Default values are used:

* size: -1 is used if not specified, which means unlimited entries.

* 0 means no entries, and the eviction thread will strive to keep the cache empty.

Expiration lifespan and maxIdle both default to -1, which means that entries will be created
immortal by default. This can be overridden per entry with the API.

58

4.3.5. Using expiration

Expiration allows you to set either a lifespan or a maximum idle time on each key/value pair stored
in the cache. This can either be set cache-wide using the configuration, as described above, or it can
be defined per-key/value pair using the Cache interface. Any values defined per key/value pair
overrides the cache-wide default for the specific entry in question.

For example, assume the following configuration:

<expiration lifespan="1000" />

// this entry will expire in 1000 millis
cache.put("pinot noir", pinotNoirPrice);

// this entry will expire in 2000 millis
cache.put("chardonnay”, chardonnayPrice, 2, TimeUnit.SECONDS);

// this entry will expire 1000 millis after it is last accessed
cache.put("pinot grigio", pinotGrigioPrice, -1,
TimeUnit.SECONDS, 1, TimeUnit.SECONDS);

// this entry will expire 1000 millis after it is last accessed, or
// in 5000 millis, which ever triggers first
cache.put("riesling", rieslingPrice, 5,

TimeUnit.SECONDS, 1, TimeUnit.SECONDS);

4.4. Expiration designs
Central to expiration is an ExpirationManager.

The purpose of the ExpirationManager is to drive the expiration thread which periodically purges
items from the DataContainer. If the expiration thread is disabled (wakeuplnterval set to -1)
expiration can be kicked off manually using ExprationManager.processExpiration(), for example
from another maintenance thread that may run periodically in your application.

The expiration manager processes expirations in the following manner:

1. Causes the data container to purge expired entries

2. Causes cache stores (if any) to purge expired entries

59

Chapter 5. Persistence

Persistence allows configuring external (persistent) storage engines complementary to the default
in memory storage offered by {brandname}. An external persistent storage might be useful for
several reasons:

* Increased Durability. Memory is volatile, so a cache store could increase the life-span of the
information store in the cache.

* Write-through. Interpose {brandname} as a caching layer between an application and a
(custom) external storage engine.

* Overflow Data. By using eviction and passivation, one can store only the "hot" data in memory
and overflow the data that is less frequently used to disk.

The integration with the persistent store is done through the following SPI: CacheLoader,
CacheWriter, AdvancedCacheLoader and AdvancedCacheWriter (discussed in the following
sections).

These SPIs allow for the following features:

* Alignment with JSR-107. The CacheWriter and CacheLoader interface are similar to the the
loader and writer in JSR 107. This should considerably help writing portable stores across
JCache compliant vendors.

» Simplified Transaction Integration. All necessary locking is handled by {brandname}
automatically and implementations don’t have to be concerned with coordinating concurrent
access to the store. Even though concurrent writes on the same key are not going to happen
(depending locking mode in use), implementors should expect operations on the store to
happen from multiple/different threads and code the implementation accordingly.

* Parallel Iteration. It is now possible to iterate over entries in the store with multiple threads in
parallel.

* Reduced Serialization. This translates in less CPU usage. The new API exposes the stored entries
in serialized format. If an entry is fetched from persistent storage for the sole purpose of being
sent remotely, we no longer need to deserialize it (When reading from the store) and serialize it
back (when writing to the wire). Now we can write to the wire the serialized format as read
from the storage directly.

5.1. Configuration

Stores (readers and/or writers) can be configured in a chain. Cache read operation looks at all of the
specified Cacheloader s, in the order they are configured, until it finds a valid and non-null element
of data. When performing writes all cache CacheWlriter s are written to, except if the
ignoreModifications element has been set to true for a specific cache writer.

60

http://jcp.org/en/jsr/detail?id=107
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/spi/CacheWriter.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/spi/CacheLoader.html

Implementing both a CacheWriter and CacheLoader

o Store providers should implement both the Cacheliriter and the Cacheloader
interfaces. Stores that do this are considered both for reading and writing
(assuming read-only=false) data.

This is the configuration of a custom(not shipped with infinispan) store:
<local-cache name="myCustomStore">
<persistence passivation="false">
<store
class="org.acme.CustomStore"
fetch-state="false" preload="true" shared="false"
purge="true" read-only="false" singleton="false" segmented="true">

<write-behind modification-queue-size="123" thread-pool-size="23" />

<property name="myProp">${system.property}</property>
</store>
</persistence>
</local-cache>

Parameters that you can use to configure persistence are as follows:

connection-attempts

Sets the maximum number of attempts to start each configured CacheWriter/CacheLoader. If the
attempts to start are not successful, an exception is thrown and the cache does not start.

connection-interval

Specifies the time, in milliseconds, to wait between connection attempts on startup. A negative
or zero value means no wait between connection attempts.

availability-interval
Specifies the time, in milliseconds, between availability checks to determine if the
PersistenceManager is available. In other words, this interval sets how often stores/loaders are
polled via their org.infinispan.persistence.spi.CachelWriter#isAvailable or
org.infinispan.persistence.spi.CachelLoader#isAvailable implementation. If a single store/loader
is not available, an exception is thrown during cache operations.

passivation
Enables passivation. The default value is false (boolean).

This property has a significant impact on {brandname} interactions with the loaders. See Cache
Passivation for more information.

class
Defines the class of the store and must implement CachelLoader, CacheWriter, or both.

fetch-state

Fetches the persistent state of a cache when joining a cluster. The default value is false
(boolean).

61

#cache_passivation
#cache_passivation

The purpose of this property is to retrieve the persistent state of a cache and apply it to the local
cache store of a node when it joins a cluster. Fetching the persistent state does not apply if a
cache store is shared because it accesses the same data as the other stores.

This property can be true for one configured cache loader only. If more than one cache loader
fetches the persistent state, a configuration exception is thrown when the cache service starts.

preload

Pre-loads data into memory from the cache loader when the cache starts. The default value is
false (boolean).

This property is useful when data in the cache loader is required immediately after startup to
prevent delays with cache operations when the data is loaded lazily. This property can provide a
"warm cache" on startup but it impacts performance because it affects start time.

Pre-loading data is done locally, so any data loaded is stored locally in the node only. The pre-
loaded data is not replicated or distributed. Likewise, {brandname} pre-loads data only up to the
maximum configured number of entries in eviction.

shared

Determines if the cache loader is shared between cache instances. The default value is false
(boolean).

This property prevents duplicate writes of data to the cache loader by different cache instances.
An example is where all cache instances in a cluster use the same JDBC settings for the same
remote, shared database.

segmented

Configures a cache store to segment data. The default value is false (boolean).

If true the cache store stores data in buckets. The hash.numSegments property configures how
many buckets there are for storing data.

Depending on the cache store implementation, segmenting data can cause slower write
operations. However, performance improves for other cache operations. See Segmented Stores
for more information.

read-only

Prevents new data from being persisted to the cache store. The default value is false (boolean).

purge

Empties the specified cache loader at startup. The default value is false (boolean). This property
takes effect only if the read-only property is set to false.

max-batch-size

Sets the maximum size of a batch to insert of delete from the cache store. The default value is
#100.

If the value is less than 1, no upper limit applies to the number of operations in a batch.

write-behind

62

#eviction_anchor
#segmented_stores

Asynchronously persists data to the cache store. The default value is false (boolean). See
Asynchronous Write-Behind for more information.

singleton
Enables one node in the cluster, the coordinator, to store modifications. The default value is
false (boolean).

Whenever data enters a node, it is replicated or distributed to keep the in-memory state of the
caches synchronized. The coordinator is responsible for pushing that state to disk.

If true you must set this property on all nodes in the cluster. Only the coordinator of the cluster
persists data. However, all nodes must have this property enabled to prevent other nodes from
persisting data.

You cannot enable the singleton property if the cache store is shared.

You can define additional attributes in the properties section to configure specific
aspects of each cache loader, such as the myProp attribute in the previous example.

i

Other cache loaders with more complex configurations also include additional
properties. See the following JDBC cache store configuration for examples.

The preceding configuration applies a generic cache store implementation. However, the default
{brandname} store implementation has a more complex configuration schema, in which the
properties section is replaced with XML attributes:

<persistence passivation="false">
<!-- note that class is missing and is induced by the fileStore element name -->
<file-store
shared="false" preload="true"
fetch-state="true"
read-only="false"
purge="false"
path="${java.io.tmpdir}">
<write-behind thread-pool-size="5" />
</file-store>
</persistence>

The same configuration can be achieved programmatically:

63

#write_behind_asynchronous

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence()
.passivation(false)
.addSingleFileStore()
.preload(true)
.shared(false)
.fetchPersistentState(true)
.ignoreModifications(false)
.purgeOnStartup(false)
.location(System.getProperty("java.io.tmpdir"))

.async()
.enabled(true)
.threadPoolSize(5)

.singleton()
.enabled(true)
.pushStateWhenCoordinator(true)
.pushStateTimeout(20000);

5.2. Cache Passivation

A CacheWriter can be used to enforce entry passivation and activation on eviction in a cache. Cache
passivation is the process of removing an object from in-memory cache and writing it to a
secondary data store (e.g., file system, database) on eviction. Cache activation is the process of
restoring an object from the data store into the in-memory cache when it’s needed to be used. In
order to fully support passivation, a store needs to be both a CacheWriter and a CacheLoader. In
both cases, the configured cache store is used to read from the loader and write to the data writer.

When an eviction policy in effect evicts an entry from the cache, if passivation is enabled, a
notification that the entry is being passivated will be emitted to the cache listeners and the entry
will be stored. When a user attempts to retrieve a entry that was evicted earlier, the entry is (lazily)
loaded from the cache loader into memory. When the entry has been loaded a notification is
emitted to the cache listeners that the entry has been activated. In order to enable passivation just
set passivation to true (false by default). When passivation is used, only the first cache loader
configured is used and all others are ignored.

5.2.1. Limitations
Due to the unique nature of passivation, it is not supported with some other store configurations.

» Transactional store - Passivation writes/removes entries from the store outside the scope of the
actual Infinispan commit boundaries.

» Shared store - Shared store requires entries always being in the store for other owners. Thus
passivation makes no sense as we can’t remove the entry from the store.

5.2.2. Cache Loader Behavior with Passivation Disabled vs Enabled

When passivation is disabled, whenever an element is modified, added or removed, then that

64

modification is persisted in the backend store via the cache loader. There is no direct relationship
between eviction and cache loading. If you don’t use eviction, what’s in the persistent store is
basically a copy of what’s in memory. If you do use eviction, what’s in the persistent store is
basically a superset of what’s in memory (i.e. it includes entries that have been evicted from
memory). When passivation is enabled, and with an unshared store, there is a direct relationship
between eviction and the cache loader. Writes to the persistent store via the cache loader only
occur as part of the eviction process. Data is deleted from the persistent store when the application
reads it back into memory. In this case, what’s in memory and what’s in the persistent store are two
subsets of the total information set, with no intersection between the subsets. With a shared store,
entries which have been passivated in the past will continue to exist in the store, although they may
have a stale value if this has been overwritten in memory.

The following is a simple example, showing what state is in RAM and in the persistent store after

each step of a 6 step process:

Operation

Insert keyOne

Insert keyTwo

Eviction thread runs,
evicts keyOne

Read keyOne

Eviction thread runs,
evicts keyTwo

Remove keyTwo

Passivation Off

Memory: keyOne
Disk: keyOne

Memory: keyOne,
keyTwo
Disk: keyOne, keyTwo

Memory: keyTwo
Disk: keyOne, keyTwo

Memory: keyOne,
keyTwo
Disk: keyOne, keyTwo

Memory: keyOne
Disk: keyOne, keyTwo

Memory: keyOne

Passivation On,
Shared Off

Memory: keyOne
Disk: (none)

Memory: keyOne,
keyTwo
Disk: (none)

Memory: keyTwo
Disk: keyOne

Memory: keyOne,
keyTwo
Disk: (none)

Memory: keyOne
Disk: keyTwo

Memory: keyOne

Passivation On,
Shared On

Memory: keyOne
Disk: (none)

Memory: keyOne,
keyTwo
Disk: (none)

Memory: keyTwo
Disk: keyOne

Memory: keyOne,
keyTwo
Disk: keyOne

Memory: keyOne

Disk: keyOne, keyTwo

Memory: keyOne

Disk: keyOne Disk: (none) Disk: keyOne

5.3. Cache Loaders and transactional caches

When a cache is transactional and a cache loader is present, the cache loader won’t be enlisted in
the transaction in which the cache is part. That means that it is possible to have inconsistencies at
cache loader level: the transaction to succeed applying the in-memory state but (partially) fail
applying the changes to the store. Manual recovery would not work with caches stores.

5.4. Write-Through And Write-Behind Caching

{brandname} can optionally be configured with one or several cache stores allowing it to store data
in a persistent location such as shared JDBC database, a local filesystem, etc. {brandname} can
handle updates to the cache store in two different ways:

* Write-Through (Synchronous)

65

* Write-Behind (Asynchronous)

5.4.1. Write-Through (Synchronous)

In this mode, which is supported in version 4.0, when clients update a cache entry, i.e. via a
Cache.put() invocation, the call will not return until {brandname} has gone to the underlying cache
store and has updated it. Normally, this means that updates to the cache store are done within the
boundaries of the client thread.

The main advantage of this mode is that the cache store is updated at the same time as the cache,
hence the cache store is consistent with the cache contents. On the other hand, using this mode
reduces performance because the latency of having to access and update the cache store directly
impacts the duration of the cache operation.

Configuring a write-through or synchronous cache store does not require any particular
configuration option. By default, unless marked explicitly as write-behind or asynchronous, all
cache stores are write-through or synchronous. Please find below a sample configuration file of a
write-through unshared local file cache store:

<persistence passivation="false">
<file-store fetch-state="true"
read-only="false"
purge="false" path="${java.io.tmpdir}"/>
</persistence>

5.4.2. Write-Behind (Asynchronous)

In this mode, updates to the cache are asynchronously written to the cache store. {brandname} puts
pending changes into a modification queue so that it can quickly store changes.

The configured number of threads consume the queue and apply the modifications to the
underlying cache store. If the configured number of threads cannot consume the modifications fast
enough, or if the underlying store becomes unavailable, the modification queue becomes full. In
this event, the cache store becomes write-through until the queue can accept new entries.

This mode provides an advantage in that cache operations are not affected by updates to the
underlying store. However, because updates happen asynchronously, there is a period of time
during which data in the cache store is inconsistent with data in the cache.

The write-behind strategy is suitable for cache stores with low latency and small operational cost;
for example, an unshared file-based cache store that is local to the cache itself. In this case, the time
during which data is inconsistent between the cache store and the cache is reduced to the lowest
possible period.

The following is an example configuration for the write-behind strategy:

66

<persistence passivation="false">
<file-store fetch-state="true"
read-only="false"
purge="false" path="${java.io.tmpdir}">
<!-- start write-behind configuration -->
<write-behind modification-queue-size="123" thread-pool-size="23" />
<!-- end write-behind configuration -->
</file-store>
</persistence>

5.4.3. Segmented Stores

You can configure stores so that data resides in segments to which keys map. See Key Ownership
for more information about segments and ownership.

Segmented stores increase read performance for bulk operations; for example, streaming over data
(Cache.size, Cache.entrySet.stream), pre-loading the cache, and doing state transfer operations.

However, segmented stores can also result in loss of performance for write operations. This
performance loss applies particularly to batch write operations that can take place with
transactions or write-behind stores. For this reason, you should evaluate the overhead for write
operations before you enable segmented stores. The performance gain for bulk read operations
might not be acceptable if there is a significant performance loss for write operations.

Loss of data can occur if the number of segments in a cache store are not changed
gracefully. For this reason, if you change the numSegments setting in the store
configuration, you must migrate the existing store to use the new configuration.

o The recommended method to migrate the cache store configuration is to perform a
rolling upgrade. The store migrator supports migrating a non-segmented cache
store to a segmented cache store only. The store migrator does not currently
support migrating from a segmented cache store.

Not all cache stores support segmentation. See the appropriate section for each
store to determine if it supports segmentation.

i

If you plan to convert or write a new store to support segmentation, see the
following SPI section that provides more details.

5.5. Filesystem based cache stores

A filesystem-based cache store is typically used when you want to have a cache with a cache store
available locally which stores data that has overflowed from memory, having exceeded size and/or
time restrictions.

67

#key_ownership

Usage of filesystem-based cache stores on shared filesystems like NFS, Windows
shares, etc. should be avoided as these do not implement proper file locking and

A can cause data corruption. File systems are inherently not transactional, so when
attempting to use your cache in a transactional context, failures when writing to
the file (which happens during the commit phase) cannot be recovered.

5.5.1. Single File Store

The single file cache store keeps all data in a single file. The way it looks up data is by keeping an in-
memory index of keys and the positions of their values in this file. This results in greater
performance compared to old file cache store. There is one caveat though. Since the single file
based cache store keeps keys in memory, it can lead to increased memory consumption, and hence
it’s not recommended for caches with big keys.

In certain use cases, this cache store suffers from fragmentation: if you store larger and larger
values, the space is not reused and instead the entry is appended at the end of the file. The space
(now empty) is reused only if you write another entry that can fit there. Also, when you remove all
entries from the cache, the file won’t shrink, and neither will be de-fragmented.

These are the available configuration options for the single file cache store:

* path where data will be stored. (e.g., path="/tmp/myDataStore"). By default, the location is
{brandname}-SingleFileStore.

* max-entries specifies the maximum number of entries to keep in this file store. As mentioned
before, in order to speed up lookups, the single file cache store keeps an index of keys and their
corresponding position in the file. To avoid this index resulting in memory consumption
problems, this cache store can bounded by a maximum number of entries that it stores. If this
limit is exceeded, entries are removed permanently using the LRU algorithm both from the in-
memory index and the underlying file based cache store. So, setting a maximum limit only
makes sense when {brandname} is used as a cache, whose contents can be recomputed or they
can be retrieved from the authoritative data store. If this maximum limit is set when the
{brandname} is used as an authoritative data store, it could lead to data loss, and hence it’s not
recommended for this use case. The default value is -1 which means that the file store size is
unlimited.

Segmentation support

The single file cache store supports segmentation and creates a separate instance per segment.
Segmentation results in multiple directories under the configured directory, where each directory
is a number that represents the segment to which the data maps.

Configuration

The following examples show single file cache store configuration:

68

<persistence>
<file-store path="/tmp/myDataStore" max-entries="5000"/>
</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence()
.addSingleFileStore()
.location("/tmp/myDataStore")
.maxEntries(5000);

5.5.2. Soft-Index File Store

The Soft-Index File Store is an experimental local file-based. It is a pure Java implementation that
tries to get around Single File Store’s drawbacks by implementing a variant of B+ tree that is cached
in-memory using Java’s soft references - here’s where the name Soft-Index File Store comes from.
This B+ tree (called Index) is offloaded on filesystem to single file that does not need to be persisted
- it is purged and rebuilt when the cache store restarts, its purpose is only offloading.

The data that should be persisted are stored in a set of files that are written in append-only way -
that means that if you store this on conventional magnetic disk, it does not have to seek when
writing a burst of entries. It is not stored in single file but set of files. When the usage of any of
these files drops below 50% (the entries from the file are overwritten to another file), the file starts
to be collected, moving the live entries into different file and in the end removing that file from
disk.

Most of the structures in Soft Index File Store are bounded, therefore you don’t have to be afraid of
OOMEs. For example, you can configure the limits for concurrently open files as well.

Segmentation support

The Soft-Index file store supports segmentation and creates a separate instance per segment.
Segmentation results in multiple directories under the configured directory, where each directory
is a number that represents the segment to which the data maps.

Configuration

Here is an example of Soft-Index File Store configuration via XML:

<persistence>
<soft-index-file-store xmlns="urn:infinispan:config:store:soft-index:8.0">
<index path="/tmp/sifs/testCache/index" />
<data path="/tmp/sifs/testCache/data" />
</soft-index-file-store>
</persistence>

Programmatic configuration would look as follows:

69

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence()
.addStore(SoftIndexFileStoreConfigurationBuilder.class)
.indexLocation("/tmp/sifs/testCache/index");
.datalocation("/tmp/sifs/testCache/data")

Current limitations

Size of a node in the Index is limited, by default it is 4096 bytes, though it can be configured. This
size also limits the key length (or rather the length of the serialized form): you can’t use keys longer
than size of the node - 15 bytes. Moreover, the key length is stored as 'short’, limiting it to 32767
bytes. There’s no way how you can use longer keys - SIFS throws an exception when the key is
longer after serialization.

When entries are stored with expiration, SIFS cannot detect that some of those entries are expired.
Therefore, such old file will not be compacted (method AdvancedStore.purgeExpired() is not
implemented). This can lead to excessive file-system space usage.

5.6. JDBC String based Cache Store

A cache store which relies on the provided JDBC driver to load/store values in the underlying
database.

Each key in the cache is stored in its own row in the database. In order to store each key in its own
row, this store relies on a (pluggable) bijection that maps the each key to a String object. The
bijection is defined by the Key2StringMapper interface. {brandname}s ships a default
implementation (smartly named DefaultTwoWayKey2StringMapper) that knows how to handle
primitive types.

By default {brandname} shares are not stored, meaning that all nodes in the

O cluster will write to the underlying store upon each update. If you wish for an
operation to only be written to the underlying database once, you must configure
the JDBC store to be shared.

0 The JDBC string-based cache store does not support segmentation. Support will be
available in a future release.

5.6.1. Connection management (pooling)

In order to obtain a connection to the database the JDBC cache store relies on a ConnectionFactory
implementation. The connection factory is specified programmatically using one of the
connectionPool(), dataSource() or simpleConnection() methods on the
JdbcStringBasedStoreConfigurationBuilder class or declaratively using one of the <connectionPool
/>, <dataSource /> or <simpleConnection /> elements.

70

http://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/jdbc/connectionfactory/ConnectionFactory.html

{brandname} ships with three ConnectionFactory implementations:

* PooledConnectionFactory is a factory based on HikariCP. Additional properties for HikariCP can
be provided by a properties file, either via placing a hikari.properties file on the classpath or
by specifying the path to the file via PooledConnectionFactoryConfiguration.propertyFile or
properties-file in the connection pool’s xml config. N.B. a properties file specified explicitly in
the configuration is loaded instead of the hikari.properties file on the class path and
Connection pool characteristics which are explicitly set in
PooledConnectionFactoryConfiguration always override the values loaded from a properties
file.

Refer to the official documentation for details of all configuration properties.

* ManagedConnectionFactory is a connection factory that can be used within managed
environments, such as application servers. It knows how to look into the JNDI tree at a certain
location (configurable) and delegate connection management to the DataSource. Refer to
javadoc javadoc for details on how this can be configured.

» SimpleConnectionFactory is a factory implementation that will create database connection on a
per invocation basis. Not recommended in production.

The PooledConnectionFactory is generally recommended for stand-alone deployments (i.e. not
running within AS or servlet container). ManagedConnectionFactory can be used when running in a
managed environment where a DataSource is present, so that connection pooling is performed
within the DataSource.

5.6.2. Sample configurations

Below is a sample configuration for the JdbcStringBasedStore. For detailed description of all the
parameters used refer to the JdbcStringBasedStore.

<persistence>
<string-keyed-jdbc-store xmlns="urn:infinispan:config:store:jdbc:9.2" shared="true"
fetch-state="false" read-only="false" purge="false">
<connection-pool connection-url=
"jdbc:h2:mem:infinispan_string_based;DB_CLOSE_DELAY=-1" username="sa" driver=
"org.h2.Driver"/>
<string-keyed-table drop-on-exit="true" create-on-start="true" prefix=
"ISPN_STRING_TABLE">
<id-column name="ID_COLUMN" type="VARCHAR(255)" />
<data-column name="DATA_COLUMN" type="BINARY" />
<timestamp-column name="TIMESTAMP_COLUMN" type="BIGINT" />
</string-keyed-table>
</string-keyed-jdbc-store>
</persistence>

71

http://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/jdbc/connectionfactory/PooledConnectionFactory.html
https://github.com/brettwooldridge/HikariCP
https://github.com/brettwooldridge/HikariCP
http://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/jdbc/connectionfactory/ManagedConnectionFactory.html
http://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/jdbc/connectionfactory/ManagedConnectionFactory.html
http://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/jdbc/connectionfactory/SimpleConnectionFactory.html
http://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/jdbc/stringbased/JdbcStringBasedStore.html
http://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/jdbc/stringbased/JdbcStringBasedStore.html

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence().addStore(JdbcStringBasedStoreConfigurationBuilder.class)
.fetchPersistentState(false)
.ignoreModifications(false)
.purgeOnStartup(false)
.shared(true)
.table()
.dropOnExit(true)
.createOnStart(true)
.tableNamePrefix("ISPN STRING TABLE")
.idColumnName("ID_COLUMN").idColumnType("VARCHAR(255)")
.dataColumnName("DATA_COLUMN").dataColumnType("BINARY")
.timestampColumnName ("TIMESTAMP_COLUMN").timestampColumnType("BIGINT")
.connectionPool()
.connectionUr1("jdbc:h2:mem:infinispan_string_based;DB_CLOSE_DELAY=-1")
.username("sa")
.driverClass("org.h2.Driver");

Finally, below is an example of a JDBC cache store with a managed connection factory, which is
chosen implicitly by specifying a datasource JNDI location:

<string-keyed-jdbc-store xmlns="urn:infinispan:config:store:jdbc:9.2" shared="true"
fetch-state="false" read-only="false" purge="false">
<data-source jndi-url="java:/StringStoreWithManagedConnectionTest/DS" />
<string-keyed-table drop-on-exit="true" create-on-start="true" prefix=
"ISPN_STRING_TABLE">
<id-column name="ID_COLUMN" type="VARCHAR(255)" />
<data-column name="DATA_COLUMN" type="BINARY" />
<timestamp-column name="TIMESTAMP_COLUMN" type="BIGINT" />
</string-keyed-table>
</string-keyed-jdbc-store>

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence().addStore(JdbcStringBasedStoreConfigurationBuilder.class)
.fetchPersistentState(false)
.ignoreModifications(false)
.purgeOnStartup(false)
.shared(true)
.table()
.dropOnExit(true)
.createOnStart(true)
.tableNamePrefix("ISPN STRING TABLE")
.idColumnName("ID_COLUMN").idColumnType("VARCHAR(255)")
.dataColumnName("DATA_COLUMN").dataColumnType("BINARY")
.timestampColumnName ("TIMESTAMP_COLUMN").timestampColumnType("BIGINT")
.dataSource()
.jndilUr1("java:/StringStoreWithManagedConnectionTest/DS");

72

Apache Derby users

0 If youre connecting to an Apache Derby database, make sure you set
dataColumnType to BLOB: <data-column name="DATA_COLUMN" type="BLOB"/>

5.7. Remote store

The RemoteStore is a cache loader and writer implementation that stores data in a remote
{brandname} cluster. In order to communicate with the remote cluster, the RemoteStore uses the
HotRod client/server architecture. HotRod bering the load balancing and fault tolerance of calls and
the possibility to fine-tune the connection between the RemoteCacheStore and the actual cluster.
Please refer to Hot Rod for more information on the protocol, client and server configuration. For a
list of RemoteStore configuration refer to the javadoc . Example:

5.7.1. Segmentation support

The RemoteStore store supports segmentation because it can publish keys and entries by segment,
allowing for more efficient bulk operations.

Segmentation is only supported when the remote server supports at least protocol version 2.3 or
newer.

Ensure the number of segments and hash are the same between the store
A configured cache and the remote server otherwise bulk operations will not return
correct results.

5.7.2. Sample Usage

<persistence>
<remote-store xmlns="urn:infinispan:config:store:remote:8.0" cache="mycache" raw-
values="true">
<remote-server host="one" port="12111" />
<remote-server host="two" />
<connection-pool max-active="10" exhausted-action="CREATE_NEW" />
<write-behind />
</remote-store>
</persistence>

73

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/remote/configuration/RemoteStoreConfigurationBuilder.html

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence().addStore(RemoteStoreConfigurationBuilder.class)
.fetchPersistentState(false)
.ignoreModifications(false)
.purgeOnStartup(false)
.remoteCacheName("mycache")
.rawValues(true)
.addServer()
.host("one").port(12111)
.addServer()
Lhost("two")
.connectionPool()
.maxActive(10)
.exhaustedAction(ExhaustedAction.CREATE_NEW)
.async().enable();

In this sample configuration, the remote cache store is configured to use the remote cache named
"mycache" on servers "one" and "two". It also configures connection pooling and provides a custom
transport executor. Additionally the cache store is asynchronous.

5.8. Cluster cache loader

The ClusterCacheLoader is a cache loader implementation that retrieves data from other cluster
members.

It is a cache loader only as it doesn’t persist anything (it is not a Store), therefore features like
fetchPersistentState (and like) are not applicable.

A cluster cache loader can be used as a non-blocking (partial) alternative to stateTransfer : keys not
already available in the local node are fetched on-demand from other nodes in the cluster. This is a
kind of lazy-loading of the cache content.

o The cluster cache loader does not support segmentation.
<persistence>
<cluster-loader remote-timeout="500"/>
</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence()

.addClusterlLoader()

.remoteCallTimeout(500);

For a list of ClusterCacheLoader configuration refer to the javadoc .

74

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/configuration/cache/ClusterLoaderConfiguration.html

ﬁ The ClusterCacheLoader does not support preloading(preload=true). It also won’t
provide state if fetchPersistentSate=true.

5.9. Command-Line Interface cache loader

The Command-Line Interface (CLI) cache loader is a cache loader implementation that retrieves
data from another {brandname} node using the CLI. The node to which the CLI connects to could be
a standalone node, or could be a node that it’s part of a cluster. This cache loader is read-only, so it
will only be used to retrieve data, and hence, won’t be used when persisting data.

The CLI cache loader is configured with a connection URL pointing to the {brandname} node to
which connect to. Here is an example:

0 Details on the format of the URL and how to make sure a node can receive
invocations via the CLI can be found in the Command-Line Interface chapter.
0 The Command-Line Interface (CLI) cache loader does not support segmentation.
<persistence>

<cli-loader connection="jmx://1.2.3.4:4444/MyCacheManager/myCache" />
</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();

b.persistence()
.addStore(CLInterfacelLoaderConfigurationBuilder.class)
.connectionString("jmx://1.2.3.4:4444/MyCacheManager/myCache");

5.10. RocksDB Cache Store

{brandname} supports using RocksDB as a cache store.

5.10.1. Introduction

RocksDB is a fast key-value filesystem-based storage from Facebook. It started as a fork of Google’s
LevelDB, but provides superior performance and reliability, especially in highly concurrent
scenarios.

5.10.2. Segmentation support

The RocksDB cache store supports segmentation and creates a separate column family per segment,
which substantially improves lookup performance and iteration. However, write operations are a
little slower when the cache store is segmented.

75

#command_line_interface
http://rocksdb.org/

You should not configure more than a few hundred segments. RocksDB is not
designed to have an unlimited number of column families. Too many segments
also significantly increases startup time for the cache store.

Sample Usage

The RocksDB cache store requires 2 filesystem directories to be configured - each directory contains
a RocksDB database: one location is used to store non-expired data, while the second location is
used to store expired keys pending purge.

Configuration cacheConfig = new ConfiqurationBuilder().persistence()
.addStore(RocksDBStoreConfigurationBuilder.class)
.build();

EmbeddedCacheManager cacheManager = new DefaultCacheManager(cacheConfig);

Cache<String, User> usersCache = cacheManager.getCache("usersCache");
usersCache.put("raytsang", new User(...));

5.10.3. Configuration

It is also possible to configure the underlying rocks db instance. This can be done via properties in
the store configuration. Any property that is prefixed with the name database will configure the
rocks db database. Data is now stored in column families, these can be configured independently of
the database by setting a property prefixed with the name data.

Note that you do not have to supply properties and this is entirely optional.

Sample Programatic Configuration

Properties props = new Properties();
props.put("database.max_background_compactions", "2");
props.put("data.write_buffer_size", "512MB");

Configuration cacheConfig = new ConfiqurationBuilder().persistence()
.addStore(RocksDBStoreConfigurationBuilder.class)
.location("/tmp/rocksdb/data")
.expiredLocation("/tmp/rocksdb/expired")

.properties(props)
.build();

Parameter Description

location Directory to use for RocksDB to store primary
cache store data. The directory will be auto-
created if it does not exit.

76

Parameter

expiredLocation

expiryQueueSize

clearThreshold

compressionType

blockSize

cacheSize

Sample XML Configuration

infinispan.xml

<local-cache name="vehicleCache">
<persistence>

Description

Directory to use for RocksDB to store expiring
data pending to be purged permanently. The
directory will be auto-created if it does not exit.

Size of the in-memory queue to hold expiring
entries before it gets flushed into expired
RocksDB store

There are two methods to clear all entries in
RocksDB. One method is to iterate through all
entries and remove each entry individually. The
other method is to delete the database and re-
init. For smaller databases, deleting individual
entries is faster than the latter method. This
configuration sets the max number of entries
allowed before using the latter method

Configuration for RocksDB for data
compression, see CompressionType enum for
options

Configuration for RocksDB - see documentation
for performance tuning

Configuration for RocksDB - see documentation
for performance tuning

<rocksdb-store path="/tmp/rocksdb/data">
<expiration path="/tmp/rocksdb/expired"/>
<property name="database.max_background_compactions">2</property>
<property name="data.write_buffer_size">512MB</property>

</rocksdb-store>
</persistence>

</local-cache>

5.10.4. Additional References

Refer to the test case for code samples in action.

Refer to test configurations for configuration samples.

5.11. LevelDB Cache Store

77

https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/infinispan/infinispan/blob/master/persistence/rocksdb/src/test/java/org/infinispan/persistence/rocksdb/config/ConfigurationTest.java
https://github.com/infinispan/infinispan/tree/master/persistence/rocksdb/src/test/resources/config/

The LevelDB Cache Store has been deprecated and has been replaced with the

ﬁ RocksDB Cache Store. If you have existing data stored in a LevelDB Cache Store,
the RocksDB Cache Store will convert it to the new SST-based format on the first
run.

5.12. JPA Cache Store

The implementation depends on JPA 2.0 specification to access entity meta model.

In normal use cases, it’s recommended to leverage {brandname} for JPA second level cache and/or
query cache. However, if you’d like to use only {brandname} API and you want {brandname} to
persist into a cache store using a common format (e.g., a database with well defined schema), then
JPA Cache Store could be right for you.

Things to note

* When using JPA Cache Store, the key should be the ID of the entity, while the value should be
the entity object.

* Only a single @Id or @EmbeddedId annotated property is allowed.
* Auto-generated ID is not supported.

* Lastly, all entries will be stored as immortal entries.

0 The JPA cache store does not support segmentation.

5.12.1. Sample Usage
For example, given a persistence unit "myPersistenceUnit", and a JPA entity User:

persistence.xml
<persistence-unit name="myPersistenceUnit">

</persistence-unit>

User entity class

User.java

public class User implements Serializable {
private String username;

private String firstName;
private String lastName;

78

Then you can configure a cache "usersCache" to use JPA Cache Store, so that when you put data into
the cache, the data would be persisted into the database based on JPA configuration.

EmbeddedCacheManager cacheManager = ...;

Configuration cacheConfig = new ConfigurationBuilder().persistence()
.addStore(JpaStoreConfigurationBuilder.class)
.persistenceUnitName("org.infinispan.loaders.jpa.configurationTest")
.entityClass(User.class)

.build();
cacheManager .defineCache("usersCache", cacheConfig);

Cache<String, User> usersCache = cacheManager.getCache("usersCache");
usersCache.put("raytsang”, new User(...));

Normally a single {brandname} cache can store multiple types of key/value pairs, for example:

Cache<String, User> usersCache = cacheManager.getCache("myCache");
usersCache.put("raytsang”, new User());

Cache<Integer, Teacher> teachersCache = cacheManager.getCache("myCache");
teachersCache.put(1, new Teacher());

It’s important to note that, when a cache is configured to use a JPA Cache Store, that cache would
only be able to store ONE type of data.

Cache<String, User> usersCache = cacheManager.getCache("myJPACache"); // configured
for User entity class

usersCache.put("raytsang”, new User());

Cache<Integer, Teacher> teachersCache = cacheManager.getCache("myJPACache"); // cannot
do this when this cache is configured to use a JPA cache store

teachersCache.put(1, new Teacher());

Use of @EmbeddedId is supported so that you can also use composite keys.

79

@Entity

public class Vehicle implements Serializable {
@EmbeddedId
private Vehicleld id;
private String color;

}

@Embeddable
public class Vehicleld implements Serializable

{

private String state;
private String licensePlate;

Lastly, auto-generated IDs (e.g., @GeneratedValue) is not supported. When putting things into the
cache with a JPA cache store, the key should be the ID value!

5.12.2. Configuration

Sample Programatic Configuration

Configuration cacheConfig = new ConfigurationBuilder().persistence()
.addStore(JpaStoreConfigurationBuilder.class)
.persistenceUnitName("org.infinispan.loaders.jpa.configurationTest")

.entityClass(User.class)

.build();
Parameter
persistenceUnitName
entityClass

Sample XML Configuration

<local-cache name="vehicleCache">
<persistence passivation="false">

Description

JPA persistence unit name in JPA configuration
(persistence.xml) that contains the JPA entity
class

JPA entity class that is expected to be stored in
this cache. Only one class is allowed.

<jpa-store xmlns="urn:infinispan:config:store:jpa:7.0"
persistence-unit="org.infinispan.persistence.jpa.configurationTest"
entity-class="org.infinispan.persistence.jpa.entity.Vehicle">

/>
</persistence>
</local-cache>

80

Parameter Description

ersistence-unit PA persistence unit name in JPA configuration

p p g
(persistence.xml) that contains the JPA entity
class

entity-class Fully qualified JPA entity class name that is

expected to be stored in this cache. Only one
class is allowed.

5.12.3. Additional References
Refer to the test case for code samples in action.

Refer to test configurations for configuration samples.

5.13. Custom Cache Stores

If the provided cache stores do not fulfill all of your requirements, it is possible for you to
implement your own store. The steps required to create your own store are as follows:

1. Write your custom store by implementing one of the following interfaces:

. org.infinispan.persistence.spi.AdvancedCachelriter

. org.infinispan.persistence.spi.AdvancedCacheloader

. org.infinispan.persistence.spi.CachelLoader

. org.infinispan.persistence.spi.CacheWriter

. org.infinispan.persistence.spi.ExternalStore

. org.infinispan.persistence.spi.AdvancedLoadWriteStore

. org.infinispan.persistence.spi.TransactionalCacheWriter

. org.infinispan.persistence.spi.SegmentedAdvancedLoadWriteStore

2. Annotate your store class with the @Store annotation and specify the properties relevant to your
store, e.g. is it possible for the store to be shared in Replicated or Distributed mode:
@Store(shared = true).

3. Create a custom cache store configuration and builder. This requires extending
AbstractStoreConfiguration and AbstractStoreConfigurationBuilder. As an optional step, you
should add the following annotations to your configuration - @ConfigurationFor, @BuiltBy as well
as adding @ConfiguredBy to your store implementation class. These additional annotations will
ensure that your custom configuration builder is used to parse your store configuration from
xml. If these annotations are not added, then the CustomStoreConfigurationBuilder will be used
to parse the common store attributes defined in AbstractStoreConfiguration and any additional
elements will be ignored. If a store and its configuration do not declare the @Store and
@ConfigurationFor annotations respectively, a warning message will be logged upon cache
initialisation.

If you wish for your store to be segmented, where it will craete a different store instance per
segment, instead of extending AbstractStoreConfiguration you should extend
AbstractSegmentedStoreConfiguration.

81

https://github.com/infinispan/infinispan/blob/master/persistence/jpa/src/test/java/org/infinispan/persistence/jpa/JpaConfigurationTest.java
https://github.com/infinispan/infinispan/blob/master/persistence/jpa/src/test/resources/config/jpa-config.xml

4. Add your custom store to your cache’s configuration:

1. Add your custom store to the ConfigurationBuilder, for example:

Configuration config = new ConfigurationBuilder()
.persistence()
.addStore(CustomStoreConfigurationBuilder.class)
.build();

2. Define your custom store via xml:

<local-cache name="customStoreExample">
<persistence>
<store class="org.infinispan.persistence.dummy.DummyInMemoryStore" />
</persistence>
</local-cache>

5.13.1. HotRod Deployment

A Custom Cache Store can be packaged into a separate JAR file and deployed in a HotRod server
using the following steps:

1. Follow Custom Cache Stores, steps 1-3>> in the previous section and package your
implementations in a JAR file (or use a Custom Cache Store Archetype).

2. In your Jar create a proper file under META-INF/services/, which contains the fully qualified
class name of your store implementation. The name of this service file should reflect the
interface that your store implements. For example, if your store implements the
AdvancedCacheliriter interface than you need to create the following file:

o /META-INF/services/org.infinispan.persistence.spi.AdvancedCacheWriter

3. Deploy the JAR file in the {brandname} Server.

5.14. Store Migrator

{brandname} 9.0 introduced changes to internal marshalling functionality that are not backwardly
compatible with previous versions of {brandname}. As a result, {brandname} 9.x and later cannot
read cache stores created in earlier versions of {brandname}. Additionally, {brandname} no longer
provides some store implementations such as JDBC Mixed and Binary stores.

You can use StoreMigrator.java to migrate cache stores. This migration tool reads data from cache
stores in previous versions and rewrites the content for compatibility with the current marshalling
implementation.

5.14.1. Migrating Cache Stores

To perform a migration with StoreMigrator,

82

#custom_cache_stores

1. Put infinispan-tools-9.4.jar and dependencies for your source and target databases, such as
JDBC drivers, on your classpath.

2. Create a .properties file that contains configuration properties for the source and target cache
stores.

You can find an example properties file that contains all applicable configuration options in
migrator.properties.

3. Specify .properties file as an argument for StoreMigrator.

4. Run mvn exec:java to execute the migrator.

See the following example Maven pom.xml for StoreMigrator:

83

https://github.com/infinispan/infinispan/blob/master/tools/src/main/resources/migrator.properties

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.orqg/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.infinispan.example</groupId>
<artifactId>jdbc-migrator-example</artifactId>
<version>1.0-SNAPSHOT</version>

<dependencies>
<dependency>
<groupId>org.infinispan</groupIld>
<artifactId>infinispan-tools</artifactId>
<version>${version.infinispan}</version>
</dependency>

<!-- ADD YOUR REQUIRED DEPENDENCIES HERE -->
</dependencies>

<build>
<plugins>
<plugin>
<groupId>org.codehaus.mojo</groupIld>
<artifactId>exec-maven-plugin</artifactId>
<version>1.2.1</version>

<executions>
<execution>
<goals>
<goal>java</goal>
</goals>
</execution>
</executions>
<configuration>
<mainClass>StoreMigrator</mainClass>
<arguments>
<argument><!-- PATH TO YOUR MIGRATOR.PROPERTIES FILE --
></arqument>
</arguments>
</confiquration>
</plugin>
</plugins>
</build>
</project>

Replace ${version.infinispan} with the appropriate version of {brandname}.

84

5.14.2. Store Migrator Properties

All migrator properties are configured within the context of a source or target store. Each property
must start with either source. or target..

All properties in the following sections apply to both source and target stores, except for
table.binary.* properties because it is not possible to migrate to a binary table.

Common Properties

Property Description Example value Required
type JDBC_STRING | JDBC_MIXED TRUE
JDBC_BINARY |
JDBC_MIXED |

LEVELDB | ROCKSDB |
SINGLE_FILE_STORE |
SOFT_INDEX_ FILE_STO

RE

cache_name The name of the cache persistentMixedCache TRUE
associated with the
store

segment_count How many segments null FALSE

this store will be
created with. If not
provided store will not
be segmented.
(supported as target
only - JDBC not yet
supported)

It should be noted that the segment_count property should match how many segments your cache
will be using. That is that it should match the clustering.hash.numSegments config value. If these do
not match, data will not be properly read when running the cache.

JDBC Properties
Property Description Example value Required
dialect The dialect of the POSTGRES TRUE

underlying database

85

Property

marshaller.type

marshaller.class

marshaller.externalizer
S

connection_pool.conne
ction_url

connection_pool.driver
_class

connection_pool.userna
me

connection_pool.passw
ord

db.major_version

db.minor_version

db.disable_upsert
db.disable_indexing

table.<binary|string>.ta
ble_name_prefix

table.<binary|string>.<i
d|data|timestamp>.nam
e

table.<binary|string>.<i
d|data|timestamp>.type

86

Description Example value

The marshaller to use = CURRENT
for the store. Possible

values are:

- LEGACY {brandname}
8.2.x marshaller. Valid
for source stores only.

- CURRENT {brandname}
9.x marshaller.

- CUSTOM Custom
marshaller.

The class of the
marshaller if
type=CUSTOM

rshaller

A Comma-separated list 25:Externali ZEI"! ,0rg.e
xample.Externalizer?2

of custom
AdvancedExternalizer
implementations to
load [id]:<Externalizer

class>

The JDBC connection ~ jdbc:postgresql:postgr
url €s

The class of the JDBC org.postrgesql.Driver
driver

Database username

Database password

Database major version 9

Database minor 5

version

Disable db upsert false
Prevent table index false

being created

Additional prefix for tablePrefix
table name

Name of the column id_column
Type of the column VARCHAR

org.example.CustomMa

Required
TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

Property Description Example value Required

key_to_string_mapper TwoWayKey2StringMa 0rg.infinispan.persist
ence.keymappers.

pper Class DefaultTwoWayKey2Strin
gMapper
LevelDB/RocksDB Properties
Property Description Example value Required
location The location of the db /some/example/dir TRUE
directory
compression The compression type SNAPPY
to be used
SingleFileStore Properties
Property Description Example value Required
location The directory /some/example/dir TRUE
containing the store’s
.dat file
SoftindexFileStore Properties
Property Description Example value Required
location The location of the db /some/example/dir TRUE
directory
index_location The location of the db’s /some/example/dir- Target Only
index index

Following sections describe the SPI and also discuss the SPI implementations that {brandname}
ships out of the box.

5.15. SPI

The following class diagram presents the main SPI interfaces of the persistence API:

87

MarshalledEntry ByteBuffer

+ getKeyBytes() : ByteBuffer + getBuf() : byte[]
+ getValueBytes() : ByteBuffer hmmmmmmm === + getOffset() : int
+ getkey() : Object + getlLength() : int
+ getvalue() : Object + copy() : ByteBuffer

+ getMetadataBytes() : ByteBuffer
+ getMetadata() : InternalMetadata

Lifecycle

+ start() : void
+ stop() : void

Q’
CacheWriter Cacheloader

+ write(e : MarshalledEntry) : void + load(k : Object) : MarshalledEntry

+ delete(key : Object) : boolean + contains(k : Object) : boolean

+ inti(i : InitializationContext) : void + init{i : InitializationContext) : void

AdvancedCacheWriter AdvancedCacheLoader

+ clear() : void + process(f : KeyFilter, t : CacheloaderTask, e : Executor, fetchValue : boolean, fetchMetatda : boolean) : void
+ purgele : Executor, p : Purgelistener) : void + size() @ int

Figure 1. Persistence SPI
Some notes about the classes:

» ByteBuffer - abstracts the serialized form of an object

* MarshalledEntry - abstracts the information held within a persistent store corresponding to a
key-value added to the cache. Provides method for reading this information both in serialized
(ByteBuffer) and deserialized (Object) format. Normally data read from the store is kept in
serialized format and lazily deserialized on demand, within the MarshalledEntry
implementation

» CacheWriter and CacheLoader provide basic methods for reading and writing to a store
* AdvancedCacheLoader and AdvancedCacheWriter provide operations to manipulate the
underlaying storage in bulk: parallel iteration and purging of expired entries, clear and size.
» SegmentedAdvancedLoadWriteStore provide all the various operations that deal with segments.
A cache store can be segmented if it does one of the following:
* Implements the SegmentedAdvancedLoadWriteStore interface. In this case only a single store
instance is used per cache.

* Has a configuration that extends the AbstractSegmentedConfiguration abstract class. Doing this
requires you to implement the newConfigurationFrom method where it is expected that a new
StoreConfiguration instance is created per invocation. This creates a store instance per segment
to which a node can write. Stores might start and stop as data is moved between nodes.

A provider might choose to only implement a subset of these interfaces:

88

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/io/ByteBuffer.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/spi/MarshalledEntry.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/io/ByteBuffer.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/spi/MarshalledEntry.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/spi/CacheWriter.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/spi/CacheLoader.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/spi/AdvancedCacheLoader.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/spi/AdvancedCacheWriter.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/spi/SegmentedAdvancedLoadWriteStore.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/spi/SegmentedAdvancedLoadWriteStore.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/configuration/cache/AbstractSegmentedConfiguration.html

* Not implementing the AdvancedCacheWriter makes the given writer not usable for purging
expired entries or clear

* If a loader does not implement the AdvancedCacheLoader inteface, then it will not participate
in preloading nor in cache iteration (required also for stream operations).

If you're looking at migrating your existing store to the new API or to write a new store
implementation, the SingleFileStore might be a good starting point/example.

5.16. More implementations

Many more cache loader and cache store implementations exist. Visit this website for more details.

89

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/spi/AdvancedCacheWriter.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/persistence/spi/AdvancedCacheLoader.html
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/persistence/file/SingleFileStore.java
http://infinispan.org/cache-store-implementations

Chapter 6. Clustering

A cache manager can be configured to be either local (standalone) or clustered. When clustered,
manager instances use JGroups' discovery protocols to automatically discover neighboring
instances on the same local network and form a cluster.

Creating a local-only cache manager is trivial: just use the no-argument DefaultCacheManager
constructor, or supply the following XML configuration file.

<infinispan/>
To start a clustered cache manager, you need to create a clustered configuration.

GlobalConfigurationBuilder gcb = GlobalConfigurationBuilder.defaultClusteredBuilder();
DefaultCacheManager manager = new DefaultCacheManager(gcb.build());

<infinispan>
<cache-container>
<transport/>
</cache-container>
</infinispan>

Individual caches can then be configured in different modes:

* Local: changes and reads are never replicated. This is the only mode available in non-clustered
cache managers.

» Invalidation: changes are not replicated, instead the key is invalidated on all nodes; reads are
local.

* Replicated: changes are replicated to all nodes, reads are always local.

* Distributed: changes are replicated to a fixed number of nodes, reads request the value from at
least one of the owner nodes.

6.1. Which cache mode should I use?

Which cache you should use depends on the qualities/guarantees you need for your data. The
following table summarizes the most important ones:

Simple Local Invalidatio Replicated Distributed Scattered
n
Clustered No No Yes Yes Yes Yes
Read Highest High High High Medium Medium
performance (local) (local) (local) (local) (owners) (primary)

90

Simple Local Invalidatio Replicated Distributed Scattered

n

Write Highest High Low Lowest Medium Higher
performance (local) (local) (all nodes, (all nodes) (owner (single RPC)

no data) nodes)

Capacity Single node Single node Single node Smallest Cluster Cluster
node (sum_@G=1A" (sum_(@G=1)A"
nodes"'nod nodes"'nod
e_capacity")/ e_capacity")/

llownersll "2"

Availability Single node Single node Single node All nodes Owner Owner

nodes nodes

Features No TX, All All All All No TX

persistence
, iIndexing

6.2. Local Mode

While {brandname} is particularly interesting in clustered mode, it also offers a very capable local
mode. In this mode, it acts as a simple, in-memory data cache similar to a ConcurrentHashMap.

But why would one use a local cache rather than a map? Caches offer a lot of features over and
above a simple map, including write-through and write-behind to a persistent store, eviction of
entries to prevent running out of memory, and expiration.

{brandname}'s Cache interface extends JDK’s ConcurrentMap —making migration from a map to
{brandname} trivial.

{brandname} caches also support transactions, either integrating with an existing transaction
manager or running a separate one. Local caches transactions have two choices:

1. When to lock? Pessimistic locking locks keys on a write operation or when the user calls
AdvancedCache.lock(keys) explicitly. Optimistic locking only locks keys during the transaction
commit, and instead it throws a WriteSkewCheckException at commit time, if another transaction
modified the same keys after the current transaction read them.

2. Isolation level. We support read-committed and repeatable read.

6.2.1. Simple Cache

Traditional local caches use the same architecture as clustered caches, i.e. they use the interceptor
stack. That way a lot of the implementation can be reused. However, if the advanced features are
not needed and performance is more important, the interceptor stack can be stripped away and
simple cache can be used.

So, which features are stripped away? From the configuration perspective, simple cache does not
support:

* transactions and invocation batching

91

 persistence (cache stores and loaders)
* custom interceptors (there’s no interceptor stack!)

* indexing

compatibility (embedded/server mode)

* store as binary (which is hardly useful for local caches)
From the API perspective these features throw an exception:

* adding custom interceptors

e Distributed Executors Framework
So, what’s left?

* basic map-like API

* cache listeners (local ones)
* expiration

* eviction

* security

 JMX access

statistics (though for max performance it is recommended to switch this off using statistics-
available=false)

Declarative configuration

<local-cache name="mySimpleCache" simple-cache="true">
<!-- expiration, eviction, security... -->
</local-cache>

Programmatic configuration

CacheManager cm = getCacheManager();

ConfigurationBuilder builder = new ConfigurationBuilder().simpleCache(true);
cm.defineConfiguration("mySimpleCache", builder.build());

Cache cache = cm.getCache("mySimpleCache");

Simple cache checks against features it does not support, if you configure it to use e.g. transactions,
configuration validation will throw an exception.

6.3. Invalidation Mode

In invalidation, the caches on different nodes do not actually share any data. Instead, when a key is
written to, the cache only aims to remove data that may be stale from other nodes. This cache mode
only makes sense if you have another, permanent store for your data such as a database and are

92

only using {brandname} as an optimization in a read-heavy system, to prevent hitting the database
for every read. If a cache is configured for invalidation, every time data is changed in a cache, other
caches in the cluster receive a message informing them that their data is now stale and should be
removed from memory and from any local store.

93

Figure 2. Invalidation mode

94

originator

CHe

¥ e

Sometimes the application reads a value from the external store and wants to write it to the local
cache, without removing it from the other nodes. To do this, it must call
Cache.putForExternalRead(key, value) instead of Cache.put(key, value).

Invalidation mode can be used with a shared cache store. A write operation will both update the
shared store, and it would remove the stale values from the other nodes' memory. The benefit of
this is twofold: network traffic is minimized as invalidation messages are very small compared to
replicating the entire value, and also other caches in the cluster look up modified data in a lazy
manner, only when needed.

ﬁ Never use invalidation mode with a local store. The invalidation message will not
remove entries in the local store, and some nodes will keep seeing the stale value.

An invalidation cache can also be configured with a special cache loader, ClusterLoader. When
(lusterLoader is enabled, read operations that do not find the key on the local node will request it
from all the other nodes first, and store it in memory locally. In certain situation it will store stale
values, so only use it if you have a high tolerance for stale values.

Invalidation mode can be synchronous or asynchronous. When synchronous, a write blocks until
all nodes in the cluster have evicted the stale value. When asynchronous, the originator broadcasts
invalidation messages but doesn’t wait for responses. That means other nodes still see the stale
value for a while after the write completed on the originator.

Transactions can be used to batch the invalidation messages. They won’t behave like regular
transactions though, as locks are only acquired on the local node, and entries can be invalidated by
other transactions at any time.

6.4. Replicated Mode

Entries written to a replicated cache on any node will be replicated to all other nodes in the cluster,
and can be retrieved locally from any node. Replicated mode provides a quick and easy way to
share state across a cluster, however replication practically only performs well in small clusters
(under 10 nodes), due to the number of messages needed for a write scaling linearly with the
cluster size. {brandname} can be configured to use UDP multicast, which mitigates this problem to
some degree.

Each key has a primary owner, which serializes data container updates in order to provide
consistency. To find more about how primary owners are assigned, please read the Key Ownership
section.

95

#key_ownership

originator,
backup primary

A9

8 /(| O

ge

backup backup

Figure 3. Replicated mode

96

Replicated mode can be synchronous or asynchronous.

* Synchronous replication blocks the caller (e.g. on a cache.put(key, value)) until the
modifications have been replicated successfully to all the nodes in the cluster.

» Asynchronous replication performs replication in the background, and write operations return
immediately. Asynchronous replication is not recommended, because communication errors, or
errors that happen on remote nodes are not reported to the caller.

If transactions are enabled, write operations are not replicated through the primary owner.

* With pessimistic locking, each write triggers a lock message, which is broadcast to all the nodes.
During transaction commit, the originator broadcasts a one-phase prepare message and an
unlock message (optional). Either the one-phase prepare or the unlock message is fire-and-
forget.

* With optimistic locking, the originator broadcasts a prepare message, a commit message, and an
unlock message (optional). Again, either the one-phase prepare or the unlock message is fire-
and-forget.

6.5. Distribution Mode

Distribution tries to keep a fixed number of copies of any entry in the cache, configured as
numOwners. This allows the cache to scale linearly, storing more data as nodes are added to the
cluster.

As nodes join and leave the cluster, there will be times when a key has more or less than numOwners
copies. In particular, if numOwners nodes leave in quick succession, some entries will be lost, so we
say that a distributed cache tolerates numOwners - 1 node failures.

The number of copies represents a trade-off between performance and durability of data. The more
copies you maintain, the lower performance will be, but also the lower the risk of losing data due to
server or network failures. Regardless of how many copies are maintained, distribution still scales
linearly, and this is key to {brandname}'s scalability.

The owners of a key are split into one primary owner, which coordinates writes to the key, and
zero or more backup owners. To find more about how primary and backup owners are assigned,
please read the Key Ownership section.

97

#key_ownership

Figure 4. Distributed mode

98

originator

e

C
v

primary

A9

backup

ge

backup

A read operation will request the value from the primary owner, but if it doesn’t respond in a
reasonable amount of time, we request the value from the backup owners as well. (The
infinispan.stagger.delay system property, in milliseconds, controls the delay between requests.) A
read operation may require @ messages if the key is present in the local cache, or up to 2 *
numOwners messages if all the owners are slow.

A write operation will also result in at most 2 * numOwners messages: one message from the
originator to the primary owner, numOwners - 1 messages from the primary to the backups, and the
corresponding ACK messages.

ﬁ Cache topology changes may cause retries and additional messages, both for reads
and for writes.

Just as replicated mode, distributed mode can also be synchronous or asynchronous. And as in
replicated mode, asynchronous replication is not recommended because it can lose updates. In
addition to losing updates, asynchronous distributed caches can also see a stale value when a
thread writes to a key and then immediately reads the same key.

Transactional distributed caches use the same kinds of messages as transactional replicated caches,
except lock/prepare/commit/unlock messages are sent only to the affected nodes (all the nodes that
own at least one key affected by the transaction) instead of being broadcast to all the nodes in the
cluster. As an optimization, if the transaction writes to a single key and the originator is the
primary owner of the key, lock messages are not replicated.

6.5.1. Read consistency

Even with synchronous replication, distributed caches are not linearizable. (For transactional
caches, we say they do not support serialization/snapshot isolation.) We can have one thread doing
a single put:

cache.get(k) -> v1
cache.put(k, v2)
cache.get(k) -> v2

But another thread might see the values in a different order:

cache.get(k) -> v2
cache.get(k) -> v1

The reason is that read can return the value from any owner, depending on how fast the primary
owner replies. The write is not atomic across all the owners—in fact, the primary commits the
update only after it receives a confirmation from the backup. While the primary is waiting for the
confirmation message from the backup, reads from the backup will see the new value, but reads
from the primary will see the old one.

99

6.5.2. Key Ownership

Distributed caches split entries into a fixed number of segments and assign each segment to a list of
owner nodes. Replicated caches do the same, with the exception that every node is an owner.

The first node in the list of owners is the primary owner. The other nodes in the list are backup
owners. When the cache topology changes, because a node joins or leaves the cluster, the segment
ownership table is broadcast to every node. This allows nodes to locate keys without making
multicast requests or maintaining metadata for each key.

The numSegments property configures the number of segments available. However, the number of
segments cannot change unless the cluster is restarted.

Likewise the key-to-segment mapping cannot change. Keys must always map to the same segments
regardless of cluster topology changes. It is important that the key-to-segment mapping evenly
distributes the number of segments allocated to each node while minimizing the number of
segments that must move when the cluster topology changes.

You can customize the key-to-segment mapping by configuring a KeyPartitioner or by using the
Grouping API.

However, {brandname} provides the following implementations:

SyncConsistentHashFactory

Uses an algorithm based on consistent hashing. Selected by default when server hinting is
disabled.

This implementation always assigns keys to the same nodes in every cache as long as the cluster
is symmetric. In other words, all caches run on all nodes. This implementation does have some
negative points in that the load distribution is slightly uneven. It also moves more segments than
strictly necessary on a join or leave.

TopologyAwareSyncConsistentHashFactory

Similar to SyncConsistentHashFactory, but adapted for Server Hinting. Selected by default when
server hinting is enabled.

DefaultConsistentHashFactory

Achieves a more even distribution than SyncConsistentHashFactory, but with one disadvantage.
The order in which nodes join the cluster determines which nodes own which segments. As a
result, keys might be assigned to different nodes in different caches.

Was the default from version 5.2 to version 8.1 with server hinting disabled.

TopologyAwareConsistentHashFactory

Similar to DefaultConsistentHashFactory, but adapted for Server Hinting.
Was the default from version 5.2 to version 8.1 with server hinting enabled.

ReplicatedConsistentHashFactory

Used internally to implement replicated caches. You should never explicitly select this algorithm

100

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/distribution/ch/KeyPartitioner.html
#grouping_api
http://en.wikipedia.org/wiki/Consistent_hashing
#server_hinting
#server_hinting

in a distributed cache.

Capacity Factors

Capacity factors are another way to customize the mapping of segments to nodes. The nodes in a
cluster are not always identical. If a node has 2x the memory of a "regular" node, configuring it
with a capacityFactor of 2 tells {brandname} to allocate 2x segments to that node. The capacity
factor can be any non-negative number, and the hashing algorithm will try to assign to each node a
load weighted by its capacity factor (both as a primary owner and as a backup owner).

One interesting use case is nodes with a capacity factor of 0. This could be useful when some nodes
are too short-lived to be useful as data owners, but they can’t use HotRod (or other remote
protocols) because they need transactions. With cross-site replication as well, the "site master"
should only deal with forwarding commands between sites and shouldn’t handle user requests, so
it makes sense to configure it with a capacity factor of 0.

Zero Capacity Node

You might need to configure a whole node where the capacity factor is @ for every cache, user
defined caches and internal caches. When defining a zero capacity node, the node won’t hold any
data. This is how you declare a zero capacity node:

<cache-container zero-capacity-node="true" />

new GlobalConfigurationBuilder().zeroCapacityNode(true);

However, note that this will be true for distributed caches only. If you are using replicated caches,
the node will still keep a copy of the value. Use only distributed caches to make the best use of this
feature.

Hashing Configuration

This is how you configure hashing declaratively, via XML:

<distributed-cache name="distributedCache" owners="2" segments="100" capacity-
factor="2" />

And this is how you can configure it programmatically, in Java:

101

Configuration ¢ = new ConfigurationBuilder()
.clustering()
.cacheMode(CacheMode.DIST_SYNC)
.hash()
.numOwners(2)
.numSegments(100)
.capacityFactor(2)
.build();

6.5.3. Initial cluster size

{brandname}'s very dynamic nature in handling topology changes (i.e. nodes being added /
removed at runtime) means that, normally, a node doesn’t wait for the presence of other nodes
before starting. While this is very flexible, it might not be suitable for applications which require a
specific number of nodes to join the cluster before caches are started. For this reason, you can
specify how many nodes should have joined the cluster before proceeding with cache initialization.
To do this, use the initialClusterSize and initialClusterTimeout transport properties. The
declarative XML configuration:

<transport initial-cluster-size="4" initial-cluster-timeout="30000" />
The programmatic Java configuration:

GlobalConfiguration global = new GlobalConfigurationBuilder()
.transport()
.initialClusterSize(4)
.initialClusterTimeout(30000)
.build();

The above configuration will wait for 4 nodes to join the cluster before initialization. If the initial
nodes do not appear within the specified timeout, the cache manager will fail to start.

6.5.4. L1 Caching

When L1 is enabled, a node will keep the result of remote reads locally for a short period of time
(configurable, 10 minutes by default), and repeated lookups will return the local L1 value instead of
asking the owners again.

102

originator

Figure 5. L1 caching

primary

103

L1 caching is not free though. Enabling it comes at a cost, and this cost is that every entry update
must broadcast an invalidation message to all the nodes. L1 entries can be evicted just like any
other entry when the the cache is configured with a maximum size. Enabling L1 will improve
performance for repeated reads of non-local keys, but it will slow down writes and it will increase
memory consumption to some degree.

Is L1 caching right for you? The correct approach is to benchmark your application with and
without L1 enabled and see what works best for your access pattern.

6.5.5. Server Hinting

The following topology hints can be specified:

Machine

This is probably the most useful, when multiple JVM instances run on the same node, or even
when multiple virtual machines run on the same physical machine.

Rack

In larger clusters, nodes located on the same rack are more likely to experience a hardware or
network failure at the same time.

Site
Some clusters may have nodes in multiple physical locations for extra resilience. Note that Cross
site replication is another alternative for clusters that need to span two or more data centres.

All of the above are optional. When provided, the distribution algorithm will try to spread the
ownership of each segment across as many sites, racks, and machines (in this order) as possible.

Configuration

The hints are configured at transport level:

<transport
cluster="MyCluster"
machine="LinuxServer@1"
rack="Rack01"
site="US-WestCoast" />

6.5.6. Key affinity service

In a distributed cache, a key is allocated to a list of nodes with an opaque algorithm. There is no
easy way to reverse the computation and generate a key that maps to a particular node. However,
we can generate a sequence of (pseudo-)random keys, see what their primary owner is, and hand
them out to the application when it needs a key mapping to a particular node.

API

Following code snippet depicts how a reference to this service can be obtained and used.

104

#x_site_replication
#x_site_replication

// 1. Obtain a reference to a cache
Cache cache = ...
Address address = cache.getCacheManager().getAddress();

// 2. Create the affinity service
KeyAffinityService keyAffinityService = KeyAffinityServiceFactory
.newLocalKeyAffinityService(

cache,

new RndKeyGenerator(),

Executors.newSingleThreadExecutor(),

100);

// 3. Obtain a key for which the local node is the primary owner
Object localKey = keyAffinityService.getKeyForAddress(address);

// 4. Insert the key in the cache
cache.put(localKey, "yourValue");

The service is started at step 2: after this point it uses the supplied Executor to generate and queue
keys. At step 3, we obtain a key from the service, and at step 4 we use it.

Lifecycle

KeyAffinityService extends Lifecycle, which allows stopping and (re)starting it:

public interface Lifecycle {
void start();
void stop();

}

The service is instantiated through KeyAffinityServiceFactory. All the factory methods have an
Executor parameter, that is used for asynchronous key generation (so that it won’t happen in the
caller’s thread). It is the user’s responsibility to handle the shutdown of this Executor.

The KeyAffinityService, once started, needs to be explicitly stopped. This stops the background key
generation and releases other held resources.

The only situation in which KeyAffinityService stops by itself is when the cache manager with
which it was registered is shutdown.

Topology changes

When the cache topology changes (i.e. nodes join or leave the cluster), the ownership of the keys
generated by the KeyAffinityService might change. The key affinity service keep tracks of these
topology changes and doesn’t return keys that would currently map to a different node, but it won’t
do anything about keys generated earlier.

As such, applications should treat KeyAffinityService purely as an optimization, and they should

105

not rely on the location of a generated key for correctness.

In particular, applications should not rely on keys generated by KeyAffinityService for the same
address to always be located together. Collocation of keys is only provided by the Grouping API.

6.5.7. The Grouping API

Complementary to Key affinity service and similar to AtomicMap, the grouping API allows you to
co-locate a group of entries on the same nodes, but without being able to select the actual nodes.

How does it work?

By default, the segment of a key is computed using the key’s hashCode(). If you use the grouping API,
{brandname} will compute the segment of the group and use that as the segment of the key. See the
Key Ownership section for more details on how segments are then mapped to nodes.

When the group API is in use, it is important that every node can still compute the owners of every
key without contacting other nodes. For this reason, the group cannot be specified manually. The
group can either be intrinsic to the entry (generated by the key class) or extrinsic (generated by an
external function).

How do I use the grouping API?
First, you must enable groups. If you are configuring {brandname} programmatically, then call:
Configuration ¢ = new ConfigurationBuilder()

.clustering().hash().groups().enabled()
.build();

Or, if you are using XML:

<distributed-cache>
<groups enabled="true"/>
</distributed-cache>

If you have control of the key class (you can alter the class definition, it’s not part of an
unmodifiable library), then we recommend using an intrinsic group. The intrinsic group is
specified by adding the @Group annotation to a method. Let’s take a look at an example:

106

#grouping_api
#key_affinity_service
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/atomic/AtomicMap.html
#key_ownership

class User {

String office;

public int hashCode() {
// Defines the hash for the key, normally used to determine location

}

// Override the location by specifying a group
// A1l keys in the same group end up with the same owners
@Group
public String getOffice() {
return office;

}
}

0 The group method must return a String

If you don’t have control over the key class, or the determination of the group is an orthogonal
concern to the key class, we recommend using an extrinsic group. An extrinsic group is specified by
implementing the Grouper interface.

public interface Grouper<T> {
String computeGroup(T key, String group);

Class<T> getKeyType();

If multiple Grouper classes are configured for the same key type, all of them will be called, receiving
the value computed by the previous one. If the key class also has a @Group annotation, the first
Grouper will receive the group computed by the annotated method. This allows you even greater
control over the group when using an intrinsic group. Let’s take a look at an example Grouper
implementation:

107

public class KXGrouper implements Grouper<String> {

// The pattern requires a String key, of length 2, where the first character is
// "k" and the second character is a digit. We take that digit, and perform

// modular arithmetic on it to assign it to group "@" or group "1".

private static Pattern kPattern = Pattern.compile("(”k)(<a>\\d)$");

public String computeGroup(String key, String group) {
Matcher matcher = kPattern.matcher(key);
if (matcher.matches()) {
String g = Integer.parselnt(matcher.group(2)) % 2 + "";
return g,
} else {
return null;
}
}

public Class<String> getKeyType() {
return String.class;

}

Grouper implementations must be registered explicitly in the cache configuration. If you are
configuring {brandname} programmatically:

Configuration ¢ = new ConfiqurationBuilder()
.clustering().hash().groups().enabled().addGrouper(new KXGrouper())
.build();

Or, if you are using XML:

<distributed-cache>
<groups enabled="true">
<grouper class="com.acme.KXGrouper" />
</groups>
</distributed-cache>

Advanced Interface

AdvancedCache has two group-specific methods:

getGroup(groupName)

Retrieves all keys in the cache that belong to a group.

removeGroup(groupName)

Removes all the keys in the cache that belong to a group.

108

http://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/AdvancedCache.html#getGroup-java.lang.String-
http://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/AdvancedCache.html#removeGroup-java.lang.String-

Both methods iterate over the entire data container and store (if present), so they can be slow when
a cache contains lots of small groups.

6.6. Scattered Mode

Scattered mode is very similar to Distribution Mode as it allows linear scaling of the cluster. It
allows single node failure by maintaining two copies of the data (as Distribution Mode with
numOwners=2). Unlike Distributed, the location of data is not fixed; while we use the same
Consistent Hash algorithm to locate the primary owner, the backup copy is stored on the node that
wrote the data last time. When the write originates on the primary owner, backup copy is stored on
any other node (the exact location of this copy is not important).

This has the advantage of single RPC for any write (Distribution Mode requires one or two RPCs),
but reads have to always target the primary owner. That results in faster writes but possibly slower
reads, and therefore this mode is more suitable for write-intensive applications.

Storing multiple backup copies also results in slightly higher memory consumption. In order to
remove out-of-date backup copies, invalidation messages are broadcast in the cluster, which
generates some overhead. This makes scattered mode less performant in very big clusters (this
behaviour might be optimized in the future).

When a node crashes, the primary copy may be lost. Therefore, the cluster has to reconcile the
backups and find out the last written backup copy. This process results in more network traffic
during state transfer.

Since the writer of data is also a backup, even if we specify machine/rack/site ids on the transport
level the cluster cannot be resilient to more than one failure on the same machine/rack/site.

Currently it is not possible to use scattered mode in transactional cache. Asynchronous replication
is not supported either; use asynchronous Cache API instead. Functional commands are not
implemented neither but these are expected to be added soon.

The cache is configured in a similar way as the other cache modes, here is an example of
declarative configuration:
<scattered-cache name="scatteredCache" />

And this is how you can configure it programmatically:

Configuration ¢ = new ConfigurationBuilder()
.clustering().cacheMode(CacheMode.SCATTERED_SYNC)
.build();

Scattered mode is not exposed in the server configuration as the server is usually accessed through
the Hot Rod protocol. The protocol automatically selects primary owner for the writes and
therefore the write (in distributed mode with two owner) requires single RPC inside the cluster, too.
Therefore, scattered cache would not bring the performance benefit.

109

6.7. Asynchronous Options

6.7.1. Asynchronous Communications

All clustered cache modes can be configured to use asynchronous communications with the
mode="ASYNC" attribute on the <replicated-cache/>, <distributed-cache>, or <invalidation-cache/>
element.

With asynchronous communications, the originator node does not receive any acknowledgement
from the other nodes about the status of the operation, so there is no way to check if it succeeded
on other nodes.

We do not recommend asynchronous communications in general, as they can cause inconsistencies
in the data, and the results are hard to reason about. Nevertheless, sometimes speed is more
important than consistency, and the option is available for those cases.

6.7.2. Asynchronous API

The Asynchronous API allows you to use synchronous communications, but without blocking the
user thread.

There is one caveat: The asynchronous operations do NOT preserve the program order. If a thread
calls cache.putAsync(k, v1); cache.putAsync(k, v2), the final value of k may be either v1 or v2. The
advantage over using asynchronous communications is that the final value can’t be v1 on one node
and v2 on another.

0 Prior to version 9.0, the asynchronous API was emulated by borrowing a thread
from an internal thread pool and running a blocking operation on that thread.

6.7.3. Return Values

Because the (ache interface extends java.util.Map, write methods like put(key, value) and
remove (key) return the previous value by default.

In some cases, the return value may not be correct:
1. When using AdvancedCache.withFlags() with Flag.IGNORE_RETURN_VALUE, Flag.SKIP_REMOTE_LOOKUP,
or Flag.SKIP_CACHE_LOAD.
2. When the cache is configured with unreliable-return-values="true".
3. When using asynchronous communications.

4. When there are multiple concurrent writes to the same key, and the cache topology changes.
The topology change will make {brandname} retry the write operations, and a retried
operation’s return value is not reliable.

Transactional caches return the correct previous value in cases 3 and 4. However, transactional
caches also have a gotcha: in distributed mode, the read-committed isolation level is implemented
as repeatable-read. That means this example of "double-checked locking" won’t work:

110

http://docs.jboss.org/infinispan/9.4/configdocs/infinispan-config-9.4.html

Cache cache = ...
TransactionManager tm = ...

tm.begin();
try {
Integer v1 = cache.get(k);
// Increment the value
Integer v2 = cache.put(k, vl + 1);
if (Objects.equals(v1, v2) {

// success
} else {
// retry
}
} finally {
tm.commit();
}
The correct way to implement this is to use

cache.getAdvancedCache().withFlags(Flag.FORCE_WRITE_LOCK).get (k).

In caches with optimistic locking, writes can also return stale previous values. Write skew checks
can avoid stale previous values. For more information, see Write Skews.

6.8. Partition handling

An {brandname} cluster is built out of a number of nodes where data is stored. In order not to lose
data in the presence of node failures, {brandname} copies the same data—cache entry in
{brandname} parlance — over multiple nodes. This level of data redundancy is configured through
the numOwners configuration attribute and ensures that as long as fewer than numOwners nodes crash
simultaneously, {brandname} has a copy of the data available.

However, there might be catastrophic situations in which more than numOwners nodes disappear
from the cluster:

Split brain
Caused e.g. by a router crash, this splits the cluster in two or more partitions, or sub-clusters that
operate independently. In these circumstances, multiple clients reading/writing from different
partitions see different versions of the same cache entry, which for many application is
problematic. Note there are ways to alleviate the possibility for the split brain to happen, such as
redundant networks or IP bonding. These only reduce the window of time for the problem to
occur, though.

numOwners nodes crash in sequence

When at least numOwners nodes crash in rapid succession and {brandname} does not have the
time to properly rebalance its state between crashes, the result is partial data loss.

The partition handling functionality discussed in this section allows the user to configure what
operations can be performed on a cache in the event of a split brain occurring. {brandname}

111

#tx_write_skew
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-networkscripts-interfaces-chan.html

provides multiple partition handling strategies, which in terms of Brewer’s CAP theorem determine
whether availability or consistency is sacrificed in the presence of partition(s). Below is a list of the
provided strategies:

Strategy Description CAP

DENY READ WRITES If the partition does not have all Consistency
owners for a given segment,
both reads and writes are
denied for all keys in that
segment.

ALLOW_READS Allows reads for a given key if it Consistency
exists in this partition, but only
allows writes if this partition
contains all owners of a
segment. This is still a
consistent approach because
some entries are readable if
available in this partition, but
from a client application
perspective it is not
deterministic.

ALLOW_READ WRITES Allow entries on each partition Availability
to diverge, with conflict
resolution attempted upon the
partitions merging.

The requirements of your application should determine which strategy is appropriate. For example,
DENY_READ_WRITES is more appropriate for applications that have high consistency
requirements; i.e. when the data read from the system must be accurate. Whereas if {brandname}
is used as a best-effort cache, partitions maybe perfectly tolerable and the ALLOW_READ_WRITES
might be more appropriate as it favours availability over consistency.

The following sections describe how {brandname} handles split brain and successive failures for
each of the partition handling strategies. This is followed by a section describing how {brandname}
allows for automatic conflict resolution upon partition merges via merge policies. Finally, we
provide a section describing how to configure partition handling strategies and merge policies.

6.8.1. Split brain

In a split brain situation, each network partition will install its own JGroups view, removing the
nodes from the other partition(s). We don’t have a direct way of determining whether the has been
split into two or more partitions, since the partitions are unaware of each other. Instead, we
assume the cluster has split when one or more nodes disappear from the JGroups cluster without
sending an explicit leave message.

Split Strategies

In this section, we detail how each partition handling strategy behaves in the event of split brain
occurring.

112

http://en.wikipedia.org/wiki/CAP_theorem
#split_brain
#successive_node_failures
#merge_policies
#partition_handling_configuration

ALLOW_READ_WRITES

Each partition continues to function as an independent cluster, with all partitions remaining in
AVAILABLE mode. This means that each partition may only see a part of the data, and each
partition could write conflicting updates in the cache. During a partition merge these conflicts are
automatically resolved by utilising the ConflictManager and the configured EntryMergePolicy.

DENY_READ_WRITES

When a split is detected each partition does not start a rebalance immediately, but first it checks
whether it should enter DEGRADED mode instead:

* If at least one segment has lost all its owners (meaning at least numOwners nodes left since the
last rebalance ended), the partition enters DEGRADED mode.

* If the partition does not contain a simple majority of the nodes (floor(numNodes/2) + 1) in the
latest stable topology, the partition also enters DEGRADED mode.

* Otherwise the partition keeps functioning normally, and it starts a rebalance.

The stable topology is updated every time a rebalance operation ends and the coordinator
determines that another rebalance is not necessary.

These rules ensures that at most one partition stays in AVAILABLE mode, and the other partitions
enter DEGRADED mode.

When a partition is in DEGRADED mode, it only allows access to the keys that are wholly owned:

* Requests (reads and writes) for entries that have all the copies on nodes within this partition
are honoured.

* Requests for entries that are partially or totally owned by nodes that disappeared are rejected
with an AvailabilityException.

This guarantees that partitions cannot write different values for the same key (cache is consistent),
and also that one partition can not read keys that have been updated in the other partitions (no
stale data).

To exemplify, consider the initial cluster M = {A, B, C, D}, configured in distributed mode with
numOwners = 2. Further on, consider three keys k1, k2 and k3 (that might exist in the cache or not)
such that owners(k1) = {A,B}, owners(k2) = {B,C} and owners(k3) = {C,D}. Then the network splits in
two partitions, N1 = {A, B} and N2 = {C, D}, they enter DEGRADED mode and behave like this:

* on N1, k1 is available for read/write, k2 (partially owned) and k3 (not owned) are not available
and accessing them results in an AvailabilityException
e on N2, k1 and k2 are not available for read/write, k3 is available
A relevant aspect of the partition handling process is the fact that when a split brain happens, the
resulting partitions rely on the original segment mapping (the one that existed before the split

brain) in order to calculate key ownership. So it doesn’t matter if k1, k2, or k3 already existed cache
or not, their availability is the same.

113

#conflict_manager
#merge_policies

If at a further point in time the network heals and N1 and N2 partitions merge back together into the
initial cluster M, then M exits the degraded mode and becomes fully available again. During this
merge operation, because M has once again become fully available, the ConflictManager and the
configured EntryMergePolicy are used to check for any conflicts that may have occurred in the
interim period between the split brain occurring and being detected.

As another example, the cluster could split in two partitions 01 = {A, B, (} and 02 = {D}, partition
01 will stay fully available (rebalancing cache entries on the remaining members). Partition 02,
however, will detect a split and enter the degraded mode. Since it doesn’t have any fully owned
keys, it will reject any read or write operation with an AvailabilityException.

If afterwards partitions 01 and 02 merge back into M, then the ConflictManager attempts to resolve
any conflicts and D once again becomes fully available.

ALLOW_READS

Partitions are handled in the same manner as DENY_READ_WRITES, except that when a partition is
in DEGRADED mode read operations on a partially owned key WILL not throw an
AvailabilityException.

Current limitations

Two partitions could start up isolated, and as long as they don’t merge they can read and write
inconsistent data. In the future, we will allow custom availability strategies (e.g. check that a certain
node is part of the cluster, or check that an external machine is accessible) that could handle that
situation as well.

6.8.2. Successive nodes stopped

As mentioned in the previous section, {brandname} can’t detect whether a node left the JGroups
view because of a process/machine crash, or because of a network failure: whenever a node leaves
the JGroups cluster abruptly, it is assumed to be because of a network problem.

If the configured number of copies (numOwners) is greater than 1, the cluster can remain available
and will try to make new replicas of the data on the crashed node. However, other nodes might
crash during the rebalance process. If more than numOwners nodes crash in a short interval of time,
there is a chance that some cache entries have disappeared from the cluster altogether. In this case,
with the DENY_READ_WRITES or ALLOW_READS strategy enabled, {brandname} assumes
(incorrectly) that there is a split brain and enters DEGRADED mode as described in the split-brain
section.

The administrator can also shut down more than numOwners nodes in rapid succession, causing the
loss of the data stored only on those nodes. When the administrator shuts down a node gracefully,
{brandname} knows that the node can’t come back. However, the cluster doesn’t keep track of how
each node left, and the cache still enters DEGRADED mode as if those nodes had crashed.

At this stage there is no way for the cluster to recover its state, except stopping it and repopulating
it on restart with the data from an external source. Clusters are expected to be configured with an
appropriate numOwners in order to avoid numOwners successive node failures, so this situation should
be pretty rare. If the application can handle losing some of the data in the cache, the administrator

114

#conflict_manager
#merge_policies
#conflict_manager

can force the availability mode back to AVAILABLE via JMX.

6.8.3. Conflict Manager

The conflict manager is a tool that allows users to retrieve all stored replica values for a given key.
In addition to allowing users to process a stream of cache entries whose stored replicas have
conflicting values. Furthermore, by utilising implementations of the EntryMergePolicy interface it
is possible for said conflicts to be resolved automatically.

Detecting Conflicts

Conflicts are detected by retrieving each of the stored values for a given key. The conflict manager
retrieves the value stored from each of the key’s write owners defined by the current consistent
hash. The .equals method of the stored values is then used to determine whether all values are
equal. If all values are equal then no conflicts exist for the key, otherwise a conflict has occurred.
Note that null values are returned if no entry exists on a given node, therefore we deem a conflict
to have occurred if both a null and non-null value exists for a given key.

Merge Policies

In the event of conflicts arising between one or more replicas of a given CacheEntry, it is necessary
for a conflict resolution algorithm to be defined, therefore we provide the EntryMergePolicy
interface. This interface consists of a single method, "merge", whose returned CacheEntry is utilised
as the "resolved" entry for a given key. When a non-null CacheEntry is returned, this entries value
is "put" to all replicas in the cache. However when the merge implementation returns a null value,
all replicas associated with the conflicting key are removed from the cache.

The merge method takes two parameters: the "preferredEntry" and "otherEntries". In the context of
a partition merge, the preferredEntry is the primary replica of a CacheEntry stored in the partition
that contains the most nodes or if partitions are equal the one with the largest topologyld. In the
event of overlapping partitions, i.e. a node A is present in the topology of both partitions {A},
{A,B,C}, we pick {A} as the preferred partition as it will have the higher topologld as the other
partition’s topology is behind. When a partition merge is not occurring, the "preferredEntry" is
simply the primary replica of the CacheEntry. The second parameter, "otherEntries" is simply a list
of all other entries associated with the key for which a conflict was detected.

O EntryMergePolicy::merge is only called when a conflict has been detected, it is not
called if all CacheEntrys are the same.

Currently {brandname} provides the following implementations of EntryMergePolicy:

115

#merge_policies
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/conflict/EntryMergePolicy.html

Policy Description

MergePolicy.NONE (default) No attempt is made to resolve conflicts. Entries
hosted on the minority partition are removed
and the nodes in this partition do not hold any
data until the rebalance starts. Note, this
behaviour is equivalent to prior Infinispan
versions which did not support conflict
resolution. Note, in this case all changes made to
entries hosted on the minority partition are lost,
but once the rebalance has finished all entries
will be consistent.

MergePolicy. PREFERRED_ALWAYS Always utilise the "preferredEntry".
MergePolicy.NONE is almost equivalent to
PREFERRED ALWAYS, albeit without the
performance impact of performing conflict
resolution, therefore MergePolicy.NONE should
be chosen unless the following scenario is a
concern. When utilising the
DENY_READ_WRITES or DENY_READ strategy, it
is possible for a write operation to only partially
complete when the partitions enter DEGRADED
mode, resulting in replicas containing
inconsistent values.
MergePolicy.PREFERRED_ALWAYS will detect
said inconsistency and resolve it, whereas with
MergePolicy.NONE the CacheEntry replicas will
remain inconsistent after the cluster has

rebalanced.

MergePolicy. PREFERRED_NON_NULL Utilise the "preferredEntry" if it is non-null,
otherwise utilise the first entry from
"otherEntries".

MergePolicy. REMOVE_ALL Always remove a key from the cache when a

conflict is detected.

Fully qualified class name The custom implementation for merge will be
used Custom merge policy

6.8.4. Usage

During a partition merge the ConflictManager automatically attempts to resolve conflicts utilising
the configured EntryMergePolicy, however it is also possible to manually search for/resolve
conflicts as required by your application.

The code below shows how to retrieve an EmbeddedCacheManager’s ConflictManager, how to
retrieve all versions of a given key and how to check for conflicts across a given cache.

116

#partition_handling_custom_merge_policy

EmbeddedCacheManager manager = new DefaultCacheManager("example-config.xml");
Cache<Integer, String> cache = manager.getCache("testCache");
ConflictManager<Integer, String> crm = ConflictManagerFactory.get(cache
.getAdvancedCache());

// Get A1l Versions of Key
Map<Address, InternalCacheValue<String>> versions = crm.getAllVersions(1);

// Process conflicts stream and perform some operation on the cache
Stream<Map<Address, InternalCacheEntry<Integer, String>>> stream = crm.getConflicts();
stream.forEach(map -> {

CacheEntry<Object, Object> entry = map.values().iterator().next();

Object conflictKey = entry.getKey();

cache.remove(conflictKey);

1)

// Detect and then resolve conflicts using the configured EntryMergePolicy
crm.resolveConflicts();

// Detect and then resolve conflicts using the passed EntryMergePolicy instance
crm.resolveConflicts((preferredEntry, otherEntries) -> preferredEntry);

0 Although the ConflictManager::getConflicts stream is processed per entry, the
underlying spliterator is in fact lazily-loading cache entries on a per segment basis.

6.8.5. Configuring partition handling

Unless the cache is distributed or replicated, partition handling configuration is ignored. The
default partition handling strategy is ALLOW_READ_WRITES and the default EntryMergePolicy is
MergePolicies::PREFERRED_ALWAYS.

<distributed-cache name="the-default-cache">

<partition-handling when-split="ALLOW_READ_WRITES" merge-policy="
PREFERRED_NON_NULL"/>
</distributed-cache>

The same can be achieved programmatically:

ConfigurationBuilder dcc = new ConfigurationBuilder();

dcc.clustering().partitionHandling()
.whenSplit(PartitionHandling.ALLOW_READ_WRITES)
.mergePolicy(MergePolicies.PREFERRED_ALWAYS);

Implement a custom merge policy

It’s also possible to provide custom implementations of the EntryMergePolicy

117

<distributed-cache name="the-default-cache">

<partition-handling when-split="ALLOW_READ_WRITES" merge-policy=
"org.example.CustomMergePolicy"/>
</distributed-cache>

ConfigurationBuilder dcc = new ConfigurationBuilder();

dcc.clustering().partitionHandling()
.whenSplit(PartitionHandling.ALLOW_READ_WRITES)
.mergePolicy(new CustomMergePolicy());

public class CustomMergePolicy implements EntryMergePolicy<String, String> {

public CacheEntry<String, String> merge(CacheEntry<String, String> preferredEntry,
List<CacheEntry<String, String>> otherEntries) {
// decide which entry should be used

return the_solved_CacheEntry;

Deploy custom merge policies to a Infinispan server instance

To utilise a custom EntryMergePolicy implementation on the server, it’s necessary for the
implementation class(es) to be deployed to the server. This is accomplished by utilising the java
service-provider convention and packaging the class files in a jar which has a META-
INF/services/org.infinispan.conflict. EntryMergePolicy file containing the fully qualified class name
of the EntryMergePolicy implementation.

list all necessary implementations of EntryMergePolicy with the full qualified name
org.example.CustomMergePolicy

In order for a Custom merge policy to be utilised on the server, you should enable object storage, if
your policies semantics require access to the stored Key/Value objects. This is because cache entries
in the server may be stored in a marshalled format and the Key/Value objects returned to your
policy would be instances of WrappedByteArray. However, if the custom policy only depends on the
metadata associated with a cache entry, then object storage is not required and should be avoided
(unless needed for other reasons) due to the additional performance cost of marshalling data per
request. Finally, object storage is never required if one of the provided merge policies is used.

6.8.6. Monitoring and administration

The availability mode of a cache is exposed in JMX as an attribute in the Cache MBean. The
attribute is writable, allowing an administrator to forcefully migrate a cache from DEGRADED
mode back to AVAILABLE (at the cost of consistency).

118

#embedded_remote_interop
https://docs.jboss.org/infinispan/9.4/apidocs/jmxComponents.html#Cache

The availability mode is also accessible via the AdvancedCache interface:

AdvancedCache ac = cache.getAdvancedCache();

// Read the availability
boolean available = ac.getAvailability() == AvailabilityMode.AVAILABLE;

// Change the availability

if (lavailable) {
ac.setAvailability(AvailabilityMode.AVAILABLE);

+

119

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/AdvancedCache.html

Chapter 7. Marshalling

Marshalling is the process of converting Java POJOs into something that can be written in a format
that can be transferred over the wire. Unmarshalling is the reverse process whereby data read
from a wire format 1is transformed back into Java POJOs. {brandname} uses
marshalling/unmarshalling in order to:

* Transform data so that it can be send over to other {brandname} nodes in a cluster.
* Transform data so that it can be stored in underlying cache stores.

* Store data in {brandname} in a wire format to provide lazy deserialization capabilities.

7.1. The Role Of JBoss Marshalling

Since performance is a very important factor in this process, {brandname} uses JBoss Marshalling
framework instead of standard Java Serialization in order to marshall/unmarshall Java POJOs.
Amongst other things, this framework enables {brandname} to provide highly efficient ways to
marshall internal {brandname} Java POJOs that are constantly used. Apart from providing more
efficient ways to marshall Java POJOs, including internal Java classes, JBoss Marshalling uses highly
performant java.io.ObjectOutput and java.io.ObjectInput implementations compared to standard
java.io.0bjectOutputStream and java.io.0ObjectInputStream.

7.2. Support For Non-Serializable Objects

From a users perspective, a very common concern is whether {brandname} supports storing non-
Serializable objects. In 4.0, an {brandname} cache instance can only store non-Serializable key or
value objects if, and only if:

* cache is configured to be a local cache and...
* cache is not configured with lazy serialization and...
* cache is not configured with any write-behind cache store

If either of these options is true, key/value pairs in the cache will need to be marshalled and
currently they require to either to extend java.io.Serializable or java.io.Externalizable.

Since {brandname} 5.0, marshalling non-Serializable key/value objects are
supported as long as wusers can to provide meaningful Externalizer
implementations for these non-Seralizable objects.

If you’re unable to retrofit Serializable or Externalizable into the classes whose instances are stored
in {brandname}, you could alternatively use something like XStream to convert your Non-
Serializable objects into a String that can be stored into {brandname}. The one caveat about using
XStream is that it slows down the process of storing key/value objects due to the XML
transformation that it needs to do.

120

http://x-stream.github.io/

7.2.1. Store As Binary

Store as binary enables data to be stored in its serialized form. This can be useful to achieve lazy
deserialization, which is the mechanism by which {brandname} by which serialization and
deserialization of objects is deferred till the point in time in which they are used and needed. This
typically means that any deserialization happens using the thread context class loader of the
invocation that requires deserialization, and is an effective mechanism to provide classloader
isolation. By default lazy deserialization is disabled but if you want to enable it, you can do it like
this:

e Via XML at the Cache level, either under <*-cache /> element:

<memory>
<binary />
</memory>

* Programmatically:

ConfigurationBuilder builder = ...
builder.memory().storageType(StorageType.BINARY);

Equality Considerations

When using lazy deserialization/storing as binary, keys and values are wrapped as WrappedBytes.
It is this wrapper class that transparently takes care of serialization and deserialization on demand,
and internally may have a reference to the object itself being wrapped, or the serialized, byte array
representation of this object.

This has a particular effect on the behavior of equality. The equals() method of this class will either
compare binary representations (byte arrays) or delegate to the wrapped object instance’s equals()
method, depending on whether both instances being compared are in serialized or deserialized
form at the time of comparison. If one of the instances being compared is in one form and the other
in another form, then one instance is either serialized or deserialized.

This will affect the way keys stored in the cache will work, when storeAsBinary is used, since
comparisons happen on the key which will be wrapped by a MarshalledValue. Implementers of
equals() methods on their keys need to be aware of the behavior of equality comparison, when a
key is wrapped as a MarshalledValue, as detailed above.

Store-by-value via defensive copying

The configuration storeAsBinary offers the possibility to enable defensive copying, which allows for
store-by-value like behaviour.

{brandname} marshalls objects the moment they’re stored, hence changes made to object
references are not stored in the cache, not even for local caches. This provides store-by-value like
behaviour. Enabling storeAsBinary can be achieved:

121

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/marshall/

e Via XML at the Cache level, either under <*-cache /> or <default /> elements:
<store-as-binary keys="true" values="true"/>
* Programmatically:

ConfigurationBuilder builder = ...
builder.storeAsBinary().enable().storeKeysAsBinary(true).storeValuesAsBinary(true);

7.3. Advanced Configuration

Internally, {brandname} uses an implementation of this Marshaller interface in order to
marshall/unmarshall Java objects so that they’re sent other nodes in the grid, or so that they’re
stored in a cache store, or even so to transform them into byte arrays for lazy deserialization.

By default, {brandname} uses the GlobalMarshaller. Optionally, {brandname} users can provide
their own marshaller, for example:

* Via XML at the CacheManager level, under <cache-manager /> element:
<serialization marshaller="com.acme.MyMarshaller"/>
* Programmatically:

GlobalConfigurationBuilder builder = ...
builder.serialization().marshaller(myMarshaller); // needs an instance of the
marshaller

7.3.1. Troubleshooting

Sometimes it might happen that the {brandname} marshalling layer, and in particular JBoss
Marshalling, might have issues marshalling/unmarshalling some user object. In {brandname} 4.0,
marshalling exceptions will contain further information on the objects that were being marshalled.
Example:

122

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/marshall/Marshaller.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/marshall/core/GlobalMarshaller.html

java.io.NotSerializableException: java.lang.Object
at org.jboss.marshalling.river.RiverMarshaller.doWriteObject(RiverMarshaller.java:857)
at org.jboss.marshalling.AbstractMarshaller.writeObject(AbstractMarshaller.java:407)
at
org.infinispan.marshall.exts.ReplicableCommandExternalizer.writeObject(ReplicableComma
ndExternalizer.java:54)
at
org.infinispan.marshall.jboss.ConstantObjectTable$ExternalizerAdapter.writeObject(Cons
tantObjectTable.java:267)
at org.jboss.marshalling.river.RiverMarshaller.doWriteObject(RiverMarshaller.java:143)
at org.jboss.marshalling.AbstractMarshaller.writeObject(AbstractMarshaller.java:407)
at
org.infinispan.marshall.jboss.JBossMarshaller.objectToObjectStream(JBossMarshaller.jav
a:167)
at
org.infinispan.marshall.VersionAwareMarshaller.objectToBuffer(VersionAwareMarshaller.]j
ava:92)
at
org.infinispan.marshall.VersionAwareMarshaller.objectToByteBuffer(VersionAwareMarshall
er.java:170)
at
org.infinispan.marshall.DefaultMarshallerTest.testNestedNonSerializable(VersionAwareMa
rshallerTest.java:415)
Caused by: an exception which occurred:
in object java.lang.Object@b4@ec4
in object org.infinispan.commands.write.PutKeyValueCommand@df661da7

. Removed 22 stack frames

The way the "in object" messages are read is the same in which stacktraces are read. The highest "in
object" being the most inner one and the lowest "in object" message being the most outer one. So,
the above example indicates that a java.lang.Object instance contained in an instance of
org.infinispan.commands.write.PutKeyValueCommand could not be serialized because
java.lang.Object@b40ec4 is not serializable.

This is not all though! If you enable DEBUG or TRACE logging levels, marshalling exceptions will
contain show the toString() representations of objects in the stacktrace. For example:

java.io.NotSerializableException: java.lang.Object

Caused by: an exception which occurred:

in object java.lang.0Object@b40ec4

-> toString = java.lang.Object@b40ec4

in object org.infinispan.commands.write.PutKeyValueCommand@df661da7

-> toString = PutKeyValueCommand{key=k, value=java.lang.Object@b40ec4,
putIfAbsent=false, lifespanMillis=0, maxIdleTimeMillis=0}

With regards to unmarshalling exceptions, showing such level of information it’s a lot more
complicated but where possible. {brandname} will provide class type information. For example:

123

java.io.IOException: Injected failure!

at
org.infinispan.marshall.DefaultMarshallerTest$1.readExternal(VersionAwareMarshallerTes
t.java:426)

at
org.jboss.marshalling.river.RiverUnmarshaller.doReadNewObject(RiverUnmarshaller.java:1
172)

at
org.jboss.marshalling.river.RiverUnmarshaller.doReadObject(RiverUnmarshaller.java:273)
at
org.jboss.marshalling.river.RiverUnmarshaller.doReadObject(RiverUnmarshaller.java:210)
at org.jboss.marshalling.AbstractUnmarshaller.readObject(AbstractUnmarshaller.java:85)
at
org.infinispan.marshall.jboss.JBossMarshaller.objectFromObjectStream(JBossMarshaller.j
ava:210)

at
org.infinispan.marshall.VersionAwareMarshaller.objectFromByteBuffer(VersionAwareMarsha
1ler.java:104)

at
org.infinispan.marshall.VersionAwareMarshaller.objectFromByteBuffer(VersionAwareMarsha
1ler.java:177)

at
org.infinispan.marshall.DefaultMarshallerTest.testErrorUnmarshalling(VersionAwareMarsh
allerTest.java:431)

Caused by: an exception which occurred:

in object of type org.infinispan.marshall.DefaultMarshallerTest$1

In this example, an IOException was thrown when trying to unmarshall a instance of the inner
class org.infinispan.marshall.DefaultMarshallerTest$1. In similar fashion to marshalling
exceptions, when DEBUG or TRACE logging levels are enabled, classloader information of the class
type is provided. For example:

124

java.io.IOException: Injected failure!

Caused by: an exception which occurred:
in object of type org.infinispan.marshall.DefaultMarshallerTest$1
-> classloader hierarchy:
-> type classloader = sun.misc.Launcher$AppClassLoader@198dfaf
->...file:/opt/eclipse/configuration/org.eclipse.osgi/bundles/285/1/.cp/eclipse
-testng.jar
->...file:/opt/eclipse/confiquration/org.eclipse.osgi/bundles/285/1/.cp/1lib/testng
-jdk15.jar
->...file:/home/galder/jboss/infinispan/code/trunk/core/target/test-classes/
->...file:/home/galder/jboss/infinispan/code/trunk/core/target/classes/
->...file:/home/galder/.m2/repository/org/testng/testng/5.9/testng-5.9-jdk15.jar
->...file:/home/galder/.m2/repository/net/jcip/jcip-annotations/1.0/jcip-annotations
-1.0.jar
->...file:/home/galder/.m2/repository/org/easymock/easymockclassextension/2.4/easymock
classextension-2.4.jar
->...file:/home/galder/.m2/repository/org/easymock/easymock/2.4/easymock-2.4.jar
->...file:/home/galder/.m2/repository/cqglib/cglib-nodep/2.1_3/cglib-nodep-2.1_3.jar
->...file:/home/galder/.m2/repository/javax/xml/bind/jaxb-api/2.1/jaxb-api-2.1.jar
->...file:/home/galder/.m2/repository/javax/xml/stream/stax-api/1.0-2/stax-api-1.0
-2.jar
->...file:/home/galder/.m2/repository/javax/activation/activation/1.1/activation
-1.1.jar
->...file:/home/galder/.m2/repository/jgroups/jgroups/2.8.0.CR1/jgroups-2.8.0.CR1.jar
->...file:/home/galder/.m2/repository/org/jboss/javaee/jboss-transaction
-api/1.0.1.6A/jboss-transaction-api-1.0.1.6GA.jar
->...file:/home/galder/.m2/repository/org/jboss/marshalling/river/1.2.0.CR4
-SNAPSHOT/river-1.2.0.CR4-SNAPSHOT. jar
->...file:/home/galder/.m2/repository/org/jboss/marshalling/marshalling-api/1.2.0.CR4
-SNAPSHOT/marshalling-api-1.2.0.CR4-SNAPSHOT. jar
->...file:/home/galder/.m2/repository/org/jboss/jboss-common-core/2.2.14.GA/jboss
-common-core-2.2.14.GA. jar
->...file:/home/galder/.m2/repository/org/jboss/logging/jboss-logging
-spi/2.0.5.G6A/jboss-1ogging-spi-2.0.5.GA.jar
->...file:/home/galder/.m2/repository/log4j/1og4j/1.2.14/10g4j-1.2.14.jar
->...file:/home/galder/.m2/repository/com/thoughtworks/xstream/xstream/1.2/xstream
-1.2.jar
->...file:/home/galder/.m2/repository/xpp3/xpp3_min/1.1.3.4.0/xpp3_min-1.1.3.4.0.jar
->...file:/home/galder/.m2/repository/com/sun/xml/bind/jaxb-imp1l/2.1.3/jaxb-impl
-2.1.3.jar
-> parent classloader = sun.misc.Launcher$ExtClassLoader@1858610
->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/localedata.jar
->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/sunpkcs11.jar
->...file:/usr/java/jdk1.5.0_19/jre/1lib/ext/sunjce_provider.jar
->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/dnsns.jar

. Removed 22 stack frames
</code>

Finding the root cause of marshalling/unmarshalling exceptions can sometimes be really daunting

125

but we hope that the above improvements would help get to the bottom of those in a more quicker
and efficient manner.

7.4. User Defined Externalizers

One of the key aspects of {brandname} is that it often needs to marshall/unmarshall objects in
order to provide some of its functionality. For example, if it needs to store objects in a write-through
or write-behind cache store, the stored objects need marshalling. If a cluster of {brandname} nodes
is formed, objects shipped around need marshalling. Even if you enable lazy deserialization, objects
need to be marshalled so that they can be lazily unmarshalled with the correct classloader.

Using standard JDK serialization is slow and produces payloads that are too big and can affect
bandwidth usage. On top of that, JDK serialization does not work well with objects that are
supposed to be immutable. In order to avoid these issues, {brandname} uses JBoss Marshalling for
marshalling/unmarshalling objects. JBoss Marshalling is fast, produces very space efficient
payloads, and on top of that during unmarshalling, it enables users to have full control over how to
construct objects, hence allowing objects to carry on being immutable.

Starting with 5.0, users of {brandname} can now benefit from this marshalling framework as well,
and they can provide their own externalizer implementations, but before finding out how to
provide externalizers, let’s look at the benefits they bring.

7.4.1. Benefits of Externalizers

The JDK provides a simple way to serialize objects which, in its simplest form, is just a matter of
extending java.io.Serializable , but as it’s well known, this is known to be slow and it generates
payloads that are far too big. An alternative way to do serialization, still relying on JDK
serialization, is for your objects to extend java.io.Externalizable . This allows for users to provide
their own ways to marshall/unmarshall classes, but has some serious issues because, on top of
relying on slow JDK serialization, it forces the class that you want to serialize to extend this
interface, which has two side effects: The first is that you’re forced to modify the source code of the
class that you want to marshall/unmarshall which you might not be able to do because you either,
don’t own the source, or you don’t even have it. Secondly, since Externalizable implementations do
not control object creation, you’re forced to add set methods in order to restore the state, hence
potentially forcing your immutable objects to become mutable.

Instead of relying on JDK serialization, {brandname} uses JBoss Marshalling to serialize objects and
requires any classes to be serialized to be associated with an Externalizer interface implementation
that knows how to transform an object of a particular class into a serialized form and how to read
an object of that class from a given input. {brandname} does not force the objects to be serialized to
implement Externalizer. In fact, it is recommended that a separate class is used to implement the
Externalizer interface because, contrary to JDK serialization, Externalizer implementations control
how objects of a particular class are created when trying to read an object from a stream. This
means that readObject() implementations are responsible of creating object instances of the target
class, hence giving users a lot of flexibility on how to create these instances (whether direct
instantiation, via factory or reflection), and more importantly, allows target classes to carry on
being immutable. This type of externalizer architecture promotes good OOP designs principles,
such as the principle of single responsibility .

126

http://jboss.org/jbossmarshalling
https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://docs.oracle.com/javase/8/docs/api/java/io/Externalizable.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/marshall/Externalizer.html
http://en.wikipedia.org/wiki/Single_responsibility_principle

It’s quite common, and in general recommended, that Externalizer implementations are stored as
inner static public classes within classes that they externalize. The advantages of doing this is that
related code stays together, making it easier to maintain. In {brandname}, there are two ways in
which {brandname} can be plugged with user defined externalizers:

7.4.2. User Friendly Externalizers

In the simplest possible form, users just need to provide an Externalizer implementation for the
type that they want to marshall/unmarshall, and then annotate the marshalled type class with
{@link SerializeWith} annotation indicating the externalizer class to use. For example:

import org.infinispan.commons.marshall.Externalizer;
import org.infinispan.commons.marshall.SerializeWith;

(Person.PersonExternalizer.class)
public class Person {

final String name;
final int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

public static class PersonExternalizer implements Externalizer<Person> {

public void writeObject(ObjectOutput output, Person person)
throws IOException {
output.writeObject(person.name);
output.writeInt(person.age);

public Person readObject(ObjectInput input)
throws IOException, ClassNotFoundException {
return new Person((String) input.readObject(), input.readInt());

At runtime JBoss Marshalling will inspect the object and discover that it is marshallable (thanks to
the annotation) and so marshall it using the externalizer class passed. To make externalizer
implementations easier to code and more typesafe, make sure you define type <T> as the type of
object that’s being marshalled/unmarshalled.

Even though this way of defining externalizers is very user friendly, it has some disadvantages:

* Due to several constraints of the model, such as support for different versions of the same class

127

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/marshall/Externalizer.html

or the need to marshall the Externalizer class, the payload sizes generated via this method are
not the most efficient.

* This model requires that the marshalled <class be annotated with
link:https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/marshall/Serialize Wit
h.html but a user might need to provide an Externalizer for a class for which source code is not
available, or for any other constraints, it cannot be modified.

* The use of annotations by this model might be limiting for framework developers or service
providers that try to abstract lower level details, such as the marshalling layer, away from the
user.

If you're affected by any of these disadvantages, an alternative method to provide externalizers is
available via more advanced externalizers:

7.4.3. Advanced Externalizers

AdvancedExternalizer provides an alternative way to provide externalizers for
marshalling/unmarshalling user defined classes that overcome the deficiencies of the more user-
friendly externalizer definition model explained in Externalizer. For example:

128

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/marshall/AdvancedExternalizer.html

import org.infinispan.marshall.AdvancedExternalizer;
public class Person {

final String name;
final int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}
public static class PersonExternalizer implements AdvancedExternalizer<Person> {

public void writeObject(ObjectOutput output, Person person)
throws IOException {
output.writeObject(person.name);
output.writeInt(person.age);

}

public Person readObject(ObjectInput input)
throws IOException, ClassNotFoundException {
return new Person((String) input.readObject(), input.readInt());

public Set<Class<? extends Person>> getTypeClasses() {
return Util.<Class<? extends Person>>asSet(Person.class);

}

public Integer getId() {
return 2345;
}

The first noticeable difference is that this method does not require user classes to be annotated in
anyway, so it can be used with classes for which source code is not available or that cannot be
modified. The bound between the externalizer and the classes that are marshalled/unmarshalled is
set by providing an implementation for getTypeClasses() which should return the list of classes that
this externalizer can marshall:

Linking Externalizers with Marshaller Classes

Once the Externalizer’s readObject() and writeObject() methods have been implemented, it’s time to
link them up together with the type classes that they externalize. To do so, the Externalizer
implementation must provide a getTypeClasses() implementation. For example:

129

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/marshall/AdvancedExternalizer.html#getTypeClasses--

import org.infinispan.commons.util.Util;

public Set<(Class<? extends ReplicableCommand>> getTypeClasses() {
return Util.asSet(LockControlCommand.class, RehashControlCommand.class,

StateTransferControlCommand.class, GetKeyValueCommand.class,
ClusteredGetCommand.class,
SingleRpcCommand.class, CommitCommand.class,
PrepareCommand.class, RollbackCommand.class,
ClearCommand.class, EvictCommand.class,
InvalidateCommand.class, Invalidatel1Command.class,
PutKeyValueCommand.class, PutMapCommand.class,
RemoveCommand.class, ReplaceCommand.class);

In the code above, ReplicableCommandExternalizer indicates that it can externalize several type of
commands. In fact, it marshalls all commands that extend ReplicableCommand interface, but
currently the framework only supports class equality comparison and so, it’s not possible to
indicate that the classes to marshalled are all children of a particular class/interface.

However there might sometimes when the classes to be externalized are private and hence it’s not
possible to reference the actual class instance. In this situations, users can attempt to look up the
class with the given fully qualified class name and pass that back. For example:

public Set<Class<? extends List>> getTypeClasses() {
return Util.<Class<? extends List>>asSet(
Util.loadClass("java.util.Collections$SingletonList"));

Externalizer Identifier

Secondly, in order to save the maximum amount of space possible in the payloads generated,
advanced externalizers require externalizer implementations to provide a positive identified via
getld() implementations or via XML/programmatic configuration that identifies the externalizer
when unmarshalling a payload. In order for this to work however, advanced externalizers require
externalizers to be registered on cache manager creation time via XML or programmatic
configuration which will be explained in next section. On the contrary, externalizers based on
Externalizer and SerializeWith require no pre-registration whatsoever. Internally, {brandname}
uses this advanced externalizer mechanism in order to marshall/unmarshall internal classes.

So, getld() should return a positive integer that allows the externalizer to be identified at read time
to figure out which Externalizer should read the contents of the incoming buffer, or it can return
null. If getld() returns null, it is indicating that the id of this advanced externalizer will be defined
via XML/programmatic configuration, which will be explained in next section.

Regardless of the source of the the id, using a positive integer allows for very efficient variable
length encoding of numbers, and it's much more efficient than shipping externalizer

130

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/marshall/AdvancedExternalizer.html#getId--

implementation class information or class name around. {brandname} users can use any positive
integer as long as it does not clash with any other identifier in the system. It’s important to
understand that a user defined externalizer can even use the same numbers as the externalizers in
the {brandname} Core project because the internal {brandname} Core externalizers are special and
they use a different number space to the user defined externalizers. On the contrary, users should
avoid using numbers that are within the pre-assigned identifier ranges which can be found at the
end of this article. {brandname} checks for id duplicates on startup, and if any are found, startup is
halted with an error.

When it comes to maintaining which ids are in use, it’s highly recommended that this is done in a
centralized way. For example, getld() implementations could reference a set of statically defined
identifiers in a separate class or interface. Such class/interface would give a global view of the
identifiers in use and so can make it easier to assign new ids.

Registering Advanced Externalizers

The following example shows the type of configuration required to register an advanced
externalizer implementation for Person object shown earlier stored as a static inner class within it:

infinispan.xml

<infinispan>
<cache-container>
<serialization>
<advanced-externalizer class="Person$PersonExternalizer"/>
</serialization>
</cache-container>

</infinispan>
Programmatically:

GlobalConfigurationBuilder builder = ...
builder.serialization()
.addAdvancedExternalizer(new Person.PersonExternalizer());

As mentioned earlier, when listing these externalizer implementations, users can optionally
provide the identifier of the externalizer via XML or programmatically instead of via getld()
implementation. Again, this offers a centralized way to maintain the identifiers but it’s important
that the rules are clear: An AdvancedExternalizer implementation, either via XML/programmatic
configuration or via annotation, needs to be associated with an identifier. If it isn’t, {brandname}
will throw an error and abort startup. If a particular AdvancedExternalizer implementation defines
an id both via XML/programmatic configuration and annotation, the value defined via
XML/programmatically is the one that will be used. Here’s an example of an externalizer whose id
is defined at registration time:

131

infinispan.xml

<infinispan>
<cache-container>
<serialization>
<advanced-externalizer id="123"
class="Person$PersonExternalizer"/>
</serialization>
</cache-container>

</infinispan>
Programmatically:

GlobalConfigurationBuilder builder = ...
builder.serialization()
.addAdvancedExternalizer(123, new Person.PersonExternalizer());

Finally, a couple of notes about the programmatic configuration.
GlobalConfiguration.addExternalizer() takes varargs, so it means that it is possible to register
multiple externalizers in just one go, assuming that their ids have already been defined via
@Marshalls annotation. For example:

builder.serialization()
.addAdvancedExternalizer(new Person.PersonExternalizer(),
new Address.AddressExternalizer());

Preassigned Externalizer Id Ranges

This is the list of Externalizer identifiers that are used by {brandname} based modules or
frameworks. {brandname} users should avoid using ids within these ranges.

{brandname} Tree Module: 1000 - 1099
{brandname} Server Modules: 1100 -1199
Hibernate {brandname} Second Level Cache: 1200 - 1299

{brandname} Lucene Directory: 1300 -1399
Hibernate OGM: 1400 - 1499
Hibernate Search: 1500 - 1599
{brandname} Query Module: 1600 - 1699
{brandname} Remote Query Module: 1700 -1799
{brandname} Scripting Module: 1800 - 1849
{brandname} Server Event Logger Module: 1850 - 1899
{brandname} Remote Store: 1900 - 1999

132

{brandname} Counters: 2000 - 2049
{brandname} Multimap: 2050 - 2099
{brandname} Locks: 2100 - 2149

133

Chapter 8. Transactions

{brandname} can be configured to use and to participate in JTA compliant transactions.
Alternatively, if transaction support is disabled, it is equivalent to using autocommit in JDBC calls,
where modifications are potentially replicated after every change (if replication is enabled).

On every cache operation {brandname} does the following:

1. Retrieves the current Transaction associated with the thread

2. If not already done, registers XAResource with the transaction manager to be notified when a
transaction commits or is rolled back.

In order to do this, the cache has to be provided with a reference to the environment’s
TransactionManager. This is usually done by configuring the cache with the class name of an
implementation of the TransactionManagerLookup interface. When the cache starts, it will create
an instance of this class and invoke its getTransactionManager () method, which returns a reference
to the TransactionManager.

{brandname} ships with several transaction manager lookup classes:

Transaction manager lookup implementations

* EmbeddedTransactionManagerLookup: This provides with a basic transaction manager which
should only be used for embedded mode when no other implementation is available. This
implementation has some severe limitations to do with concurrent transactions and recovery.

* JBossStandaloneJTAManagerLookup: If you’re running {brandname} in a standalone
environment, or in JBoss AS 7 and earlier, and WildFly 8, 9, and 10, this should be your default
choice for transaction manager. It’s a fully fledged transaction manager based on JBoss
Transactions which overcomes all the deficiencies of the EmbeddedTransactionManager.

» WildflyTransactionManagerLookup: If you’re running {brandname} in Wildfly 11 or later, this
should be your default choice for transaction manager.

* GenericTransactionManagerLookup: This is a lookup class that locate transaction managers in
the most popular Java EE application servers. If no transaction manager can be found, it
defaults on the EmbeddedTransactionManager.

WARN: DummyTransactionManagerLookup has been deprecated in 9.0 and it will be removed in the
future. Use EmbeddedTransactionManagerLookup instead.

Once initialized, the TransactionManager can also be obtained from the Cache itself:

//the cache must have a transactionManagerLookupClass defined
Cache cache = cacheManager.getCache();

//equivalent with calling TransactionManagerLookup.getTransactionManager();
TransactionManager tm = cache.getAdvancedCache().getTransactionManager();

134

https://docs.oracle.com/javaee/7/api/javax/transaction/Transaction.html
https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/transaction/lookup/TransactionManagerLookup.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/transaction/lookup/EmbeddedTransactionManagerLookup.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/transaction/lookup/JBossStandaloneJTAManagerLookup.html
http://narayana.io/
http://narayana.io/
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/transaction/lookup/WildflyTransactionManagerLookup.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/transaction/lookup/GenericTransactionManagerLookup.html

8.1. Configuring transactions

Transactions are configured at cache level. Below is the configuration that affects a transaction
behaviour and a small description of each configuration attribute.

<locking
isolation="READ COMMITTED"
write-skew="false"/>
<transaction
locking="0PTIMISTIC"
auto-commit="true"
complete-timeout="60000"
mode="NONE"
notifications="true"
protocol="DEFAULT"
reaper-interval="30000"
recovery-cache="__recoveryInfoCacheName__
stop-timeout="30000"
transaction-manager-lookup=
"org.infinispan.transaction.lookup.GenericTransactionManagerLookup"/>
<versioning
scheme="NONE" />

or programmatically:

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.locking()
.isolationLevel(IsolationLevel.READ COMMITTED)
.writeSkewCheck(false);
builder.transaction()
.LlockingMode(LockingMode.OPTIMISTIC)
.autoCommit(true)
.completedTxTimeout(60000)
.transactionMode(TransactionMode.NON_TRANSACTIONAL)
.useSynchronization(false)
.notifications(true)
.transactionProtocol(TransactionProtocol.DEFAULT)
.reaperWakeUpInterval(30000)
.cacheStopTimeout(30000)
.transactionManagerLookup(new GenericTransactionManagerLookup())
.recovery()
.enabled(false)
.recoveryInfoCacheName("__recoveryInfoCacheName__");
builder.versioning()
.enabled(false)
.scheme(VersioningScheme.NONE);

* isolation - configures the isolation level. Check section Isolation Levels for more details. Default

135

#tx_isolation_levels

is REPEATABLE _READ.

* write-skew - enables write skew checks (deprecated). {brandname} automatically sets this
attribute in Library Mode. Default is false for READ_COMMITTED. Default is true for
REPEATABLE _READ. See Write Skews for more details.

* locking - configures whether the cache uses optimistic or pessimistic locking. Check section
Transaction Locking for more details. Default is OPTIMISTIC.

* auto-commit - if enable, the user does not need to start a transaction manually for a single
operation. The transaction is automatically started and committed. Default is true.

» complete-timeout - the duration in milliseconds to keep information about completed
transactions. Default is 60000.

* mode - configures whether the cache is transactional or not. Default is NONE. The available options
are:

o NONE - non transactional cache

o FULL_XA - XA transactional cache with recovery enabled. Check section Transaction recovery
for more details about recovery.

o NON_DURABLE_XA - XA transactional cache with recovery disabled.

o NON_XA - transactional cache with integration via Synchronization instead of XA. Check
section Enlisting Synchronizations for details.

o BATCH- transactional cache using batch to group operations. Check section Batching for
details.

* notifications - enables/disables triggering transactional events in cache listeners. Default is
true.

* protocol - configures the protocol uses. Default is DEFAULT. Values available are:
o DEFAULT - uses the traditional Two-Phase-Commit protocol. It is described below.

o TOTAL_ORDER - uses total order ensured by the Transport to commit transactions. Check section
Total Order based commit protocol for details.

* reaper-interval - the time interval in millisecond at which the thread that cleans up transaction
completion information kicks in. Defaults is 30000.

* recovery-cache - configures the cache name to store the recovery information. Check section
Transaction recovery for more details about recovery. Default is recoveryInfoCacheName.

» stop-timeout - the time in millisecond to wait for ongoing transaction when the cache is
stopping. Default is 30000.

* transaction-manager-lookup - configures the fully qualified class name of a class that looks up a
reference to a javax.transaction.TransactionManager. Default is
org.infinispan.transaction.lookup.GenericTransactionManagerLookup.

* Versioning scheme - configure the version scheme to use when write skew is enabled with
optimistic or total order transactions. Check section Write Skews for more details. Default is
NONE.

For more details on how Two-Phase-Commit (2PC) is implemented in {brandname} and how locks
are being acquired see the section below. More details about the configuration settings are

136

#tx_write_skew
#tx_locking
#tx_recovery
https://docs.oracle.com/javaee/7/api/javax/transaction/Synchronization.html
#tx_sync_enlist
#tx_batching
#tx_total_order
#tx_recovery
#tx_write_skew

available in Configuration reference.

8.2. Isolation levels

{brandname} offers two isolation levels - READ COMMITTED and REPEATABLE READ.

These isolation levels determine when readers see a concurrent write, and are internally
implemented using different subclasses of MVCCEntry, which have different behaviour in how state
is committed back to the data container.

Here’s a more detailed example that should help understand the difference between READ_COMMITTED
and REPEATABLE READ in the context of {brandname}. With READ COMMITTED, if between two
consecutive read calls on the same key, the key has been updated by another transaction, the
second read may return the new updated value:

Thread1:
Thread1:
Thread?2:
Thread?:
Thread?:
Thread?2:
Thread1:
Thread1:

tx1.begin()

cache.get(k) // returns v
tx2.begin()
cache.get(k) // returns v
cache.put(k, v2)
tx2.commit()

cache.get(k) // returns v2!

tx1.commit()

With REPEATABLE_READ, the final get will still return v. So, if you’re going to retrieve the same key
multiple times within a transaction, you should use REPEATABLE_READ.

However, as read-locks are not acquired even for REPEATABLE_READ, this phenomena can occur:

cache.get("A") // returns 1
cache.get("B") // returns 1

Thread1:
Thread1:
Thread1:
Thread?2:
Thread?2:
Thread1:
Thread?2:
Thread?:

tx1.begin()
cache.put("A", 2)
cache.put("B", 2)
tx2.begin()
cache.get("A") // returns 1
tx1.commit()
cache.get("B") // returns 2
tx2.commit()

8.3. Transaction locking

8.3.1. Pessimistic transactional cache

From a lock acquisition perspective, pessimistic transactions obtain locks on keys at the time the
key is written.

137

http://docs.jboss.org/infinispan/9.4/configdocs/
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Read_committed
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Repeatable_reads

1. Alock request is sent to the primary owner (can be an explicit lock request or an operation)
2. The primary owner tries to acquire the lock:
a. If it succeed, it sends back a positive reply;

b. Otherwise, a negative reply is sent and the transaction is rollback.

As an example:

transactionManager.begin();

cache.put(k1,v1); //k1 is locked.
cache.remove(k2); //k2 is locked when this returns
transactionManager.commit();

When cache.put(k1,v1) returns, k1 is locked and no other transaction running anywhere in the
cluster can write to it. Reading k1 is still possible. The lock on k1 is released when the transaction
completes (commits or rollbacks).

O For conditional operations, the validation is performed in the originator.

8.3.2. Optimistic transactional cache

With optimistic transactions locks are being acquired at transaction prepare time and are only
being held up to the point the transaction commits (or rollbacks). This is different from the 5.0
default locking model where local locks are being acquire on writes and cluster locks are being
acquired during prepare time.
1. The prepare is sent to all the owners.
2. The primary owners try to acquire the locks needed:
a. Iflocking succeeds, it performs the write skew check.

b. If the write skew check succeeds (or is disabled), send a positive reply.

c. Otherwise, a negative reply is sent and the transaction is rolled back.

As an example:

transactionManager.begin();

cache.put(k1,v1);

cache.remove(k2);

transactionManager.commit(); //at prepare time, K1 and K2 is locked until
committed/rolled back.

O For conditional commands, the validation still happens on the originator.

8.3.3. What do I need - pessimistic or optimistic transactions?

From a use case perspective, optimistic transactions should be used when there is not a lot of

138

contention between multiple transactions running at the same time. That is because the optimistic
transactions rollback if data has changed between the time it was read and the time it was
committed (with write skew check enabled).

On the other hand, pessimistic transactions might be a better fit when there is high contention on
the keys and transaction rollbacks are less desirable. Pessimistic transactions are more costly by
their nature: each write operation potentially involves a RPC for lock acquisition.

8.4. Write Skews

Write skews occur when two transactions independently and simultaneously read and write to the
same key. The result of a write skew is that both transactions successfully commit updates to the
same key but with different values.

In Library Mode, {brandname} automatically performs write skew checks to ensure data
consistency for REPEATABLE_READ isolation levels in optimistic transactions. This allows {brandname}
to detect and roll back one of the transactions.

0 The write-skew attribute is deprecated for Library Mode. In Remote Client/Server
Mode, this attribute is not a valid declaration.

When operating in LOCAL mode, write skew checks rely on Java object references to compare
differences, which provides a reliable technique for checking for write skews.

In clustered environments, you should configure data versioning to ensure reliable write skew
checks. {brandname} provides an implementation of the EntryVersion interface called SIMPLE
versioning, which is backed by a long that is incremented each time the entry is updated.

<versioning scheme="SIMPLE|NONE" />
Or

new ConfigurationBuilder().versioning().scheme(SIMPLE);

8.4.1. Forcing write locks on keys in pessimitic transactions

To avoid write-skews with pessimistic transactions, lock Kkeys at read-time with
Flag.FORCE_WRITE_LOCK.

* In non-transactional caches, Flag.FORCE_WRITE_LOCK does not work. The get()
0 call reads the key value but does not acquire locks remotely.

* You should use Flag.FORCE_WRITE_LOCK with transactions in which the entity is
updated later in the same transaction.

Compare the following code snippets for an example of Flag.FORCE_WRITE_LOCK:

139

// begin the transaction
if (!lcache.getAdvancedCache().lock(key)) {

// abort the transaction because the key was not locked
} else {

cache.get(key);

cache.put(key, value);

// commit the transaction

// begin the transaction

try {
// throws an exception if the key is not locked.
cache.getAdvancedCache().withFlags(Flag.FORCE_WRITE_LOCK).get(key);
cache.put(key, value);

} catch (CacheException e) {
// mark the transaction rollback-only

}

// commit or rollback the transaction

8.5. Deadlock detection

Deadlocks can significantly (up to one order of magnitude) reduce the throughput of a system,
especially when multiple transactions are operating against the same key set. Deadlock detection is
disabled by default, but can be enabled/configured per cache (i.e. under *-cache config element) by
adding the following:

<local-cache deadlock-detection-spin="1000"/>
or, programmatically

new ConfigurationBuilder().deadlockDetection().enable().spinDuration(1000);

//or

new ConfigurationBuilder().deadlockDetection().enable().spinDuration(1, TimeUnit
.SECONDS);

Some clues on when to enable deadlock detection.

* A high number of transaction rolling back due to TimeoutException is an indicator that this
functionality might help.

* TimeoutException might be caused by other causes as well, but deadlocks will always result in
this exception being thrown.

Generally, when you have a high contention on a set of keys, deadlock detection may help. But the
best way is not to guess the performance improvement but to benchmark and monitor it: you can

140

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/util/concurrent/TimeoutException.html

have access to statistics (e.g. number of deadlocks detected) through JMX, as it is exposed via the
DeadlockDetectinglLockManager MBean. For more details on how deadlock detection works,
benchmarks and design details refer to this article.

9 deadlock detection only runs on an a per cache basis: deadlocks that spread over
two or more caches won’t be detected.

8.6. Dealing with exceptions

If a CacheException (or a subclass of it) is thrown by a cache method within the scope of a JTA
transaction, then the transaction is automatically marked for rollback.

8.7. Enlisting Synchronizations

By default {brandname} registers itself as a first class participant in distributed transactions
through XAResource. There are situations where {brandname} is not required to be a participant in
the transaction, but only to be notified by its lifecycle (prepare, complete): e.g. in the case
{brandname} is used as a 2nd level cache in Hibernate.

{brandname} allows transaction enlistment through Synchronization. To enable it just use NON_XA
transaction mode.

Synchronizations have the advantage that they allow TransactionManager to optimize 2PC with a 1PC
where only one other resource is enlisted with that transaction (last resource commit optimization).
E.g. Hibernate second level cache: if {brandname} registers itself with the TransactionManager as a
XAResource than at commit time, the TransactionManager sees two XAResource (cache and database)
and does not make this optimization. Having to coordinate between two resources it needs to write
the tx log to disk. On the other hand, registering {brandname} as a Synchronisation makes the
TransactionManager skip writing the log to the disk (performance improvement).

8.8. Batching

Batching allows atomicity and some characteristics of a transaction, but not full-blown JTA or XA
capabilities. Batching is often a lot lighter and cheaper than a full-blown transaction.

Generally speaking, one should use batching API whenever the only participant in
the transaction is an {brandname} cluster. On the other hand, JTA transactions
(involving TransactionManager) should be used whenever the transactions involves

Q multiple systems. E.g. considering the "Hello world!" of transactions: transferring
money from one bank account to the other. If both accounts are stored within
{brandname}, then batching can be used. If one account is in a database and the
other is {brandname}, then distributed transactions are required.

0 You do not have to have a transaction manager defined to use batching.

141

http://infinispan.blogspot.com/2009/07/increase-transactional-throughput-with.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/CacheException.html
https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html
https://docs.oracle.com/javaee/7/api/javax/transaction/Synchronization.html
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html/development_guide/java_transaction_api_jta#about_the_lrco_optimization_for_single_phase_commit_1pc

8.8.1. API

Once you have configured your cache to use batching, you use it by calling startBatch() and
endBatch() on Cache. E.g.,

Cache cache = cacheManager.getCache();
// not using a batch
cache.put("key", "value"); // will replicate immediately

// using a batch

cache.startBatch();

cache.put("k1", "value");

cache.put("k2", "value");

cache.put("k2", "value");

cache.endBatch(true); // This will now replicate the modifications since the batch was
started.

// a new batch

cache.startBatch();

cache.put("k1", "value");

cache.put("k2", "value");

cache.put("k3", "value");

cache.endBatch(false); // This will "discard" changes made in the batch

8.8.2. Batching and JTA

Behind the scenes, the batching functionality starts a JTA transaction, and all the invocations in that
scope are associated with it. For this it uses a very simple (e.g. no recovery) internal
TransactionManager implementation. With batching, you get:

1. Locks you acquire during an invocation are held until the batch completes

2. Changes are all replicated around the cluster in a batch as part of the batch completion process.
Reduces replication chatter for each update in the batch.

3. If synchronous replication or invalidation are used, a failure in replication/invalidation will
cause the batch to roll back.

4. All the transaction related configurations apply for batching as well.

8.9. Transaction recovery

Recovery is a feature of XA transactions, which deal with the eventuality of a resource or possibly
even the transaction manager failing, and recovering accordingly from such a situation.

8.9.1. When to use recovery

Consider a distributed transaction in which money is transferred from an account stored in an
external database to an account stored in {brandname}. When TransactionManager.commit() is
invoked, both resources prepare successfully (1st phase). During the commit (2nd) phase, the

142

database successfully applies the changes whilst {brandname} fails before receiving the commit
request from the transaction manager. At this point the system is in an inconsistent state: money is
taken from the account in the external database but not visible yet in {brandname} (since locks are
only released during 2nd phase of a two-phase commit protocol). Recovery deals with this situation
to make sure data in both the database and {brandname} ends up in a consistent state.

8.9.2. How does it work

Recovery is coordinated by the transaction manager. The transaction manager works with
{brandname} to determine the list of in-doubt transactions that require manual intervention and
informs the system administrator (via email, log alerts, etc). This process is transaction manager
specific, but generally requires some configuration on the transaction manager.

Knowing the in-doubt transaction ids, the system administrator can now connect to the
{brandname} cluster and replay the commit of transactions or force the rollback. {brandname}
provides JMX tooling for this - this is explained extensively in the Transaction recovery and
reconciliation section.

8.9.3. Configuring recovery

Recovery is not enabled by default in {brandname}. If disabled, the TransactionManager won’t be
able to work with {brandname} to determine the in-doubt transactions. The Transaction
configuration section shows how to enable it.

NOTE: recovery-cache attribute is not mandatory and it is configured per-cache.

O For recovery to work, mode must be set to FULL_XA, since full-blown XA transactions
are needed.
Enable JMX support

In order to be able to use JMX for managing recovery JMX support must be explicitly enabled. More
about enabling JMX in the Management chapter.

8.9.4. Recovery cache

In order to track in-doubt transactions and be able to reply them, {brandname} caches all
transaction state for future use. This state is held only for in-doubt transaction, being removed for
successfully completed transactions after when the commit/rollback phase completed.

This in-doubt transaction data is held within a local cache: this allows one to configure swapping
this info to disk through cache loader in the case it gets too big. This cache can be specified through
the recovery-cache configuration attribute. If not specified {brandname} will configure a local cache
for you.

It is possible (though not mandated) to share same recovery cache between all the {brandname}
caches that have recovery enabled. If the default recovery cache is overridden, then the specified
recovery cache must use a TransactionManagerLookup that returns a different transaction
manager than the one used by the cache itself.

143

#tx_recovery_reconciliation
#tx_recovery_reconciliation
#tx_configuration
#tx_configuration
#jmx_mgmt_tooling
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/transaction/lookup/TransactionManagerLookup.html

8.9.5. Integration with the transaction manager

Even though this is transaction manager specific, generally a transaction manager would need a
reference to a XAResource implementation in order to invoke XAResource.recover() on it. In order to
obtain a reference to an {brandname} XAResource following API can be used:

XAResource xar = cache.getAdvancedCache().getXAResource();

It is a common practice to run the recovery in a different process from the one running the
transaction.

8.9.6. Reconciliation

The transaction manager informs the system administrator on in-doubt transaction in a
proprietary way. At this stage it is assumed that the system administrator knows transaction’s XID
(a byte array).

A normal recovery flow is:

* STEP 1: The system administrator connects to an {brandname} server through JMX, and lists the
in doubt transactions. The image below demonstrates JConsole connecting to an {brandname}
node that has an in doubt transaction.

[Overview ' Memory Threads Classes WM Summary M S
» [JMImplementation ~Operation invocation
» (53] com.sun.management) .
» il java.lang java.lang.5tring [showlnDoubtTransactions)
» (G java.util.logging -
¥ [v.recovery.admin.LocalCacheRecoveryAdminTest rMBeanOperationinfo
v [l Cache Name Value
u " Operation:
> InfoCacheN loca
. i“t_ re::vewn . cheName_(b Name showl, ubtTransactions
8 testdist_syno) Description ShowsiMll the prepared transactions for which the...
hd E“I}efaultCacheManaqer“ Imnart UN N
Each cache that has recovery enabled exposes this MBean javigang.String

b @ LockManager

I ¥ [RecoveryAdmin I

¥ Operations

showlnDoubtTransactions
forceCommit .
force Commit
forceRollback ~Descriptor
forceRollback Name Current status of the
forget | in-doubt transaction
forget
b @@ RpcManager
A A A Operation return value |
éi 120-5674-21-1174918-6974-103-3529 =] .Iintemalld = 552952838323201|I;tatu5 = [_PREPARED_]
» ™.

"14

@y‘
_. Internal Id to be used with

other operations

Figure 6. Show in-doubt transactions

144

The status of each in-doubt transaction is displayed(in this example " PREPARED "). There might be
multiple elements in the status field, e.g. "PREPARED" and "COMMITTED" in the case the transaction
committed on certain nodes but not on all of them.

» STEP 2: The system administrator visually maps the XID received from the transaction manager
to an {brandname} internal id, represented as a number. This step is needed because the XID, a
byte array, cannot conveniently be passed to the JMX tool (e.g. JConsole) and then re-assembled
on {brandname}'s side.

* STEP 3: The system administrator forces the transaction’s commit/rollback through the
corresponding jmx operation, based on the internal id. The image below is obtained by forcing
the commit of the transaction based on its internal id.

[Overview Memory Threads Classes

VM Summary M

~Operation invocation

» B IMImplementation

» [com.sun.management

» [java.lang

» [java.util.logging

v [tx.recovery.admin.LocalCacheRecoveryAdminTest
¥ [l Cache

Javalang.String o oCommit) dp1 (562962838323201)

rMBeanOperationinfo

MName Value
» B3 " recoveryinfoCacheName_ (local)® Operation:
v [“testidist_syng)” Name forceCommit
¥ ["DefaultCacheManager” Description Forces the commit of an in-doubt transaction
> @ Cache mpact INKNONN
R eturnType Jjava.lang.String
» @ DistributionManager Parameter (-
F @ LockManager Mame - . :
v @ RecoveryAdmin Descript Operaticn return value
i Type
" httrlbut.es b Commit successful!
¥ Operations -
showinDoubtTransactions .,_;—V
rDescrip f oK Y [
forceRollback Name e |
forget 1 b

forget
» @ RpcManager
b @ Statistics

b @ Transactions
» (L3 CacheManager
» [t.recovery.admin.LocalCacheRecoveryAdminTest2

Figure 7. Force commit

v

Force commit/rollback based on XID

All JMX operations described above can be executed on any node, regardless of
where the transaction originated.

XID-based JMX operations for forcing in-doubt transactions' commit/rollback are available as well:
these methods receive byte[] arrays describing the XID instead of the number associated with the
transactions (as previously described at step 2). These can be useful e.g. if one wants to set up an
automatic completion job for certain in-doubt transactions. This process is plugged into transaction
manager’s recovery and has access to the transaction manager’s XID objects.

145

8.9.7. Want to know more?

The recovery design document describes in more detail the insides of transaction recovery
implementation.

8.10. Total Order based commit protocol

The Total Order based protocol is a multi-master scheme (in this context, multi-master scheme
means that all nodes can update all the data) as the (optimistic/pessimist) locking mode
implemented in {brandname}. This commit protocol relies on the concept of totally ordered
delivery of messages which, informally, implies that each node which delivers a set of messages,
delivers them in the same order.

This protocol comes with this advantages.

1. transactions can be committed in one phase, as they are delivered in the same order by the
nodes that receive them.

2. it mitigates distributed deadlocks.

The weaknesses of this approach are the fact that its implementation relies on a single thread per
node which delivers the transaction and its modification, and the slightly cost of total ordering the
messages in Transport.

Thus, this protocol delivers best performance in scenarios of high contention , in which it can
benefit from the single-phase commit and the deliver thread is not the bottleneck.

Currently, the Total Order based protocol is available only in transactional caches for replicated and
distributed modes.

8.10.1. Overview

The Total Order based commit protocol only affects how transactions are committed by
{brandname} and the isolation level and write skew affects it behaviour.

When write skew is disabled, the transaction can be committed/rolled back in single phase. The
data consistency is guaranteed by the Transport that ensures that all owners of a key will deliver the
same transactions set by the same order.

On other hand, when write skew is enabled, the protocol adapts and uses one phase commit when
it is safe. In XaResource enlistment, we can use one phase if the TransactionManager request a commit
in one phase (last resource commit optimization) and the {brandname} cache is configured in
replicated mode. This optimization is not safe in distributed mode because each node performs the
write skew check validation in different keys subset. When in Synchronization enlistment, the
TransactionManager does not provide any information if {brandname} is the only resource enlisted
(last resource commit optimization), so it is not possible to commit in a single phase.

Commit in one phase

When the transaction ends, {brandname} sends the transaction (and its modification) in total order.

146

https://community.jboss.org/wiki/TransactionRecoveryDesign

This ensures all the transactions are deliver in the same order in all the involved {brandname}
nodes. As a result, when a transaction is delivered, it performs a deterministic write skew check
over the same state (if enabled), leading to the same outcome (transaction commit or rollback).

|Node 1 |
Q.

to-send(prepare of tx1)

handle(prepare of tx1)

validate(tx1)
commit(tx1)

handle(prepare of tx2)

validate(tx2)
rollback(tx2)

‘Node2|

handle(prepare of tx1)

validate(tx1)
commit(tx1)

handle(prepare of tx2)

validate(tx2)
rollback(tx2)

|Node3|

Assuming tx1

and tx2 writes
on the same
key

to-send(prepare of tx2)

handle(prepare of tx1)

validate(tx1)
commit(tx1)

handle(prepare of tx2)

validate(tx2)
rollback(tx2)

Figure 8. 1-phase commit

The figure above demonstrates a high level example with 3 nodes. Node1 and Node3 are running one
transaction each and lets assume that both transaction writes on the same key. To make it more
interesting, lets assume that both nodes tries to commit at the same time, represented by the first
colored circle in the figure. The blue circle represents the transaction txI and the green the
transaction tx2 . Both nodes do a remote invocation in total order (to-send) with the transaction’s
modifications. At this moment, all the nodes will agree in the same deliver order, for example, tx1
followed by tx2 . Then, each node delivers txI , perform the validation and commits the
modifications. The same steps are performed for tx2 but, in this case, the validation will fail and the
transaction is rollback in all the involved nodes.

Commit in two phases

In the first phase, it sends the modification in total order and the write skew check is performed.
The result of the write skew check is sent back to the originator. As soon as it has the confirmation
that all keys are successfully validated, it give a positive response to the TransactionManager. On
other hand, if it receives a negative reply, it returns a negative response to the TransactionManager.
Finally, the transaction is committed or aborted in the second phase depending of the
TransactionManager request.

147

Node 1

]

to-send(prepare of tx1)

handle(prepare of tx1)

)

validate(tx1)

handle(prepare of tx2)

e

Received enough replies

/O\

send(commit of tx1)
commit(tx1)

validate(ix2)

handle(rollback of tx2)

rollback(tx2)

Figure 9. 2-phase commit

|N0d62|

handle(prepare of tx1)

validate(tx1)

handle(prepare of tx2)

handle(commit of tx1)

commit(tx1)
validate(tx2)

handle(rollback of tx2)

rollback(tx2)

Node 3

Assuming tx1

i

and tx2 writes
on the same
key

to-send(prepare of {x2)

handle(prepare of tx1)

e

validate(tx1)

handle(prepare of tx2)

&

handle(commit of tx1)

commit(tx1)
validate(tx2)

Received enough replies

send(rollback of tx2)
rollback(tx2)

The figure above shows the scenario described in the first figure but now committing the
transactions using two phases. When tx1 is deliver, it performs the validation and it replies to the
TransactionManager. Next, lets assume that tx2 is deliver before the TransactionManager request the
second phase for txI. In this case, tx2 will be enqueued and it will be validated only when tx1 is
completed. Eventually, the TransactionManager for txI will request the second phase (the commit)
and all the nodes are free to perform the validation of tx2 .

Transaction Recovery

Transaction recovery is currently not available for Total Order based commit protocol.

State Transfer

For simplicity reasons, the total order based commit protocol uses a blocking version of the current
state transfer. The main differences are:

1. enqueue the transaction deliver while the state transfer is in progress;

2. the state transfer control messages (CacheTopologyControlCommand) are sent in total order.

This way, it provides a synchronization between the state transfer and the transactions deliver that
is the same all the nodes. Although, the transactions caught in the middle of state transfer (i.e. sent

148

#tx_recovery

before the state transfer start and deliver after it) needs to be re-sent to find a new total order

involving the new joiners.

Node 1

—

to-send(prepare of tx1)

handle(prepare of tx1)

e

handle(start state transfer)

‘Node2|

)

to-send(prepare of tx2)

handle(prepare of tx1)

¢

handle(start state transfer)

handle(prepare of tx2)

.

handle(end state transfer)

handle(prepare of tx2)

-

Node 3 joins

topologyld=1

handle(start state transfer)

handle(prepare of tx2)

handle(end state transfer)

topologyld=2

handle(end state transfer)

to-send(prepare of tx2)

handle(prepare of tx2)

Figure 10. Node joining during transaction

topologyld=3

handle(prepare of tx2)

The figure above describes a node joining. In the scenario, the tx2 is sent in topologyld=1 but when
it is received, it is in topologyld=2 . So, the transaction is re-sent involving the new nodes.

8.10.2. Configuration

To use total order in your cache, you need to add the TOA protocol in your jgroups.xml configuration

file.

jgroups.xml

<tom.TOA />

i
i

Check the JGroups Manual for more details.

If you are interested in detail how JGroups guarantees total order, check the
link::http://jgroups.org/manual/index.html#TOA[TOA manual].

149

http://jgroups.org/manual-3.x/html/index.html

Also, you need to set the protocol=TOTAL_ORDER in the <transaction> element, as shown in
Transaction configuration.

8.10.3. When to use it?

Total order shows benefits when used in write intensive and high contented workloads. It mitigates
the cost associated with deadlock detection and avoids contention in the lock keys.

150

#tx_configuration

Chapter 9. Locking and Concurrency

{brandname} makes use of multi-versioned concurrency control (MVCC) - a concurrency scheme
popular with relational databases and other data stores. MVCC offers many advantages over coarse-
grained Java synchronization and even JDK Locks for access to shared data, including:

* allowing concurrent readers and writers

 readers and writers do not block one another

» write skews can be detected and handled

internal locks can be striped

9.1. Locking implementation details

{brandname}'s MVCC implementation makes use of minimal locks and synchronizations, leaning
heavily towards lock-free techniques such as compare-and-swap and lock-free data structures
wherever possible, which helps optimize for multi-CPU and multi-core environments.

In particular, {brandname}'s MVCC implementation is heavily optimized for readers. Reader
threads do not acquire explicit locks for entries, and instead directly read the entry in question.

Writers, on the other hand, need to acquire a write lock. This ensures only one concurrent writer
per entry, causing concurrent writers to queue up to change an entry. To allow concurrent reads,
writers make a copy of the entry they intend to modify, by wrapping the entry in an MVCCEntry. This
copy isolates concurrent readers from seeing partially modified state. Once a write has completed,
MVCCEntry.commit() will flush changes to the data container and subsequent readers will see the
changes written.

9.1.1. How does it work in clustered caches?

In clustered caches, each key has a node responsible to lock the key. This node is called primary
owner.

Non Transactional caches

1. The write operation is sent to the primary owner of the key.
2. The primary owner tries to lock the key.
a. If it succeeds, it forwards the operation to the other owners;

b. Otherwise, an exception is thrown.

0 If the operation is conditional and it fails on the primary owner, it is not
forwarded to the other owners.

o If the operation is executed locally in the primary owner, the first step is skipped.

151

http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Compare-and-swap

9.1.2. Transactional caches

The transactional cache supports optimistic and pessimistic locking mode. Check section
Transaction Locking for more information about it.

9.1.3. Isolation levels

Isolation level affects what transactions can read when running concurrently with other
transaction. Check section Isolation Levels for more details about it.

9.1.4. The LockManager

The LockManager is a component that is responsible for locking an entry for writing. The LockManager
makes use of a LockContainer to locate/hold/create locks. LockContainers come in two broad flavours,
with support for lock striping and with support for one lock per entry.

9.1.5. Lock striping

Lock striping entails the use of a fixed-size, shared collection of locks for the entire cache, with
locks being allocated to entries based on the entry’s key’s hash code. Similar to the way the JDK’s
ConcurrentHashMap allocates locks, this allows for a highly scalable, fixed-overhead locking
mechanism in exchange for potentially unrelated entries being blocked by the same lock.

The alternative is to disable lock striping - which would mean a new lock is created per entry. This
approach may give you greater concurrent throughput, but it will be at the cost of additional
memory usage, garbage collection churn, etc.

Default lock striping settings

o lock striping is disabled by default, due to potential deadlocks that can happen if
locks for different keys end up in the same lock stripe.

The size of the shared lock collection used by lock striping can be tuned using the concurrencylevel
attribute of the "<locking /> configuration element.

Configuration example:
<locking striping="false|true"/>
Or

new ConfigurationBuilder().locking().uselLockStriping(false|true);

9.1.6. Concurrency levels

In addition to determining the size of the striped lock container, this concurrency level is also used
to tune any JDK ConcurrentHashMap based collections where related, such as internal to
DataContainers. Please refer to the JDK ConcurrentHashMap Javadocs for a detailed discussion of

152

#tx_locking
#tx_isolation_levels

concurrency levels, as this parameter is used in exactly the same way in {brandname}.

Configuration example:
<locking concurrency-level="32"/>
Or

new ConfigurationBuilder().locking().concurrencylLevel(32);

9.1.7. Lock timeout
The lock timeout specifies the amount of time, in milliseconds, to wait for a contented lock.

Configuration example:
<locking acquire-timeout="10000"/>
Or

new ConfigurationBuilder().locking().lockAcquisitionTimeout(10000);
//alternatively
new ConfigurationBuilder().locking().lockAcquisitionTimeout(10, TimeUnit.SECONDS);

9.1.8. Consistency

The fact that a single owner is locked (as opposed to all owners being locked) does not break the
following consistency guarantee: if key K is hashed to nodes {A, B} and transaction TX1 acquires a
lock for K, let’s say on A. If another transaction, TX2, is started on B (or any other node) and TX2 tries
to lock K then it will fail with a timeout as the lock is already held by TX1. The reason for this is the
that the lock for a key K is always, deterministically, acquired on the same node of the cluster,
regardless of where the transaction originates.

9.2. Data Versioning

{brandname} supports two forms of data versioning: simple and external. The simple versioning is
used in transactional caches for write skew check. See Write Skews.

The external versioning is used to encapsulate an external source of data versioning within
{brandname}, such as when using {brandname} with Hibernate which in turn gets its data version
information directly from a database.

In this scheme, a mechanism to pass in the version becomes necessary, and overloaded versions of
put() and putForExternalRead() will be provided in AdvancedCache to take in an external data
version. This is then stored on the InvocationContext and applied to the entry at commit time.

153

#tx_write_skew

ﬁ Write skew checks cannot and will not be performed in the case of external data
versioning.

154

Chapter 10. Executing code in the Grid

The main benefit of a Cache is the ability to very quickly lookup a value by its key, even across
machines. In fact this use alone is probably the reason many users use {brandname}. However
{brandname} can provide many more benefits that aren’t immediately apparent. Since
{brandname} is usually used in a cluster of machines we also have features available that can help
utilize the entire cluster for performing the user’s desired workload.

This section covers only executing code in the grid using an embedded cache, if
you are using a remote cache you should check out Executing code in the Remote
Grid.

10.1. Cluster Executor

Since you have a group of machines, it makes sense to leverage their combined computing power
for executing code on all of them them. The cache manager comes with a nice utility that allows
you to execute arbitrary code in the cluster. Note this feature requires no Cache to be used. This
Cluster Executor can be retrieved by calling executor() on the EmbeddedCacheManager. This executor is
retrievable in both clustered and non clustered configurations.

The ClusterExecutor is specifically designed for executing code where the code is
not reliant upon the data in a cache and is used instead as a way to help users to
execute code easily in the cluster.

This manager was built specifically using Java 8 and such has functional APIs in mind, thus all
methods take a functional inteface as an argument. Also since these arguments will be sent to other
nodes they need to be serializable. We even used a nice trick to ensure our lambdas are
immediately Serializable. That is by having the arguments implement both Serializable and the real
argument type (ie. Runnable or Function). The JRE will pick the most specific class when
determining which method to invoke, so in that case your lambdas will always be serializable. It is
also possible to use an Externalizer to possibly reduce message size further.

The manager by default will submit a given command to all nodes in the cluster including the node
where it was submitted from. You can control on which nodes the task is executed on by using the
filterTargets methods as is explained in the section.

10.1.1. Filtering execution nodes

It is possible to limit on which nodes the command will be ran. For example you may want to only
run a computation on machines in the same rack. Or you may want to perform an operation once
in the local site and again on a different site. A cluster executor can limit what nodes it sends
requests to at the scope of same or different machine, rack or site level.

155

#execute_code_remote_grid
#execute_code_remote_grid
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/manager/ClusterExecutor.html

SameRack.java

EmbeddedCacheManager manager = ...;
manager .executor().filterTargets(ClusterExecutionPolicy.SAME_RACK).submit(...)

To use this topology base filtering you must enable topology aware consistent hashing through
Server Hinting.

You can also filter using a predicate based on the Address of the node. This can also be optionally
combined with topology based filtering in the previous code snippet.

We also allow the target node to be chosen by any means using a Predicate that will filter out which
nodes can be considered for execution. Note this can also be combined with Topology filtering at
the same time to allow even more fine control of where you code is executed within the cluster.

Predicate.java

EmbeddedCacheManager manager = ...;

// Just filter

manager .executor().filterTargets(a -> a.equals(..)).submit(...)

// Filter only those in the desired topology

manager .executor().filterTargets(ClusterExecutionPolicy.SAME_SITE, a -> a.equals(.
.)).submit(...)

10.1.2. Timeout

Cluster Executor allows for a timeout to be set per invocation. This defaults to the distributed sync
timeout as configured on the Transport Configuration. This timeout works in both a clustered and
non clustered cache manager. The executor may or may not interrupt the threads executing a task
when the timeout expires. However when the timeout occurs any Consumer or Future will be
completed passing back a TimeoutException. This value can be overridden by ivoking the timeout
method and supplying the desired duration.

10.1.3. Single Node Submission

Cluster Executor can also run in single node submission mode instead of submitting the command
to all nodes it will instead pick one of the nodes that would have normally received the command
and instead submit it it to only one. Each submission will possibly use a different node to execute
the task on. This can be very useful to use the ClusterExecutor as a java.util.concurrent.Executor
which you may have noticed that ClusterExecutor implements.

SingleNode.java

EmbeddedCacheManager manager = ...;
manager .executor().singleNodeSubmission().submit(...)

156

#server_hinting
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/manager/ClusterExecutor.html#timeout-long-java.util.concurrent.TimeUnit-

Failover

When running in single node submission it may be desirable to also allow the Cluster Executor
handle cases where an exception occurred during the processing of a given command by retrying
the command again. When this occurs the Cluster Executor will choose a single node again to
resubmit the command to up to the desired number of failover attempts. Note the chosen node
could be any node that passes the topology or predicate check. Failover is enabled by invoking the
overridden singleNodeSubmission method. The given command will be resubmitted again to a
single node until either the command completes without exception or the total submission amount
is equal to the provided failover count.

10.1.4. Example: PI Approximation
This example shows how you can use the ClusterExecutor to estimate the value of PI.

Pi approximation can greatly benefit from parallel distributed execution via Cluster Executor.
Recall that area of the square is Sa = 4r2 and area of the circle is Ca=pi*r2. Substituting r2 from the
second equation into the first one it turns out that pi = 4 * Ca/Sa. Now, image that we can shoot very
large number of darts into a square; if we take ratio of darts that land inside a circle over a total
number of darts shot we will approximate Ca/Sa value. Since we know that pi = 4 * Ca/Sa we can
easily derive approximate value of pi. The more darts we shoot the better approximation we get. In
the example below we shoot 1 billion darts but instead of "shooting" them serially we parallelize
work of dart shooting across the entire {brandname} cluster. Note this will work in a cluster of 1
was well, but will be slower.

public class PiAppx {

public static void main (String [] arg){
EmbeddedCacheManager cacheManager = ..
boolean isCluster = ..

int numPoints = 1_000_000 _000;
int numServers = isCluster ? cacheManager.getMembers().size() : 1;
int numberPerWorker = numPoints / numServers;

ClusterExecutor clusterExecutor = cacheManager.executor();
long start = System.currentTimeMillis();
// We receive results concurrently - need to handle that
AtomicLong countCircle = new AtomiclLong();
CompletableFuture<Void> fut = clusterExecutor.submitConsumer(m -> {
int insideCircleCount = 0;
for (int i = 0; i < numberPerWorker; i++) {
double x = Math.random();
double y = Math.random();
if (insideCircle(x, y))
insideCircleCount++;
}
return insideCircleCount;
}, (address, count, throwable) -> {
if (throwable != null) {

157

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/manager/ClusterExecutor.html#singleNodeSubmission-int-

throwable.printStackTrace();

System.out.println("Address: " + address + " encountered an error: " +
throwable);
} else {
countCircle.getAndAdd(count);
}
});

fut.whenComplete((v, t) -> {
// This is invoked after all nodes have responded with a value or exception
if (t !'= null) {
t.printStackTrace();
System.out.println("Exception encountered while waiting:" + t);
} else {
double appxPi = 4.0 * countCircle.get() / numPoints;

System.out.println("Distributed PI appx is " + appxPi +
" using " + numServers + " node(s), completed in " + (System
.currentTimeMillis() - start) + " ms");

}
i

// May have to sleep here to keep alive if no user threads left

}

private static boolean insideCircle(double x, double y) {
return (Math.pow(x - 0.5, 2) + Math.pow(y - 0.5, 2))
<= Math.pow(0.5, 2);

10.2. Streams

You may want to process a subset or all data in the cache to produce a result. This may bring
thoughts of Map Reduce. {brandname} allows the user to do something very similar but utilizes the
standard JRE APIs to do so. Java 8 introduced the concept of a Stream which allows functional-style
operations on collections rather than having to procedurally iterate over the data yourself. Stream
operations can be implemented in a fashion very similar to MapReduce. Streams, just like
MapReduce allow you to perform processing upon the entirety of your cache, possibly a very large
data set, but in an efficient way.

0 Streams are the preferred method when dealing with data that exists in the cache.
This is because they will automatically changes in topology.

Also since we can control how the entries are iterated upon we can more efficiently perform the
operations in a cache that is distributed if you want it to perform all of the operations across the
cluster concurrently.

A stream is retrieved from the entrySet, keySet or values collections returned from the Cache by
invoking the stream or parallelStream methods.

158

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html#entrySet--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html#keySet--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html#values--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#stream--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#parallelStream--

10.2.1. Common stream operations

This section highlights various options that are present irrespective of what type of underlying
cache you are using.

10.2.2. Key filtering

It is possible to filter the stream so that it only operates upon a given subset of keys. This can be
done by invoking the filterKeys method on the CacheStream. This should always be used over a
Predicate filter and will be faster if the predicate was holding all keys.

If you are familiar with the AdvancedCache interface you may be wondering why you even use getAll
over this keyFilter. There are some small benefits (mostly smaller payloads) to using getAll if you
need the entries as is and need them all in memory in the local node. However if you need to do
processing on these elements a stream is recommended since you will get both distributed and
threaded parallelism for free.

10.2.3. Segment based filtering

This is an advanced feature and should only be used with deep knowledge of

O {brandname} segment and hashing techniques. These segments based filtering can
be useful if you need to segment data into separate invocations. This can be useful
when integrating with other tools such as Apache Spark.

This option is only supported for replicated and distributed caches. This allows the user to operate
upon a subset of data at a time as determined by the KeyPartitioner. The segments can be filtered
by invoking filterKeySegments method on the CacheStream. This is applied after the key filter but
before any intermediate operations are performed.

10.2.4. Local/Invalidation

A stream used with a local or invalidation cache can be used just the same way you would use a
stream on a regular collection. {brandname} handles all of the translations if necessary behind the
scenes and works with all of the more interesting options (ie. storeAsBinary, compatibility mode,
and a cache loader). Only data local to the node where the stream operation is performed will be
used, for example invalidation only uses local entries.

10.2.5. Example

The code below takes a cache and returns a map with all the cache entries whose values contain the
string "JBoss"

Map<Object, String> jbossValues = cache.entrySet().stream()
.filter(e -> e.getValue().contains("JBoss"))
.collect(Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));

159

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/CacheStream.html#filterKeys-java.util.Set-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html?is-external=true#filter-java.util.function.Predicate-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/AdvancedCache.html#getAll-java.util.Set-
http://spark.apache.org/
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/distribution/ch/KeyPartitioner.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/CacheStream.html#filterKeySegments-java.util.Set-

10.3. Distribution/Replication/Scattered

This is where streams come into their stride. When a stream operation is performed it will send the
various intermediate and terminal operations to each node that has pertinent data. This allows
processing the intermediate values on the nodes owning the data, and only sending the final results
back to the originating nodes, improving performance.

10.3.1. Rehash Aware

Internally the data is segmented and each node only performs the operations upon the data it owns
as a primary owner. This allows for data to be processed evenly, assuming segments are granular
enough to provide for equal amounts of data on each node.

When you are utilizing a distributed cache, the data can be reshuffled between nodes when a new
node joins or leaves. Distributed Streams handle this reshuffling of data automatically so you don’t
have to worry about monitoring when nodes leave or join the cluster. Reshuffled entries may be
processed a second time, and we keep track of the processed entries at the key level or at the
segment level (depending on the terminal operation) to limit the amount of duplicate processing.

It is possible but highly discouraged to disable rehash awareness on the stream. This should only be
considered if your request can handle only seeing a subset of data if a rehash occurs. This can be
done by invoking CacheStream.disableRehashAware() The performance gain for most operations
when a rehash doesn’t occur is completely negligible. The only exceptions are for iterator and
forEach, which will use less memory, since they do not have to keep track of processed keys.

ﬁ Please rethink disabling rehash awareness unless you really know what you are
doing.

10.3.2. Serialization

Since the operations are sent across to other nodes they must be serializable by {brandname}
marshalling. This allows the operations to be sent to the other nodes.

The simplest way is to use a CacheStream instance and use a lambda just as you would normally.
{brandname} overrides all of the various Stream intermediate and terminal methods to take
Serializable versions of the arguments (ie. SerializableFunction, SerializablePredicate...) You can
find these methods at CacheStream. This relies on the spec to pick the most specific method as
defined here.

In our previous example we used a Collector to collect all the results into a Map. Unfortunately the
Collectors class doesn’t produce Serializable instances. Thus if you need to use these, there are two
ways to do so:

One option would be to use the CacheCollectors class which allows for a Supplier<Collector> to be
provided. This instance could then use the Collectors to supply a Collector which is not serialized.
You can read more details about how the collector peforms in a distributed fashion at distributed
execution.

160

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/CacheStream.html#disableRehashAware--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/stream/CacheStream.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.12.2.5
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/stream/CacheCollectors.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html
user_guide.html#distributed_stream_execution
user_guide.html#distributed_stream_execution

Map<Object, String> jbossValues = cache.entrySet().stream()
.filter(e -> e.getValue().contains("Jboss"))
.collect(CacheCollectors.serializableCollector(() -> Collectors.toMap
(Map.Entry::getKey, Map.Entry::getValue)));

Alternatively, you can avoid the use of CacheCollectors and instead use the overloaded collect
methods that take Supplier<Collector>. These overloaded collect methods are only available via
CacheStream interface.

Map<Object, String> jbossValues = cache.entrySet().stream()

.filter(e -> e.getValue().contains("Jboss"))

.collect(() -> Collectors.toMap(Map.Entry::getKey, Map.Entry::qgetValue)
¥

If however you are not able to use the Cache and CacheStream interfaces you cannot utilize
Serializable arguments and you must instead cast the lambdas to be Serializable manually by
casting the lambda to multiple interfaces. It is not a pretty sight but it gets the job done.

Map<Object, String> jbossValues = map.entrySet().stream()

.filter((Serializable & Predicate<Map.Entry<Object, String>>) e -> e
.getValue().contains("Jboss"))

.collect(CacheCollectors.serializableCollector(() -> Collectors.toMap
(Map.Entry::getKey, Map.Entry::getValue)));

The recommended and most performant way is to use an AdvancedExternalizer as this provides
the smallest payload. Unfortunately this means you cannot use lamdbas as advanced externalizers
require defining the class before hand.

You can use an advanced externalizer as shown below:

161

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/stream/CacheCollectors.html
user_guide.html#advanced_externalizers

Map<Object, String> jbossValues = cache.entrySet().stream()
.filter(new ContainsFilter("Jboss"))
.collect(() -> Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue)

class ContainsFilter implements Predicate<Map.Entry<Object, String>> {
private final String target;

ContainsFilter(String target) {
this.target = target;
}

public boolean test(Map.Entry<Object, String> e) {
return e.getValue().contains(target);

}
}

class JbossFilterExternalizer implements AdvancedExternalizer<ContainsFilter> {

public Set<(Class<? extends ContainsFilter>> getType(Classes() {
return Util.asSet(ContainsFilter.class);

}

public Integer getId() {
return CUSTOM_ID;

}

public void writeObject(ObjectOutput output, ContainsFilter object) throws
IOException {
output.writeUTF(object.target);
}

public ContainsFilter readObject(ObjectInput input) throws IOException,
(lassNotFoundException {
return new ContainsFilter(input.readUTF());

}

You could also use an advanced externalizer for the collector supplier to reduce the payload size
even further.

162

Map<Object, String> jbossValues = cache.entrySet().stream()
.filter(new ContainsFilter("Jboss"))
.collect(ToMapCollectorSupplier.INSTANCE);

class ToMapCollectorSupplier<K, U> implements Supplier<Collector<Map.Entry<K, U>, ?,
Map<K, U>>> {
static final ToMapCollectorSupplier INSTANCE = new ToMapCollectorSupplier();

private ToMapCollectorSupplier() { }

public Collector<Map.Entry<K, U>, ?, Map<K, U>> get() {
return Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue);

}
}

class ToMapCollectorSupplierExternalizer implements AdvancedExternalizer
<ToMapCollectorSupplier> {

public Set<Class<? extends ToMapCollectorSupplier>> getTypeClasses() {
return Util.asSet(ToMapCollectorSupplier.class);

}

public Integer getId() {
return CUSTOM_ID;

}

public void writeObject(ObjectOutput output, ToMapCollectorSupplier object)
throws IOException {

}

public ToMapCollectorSupplier readObject(ObjectInput input) throws IOException,

ClassNotFoundException {
return ToMapCollectorSupplier.INSTANCE;

}

10.3.3. Parallel Computation

Distributed streams by default try to parallelize as much as possible. It is possible for the end user
to control this and actually they always have to control one of the options. There are 2 ways these
streams are parallelized.

Local to each node When a stream is created from the cache collection the end user can choose
between invoking stream or parallelStream method. Depending on if the parallel stream was

163

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#stream--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#parallelStream--

picked will enable multiple threading for each node locally. Note that some operations like a rehash
aware iterator and forEach operations will always use a sequential stream locally. This could be
enhanced at some point to allow for parallel streams locally.

Users should be careful when using local parallelism as it requires having a large number of entries
or operations that are computationally expensive to be faster. Also it should be noted that if a user
uses a parallel stream with forEach that the action should not block as this would be executed on
the common pool, which is normally reserved for computation operations.

Remote requests When there are multiple nodes it may be desirable to control whether the remote
requests are all processed at the same time concurrently or one at a time. By default all terminal
operations except the iterator perform concurrent requests. The iterator, method to reduce overall
memory pressure on the local node, only performs sequential requests which actually performs
slightly better.

If a user wishes to change this default however they can do so by invoking the
sequentialDistribution or parallelDistribution methods on the CacheStream.

10.3.4. Task timeout

It is possible to set a timeout value for the operation requests. This timeout is used only for remote
requests timing out and it is on a per request basis. The former means the local execution will not
timeout and the latter means if you have a failover scenario as described above the subsequent
requests each have a new timeout. If no timeout is specified it uses the replication timeout as a
default timeout. You can set the timeout in your task by doing the following:

CacheStream<Object, String> stream = cache.entrySet().stream();
stream.timeout(1, TimeUnit.MINUTES);

For more information about this, please check the java doc in timeout javadoc.

10.3.5. Injection

The Stream has a terminal operation called forEach which allows for running some sort of side
effect operation on the data. In this case it may be desirable to get a reference to the Cache that is
backing this Stream. If your Consumer implements the CacheAware interface the injectCache method
be invoked before the accept method from the Consumer interface.

10.3.6. Distributed Stream execution

Distributed streams execution works in a fashion very similiar to map reduce. Except in this case
we are sending zero to many intermediate operations (map, filter etc.) and a single terminal
operation to the various nodes. The operation basically comes down to the following:

1. The desired segments are grouped by which node is the primary owner of the given segment

2. A request is generated to send to each remote node that contains the intermediate and terminal
operations including which segments it should process

164

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/CacheStream.html#sequentialDistribution--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/CacheStream.html#parallelDistribution--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/CacheStream.html#timeout-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEach-java.util.function.Consumer-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/stream/CacheAware.html

a. The terminal operation will be performed locally if necessary

b. Each remote node will receive this request and run the operations and subsequently send
the response back

3. The local node will then gather the local response and remote responses together performing
any kind of reduction required by the operations themselves.

4. Final reduced response is then returned to the user

In most cases all operations are fully distributed, as in the operations are all fully applied on each
remote node and usually only the last operation or something related may be reapplied to reduce
the results from multiple nodes. One important note is that intermediate values do not actually
have to be serializable, it is the last value sent back that is the part desired (exceptions for various
operations will be highlighted below).

Terminal operator distributed result reductions The following paragraphs describe how the
distributed reductions work for the various terminal operators. Some of these are special in that an
intermediate value may be required to be serializable instead of the final result.

allMatch noneMatch anyMatch

The allMatch operation is ran on each node and then all the results are logically anded together
locally to get the appropriate value. The noneMatch and anyMatch operations use a logical or
instead. These methods also have early termination support, stopping remote and local
operations once the final result is known.

collect

The collect method is interesting in that it can do a few extra steps. The remote node performs
everything as normal except it doesn’t perform the final finisher upon the result and instead
sends back the fully combined results. The local thread then combines the remote and local
result into a value which is then finally finished. The key here to remember is that the final
value doesn’t have to be serializable but rather the values produced from the supplier and
combiner methods.

count

The count method just adds the numbers together from each node.

findAny findFirst

The findAny operation returns just the first value they find, whether it was from a remote node
or locally. Note this supports early termination in that once a value is found it will not process
others. Note the findFirst method is special since it requires a sorted intermediate operation,
which is detailed in the exceptions section.

max min

The max and min methods find the respective min or max value on each node then a final
reduction is performed locally to ensure only the min or max across all nodes is returned.

reduce

The various reduce methods 1 , 2 , 3 will end up serializing the result as much as the
accumulator can do. Then it will accumulate the local and remote results together locally, before

165

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#allMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#noneMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#anyMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect-java.util.stream.Collector-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#finisher--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#combiner--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#supplier--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#combiner--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#count--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#findAny--
user_guide.html#intermediate_operation_exceptions
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#max-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#min-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-java.util.function.BinaryOperator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-T-java.util.function.BinaryOperator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-U-java.util.function.BiFunction-java.util.function.BinaryOperator-

combining if you have provided that. Note this means a value coming from the combiner doesn’t
have to be Serializable.

10.3.7. Key based rehash aware operators

The iterator, spliterator and forEach are unlike the other terminal operators in that the rehash
awareness has to keep track of what keys per segment have been processed instead of just
segments. This is to guarantee an exactly once (iterator & spliterator) or at least once behavior
(forEach) even under cluster membership changes.

The iterator and spliterator operators when invoked on a remote node will return back batches of
entries, where the next batch is only sent back after the last has been fully consumed. This batching
is done to limit how many entries are in memory at a given time. The user node will hold onto
which keys it has processed and when a given segment is completed it will release those keys from
memory. This is why sequential processing is preferred for the iterator method, so only a subset of
segment keys are held in memory at once, instead of from all nodes.

The forEach method also returns batches, but it returns a batch of keys after it has finished
processing at least a batch worth of keys. This way the originating node can know what keys have
been processed already to reduce chances of processing the same entry again. Unfortunately this
means it is possible to have an at least once behavior when a node goes down unexpectedly. In this
case that node could have been processing a batch and not yet completed one and those entries that
were processed but not in a completed batch will be ran again when the rehash failure operation
occurs. Note that adding a node will not cause this issue as the rehash failover doesn’t occur until
all responses are received.

These operations batch sizes are both controlled by the same value which can be configured by
invoking distributedBatchSize method on the CacheStream. This value will default to the chunkSize
configured in state transfer. Unfortunately this value is a tradeoff with memory usage vs
performance vs at least once and your mileage may vary.

Using iterator with a replication cache

Currently if you are using a replicated cache the iterator or spliterator terminal operations will
not perform any of the operations remotely and will instead perform everything on the local node.
This is for performance as doing a remote iteration process is very costly.

10.3.8. Intermediate operation exceptions

There are some intermediate operations that have special exceptions, these are skip, peek, sorted 1
2. & distinct. All of these methods have some sort of artificial iterator implanted in the stream
processing to guarantee correctness, they are documented as below. Note this means these
operations may cause possibly severe performance degradation.

Skip
An artificial iterator is implanted up to the intermediate skip operation. Then results are
brought locally so it can skip the appropriate amount of elements.

Sorted

166

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/CacheStream.html#iterator--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/CacheStream.html#spliterator--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/CacheStream.html#forEach-java.util.function.Consumer-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/CacheStream.html#distributedBatchSize-int-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#skip-long-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#peek-java.util.function.Consumer-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#sorted-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#sorted--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#distinct--

WARNING: This operation requires having all entries in memory on the local node. An artificial
iterator is implanted up to the intermediate sorted operation. All results are sorted locally. There
are possible plans to have a distributed sort which returns batches of elements, but this is not
yet implemented.

Distinct

WARNING: This operation requires having all or nearly all entries in memory on the local node.
Distinct is performed on each remote node and then an artificial iterator returns those distinct
values. Then finally all of those results have a distinct operation performed upon them.

The rest of the intermediate operations are fully distributed as one would expect.

10.3.9. Examples
Word Count

Word count is a classic, if overused, example of map/reduce paradigm. Assume we have a mapping
of key — sentence stored on {brandname} nodes. Key is a String, each sentence is also a String, and
we have to count occurrence of all words in all sentences available. The implementation of such a
distributed task could be defined as follows:

167

public class WordCountExample {

/**

* In

this example replace c1 and c2 with

* real Cache references

*

* @param args

*
/

public static void main(String[] args) {
Cache<String, String> c¢1 = ...;
Cache<String, String> c2 = ...;

cl
c2
¢l
c1

¢l

c1

cl

cl
c2
cl
c2

.put("1", "Hello world here I am");
put("2", "Infinispan rules the world");
.put("3", "JUDCon is in Boston");

c2.

put("4", "JBoss World is in Boston as well");

.put("12","IBoss Application Server");
c2.

put("15", "Hello world");

put("14", "Infinispan community");
c2.

put("15", "Hello world");

put("111", "Infinispan open source");
c2.

put("112", "Boston is close to Toronto");

put("113", "Toronto is a capital of Ontario");
c2.

put("114", "JUDCon is cool");

put("211", "IBoss World is awesome");
.put("212", "JBoss rules");

.put("213", "JBoss division of RedHat ");
.put("214", "RedHat community");

Map<String, Long> wordCountMap = c1.entrySet().parallelStream()

.map(e -> e.getValue().split("\\s"))
.flatMap(Arrays::stream)
.collect(() -> Collectors.groupingBy(Function.identity(), Collectors.

counting()));

}
}

In this case it is pretty simple to do the word count from the previous example.

However what if we want to find the most frequent word in the example? If you take a second to
think about this case you will realize you need to have all words counted and available locally first.
Thus we actually have a few options.

We could use a finisher on the collector, which is invoked on the user thread after all the results
have been collected. Some redundant lines have been removed from the previous example.

168

public class WordCountExample {
public static void main(String[] args) {
// Lines removed

String mostFrequentWord = c1.entrySet().parallelStream()
.map(e -> e.getValue().split("\\s"))
.flatMap(Arrays::stream)
.collect(() -> Collectors.collectingAndThen(
Collectors.groupingBy(Function.identity(), Collectors.counting()),
wordCountMap -> {
String mostFrequent = null;
long maxCount = 0;
for (Map.Entry<String, Long> e : wordCountMap.entrySet()) {
int count = e.getValue().intValue();
if (count > maxCount) {
maxCount = count;
mostFrequent = e.getKey();
}
}

return mostFrequent;

1);

Unfortunately the last step is only going to be ran in a single thread, which if we have a lot of words
could be quite slow. Maybe there is another way to parallelize this with Streams.

We mentioned before we are in the local node after processing, so we could actually use a stream
on the map results. We can therefore use a parallel stream on the results.

public class WordFrequencyExample {
public static void main(String[] args) {
// Lines removed

Map<String, Long> wordCount = c1.entrySet().parallelStream()
.map(e -> e.getValue().split("\\s"))
.flatMap(Arrays::stream)
.collect(() -> Collectors.groupingBy(Function.identity(), Collectors
.counting()));
Optional<Map.Entry<String, Long>> mostFrequent = wordCount.entrySet()
.parallelStream().reduce(
(e1, e2) -> el.getValue() > e2.getValue() ? el : e2);

This way you can still utilize all of the cores locally when calculating the most frequent element.
Remove specific entries

Distributed streams can also be used as a way to modify data where it lives. For example you may
want to remove all entries in your cache that contain a specific word.

169

public class RemoveBadWords {
public static void main(String[] args) {
// Lines removed
String word = ..

cl.entrySet().parallelStream()
.filter(e -> e.getValue().contains(word))
.forEach((c, e) -> c.remove(e.getKey());

If we carefully note what is serialized and what is not, we notice that only the word along with the
operations are serialized across to other nods as it is captured by the lambda. However the real
saving piece is that the cache operation is performed on the primary owner thus reducing the
amount of network traffic required to remove these values from the cache. The cache is not
captured by the lambda as we provide a special BiConsumer method override that when invoked
on each node passes the cache to the BiConsumer

One thing to keep in mind using the forEach command in this manner is that the underlying stream
obtains no locks. The cache remove operation will still obtain locks naturally, but the value could
have changed from what the stream saw. That means that the entry could have been changed after
the stream read it but the remove actually removed it.

We have specifically added a new variant which is called LockedStream.
Plenty of other examples

The Streams API is a JRE tool and there are lots of examples for using it. Just remember that your
operations need to be Serializable in some way.

10.4. Locked Streams

TODO: need to detail Locked Streams

10.5. Distributed Execution

Distributed Executor has been deprecated as of {brandname} 9.1. You should use
either a Cluster Executor or Distributed Stream to perform the operations they
were doing before.

{brandname} provides distributed execution through a standard JDK ExecutorService interface.
Tasks submitted for execution, instead of being executed in a local JVM, are executed on an entire
cluster of {brandname} nodes. Every DistributedExecutorService is bound to one particular cache.
Tasks submitted will have access to key/value pairs from that particular cache if and only if the task
submitted is an instance of DistributedCallable. Also note that there is nothing preventing users
from submitting a familiar Runnable or Callable just like to any other ExecutorService. However,
DistributedExecutorService, as it name implies, will likely migrate submitted Callable or Runnable
to another JVM in {brandname} cluster, execute it and return a result to task invoker. Due to a
potential task migration to other nodes every Callable, Runnable and/or DistributedCallable

170

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

submitted must be either Serializable or Externalizable. Also the value returned from a callable
must be Serializable or Externalizable as well. If the value returned is not serializable a
NotSerializableException will be thrown.

{brandname}'s distributed task executors use data from {brandname} cache nodes as input for
execution tasks. Most other distributed frameworks do not have that leverage and users have to
specify input for distributed tasks from some well known location. Furthermore, users of
{brandname} distributed execution framework do not have to configure store for intermediate and
final results thus removing another layer of complexity and maintenance.

Our distributed execution framework capitalizes on the fact input data in {brandname} data grid is
already load balanced (in case of DIST mode). Since input data is already balanced execution tasks
will be automatically balanced as well; users do not have to explicitly assign work tasks to specific
{brandname} nodes. However, our framework accommodates users to specify arbitrary subset of
cache keys as input for distributed execution tasks.

10.5.1. DistributedCallable API

In case users needs access to {brandname} cache data for an execution of a task we recommend
that you encapsulate task in DistributedCallable interface. DistributedCallable is a subtype of the
existing Callable from java.util.concurrent package; DistributedCallable can be executed in a
remote JVM and receive input from {brandname} cache. Task’s main algorithm could essentially
remain unchanged, only the input source is changed. Existing Callable implementations most likely
get their input in a form of some Java object/primitive while DistributedCallable gets its input from
an {brandname} cache. Therefore, users who have already implemented Callable interface to
describe their task units would simply extend DistributedCallable and use keys from {brandname}
execution environment as input for the task. Implentation of DistributedCallable can in fact
continue to support implementation of an already existing Callable while simultaneously be ready
for distribited execution by extending DistributedCallable.

public interface DistributedCallable<K, V, T> extends Callable<T> {

/**

*

Invoked by execution environment after DistributedCallable
* has been migrated for execution to a specific node.

* @param cache

* cache whose keys are used as input data for this

* DistributedCallable task

* @param inputKeys

* keys used as input for this DistributedCallable task
*/

public void setEnvironment(Cache<K, V> cache, Set<K> inputKeys);

171

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/distexec/DistributedCallable.html

10.5.2. Callable and CDI

Users that do not want or can not implement DistributedCallable yet need a reference to input
cache used in DistributedExecutorService have an option of the input cache being injected by CDI
mechanism. Upon arrival of user’s Callable to an {brandname} executing node, {brandname} CDI
mechanism will provide appropriate cache reference and inject it to executing Callable. All one has
to do is to declare a Cache field in Callable and annotate it with org.infinispan.cdi.Input annotation
along with mandatory @Inject annotation.

public class CallableWithInjectedCache implements Callable<Integer>, Serializable {

private Cache<String, String> cache;

public Integer call() throws Exception {
//use injected cache reference
return 1;

}

10.5.3. DistributedExecutorService, DistributedTaskBuilder and
DistributedTask API

DistributedExecutorService is a simple extension of a familiar ExecutorService from
java.util.concurrent package. However, advantages of DistributedExecutorService are not to be
overlooked. Existing Callable tasks, instead of being executed in JDK’s ExecutorService, are also
eligible for execution on {brandname} cluster. {brandname} execution environment would migrate
a task to execution node(s), run the task and return the result(s) to the calling node. Of course, not
all Callable tasks would benefit from parallel distributed execution. Excellent candidates are long
running and computationally intensive tasks that can run concurrently and/or tasks using input
data that can be processed concurrently. For more details about good candidates for parallel
execution and parallel algorithms in general refer to Introduction to Parallel Computing .

The second advantage of the DistributedExecutorService is that it allows a quick and simple
implementation of tasks that take input from {brandname} cache nodes, execute certain
computation and return results to the caller. Users would specify which keys to use as input for
specified DistributedCallable and submit that callable for execution on {brandname} cluster.
{brandname} runtime would locate the appriate keys, migrate DistributedCallable to target
execution node(s) and finally return a list of results for each executed Callable. Of course, users can
omit specifying input keys in which case {brandname} would execute DistributedCallable on all
keys for a specified cache.

Lets see how we can use DistributedExecutorService If you already have Callable/Runnable tasks
defined! Well, simply submit them to an instance of DefaultExecutorService for execution!

172

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/distexec/DistributedExecutorService.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html
https://computing.llnl.gov/tutorials/parallel_comp/

ExecutorService des = new DefaultExecutorService(cache);
Future<Boolean> future = des.submit(new SomeCallable());
Boolean r = future.get();

In case you need to specify more task parameters like task timeout, custom failover policy or
execution policy use DistributedTaskBuilder and DistributedTask API.

DistributedExecutorService des = new DefaultExecutorService(cache);
DistributedTaskBuilder<Boolean> taskBuilder = des.createDistributedTaskBuilder (new
SomeCallable());

taskBuilder.timeout(10,TimeUnit.SECONDS);

DistributedTask<Boolean> distributedTask = taskBuilder.build();
Future<Boolean> future = des.submit(distributedTask);
Boolean r = future.get();

10.5.4. Distributed task failover

Distributed execution framework supports task failover. By default no failover policy is installed
and task’s Runnable/Callable/DistributedCallable will simply fail. Failover mechanism is invoked in
the following cases:

a) Failover due to a node failure where task is executing
b) Failover due to a task failure (e.g. Callable task throws Exception).

{brandname} provides random node failover policy which will attempt execution of a part of
distributed task on another random node, if such node is available. However, users that have a
need to implement a more sophisticated failover policy can implement
DistributedTaskFailoverPolicy interface. For example, users might want to use consistent hashing
(CH) mechanism for failover of uncompleted tasks. CH based failover might for example migrate
failed task T to cluster node(s) having a backup of input data that was executed on a failed node F.

173

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/distexec/DistributedTaskBuilder.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/distexec/DistributedTask.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/distexec/DistributedTaskFailoverPolicy.html

/**

* DistributedTaskFailoverPolicy allows pluggable fail over target selection for a
failed remotely

* executed distributed task.

*

*/

public interface DistributedTaskFailoverPolicy {

/**

* As parts of distributively executed task can fail due to the task itself
throwing an exception

* or it can be a system caused failure (e.g node failed or left cluster during
task

* execution etc).

* @param failoverContext

k3 the FailoverContext of the failed execution
* @return result the Address of the node selected for fail over execution
*/

Address failover(FailoverContext context);

/**

* Maximum number of fail over attempts permitted by this
DistributedTaskFailoverPolicy

*

* @return max number of fail over attempts
*/
int maxFailoverAttempts();

Therefore one could for example specify random failover execution policy simply by:

DistributedExecutorService des = new DefaultExecutorService(cache);
DistributedTaskBuilder<Boolean> taskBuilder = des.createDistributedTaskBuilder(new
SomeCallable());
taskBuilder.failoverPolicy(DefaultExecutorService.RANDOM_NODE_FAILOVER);
DistributedTask<Boolean> distributedTask = taskBuilder.build();

Future<Boolean> future = des.submit(distributedTask);

Boolean r = future.get();

10.5.5. Distributed task execution policy

DistributedTaskExecutionPolicy is an enum that allows tasks to specify its custom task execution
policy across {brandname} cluster. DistributedTaskExecutionPolicy effectively scopes execution of
tasks to a subset of nodes. For example, someone might want to exclusively execute tasks on a local
network site instead of a backup remote network centre as well. Others might, for example, use
only a dedicated subset of a certain {brandname} rack nodes for specific task execution.
DistributedTaskExecutionPolicy is set per instance of DistributedTask.

174

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/distexec/DistributedTaskExecutionPolicy.html

DistributedExecutorService des = new DefaultExecutorService(cache);
DistributedTaskBuilder<Boolean> taskBuilder = des.createDistributedTaskBuilder(new
SomeCallable());
taskBuilder.executionPolicy(DistributedTaskExecutionPolicy.SAME_RACK);
DistributedTask<Boolean> distributedTask = taskBuilder.build();

Future<Boolean> future = des.submit(distributedTask);

Boolean r = future.get();

10.5.6. Examples

Pi approximation can greatly Dbenefit from parallel distributed execution in
DistributedExecutorService. Recall that area of the square is Sa = 4r2 and area of the circle is
Ca=pi*r2. Substituting r2 from the second equation into the first one it turns out that pi = 4 * Ca/Sa.
Now, image that we can shoot very large number of darts into a square; if we take ratio of darts
that land inside a circle over a total number of darts shot we will approximate Ca/Sa value. Since
we know that pi = 4 * Ca/Sa we can easily derive approximate value of pi. The more darts we shoot
the better approximation we get. In the example below we shoot 10 million darts but instead of
"shooting" them serially we parallelize work of dart shooting across entire {brandname} cluster.

public class PiAppx {

public static void main (String [] arg){
List<Cache> caches = ...;
Cache cache = ...;

int numPoints = 10000000;
int numServers = caches.size();
int numberPerWorker = numPoints / numServers;

DistributedExecutorService des = new DefaultExecutorService(cache);
long start = System.currentTimeMillis();
CircleTest ct = new CircleTest(numberPerWorker);
List<Future<Integer>> results = des.submitEverywhere(ct);
int countCircle = 0;
for (Future<Integer> f : results) {

countCircle += f.get();

}

double appxPi = 4.0 * countCircle / numPoints;
System.out.println("Distributed PI appx is " + appxPi +
completed in " + (System.currentTimeMillis() - start) +

ms");

}

private static class CircleTest implements Callable<Integer>, Serializable {

/** The serialVersionUID */
private static final long serialVersionUID = 3496135215525904755L;

175

private final int loopCount;

public CircleTest(int loopCount) {
this.loopCount = loopCount;
}

@Override
public Integer call() throws Exception {
int insideCircleCount = 0;
for (int i = 0; i < loopCount; i++) {
double x = Math.random();
double y = Math.random();
if (insideCircle(x, y))
insideCircleCount++;

}

return insideCircleCount;

}

private boolean insideCircle(double x, double y) {
return (Math.pow(x - 0.5, 2) + Math.pow(y - 0.5, 2))
<= Math.pow(0.5, 2);

}

176

Chapter 11. Indexing and Querying

11.1. Overview

{brandname} supports indexing and searching of Java Pojo(s) or objects encoded via Protocol
Buffers stored in the grid using powerful search APIs which complement its main Map-like APIL

Querying is possible both in library and client/server mode (for Java, C#, Node.js and other clients),
and {brandname} can index data using Apache Lucene, offering an efficient full-text capable search
engine in order to cover a wide range of data retrieval use cases.

Indexing configuration relies on a schema definition, and for that {brandname} can use annotated
Java classes when in library mode, and protobuf schemas for remote clients written in other
languages. By standardizing on protobuf, {brandname} allows full interoperability between Java
and non-Java clients.

Apart from indexed queries, {brandname} can run queries over non-indexed data (indexless
queries) and over partially indexed data (hybrid queries).

In terms of Search APIs, {brandname} has its own query language called Ickle, which is a subset of
JP-QL providing extensions for full-text querying. The Query DSL can be used for both embedded
and remote java clients when full-text is not required; for Java embedded clients {brandname}
offers the Hibernate Search Query API which supports running Lucene queries in the grid, apart
from advanced search capabilities like Faceted and Spatial search.

Finally, {brandname} has support for Continuous Queries, which works in a reverse manner to the
other APIs: instead of creating, executing a query and obtain results, it allows a client to register
queries that will be evaluated continuously as data in the cluster changes, generating notifications
whenever the changed data matches the queries.

11.2. Embedded Querying

Embedded querying is available when {brandname} is used as a library. No protobuf mapping is
required, and both indexing and searching are done on top of Java objects. When in library mode, it
is possible to run Lucene queries directly and use all the available Query APIs and it also allows
flexible indexing configurations to keep latency to a minimal.

11.2.1. Quick example

We’re going to store Book instances in an {brandname} cache called "books". Book instances will be
indexed, so we enable indexing for the cache, letting {brandname} configure the indexing
automatically:

{brandname} configuration:

177

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
#query_library
#query_remote
http://lucene.apache.org/
https://en.wikipedia.org/wiki/Full-text_search
#query_indexless
#query_indexless
#query_hybrid
#query_ickle
#query_dsl
#query_hibernatesearch
#query_continuous
#query_apis
#query_autoconfig
#query_autoconfig

infinispan.xml

<infinispan>
<cache-container>
<transport cluster="infinispan-cluster"/>
<distributed-cache name="books">
<indexing index="LOCAL" auto-config="true"/>
</distributed-cache>
</cache-container>
</infinispan>

Obtaining the cache:

import org.infinispan.Cache;
import org.infinispan.manager.DefaultCacheManager;
import org.infinispan.manager.EmbeddedCacheManager;

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan.xml");
Cache<String, Book> cache = manager.getCache("books");

Each Book will be defined as in the following example; we have to choose which properties are
indexed, and for each property we can optionally choose advanced indexing options using the
annotations defined in the Hibernate Search project.

Book.java

import org.hibernate.search.annotations.*;
import java.util.Date;

import java.util.HashSet;

import java.util.Set;

//Values you want to index need to be annotated with @Indexed, then you pick which
fields and how they are to be indexed:
@Indexed
public class Book {
@Field String title;
@Field String description;
@Field @DateBridge(resolution=Resolution.YEAR) Date publicationYear;
@IndexedEmbedded Set<Author> authors = new HashSet<Author>();

Author.java

public class Author {
@Field String name;
@Field String surname;
// hashCode() and equals() omitted

178

Now assuming we stored several Book instances in our {brandname} Cache , we can search them
for any matching field as in the following example.

Using a Lucene Query:

// get the search manager from the cache:
SearchManager searchManager = org.infinispan.query.Search.getSearchManager(cache);

// create any standard Lucene query, via Lucene's QueryParser or any other means:
org.apache.lucene.search.Query fullTextQuery = //any Apache Lucene Query

// convert the Lucene query to a CacheQuery:
CacheQuery cacheQuery = searchManager.getQuery(fullTextQuery);

// get the results:
List<Object> found = cacheQuery.list();

A Lucene Query is often created by parsing a query in text format such as "title:infinispan AND
authors.name:sanne”, or by using the query builder provided by Hibernate Search.

// get the search manager from the cache:
SearchManager searchManager = org.infinispan.query.Search.getSearchManager(cache);

// you could make the queries via Lucene APIs, or use some helpers:
QueryBuilder queryBuilder = searchManager.buildQueryBuilderForClass(Book.class).get();

// the queryBuilder has a nice fluent API which guides you through all options.
// this has some knowledge about your object, for example which Analyzers
// need to be applied, but the output is a fairly standard Lucene Query.
org.apache.lucene.search.Query luceneQuery = queryBuilder.phrase()
.onField("description")
.andField("title")
.sentence("a book on highly scalable query engines")
.createQuery();

// the query API itself accepts any Lucene Query, and on top of that
// you can restrict the result to selected class types:
CacheQuery query = searchManager.getQuery(luceneQuery, Book.class);

// and there are your results!
List objectList = query.list();

for (Object book : objectlList) {
System.out.println(book);

}

Apart from list() you have the option for streaming results, or use pagination.

For searches that do not require Lucene or full-text capabilities and are mostly about aggregation

179

and exact matches, we can use the {brandname} Query DSL API:

import org.infinispan.query.dsl.QueryFactory;
import org.infinispan.query.dsl.Query;
import org.infinispan.query.Search;

// get the query factory:
QueryFactory queryFactory = Search.getQueryFactory(cache);

Query q = queryFactory.from(Book.class)
.having("author.surname").eq("King")

.build();

List<Book> list = g.list();

Finally, we can use an Ickle query directly, allowing for Lucene syntax in one or more predicates:
import org.infinispan.query.dsl.QueryFactory;
import org.infinispan.query.dsl.Query;

// get the query factory:
QueryFactory queryFactory = Search.getQueryFactory(cache);

Query q = queryFactory.create("from Book b where b.author.name = 'Stephen' and " +
"b.description : (+'dark' -'tower')");

List<Book> list = g.list();

11.2.2. Indexing

Indexing in {brandname} happens on a per-cache basis and by default a cache is not indexed.
Enabling indexing is not mandatory but queries using an index will have a vastly superior
performance. On the other hand, enabling indexing can impact negatively the write throughput of
a cluster, so make sure to check the query performance guide for some strategies to minimize this
impact depending on the cache type and use case.

Configuration

General format

To enable indexing via XML, you need to add the <indexing> element plus the index (index mode) to
your cache configuration, and optionally pass additional properties.

180

#query_ickle
#query_performance
#query_index_mode

<infinispan>
<cache-container default-cache="default">
<replicated-cache name="default">
<indexing index="ALL">
<property name="property.name">some value</property>
</indexing>
</replicated-cache>
</cache-container>
</infinispan>

Programmatic:

import org.infinispan.configuration.cache.*;

ConfigurationBuilder cacheCfg = ...
cache(Cfg.indexing().index(Index.ALL)
.addProperty("property name", "propery value")

Index names

Each property inside the index element is prefixed with the index name, for the index named
org.infinispan.sample.Car the directory_provider is local-heap:

<indexing index="ALL">
<property name="org.infinispan.sample.Car.directory_provider">local-
heap</property>
</indexing>

</infinispan>

cacheCfg.indexing()
.index(Index.ALL)
.addProperty("org.infinispan.sample.Car.directory_provider", "local-heap")

{brandname} creates an index for each entity existent in a cache, and it allows to configure those
indexes independently. For a class annotated with @Indexed, the index name is the fully qualified
class name, unless overridden with the name argument in the annotation.

In the snippet below, the default storage for all entities is infinispan, but Boat instances will be
stored on local-heap in an index named boatIndex. Airplane entities will also be stored in local-
heap. Any other entity’s index will be configured with the property prefixed by default.

181

package org.infinispan.sample;

@Indexed(name = "boatIndex")
public class Boat {

}

@Indexed
public class Airplane {

}
<indexing index="ALL">
<property name="default.directory_provider">infinispan</property>
<property name="boatIndex.directory_provider">local-heap</property>
<property name="org.infinispan.sample.Airplane.directory_provider">
ram
</property>
</indexing>
</infinispan>

Specifying indexed Entities

{brandname} can automatically recognize and manage indexes for different entity types in a cache.
Future versions of {brandname} will remove this capability so it’s recommended to declare upfront
which types are going to be indexed (list them by their fully qualified class name). This can be done
via xml:

<infinispan>
<cache-container default-cache="default">
<replicated-cache name="default">
<indexing index="ALL">
<indexed-entities>
<indexed-entity>com.acme.query.test.Car</indexed-entity>
<indexed-entity>com.acme.query.test.Truck</indexed-entity>
</indexed-entities>
</indexing>
</replicated-cache>
</cache-container>
</infinispan>

or programmatically:

182

cacheCfg.indexing()
.index(Index.ALL)
.addIndexedEntity(Car.class)
.addIndexedEntity(Truck.class)

In server mode, the class names listed under the 'indexed-entities' element must use the 'extended’
class name format which is composed of a JBoss Modules module identifier, a slot name, and the
fully qualified class name, these three components being separated by the "' character, (eg.
"com.acme.my-module-with-entity-classes:my-slot:com.acme.query.test.Car"). The entity classes
must be located in the referenced module, which can be either a user supplied module deployed in
the 'modules' folder of your server or a plain jar deployed in the 'deployments' folder. The module
in question will become an automatic dependency of your Cache, so its eventual redeployment will
cause the cache to be restarted.

Only for server, if you fail to follow the requirement of using 'extended' class

9 names and use a plain class name its resolution will fail due to missing class
because the wrong ClassLoader is being used (the {brandname}'s internal class
path is being used).
Index mode

An {brandname} node typically receives data from two sources: local and remote. Local translates
to clients manipulating data using the map API in the same JVM; remote data comes from other
{brandname} nodes during replication or rebalancing.

The index mode configuration defines, from a node in the cluster point of view, which data gets
indexed.

Possible values:

ALL: all data is indexed, local and remote.

LOCAL: only local data is indexed.

PRIMARY_OWNER: Only entries containing keys that the node is primary owner will be
indexed, regardless of local or remote origin.

NONE: no data is indexed. Equivalent to not configure indexing at all.

Index Managers

Index managers are central components in {brandname} Querying responsible for the indexing
configuration, distribution and internal lifecycle of several query components such as Lucene’s
IndexReader and IndexWriter. Each Index Manager is associated with a Directory Provider, which
defines the physical storage of the index.

Regarding index distribution, {brandname} can be configured with shared or non-shared indexes.

183

Shared indexes

A shared index is a single, distributed, cluster-wide index for a certain cache. The main advantage
is that the index is visible from every node and can be queried as if the index were local, there is no
need to broadcast queries to all members and aggregate the results. The downside is that Lucene
does not allow more than a single process writing to the index at the same time, and the
coordination of lock acquisitions needs to be done by a proper shared index capable index
manager. In any case, having a single write lock cluster-wise can lead to some degree of contention
under heavy writing.

{brandname} supports shared indexes leveraging the {brandname} Directory Provider, which
stores indexes in a separate set of caches. Two index managers are available to use shared indexes:
InfinispanIndexManager and AffinityIndexManager.

Effect of the index mode

Shared indexes should not use the ALL index mode since it’d lead to redundant indexing: since there
is a single index cluster wide, the entry would get indexed when inserted via Cache API, and
another time when {brandname} replicates it to another node. The ALL mode is usually associates
with non-shared indexes in order to create full index replicas on each node.

InfinispanIndexManager

This index manager uses the {brandname} Directory Provider, and is suitable for creating shared
indexes. Index mode should be set to LOCAL in this configuration.

Configuration:

184

#query_clustered_query_api
#integrations_directory_provider
#query_non_shared_index
#integrations_directory_provider

<distributed-cache name="default" >
<indexing index="LOCAL">
<property name="default.indexmanager">
org.infinispan.query.indexmanager.InfinispanIndexManager
</property>
<!-- optional: tailor each index cache -->
<property name="default.locking_cachename">
LuceneIndexesLocking_custom</property>
<property name="default.data_cachename">LuceneIndexesData_custom</property>
<property name="default.metadata_cachename">
LuceneIndexesMetadata_custom</property>
</indexing>
</distributed-cache>

<!-- Optional -->

<replicated-cache name="LuceneIndexeslLocking_custom">
<indexing index="NONE" />
<-- extra confiquration -->

</replicated-cache>

<!-- Optional -->

<replicated-cache name="LuceneIndexesMetadata_custom">
<indexing index="NONE" />
<-- extra confiquration -->

</replicated-cache>

<!-- Optional -->

<distributed-cache name="LuceneIndexesData_custom">
<-- extra confiquration -->
<indexing index="NONE" />

</distributed-cache>

Indexes are stored in a set of clustered caches, called by default LucenelndexesData,
LuceneIndexesMetadata and LucenelndexesLocking.

The LucenelndexesLocking cache is used to store Lucene locks, and it is a very small cache: it will
contain one entry per entity (index).

The LucenelndexesMetadata cache is used to store info about the logical files that are part of the
index, such as names, chunks and sizes and it is also small in size.

The LucenelndexesData cache is where most of the index is located: it is much bigger then the other
two but should be smaller than the data in the cache itself, thanks to Lucene’s efficient storing
techniques.

It’s not necessary to redefine the configuration of those 3 cases, {brandname} will pick sensible
defaults. Reasons re-define them would be performance tuning for a specific scenario, or for
example to make them persistent by configuring a cache store.

In order to avoid index corruption when two or more nodes of the cluster try to write to the index

185

at the same time, the InfinispanIindexManager internally elects a master in the cluster (which is the
JGroups coordinator) and forwards all indexing works to this master.

AffinityIndexManager

The AffinityIndexManager is an experimental index manager used for shared indexes that also
stores indexes using the {brandname} Directory Provider. Unlike the InfinispanIndexManager, it
does not have a single node (master) that handles all the indexing cluster wide, but rather splits the
index using multiple shards, each shard being responsible for indexing data associated with one or
more {brandname} segments. For an in-depth description of the inner workings, please see the
design doc.

The PRIMARY_OWNER index mode is required, together with a special kind of KeyPartitioner.

XML Configuration:

<distributed-cache name="default"
key-partitioner=
"org.infinispan.distribution.ch.impl.AffinityPartitioner">
<indexing index="PRIMARY_OWNER">
<property name="default.indexmanager">
org.infinispan.query.affinity.AffinityIndexManager
</property>
<!-- optional: control the number of shards, the default is 4 -->
<property name="default.sharding_strategy.nbr_of_shards">10</property>
</indexing>
</distributed-cache>

Programmatic:

import org.infinispan.distribution.ch.impl.AffinityPartitioner;
import org.infinispan.query.affinity.AffinityIndexManager;

ConfigurationBuilder cacheCfg = ...
cacheCfg.clustering().hash().keyPartitioner(new AffinityPartitioner());
cache(Cfg.indexing()

.index(Index.PRIMARY OWNER)

.addProperty("default.indexmanager”, AffinityIndexManager.class.getName())

.addProperty("default.sharding_strategy.nbr_of_shards", "10")

The AffinityIndexManager by default will have as many shards as {brandname} segments, but this
value is configurable as seen in the example above.

The number of shards affects directly the query performance and writing throughput: generally
speaking, a high number of shards offers better write throughput but has an adverse effect on
query performance.

186

#integrations_directory_provider
https://github.com/infinispan/infinispan/wiki/Index-affinity-proposal

Non-shared indexes

Non-shared indexes are independent indexes at each node. This setup is particularly advantageous
for replicated caches where each node has all the cluster data and thus can hold all the indexes as
well, offering optimal query performance with zero network latency when querying. Another
advantage is, since the index is local to each node, there is less contention during writes due to the
fact that each node is subjected to its own index lock, not a cluster wide one.

Since each node might hold a partial index, it may be necessary to
link#query_clustered_query_api[broadcast] queries in order to get correct search results, which can
add latency. If the cache is REPL, though, the broadcast is not necessary: each node can hold a full
local copy of the index and queries runs at optimal speed taking advantage of a local index.

{brandname} has two index managers suitable for non-shared indexes: directory-based and near-
real-time. Storage wise, non-shared indexes can be located in ram, filesystem, or {brandname} local
caches.

Effect of the index mode

The directory-based and near-real-time index managers can be associated with different index
modes, resulting in different index distributions.

REPL caches combined with the ALL index mode will result in a full copy of the cluster-wide index
on each node. This mode allows queries to become effectively local without network latency. This is
the recommended mode to index any REPL cache, and that’s the choice picked by the auto-config
when the a REPL cache is detected. The ALL mode should not be used with DIST caches.

REPL or DIST caches combined with LOCAL index mode will cause each node to index only data
inserted from the same JVM, causing an uneven distribution of the index. In order to obtain correct
query results, it’s necessary to use broadcast queries.

REPL or DIST caches combined with PRIMARY_OWNER will also need broadcast queries. Differently
from the LOCAL mode, each node’s index will contain indexed entries which key is primarily owned
by the node according to the consistent hash, leading to a more evenly distributed indexes among
the nodes.

directory-based index manager

This is the default Index Manager used when no index manager is configured. The directory-based
index manager is used to manage indexes backed by a local lucene directory. It supports ram,
filesystem and non-clustered infinispan storage.

Filesystem storage

This is the default storage, and used when index manager configuration is omitted. The index is
stored in the filesystem using a MMapDirectory. It is the recommended storage for local indexes.
Although indexes are persistent on disk, they get memory mapped by Lucene and thus offer decent
query performance.

Configuration:

187

#query_index_mode
#query_index_mode
#query_autoconfig
#query_clustered_query_api
https://lucene.apache.org/core/6_0_0/core/org/apache/lucene/store/MMapDirectory.html

<replicated-cache name="myCache">
<indexing index="ALL">
<!-- Optional: define base folder for indexes -->
<property name="default.indexBase">${java.io.tmpdir}/baseDir</property>
</indexing>
</replicated-cache>

{brandname} will create a different folder under default.indexBase for each entity (index) present
in the cache.

Ram storage

Index is stored in memory using a Lucene RAMDirectory. Not recommended for large indexes or
highly concurrent situations. Indexes stored in Ram are not persistent, so after a cluster shutdown
a re-index is needed. Configuration:

<replicated-cache name="myCache">
<indexing index="ALL">
<property name="default.directory_provider">local-heap</property>
</indexing>
</replicated-cache>

{brandname} storage

{brandname} storage makes use of the {brandname} Lucene directory that saves the indexes to a
set of caches; those caches can be configured like any other {brandname} cache, for example by
adding a cache store to have indexes persisted elsewhere apart from memory. In order to use
{brandname} storage with a non-shared index, it’s necessary to use LOCAL caches for the indexes:

188

https://lucene.apache.org/core/6_0_0/core/org/apache/lucene/store/RAMDirectory.html
#query_massindexer
#integrations_lucene_directory

<replicated-cache name="default">
<indexing index="ALL">
<property name="default.locking_cachename">
LuceneIndexesLocking_custom</property>
<property name="default.data_cachename">LuceneIndexesData_custom</property>
<property name="default.metadata_cachename">
LuceneIndexesMetadata_custom</property>
</indexing>
</replicated-cache>

<local-cache name="LuceneIndexeslLocking_custom">
<indexing index="NONE" />
</local-cache>

<local-cache name="LuceneIndexesMetadata custom">
<indexing index="NONE" />
</local-cache>

<local-cache name="LuceneIndexesData_custom">
<indexing index="NONE" />
</local-cache>

near-real-time index manager

Similar to the directory-based index manager but takes advantage of the Near-Real-Time features of
Lucene. It has better write performance than the directory-based because it flushes the index to the
underlying store less often. The drawback is that unflushed index changes can be lost in case of a
non-clean shutdown. Can be used in conjunction with local-heap, filesystem and local infinispan
storage. Configuration for each different storage type is the same as the directory-based index
manager.

Example with ram:

<replicated-cache name="default">
<indexing index="ALL">
<property name="default.indexmanager">near-real-time</property>
<property name="default.directory_provider">local-heap</property>
</indexing>
</replicated-cache>

Example with filesystem:

<replicated-cache name="default">
<indexing index="ALL">
<property name="default.indexmanager">near-real-time</property>
</indexing>
</replicated-cache>

189

#query_directory_based

External indexes

Apart from having shared and non-shared indexes managed by {brandname} itself, it is possible to
offload indexing to a third party search engine: currently {brandname} supports Elasticsearch as a
external index storage.

Elasticsearch IndexManager (experimental)

This index manager forwards all indexes to an external Elasticsearch server. This is an
experimental integration and some features may not be available, for example indexNullAs for
@IndexedEmbedded annotations is not currently supported.

Configuration:

<indexing index="LOCAL">
<property name="default.indexmanager">elasticsearch</property>
<property name="default.elasticsearch.host">
link:http://elasticHost:9200</property>
<!-- other elasticsearch configurations -->
</indexing>

The index mode should be set to LOCAL, since {brandname} considers Elasticsearch as a single
shared index. More information about Elasticsearch integration, including the full description of
the configuration properties can be found at the Hibernate Search manual.

Automatic configuration

The attribute auto-config provides a simple way of configuring indexing based on the cache type.
For replicated and local caches, the indexing is configured to be persisted on disk and not shared
with any other processes. Also, it is configured so that minimum delay exists between the moment
an object is indexed and the moment it is available for searches (near real time).

<local-cache name="default">
<indexing index="LOCAL" auto-config="true">
</indexing>

</local-cache>

ﬁ it is possible to redefine any property added via auto-config, and also add new
properties, allowing for advanced tuning.

The auto config adds the following properties for replicated and local caches:

Property name value description

default.directory_provider filesystem Filesystem based index. More
details at Hibernate Search
documentation

190

https://hibernate.atlassian.net/browse/HSEARCH-2389
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#elasticsearch-integration
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration-directory
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration-directory

Property name value description

default.exclusive_index_use true indexing operation in exclusive
mode, allowing Hibernate
Search to optimize writes

default.indexmanager near-real-time make use of Lucene near real
time feature, meaning indexed
objects are promptly available
to searches

default.reader.strategy shared Reuse index reader across
several queries, thus avoiding
reopening it

For distributed caches, the auto-config configure indexes in {brandname} itself, internally handled
as a master-slave mechanism where indexing operations are sent to a single node which is
responsible to write to the index.

The auto config properties for distributed caches are:

Property name value description

default.directory_provider infinispan Indexes stored in {brandname}.
More details at Hibernate
Search documentation

default.exclusive_index_use true indexing operation in exclusive
mode, allowing Hibernate
Search to optimize writes

default.indexmanager org.infinispan.query.indexman Delegates index writing to a
ager.InfinispanIndexManager single node in the {brandname}
cluster
default.reader.strategy shared Reuse index reader across

several queries, avoiding
reopening it

Re-indexing

Occasionally you might need to rebuild the Lucene index by reconstructing it from the data stored
in the Cache. You need to rebuild the index if you change the definition of what is indexed on your
types, or if you change for example some Analyzer parameter, as Analyzers affect how the index is
written. Also, you might need to rebuild the index if you had it destroyed by some system
administration mistake. To rebuild the index just get a reference to the MassIndexer and start it;
beware it might take some time as it needs to reprocess all data in the grid!

// Blocking execution
SearchManager searchManager = Search.getSearchManager(cache);
searchManager.getMassIndexer().start();

// Non blocking execution
CompletableFuture<Void> future = searchManager.getMassIndexer().startAsyc();

191

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#infinispan-directories
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#infinispan-directories

This is also available as a start JMX operation on the Massindexer MBean
registered under the name org.infinispan:type=Query,manager="{name-of-cache-
manager}",cache="{name-of-cache}", component=MassIndexer.

Indexless

TODO

Hybrid

TODO

Mapping Entities

{brandname} relies on the rich API of Hibernate Search in order to define fine grained
configuration for indexing at entity level. This configuration includes which fields are annotated,
which analyzers should be used, how to map nested objects and so on. Detailed documentation is
available at the Hibernate Search manual.

@DocumentId

Unlike Hibernate Search, using @Documentld to mark a field as identifier does not apply to
{brandname} values; in {brandname} the identifier for all @Indexed objects is the key used to store
the value. You can still customize how the key is indexed using a combination of @Transformable ,
custom types and custom FieldBridge implementations.

@Transformable keys

The key for each value needs to be indexed as well, and the key instance must be transformed in a
String. {brandname} includes some default transformation routines to encode common primitives,
but to use a custom key you must provide an implementation of org.infinispan.query.Transformer .

Registering a Transformer via annotations

You can annotate your key type with org.infinispan.query.Transformable :

192

https://docs.jboss.org/infinispan/9.4/apidocs/jmxComponents.html#MassIndexer
http://hibernate.org/search/
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-mapping

(transformer = CustomTransformer.class)
public class CustomKey {

}
public class CustomTransformer implements Transformer {
public Object fromString(String s) {

return new CustomKey(...);

public String toString(Object customType) {
CustomKey ck = (CustomKey) customType;
return ...

Registering a Transformer programmatically

Using this technique, you don’t have to annotate your custom key type:

org.infinispan.query.SearchManager.registerKeyTransformer(Class<?>, (lass<? extends
Transformer>)

Programmatic mapping

Instead of using annotations to map an entity to the index, it’s also possible to configure it
programmatically.

In the following example we map an object Author which is to be stored in the grid and made
searchable on two properties but without annotating the class.

193

import org.apache.lucene.search.Query;

import org.hibernate.search.cfg.Environment;

import org.hibernate.search.cfg.SearchMapping;

import org.hibernate.search.query.dsl.QueryBuilder;
import org.infinispan.Cache;

import org.infinispan.configuration.cache.Configuration;
import org.infinispan.configuration.cache.ConfigurationBuilder;
import org.infinispan.configuration.cache.Index;

import org.infinispan.manager.DefaultCacheManager;
import org.infinispan.query.CacheQuery;

import org.infinispan.query.Search;

import org.infinispan.query.SearchManager;

import java.io.IOException;
import java.lang.annotation.ElementType;
import java.util.Properties;

SearchMapping mapping = new SearchMapping();
mapping.entity(Author.class).indexed()
.property("name", ElementType.METHOD).field()
.property("surname"”, ElementType.METHOD).field();

Properties properties = new Properties();
properties.put(Environment.MODEL_MAPPING, mapping);
properties.put("hibernate.search.[other options]", "[...]1");

Configuration infinispanConfiguration = new ConfigurationBuilder()
.indexing().index(Index.LOCAL)
.withProperties(properties)
.build();

DefaultCacheManager cacheManager = new DefaultCacheManager(infinispanConfiguration);

Cache<Long, Author> cache = cacheManager.getCache();
SearchManager sm = Search.getSearchManager(cache);

Author author = new Author(1, "Manik", "Surtani");
cache.put(author.getId(), author);

QueryBuilder gb = sm.buildQueryBuilderForClass(Author.class).get();
Query q = gb.keyword().onField("name").matching("Manik").createQuery();
CacheQuery cq = sm.getQuery(q, Author.class);

assert cq.getResultSize() == 1;

11.2.3. Querying APIs

{brandname} allows to query using Lucene queries directly and its own query language
Ickle, a subset of JP-QL with full-text extensions.

194

called

In terms of DSL, {brandname} exposes the Hibernate Search DSL (which produces Lucene queries)
and has its own DSL which internally generates an Ickle query.

Finally, when using Lucene or Hibernate Search Query API, it is possible to query a single node or
to broadcast a query to multiple nodes combining the results.

Hibernate Search

Apart from supporting Hibernate Search annotations to configure indexing, it’s also possible to
query the cache using other Hibernate Search APIs

Running Lucene queries

To run a Lucene query directly, simply create and wrap it in a CacheQuery:

import org.infinispan.query.Search;
import org.infinispan.query.SearchManager;
import org.apache.lucene.Query;

SearchManager searchManager = Search.getSearchManager(cache);

Query query = searchManager.buildQueryBuilderForClass(Book.class).get()
.keyword().wildcard().onField("description").matching("*test*")

.createQuery();

CacheQuery<Book> cacheQuery = searchManager.getQuery(query);

Using the Hibernate Search DSL

The Hibernate Search DSL can be used to create the Lucene Query, example:

import org.infinispan.query.Search;

import org.infinispan.query.SearchManager;

import org.apache.lucene.search.Query;

Cache<String, Book> cache = ...

SearchManager searchManager = Search.getSearchManager(cache);

Query luceneQuery = searchManager
.buildQueryBuilderForClass(Book.class).get()
.range().onField("year").from(2005).to(2010)

.createQuery();

List<Object> results = searchManager.getQuery(luceneQuery).list();

For a detailed description of the query capabilities of this DSL, see the relevant section of the
Hibernate Search manual.

195

https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#section-building-lucene-queries

Faceted Search

{brandname} support Faceted Searches by using the Hibernate Search FacetManager:

// Cache is indexed
Cache<Integer, Book> cache = ...

// 0Obtain the Search Manager
SearchManager searchManager = Search.getSearchManager(cache);

// Create the query builder
QueryBuilder queryBuilder = searchManager.buildQueryBuilderForClass(Book.class).get();

// Build any Lucene Query. Here it's using the DSL to do a Lucene term query on a book
name

Query TluceneQuery = queryBuilder.keyword().wildcard().onField("name").matching(
"bitcoin").createQuery();

// Wrap into a cache Query
CacheQuery<Book> query = searchManager.getQuery(luceneQuery);

// Define the Facet characteristics

FacetingRequest request = queryBuilder.facet()
.name("year_facet")
.onField("year")
.discrete()
.orderedBy(FacetSortOrder.COUNT_ASC)
.createFacetingRequest();

// Associated the FacetRequest with the query
FacetManager facetManager = query.getFacetManager().enableFaceting(request);

// Obtain the facets
List<Facet> facetlList = facetManager.getFacets("year_facet");

A Faceted search like above will return the number books that match 'bitcoin' released on a yearly
basis, for example:

AbstractFacet{facetingName="year_facet', fieldName='year', value='2008', count=1}
AbstractFacet{facetingName="'year_facet', fieldName='year', value='2009', count=1}
AbstractFacet{facetingName="year_facet', fieldName='year', value='2010', count=1}
AbstractFacet{facetingName="year_facet', fieldName='year', value='2011"', count=1}
AbstractFacet{facetingName="'year_facet', fieldName='year', value='2012"', count=1}
AbstractFacet{facetingName="year_facet', fieldName='year', value='2016"', count=1}
AbstractFacet{facetingName="year_facet', fieldName='year', value='2015"', count=2}
AbstractFacet{facetingName="year_facet', fieldName='year', value='2013", count=3}

For more info about Faceted Search, see Hibernate Search Faceting

196

https://en.wikipedia.org/wiki/Faceted_search
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#query-faceting

Spatial Queries

{brandname} also supports Spatial Queries, allowing to combining full-text with restrictions based
on distances, geometries or geographic coordinates.

Example, we start by using the @Spatial annotation in our entity that will be searched, together
with @Latitude and @Longitude:

@Indexed
@Spatial
public class Restaurant {

@Latitude
private Double latitude;

@Longitude
private Double longitude;

@Field(store = Store.YES)
String name;

// Getters, Setters and other members omitted

to run spatial queries, the Hibernate Search DSL can be used:

// Cache 1is configured as indexed
Cache<String, Restaurant> cache = ...

// Obtain the SearchManager
Searchmanager searchManager = Search.getSearchManager(cache);

// Build the Lucene Spatial Query
Query query = Search.getSearchManager(cache).buildQueryBuilderForClass(Restaurant
.class).get()
.spatial()
within(2, Unit.KM)
.ofLatitude(centerlLatitude)
.andLongitude(centerLongitude)
.createQuery();

// Wrap in a cache Query
CacheQuery<Restaurant> cacheQuery = searchManager.getQuery(query);

List<Restaurant> nearBy = cacheQuery.list();

More info on Hibernate Search manual

197

https://en.wikipedia.org/wiki/Spatial_query
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#spatial

IndexedQueryMode

It’s possible to specify a query mode for indexed queries. IndexedQueryMode.BROADCAST allows to
broadcast a query to each node of the cluster, retrieve the results and combine them before
returning to the caller. It is suitable for use in conjunction with non-shared indexes, since each
node’s local index will have only a subset of the data indexed.

IndexedQueryMode.FETCH will execute the query in the caller. If all the indexes for the cluster
wide data are available locally, performance will be optimal, otherwise this query mode may
involve fetching indexes data from remote nodes.

The IndexedQueryMode is supported for Lucene Queries and Ickle String queries at the moment
(no {brandname} Query DSL).

Example:

CacheQuery<Person> broadcastQuery = Search.getSearchManager(cache).getQuery(new
MatchAl1DocsQuery(), IndexedQueryMode.BROADCAST);

List<Person> result = broadcastQuery.list();

{brandname} Query DSL

{brandname} provides its own query DSL, independent of Lucene and Hibernate Search.
Decoupling the query API from the underlying query and indexing mechanism makes it possible to
introduce new alternative engines in the future, besides Lucene, and still being able to use the same
uniform query API. The current implementation of indexing and searching is still based on
Hibernate Search and Lucene so all indexing related aspects presented in this chapter still apply.

The new API simplifies the writing of queries by not exposing the user to the low level details of
constructing Lucene query objects and also has the advantage of being available to remote Hot Rod
clients. But before delving into further details, let’s examine first a simple example of writing a
query for the Book entity from the previous example.

Query example using {brandname}'s query DSL
import org.infinispan.query.dsl.*;

// get the DSL query factory from the cache, to be used for constructing the Query
object:
QueryFactory qf = org.infinispan.query.Search.getQueryFactory(cache);

// create a query for all the books that have a title which contains "engine":
org.infinispan.query.dsl.Query query = qf.from(Book.class)
.having("title").like("%engine%")
.build();

// get the results:
List<Book> list = query.list();

198

#query_non_shared_index

The API is located in the org.infinispan.query.dsl package. A query is created with the help of the
QueryFactory instance which is obtained from the per-cache SearchManager. Each QueryFactory
instance is bound to the same Cache instance as the SearchManager, but it is otherwise a stateless
and thread-safe object that can be used for creating multiple queries in parallel.

Query creation starts with the invocation of the from(Class entityType) method which returns a
QueryBuilder object that is further responsible for creating queries targeted to the specified entity
class from the given cache.

A query will always target a single entity type and is evaluated over the contents of
9 a single cache. Running a query over multiple caches or creating queries that
target several entity types (joins) is not supported.

The QueryBuilder accumulates search criteria and configuration specified through the invocation of
its DSL methods and is ultimately used to build a Query object by the invocation of the
QueryBuilder.build() method that completes the construction. Being a stateful object, it cannot be
used for constructing multiple queries at the same time (except for nested queries) but can be
reused afterwards.

This QueryBuilder is different from the one from Hibernate Search but has a
somewhat similar purpose, hence the same name. We are considering renaming it
in near future to prevent ambiguity.

Executing the query and fetching the results is as simple as invoking the 1list() method of the
Query object. Once executed the Query object is not reusable. If you need to re-execute it in order to
obtain fresh results then a new instance must be obtained by calling QueryBuilder.build().

Filtering operators

Constructing a query is a hierarchical process of composing multiple criteria and is best explained
following this hierarchy.

The simplest possible form of a query criteria is a restriction on the values of an entity attribute
according to a filtering operator that accepts zero or more arguments. The entity attribute is
specified by invoking the having(String attributePath) method of the query builder which returns
an intermediate context object (FilterConditionEndContext) that exposes all the available operators.
Each of the methods defined by FilterConditionEndContext is an operator that accepts an argument,
except for between which has two arguments and isNull which has no arguments. The arguments
are statically evaluated at the time the query is constructed, so if you’re looking for a feature
similar to SQL’s correlated sub-queries, that is not currently available.

// a single query criterion
QueryBuilder gb = ...
gb.having("title").eq("Hibernate Search in Action");

Table 5. FilterConditionEndContext exposes the following filtering operators:

199

#nested_conditions
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/query/dsl/FilterConditionEndContext.html

Filter

in

in

contains

containsAll

containsAll

containsAny

containsAny

isNull

like

eq

equal

gt

gte

200

Arguments

Collection values

Object... values

Object value

Collection values

Object... values

Collection values

Object... values

String pattern

Object value

Object value

Object value

Object value

Description

Checks that the left operand is
equal to one of the elements
from the Collection of values
given as argument.

Checks that the left operand is
equal to one of the (fixed) list of
values given as argument.

Checks that the left argument
(which is expected to be an
array or a Collection) contains
the given element.

Checks that the left argument
(which is expected to be an
array or a Collection) contains
all the elements of the given
collection, in any order.

Checks that the left argument
(which is expected to be an
array or a Collection) contains
all of the the given elements, in
any order.

Checks that the left argument
(which is expected to be an
array or a Collection) contains
any of the elements of the given
collection.

Checks that the left argument
(which is expected to be an

array or a Collection) contains
any of the the given elements.

Checks that the left argument is
null.

Checks that the left argument
(which is expected to be a
String) matches a wildcard
pattern that follows the JPA
rules.

Checks that the left argument is
equal to the given value.

Alias for eq.

Checks that the left argument is
greater than the given value.

Checks that the left argument is
greater than or equal to the
given value.

Filter Arguments Description

It Object value Checks that the left argument is
less than the given value.

Ite Object value Checks that the left argument is
less than or equal to the given
value.

between Object from, Object to Checks that the left argument is

between the given range limits.

It’s important to note that query construction requires a multi-step chaining of method invocation
that must be done in the proper sequence, must be properly completed exactly once and must not
be done twice, or it will result in an error. The following examples are invalid, and depending on
each case they lead to criteria being ignored (in benign cases) or an exception being thrown (in
more serious ones).

// Incomplete construction. This query does not have any filter on "title" attribute
yet,

// although the author may have intended to add one.

QueryBuilder gb1 = ...

gb1.having("title");

Query q1 = gb1.build(); // consequently, this query matches all Book instances
regardless of title!

// Duplicated completion. This results in an exception at run-time.

// Maybe the author intended to connect two conditions with a boolean operator,

// but this does NOT actually happen here.

QueryBuilder gb2 = ...

gb2.having("title").like("%Data Grid%");
gb2.having("description").like("%clustering%"); // will throw
java.lang.I1llegalStateException: Sentence already started. Cannot use 'having(..)'
again.

Query q2 = @gb2.build();

Filtering based on attributes of embedded entities

The having method also accepts dot separated attribute paths for referring to embedded entity
attributes, so the following is a valid query:

// match all books that have an author named "Manik"
Query query = queryFactory.from(Book.class)

.having("author.name").eq("Manik")
.build();

Each part of the attribute path must refer to an existing indexed attribute in the corresponding
entity or embedded entity class respectively. It’s possible to have multiple levels of embedding.

201

Boolean conditions

Combining multiple attribute conditions with logical conjunction (and) and disjunction (or)
operators in order to create more complex conditions is demonstrated in the following example.
The well known operator precedence rule for boolean operators applies here, so the order of DSL
method invocations during construction is irrelevant. Here and operator still has higher priority
than or even though or was invoked first.

// match all books that have "Data Grid" in their title
// or have an author named "Manik" and their description contains "clustering"
Query query = queryFactory.from(Book.class)
.having("title").like("%Data Grid%")
.or().having("author.name").eq("Manik")
.and().having("description").like("%clustering%")
.build();

Boolean negation is achieved with the not operator, which has highest precedence among logical
operators and applies only to the next simple attribute condition.

// match all books that do not have "Data Grid" in their title and are authored by
"Manik"
Query query = queryFactory.from(Book.class)
.not().having("title").like("%Data Grid%")
.and().having("author.name").eq("Manik")
.build();

Nested conditions

Changing the precedence of logical operators is achieved with nested filter conditions. Logical
operators can be used to connect two simple attribute conditions as presented before, but can also
connect a simple attribute condition with the subsequent complex condition created with the same
query factory.

// match all books that have an author named "Manik" and their title contains

// "Data Grid" or their description contains "clustering"

Query query = queryFactory.from(Book.class)
.having("author.name").eq("Manik")
.and(queryFactory.having("title").1like("%Data Grid%")

.or().having("description").like("%clustering%"))
.build();

Projections

In some use cases returning the whole domain object is overkill if only a small subset of the
attributes are actually used by the application, especially if the domain entity has embedded
entities. The query language allows you to specify a subset of attributes (or attribute paths) to
return - the projection. If projections are used then the Query.list() will not return the whole

202

domain entity but will return a List of Object[], each slot in the array corresponding to a projected
attribute.

TODO document what needs to be configured for an attribute to be available for projection.

// match all books that have "Data Grid" in their title or description
// and return only their title and publication year
Query query = queryFactory.from(Book.class)
.select("title", "publicationYear")
.having("title").like("%Data Grid%")
.or().having("description").like("%Data Grid%"))
.build();

Sorting

Ordering the results based on one or more attributes or attribute paths is done with the
QueryBuilder.orderBy() method which accepts an attribute path and a sorting direction. If multiple
sorting criteria are specified, then the order of invocation of orderBy method will dictate their
precedence. But you have to think of the multiple sorting criteria as acting together on the tuple of
specified attributes rather than in a sequence of individual sorting operations on each attribute.

TODO document what needs to be configured for an attribute to be available for sorting.

// match all books that have "Data Grid" in their title or description
// and return them sorted by the publication year and title
Query query = queryFactory.from(Book.class)
.orderBy("publicationYear", SortOrder.DESC)
.orderBy("title", SortOrder.ASC)
.having("title").like("%Data Grid%")
.or().having("description").like("%Data Grid%"))
.build();

Pagination

You can limit the number of returned results by setting the maxResults property of QueryBuilder.
This can be used in conjunction with setting the startOffset in order to achieve pagination of the
result set.

203

// match all books that have "clustering" in their title
// sorted by publication year and title
// and return 3'rd page of 10 results
Query query = queryFactory.from(Book.class)
.orderBy("publicationYear", SortOrder.DESC)
.orderBy("title", SortOrder.ASC)
.start0ffset(20)
.maxResults(10)
.having("title").like("%clustering%")
.build();

0 Even if the results being fetched are limited to maxResults you can still find the
total number of matching results by calling Query.getResultSize().

TODO Does pagination make sense if no stable sort criteria is defined? Luckily when running on
Lucene and no sort criteria is specified we still have the order of relevance, but this has to be
defined for other search engines.

Grouping and Aggregation

{brandname} has the ability to group query results according to a set of grouping fields and
construct aggregations of the results from each group by applying an aggregation function to the
set of values that fall into each group. Grouping and aggregation can only be applied to projection
queries. The supported aggregations are: avg, sum, count, max, min. The set of grouping fields is
specified with the groupBy(field) method, which can be invoked multiple times. The order used for
defining grouping fields is not relevant. All fields selected in the projection must either be grouping
fields or else they must be aggregated using one of the grouping functions described below. A
projection field can be aggregated and used for grouping at the same time. A query that selects only
grouping fields but no aggregation fields is legal.

Example: Grouping Books by author and counting them.
Query query = queryFactory.from(Book.class)
.select(Expression.property("author"), Expression.count("title"))
.having("title").like("%engine%")

.groupBy("author")
.build();

A projection query in which all selected fields have an aggregation function
9 applied and no fields are used for grouping is allowed. In this case the
aggregations will be computed globally as if there was a single global group.

Aggregations
The following aggregation functions may be applied to a field: avg, sum, count, max, min

* avg() - Computes the average of a set of numbers. Accepted values are primitive numbers and

204

instances of java.lang.Number. The result is represented as java.lang.Double. If there are no non-
null values the result is null instead.

 count() - Counts the number of non-null rows and returns a java.lang.Long. If there are no non-
null values the result is 0 instead.

* max() - Returns the greatest value found. Accepted values must be instances of
java.lang.Comparable. If there are no non-null values the result is null instead.

* min() - Returns the smallest value found. Accepted values must be instances of
java.lang.Comparable. If there are no non-null values the result is null instead.

* sum() - Computes the sum of a set of Numbers. If there are no non-null values the result is null
instead. The following table indicates the return type based on the specified field.

Table 6. Table sum return type

Field Type Return Type
Integral (other than BigInteger) Long

Float or Double Double
Biginteger Biginteger
BigDecimal BigDecimal

Evaluation of queries with grouping and aggregation

Aggregation queries can include filtering conditions, like usual queries. Filtering can be performed
in two stages: before and after the grouping operation. All filter conditions defined before invoking
the groupBy method will be applied before the grouping operation is performed, directly to the
cache entries (not to the final projection). These filter conditions may reference any fields of the
queried entity type, and are meant to restrict the data set that is going to be the input for the
grouping stage. All filter conditions defined after invoking the groupBy method will be applied to
the projection that results from the projection and grouping operation. These filter conditions can
either reference any of the groupBy fields or aggregated fields. Referencing aggregated fields that
are not specified in the select clause is allowed; however, referencing non-aggregated and non-
grouping fields is forbidden. Filtering in this phase will reduce the amount of groups based on their
properties. Sorting may also be specified similar to usual queries. The ordering operation is
performed after the grouping operation and can reference any of the groupBy fields or aggregated
fields.

Using Named Query Parameters

Instead of building a new Query object for every execution it is possible to include named
parameters in the query which can be substituted with actual values before execution. This allows
a query to be defined once and be efficiently executed many times. Parameters can only be used on
the right-hand side of an operator and are defined when the query is created by supplying an object
produced by the org.infinispan.query.dsl.Expression.param(String paramName) method to the
operator instead of the usual constant value. Once the parameters have been defined they can be
set by invoking either Query.setParameter(parameterName, value) or
Query.setParameters(parameterMap) as shown in the examples below.

205

import org.infinispan.query.Search;
import org.infinispan.query.dsl.*;

[...]

QueryFactory queryFactory = Search.getQueryFactory(cache);
// Defining a query to search for various authors and publication years
Query query = queryFactory.from(Book.class)
.select("title")
.having("author").eq(Expression.param("authorName"))
.and()
.having("publicationYear").eq(Expression.param("publicationYear"))
.build();

// Set actual parameter values
query.setParameter ("authorName", "Doe");
query.setParameter("publicationYear", 2010);

// Execute the query
List<Book> found = query.list();

Alternatively, multiple parameters may be set at once by supplying a map of actual parameter
values:

Setting multiple named parameters at once

import java.util.Map;
import java.util.HashMap;

[...]

Map<String, Object> parameterMap = new HashMap<>();
parameterMap.put("authorName", "Doe");
parameterMap.put("publicationYear", 2010);

query.setParameters(parameterMap);

A significant portion of the query parsing, validation and execution planning
0 effort is performed during the first execution of a query with parameters. This

effort is not repeated during subsequent executions leading to better performance

compared to a similar query using constant values instead of query parameters.

More Query DSL samples

Probably the best way to explore using the Query DSL API is to have a look at our tests suite.
QueryDslConditionsTest is a fine example.

206

https://github.com/infinispan/infinispan/blob/master/query/src/test/java/org/infinispan/query/dsl/embedded/QueryDslConditionsTest.java

Ickle

Using Ickle, a light and small subset of JP-QL with full-text extensions, it is possible to create
relational and full-text queries in both Library and Remote Client-Server mode. Ickle is a string-
based querying language, and has the following characteristics:

* Query Java classes and supports Protocol Buffers.

* Queries can target a single entity type.

* Queries can filter on properties of embedded objects, including collections.

* Supports projections, aggregations, sorting, named parameters.

» Supports indexed and non-indexed execution.

» Supports complex boolean expressions.

 Supports full-text queries.

* Does not support computations in expressions, such as user.age > sqrt(user.shoeSize+3).

* Does not support joins.

* Does not support subqueries.

* Is supported across various {{brandname}} APIs. Whenever a Query is produced by the

QueryBuilder is accepted, including continuous queries or in event filters for listeners.

To use the API, first obtain a QueryFactory to the cache and then call the .create() method, passing
in the string to use in the query. For instance:

QueryFactory qf = Search.getQueryFactory(remoteCache);
Query q = qf.create("from sample_bank_account.Transaction where amount > 20");

When using Ickle all fields used with full-text operators must be both Indexed and Analysed.

Deviations from the Lucene Query Parser Syntax

While Ickle is a subset of JP-QL it does have the following deviations in its query syntax:

» Whitespace is not significant.

* There is no support for wildcards in field names.

* A field name or path must always be specified, as there is no default field.

» §& and || are accepted instead of AND or OR in both full-text and JPA predicates.

* | may be used instead of NOT.

* A missing boolean operator is interpreted as OR.

 String terms must be enclosed with either single or double quotes.

* Fuzziness and boosting are not accepted in arbitrary order; fuzziness always comes first.
» I=is accepted instead of <>.

* Boosting cannot be applied to >>=,<,< operators. Ranges may be used to achieve the same

207

result.

Fuzzy Queries

To execute a fuzzy query add ~ along with an integer, representing the distance from the term used,
after the term. For instance

Query fuzzyQuery = qf.create("from sample_bank_account.Transaction where description :
"cofee'~2");

Range Queries

To execute a range query define the given boundaries within a pair of braces, as seen in the
following example:

Query rangeQuery = qf.create("from sample_bank_account.Transaction where amount : [20 to 50]");

Phrase Queries

A group of words may be searched by surrounding them in quotation marks, as seen in the
following example:

Query q = qf.create("from sample_bank_account.Transaction where description : 'bus fare™);

Proximity Queries

To execute a proximity query, finding two terms within a specific distance, add a ~ along with the
distance after the phrase. For instance, the following example will find the words canceling and fee
provided they are not more than 3 words apart:

Query proximityQuery = gqf.create("from sample_bank_account.Transaction where
description : 'canceling fee'~3 ");

Wildcard Queries

Both single-character and multi-character wildcard searches may be performed:

* A single-character wildcard search may be used with the ? character.

* A multi-character wildcard search may be used with the * character.

To search for text or test the following single-character wildcard search would be used:

Query wildcardQuery = gf.create("from sample_bank_account.Transaction where
description : 'te?t'");

To search for test, tests, or tester the following multi-character wildcard search would be useD:

208

Query wildcardQuery = qf.create("from sample_bank_account.Transaction where
description : 'test*'");

Regular Expression Queries

Regular expression queries may be performed by specifing a pattern between /. Ickle uses Lucene’s
regular expression syntax, so to search for the words moat or boat the following could be used:

Query regExpQuery = qf.create("from sample_library.Book where title : /[mbJoat/");

Boosting Queries

Terms may be boosted by adding a » after the term to increase their relevance in a given query, the
higher the boost factor the more relevant the term will be. For instance to search for titles
containing beer and wine with a higher relevance on beer, by a factor of 3, the following could be
used:

Query boostedQuery = gf.create("from sample_library.Book where title : beer”3 OR wine

)

Continuous Query

Continuous Queries allow an application to register a listener which will receive the entries that
currently match a query filter, and will be continuously notified of any changes to the queried data
set that result from further cache operations. This includes incoming matches, for values that have
joined the set, updated matches, for matching values that were modified and continue to match,
and outgoing matches, for values that have left the set. By using a Continuous Query the application
receives a steady stream of events instead of having to repeatedly execute the same query to
discover changes, resulting in a more efficient use of resources. For instance, all of the following
use cases could utilize Continuous Queries:

* Return all persons with an age between 18 and 25 (assuming the Person entity has an age
property and is updated by the user application).
* Return all transactions higher than $2000.

» Return all times where the lap speed of F1 racers were less than 1:45.00s (assuming the cache
contains Lap entries and that laps are entered live during the race).

Continuous Query Execution
A continuous query uses a listener that is notified when:

* An entry starts matching the specified query, represented by a Join event.
* A matching entry is updated and continues to match the query, represented by an Update event.

* An entry stops matching the query, represented by a Leave event.

209

When a client registers a continuous query listener it immediately begins to receive the results
currently matching the query, received as Join events as described above. In addition, it will receive
subsequent notifications when other entries begin matching the query, as Join events, or stop
matching the query, as Leave events, as a consequence of any cache operations that would normally
generate creation, modification, removal, or expiration events. Updated cache entries will generate
Update events if the entry matches the query filter before and after the operation. To summarize,
the logic used to determine if the listener receives a Join, Update or Leave event is:

1. If the query on both the old and new values evaluate false, then the event is suppressed.

2. If the query on the old value evaluates false and on the new value evaluates true, then a join
event is sent.

3. If the query on both the old and new values evaluate true, then an Update event is sent.

4. If the query on the old value evaluates true and on the new value evaluates false, then a Leave
event is sent.

5. If the query on the old value evaluates true and the entry is removed or expired, then a Leave
event is sent.

9 Continuous Queries can use the full power of the Query DSL except: grouping,
aggregation, and sorting operations.

Running Continuous Queries

To create a continuous query you’ll start by creating a Query object first. This is described in the
Query DSL section. Then youll need to obtain the ContinuousQuery
(org.infinispan.query.api.continuous.ContinuousQuery) object of your cache and register the query
and a continuous query listener (org.infinispan.query.api.continuous.ContinuousQueryListener) with
it. A ContinuousQuery object associated to a cache can be obtained by calling the static method
org.infinispan.client.hotrod.Search.getContinuousQuery(RemoteCache<K, V> cache) if running in
remote mode or org.infinispan.query.Search.getContinuousQuery(Cache<K, V> cache) when running
in embedded mode. Once the listener has been created it may be registered by using the
addContinuousQueryListener method of ContinuousQuery:

continuousQuery.addContinuousQuerylListener(query, listener);

The following example demonstrates a simple continuous query use case in embedded mode:

Registering a Continuous Query

import org.infinispan.query.api.continuous.ContinuousQuery;

import org.infinispan.query.api.continuous.ContinuousQueryListener;
import org.infinispan.query.Search;

import org.infinispan.query.dsl.QueryFactory;

import org.infinispan.query.dsl.Query;

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

210

#query_dsl
#query_dsl

[...]

// We have a cache of Persons
Cache<Integer, Person> cache = ...

// We begin by creating a ContinuousQuery instance on the cache
ContinuousQuery<Integer, Person> continuousQuery = Search.getContinuousQuery(cache);

// Define our query. In this case we will be looking for any Person instances under 21
years of age.
QueryFactory queryFactory = Search.getQueryFactory(cache);
Query query = queryFactory.from(Person.class)
.having("age").1t(21)
.build();

final Map<Integer, Person> matches = new ConcurrentHashMap<Integer, Person>();

// Define the ContinuousQuerylListener
ContinuousQuerylListener<Integer, Person> listener = new ContinuousQuerylListener
<Integer, Person>() {
@Override
public void resultJoining(Integer key, Person value) {
matches.put(key, value);
}

@0verride
public void resultUpdated(Integer key, Person value) {
// we do not process this event

}

@0verride
public void resultlLeaving(Integer key) {
matches.remove(key);

}
+;

// Add the listener and the query
continuousQuery.addContinuousQueryListener(query, listener);

[...]

// Remove the listener to stop receiving notifications
continuousQuery.removeContinuousQuerylListener(listener);

As Person instances having an age less than 21 are added to the cache they will be received by the
listener and will be placed into the matches map, and when these entries are removed from the
cache or their age is modified to be greater or equal than 21 they will be removed from matches.

211

Removing Continuous Queries

To stop the query from further execution just remove the listener:

continuousQuery.removeContinuousQuerylListener(listener);

Notes on performance of Continuous Queries

Continuous queries are designed to provide a constant stream of updates to the application,
potentially resulting in a very large number of events being generated for particularly broad
queries. A new temporary memory allocation is made for each event. This behavior may result in
memory pressure, potentially leading to OutOfMemoryErrors (especially in remote mode) if queries
are not carefully designed. To prevent such issues it is strongly recommended to ensure that each
query captures the minimal information needed both in terms of number of matched entries and
size of each match (projections can be used to capture the interesting properties), and that each
ContinuousQueryListener is designed to quickly process all received events without blocking and to
avoid performing actions that will lead to the generation of new matching events from the cache it
listens to.

11.3. Remote Querying

Apart from supporting indexing and searching of Java entities to embedded clients, {brandname}
introduced support for remote, language neutral, querying.

This leap required two major changes:

* Since non-JVM clients cannot benefit from directly using Apache Lucene's Java API,
{brandname} defines its own new query language, based on an internal DSL that is easily
implementable in all languages for which we currently have an implementation of the Hot Rod
client.

* In order to enable indexing, the entities put in the cache by clients can no longer be opaque
binary blobs understood solely by the client. Their structure has to be known to both server and
client, so a common way of encoding structured data had to be adopted. Furthermore, allowing
multi-language clients to access the data requires a language and platform-neutral encoding.
Google’s Protocol Buffers was elected as an encoding format for both over-the-wire and storage
due to its efficiency, robustness, good multi-language support and support for schema evolution.

11.3.1. Storing Protobuf encoded entities

Remote clients that want to be able to index and query their stored entities must do so using the
Protobuf encoding format. This is key for the search capability to work. But it’s also possible to store
Protobuf entities just for gaining the benefit of platform independence and not enable indexing if
you do not need it.

Protobuf is all about structured data, so first thing you do to use it is define the structure of your
data. This is accomplished by declaring protocol buffer message types in .proto files, like in the
following example. Protobuf is a broad subject, we will not detail it here, so please consult the
Protobuf Developer Guide for an in-depth explanation. It suffices to say for now that our example

212

http://lucene.apache.org/
#query_dsl
http://code.google.com/p/protobuf/
https://developers.google.com/protocol-buffers/docs/overview

defines an entity (message type in protobuf speak) named Book, placed in a package named
book_sample. Our entity declares several fields of primitive types and a repeatable field (an array
basically) named authors. The Author message instances are embedded in the Book message
instance.

library.proto
package book_sample;

message Book {
required string title = 1;
required string description = 2;
required int32 publicationYear = 3; // no native Date type available in Protobuf

repeated Author authors = 4;
}
message Author {
required string name = 1;
required string surname = 2;

}

There are a few important notes we need to make about Protobuf messages:

* nesting of messages is possible, but the resulting structure is strictly a tree, never a graph

* there is no concept of type inheritance

* collections are not supported but arrays can be easily emulated using repeated fields
Using Protobuf with the Java Hot Rod client is a two step process. First, the client must be
configured to use a dedicated marshaller, ProtoStreamMarshaller. This marshaller uses the
ProtoStream library to assist you in encoding your objects. The second step is instructing

ProtoStream library on how to marshall your message types. The following example highlights this
process.

213

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/marshall/ProtoStreamMarshaller.html
https://github.com/infinispan/protostream

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;
import org.infinispan.client.hotrod.marshall.ProtoStreamMarshaller;
import org.infinispan.protostream.SerializationContext;

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder.addServer()

.host("10.1.2.3").port(11234)

.marshaller(new ProtoStreamMarshaller());

RemoteCacheManager remoteCacheManager = new RemoteCacheManager(clientBuilder.build());

SerializationContext serCtx = ProtoStreamMarshaller.getSerializationContext
(remoteCacheManager);

FileDescriptorSource fds = new FileDescriptorSource();
fds.addProtoFiles("/library.proto");
serCtx.registerProtoFiles(fds);
serCtx.registerMarshaller(new BookMarshaller());
serCtx.registerMarshaller(new AuthorMarshaller());

// Book and Author classes omitted for brevity

The interesting part in this sample is obtaining the SerializationContext associated to the
RemoteCacheManager and then instructing ProtoStream about the protobuf types we want to
marshall. The SerializationContext is provided by the library for this purpose. The
SerializationContext.registerProtoFiles method receives the name of one or more classpath
resources that is expected to be a protobuf definition containing our type declarations.

0 A RemoteCacheManager has no SerializationContext associated with it unless it was
configured to use a ProtoStreamMarshaller.

The next relevant part is the registration of per entity marshallers for our domain model types.
They must be provided by the user for each type or marshalling will fail. Writing marshallers is a
simple process. The BookMarshaller example should get you started. The most important thing you
need to consider is they need to be stateless and threadsafe as a single instance of them is being
used.

214

BookMarshaller.java

import org.infinispan.protostream.MessageMarshaller;

public class BookMarshaller implements MessageMarshaller<Book> {

public String getTypeName() {
return "book_sample.Book";

}

public Class<? extends Book> getJavaClass() {
return Book.class;

}

public void writeTo(ProtoStreamWriter writer, Book book) throws IOException {
writer.writeString("title", book.getTitle());
writer.writeString("description”, book.getDescription());
writer.writeInt("publicationYear", book.getPublicationYear());
writer.writeCollection("authors", book.getAuthors(), Author.class);

public Book readFrom(ProtoStreamReader reader) throws IOException {
String title = reader.readString("title");
String description = reader.readString("description”);
int publicationYear = reader.readInt("publicationYear");
Set<Author> authors = reader.readCollection("authors", new HashSet<>(), Author
.class);
return new Book(title, description, publicationYear, authors);

}

Once you’ve followed these steps to setup your client you can start reading and writing Java objects
to the remote cache and the actual data stored in the cache will be protobuf encoded provided that
marshallers were registered with the remote client for all involved types (Book and Author in our
example). Keeping your objects stored in protobuf format has the benefit of being able to consume
them with compatible clients written in different languages.

TODO Add reference to sample in C++ client user guide

11.3.2. Using annotations

TODO

215

11.3.3. Indexing of Protobuf encoded entries

After configuring the client as described in the previous section you can start configuring indexing
for your caches on the server side. Activating indexing and the various indexing specific
configurations is identical to embedded mode and is detailed in the Querying {brandname}
chapter.

There is however an extra configuration step involved. While in embedded mode the indexing
metadata is obtained via Java reflection by analyzing the presence of various Hibernate Search
annotations on the entry’s class, this is obviously not possible if the entry is protobuf encoded. The
server needs to obtain the relevant metadata from the same descriptor (.proto file) as the client.
The descriptors are stored in a dedicated cache on the server named '__protobuf metadata'. Both
keys and values in this cache are plain strings. Registering a new schema is therefore as simple as
performing a put operation on this cache using the schema’s name as key and the schema file itself
as the value. Alternatively you can use the CLI (via the cache-container=*:register-proto-schemas()
operation), the Management Console or the ProtobufMetadataManager MBean via JMX. Be aware
that, when security is enabled, access to the schema cache via the remote protocols requires that
the user belongs to the '___schema_manager' role.

Once indexing is enabled for a cache all fields of Protobuf encoded entries will be
fully indexed unless you use the @Indexed and @Field protobuf schema pseudo-
annotations in order to control precisely what fields need to get indexed. The
default behaviour can be very inefficient when dealing with types having many or
ﬂ very larger fields so we encourage you to always specify what fields should be
indexed instead of relying on the default indexing behaviour. The indexing
behaviour for protobuf message types that are not annotated can also be modified
per each schema file by setting the protobuf schema option 'indexed_by_default' to
false (its default value is considered true) at the beginning of your schema file.

option indexed_by_default = false; // This disables indexing of types that are not
annotated for indexing

11.3.4. A remote query example

You’ve managed to configure both client and server to talk protobuf and you’ve enabled indexing.
Let’s put some data in the cache and try to search for it then!

216

#query_configuration_api

import org.infinispan.client.hotrod.*;
import org.infinispan.query.dsl.*;

RemoteCacheManager remoteCacheManager = ...;
RemoteCache<Integer, Book> remoteCache = remoteCacheManager.getCache();

Book book1 = new Book();
book1.setTitle("Hibernate in Action");
remoteCache.put(1, book1);

Book book2 = new Book();
book2.setTile("Hibernate Search in Action");
remoteCache.put(2, book2);

QueryFactory qf = Search.getQueryFactory(remoteCache);

Query query = qf.from(Book.class)
.having("title").like("%Hibernate Search%")
.build();

List<Book> list = query.list(); // Voila! We have our book back from the cache!

The key part of creating a query is obtaining the QueryFactory for the remote cache using the
org.infinispan.client.hotrod.Search.getQueryFactory() method. Once you have this creating the query
is similar to embedded mode which is covered in this section.

11.4. Statistics

Query Statistics can be obtained from the SearchManager, as demonstrated in the following code
snippet.

SearchManager searchManager = Search.getSearchManager(cache);
org.hibernate.search.stat.Statistics statistics = searchManager.getStatistics();

This data is also available via JMX through the Hibernate Search

StatisticsinfoMBean registered under the name
Q org.infinispan:type=Query,manager="{name-of-cache-manager}",cache="{name-of-
cache}",component=Statistics. Please note this MBean is always registered by

{brandname} but the statistics are collected only if statistics collection is enabled
at cache level.

Hibernate Search has its own configuration properties

A hibernate.search.jmx_enabled and hibernate.search.generate_statistics for JMX
statistics as explained here. Using them with {brandname} Query is forbidden as it
will only lead to duplicated MBeans and unpredictable results.

217

#query_dsl
http://docs.jboss.org/hibernate/search/5.7/api/org/hibernate/search/stat/Statistics.html
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#_statisticsinfombean
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#_statisticsinfombean
#enabling_jmx_statistics
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-monitoring

11.5. Performance Tuning

11.5.1. Batch writing in SYNC mode

By default, the Index Managers work in sync mode, meaning when data is written to {brandname},
it will perform the indexing operations synchronously. This synchronicity guarantees indexes are
always consistent with the data (and thus visible in searches), but can slowdown write operations
since it will also perform a commit to the index. Committing is an extremely expensive operation in
Lucene, and for that reason, multiple writes from different nodes can be automatically batched into
a single commit to reduce the impact.

So, when doing data loads to {brandname} with index enabled, try to use multiple threads to take
advantage of this batching.

If using multiple threads does not result in the required performance, an alternative is to load data
with indexing temporarily disabled and run a re-indexing operation afterwards. This can be done
writing data with the SKIP_INDEXING flag:

cache.getAdvancedCache().withFlags(Flag.SKIP_INDEXING).put("key","value");

11.5.2. Writing using async mode

If it’s acceptable a small delay between data writes and when that data is visible in queries, an
index manager can be configured to work in async mode. The async mode offers much better
writing performance, since in this mode commits happen at a configurable interval.

Configuration:

<distributed-cache name="default">
<indexing index="LOCAL">
<property name="default.indexmanager">
org.infinispan.query.indexmanager.InfinispanIndexManager
</property>
<!-- Index data in async mode -->
<property name="default.worker.execution">async</property>
<!-- Optional: configure the commit interval, default is 1000ms -->
<property name="default.index_flush_interval">500</property>
</indexing>
</distributed-cache>

11.5.3. Index reader async strategy

Lucene internally works with snapshots of the index: once an IndexReader is opened, it will only
see the index changes up to the point it was opened; further index changes will not be visible until
the IndexReader is refreshed. The Index Managers used in {brandname} by default will check the
freshness of the index readers before every query and refresh them if necessary.

218

#query_index_manager
#query_massindexer

It is possible to tune this strategy to relax this freshness checking to a pre-configured interval by
using the reader.strategy configuration set as async:

<distributed-cache name="default"
key-partitioner=
"org.infinispan.distribution.ch.impl.AffinityPartitioner">
<indexing index="PRIMARY_OWNER">
<property name="default.indexmanager">
org.infinispan.query.affinity.AffinityIndexManager
</property>
<property name="default.reader.strategy">async</property>
<!-- refresh reader every 1s, default is 5s -->
<property name="default.reader.async_refresh_period_ms">1000</property>
</indexing>
</distributed-cache>

The async reader strategy is particularly useful for Index Managers that rely on shards, such as the
AffinityIndexManager.

11.5.4. Lucene Options

It is possible to apply tuning options in Lucene directly. For more details, see the Hibernate Search
manual.

219

https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#_lucene_configuration
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#_lucene_configuration

Chapter 12. Clustered Counters

Clustered counters are counters which are distributed and shared among all nodes in the
{brandname} cluster. Counters can have different consistency levels: strong and weak.

Although a strong/weak consistent counter has separate interfaces, both support updating its value,
return the current value and they provide events when its value is updated. Details are provided
below in this document to help you choose which one fits best your uses-case.

12.1. Installation and Configuration
In order to start using the counters, you needs to add the dependency in your Maven pom. xml file:

pom.xml

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-clustered-counter</artifactId>
<version>${version.infinispan}</version>
</dependency>

Replace ${version.infinispan} with the appropriate version of {brandname}.

The counters can be configured {brandname} configuration file or on-demand via the
CounterManager interface detailed later in this document. A counters configured in {brandname}
configuration file is created at boot time when the EmbeddedCacheManager is starting. Theses counters
are started eagerly and they are available in all the cluster’s nodes.

220

configuration.xml

<?xml version="1.0" encoding="UTF-8"?>
<infinispan>
<cache-container ...>
<!-- if needed to persist counter, global state needs to be configured -->
<global-state>

</global-state>
<!-- your caches configuration goes here -->
<counters xmlns="urn:infinispan:config:counters:9.2" num-owners="3"
reliability="CONSISTENT">
<strong-counter name="c1" initial-value="1" storage="PERSISTENT"/>
<strong-counter name="c2" initial-value="2" storage="VOLATILE">
<lower-bound value="0"/>
</strong-counter>
<strong-counter name="c3" initial-value="3" storage="PERSISTENT">
<upper-bound value="5"/>
</strong-counter>
<strong-counter name="c4" initial-value="4" storage="VOLATILE">
<lower-bound value="0"/>
<upper-bound value="10"/>
</strong-counter>
<weak-counter name="c5" initial-value="5" storage="PERSISTENT"
concurrency-level="1"/>
</counters>
</cache-container>
</infinispan>

or programmatically, in the GlobalConfigurationBuilder:

GlobalConfigurationBuilder globalConfigurationBuilder = ...;
CounterManagerConfigurationBuilder builder = globalConfigurationBuilder.addModule
(CounterManagerConfigurationBuilder.class);
builder.numOwner(3).reliability(Reliability.CONSISTENT);
builder.addStrongCounter().name("c1").initialValue(1).storage(Storage.PERSISTENT);
builder.addStrongCounter().name("c2").initialValue(2).lowerBound(?).storage(Storage.V0
LATILE);
builder.addStrongCounter().name("c3").initialValue(3).upperBound(5).storage(Storage.PE
RSISTENT);
builder.addStrongCounter().name("c4").initialValue(4).lowerBound(®).upperBound(10).sto
rage(Storage.VOLATILE);
builder.addWeakCounter().name("c5").initialValue(5).concurrencylLevel(1).storage(Storag
e.PERSISTENT);

On other hand, the counters can be configured on-demand, at any time after the
EmbeddedCacheManager is initialized.

221

CounterManager manager = ...;

manager .defineCounter("c1", CounterConfiguration.builder(CounterType.UNBOUNDED_STRONG
).initialValue(1).storage(Storage.PERSISTENT)build());

manager .defineCounter("c2", CounterConfiguration.builder(CounterType.BOUNDED_STRONG)
.initialValue(2).lowerBound(0).storage(Storage.VOLATILE).build());

manager .defineCounter("c3", CounterConfiguration.builder(CounterType.BOUNDED_STRONG)
.initialValue(3).upperBound(5).storage(Storage.PERSISTENT).build());

manager .defineCounter("c4", CounterConfiguration.builder(CounterType.BOUNDED_STRONG)
.initialValue(4).1lowerBound(®).upperBound(10).storage(Storage.VOLATILE).build());
manager .defineCounter("c2", CounterConfiguration.builder(CounterType.WEAK)
.initialValue(5).concurrencylLevel(1).storage(Storage.PERSISTENT).build());

0 CounterConfiguration is immutable and can be reused.

The method defineCounter() will return true if the counter is successful configured or false
otherwise. However, if the configuration 1is invalid, the method will throw a
CounterConfigurationException. To find out if a counter is already defined, use the method
isDefined().

CounterManager manager = ...
if (!manager.isDefined("someCounter")) {
manager .define("someCounter"”, ...);

}

Per cluster attributes:

* num-owners: Sets the number of counter’s copies to keep cluster-wide. A smaller number will
make update operations faster but will support a lower number of server crashes. It must be
positive and its default value is 2.

* reliability: Sets the counter’s update behavior in a network partition. Default value is
AVAILABLE and valid values are:

o AVAILABLE: all partitions are able to read and update the counter’s value.
o CONSISTENT: only the primary partition (majority of nodes) will be able to read and update
the counter’s value. The remaining partitions can only read its value.

Per counter attributes:

e initial-value [common]: Sets the counter’s initial value. Default is 0 (zero).

* storage [common]: Sets the counter’s behavior when the cluster is shutdown and restarted.
Default value is VOLATILE and valid values are:

o VOLATILE: the counter’s value is only available in memory. The value will be lost when a
cluster is shutdown.

o PERSISTENT: the counter’s value is stored in a private and local persistent store. The value is
kept when the cluster is shutdown and restored after a restart.

222

ﬁ On-demand and VOLATILE counters will lose its value and configuration after a
cluster shutdown. They must be defined again after the restart.

* lower-bound [strong]: Sets the strong consistent counter’s lower bound. Default value is
Long.MIN_VALUE.

* upper-bound [strong]: Sets the strong consistent counter’s upper bound. Default value is
Long.MAX_VALUE.

0 If neither the lower-bound or upper-bound are configured, the strong counter is set
as unbounded.

A The initial-value must be between lower-bound and upper-bound inclusive.

» concurrency-level [weak]: Sets the number of concurrent updates. Its value must be positive
and the default value is 16.

12.1.1. List counter names

To list all the counters defined, the method CounterManager.getCounterNames() returns a collection of
all counter names created cluster-wide.

12.2. The CounterManager interface.

The CounterManager interface is the entry point to define, retrieve and remove a counter. It
automatically listen to the creation of EmbeddedCacheManager and proceeds with the registration of an
instance of it per EmbeddedCacheManager. It starts the caches needed to store the counter state and
configures the default counters.

Retrieving the CounterManager is as simple as invoke the
EmbeddedCounterManagerFactory.asCounterManager (EmbeddedCacheManager) as shown in the example
below:

// create or obtain your EmbeddedCacheManager
EmbeddedCacheManager manager = ...;

// retrieve the CounterManager

CounterManager counterManager = EmbeddedCounterManagerFactory.asCounterManager(
manager);

For Hot Rod client, the CounterManager is registered in the RemoteCacheManager and it can be
retrieved like:

223

// create or obtain your RemoteCacheManager
RemoteCacheManager manager = ...;

// retrieve the CounterManager
CounterManager counterManager = RemoteCounterManagerFactory.asCounterManager(manager);

0 Hot Rod messages format can be found in Hot Rod Protocol 2.7

12.2.1. Remove a counter via CounterManager

A use with caution.

There is a difference between remove a counter via the Strong/WeakCounter interfaces and the
CounterManager. The CounterManager.remove(String) removes the counter value from the cluster and
removes all the listeners registered in the counter in the local counter instance. In addition, the
counter instance is no longer reusable and it may return an invalid results.

On the other side, the Strong/WeakCounter removal only removes the counter value. The instance
can still be reused and the listeners still works.

0 The counter is re-created if it is accessed after a removal.

12.3. The Counter

A counter can be strong (StrongCounter) or weakly consistent (WeakCounter) and both is identified by
a name. They have a specific interface but they share some logic, namely, both of them are
asynchronous (a CompletableFuture is returned by each operation), provide an update event and
can be reset to its initial value.

If you don’t want to use the async API, it is possible to return a synchronous counter via sync()
method. The API is the same but without the CompletableFuture return value.

The following methods are common to both interfaces:

String getName();

CompletableFuture<Long> getValue();

CompletableFuture<Void> reset();

<T extends CounterlListener> Handle<T> addListener(T listener);
CounterConfiguration getConfiguration();
CompletableFuture<Void> remove();

SyncStrongCounter sync(); //SyncWeakCounter for WeakCounter

* getName() returns the counter name (identifier).
* getValue() returns the current counter’s value.

* reset() allows to reset the counter’s value to its initial value.

224

#hot_rod_protocol_2_7

» addListener() register a listener to receive update events. More details about it in the
Notification and Events section.

* getConfiguration() returns the configuration used by the counter.

» remove() removes the counter value from the cluster. The instance can still be used and the
listeners are kept.

* sync() creates a synchronous counter.

o The counter is re-created if it is accessed after a removal.

12.3.1. The StrongCounter interface: when the consistency or bounds matters.

The strong counter provides uses a single key stored in {brandname} cache to provide the
consistency needed. All the updates are performed under the key lock to updates its values. On
other hand, the reads don’t acquire any locks and reads the current value. Also, with this scheme, it
allows to bound the counter value and provide atomic operations like compare-and-set/swap.

A StrongCounter can be retrieved from the CounterManager by using the getStrongCounter() method.
As an example:

CounterManager counterManager = ...
StrongCounter aCounter = counterManager.getStrongCounter("my-counter);

ﬁ Since every operation will hit a single key, the StrongCounter has a higher
contention rate.

The StrongCounter interface adds the following method:

default CompletableFuture<Long> incrementAndGet() {
return addAndGet(1L);

}

default CompletableFuture<Long> decrementAndGet() {
return addAndGet(-1L);

}

CompletableFuture<Long> addAndGet(long delta);
CompletableFuture<Boolean> compareAndSet(long expect, long update);
CompletableFuture<Long> compareAndSwap(long expect, long update);

* incrementAndGet() increments the counter by one and returns the new value.

» decrementAndGet() decrements the counter by one and returns the new value.

* addAndGet() adds a delta to the counter’s value and returns the new value.

225

#clustered_counters_notify_events

» compareAndSet() and compareAndSwap() atomically set the counter’s value if the current value is
the expected.

o A operation is considered completed when the CompletableFuture is completed.

The difference between compare-and-set and compare-and-swap is that the

0 former returns true if the operation succeeds while the later returns the previous
value. The compare-and-swap is successful if the return value is the same as the
expected.
Bounded StrongCounter

When bounded, all the update method above will throw a CounterOutOfBoundsException when they
reached the lower or upper bound. The exception has the following methods to check which side
bound has been reached:

public boolean isUpperBoundReached();
public boolean isLowerBoundReached();

Uses cases

The strong counter fits better in the following uses cases:

* When counter’s value is needed after each update (example, cluster-wise ids generator or
sequences)

* When a bounded counter is needed (example, rate limiter)

Usage Examples

226

StrongCounter counter = counterManager.getStrongCounter("unbounded_coutner");

// incrementing the counter
System.out.println("new value is

+ counter.incrementAndGet().get());

// decrement the counter's value by 100 using the functional API
counter.addAndGet(-100).thenApply(v -> {

System.out.println("new value is " + v);

return null;
}).get

// alternative, you can do some work while the counter is updated
CompletableFuture<Long> f = counter.addAndGet(10);

// ... do some work ...

System.out.println("new value is " + f.get());

// and then, check the current value
System.out.println("current value is

+ counter.getValue().get());

// finally, reset to initial value
counter.reset().get();
System.out.println("current value is

+ counter.getValue().get());

// or set to a new value if zero
System.out.println("compare and set succeeded? " + counter.compareAndSet(0, 1));

And below, there is another example using a bounded counter:

227

StrongCounter counter = counterManager.getStrongCounter("bounded_counter");

// incrementing the counter
try {
System.out.println("new value is " + counter.addAndGet(100).get());
} catch (ExecutionException e) {
Throwable cause = e.getCause();
if (cause instanceof CounterOutOfBoundsException) {
if (((CounterOutOfBoundsException) cause).isUpperBoundReached()) {
System.out.println("ops, upper bound reached.");
} else if (((CounterOutOfBoundsException) cause).isLowerBoundReached()) {
System.out.println("ops, lower bound reached.");

}
}

// now using the functional API
counter.addAndGet(-100).handle((v, throwable) -> {
if (throwable != null) {
Throwable cause = throwable.getCause();
if (cause instanceof CounterOutOfBoundsException) {
if (((CounterOutOfBoundsException) cause).isUpperBoundReached()) {
System.out.println("ops, upper bound reached.");
} else if (((CounterOutOfBoundsException) cause).isLowerBoundReached()) {
System.out.println("ops, lower bound reached.");
}
}
return null;
}
System.out.println("new value is
return null;

}).get();

+Vv);

Compare-and-set vs Compare-and-swap examples:

StrongCounter counter = counterManager.getStrongCounter("my-counter");
long oldValue, newValue;
do {
oldValue = counter.getValue().get();
newValue = somelogic(oldValue);
} while (!counter.compareAndSet(oldValue, newValue).get());

With compare-and-swap, it saves one invocation counter invocation (counter.getValue())

228

StrongCounter counter = counterManager.getStrongCounter("my-counter");
long oldValue = counter.getValue().get();
long currentValue, newValue;
do {

currentValue = oldValue;

newValue = somelogic(oldValue);
} while ((oldValue = counter.compareAndSwap(oldValue, newValue).get()) !=
currentValue);

12.3.2. The WeakCounter interface: when speed is needed

The WeakCounter stores the counter’s value in multiple keys in {brandname} cache. The number of
keys created is configured by the concurrency-level attribute. Each key stores a partial state of the
counter’s value and it can be updated concurrently. It main advantage over the StrongCounter is the
lower contention in the cache. On other hand, the read of its value is more expensive and bounds

are not allowed.

The reset operation should be handled with caution. It is not atomic and it
A produces intermediates values. These value may be seen by a read operation and
by any listener registered.

A WeakCounter can be retrieved from the CounterManager by using the getWeakCounter () method. As an
example:

CounterManager counterManager = ...
StrongCounter aCounter = counterManager.getWeakCounter("my-counter);

Weak Counter Interface

The WeakCounter adds the following methods:

default CompletableFuture<Void> increment() {
return add(1L);
+

default CompletableFuture<Void> decrement() {
return add(-1L);
}

CompletableFuture<Void> add(long delta);

They are similar to the "StrongCounter’s methods but they don’t return the new value.

Uses cases

The weak counter fits best in uses cases where the result of the update operation is not needed or

229

the counter’s value is not required too often. Collecting statistics is a good example of such an use
case.

Examples

Below, there is an example of the weak counter usage.

WeakCounter counter = counterManager.getWeakCounter("my_counter");

// increment the counter and check its result
counter.increment().get();
System.out.println("current value is

+ counter.getValue().get());

CompletableFuture<Void> f = counter.add(-100);
//do some work

f.get(); //wait until finished
System.out.println("current value is

n

+ counter.getValue().get());

//using the functional API

counter.reset().whenComplete((aVoid, throwable) -> System.out.println("Reset done
(throwable == null ? "successfully" : "unsuccessfully"))).get();
System.out.println("current value is " + counter.getValue().get());

+

12.4. Notifications and Events

Both strong and weak counter supports a listener to receive its updates events. The listener must
implement CounterlListener and it can be registerer by the following method:

<T extends CounterlListener> Handle<T> addListener(T listener);
The CounterLister has the following interface:

public interface CounterListener {
void onUpdate(CounterEvent entry);

}

The Handle object returned has the main goal to remove the CounterListener when it is not longer
needed. Also, it allows to have access to the CounterlListener instance that is it handling. It has the
following interface:

public interface Handle<T extends CounterListener> {
T getCounterListener();
void remove();

230

Finally, the CounterEvent has the previous and current value and state. It has the following
interface:

public interface CounterEvent {
long getOldValue();
State getOldState();
long getNewValue();
State getNewState();

The state is always State.VALID for unbounded strong counter and weak counter.
0 State.LOWER_BOUND_REACHED and State.UPPER_BOUND_REACHED are only wvalid for
bounded strong counters.

9 The weak counter reset() operation will trigger multiple notification with
intermediate values.

231

Chapter 13. Clustered Lock

A clustered lock is a lock which is distributed and shared among all nodes in the {brandname}
cluster and currently provides a way to execute code that will be synchronized between the nodes
in a given cluster.

13.1. Installation

In order to start using the clustered locks, you needs to add the dependency in your Maven pom.xml
file:

pom.xml

<dependency>
<groupId>org.infinispan</groupld>
<artifactId>infinispan-clustered-lock</artifactId>
<version>${version.infinispan}</version>
</dependency>

Replace ${version.infinispan} with the appropriate version of {brandname}.

13.2. ClusteredLock Configuration

Currently there is a single type of ClusteredLock supported : non reentrant, NODE ownership lock.

13.2.1. Ownership

* NODE When a ClusteredlLock is defined, this lock can be used from all the nodes in the
{brandname} cluster. When the ownership is NODE type, this means that the owner of the lock
is the {brandname} node that acquired the lock at a given time. This means that each time we
get a ClusteredlLock instance with the ClusteredCacheManager, this instance will be the same
instance for each {brandname} node. This lock can be used to synchronize code between
{brandname} nodes. The advantage of this lock is that any thread in the node can release the
lock at a given time.

» INSTANCE - not yet supported

When a (ClusteredLock is defined, this lock can be used from all the nodes in the {brandname}
cluster. When the ownership is INSTANCE type, this means that the owner of the lock is the actual
instance we acquired when ClusteredLockManager.get("lockName") is called.

This means that each time we get a ClusteredlLock instance with the ClusteredCacheManager, this
instance will be a new instance. This lock can be used to synchronize code between {brandname}
nodes and inside each {brandname} node. The advantage of this lock is that only the instance that
called 'lock’ can release the lock.

232

13.2.2. Reentrancy

When a ClusteredLock is configured reentrant, the owner of the lock can reacquire the lock as many
consecutive times as it wants while holding the lock.

Currently, only non reentrant locks are supported. This means that when two consecutive lock calls
are sent for the same owner, the first call will acquire the lock if it’s available, and the second call
will block.

13.3. ClusteredLockManager Interface

The ClusteredLockManager interface, marked as experimental, is the entry point to define, retrieve
and remove a lock. It automatically listen to the creation of EmbeddedCacheManager and proceeds with
the registration of an instance of it per EmbeddedCacheManager. It starts the internal caches needed to
store the lock state.

Retrieving the ClusteredLockManager is as simple as invoking the
Embedded(ClusteredLockManagerFactory.from(EmbeddedCacheManager) as shown in the example below:

// create or obtain your EmbeddedCacheManager
EmbeddedCacheManager manager = ...;

// retrieve the ClusteredlLockManager
ClusteredLockManager clusteredLockManager = ClusteredLockManagerFactory.from(manager);

public interface ClusteredLockManager {
boolean definelLock(String name);
boolean definelLock(String name, ClusteredLockConfiguration configuration);
ClusteredlLock get(String name);
ClusteredLockConfiguration getConfiguration(String name);
boolean isDefined(String name);
CompletableFuture<Boolean> remove(String name);

CompletableFuture<Boolean> forceRelease(String name);

» definelock : Defines a lock with the specified name and the default ClusteredLockConfiguration.
It does not overwrite existing configurations.

» defineLock(String name, ClusteredlLockConfiguration configuration) : Defines a lock with the
specified name and ClusteredLockConfiguration. It does not overwrite existing configurations.

233

* (lusteredLock get(String name) : Get’s a ClusteredLock by it’s name. A call of defineLock must be
done at least once in the cluster. See ownership level section to understand the implications of
get method call.

Currently, the only ownership level supported is NODE.
* (lusteredLockConfiguration getConfiguration(String name) :
Returns the configuration of a ClusteredLock, if such exists.

* boolean isDefined(String name) : Checks if a lock is already defined.
» CompletableFuture<Boolean> remove(String name) : Removes a ClusteredlLock if such exists.

» CompletableFuture<Boolean> forceRelease(String name) : Releases - or unlocks - a ClusteredLock,
if such exists, no matter who is holding it at a given time. Calling this method may cause
concurrency issues and has to be used in exceptional situations.

13.4. ClusteredLock Interface

(lusteredLock interface, marked as experimental, is the interface that implements the clustered
locks.

public interface ClusteredLock {
CompletableFuture<Void> lock();
CompletableFuture<Boolean> trylLock();
CompletableFuture<Boolean> trylLock(long time, TimeUnit unit);
CompletableFuture<Void> unlock();
CompletableFuture<Boolean> isLocked();

CompletableFuture<Boolean> isLockedByMe();

* lock : Acquires the lock. If the lock is not available then call blocks until the lock is acquired.
Currently, there is no maximum time specified for a lock request to fail, so this could cause
thread starvation.

* trylLock Acquires the lock only if it is free at the time of invocation, and returns true in that case.
This method does not block (or wait) for any lock acquisition.

* tryLock(long time, TimeUnit unit) If the lock is available this method returns immediately with
true. If the lock is not available then the call waits until :

o The lock is acquired

o The specified waiting time elapses

234

#clustered_lock_ownership

If the time is less than or equal to zero, the method will not wait at all.
« unlock

Releases the lock. Only the holder of the lock may release the lock.

¢ jsLocked Returns true when the lock is locked and false when the lock is released.

* isLockedByMe Returns true when the lock is owned by the caller and false when the lock is
owned by someone else or it’s released.

13.4.1. Usage Examples

EmbeddedCache cm = ...;
ClusteredLockManager cclm = ClusteredLockManagerFactory.from(cm);

lock.tryLock()
.thenCompose(result -> {
if (result) {
try {
// manipulate protected state
} finally {
return lock.unlock();

}
} else {
// Do something else

}
b

13.5. ClusteredLockManager Configuration

You can configure ClusteredLockManager to use different strategies for locks, either declaratively or
programmatically, with the following attributes:

num-owners
Defines the total number of nodes in each cluster that store the states of clustered locks. The
default value is -1, which replicates the value to all nodes.

reliability
Controls how clustered locks behave when clusters split into partitions or multiple nodes leave a
cluster. You can set the following values:

» AVAILABLE: Nodes in any partition can concurrently operate on locks.

* CONSISTENT: Only nodes that belong to the majority partition can operate on locks. This is the
default value.

The following is an example declarative configuration for ClusteredLockManager:

235

<?xml version="1.0" encoding="UTF-8"?>

<infinispan
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:config:${infinispan.core.schema.version}

http://www.infinispan.org/schemas/infinispan-config-9.4.xsd"
xmlns="urn:infinispan:config:9.4">

<cache-container default-cache="default">
<transport/>
<local-cache name="default">
<locking concurrency-level="100" acquire-timeout="1000"/>
</local-cache>

<clustered-locks xmlns="urn:infinispan:config:clustered-locks:9.4"
num-owners = "3"
reliability="AVAILABLE">
<clustered-lock name="lock1" />
<clustered-lock name="lock2" />
</clustered-locks>
</cache-container>

</infinispan>

236

Chapter 14. Multimap Cache

MutimapCache is a type of {brandname} Cache that maps keys to values in which each key can
contain multiple values.

14.1. Installation and configuration

pom.xml
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-multimap</artifactId>

<version>${version.infinispan}</version>
</dependency>

Replace ${version.infinispan} with the appropriate version of {brandname}.

14.2. MultimapCache API

MultimapCache API exposes several methods to interact with the Multimap Cache. All these
methods are non-blocking in most of the cases. See [limitations]

public interface MultimapCache<K, V> {
CompletableFuture<Void> put(K key, V value);
CompletableFuture<Collection<V>> get(K key);
CompletableFuture<Boolean> remove(K key);
CompletableFuture<Boolean> remove(K key, V value);
CompletableFuture<Void> remove(Predicate<? super V> p);
CompletableFuture<Boolean> containsKey(K key);
CompletableFuture<Boolean> containsValue(V value);
CompletableFuture<Boolean> containsEntry(K key, V value);
CompletableFuture<Long> size();

boolean supportsDuplicates();

237

14.2.1. CompletableFuture<Void> put(K key, V value)

Puts a key-value pair in the multimap cache.

MultimapCache<String, String> multimapCache = ...;

multimapCache.put("girlNames", "marie")
.thenCompose(r1 -> multimapCache.put("girlNames", "oihana"))
.thenCompose(r3 -> multimapCache.get("girlNames"))
.thenAccept(names -> {
if(names.contains("marie"))
System.out.println("Marie is a girl name");

if(names.contains("oihana"))
System.out.println("0ihana is a girl name");

b

The output of this code is :

Marie is a girl name
Oihana is a girl name

14.2.2. CompletableFuture<Collection<V>> get(K key)

Asynchronous that returns a view collection of the values associated with key in this multimap
cache, if any. Any changes to the retrieved collection won’t change the values in this multimap
cache. When this method returns an empty collection, it means the key was not found.

14.2.3. CompletableFuture<Boolean> remove(K key)

Asynchronous that removes the entry associated with the key from the multimap cache, if such
exists.

14.2.4. CompletableFuture<Boolean> remove(K key, V value)

Asynchronous that removes a key-value pair from the multimap cache, if such exists.

14.2.5. CompletableFuture<Void> remove(Predicate<? super V> p)

Asynchronous method. Removes every value that match the given predicate.

14.2.6. CompletableFuture<Boolean> containsKey(K key)

Asynchronous that returns true if this multimap contains the key.

238

14.2.7. CompletableFuture<Boolean> containsValue(V value)

Asynchronous that returns true if this multimap contains the value in at least one key.

14.2.8. CompletableFuture<Boolean> containsEntry(K key, V value)

Asynchronous that returns true if this multimap contains at least one key-value pair with the value.

14.2.9. CompletableFuture<Long> size()

Asynchronous that returns the number of key-value pairs in the multimap cache. It doesn’t return
the distinct number of keys.

14.2.10. boolean supportsDuplicates()

Asynchronous that returns true if the multimap cache supports duplicates. This means that the
content of the multimap can be 'a’ - ['1', '1, '2']. For now this method will always return false, as
duplicates are not yet supported. The existence of a given value is determined by 'equals’ and
“hashcode' method’s contract.

14.3. Creating a Multimap Cache

Currently the MultimapCache is configured as a regular cache. This can be done either by code or
XML configuration. See how to configure a regular Cache in the section link to [configure a cache].

14.3.1. Embedded mode

// create or obtain your EmbeddedCacheManager
EmbeddedCacheManager cm = ... ;

// create or obtain a MultimapCacheManager passing the EmbeddedCacheManager
MultimapCacheManager multimapCacheManager = EmbeddedMultimapCacheManagerFactory.from

(cm);

// define the configuration for the multimap cache
multimapCacheManager.defineConfiguration(multimapCacheName, c.build());

// get the multimap cache
multimapCache = multimapCacheManager.get(multimapCacheName);

14.3.2. Server mode

TODO

14.4. Limitations

In almost every case the Multimap Cache will behave as a regular Cache, but some limitations exist

239

in the current version.

14.4.1. Support for duplicates

Duplicates are not supported yet. This means that the multimap won’t contain any duplicate key-
value pair. Whenever put method is called, if the key-value pair already exist, this key-value par
won’t be added. Methods used to check if a key-value pair is already present in the Multimap are
the equals and hashcode.

14.4.2. Eviction

For now, the eviction works per key, and not per key-value pair. This means that whenever a key is
evicted, all the values associated with the key will be evicted too. Eviction per key-value could be
supported in the future.

14.4.3. Transactions

Implicit transactions are supported through the auto-commit and all the methods are non blocking.
Explicit transactions work without blocking in most of the cases. Methods that will block are size,
containsEntry and remove(Predicate<? super V> p)

240

Chapter 15. CDI Support

{brandname} includes integration with Contexts and Dependency Injection (better known as CDI)
via {brandname}'s infinispan-cdi-embedded or infinispan-cdi-remote module. CDI is part of Java EE
specification and aims for managing beans' lifecycle inside the container. The integration allows to
inject Cache interface and bridge Cache and CacheManager events. JCache annotations (JSR-107)
are supported by infinispan-jcache and infinispan-jcache-remote artifacts. For more information
have a look at Chapter 11 of the JCACHE specification.

15.1. Maven Dependencies
To include CDI support for {brandname} in your project, use one of the following dependencies:

pom.xml for Embedded mode

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-cdi-embedded</artifactId>
<version>${version.infinispan}</version>
</dependency>

Replace ${version.infinispan} with the appropriate version of {brandname}.

pom.xml for Remote mode
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-cdi-remote</artifactId>

<version>${version.infinispan}</version>
</dependency>

Replace ${version.infinispan} with the appropriate version of {brandname}.

Q Which version of {brandname} should I use?

We recommend using the latest final version {brandname}.

15.2. Embedded cache integration

15.2.1. Inject an embedded cache

By default you can inject the default {brandname} cache. Let’s look at the following example:

241

http://www.cdi-spec.org
http://www.oracle.com/technetwork/java/javaee/tech/index-jsp-142185.html
http://www.oracle.com/technetwork/java/javaee/tech/index-jsp-142185.html
http://download.oracle.com/otndocs/jcp/jcache-1_0-fr-spec/index.html

Default cache injection

import javax.inject.Inject;

public class GreetingService {

private Cache<String, String> cache;

public String greet(String user) {
String cachedValue = cache.get(user);
if (cachedValue == null) {
cachedValue = "Hello " + user;
cache.put(user, cachedValue);

}

return cachedValue;

If you want to use a specific cache rather than the default one, you just have to provide your own
cache configuration and cache qualifier. See example below:

Qualifier example
import javax.inject.Qualifier;
({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD})

(RetentionPolicy.RUNTIME)

public GreetingCache {

242

Injecting Cache with qualifier

import org.infinispan.configuration.cache.Configuration;

import org.infinispan.configuration.cache.ConfigurationBuilder;
import org.infinispan.cdi.ConfigureCache;

import javax.enterprise.inject.Produces;

public class Config {

@ConfigureCache("greeting-cache") // This is the cache name.
@GreetingCache // This is the cache qualifier.
@Produces
public Configuration greetingCacheConfiguration() {
return new ConfigurationBuilder()
.memory ()
.size(1000)

.build();

}

// The same example without providing a custom configuration.
// In this case the default cache configuration will be used.
@ConfigureCache("greeting-cache")

@GreetingCache

@Produces

public Configuration greetingCacheConfiguration;

To use this cache in the GreetingService add the @GeetingCache qualifier on your cache injection
point.

15.2.2. Override the default embedded cache manager and configuration

You can override the default cache configuration used by the default EmbeddedCacheManager. For that,
you just have to create a Configuration producer with default qualifiers as illustrated in the
following snippet:

243

Overriding Configuration

public class Config {
// By default (DI adds the @Default qualifier if no other qualifier is provided.

public Configuration defaultEmbeddedCacheConfiguration() {
return new ConfigurationBuilder()
.memory ()
.size(100)
.build();

It’s also possible to override the default EmbeddedCacheManager. The newly created manager must
have default qualifiers and Application scope.

Overriding EmbeddedCacheManager

import javax.enterprise.context.ApplicationScoped;

public class Config {

public EmbeddedCacheManager defaultEmbeddedCacheManager() {
return new DefaultCacheManager(new ConfigurationBuilder()
.memory()
.Size(100)
.build());

15.2.3. Configure the transport for clustered use

To use {brandname} in a clustered mode you have to configure the transport with the
GlobalConfiguration. To achieve that override the default cache manager as explained in the
previous section. Look at the following snippet:

244

Overriding default EmbeddedCacheManager

package org.infinispan.configuration.global.GlobalConfigurationBuilder;

public EmbeddedCacheManager defaultClusteredCacheManager() {
return new DefaultCacheManager(
new GlobalConfigurationBuilder().transport().defaultTransport().build(),
new ConfigurationBuilder().memory().size(7).build()

)

15.3. Remote cache integration

15.3.1. Inject a remote cache

With the CDI integration it’s also possible to use a Remote(ache as illustrated in the following snippet:

Injecting RemoteCache

public class GreetingService {

private RemoteCache<String, String> cache;

public String greet(String user) {
String cachedValue = cache.get(user);
if (cachedValue == null) {
cachedValue = "Hello " + user;
cache.put(user, cachedValue);

}

return cachedValue;

If you want to use another cache, for example the greeting-cache, add the @Remote qualifier on the
cache injection point which contains the cache name.

245

Injecting RemoteCache with qualifier

public class GreetingService {

("greeting-cache")
private RemoteCache<String, String> cache;

Adding the @Remote cache qualifier on each injection point might be error prone. That’'s why the
remote cache integration provides another way to achieve the same goal. For that you have to
create your own qualifier annotated with @Remote:

RemoteCache qualifier
("greeting-cache")

({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD})
(RetentionPolicy.RUNTIME)

public RemoteGreetingCache {
}

To use this cache in the GreetingService add the qualifier @RemoteGreetingCache qualifier on your
cache injection.

15.3.2. Override the default remote cache manager

Like the embedded cache integration, the remote cache integration comes with a default remote
cache manager producer. This default RemoteCacheManager can be overridden as illustrated in the
following snippet:

Overriding default RemoteCacheManager

public class Config {

public RemoteCacheManager defaultRemoteCacheManager() {
return new RemoteCacheManager(localhost, 1544);

}

246

15.4. Use a custom remote/embedded cache manager
for one or more cache

It’s possible to use a custom cache manager for one or more cache. You just need to annotate the
cache manager producer with the cache qualifiers. Look at the following example:

public class Config {

public EmbeddedCacheManager specificEmbeddedCacheManager() {
return new DefaultCacheManager(new ConfigurationBuilder()
.expiration()
.lifespan(600001)
.build());

public RemoteCacheManager specificRemoteCacheManager() {
return new RemoteCacheManager("localhost", 1544);

}

With the above code the GreetingCache or the RemoteGreetingCache will be associated with the
produced cache manager.

Producer method scope

ﬁ To work properly the producers must have the scope @ApplicationScoped .
Otherwise each injection of cache will be associated to a new instance of cache
manager.

15.5. Use JCache caching annotations

Q There is now a separate module for JSR 107 (JCACHE) integration, including API.
See this chapter for details.

When CDI integration and JCache artifacts are present on the classpath, it is possible to use JCache
annotations with CDI managed beans. These annotations provide a simple way to handle common
use cases. The following caching annotations are defined in this specification:

* @CacheResult - caches the result of a method call

» @CachePut - caches a method parameter

» @CacheRemoveEntry - removes an entry from a cache

247

#jcache_jsr_107

e @CacheRemoveAll - removes all entries from a cache

g Annotations target type

These annotations must only be used on methods.

To use these annotations, proper interceptors need to be declared in beans. xml file:

Interceptors for managed environments such as Application Servers

<?xml version="1.0" encoding="UTF-8"7>

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
version="1.2" bean-discovery-mode="annotated">

<interceptors>
<class>org.infinispan.jcache.annotation.InjectedCacheResultInterceptor</class>
<class>org.infinispan.jcache.annotation.InjectedCachePutInterceptor</class>
<class>
org.infinispan.jcache.annotation.InjectedCacheRemoveEntryInterceptor</class>
<class>org.infinispan.jcache.annotation.InjectedCacheRemoveAllInterceptor</class>
</interceptors>
</beans>

Interceptors for unmanaged environments such as standalone applications

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
version="1.2" bean-discovery-mode="annotated">

<interceptors>
<class>org.infinispan.jcache.annotation.CacheResultInterceptor</class>
<class>org.infinispan.jcache.annotation.CachePutInterceptor</class>
<class>org.infinispan.jcache.annotation.CacheRemoveEntryInterceptor</class>
<class>org.infinispan.jcache.annotation.CacheRemoveAllInterceptor</class>
</interceptors>
</beans>

The following snippet of code illustrates the use of @CacheResult annotation. As you can see it
simplifies the caching of the Greetingservicefigreet method results.

248

Using JCache annotations
import javax.cache.interceptor.CacheResult;

public class GreetingService {

public String greet(String user) {
return "Hello" + user;

}

The first version of the GreetingService and the above version have exactly the same behavior. The
only difference is the cache used. By default it’s the fully qualified name of the annotated method
with its parameter types (e.g. org.infinispan.example.GreetingService.greet(java.lang.String)).

Using other cache than default is rather simple. All you need to do is to specify its name with the
cacheName attribute of the cache annotation. For example:

Specifying cache name for JCache

(cacheName = "greeting-cache")

15.6. Use Cache events and CDI

It is possible to receive Cache and Cache Manager level events using CDI Events. You can achieve it
using @0bserves annotation as shown in the following snippet:

Event listeners based on CDI
import javax.enterprise.event.Observes;
import org.infinispan.notifications.cachemanagerlistener.event.CacheStartedEvent;
import org.infinispan.notifications.cachelistener.event.*;

public class GreetingService {

// Cache level events

private void entryRemovedFromCache(CacheEntryCreatedEvent event) {
}
// Cache Manager level events
private void cacheStarted(CacheStartedEvent event) {
}
}
Q Check Listeners and Notifications for more information about event types.

249

#listeners_and_notifications

Chapter 16. JCache (JSR-107) provider

{brandname} provides an implementation of JCache 1.0 API (JSR-107). JCache specifies a standard
Java API for caching temporary Java objects in memory. Caching java objects can help get around
bottlenecks arising from using data that is expensive to retrieve (i.e. DB or web service), or data
that is hard to calculate. Caching these type of objects in memory can help speed up application
performance by retrieving the data directly from memory instead of doing an expensive roundtrip
or recalculation. This document specifies how to use JCache with {brandname}'s implementation of
the specification, and explains key aspects of the API.

16.1. Dependencies

In order to start using {brandname} JCache implementation, a single dependency needs to be added
to the Maven pom.xml file:

pom.xml

<dependency>
<groupId>org.infinispan</groupld>
<artifactId>infinispan-jcache</artifactId>
<version>${version.infinispan}</version>
<scope>test</scope>

</dependency>

Replace ${version.infinispan} with the appropriate version of {brandname}.

16.2. Create a local cache

Creating a local cache, using default configuration options as defined by the JCache API
specification, is as simple as doing the following:

import javax.cache.*;
import javax.cache.configuration.*;

// Retrieve the system wide cache manager
CacheManager cacheManager = Caching.getCachingProvider().getCacheManager();
// Define a named cache with default JCache configuration
Cache<String, String> cache = cacheManager.createCache("namedCache",
new MutableConfiguration<String, String>());

By default, the JCache API specifies that data should be stored as storeByValue, so
that object state mutations outside of operations to the cache, won’t have an

A impact in the objects stored in the cache. {brandname} has so far implemented
this using serialization/marshalling to make copies to store in the cache, and that
way adhere to the spec. Hence, if using default JCache configuration with
{brandname}, data stored must be marshallable.

250

http://www.jcp.org/en/jsr/detail?id=107

Alternatively, JCache can be configured to store data by reference (just like {brandname} or JDK
Collections work). To do that, simply call:

Cache<String, String> cache = cacheManager.createCache("namedCache",
new MutableConfiguration<String, String>().setStoreByValue(false));

16.3. Create a remote cache

Creating a remote cache (client-server mode), using default configuration options as defined by the
JCache API specification, is as simple as doing the following:

import javax.cache.*;
import javax.cache.configuration.*;

// Retrieve the system wide cache manager via

org.infinispan.jcache.remote.JCachingProvider

CacheManager cacheManager = Caching.getCachingProvider(

"org.infinispan.jcache.remote.JCachingProvider").getCacheManager();

// Define a named cache with default JCache configuration

Cache<String, String> cache = cacheManager.createCache("remoteNamedCache",
new MutableConfiguration<String, String>());

In order to use the org.infinispan.jcache.remote.JCachingProvider, infinispan-
jcache-remote-<version>.jar and all its transitive dependencies need to be on put
your classpath.

16.4. Store and retrieve data

Even though JCache API does not extend neither java.util. Map not
java.util.concurrent.ConcurrentMap, it providers a key/value API to store and retrieve data:

import javax.cache.*;
import javax.cache.configuration.*;

CacheManager cacheManager = Caching.getCacheManager();
Cache<String, String> cache = cacheManager.createCache("namedCache",
new MutableConfiguration<String, String>());
cache.put("hello", "world"); // Notice that javax.cache.Cache.put(K) returns void!
String value = cache.get("hello"); // Returns "world"

Contrary to standard java.util.Map, javax.cache.Cache comes with two basic put methods called put
and getAndPut. The former returns void whereas the latter returns the previous value associated
with the key. So, the equivalent of java.util. Map.put(K) in JCache is javax.cache.Cache.getAndPut(K).

251

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java#L230

Even though JCache API only covers standalone caching, it can be plugged with a
persistence store, and has been designed with clustering or distribution in mind.
The reason why javax.cache.Cache offers two put methods is because standard
java.util.Map put call forces implementors to calculate the previous value. When a
persistent store is in use, or the cache is distributed, returning the previous value

Q could be an expensive operation, and often users call standard java.util. Map.put(K)
without using the return value. Hence, JCache users need to think about whether
the return value is relevant to them, in which case they need to call
javax.cache.Cache.getAndPut(K) , otherwise they can call java.util. Map.put(K, V)
which avoids returning the potentially expensive operation of returning the
previous value.

16.5. Comparing java.util.concurrent.ConcurrentMap
and javax.cache.Cache APIs

Here’s a brief comparison of the data manipulation APIs provided by
java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs.

Operation java.util.concurrent.Concurren javax.cache.Cache<K, V>
tMap<K, V>
store and no return N/A void put(K key)
store and return previous value V put(K key) V getAndPut(K key)
store if not present V putIfAbsent(K key, V value) boolean putIfAbsent(K key, V
value)
retrieve V get(Object key) V get(K key)
delete if present V remove(Object key) boolean remove(K key)
delete and return previous V remove(Object key) V getAndRemove(K key)
value
delete conditional boolean remove(Object key, boolean remove(K key, V
Object value) oldValue)
replace if present V replace(K key, V value) boolean replace(K key, V
value)
replace and return previous V replace(K key, V value) V getAndReplace(K key, V
value value)
replace conditional boolean replace(K key, V boolean replace(K key, V
oldValue, V newValue) oldValue, V newValue)

Comparing the two APIs, it’s obvious to see that, where possible, JCache avoids returning the
previous value to avoid operations doing expensive network or 10 operations. This is an overriding
principle in the design of JCache API. In fact, there’s a set of operations that are present in
java.util.concurrent.ConcurrentMap , but are not present in the javax.cache.Cache because they
could be expensive to compute in a distributed cache. The only exception is iterating over the
contents of the cache:

252

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java#L230
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java

Operation

tMap<K, V>
calculate size of cache int size()
return all keys in the cache Set<K> keySet()

return all values in the cache Collection<V> values()

return all entries in the cache Set<Map.Entry<K, V>>
entrySet()

iterate over the cache use iterator() method on
keySet, values or entrySet

16.6. Clustering JCache instances

java.util.concurrent.Concurren javax.cache.Cache<K, V>

N/A
N/A
N/A
N/A

Iterator<Cache.Entry<K, V>>
iterator()

{brandname} JCache implementation goes beyond the specification in order to provide the
possibility to cluster caches using the standard API. Given a {brandname} configuration file

configured to replicate caches like this:
infinispan.xml

<infinispan>
<cache-container default-cache="namedCache">
<transport cluster="jcache-cluster" />
<replicated-cache name="namedCache" />
</cache-container>
</infinispan>

You can create a cluster of caches using this code:

253

import javax.cache.*;
import java.net.URI;

// For multiple cache managers to be constructed with the standard JCache API

// and live in the same JVM, either their names, or their classloaders, must

// be different.

// This example shows how to force their classloaders to be different.

// An alternative method would have been to duplicate the XML file and give

// it a different name, but this results in unnecessary file duplication.

(lassLoader tccl = Thread.currentThread().getContextClassLoader();

CacheManager cacheManager1 = Caching.getCachingProvider().getCacheManager (
URI.create("infinispan-jcache-cluster.xml"), new TestClassLoader(tccl));

CacheManager cacheManager2 = Caching.getCachingProvider().getCacheManager(
URI.create("infinispan-jcache-cluster.xml"), new TestClassLoader(tccl));

cacheManager1.getCache("namedCache");
cacheManager?2.getCache("namedCache");

Cache<String, String> cachel
Cache<String, String> cache?

cachel.put("hello", "world");
String value = cache2.get("hello"); // Returns "world" if clustering is working

/] --

public static class TestClasslLoader extends ClassLoader {
public TestClasslLoader(ClassLoader parent) {
super(parent);
}
}

254

Chapter 17. Management Tooling

Management of {brandname} instances is all about exposing as much relevant statistical
information that allows administrators to get a view of the state of each {brandname} instance.
Taking in account that a single installation could be made up of several tens or hundreds
{brandname} instances, providing clear and concise information in an efficient manner is
imperative. The following sections dive into the range of management tooling that {brandname}
provides.

17.1. JMX

Over the years, JMX has become the de facto standard for management and administration of
middleware and as a result, the {brandname} team has decided to standardize on this technology
for the exposure of management and statistical information.

17.1.1. Understanding The Exposed MBeans

By connecting to the VM(s) where {brandname} is running with a standard JMX GUI such as
JConsole or VisualVM you should find the following MBeans:

* For CacheManager level JMX statistics, without further configuration, you should see an MBean
called org.infinispan:type=CacheManager,name="DefaultCacheManager” with properties
specified by the CacheManager MBean .

* Using the cacheManagerName attribute in globaljmxStatistics XML element, or using the
corresponding GlobalJmxStatisticsConfigurationBuilder.cacheManagerName(String
cacheManagerName) call, you can name the cache manager in such way that the name is used
as part of the JMX object name. So, if the name had been "Hibernate2L.C", the JMX name for the
cache manager would have been: org.infinispan:type=CacheManager,name="Hibernate2LC" .
This offers a nice and clean way to manage environments where multiple cache managers are
deployed, which follows JMX best practices .

» For Cache level JMX statistics, you should see several different MBeans depending on which
configuration options have been enabled. For example, if you have configured a write behind
cache store, you should see an MBean exposing properties belonging to the cache store

component. All Cache level MBeans follow the same format though which is the following:
org.infinispan:type=Cache,name="${name-of-cache}(${cache-mode})",manager="${name-of-cache-

manager}", component=${component-name} where:

* ${name-of-cache} has been substituted by the actual cache name. If this cache represents the
default cache, its name will be ___defaultCache.

* ${cache-mode} has been substituted by the cache mode of the cache. The cache mode is
represented by the lower case version of the possible enumeration values shown here.

* ${name-of-cache-manager} has been substituted by the name of the cache manager to which
this cache belongs. The name is derived from the cacheManagerName attribute value in
globallmxStatistics element.

* ${component-name} has been substituted by one of the JMX component names in the JMX
reference documentation .

255

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
https://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html
https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/
https://docs.jboss.org/infinispan/9.4/apidocs/jmxComponents.html#CacheManager
https://docs.jboss.org/infinispan/9.4/apidocs/jmxComponents.html#CacheManager
http://www.oracle.com/technetwork/java/javase/tech/best-practices-jsp-136021.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/configuration/cache/CacheMode
https://docs.jboss.org/infinispan/9.4/apidocs/jmxComponents.html
https://docs.jboss.org/infinispan/9.4/apidocs/jmxComponents.html

For example, the cache store JMX component MBean for a default cache configured with

synchronous distribution would have the following name:
org.infinispan:type=Cache,name="___defaultcache(dist_sync)",manager="DefaultCacheManager", compo
nent=CacheStore

Please note that cache and cache manager names are quoted to protect against illegal characters
being used in these user-defined names.

17.1.2. Enabling JMX Statistics

The MBeans mentioned in the previous section are always created and registered in the
MBeanServer allowing you to manage your caches but some of their attributes do not expose
meaningful values unless you take the extra step of enabling collection of statistics. Gathering and
reporting statistics via JMX can be enabled at 2 different levels:

CacheManager level

The CacheManager is the entity that governs all the cache instances that have been created from it.
Enabling CacheManager statistics collections differs depending on the configuration style:

* If configuring the CacheManager via XML, make sure you add the following XML under the
<cache-container /> element:

<cache-container statistics="true"/>
* If configuring the CacheManager programmatically, simply add the following code:

GlobalConfigurationBuilder globalConfigurationBuilder = ...
globalConfigurationBuilder.globalJmxStatistics().enable();

Cache level

At this level, you will receive management information generated by individual cache instances.
Enabling Cache statistics collections differs depending on the configuration style:

o If configuring the Cache via XML, make sure you add the following XML under the one of the
top level cache elements, such as <local-cache />:

<local-cache statistics="true"/>
* If configuring the Cache programmatically, simply add the following code:

ConfigurationBuilder configurationBuilder = ...
configurationBuilder.jmxStatistics().enable();

256

17.1.3. Monitoring cluster health

It is also possible to monitor {brandname} cluster health using JMX. On CacheManager there’s an
additional object called CacheContainerHealth. It contains the following attributes:

» cacheHealth - a list of caches and corresponding statuses (HEALTHY, UNHEALTHY or
REBALANCING)

* clusterHealth - overall cluster health

* clusterName - cluster name

» freeMemoryKb - Free memory obtained from JVM runtime measured in KB

* numberOfCpus - The number of CPUs obtained from JVM runtime

* numberOfNodes - The number of nodes in the cluster

 totalMemoryKb - Total memory obtained from JVM runtime measured in KB

17.1.4. Multiple JMX Domains

There can be situations where several CacheManager instances are created in a single VM, or Cache
names belonging to different CacheManagers under the same VM clash.

Using different JMX domains for multi cache manager environments should be last resort. Instead,
it’s possible to name a cache manager in such way that it can easily be identified and used by
monitoring tools. For example:

e Via XML:
<cache-container statistics="true" name="Hibernate2LC"/>
* Programmatically:

GlobalConfigurationBuilder globalConfigurationBuilder = ...
globalConfigurationBuilder.globalJmxStatistics()

.enable()

.cacheManagerName("Hibernate2LC");

Using either of these options should result on the CacheManager MBean name being:
org.infinispan:type=CacheManager,name="Hibernate2LC"

For the time being, you can still set your own jmxDomain if you need to and we also allow duplicate
domains, or rather duplicate JMX names, but these should be limited to very special cases where
different cache managers within the same JVM are named equally.

17.1.5. Registering MBeans In Non-Default MBean Servers

Let’s discuss where {brandname} registers all these MBeans. By default, {brandname} registers
them in the standard JVM MBeanServer platform . However, users might want to register these

257

https://docs.oracle.com/javase/8/docs/api/java/lang/management/ManagementFactory.html#getPlatformMBeanServer--

MBeans in a different MBeanServer instance. For example, an application server might work with a
different MBeanServer instance to the default platform one. In such cases, users should implement
the MBeanServerLookup interface provided by {brandname} so that the getMBeanServer() method
returns the MBeanServer under which {brandname} should register the management MBeans.
Once you have your implementation ready, simply configure {brandname} with the fully qualified
name of this class. For example:

* Via XML:

<cache-container statistics="true">
<jmx mbean-server-lookup="com.acme.MyMBeanServerLookup" />
</cache-container>

* Programmatically:

GlobalConfigurationBuilder globalConfigurationBuilder = ...
globalConfigurationBuilder.globalJmxStatistics()

.enable()

.mBeanServerLookup(new com.acme.MyMBeanServerLookup());

17.1.6. Available MBeans

For a complete list of available MBeans, refer to the JMX reference documentation

17.2. Command-Line Interface (CLI)

{brandname} offers a simple Command-Line Interface (CLI) with which it is possible to interact
with the data within the caches and with most of the internal components (e.g. transactions, cross-
site backups, rolling upgrades).

The CLI is built out of two elements: a server-side module and the client command tool. The server-
side module (infinispan-cli-server-$VERSION.jar) provides the actual interpreter for the
commands and needs to be included alongside your application. {brandname} Server includes CLI
support out of the box.

Currently the server (and the client) use the JMX protocol to communicate, but in a future release
we plan to support other communication protocols (in particular our own Hot Rod).

The CLI offers both an interactive and a batch mode. To invoke the client, just run the provided
bin/ispn-cli.[sh|bat] script. The following is a list of command-line switches which affect how the
CLI can be started:

258

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/jmx/MBeanServerLookup.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/jmx/MBeanServerLookup.html#getMBeanServer--
https://docs.jboss.org/infinispan/9.4/apidocs/jmxComponents.html

-c¢, --connect=URL connects to a running instance of Infinispan.
JMX over RMI
jmx://[username[:password]]@host:port[/container[/cache]]
JMX over JBoss remoting
remoting://[username[:password]]@host:port[/container[/cache]]
-f, --file=FILE reads input from the specified file instead of using

interactive mode. If FILE is '-', then commands will be read

from stdin
-h, --help shows this help page
-v, --version shows version information

* JMX over RMI is the traditional way in which JMX clients connect to MBeanServers. Please refer
to the JDK Monitoring and Management documentation for details on how to configure the
process to be monitored

* JMX over JBoss Remoting is the protocol of choice when your {brandname} application is
running within WildFly or EAP.

The connection to the application can also be initiated from within the CLI using the connect
command.

[disconnected//]> connect jmx://localhost:12000
[jmx://localhost:12000/MyCacheManager/>

The CLI prompt will show the active connection information, including the currently selected
CacheManager. Initially no cache is selected so, before performing any cache operations, one must
be selected. For this the cache command is used. The CLI supports tab-completion for all commands
and options and for most parameters where it makes sense to do so. Therefore typing cache and
pressing TAB will show a list of active caches:

[jmx://localhost:12000/MyCacheManager/> cache
___defaultcache namedCache
[jmx://localhost:12000/MyCacheManager/]> cache defaultcache

[jmx://1localhost:12000/MyCacheManager/___defaultcache]>

Pressing TAB at an empty prompt will show the list of all available commands:

alias cache container encoding get locate remove
site upgrade

abort clearcache create end help put replace
start version

begin commit disconnect evict info quit rollback
stats

The CLI is based on Ash and therefore offers many keyboard shortcuts to navigate and search the

259

http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html
https://github.com/aeshell/aesh

history of commands, to manipulate the cursor at the prompt, including both Emacs and VI modes
of operation.

17.2.1. Commands

abort

The abort command is used to abort a running batch initiated by the start command

[jmx://1localhost:12000/MyCacheManager/namedCache]> start
[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> abort
[jmx://localhost:12000/MyCacheManager/namedCache]> get a
null

begin

The begin command starts a transaction. In order for this command to work, the cache(s) on which
the subsequent operations are invoked must have transactions enabled.

[jmx://1localhost:12000/MyCacheManager/namedCache]> begin
[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://1localhost:12000/MyCacheManager/namedCache]> put b b
[jmx://1localhost:12000/MyCacheManager/namedCache]> commit

cache

The cache command selects the cache to use as default for all subsequent operations. If it is invoked
without parameters it shows the currently selected cache.

[jmx://localhost:12000/MyCacheManager/___defaultcache]> cache
___defaultcache
[jmx://1localhost:12000/MyCacheManager/___defaultcache]>

[jmx://localhost:12000/MyCacheManager/namedCache]> cache defaultcache

clearcache

The clearcache command clears a cache from all content.
[jmx://1localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> clearcache

[jmx://1localhost:12000/MyCacheManager/namedCache]> get a
null

260

commit

The commit command commits an ongoing transaction

[jmx://1localhost:12000/MyCacheManager/namedCache]> begin
[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://1localhost:12000/MyCacheManager/namedCache]> put b b
[jmx://localhost:12000/MyCacheManager/namedCache]> commit

container

The container command selects the default container (cache manager). Invoked without parameters
it lists all available containers

[jmx://localhost:12000/MyCacheManager/namedCache]> container

MyCacheManager OtherCacheManager
[jmx://localhost:12000/MyCacheManager/namedCache]> container OtherCacheManager
[jmx://1localhost:12000/0therCacheManager/]>

create

The create command creates a new cache based on the configuration of an existing cache definition

[jmx://1localhost:12000/MyCacheManager/namedCache]> create newCache like namedCache
[jmx://1localhost:12000/MyCacheManager/namedCache]> cache newCache
[jmx://1localhost:12000/MyCacheManager/newCache]>

deny

When authorization is enabled and the role mapper has been configured to be the
ClusterRoleMapper, principal to role mappings are stored within the cluster registry (a replicated
cache available to all nodes). The deny command can be used to deny roles previously assigned to a
principal:

[remoting://localhost:9999]> deny supervisor to user]

disconnect

The disconnect command disconnects the currently active connection allowing the CLI to connect to
another instance.

[jmx://1localhost:12000/MyCacheManager/namedCache]> disconnect
[disconnected//]

261

encoding

The encoding command is used to set a default codec to use when reading/writing entries from/to a
cache. When invoked without arguments it shows the currently selected codec. This command is
useful since currently remote protocols such as HotRod and Memcached wrap keys and values in
specialized structures.

[jmx://localhost:12000/MyCacheManager/namedCache]> encoding

none

[jmx://1localhost:12000/MyCacheManager/namedCache]> encoding --list
memcached

hotrod

none

rest

[jmx://1localhost:12000/MyCacheManager/namedCache]> encoding hotrod

end

The end command is used to successfully end a running batch initiated by the start command

[jmx://localhost:12000/MyCacheManager/namedCache]> start
[jmx://1localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> end
[jmx://1localhost:12000/MyCacheManager/namedCache]> get a

a

evict

The evict command is used to evict from the cache the entry associated with a specific key.

[jmx://1localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://1localhost:12000/MyCacheManager/namedCache]> evict a

get

The get command is used to show the value associated to a specified key. For primitive types and
Strings, the get command will simply print the default representation. For other objects, a JSON
representation of the object will be printed.

[jmx://1localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> get a
a

grant

When authorization is enabled and the role mapper has been configured to be the

262

ClusterRoleMapper, principal to role mappings are stored within the cluster registry (a replicated
cache available to all nodes). The grant command can be used to grant new roles to a principal:

[remoting://localhost:9999]> grant supervisor to userT

info

The info command is used to show the configuration of the currently selected cache or container.

[jmx://localhost:12000/MyCacheManager/namedCache]> info
GlobalConfiguration{asyncListenerExecutor=ExecutorFactoryConfiguration{factory=org.inf
inispan.executors.DefaultExecutorFactory@98add58},
asyncTransportExecutor=ExecutorFactoryConfiguration{factory=org.infinispan.executors.D
efaultExecutorFactory@7bc9cl4c},
evictionScheduledExecutor=ScheduledExecutorFactoryConfiguration{factory=org.infinispan
.executors.DefaultScheduledExecutorFactory@7ab1a411},
replicationQueueScheduledExecutor=ScheduledExecutorFactoryConfiguration{factory=org.in
finispan.executors.DefaultScheduledExecutorFactory@248a9705},
globalJmxStatistics=GloballmxStatisticsConfiguration{allowDuplicateDomains=true,
enabled=true, jmxDomain='jboss.infinispan',
mBeanServerLookup=org.jboss.as.clustering.infinispan.MBeanServerProvider@bc@dc@1,
cacheManagerName="1ocal', properties={}},
transport=TransportConfiguration{clusterName="ISPN', machineId="null', rackId="null',
siteld="null', strictPeerToPeer=false, distributedSyncTimeout=240000, transport=null,
nodeName="null', properties={}},
serialization=SerializationConfiguration{advancedExternalizers={1100=org.infinispan.se
rver.core.CacheValue$Externalizer@sfabc91d,
1101=org.infinispan.server.memcached.MemcachedValue$Externalizer@720bffd,
1104=org.infinispan.server.hotrod.ServerAddress$Externalizer@771c7eb2},
marshaller=org.infinispan.marshall.VersionAwareMarshaller@6fc21535, version=52,
classResolver=org.jboss.marshalling.ModularClassResolver@2efe83e5},
shutdown=ShutdownConfiguration{hookBehavior=DONT_REGISTER}, modules={},
site=SiteConfiguration{localSite="null'}}

locate
The locate command shows the physical location of a specified entry in a distributed cluster.

[jmx://localhost:12000/MyCacheManager/namedCache]> locate a
[host/nodel, host/node?]

put

The put command inserts an entry in the cache. If the cache previously contained a mapping for the
key, the old value is replaced by the specified value. The user can control the type of data that the
CLI will use to store the key and value. See the Data Types section.

263

#data_types

[jmx
[jmx
[jmx
[jmx
[jmx

X

://localhost
://1localhost
://1localhost
://1localhost
://localhost

:12000/MyCacheManager/namedCache]>
:12000/MyCacheManager/namedCache]>
:12000/MyCacheManager/namedCache]>
:12000/MyCacheManager/namedCache]>
:12000/MyCacheManager/namedCache]>

: null, "b": true } }

put a a

put b 100

put c 41391

put d true

put e { "package.MyClass": {"i": 5,

The put command can optionally specify a lifespan and a maximum idle time.

[jmx://1localhost:12000/MyCacheManager/namedCache]> put a a expires 10s
[jmx://localhost:12000/MyCacheManager/namedCache]> put a a expires 10m maxidle Tm

replace

The replace command replaces an existing entry in the cache. If an old value is specified, then the
replacement happens only if the value in the cache coincides.

[jmx
[jmx
[jmx
b

[jmx
[jmx
c

[jmx
[jmx
c

roles

://localhost
://localhost
://localhost

://localhost
://localhost

://localhost
://localhost

:12000/MyCacheManager/namedCache]>
:12000/MyCacheManager/namedCache]>
:12000/MyCacheManager/namedCache]>

:12000/MyCacheManager/namedCache]>
:12000/MyCacheManager/namedCache]>

:12000/MyCacheManager/namedCache]>
:12000/MyCacheManager/namedCache]>

put a a
replace a b
get a

replace a b ¢
get a

replace a b d
get a

When authorization is enabled and the role mapper has been configured to be the
ClusterRoleMapper, principal to role mappings are stored within the cluster registry (a replicated
cache available to all nodes). The roles command can be used to list the roles associated to a specific
user, or to all users if one is not given:

[remoting://localhost:9999]> roles user1
[supervisor, reader]

rollback

The rollback command rolls back an ongoing transaction

264

[jmx://1localhost:12000/MyCacheManager/namedCache]> begin

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://1localhost:12000/MyCacheManager/namedCache]> put b b
[jmx://1localhost:12000/MyCacheManager/namedCache]> rollback

site

The site command performs operations related to the administration of cross-site replication. It can
be used to obtain information related to the status of a site and to change the status (online/offline)

[jmx://1localhost:12000/MyCacheManager/namedCache]> site --status NYC
online

[jmx://1localhost:12000/MyCacheManager/namedCache]> site --offline NYC
ok

[jmx://1localhost:12000/MyCacheManager/namedCache]> site --status NYC
offline

[jmx://1localhost:12000/MyCacheManager/namedCache]> site --online NYC

start

The start command initiates a batch of operations.

[jmx://localhost:12000/MyCacheManager/namedCache]> start
[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://1localhost:12000/MyCacheManager/namedCache]> put b b
[jmx://localhost:12000/MyCacheManager/namedCache]> end

stats

The stats command displays statistics about a cache

265

[jmx://localhost:12000/MyCacheManager/namedCache]> stats

Statistics: {
averageWriteTime: 143
evictions: 10
misses: 5
hitRatio: 1.0
readWriteRatio: 10.0
removeMisses: 0
timeSinceReset: 2123
statisticsEnabled: true
stores: 100
elapsedTime: 93
averageReadTime: 14
removeHits: @
numberOfEntries: 100
hits: 1000

}

LockManager: {
concurrencylLevel: 1000
numberOfLocksAvailable: 0
numberOfLocksHeld: 0

}

17.2.2. upgrade

The upgrade command performs operations used during the rolling upgrade procedure. For a
detailed description of this procedure please see Rolling Upgrades.

[jmx://1localhost:12000/MyCacheManager/namedCache]> upgrade --synchronize=hotrod --all
[jmx://1localhost:12000/MyCacheManager/namedCache]> upgrade --disconnectsource=hotrod
--all

17.2.3. version

The version command displays version information about both the CLI client and the server

[jmx://1localhost:12000/MyCacheManager/namedCache]> version
Client Version 5.2.1.Final
Server Version 5.2.1.Final

17.2.4. Data Types
The CLI understands the following types:

* string strings can either be quoted between single (') or double (") quotes, or left unquoted. In
this case it must not contain spaces, punctuation and cannot begin with a number e.g. 'a string’,

266

#rolling_upgrades

key001
* int an integer is identified by a sequence of decimal digits, e.g. 256
* long a long is identified by a sequence of decimal digits suffixed by 'T', e.g. 10001
* double

> a double precision number is identified by a floating point number(with optional exponent
part) and an optional 'd' suffix, e.g.3.14

» float

> a single precision number is identified by a floating point number(with optional exponent
part) and an 'f' suffix, e.g. 10.3f

* boolean a boolean is represented either by the keywords true and false

« UUID a UUID is represented by its canonical form XXXXXXXX-XXXX-XXXX-XXXX-
XXXXXXXXXXXX

* JSON serialized Java classes can be represented using JSON notation, e.g.
{"package.MyClass":{"1":5,"x":null,"b":true}}. Please note that the specified class must be
available to the CacheManager’s class loader.

17.2.5. Time Values

A time value is an integer number followed by time unit suffix: days (d), hours (h), minutes (m),
seconds (s), milliseconds (ms).

17.3. Hawt.io

Hawt.io, a slick, fast, HTML5-based open source management console, also has support for
{brandname}. Refer to Hawt.io’s documentation for information regarding this plugin.

17.4. Writing plugins for other management tools

Any management tool that supports JMX already has basic support for {brandname}. However,
custom plugins could be written to adapt the JMX information for easier consumption.

267

http://hawt.io
http://hawt.io/plugins/infinispan/

Chapter 18. Custom Interceptors

It is possible to add custom interceptors to {brandname}, both declaratively and programatically.
Custom interceptors are a way of extending {brandname} by being able to influence or respond to
any modifications to cache. Example of such modifications are: elements are
added/removed/updated or transactions are committed. For a detailed list refer to
CommandInterceptor APIL

18.1. Adding custom interceptors declaratively

Custom interceptors can be added on a per named cache basis. This is because each named cache
have its own interceptor stack. Following xml snippet depicts the ways in which a custom
interceptor can be added.

<local-cache name="cacheWithCustomInterceptors">
==
Define custom interceptors. All custom interceptors need to extend
org.jboss.cache.interceptors.base.CommandInterceptor
-->
<custom-interceptors>
<interceptor position="FIRST" class="com.mycompany.CustomInterceptor1">
<property name="attributeOne">valuel</property>
<property name="attributeTwo">value2</property>
</interceptor>
<interceptor position="LAST" class="com.mycompany.CustomInterceptor2"/>
<interceptor index="3" class="com.mycompany.CustomInterceptor1"/>
<interceptor before="org.infinispanpan.interceptors.Calllnterceptor" class=
"com.mycompany.CustomInterceptor2"/>
<interceptor after="org.infinispanpan.interceptors.Calllnterceptor" class=
"com.mycompany.CustomInterceptor1"/>
</custom-interceptors>
</local-cache>

18.2. Adding custom interceptors programatically

In order to do that one needs to obtain a reference to the AdvancedCache . This can be done ass
follows:

CacheManager cm = getCacheManager();//magic
Cache aCache = cm.getCache("aName");
AdvancedCache advCache = aCache.getAdvancedCache();

Then one of the addInterceptor() methods should be used to add the actual interceptor. For further
documentation refer to AdvancedCache javadoc.

268

{javadoc.root}/org/infinispan/interceptors/base/CommandInterceptor.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/AdvancedCache.html
{javadocJroot}/org/infinispan/AdvancedCache.html

18.3. Custom interceptor design

When writing a custom interceptor, you need to abide by the following rules.

+ * Custom interceptors must extend BaseCustomInterceptor * Custom interceptors must declare a
public, empty constructor to enable construction. * Custom interceptors will have setters for any
property defined through property tags used in the XML configuration.

269

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/interceptors/base/BaseCustomInterceptor.html

Chapter 19. Running on Cloud Services

In order to turn on Cloud support for {brandname} library mode, one needs to add a new
dependency to the classpath:

Cloud support in library mode

<dependency>
<groupIld>org.infinispan</groupId>
<artifactId>infinispan-cloud</artifactId>
<version>${version.infinispan}</version>
</dependency>

Replace ${version.infinispan} with the appropriate version of {brandname}.

The above dependency adds infinispan-core to the classpath as well as some default
configurations.

19.1. Generic Discovery protocols

The main difference between running {brandname} in a private environment and a cloud provider
is that in the latter node discovery becomes a bit trickier because things like multicast don’t work.
To circumvent this you can use alternate JGroups PING protocols. Before delving into the cloud-
specific, lets look at some generic discovery protocols.

19.1.1. TCPPing

The TCPPing approach contains a static list of the IP address of each member of the cluster in the
JGroups configuration file. While this works it doesn’t really help when cluster nodes are
dynamically added to the cluster.

Sample TCPPing configuration

<config>
<TCP bind_port="7800" />
<TCPPING timeout="3000"
initial_hosts=
"${jgroups.tcpping.initial_hosts:localhost[7800],1localhost[7801]}"
port_range="1"
num_initial_members="3"/>

</config>

See JGroups TCPPING for more information about TCPPing.

270

http://community.jboss.org/wiki/JGroupsTCPPING

19.1.2. GossipRouter

Another approach is to have a central server (Gossip, which each node will be configured to
contact. This central server will tell each node in the cluster about each other node.

The address (ip:port) that the Gossip router is listening on can be injected into the JGroups
configuration used by {brandname}. To do this pass the gossip routers address as a system property
to the JVM e.g. -DGossipRouterAddress="10.10.2.4[12001]" and reference this property in the JGroups
configuration that {brandname} is using e.g.

Sample TCPGOSSIP configuration

<config>

<TCP bind_port="7800" />

<TCPGOSSIP timeout="3000" initial_hosts="${GossipRouterAddress}"
num_initial_members="3" />

</config>
More on Gossip Router @ http://www.jboss.org/community/wiki/JGroupsGossipRouter

19.2. Amazon Web Services

When running on Amazon Web Service (AWS) platform and similar cloud based environment you
can use the S3_PING protocol for discovery.

19.2.1. S3_PING

You can configure your JGroups instances to use a shared storage to exchange the details of the
cluster nodes. S3_PING allows Amazon S3 to be used as the shared storage. Be sure that you have
signed up for Amazon S3 as well as EC2 to use this method.

Sample S3PING configuration

<config>
<TCP bind_port="7800" />
<S3_PING
secret_access_key="replace this with you secret access key"
access_key="replace this with your access key"
location="replace this with your S3 bucket location" />
</config>

19.2.2. JDBC_PING

A similar approach to S3_PING, but using a JDBC connection to a shared database. On EC2 that is
quite easy using Amazon RDS. See the JDBC_PING Wiki page for details.

271

http://community.jboss.org/docs/DOC-10890
http://community.jboss.org/wiki/JDBCPING

19.3. Microsoft Azure

{brandname} can be used on the Azure platform. Aside from using TCP_PING or GossipRouter,
there is an Azure-specific discovery protocol:

19.3.1. AZURE_PING

AZURE_PING uses a shared Azure Blob Storage to store discovery information. Configuration is as
follows:

<azure.AZURE_PING
storage_account_name="replace this with your account name"
storage_access_key="replace this with your access key"
container="replace this with your container name"

/>

19.4. Google Compute Engine

{brandname} can be used on the Google Compute Engine (GCE) platform. Aside from using
TCP_PING or GossipRouter, there is a GCE-specific discovery protocol:

19.4.1. GOOGLE_PING

GOOGLE_PING uses Google Cloud Storage (GCS) to store information about the cluster members.

<protocol type="GOOGLE_PING">
<property name="location">The name of the bucket</property>
<property name="access_key">The access key</property>
<property name="secret_access_key">The secret access key</property>
</protocol>

19.5. Kubernetes and OpenShift

Since OpenShift uses Kubernetes underneath both of them can use the same discovery protocol -
Kube_PING. The configuration is very straightforward:

Sample KUBE_PING configuration

<config>
<TCP bind_addr="${match-interface:eth.*}" />
<kubernetes.KUBE_PING />

</config>
The most important thing is to bind JGroups to eth@ interface, which is used by Docker containers

272

https://github.com/jgroups-extras/jgroups-kubernetes
https://docs.docker.com/engine/userguide/networking/dockernetworks/

for network communication.

KUBE_PING protocol is configured by environmental variables (which should be available inside a
container). The most important thing is to set KUBERNETES_NAMESPACE to proper namespace. It might
be either hardcoded or populated via Kubernetes' Downward APIL.

Since KUBE_PING uses Kubernetes API for obtaining available Pods, OpenShift requires adding
additional privileges. Assuming that oc project -q returns current namespace and default is the
service account name, one needs to run:

Adding additional OpenShift privileges

oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default -n $(oc
project -q)

After performing all above steps, the clustering should be enabled and all Pods should
automatically form a cluster within a single namespace.

19.5.1. Using Kubernetes and OpenShift Rolling Updates

Since Pods in Kubernetes and OpenShift are immutable, the only way to alter the configuration is to
roll out a new deployment. There are several different strategies to do that but we suggest using
Rolling Updates.

An example Deployment Configuration (Kubernetes uses very similar concept called Deployment)
looks like the following:

DeploymentConfiguration for Rolling Updates

- apiVersion: v1
kind: DeploymentConfig
metadata:
name: infinispan-cluster
spec:
replicas: 3
strategy:
type: Rolling
rollingParams:
updatePeriodSeconds: 10
intervalSeconds: 20
timeoutSeconds: 600
maxUnavailable: 1
maxSurge: 1
template:
spec:
containers:
- args:
- -Djboss.default.jgroups.stack=kubernetes
image: jboss/infinispan-server:latest
name: infinispan-server

273

https://docs.docker.com/engine/userguide/networking/dockernetworks/
https://github.com/kubernetes/kubernetes/tree/release-1.0/docs/user-guide/downward-api
https://docs.openshift.org/latest/dev_guide/deployments/deployment_strategies.html#when-to-use-a-rolling-deployment

ports:
- containerPort: 8181
protocol: TCP
- containerPort: 9990
protocol: TCP
- containerPort: 11211
protocol: TCP
- containerPort: 11222
protocol: TCP
- containerPort: 57600
protocol: TCP
- containerPort: 7600
protocol: TCP
- containerPort: 8080
protocol: TCP
env:
- name: KUBERNETES_NAMESPACE
valueFrom: {fieldRef: {apiVersion: v1, fieldPath: metadata.namespace}}
terminationMessagePath: /dev/termination-log
terminationGracePeriodSeconds: 90
livenessProbe:
exec:

command:

- /usr/local/bin/is_running.sh
initialDelaySeconds: 10
timeoutSeconds: 80
periodSeconds: 60
successThreshold: 1
failureThreshold: 5

readinessProbe:
exec:

command:

- /usr/local/bin/is_healthy.sh
initialDelaySeconds: 10
timeoutSeconds: 40
periodSeconds: 30
successThreshold: 2
failureThreshold: 5

It is also highly recommended to adjust the JGroups stack to discover new nodes (or leaves) more
quickly. One should at least adjust the value of FD_ALL timeout and adjust it to the longest GC Pause.

Other hints for tuning configuration parameters are:

* OpenShift should replace running nodes one by one. This can be achieved by adjusting
rollingParams (maxUnavailable: 1 and maxSurge: 1).

* Depending on the cluster size, one needs to adjust updatePeriodSeconds and intervalSeconds. The
bigger cluster size is, the bigger those values should be used.

* When using Initial State Transfer, the initialDelaySeconds value for both probes should be set to
higher value.

274

* During Initial State Transfer nodes might not respond to probes. The best results are achieved
with higher values of failureThreshold and successThreshold values.

19.5.2. Rolling upgrades with Kubernetes and OpenShift

Even though Rolling Upgrades and Rolling Update may sound similarly, they mean different things.
The Rolling Update is a process of replacing old Pods with new ones. In other words it is a process
of rolling out new version of an application. A typical example is a configuration change. Since Pods
are immutable, Kubernetes/OpenShift needs to replace them one by one in order to use the updated
configuration bits. On the other hand the Rolling Upgrade is a process of migrating data from one
{brandname} cluster to another one. A typical example is migrating from one version to another.

For both Kubernetes and OpenShift, the Rolling Upgrade procedure is almost the same. It is based
on a standard Rolling Upgrade procedure with small changes.

Key differences when upgrading using OpenShift/Kubernetes are:

* Depending on configuration, it is a good practice to use OpenShift Routes or Kubernetes Ingress
API to expose services to the clients. During the upgrade the Route (or Ingress) used by the
clients can be altered to point to the new cluster.

* Invoking CLI commands can be done by using Kubernetes (kubectl exec) or OpenShift clients

(oc exec). Here is an example: oc exec <POD_NAME>— '/opt/jboss/infinispan-server/bin/ispn-
cli.sh® '"-¢' '--controller=$(hostname -i):9990' '/subsystem=datagrid-infinispan/cache-
container=clustered/distributed-cache=default:disconnect-source(migrator-name=hotrod)'

Key differences when upgrading using the library mode:

* Client application needs to expose JMX. It usually depends on application and environment type
but the easiest way to do it is to add the following switches into the Java boostrap script
-Dcom. sun.management. jmxremote -Dcom.sun.management.jmxremote.port=<PORT>.

* Connecting to the JMX can be done by forwarding ports. With OpenShift this might be achieved
by using oc port-forward command whereas in Kubernetes by kubectl port-forward.

The last step in the Rolling Upgrade (removing a Remote Cache Store) needs to be performed
differently. We need to use Kubernetes/OpenShift Rolling update command and replace Pods
configuration with the one which does not contain Remote Cache Store.

A detailed instruction might be found in ISPN-6673 ticket.

275

https://docs.openshift.org/latest/dev_guide/deployments/deployment_strategies.html#rolling-strategy
#rolling_upgrades
#rolling_upgrades
https://docs.openshift.org/latest/architecture/core_concepts/routes.html
http://kubernetes.io/docs/user-guide/ingress
http://kubernetes.io/docs/user-guide/ingress
http://kubernetes.io/docs/user-guide/rolling-updates/
https://issues.jboss.org/browse/ISPN-6673

Chapter 20. Client/Server

{brandname} offers two alternative access methods: embedded mode and client-server mode.

* In Embedded mode the {brandname} libraries co-exist with the user application in the same
JVM as shown in the following diagram

User User

Load Balancer

Embedded
Infinispan

Embedded
Infinispan

\ App Server 1 / \ App Server 2 /

Figure 11. Peer-to-peer access

+—— Clustered ——»

¢ Client-server mode is when applications access the data stored in a remote {brandname} server
using some kind of network protocol

20.1. Why Client/Server?

There are situations when accessing {brandname} in a client-server mode might make more sense
than embedding it within your application, for example, when trying to access {brandname} from a
non-JVM environment. Since {brandname} is written in Java, if someone had a C\\ application that
wanted to access it, it couldn’t just do it in a p2p way. On the other hand, client-server would be
perfectly suited here assuming that a language neutral protocol was used and the corresponding
client and server implementations were available.

276

?

.q— Protocol —»

Figure 12. Non-JVM access

In other situations, {brandname} users want to have an elastic application tier where you start/stop
business processing servers very regularly. Now, if users deployed {brandname} configured with
distribution or state transfer, startup time could be greatly influenced by the shuffling around of
data that happens in these situations. So in the following diagram, assuming {brandname} was

deployed in p2p mode, the app in the second server could not access {brandname} until state
transfer had completed.

277

Embedded
Infinispan

Embedded
Infinispan

\ App Server 1)

!

k App Server 1 /

Figure 13. Elasticity issue with P2P

This effectively means that bringing up new application-tier servers is impacted by things like state
transfer because applications cannot access {brandname} until these processes have finished and if
the state being shifted around is large, this could take some time. This is undesirable in an elastic
environment where you want quick application-tier server turnaround and predictable startup
times. Problems like this can be solved by accessing {brandname} in a client-server mode because
starting a new application-tier server is just a matter of starting a lightweight client that can
connect to the backing data grid server. No need for rehashing or state transfer to occur and as a
result server startup times can be more predictable which is very important for modern cloud-

(1) State Transfer —p=

=
©

(2) Access
Y

Embedded
Infinispan

\ App Server 2 /

based deployments where elasticity in your application tier is important.

278

App Server 1 (App Server 1 (App Server 2\

8
&
=

Figure 14. Achieving elasticity

Other times, it’s common to find multiple applications needing access to data storage. In this cases,
you could in theory deploy an {brandname} instance per each of those applications but this could
be wasteful and difficult to maintain. Think about databases here, you don’t deploy a database
alongside each of your applications, do you? So, alternatively you could deploy {brandname} in
client-server mode keeping a pool of {brandname} data grid nodes acting as a shared storage tier
for your applications.

A Server 1 A Server 2
{ App Server1 { App Server2 i Pe

(= (2
App 2

AW

App 1

é
é

App 2

Infinispan

- Clustered

Server

Clustered

Figure 15. Shared data storage

279

Deploying {brandname} in this way also allows you to manage each tier independently, for
example, you can upgrade you application or app server without bringing down your {brandname}
data grid nodes.

20.2. Why use embedded mode?

Before talking about individual {brandname} server modules, it’s worth mentioning that in spite of
all the benefits, client-server {brandname} still has disadvantages over p2p. Firstly, p2p
deployments are simpler than client-server ones because in p2p, all peers are equals to each other
and hence this simplifies deployment. So, if this is the first time you’re using {brandname}, p2p is
likely to be easier for you to get going compared to client-server.

Client-server {brandname} requests are likely to take longer compared to p2p requests, due to the
serialization and network cost in remote calls. So, this is an important factor to take in account
when designing your application. For example, with replicated {brandname} caches, it might be
more performant to have lightweight HTTP clients connecting to a server side application that
accesses {brandname} in p2p mode, rather than having more heavyweight client side apps talking
to {brandname} in client-server mode, particularly if data size handled is rather large. With
distributed caches, the difference might not be so big because even in p2p deployments, you’re not
guaranteed to have all data available locally.

Environments where application tier elasticity is not so important, or where server side
applications access state-transfer-disabled, replicated {brandname} cache instances are amongst
scenarios where {brandname} p2p deployments can be more suited than client-server ones.

20.3. Server Modules

So, now that it’s clear when it makes sense to deploy {brandname} in client-server mode, what are
available solutions? All {brandname} server modules are based on the same pattern where the
server backend creates an embedded {brandname} instance and if you start multiple backends,
they can form a cluster and share/distribute state if configured to do so. The server types below
primarily differ in the type of listener endpoint used to handle incoming connections.

Here’s a brief summary of the available server endpoints.

* Hot Rod Server Module - This module is an implementation of the Hot Rod binary protocol
backed by {brandname} which allows clients to do dynamic load balancing and failover and
smart routing.

o A variety of clients exist for this protocol.

o If you’re clients are running Java, this should be your defacto server module choice because
it allows for dynamic load balancing and failover. This means that Hot Rod clients can
dynamically detect changes in the topology of Hot Rod servers as long as these are clustered,
so when new nodes join or leave, clients update their Hot Rod server topology view. On top
of that, when Hot Rod servers are configured with distribution, clients can detect where a
particular key resides and so they can route requests smartly.

- Load balancing and failover is dynamically provided by Hot Rod client implementations
using information provided by the server.

280

#hot_rod_protocol
http://www.infinispan.org/hotrod-clients

* REST Server Module - The REST server, which is distributed as a WAR file, can be deployed in
any servlet container to allow {brandname} to be accessed via a RESTful HTTP interface.

> To connect to it, you can use any HTTP client out there and there’re tons of different client
implementations available out there for pretty much any language or system.

o This module is particularly recommended for those environments where HTTP port is the
only access method allowed between clients and servers.

o Clients wanting to load balance or failover between different {brandname} REST servers can
do so using any standard HTTP load balancer such as mod_cluster . It’s worth noting though
these load balancers maintain a static view of the servers in the backend and if a new one
was to be added, it would require manual update of the load balancer.

* Memcached Server Module - This module is an implementation of the Memcached text
protocol backed by {brandname}.

- To connect to it, you can use any of the existing Memcached clients which are pretty diverse.

> As opposed to Memcached servers, {brandname} based Memcached servers can actually be
clustered and hence they can replicate or distribute data using consistent hash algorithms
around the cluster. So, this module is particularly of interest to those users that want to
provide failover capabilities to the data stored in Memcached servers.

o In terms of load balancing and failover, there’re a few clients that can load balance or
failover given a static list of server addresses (perl’s Cache::Memcached for example) but
any server addition or removal would require manual intervention.

20.4. Which protocol should I use?

Choosing the right protocol depends on a number of factors.

Hot Rod HTTP / REST Memcached
Topology-aware Y N N
Hash-aware Y N N
Encryption Y Y N
Authentication Y Y N
Conditional ops Y Y Y
Bulk ops Y N N
Transactions N N N
Listeners Y N N
Query Y Y N
Execution Y N N
Cross-site failover Y N N

20.5. Using Hot Rod Server

The {brandname} Server distribution contains a server module that implements {brandname}'s

281

http://www.jboss.org/mod_cluster
http://github.com/memcached/memcached/blob/master/doc/protocol.txt
http://github.com/memcached/memcached/blob/master/doc/protocol.txt
http://code.google.com/p/memcached/wiki/Clients

custom binary protocol called Hot Rod. The protocol was designed to enable faster client/server
interactions compared to other existing text based protocols and to allow clients to make more
intelligent decisions with regards to load balancing, failover and even data location operations.
Please refer to {brandname} Server’s documentation for instructions on how to configure and run
a HotRod server.

To connect to {brandname} over this highly efficient Hot Rod protocol you can either use one of the
clients described in this chapter, or use higher level tools such as Hibernate OGM.

20.6. Hot Rod Protocol

The following articles provides detailed information about each version of the custom TCP
client/server Hot Rod protocol.

Hot Rod Protocol 1.0
e Hot Rod Protocol 1.1
* Hot Rod Protocol 1.2
* Hot Rod Protocol 1.3
* Hot Rod Protocol 2.0
e Hot Rod Protocol 2.1
* Hot Rod Protocol 2.2
* Hot Rod Protocol 2.3
* Hot Rod Protocol 2.4
* Hot Rod Protocol 2.5
* Hot Rod Protocol 2.6
* Hot Rod Protocol 2.7
* Hot Rod Protocol 2.8
* Hot Rod Protocol 2.9

20.6.1. Hot Rod Protocol 1.0

Q Infinispan versions
This version of the protocol is implemented since Infinispan 4.1.0.Final

0 All key and values are sent and stored as byte arrays. Hot Rod makes no
assumptions about their types.

Some clarifications about the other types:

» vint : Variable-length integers are defined defined as compressed, positive integers where the
high-order bit of each byte indicates whether more bytes need to be read. The low-order seven
bits are appended as increasingly more significant bits in the resulting integer value making it

282

../server_guide/server_guide.html
#integrations_hibernate_ogm
#hot_rod_protocol_1_0
#hot_rod_protocol_1_1
#hot_rod_protocol_1_2
#hot_rod_protocol_1_3
#hot_rod_protocol_2_0
#hot_rod_protocol_2_1
#hot_rod_protocol_2_2
#hot_rod_protocol_2_3
#hot_rod_protocol_2_4
#hot_rod_protocol_2_5
#hot_rod_protocol_2_6
#hot_rod_protocol_2_7
#hot_rod_protocol_2_8
#hot_rod_protocol_2_9

efficient to decode. Hence, values from zero to 127 are stored in a single byte, values from 128 to
16,383 are stored in two bytes, and so on:

Value
0
1
2

127
128
129
130

16,383
16,384
16,385

First byte Second byte Third byte
00000000

00000001

00000010

21111111

10000000 00000001

10000001 00000001

10000010 00000001

11111111 01111111

10000000 10000000 00000001
10000001 10000000 00000001

* signed viInt: The vInt above is also able to encode negative values, but will always use the
maximum size (5 bytes) no matter how small the endoded value is. In order to have a small
payload for negative values too, signed vInts uses ZigZag encoding on top of the vint encoding.

More details here

* vLong : Refers to unsigned variable length long values similar to vint but applied to longer
values. They’re between 1 and 9 bytes long.

 String : Strings are always represented using UTF-8 encoding.

Request Header

The header for a request is composed of:

Table 7. Request header

Field Name
Magic
Message ID

Version

Size
1 byte

vLong

1 byte

Value
0xAO = request

ID of the message that will be copied back in the response. This
allows for Hot Rod clients to implement the protocol in an
asynchronous way.

Hot Rod server version. In this particular case, this is 10

283

http://developers.google.com/protocol-buffers/docs/encoding#types

Field Name Size

Opcode 1 byte
Cache Name vint
Length

Cache Name string
Flags vint

Client Intelligence 1 byte

284

Value

Request operation code:

0x01 = put (since 1.0)

0x03 = get (since 1.0)

0x05 = putIfAbsent (since 1.0)

0x07 = replace (since 1.0)

0x09 = replacelfUnmodified (since 1.0)
0x0B = remove (since 1.0)

0x0D = removelfUnmodified (since 1.0)
0xOF = containsKey (since 1.0)

0x11 = getWithVersion (since 1.0)
0x13 = clear (since 1.0)

0x15 = stats (since 1.0)

0x17 = ping (since 1.0)

0x19 = bulkGet (since 1.2)

0x1B = getWithMetadata (since 1.2)
0x1D = bulkGetKeys (since 1.2)

0x1F = query (since 1.3)

0x21 = authMechlList (since 2.0)

0x23 = auth (since 2.0)

0x25 = addClientListener (since 2.0)
0x27 = removeClientListener (since 2.0)
0x29 = size (since 2.0)

0x2B = exec (since 2.1)

0x2D = putAll (since 2.1)

0x2F = getAll (since 2.1)

0x31 = iterationStart (since 2.3)

0x33 = iterationNext (since 2.3)

0x35 = iterationEnd (since 2.3)

0x37 = getStream (since 2.6)

0x39 = putStream (since 2.6)

Length of cache name. If the passed length is 0 (followed by no
cache name), the operation will interact with the default cache.

Name of cache on which to operate. This name must match the
name of predefined cache in the {brandname} configuration file.

A variable length number representing flags passed to the
system. Each flags is represented by a bit. Note that since this
field is sent as variable length, the most significant bit in a byte is
used to determine whether more bytes need to be read, hence
this bit does not represent any flag. Using this model allows for
flags to be combined in a short space. Here are the current values
for each flag:

0x0001 = force return previous value

This byte hints the server on the client capabilities:

0x01 = basic client, interested in neither cluster nor hash
information

0x02 = topology-aware client, interested in cluster information
0x03 = hash-distribution-aware client, that is interested in both
cluster and hash information

Field Name Size
Topology Id vint
Transaction Type 1 byte
Transaction Id byte array

Response Header

Value

This field represents the last known view in the client. Basic
clients will only send 0 in this field. When topology-aware or
hash-distribution-aware clients will send 0 until they have
received a reply from the server with the current view id.
Afterwards, they should send that view id until they receive a
new view id in a response.

This is a 1 byte field, containing one of the following well-known
supported transaction types (For this version of the protocol, the
only supported transaction type is 0):

0 = Non-transactional call, or client does not support
transactions. The subsequent TX_ID field will be omitted.

1 =X/Open XA transaction ID (XID). This is a well-known, fixed-
size format.

The byte array uniquely identifying the transaction associated to
this call. Its length is determined by the transaction type. If
transaction type is 0, no transaction id will be present.

The header for a response is composed of:

Table 8. Response header
Field Name

Magic

Message ID

Size
1 byte

vLong

Value
0xA1 =response

ID of the message, matching the request for which the response
is sent.

285

Field Name Size Value

Opcode 1 byte Response operation code:
0x02 = put (since 1.0)
0x04 = get (since 1.0)
0x06 = putIfAbsent (since 1.0)
0x08 = replace (since 1.0)
0x0A = replacelfUnmodified (since 1.0)
0x0C = remove (since 1.0)
0x0E = removelfUnmodified (since 1.0)
0x10 = containsKey (since 1.0)
0x12 = getWithVersion (since 1.0)
0x14 = clear (since 1.0)
0x16 = stats (since 1.0)
0x18 = ping (since 1.0)
0x1A = bulkGet (since 1.0)
0x1C = getWithMetadata (since 1.2)
0x1E = bulkGetKeys (since 1.2)
0x20 = query (since 1.3)
0x22 = authMechlList (since 2.0)
0x24 = auth (since 2.0)
0x26 = addClientListener (since 2.0)
0x28 = removeClientListener (since 2.0)
0x2A = size (since 2.0)
0x2C = exec (since 2.1)
0x2E = putAll (since 2.1)
0x30 = getAll (since 2.1)
0x32 = iterationStart (since 2.3)
0x34 = iterationNext (since 2.3)
0x36 = iterationEnd (since 2.3)
0x38 = getStream (since 2.6)
0x3A = putStream (since 2.6)
0x50 = error (since 1.0)

Status 1 byte Status of the response, possible values:
0x00 = No error
0x01 = Not put/removed/replaced
0x02 = Key does not exist
0x81 = Invalid magic or message id
0x82 = Unknown command
0x83 = Unknown version
0x84 = Request parsing error
0x85 = Server Error
0x86 = Command timed out

Topology Change string This is a marker byte that indicates whether the response is

Marker prepended with topology change information. When no topology
change follows, the content of this byte is 0. If a topology change
follows, its contents are 1.

' Exceptional error status responses, those that start with 0x8 ..., are followed by the
—_ length of the error message (as a vint) and error message itself as String.

286

Topology Change Headers

The following section discusses how the response headers look for topology-aware or hash-
distribution-aware clients when there’s been a cluster or view formation change. Note that it’s the
server that makes the decision on whether it sends back the new topology based on the current
topology id and the one the client sent. If they’re different, it will send back the new topology.

Topology-Aware Client Topology Change Header

This is what topology-aware clients receive as response header when a topology change is sent
back:

Field Name Size Value

Response header variable See previous section.

with topology

change marker

Topology Id vint Topology ID

Num servers in vint Number of Hot Rod servers running within the cluster. This
topology could be a subset of the entire cluster if only a fraction of those

nodes are running Hot Rod servers.

m1: Host/IP length vint Length of hostname or IP address of individual cluster member
that Hot Rod client can use to access it. Using variable length here
allows for covering for hostnames, IPv4 and IPv6 addresses.

m1: Host/IP string String containing hostname or IP address of individual cluster
address member that Hot Rod client can use to access it.
m1: Port 2 bytes Port that Hot Rod clients can use to communicate with this
(Unsigned cluster member.
Short)

m2: Host/IP length vint

m2: Host/IP string
address
m2: Port 2 bytes
(Unsigned
Short)
...etc

Distribution-Aware Client Topology Change Header

This is what hash-distribution-aware clients receive as response header when a topology change is
sent back:

Field Name Size Value
Response header variable See previous section.
with topology

change marker

Topology Id vint Topology ID

287

Field Name Size

Num Key Owners 2 bytes

(Unsigned
Short)
Hash Function 1 byte
Version
Hash space size vint
Num servers in vint
topology

m1: Host/IP length vint

m1: Host/IP string
address
m1: Port 2 bytes
(Unsigned
Short)
m1: Hashcode 4 bytes

m2: Host/IP length vint

m2: Host/IP string
address
m2: Port 2 bytes
(Unsigned
Short)
m2: Hashcode 4 bytes
...etc

Value

Globally configured number of copies for each {brandname}
distributed key

Hash function version, pointing to a specific hash function in use.
See Hot Rod hash functions for details.

Modulus used by {brandname} for for all module arithmetic
related to hash code generation. Clients will likely require this
information in order to apply the correct hash calculation to the
keys.

Number of {brandname} Hot Rod servers running within the
cluster. This could be a subset of the entire cluster if only a
fraction of those nodes are running Hot Rod servers.

Length of hostname or IP address of individual cluster member
that Hot Rod client can use to access it. Using variable length here
allows for covering for hostnames, IPv4 and IPv6 addresses.

String containing hostname or IP address of individual cluster
member that Hot Rod client can use to access it.

Port that Hot Rod clients can use to communicat with this cluster
member.

32 bit integer representing the hashcode of a cluster member
that a Hot Rod client can use indentify in which cluster member
a key is located having applied the CSA to it.

It’s important to note that since hash headers rely on the consistent hash algorithm used by the
server and this is a factor of the cache interacted with, hash-distribution-aware headers can only be
returned to operations that target a particular cache. Currently ping command does not target any
cache (this is to change as per ISPN-424) , hence calls to ping command with hash-topology-aware
client settings will return a hash-distribution-aware header with "Num Key Owners", "Hash
Function Version", "Hash space size" and each individual host’s hash code all set to 0. This type of
header will also be returned as response to operations with hash-topology-aware client settings that
are targeting caches that are not configured with distribution.

Operations

Get (0x03)/Remove (0x0B)/ContainsKey (0xOF)/GetWithVersion (0x11)

Common request format:

288

#hot_rod_hash_functions
https://jira.jboss.org/jira/browse/ISPN-424

Field Name
Header
Key Length

Key
Get response (0x04):

Field Name
Header

Response status

Value Length

Value

Size
variable

vint

byte array

Size
variable

1 byte

vint

byte array

Remove response (0x00):

Field Name
Header

Response status

Previous value
Length

Previous value

Size
variable

1 byte

vint

byte array

ContainsKey response (0x10):

Field Name
Header

Response status

GetWithVersion response (0x12):

Field Name
Header

Response status

Size
variable

1 byte

Size
variable

1 byte

Value
Request header

Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer. MAX_VALUE.

Byte array containing the key whose value is being requested.

Value
Response header

0x00 = success, if key retrieved
0x02 = if key does not exist

If success, length of value

If success, the requested value

Value
Response header

0x00 = success, if key removed
0x02 = if key does not exist

If force return previous value flag was sent in the request and
the key was removed, the length of the previous value will be
returned. If the key does not exist, value length would be 0. If no
flag was sent, no value length would be present.

If force return previous value flag was sent in the request and
the key was removed, previous value.

Value
Response header

0x00 = success, if key exists
0x02 = if key does not exist

Value
Response header

0x00 = success, if key retrieved
0x02 = if key does not exist

289

Field Name

Entry Version

Value Length

Value

BulkGet
Request (0x19):

Field Name
Header

Entry count

Response (0x20):

Field Name

Header

Response status

More

Key 1 Length
Key 1

Value 1 Length
Value 1

More

Key 2 Length
Key 2

Value 2 Length
Value 2

.. etc

Size

8 bytes

vint

byte array

Size
variable

vint

Size
variable
1 byte
1 byte

vint
byte array
vint
byte array
1 byte
vint
byte array
vint

byte array

Value

Unique value of an existing entry’s modification. The protocol
does not mandate that entry_version values are sequential. They
just need to be unique per update at the key level.

If success, length of value

If success, the requested value

Value
Request header

Maximum number of {brandname} entries to be returned by the
server (entry == key + associated value). Needed to support
CacheLoader.load(int). If 0 then all entries are returned (needed
for CacheLoader.loadAll()).

Value
Response header
0x00 = success, data follows

One byte representing whether more entries need to be read
from the stream. So, when it’s set to 1, it means that an entry
follows, whereas when it’s set to 0, it’s the end of stream and no
more entries are left to read. For more information on BulkGet
look here

Length of key
Retrieved key
Length of value

Retrieved value

Put (0x01)/PutIfAbsent (0x05)/Replace (0x07)

Common request format:

Field Name

Header

290

Size

variable

Value

Request header

http://community.jboss.org/docs/DOC-15592

Field Name Size
Key Length vint
Key byte array
Lifespan vint
Max Idle vint
Value Length vint
Value byte-array

Put response (0x02):

Field Name Size
Header variable
Response status 1 byte
Previous value vint
Length

Previous value byte array

Replace response (0x08):

Field Name Size
Header variable
Response status 1 byte
Previous value vint
Length

Previous value byte array

PutIfAbsent response (0x06):

Value

Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer. MAX_VALUE.

Byte array containing the key whose value is being requested.

Number of seconds that a entry during which the entry is
allowed to life. If number of seconds is bigger than 30 days, this
number of seconds is treated as UNIX time and so, represents the
number of seconds since 1/1/1970. If set to 0, lifespan is
unlimited.

Number of seconds that a entry can be idle before it’s evicted
from the cache. If 0, no max idle time.

Length of value

Value to be stored

Value
Response header
0x00 = success, if stored

If force return previous value flag was sent in the request and
the key was put, the length of the previous value will be
returned. If the key does not exist, value length would be 0. If no
flag was sent, no value length would be present.

If force return previous value flag was sent in the request and
the key was put, previous value.

Value
Response header

0x00 = success, if stored
0x01 = if store did not happen because key does not exist

If force return previous value flag was sent in the request, the
length of the previous value will be returned. If the key does not
exist, value length would be 0. If no flag was sent, no value length
would be present.

If force return previous value flag was sent in the request and
the key was replaced, previous value.

291

Field Name
Header

Response status

Previous value
Length

Previous value

ReplacelfUnmodified
Request (0x09):

Field Name
Header
Key Length

Key

Lifespan

Max Idle

Entry Version
Value Length

Value
Response (0x0A):

Field Name
Header

Response status

Previous value
Length

292

Size
variable

1 byte

vint

byte array

Size
variable

vint

byte array

vint

vint

8 bytes
vint

byte-array

Size
variable

1 byte

vint

Value
Response header

0x00 = success, if stored
0x01 = if store did not happen because key was present

If force return previous value flag was sent in the request, the
length of the previous value will be returned. If the key does not
exist, value length would be 0. If no flag was sent, no value length
would be present.

If force return previous value flag was sent in the request and
the key was replaced, previous value.

Value
Request header

Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer. MAX_VALUE.

Byte array containing the key whose value is being requested.

Number of seconds that a entry during which the entry is
allowed to life. If number of seconds is bigger than 30 days, this
number of seconds is treated as UNIX time and so, represents the
number of seconds since 1/1/1970. If set to 0, lifespan is
unlimited.

Number of seconds that a entry can be idle before it’s evicted
from the cache. If 0, no max idle time.

Use the value returned by GetWithVersion operation.
Length of value

Value to be stored

Value
Response header

0x00 = success, if replaced
0x01 = if replace did not happen because key had been modified
0x02 = if not replaced because if key does not exist

If force return previous value flag was sent in the request, the
length of the previous value will be returned. If the key does not
exist, value length would be 0. If no flag was sent, no value length
would be present.

Field Name Size Value

Previous value byte array If force return previous value flag was sent in the request and
the key was replaced, previous value.

RemovelfUnmodified
Request (0x0D):
Field Name Size Value
Header variable Request header
Key Length vint Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer. MAX_VALUE.
Key byte array Byte array containing the key whose value is being requested.
Entry Version 8 bytes Use the value returned by GetWithMetadata operation.

Response (0xX0E):

Field Name Size Value
Header variable Response header
Response status 1 byte 0x00 = success, if removed

0x01 = if remove did not happen because key had been modified
0x02 = if not removed because key does not exist

Previous value vint If force return previous value flag was sent in the request, the

Length length of the previous value will be returned. If the key does not
exist, value length would be 0. If no flag was sent, no value length
would be present.

Previous value byte array If force return previous value flag was sent in the request and
the key was removed, previous value.

Clear

Request (0x13):

Field Name Size Value

Header variable Request header

Response (0x14):

Field Name Size Value

Header variable Response header
Response status 1 byte 0x00 = success, if cleared
PutAll

Bulk operation to put all key value entries into the cache at the same time.

293

Request (0x2D):

Field Name
Header

Lifespan

Max Idle

Entry count
Key 1 Length
Key 1

Value 1 Length
Value 1

Key 2 Length
Key 2

Value 2 Length
Value 2

... continues until
entry count is
reached

Response (0x2E):

Field Name
Header

Response status

GetAll

Size
variable

vint

vint

vint
vint
byte array
vint
byte array
vint
byte array
vint

byte array

Size
variable

1 byte

Value
Request header

Number of seconds that provided entries are allowed to live. If
number of seconds is bigger than 30 days, this number of
seconds is treated as UNIX time and so, represents the number of
seconds since 1/1/1970. If set to 0, lifespan is unlimited.

Number of seconds that each entry can be idle before it’s evicted
from the cache. If 0, no max idle time.

How many entries are being inserted
Length of key

Retrieved key

Length of value

Retrieved value

Value
Response header

0x00 = success, if all put

Bulk operation to get all entries that map to a given set of keys.

Request (0x2F):

Field Name
Header

Key count
Key 1 Length
Key 1

Key 2 Length
Key 2

294

Size
variable
vint
vint
byte array
vint

byte array

Value

Request header

How many Kkeys to find entries for
Length of key

Retrieved key

Field Name Size Value

... continues until
key count is
reached

Response (0x30):

Field Name Size Value

Header variable Response header

Response status 1 byte

Entry count vint How many entries are being returned
Key 1 Length vint Length of key

Key 1 byte array Retrieved key

Value 1 Length vint Length of value

Value 1 byte array Retrieved value

Key 2 Length vint

Key 2 byte array

Value 2 Length vint

Value 2 byte array

... continues until 0x00 = success, if the get returned sucessfully
entry count is

reached
Stats

Returns a summary of all available statistics. For each statistic returned, a name and a value is
returned both in String UTF-8 format. The supported stats are the following:

Name Explanation

timeSinceStart Number of seconds since Hot Rod started.

currentNumberOfEntries Number of entries currently in the Hot Rod
server.

totalNumberOfEntries Number of entries stored in Hot Rod server.

stores Number of put operations.

retrievals Number of get operations.

hits Number of get hits.

misses Number of get misses.

removeHits Number of removal hits.

removeMisses Number of removal misses.

Request (0x15):

295

Field Name Size Value

Header variable Request header

Response (0x16):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if stats retrieved
Number of stats vint Number of individual stats returned.
Name 1 length vint Length of named statistic.

Name 1 string String containing statistic name.
Value 1 length vint Length of value field.

Value 1 string String containing statistic value.
Name 2 length vint

Name 2 string

Value 2 length vint

Value 2 String

...etc
Ping

Application level request to see if the server is available.

Request (0x17):
Field Name Size Value
Header variable Request header

Response (0x18):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if no errors
Error Handling

Error response (0x50)

Field Name Size Value

Header variable Response header

Response status 1 byte 0x8x = error response code
Error Message vint Length of error message
Length

296

Field Name Size Value

Error Message string Error message. In the case of 0x84 , this error field contains the
latest version supported by the Hot Rod server. Length is defined
by total body length.

Multi-Get Operations

A multi-get operation is a form of get operation that instead of requesting a single key, requests a
set of keys. The Hot Rod protocol does not include such operation but remote Hot Rod clients could
easily implement this type of operations by either parallelizing/pipelining individual get requests.
Another possibility would be for remote clients to use async or non-blocking get requests. For
example, if a client wants N keys, it could send send N async get requests and then wait for all the
replies. Finally, multi-get is not to be confused with bulk-get operations. In bulk-gets, either all or a
number of keys are retrieved, but the client does not know which keys to retrieve, whereas in
multi-get, the client defines which keys to retrieve.

Example - Put request

* Coded request

Byte 0 1 2 3 4 5 6 7

8 0xA0 0x09 0x41 0x01 0x07 0x4D ('M") 0x79 ('y") 0x43(C)
16 0x61 ('a") 0x63('c) 0x68(h’) 0x65(e) 0x00 0x03 0x00 0x00

24 0x00 0x05 0x48 (H') 0x65 (‘e’) 0x6C(1l) 0x6C(1l) Ox6F (‘o) 0x00

32 0x00 0x05 0x57 (W") Ox6F ('0") 0x72(r) 0x6C(1) 0x64(d")

* Field explanation

Field Name Value Field Name Value
Magic (0) 0xAO0 Message Id (1) 0x09
Version (2) 0x41 Opcode (3) 0x01
Cache name length (4) 0x07 Cache name(5-11) 'MyCache'
Flag (12) 0x00 Client Intelligence (13) 0x03
Topology Id (14) 0x00 Transaction Type (15) 0x00
Transaction Id (16) 0x00 Key field length (17) 0x05

Key (18 - 22) 'Hello' Lifespan (23) 0x00

Max idle (24) 0x00 Value field length (25) 0x05
Value (26-30) "World'

* Coded response

Byte 0 1 2 3 4) 6 7
8 0xA1 0x09 0x01 0x00 0x00

* Field Explanation

297

Field Name Value Field Name Value

Magic (0) 0xA1 Message Id (1) 0x09
Opcode (2) 0x01 Status (3) 0x00
Topology change 0x00

marker (4)

20.6.2. Hot Rod Protocol 1.1

Q Infinispan versions
This version of the protocol is implemented since Infinispan 5.1.0.FINAL

Request Header

The version field in the header is updated to 11.

Distribution-Aware Client Topology Change Header

Updated for 1.1

o This section has been modified to be more efficient when talking to distributed
caches with virtual nodes enabled.

This is what hash-distribution-aware clients receive as response header when a topology change is
sent back:

Field Name Size Value
Response header variable See previous section.
with topology
change marker
Topology Id vint Topology ID
Num Key Owners 2 bytes Globally configured number of copies for each {brandname}
(Unsigned distributed key
Short)
Hash Function 1 byte Hash function version, pointing to a specific hash function in use.
Version See Hot Rod hash functions for details.
Hash space size vint Modulus used by {brandname} for for all module arithmetic

related to hash code generation. Clients will likely require this
information in order to apply the correct hash calculation to the

keys.
Num servers in vint Number of Hot Rod servers running within the cluster. This
topology could be a subset of the entire cluster if only a fraction of those
nodes are running Hot Rod servers.
Num Virtual vint Field added in version 1.1 of the protocol that represents the
Nodes Owners number of configured virtual nodes. If no virtual nodes are

configured or the cache is not configured with distribution, this
field will contain 0.

298

#hot_rod_hash_functions

Field Name Size Value

m1: Host/IP length vint Length of hostname or IP address of individual cluster member
that Hot Rod client can use to access it. Using variable length here
allows for covering for hostnames, IPv4 and IPv6 addresses.

m1: Host/IP string String containing hostname or IP address of individual cluster
address member that Hot Rod client can use to access it.
m1: Port 2 bytes Port that Hot Rod clients can use to communicat with this cluster
(Unsigned member.
Short)
m1: Hashcode 4 bytes 32 bit integer representing the hashcode of a cluster member

that a Hot Rod client can use indentify in which cluster member
a key is located having applied the CSA to it.

m2: Host/IP length vint

m2: Host/IP string
address
m2: Port 2 bytes
(Unsigned
Short)
m2: Hashcode 4 bytes
...etc

Server node hash code calculation

Adding support for virtual nodes has made version 1.0 of the Hot Rod protocol impractical due to
bandwidth it would have taken to return hash codes for all virtual nodes in the clusters (this
number could easily be in the millions). So, as of version 1.1 of the Hot Rod protocol, clients are
given the base hash id or hash code of each server, and then they have to calculate the real hash
position of each server both with and without virtual nodes configured. Here are the rules clients
should follow when trying to calculate a node’s hash code:

1\. With virtual nodes disabled : Once clients have received the base hash code of the server, they
need to normalize it in order to find the exact position of the hash wheel. The process of
normalization involves passing the base hash code to the hash function, and then do a small
calculation to avoid negative values. The resulting number is the node’s position in the hash wheel:

public static int getNormalizedHash(int nodeBaseHashCode, Hash hashFct) {
return hashFct.hash(nodeBaseHashCode) & Integer.MAX_VALUE; // make sure no negative
numbers are involved.

}

2\. With virtual nodes enabled : In this case, each node represents N different virtual nodes, and to
calculate each virtual node’s hash code, we need to take the the range of numbers between 0 and N-
1 and apply the following logic:

 For virtual node with 0 as id, use the technique used to retrieve a node’s hash code, as shown in
the previous section.

299

* For virtual nodes from 1 to N-1 ids, execute the following logic:

public static int virtualNodeHashCode(int nodeBaseHashCode, int id, Hash hashFct) {
int virtualNodeBaseHashCode = 1id;
virtualNodeBaseHashCode = 31 * virtualNodeBaseHashCode + nodeBaseHashCode;
return getNormalizedHash(virtualNodeBaseHashCode, hashFct);

20.6.3. Hot Rod Protocol 1.2

Infinispan versions

This version of the protocol is implemented since {brandname} 5.2.0.Final. Since

Q {brandname} 5.3.0, HotRod supports encryption via SSL. However, since this only
affects the transport, the version number of the protocol has not been
incremented.

Request Header
The version field in the header is updated to 12.
Two new request operation codes have been added:

* 0x1B = getWithMetadata request

* 0x1D = bulkKeysGet request
Two new flags have been added too:

* 0x0002 = use cache-level configured default lifespan
* 0x0004 = use cache-level configured default max idle
Response Header

Two new response operation codes have been added:

* 0x1C = getWithMetadata response

* 0x1E = bulkKeysGet response

Operations

GetWithMetadata

Request (0x1B):

Field Name Size Value

Header variable Request header

300

Field Name
Key Length

Key
Response (0x1C):

Field Name
Header

Response status

Flag

Created

Lifespan

LastUsed

MaxlIdle

Entry Version

Value Length

Value

BulkKeysGet
Request (0x1D):

Field Name

Header

Size

vint

byte array

Size
variable

1 byte

1 byte

Long

vint

Long

vint

8 bytes

vint

byte array

Size

variable

Value

Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer. MAX_VALUE.

Byte array containing the key whose value is being requested.

Value
Response header

0x00 = success, if key retrieved
0x02 = if key does not exist

A flag indicating whether the response contains expiration
information. The value of the flag is obtained as a bitwise OR
operation between INFINITE_LIFESPAN (0x01) and
INFINITE_MAXIDLE (0x02).

(optional) a Long representing the timestamp when the entry
was created on the server. This value is returned only if the flag’s
INFINITE_LIFESPAN bit is not set.

(optional) a vIint representing the lifespan of the entry in seconds.
This value is returned only if the flag’s INFINITE_LIFESPAN bit is
not set.

(optional) a Long representing the timestamp when the entry
was last accessed on the server. This value is returned only if the
flag’s INFINITE_MAXIDLE bit is not set.

(optional) a vIint representing the maxlIdle of the entry in
seconds. This value is returned only if the flag’s INFINITE_MAXIDLE
bit is not set.

Unique value of an existing entry’s modification. The protocol
does not mandate that entry_version values are sequential. They
just need to be unique per update at the key level.

If success, length of value

If success, the requested value

Value

Request header

301

Field Name Size

Scope vint

Response (0xX1E):

Field Name Size
Header variable
Response status 1 byte
More 1 byte
Key 1 Length vint
Key 1 byte array
More 1 byte
Key 2 Length vint
Key 2 byte array
.. etc

Value

0 = Default Scope - This scope is used by RemoteCache.keySet()
method. If the remote cache is a distributed cache, the server
launch a stream operation to retrieve all keys from all of the
nodes. (Remember, a topology-aware Hot Rod Client could be
load balancing the request to any one node in the cluster).
Otherwise, it’ll get keys from the cache instance local to the
server receiving the request (that is because the keys should be
the same across all nodes in a replicated cache).

1 = Global Scope - This scope behaves the same to Default Scope.
2 = Local Scope - In case when remote cache is a distributed
cache, the server will not launch a stream operation to retrieve
keys from all nodes. Instead, it’ll only get keys local from the
cache instance local to the server receiving the request.

Value
Response header
0x00 = success, data follows

One byte representing whether more keys need to be read from
the stream. So, when it’s set to 1, it means that an entry follows,
whereas when it’s set to 0, it’s the end of stream and no more
entries are left to read. For more information on BulkGet look
here

Length of key
Retrieved key

20.6.4. Hot Rod Protocol 1.3

Q Infinispan versions

This version of the protocol is implemented since Infinispan 6.0.0.Final.

Request Header

The version field in the header is updated to 13.

A new request operation code has been added:

* 0x1F = query request

302

http://community.jboss.org/docs/DOC-15592

Response Header

A new response operation code has been added:

* 0x20 = query response

Operations

Query

Request (0x1F):

Field Name Size Value

Header variable Request header

Query Length vint The length of the protobuf encoded query object

Query byte array Byte array containing the protobuf encoded query object, having

a length specified by previous field.

Response (0x20):

Field Name Size Value

Header variable Response header

Response payload vint The length of the protobuf encoded response object
Length

Response payload byte array Byte array containing the protobuf encoded response object,
having a length specified by previous field.

As of Infinispan 6.0, the query and response objects are specified by the protobuf message types
'org.infinispan.client.hotrod.impl.query.QueryRequest’ and
'org.infinispan.client.hotrod.impl.query.QueryResponse' defined in remote-query/remote-query-
client/src/main/resources/org/infinispan/query/remote/client/query.proto. These definitions could
change in future Infinispan versions, but as long as these evolutions will be kept backward
compatible (according to the rules defined here) no new Hot Rod protocol version will be
introduced to accommodate this.

20.6.5. Hot Rod Protocol 2.0

Q Infinispan versions
This version of the protocol is implemented since Infinispan 7.0.0.Final.
Request Header

The request header no longer contains Transaction Type and Transaction ID elements since they’re
not in use, and even if they were in use, there are several operations for which they would not
make sense, such as ping or stats commands. Once transactions are implemented, the protocol
version will be upped, with the necessary changes in the request header.

The version field in the header is updated to 20.

303

https://github.com/infinispan/infinispan/blob/master/remote-query/remote-query-client/src/main/resources/org/infinispan/query/remote/client/query.proto
https://github.com/infinispan/infinispan/blob/master/remote-query/remote-query-client/src/main/resources/org/infinispan/query/remote/client/query.proto
https://developers.google.com/protocol-buffers/docs/proto#updating

Two new flags have been added:

* 0x0008 = operation skips loading from configured cache loader.

* 0x0010 = operation skips indexing. Only relevant when the query module is enabled for the
cache

The following new request operation codes have been added:

* 0x21 = auth mech list request

* 0x23 = auth request

0x25 = add client remote event listener request
* 0x27 = remove client remote event listener request
* 0x29 = size request

Response Header

The following new response operation codes have been added:

0x22 = auth mech list response

0x24 = auth mech response

0x26 = add client remote event listener response

* 0x28 = remove client remote event listener response

0x2A = size response

Two new error codes have also been added to enable clients more intelligent decisions, particularly
when it comes to fail-over logic:

* 0x87 = Node suspected. When a client receives this error as response, it means that the node
that responded had an issue sending an operation to a third node, which was suspected.
Generally, requests that return this error should be failed-over to other nodes.

» 0x88 = Illegal lifecycle state. When a client receives this error as response, it means that the
server-side cache or cache manager are not available for requests because either stopped,
they’re stopping or similar situation. Generally, requests that return this error should be failed-
over to other nodes.

Some adjustments have been made to the responses for the following commands in order to better
handle response decoding without the need to keep track of the information sent. More precisely,
the way previous values are parsed has changed so that the status of the command response
provides clues on whether the previous value follows or not. More precisely:

» Put response returns 0x03 status code when put was successful and previous value follows.

» PutlfAbsent response returns 0x04 status code only when the putIfAbsent operation failed
because the key was present and its value follows in the response. If the putIfAbsent worked,
there would have not been a previous value, and hence it does not make sense returning
anything extra.

304

Replace response returns 0x03 status code only when replace happened and the previous or
replaced value follows in the response. If the replace did not happen, it means that the cache
entry was not present, and hence there’s no previous value that can be returned.

ReplacelfUnmodified returns 0x03 status code only when replace happened and the previous or
replaced value follows in the response.

ReplacelfUnmodified returns 0x04 status code only when replace did not happen as a result of
the key being modified, and the modified value follows in the response.

Remove returns 0x03 status code when the remove happened and the previous or removed
value follows in the response. If the remove did not occur as a result of the key not being
present, it does not make sense sending any previous value information.

RemovelfUnmodified returns 0x03 status code only when remove happened and the previous or
replaced value follows in the response.

RemovelfUnmodified returns 0x04 status code only when remove did not happen as a result of

the key being modified, and the modified value follows in the response.

Distribution-Aware Client Topology Change Header

In Infinispan 5.2, virtual nodes based consistent hashing was abandoned and instead segment
based consistent hash was implemented. In order to satisfy the ability for Hot Rod clients to find
data as reliably as possible, {brandname} has been transforming the segment based consistent hash
to fit Hot Rod 1.x protocol. Starting with version 2.0, a brand new distribution-aware topology
change header has been implemented which suppors segment based consistent hashing suitably
and provides 100% data location guarantees.

Field Name

Response header
with topology
change marker

Topology Id

Num servers in
topology

m1: Host/IP length

m1: Host/IP
address

m1: Port

m2: Host/IP length

m2: Host/IP
address

Size Value

variable

vint Topology ID

vint Number of {brandname} Hot Rod servers running within the
cluster. This could be a subset of the entire cluster if only a
fraction of those nodes are running Hot Rod servers.

vint Length of hostname or IP address of individual cluster member
that Hot Rod client can use to access it. Using variable length here
allows for covering for hostnames, IPv4 and IPv6 addresses.

string String containing hostname or IP address of individual cluster
member that Hot Rod client can use to access it.

2 bytes Port that Hot Rod clients can use to communicat with this cluster
(Unsigned member.
Short)

vint

string

305

Field Name

m2: Port

Hash Function
Version

Num segments in
topology

Number of owners
in segment

First owner’s
index

Second owner’s
index

Size

2 bytes
(Unsigned
Short)

1 byte

vint

1 byte

vint

vint

Value

Hash function version, pointing to a specific hash function in use.
See Hot Rod hash functions for details.

Total number of segments in the topology

This can be either 0, 1 or 2 owners.

Given the list of all nodes, the position of this owner in this list.
This is only present if number of owners for this segment is 1 or
2.

Given the list of all nodes, the position of this owner in this list.
This is only present if number of owners for this segment is 2.

Given this information, Hot Rod clients should be able to recalculate all the hash segments and be
able to find out which nodes are owners for each segment. Even though there could be more than 2
owners per segment, Hot Rod protocol limits the number of owners to send for efficiency reasons.

Operations

Auth Mech List
Request (0x21):

Field Name

Header
Response (0x22):

Field Name
Header
Mech count

Mech 1

Mech 2

...etc

Size

variable

Size
variable
vint

string

string

Value

Request header

Value
Response header
The number of mechs

String containing the name of the SASL mech in its IANA-
registered form (e.g. GSSAPI, CRAM-MD?5, etc)

The purpose of this operation is to obtain the list of valid SASL authentication mechs supported by
the server. The client will then need to issue an Authenticate request with the preferred mech.

Authenticate

Request (0x23):

306

#hot_rod_hash_functions

Field Name Size Value

Header variable Request header

Mech string String containing the name of the mech chosen by the client for
authentication. Empty on the successive invocations

Response length vint Length of the SASL client response

Response data byte array The SASL client response

Response (0x24):

Field Name Size Value

Header variable Response header

Completed byte 0 if further processing is needed, 1 if authentication is complete
Challenge length vint Length of the SASL server challenge

Challenge data byte array The SASL server challenge

The purpose of this operation is to authenticate a client against a server using SASL. The
authentication process, depending on the chosen mech, might be a multi-step operation. Once
complete the connection becomes authenticated

Add client listener for remote events

Request (0x25):

Field Name Size Value

Header variable Request header

Listener ID byte array Listener identifier

Include state byte When this byte is set to 1, cached state is sent back to remote
clients when either adding a cache listener for the first time, or
when the node where a remote listener is registered changes in a
clustered environment. When enabled, state is sent back as cache
entry created events to the clients. If set to 0, no state is sent back
to the client when adding a listener, nor it gets state when the
node where the listener is registered changes.

Key/value filter string Optional name of the key/value filter factory to be used with this

factory name listener. The factory is used to create key/value filter instances
which allow events to be filtered directly in the Hot Rod server,
avoiding sending events that the client is not interested in. If no
factory is to be used, the length of the string is 0.

Key/value filter byte The key/value filter factory, when creating a filter instance, can

factory parameter take an arbitrary number of parameters, enabling the factory to

count be used to create different filter instances dynamically. This

count field indicates how many parameters will be passed to the
factory. If no factory name was provided, this field is not present
in the request.

307

Field Name

Key/value filter
factory parameter
1

Key/value filter
factory parameter
2

Converter factory
name

Converter factory
parameter count

Converter factory
parameter 1

Converter factory
parameter 2

Response (0x26):

Field Name

Header

Size

byte array

byte array

string

byte

byte array

byte array

Size

variable

Value

First key/value filter factory parameter

Second key/value filter factory parameter

Optional name of the converter factory to be used with this
listener. The factory is used to transform the contents of the
events sent to clients. By default, when no converter is in use,
events are well defined, according to the type of event generated.
However, there might be situations where users want to add
extra information to the event, or they want to reduce the size of
the events. In these cases, a converter can be used to transform
the event contents. The given converter factory name produces
converter instances to do this job. If no factory is to be used, the
length of the string is 0.

The converter factory, when creating a converter instance, can
take an arbitrary number of parameters, enabling the factory to
be used to create different converter instances dynamically. This
count field indicates how many parameters will be passed to the
factory. If no factory name was provided, this field is not present
in the request.

First converter factory parameter

Second converter factory parameter

Value

Response header

Remove client listener for remote events

Request (0x27):

Field Name
Header

Listener ID
Response (0x28):

Field Name

Header

308

Size
variable

byte array

Size

variable

Value
Request header

Listener identifier

Value

Response header

Size

Request (0x29):
Field Name Size Value
Header variable Request header
Response (0x2A):
Field Name Size Value
Header variable Response header
Size vint Size of the remote cache, which is calculated globally in the
clustered set ups, and if present, takes cache store contents into
account as well.
Exec
Request (0x2B):
Field Name Size Value
Header variable Request header
Script string Name of the task to execute
Parameter Count vint The number of parameters

Parameter 1 Name string The name of the first parameter

Parameter 1 vint The length of the first parameter
Length

Parameter 1 Value byte array The value of the first parameter

Response (0x2C):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if execution completed successfully
0x85 = server error

Value Length vint If success, length of return value

Value byte array If success, the result of the execution

Remote Events

Starting with Hot Rod 2.0, clients can register listeners for remote events happening in the server.
Sending these events commences the moment a client adds a client listener for remote events.

Event Header:

Field Name Size Value

Magic 1 byte 0xA1 =response

309

Field Name
Message ID
Opcode

Status

Topology Change
Marker

Size Value
vLong ID of event

1 byte Event type:
0x60 = cache entry created event
0x61 = cache entry modified event
0x62 = cache entry removed event
0x66 = counter event
0x50 = error

1 byte Status of the response, possible values:
0x00 = No error

1byte Since events are not associated with a particular incoming
topology ID to be able to decide whether a new topology is
required to be sent or not, new topologies will never be sent with
events. Hence, this marker will always have 0 value for events.

Table 9. Cache entry created event

Field Name
Header
Listener ID
Custom marker

Command retried

Key

Version

Size Value
variable Event header with 0x60 operation code
byte array Listener for which this event is directed
byte Custom event marker. For created events, this is 0.

byte Marker for events that are result of retried commands. If
command is retried, it returns 1, otherwise 0.

byte array Created key

long Version of the created entry. This version information can be
used to make conditional operations on this cache entry.

Table 10. Cache entry modified event

Field Name
Header
Listener ID
Custom marker

Command retried

Key

Version

Size Value
variable Event header with 0x61 operation code
byte array Listener for which this event is directed
byte Custom event marker. For created events, this is 0.

byte Marker for events that are result of retried commands. If
command is retried, it returns 1, otherwise 0.

byte array Modified key

long Version of the modified entry. This version information can be
used to make conditional operations on this cache entry.

Table 11. Cache entry removed event

Field Name
Header
Listener ID

Custom marker

310

Size Value
variable Event header with 0x62 operation code
byte array Listener for which this event is directed

byte Custom event marker. For created events, this is 0.

Field Name

Command retried

Key

Table 12. Custom event

Field Name
Header
Listener ID
Custom marker

Event data

Size

byte

byte array

Size
variable
byte array
byte
byte array

Value

Marker for events that are result of retried commands. If
command is retried, it returns 1, otherwise 0.

Removed key

Value

Event header with event specific operation code
Listener for which this event is directed

Custom event marker. For custom events, this is 1.

Custom event data, formatted according to the converter
implementation logic.

20.6.6. Hot Rod Protocol 2.1

Q Infinispan versions

This version of the protocol is implemented since Infinispan 7.1.0.Final.

Request Header

The version field in the header is updated to 21.

Operations

Add client listener for remote events

An extra byte parameter is added at the end which indicates whether the client prefers client
listener to work with raw binary data for filter/converter callbacks. If using raw data, its value is 1

otherwise 0.

Request format:

Field Name
Header
Listener ID
Include state

Key/value filter
factory parameter
count

Converter factory
name

Converter factory
parameter count

Size
variable
byte array
byte
byte

string

byte

Value

Request header

311

Field Name Size Value

Use raw data byte If filter/converter parameters should be raw binary, then 1,
otherwise 0.

Custom event

Starting with Hot Rod 2.1, custom events can return raw data that the Hot Rod client should not try
to unmarshall before passing it on to the user. The way this is transmitted to the Hot Rod client is by
sending 2 as the custom event marker. So, the format of the custom event remains like this:

Field Name Size Value

Header variable Event header with event specific operation code

Listener ID byte array Listener for which this event is directed

Custom marker byte Custom event marker. For custom events whose event data needs

to be unmarshalled before returning to user the value is 1. For
custom events that need to return the event data as-is to the user,
the value is 2.

Event data byte array Custom event data. If the custom marker is 1, the bytes represent
the marshalled version of the instance returned by the converter.
If custom marker is 2, it represents the byte array, as returned by
the converter.

20.6.7. Hot Rod Protocol 2.2

Q Infinispan versions
This version of the protocol is implemented since Infinispan 8.0

Added support for different time units.

Operations

Put/PutAll/PutifAbsent/Replace/ReplacelfUnmodified

Common request format:

Field Name Size Value

TimeUnits Byte Time units of lifespan (first 4 bits) and maxIdle (last 4 bits).
Special units DEFAULT and INFINITE can be used for default
server expiration and no expiration respectively. Possible values:
0x00 = SECONDS
0x01 = MILLISECONDS
0x02 = NANOSECONDS
0x03 = MICROSECONDS
0x04 = MINUTES
0x05 = HOURS
0x06 = DAYS
0x07 = DEFAULT
0x08 = INFINITE

312

Field Name

Lifespan

Max Idle

Size

vLong

vLong

Value

Duration which the entry is allowed to life. Only sent when time
unit is not DEFAULT or INFINITE

Duration that each entry can be idle before it’s evicted from the
cache. Only sent when time unit is not DEFAULT or INFINITE

20.6.8. Hot Rod Protocol 2.3

Q Infinispan versions
This version of the protocol is implemented since Infinispan 8.0

Operations

Iteration Start

Request (0x31):

Field Name

Segments size

Segments

FilterConverter
size

FilterConverter
BatchSize

Response (0x32):

Field Name

IterationlId

Iteration Next

Request (0x33):

Size

signed vInt

byte array

signed vInt

UTF-8 byte
array

vint

Size

String

Value

Size of the bitset encoding of the segments ids to iterate on. The
size is the maximum segment id rounded to nearest multiple of 8.
A value -1 indicates no segment filtering is to be done

(Optional) Contains the segments ids bitset encoded, where each
bit with value 1 represents a segment in the set. Byte order is
little-endian.

Example: segments [1,3,12,13] would result in the following
encoding:

00001010 00110000

size: 16 bits

first byte: represents segments from 0 to 7, from which 1 and 3
are set

second byte: represents segments from 8 to 15, from which 12
and 13 are set

More details in the java.util.BitSet implementation. Segments will
be sent if the previous field is not negative

The size of the String representing a KeyValueFilterConverter
factory name deployed on the server, or -1 if no filter will be used

(Optional) KeyValueFilterConverter factory name deployed on
the server. Present if previous field is not negative

number of entries to transfers from the server at one go

Value

The unique id of the iteration

313

Field Name Size Value

Iterationld String The unique id of the iteration

Response (0x34):

Field Name Size Value
Finished segments vint size of the bitset representing segments that were finished
size iterating

Finished segments byte array bitset encoding of the segments that were finished iterating

Entry count vint How many entries are being returned
Key 1 Length vint Length of key

Key 1 byte array Retrieved key

Value 1 Length vint Length of value

Value 1 byte array Retrieved value

Key 2 Length vint

Key 2 byte array

Value 2 Length vint

Value 2 byte array

... continues until
entry count is

reached
Iteration End
Request (0x35):
Field Name Size Value
Iterationld String The unique id of the iteration

Response (0x36):

Header variable Response header

Response status 1 byte 0x00 = success, if execution completed successfully
0x05 = for non existent Iterationld

20.6.9. Hot Rod Protocol 2.4

Q Infinispan versions
This version of the protocol is implemented since Infinispan 8.1

This Hot Rod protocol version adds three new status code that gives the client hints on whether the
server has compatibility mode enabled or not:

* 0x06: Success status and compatibility mode is enabled.

314

* 0x0@7: Success status and return previous value, with compatibility mode is enabled.

* 0x08: Not executed and return previous value, with compatibility mode is enabled.

The Iteration Start operation can optionally send parameters if a custom filter is provided and it’s

parametrised:

Operations

Iteration Start

Request (0x31):

Field Name
Segments size
Segments

FilterConverter
size

FilterConverter
Parameters size

Parameters

BatchSize

Size
signed vInt
byte array

signed vInt

UTEF-8 byte
array
byte

byte[ll]

vint

Value
same as protocol version 2.3.
same as protocol version 2.3.

same as protocol version 2.3.

same as protocol version 2.3.

the number of params of the filter. Only present when
FilterConverter is provided.

an array of parameters, each parameter is a byte array. Only
present if Parameters size is greater than 0.

same as protocol version 2.3.

The Iteration Next operation can optionally return projections in the value, meaning more than one
value is contained in the same entry.

Iteration Next

Response (0x34):

Field Name

Finished segments

size

Finished segments

Entry count

Number of value

projections
Key1 Length
Key1l

Valuel projection1

length

Size

vint

byte array
vint

vint

vint
byte array

vint

Valuel projection1 byte array

Valuel projection2

length

vint

Value

same as protocol version 2.3.

same as protocol version 2.3.
same as protocol version 2.3.

Number of projections for the values. If 1, behaves like version
protocol version 2.3.

same as protocol version 2.3.
same as protocol version 2.3.

length of valuel first projection

retrieved valuel first projection

length of value2 second projection

315

Field Name Size Value

Valuel projection2 byte array retrieved value2 second projection

... continues until Key2 vint
all projections for Length
the value
retrieved
same as protocol Key2 byte array
version 2.3.
same as protocol Value2 vInt
version 2.3. projection1
length
length of value 2 Value2 byte array
first projection projectionl
retrieved value 2 Value2 vint
first projection projection2
length

length of value 2 Value2 byte array
second projection projection2
retrieved value 2 ... continues
second projection until entry

count is

reached
1. Stats:

Statistics returned by previous Hot Rod protocol versions were local to the node where the Hot Rod
operation had been called. Starting with 2.4, new statistics have been added which provide global
counts for the statistics returned previously. If the Hot Rod is running in local mode, these statistics
are not returned:

Name Explanation

globalCurrentNumberOfEntries Number of entries currently across the Hot Rod
cluster.

globalStores Total number of put operations across the Hot
Rod cluster.

globalRetrievals Total number of get operations across the Hot
Rod cluster.

globalHits Total number of get hits across the Hot Rod
cluster.

globalMisses Total number of get misses across the Hot Rod
cluster.

globalRemoveHits Total number of removal hits across the Hot Rod
cluster.

globalRemoveMisses Total number of removal misses across the Hot

Rod cluster.

316

20.6.10. Hot Rod Protocol 2.5

Q Infinispan versions
This version of the protocol is implemented since Infinispan 8.2

This Hot Rod protocol version adds support for metadata retrieval along with entries in the iterator.
It includes two changes:

* Iteration Start request includes an optional flag

* IterationNext operation may include metadata info for each entry if the flag above is set

Iteration Start

Request (0x31):

Field Name Size Value

Segments size signed vIint same as protocol version 2.4.
Segments byte array same as protocol version 2.4.
FilterConverter signed vIint same as protocol version 2.4.
size

FilterConverter UTF-8 byte same as protocol version 2.4.

array

Parameters size byte same as protocol version 2.4.
Parameters byte[l[] same as protocol version 2.4.
BatchSize vint same as protocol version 2.4.
Metadata 1 byte 1 if metadata is to be returned for each entry, 0 otherwise
Iteration Next

Response (0x34):

Field Name Size Value

Finished segments vint same as protocol version 2.4.

size

Finished segments byte array same as protocol version 2.4.

Entry count vint same as protocol version 2.4.
Number of value vint same as protocol version 2.4.
projections

Metadata (entry 1) 1 byte If set, entry has metadata associated

Expiration (entry 1byte Aflagindicating whether the response contains expiration

1) information. The value of the flag is obtained as a bitwise OR
operation between INFINITE_LIFESPAN (0x01) and
INFINITE_MAXIDLE (©0x02).Only present if the metadata flag above
is set

317

Field Name Size Value

Created (entry 1) Long (optional) a Long representing the timestamp when the entry
was created on the server. This value is returned only if the flag’s
INFINITE_LIFESPAN bit is not set.

Lifespan (entry 1) vint (optional) a vIint representing the lifespan of the entry in seconds.
This value is returned only if the flag’s INFINITE_LIFESPAN bit is
not set.

LastUsed (entry 1) Long (optional) a Long representing the timestamp when the entry

was last accessed on the server. This value is returned only if the
flag’s INFINITE_MAXIDLE bit is not set.

MaxlIdle (entry 1) vint (optional) a vInt representing the maxIdle of the entry in
seconds. This value is returned only if the flag’s INFINITE_MAXIDLE
bit is not set.

Entry Version 8 bytes Unique value of an existing entry’s modification. Only present if
(entry 1) Metadata flag is set

Key 1 Length vint same as protocol version 2.4.

Key 1 byte array same as protocol version 2.4.

Value 1 Length vint same as protocol version 2.4.

Value 1 byte array same as protocol version 2.4.

Metadata (entry 2) 1 byte Same as for entry 1

Expiration (entry 1byte Same as for entry 1
2)

Created (entry 2) Long Same as for entry 1
Lifespan (entry 2) vint Same as for entry 1

LastUsed (entry 2) Long Same as for entry 1

MaxlIdle (entry 2) vint Same as for entry 1
Entry Version 8 bytes Same as for entry 1
(entry 2)

Key 2 Length vint

Key 2 byte array

Value 2 Length vint

Value 2 byte array

... continues until
entry count is
reached

20.6.11. Hot Rod Protocol 2.6

Q Infinispan versions
This version of the protocol is implemented since Infinispan 9.0

This Hot Rod protocol version adds support for streaming get and put operations. It includes two

318

new operations:

* GetStream for retrieving data as a stream, with an optional initial offset

 PutStream for writing data as a stream, optionally by specifying a version

GetStream
Request (0x37):
Field Name Size
Header variable
Offset vint
Key Length vint
Key byte array
GetStream

Response (0x38):

Field Name Size
Header variable
Response status 1 byte
Flag 1 byte
Created Long
Lifespan vint
LastUsed Long
MaxIdle vint
Entry Version 8 bytes

Value
Request header

The offset in bytes from which to start retrieving. Set to 0 to
retrieve from the beginning

Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer. MAX_VALUE.

Byte array containing the key whose value is being requested.

Value
Response header

0x00 = success, if key retrieved
0x02 = if key does not exist

A flag indicating whether the response contains expiration
information. The value of the flag is obtained as a bitwise OR
operation between INFINITE_LIFESPAN (0x01) and
INFINITE_MAXIDLE (0x02).

(optional) a Long representing the timestamp when the entry
was created on the server. This value is returned only if the flag’s
INFINITE_LIFESPAN bit is not set.

(optional) a vint representing the lifespan of the entry in seconds.
This value is returned only if the flag’s INFINITE_LIFESPAN bit is
not set.

(optional) a Long representing the timestamp when the entry
was last accessed on the server. This value is returned only if the
flag’s INFINITE_MAXIDLE bit is not set.

(optional) a vint representing the maxIdle of the entry in
seconds. This value is returned only if the flag’s INFINITE_MAXIDLE
bit is not set.

Unique value of an existing entry’s modification. The protocol
does not mandate that entry_version values are sequential. They
just need to be unique per update at the key level.

319

Field Name Size Value

Value Length vint If success, length of value
Value byte array If success, the requested value
PutStream

Request (0x39)

Field Name Size Value

Header variable Request header

Entry Version 8 bytes Possible values

0 = Unconditional put

-1 = Put If Absent

Other values = pass a version obtained by GetWithMetadata
operation to perform a conditional replace.

Key Length vint Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer. MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer. MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.
Value Chunk 1 vint The size of the first chunk of data. If this value is 0 it means the
Length client has completed transferring the value and the operation

should be performed.
Value Chunk 1 byte array Array of bytes forming the fist chunk of data.

...continues until
the value is
complete

Response (0x3A):

Field Name Size Value

Header variable Response header

On top of these additions, this Hot Rod protocol version improves remote listener registration by
adding a byte that indicates at a global level, which type of events the client is interested in. For
example, a client can indicate that only created events, or only expiration and removal events...etc.
More fine grained event interests, e.g. per key, can be defined using the key/value filter parameter.

So, the new add listener request looks like this:

Add client listener for remote events

Request (0x25):

Field Name Size Value

Header variable Request header
Listener ID byte array Listener identifier

320

Field Name

Include state

Key/value filter
factory name

Key/value filter
factory parameter
count

Key/value filter
factory parameter
1

Key/value filter
factory parameter
2

Converter factory
name

Converter factory
parameter count

Converter factory
parameter 1

Converter factory
parameter 2

Size

byte

string

byte

byte array

byte array

string

byte

byte array

byte array

Value

When this byte is set to 1, cached state is sent back to remote
clients when either adding a cache listener for the first time, or
when the node where a remote listener is registered changes in a
clustered environment. When enabled, state is sent back as cache
entry created events to the clients. If set to 0, no state is sent back
to the client when adding a listener, nor it gets state when the
node where the listener is registered changes.

Optional name of the key/value filter factory to be used with this
listener. The factory is used to create key/value filter instances
which allow events to be filtered directly in the Hot Rod server,
avoiding sending events that the client is not interested in. If no
factory is to be used, the length of the string is 0.

The key/value filter factory, when creating a filter instance, can
take an arbitrary number of parameters, enabling the factory to
be used to create different filter instances dynamically. This
count field indicates how many parameters will be passed to the
factory. If no factory name was provided, this field is not present
in the request.

First key/value filter factory parameter

Second key/value filter factory parameter

Optional name of the converter factory to be used with this
listener. The factory is used to transform the contents of the
events sent to clients. By default, when no converter is in use,
events are well defined, according to the type of event generated.
However, there might be situations where users want to add
extra information to the event, or they want to reduce the size of
the events. In these cases, a converter can be used to transform
the event contents. The given converter factory name produces
converter instances to do this job. If no factory is to be used, the
length of the string is 0.

The converter factory, when creating a converter instance, can
take an arbitrary number of parameters, enabling the factory to
be used to create different converter instances dynamically. This
count field indicates how many parameters will be passed to the
factory. If no factory name was provided, this field is not present
in the request.

First converter factory parameter

Second converter factory parameter

321

Field Name Size Value

Listener even type vint A variable length number representing listener event type

interests interests. Each event type is represented by a bit. Each flags is
represented by a bit. Note that since this field is sent as variable
length, the most significant bit in a byte is used to determine
whether more bytes need to be read, hence this bit does not
represent any flag. Using this model allows for flags to be
combined in a short space. Here are the current values for each
flag:
0x01 = cache entry created events 0x02 = cache entry modified
events 0x04 = cache entry removed events 0X08 = cache entry
expired events

20.6.12. Hot Rod Protocol 2.7

Q Infinispan versions
This version of the protocol is implemented since Infinispan 9.2

This Hot Rod protocol version adds support for transaction operations. It includes 3 new
operations:

* Prepare, with the transaction write set (i.e. modified keys), it tries to prepare and validate the
transaction in the server.
* Commit, commits a prepared transaction.

* Rollback, rollbacks a prepared transaction.

Prepare Request
Request (0x3B):
Field Name Size Value
Header variable Request header
Xid XID The transaction ID (XID)
OnePhaseCommit byte When it is set to 1, the server will use one-phase-commit if
available (XA only)
Number of keys vint The number of keys
For each key (keys must be distinct)
Key Length vint Length of key. Note that the size of a vInt can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vInt array lengths to Integer.MAX_VALUE.
Key byte array Byte array containing the key

322

Field Name
Control Byte

Version Read

TimeUnits

Lifespan

Max Idle

Value Length

Value

Size

Byte

long

Byte

vLong

vLong

vint

Value

A bit set with the following meaning:

0x01 = NOT_READ

0x02 = NON_EXISTING

0x04 = REMOVE_OPERATION

Note that NOT_READ and NON_EXISTING can’t be set at the same time.

The version read. Only sent when NOT_READ and NON_EXISTING
aren’t present.

Time units of lifespan (first 4 bits) and maxIdle (last 4 bits).
Special units DEFAULT and INFINITE can be used for default server
expiration and no expiration respectively. Possible values:
0x00 = SECONDS

0x01 = MILLISECONDS

0x02 = NANOSECONDS

0x03 = MICROSECONDS

0x04 = MINUTES

0x05 = HOURS

0x06 = DAYS

0x07 = DEFAULT

0x08 = INFINITE

Only sent when REMOVE_OPERATION isn’t set.

Duration which the entry is allowed to life. Only sent when time
unit is not DEFAULT or INFINITE and REMOVE_OPERATION isn’t set.

Duration that each entry can be idle before it’s evicted from the
cache. Only sent when time unit is not DEFAULT or INFINITE and
REMOVE_OPERATION isn’t set.

Length of value. Only sent if REMOVE_OPERATION isn’t set.

byte-array Value to be stored. Only sent if REMOVE_OPERATION isn’t set.

Commit and Rollback Request
Request. Commit (0x3D) and Rollback (0x3F):

Field Name
Header
Xid

Size

variable

XID

Value
Request header

The transaction ID (XID)

Response from prepare, commit and rollback request.

Response. Prepare (0x3C), Commit (0x3E) and Rollback (0x40)

Field Name
Header

XA return code

Size

variable

vint

Value
Response header

The XA code representing the prepare response.

Can be XA_0K(@), XA_RDONLY(3) or any of the error codes (see
XaException).

This field isn’t present if the response state is different from
Successful.

323

XID Format
The XID in the requests has the following format:

Field Name Size Value
Format ID signed vint The XID format.
Length of Global byte The length of global transaction id byte array. It max value is 64.

Transaction id

Global Transaction byte array The global transaction id.
Id

Length of Branch byte The length of branch qualifier byte array. It max value is 64.
Qualifier

Branch Qualifier = byte array The branch qualifier.

Counter Configuration encoding format

The CounterConfiguration class encoding format is the following:

0 In counter related operation, the Cache Name field in Request Header can be empty.

Summary of Status value in the Response Header:
* 0x00: Operation successful.
ﬁ * 0x01: Operation failed.
* 0x02: The counter isn’t defined.
* 0x04: The counter reached a boundary. Only possible for STRONG counters.

Field Name Size Value

Flags byte The CounterType and Storage encoded. Only the less significant
bits are used as following:
1st bit: 1 for WEAK counter and 0 for STRONG counter.
2nd bit: 1 for BOUNDED counter and @ for UNBOUNDED counter
3rd bit: 1 for PERSISTENT storage and 0 for VOLATILE storage.

Concurrency Level vint (Optional) the counter’s concurrency-level. Only present if the
counter is WEAK.

Lower bound long (Optional) the lower bound of a bounded counter. Only present if
the counter is BOUNDED.

Upper bound long (Optional) the upper bound of a bounded counter. Only present if
the counter is BOUNDED.

Initial value long The counter’s initial value.

Counter create operation

Creates a counter if it doesn’t exist.

Table 13. Request (0x4B)
Field Name Size Value

Header variable Request header

324

Field Name Size

Name string
Counter variable
Configuration

Table 14. Response (0x4C)
Field Name Size

Header variable

Value

The counter’s name

The counter’s configuration. See CounterConfiguration encode.

Value

Response header

Response Header Status possible values:

* 0x00: Operation successful.

* 0x01: Operation failed. Counter is already defined.

* See the Reponse Header for error codes.

Counter get configuration operation

Returns the counter’s configuration.

Table 15. Request (0x4D)

Field Name Size
Header variable
Name string

Table 16. Response (0x4E)

Field Name Size
Header variable
Counter variable
Configuration

Value
Request header

The counter’s name.

Value
Response header

(Optional) The counter’s configuration. Only present if
Status==0x00. See CounterConfiguration encode.

Response Header Status possible values:

* 0x00: Operation successful.

¢ 0x02: Counter doesn’t exist.

» See the Reponse Header for error codes.

Counter is defined operation

Checks if the counter is defined.

Table 17. Request (0x4F)

Field Name Size
Header variable
Name string

Table 18. Response (0x51)

Value

Request header

The counter’s name

325

#counter_config_encode
#hot_rod_response_header
#counter_config_encode
#hot_rod_response_header

Field Name
Header

Size

variable

Value

Response header

Response Header Status possible values:

e 0x00: Counter is defined.

e 0x01: Counter isn’t defined.

 See the Reponse Header for error codes.

Counter add-and-get operation

Adds a value to the counter and returns the new value.

Table 19. Request (0x52)

Field Name Size
Header variable
Name string
Value long

Table 20. Response (0x53)

Field Name Size
Header variable
Value long

i

Value
Request header
The counter’s name

The value to add

Value

Response header

(Optional) the counter’s new value. Only present if Status==0x00.

Since the WeakCounter doesn’t have access to the new value, the value is zero.

Response Header Status possible values:

* 0x00: Operation successful.

e 0x02: The counter isn’t defined.

* 0x04: The counter reached its boundary. Only possible for STRONG counters.

» See the Reponse Header for error codes.

Counter reset operation

Resets the counter’s value.

Table 21. Request (0x54)

Field Name Size
Header variable
Name string
Table 22. Response (0x55)

Field Name Size
Header variable

326

Value
Request header

The counter’s name

Value

Response header

#hot_rod_response_header
#hot_rod_response_header

Response Header Status possible values:

* 0x00: Operation successful.
* 0x02: Counter isn’t defined.

» See the Reponse Header for error codes.

Counter get operation

Returns the counter’s value.

Table 23. Request (0x56)

Field Name Size Value
Header variable Request header
Name string The counter’s name

Table 24. Response (0x57)

Field Name Size Value
Header variable Response header
Value long (Optional) the counter’s value. Only present if Status==0x00.

Response Header Status possible values:

* 0x00: Operation successful.
* 0x02: Counter isn’t defined.

» See the Reponse Header for error codes.

Counter compare-and-swap operation

Compares and only updates the counter value if the current value is the expected.

Table 25. Request (0x58)

Field Name Size Value

Header variable Request header

Name string The counter’s name

Expect long The counter’s expected value.
Update long The counter’s value to set.

Table 26. Response (0x59)

Field Name Size Value
Header variable Response header
Value long (Optional) the counter’s value. Only present if Status==0x00.

Response Header Status possible values:

* 0x00: Operation successful.

327

#hot_rod_response_header
#hot_rod_response_header

* 0x02: The counter isn’t defined.
* 0x04: The counter reached its boundary. Only possible for STRONG counters.

» See the Reponse Header for error codes.

Counter add and remove listener

Adds/Removes a listener for a counter

Table 27. Request ADD (0x5A) / REMOVE (0x5C)

Field Name Size Value

Header variable Request header
Name string The counter’s name
Listener-id byte array The listener’s id

Table 28. Response: ADD (0x5B) / REMOVE (0x5D)
Field Name Size Value

Header variable Response header

Response Header Status possible values:
* 0x00: Operation successful and the connection used in the request will be used to send event
(add) or the connection can be removed (remove).
* 0x01: Operation successful and the current connection is still in use.
* 0x02: The counter isn’t defined.

» See the Reponse Header for error codes.

Table 29. Counter Event (0x66)

Field Name Size Value

Header variable Event header with operation code 0x66
Name string The counter’s name

Listener-id byte array The listener’s id

Encoded Counter byte Encoded old and new counter state. Bit set:
State [| ------ 00: Valid old state

—————— 01: Lower bound reached old state
—————— 10: Upper bound reached old state
----00--: Valid new state

----01--: Lower bound reached new state
----10--: Upper bound reached new state

Old value long Counter’s old value
New value long Counter’s new value
o All counters under a CounterManager implementation can use the same listener-id.

328

#hot_rod_response_header
#hot_rod_response_header

ﬁ A connection is dedicated to a single listener-id and can receive events from
different counters.

Counter remove operation

Removes the counter from the cluster.
O The counter is re-created if it is accessed again.

Table 30. Request (0x5E)

Field Name Size Value
Header variable Request header
Name string The counter’s name

Table 31. Response (0x5F)
Field Name Size Value

Header variable Response header

Response Header Status possible values:

* 0x00: Operation successful.
e 0x02: The counter isn’t defined.

» See the Reponse Header for error codes.

20.6.13. Hot Rod Protocol 2.8

Q Infinispan versions
This version of the protocol is implemented since Infinispan 9.3

Events

The protocol allows clients to send requests on the same connection that was previously used for
Add Client Listener operation, and in protocol < 2.8 is reserved for sending events to the client. This
includes registering additional listeners, therefore receiving events for multiple listeners.

The binary format of requests/responses/events does not change but the previously meaningless
messageld in events must be set to:

* messageld of the Add Client Listener operation for the include-current-state events

* 0 for the events sent after the Add Client Listener operation has been finished (response sent).

The same holds for counter events: client can send further requests after Counter Add Listener.
Previously meaningless messageld in counter event is always set to 0.

These modifications of the protocol do not require any changes on the client side (as the client
simply won’t send additional operations if it does not support that; the changes are more
permissive to the clients) but the server has to handle load on the connection correctly.

329

#hot_rod_response_header

MediaType

This Hot Rod protocol version also adds support for specifying the MediaType of Keys and Values,
allowing data to be read (and written) in different formats. This information is part of the Header.

The data formats are described using a MediaType object, that is represented as follows:

Field Name Size Value

type 1 byte 0x00 = No MediaType supplied
0x01 = Pre-defined MediaType supplied
0x02 = Custom MediaType supplied

id vint (Optional) For a pre-defined MediaType (type=0x01), the Id of the
MediaType. The currently supported Ids can be found at
MediaTypelds

customString string (Optional) If a custom MediaType is supplied (type=0x02), the

custom MediaType of the key, including type and subtype. E.g.:
text/plain, application/json, etc.

paramSize vint The size of the parameters for the MediaType
paramKey1 string (Optional) The first parameter’s key
paramValuel string (Optional) The first parameter’s value
paramKeyN string (Optional) The nth parameter’s key
paramValueN string (Optional) The nth parameter’s value

Request Header

The request header has the following extra fields:

Field Name Type Value

Key Format MediaType The MediaType to be used for keys during the operation. It
applies to both the keys sent and received.

Value Format MediaType Analogous to Key Format, but applied for the values.

20.6.14. Hot Rod Protocol 2.9

Q Infinispan versions
This version of the protocol is implemented since Infinispan 9.4

Compatibility Mode removal

The compatibility mode hint from the Response status fields from the operations is not sent
anymore. Consequently, the following statuses are removed:

* 0x06: Success status with compatibility mode.
* 0x@7: Success status with return previous value and compatibility mode.

* 0x08: Not executed with return previous value and compatibility mode.

330

https://github.com/infinispan/infinispan/blob/master/commons/src/main/java/org/infinispan/commons/dataconversion/MediaTypeIds.java

To figure out what is the server’s storage, the configured MediaType of keys and values are
returned on the ping operation:

Ping Response (0x18):

Field Name Size Value

Header variable same as before

Response status 1 byte same as before

Key Type MediaType Media Type of the key stored in the server
Value Type MediaType Media Type of the value stored in the server

New query format

This version supports query requests and responses in JSON format. The format of the operations
0x1F (Query Request) and 0x20 (Query Response) are not changed.

To send JSON payloads, the "Value Format" field in the header should be application/json.

Query Request (0x1F):

Field Name Size Value

Header variable Request header

Query Length vint The length of the UTF-8 encoded query object.

Query byte array Byte array containing the JSON (UTF-8) encoded query object,
having a length specified by the previous field. Example of
payload:

{
"query":"From Entity where field1:'valuel'",
"offset": 12,

"max-results": 1000,
"query-mode": "FETCH"
}

Where:

query: the Ickle query String.

offset: the index of the first result to return.
max_results: the maximum number of results to return.
query_mode: the indexed query mode. Either FETCH or
BROADCAST. FECTH is the default.

Query Response (0x20):

331

Field Name Size Value

Header variable Response header
Response payload vint The length of the UTF-8 encoded response object
Length

Response payload byte array Byte array containing the JSON encoded response object, having
a length specified by previous field. Example payload:

{
"total _results":801,
"hits":[
{

"hit":{
"field1":565,
"field2":"value2"

}

I
{
"hit":{
"field1":34,
"field2":"value22"
}
}
]
}
Where:

total results: the total number of results of the
query.

hits: an ARRAY of OBJECT representing the results.
hit: each OBJECT above contain another OBJECT in the
"hit" field, containing the result of the query, in
JSON format.

Also, this version introduces 3 new operations for Hot Rod transactions:

* Prepare Request V2: It adds new parameters to the request. The response stays the same.
» Forget Transaction Request: Removes transaction information in the server.

» Fetch In-Doubt Transactions Request: Fetches all in-doubt transactions’s Xid.

Prepare Request V2
Request (0X7D):

332

Field Name Size Value

Header variable Request header

Xid XID The transaction ID (XID)

OnePhaseCommit byte When it is set to 1, the server will use one-phase-commit if
available (XA only)

Recoverable byte Set to 1 to allow recovery in this transactions

Timeout long The idle timeout in milliseconds. If the transaction isn’t

recoverable (Recoverable=0), the server rollbacks the transaction
if it has been idle for this amount of time.

Number of keys vint The number of keys
For each key (keys must be distinct)

Key Length vint Length of key. Note that the size of a vIint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vInt array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key

Control Byte Byte A bit set with the following meaning:
0x01 = NOT_READ
0x02 = NON_EXISTING
0x04 = REMOVE_OPERATION
Note that NOT_READ and NON_EXISTING can’t be set at the same time.

Version Read long The version read. Only sent when NOT_READ and NON_EXISTING
aren’t present.

TimeUnits Byte Time units of lifespan (first 4 bits) and maxIdle (last 4 bits).
Special units DEFAULT and INFINITE can be used for default server
expiration and no expiration respectively. Possible values:
0x00 = SECONDS
0x01 = MILLISECONDS
0x02 = NANOSECONDS
0x03 = MICROSECONDS
0x04 = MINUTES
0x05 = HOURS
0x06 = DAYS
0x07 = DEFAULT
0x08 = INFINITE
Only sent when REMOVE_OPERATION isn’t set.

Lifespan vLong Duration which the entry is allowed to life. Only sent when time
unit is not DEFAULT or INFINITE and REMOVE_OPERATION isn’t set.

Max Idle vLong Duration that each entry can be idle before it’s evicted from the
cache. Only sent when time unit is not DEFAULT or INFINITE and
REMOVE_OPERATION isn’t set.

Value Length vint Length of value. Only sent if REMOVE_OPERATION isn’t set.
Value byte-array Value to be stored. Only sent if REMOVE_OPERATION isn’t set.

Response (0X7E)

333

Field Name Size Value
Header variable Response header

XA return code vint The XA code representing the prepare response.
Can be XA_0K(©@), XA_RDONLY(3) or any of the error codes (see
XaException).
This field isn’t present if the response state is different from
Successful.

Forget Transaction

Request (0x79)

Field Name Size Value

Header variable Request header

Xid XID The transaction ID (XID)

Response (0x7A)

Field Name Size Value

Header variable Response header

Fetch in-doubt transactions

Request (0x7B)
Field Name Size Value
Header variable Request header

Response (0x7C)

Field Name Size Value

Header variable Response header

Number of Xid vint The number of Xid in response
For each entry:

Xid XID The transaction ID (XID)

20.6.15. Hot Rod Hash Functions

{brandname} makes use of a consistent hash function to place nodes on a hash wheel, and to place
keys of entries on the same wheel to determine where entries live.

In Infinispan 4.2 and earlier, the hash space was hardcoded to 10240, but since 5.0, the hash space
is Integer.MAX_INT . Please note that since Hot Rod clients should not assume a particular hash
space by default, every time a hash-topology change is detected, this value is sent back to the client
via the Hot Rod protocol.

When interacting with {brandname} via the Hot Rod protocol, it is mandated that keys (and values)
are byte arrays, to ensure platform neutral behavior. As such, smart-clients which are aware of

334

https://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html#MAX_VALUE

hash distribution on the backend would need to be able to calculate the hash codes of such byte
array keys, again in a platform-neutral manner. To this end, the hash functions used by
{brandname} are versioned and documented, so that it can be re-implemented by non-Java clients
if needed.

The version of the hash function in use is provided in the Hot Rod protocol, as the hash function
version parameter.

1. Version 1 (single byte, 0x01) The initial version of the hash function in use is based on Austin
Appleby’s MurmurHash 2.0 algorithm , a fast, non-cryptographic hash that exhibits excellent
distribution, collision resistance and avalanche behavior. The specific version of the algorithm
used is the slightly slower, endian-neutral version that allows consistent behavior across both
big- and little-endian CPU architectures. {brandname}'s version also hard-codes the hash seed as
-1. For details of the algorithm, please visit Austin Appleby’s MurmurHash 2.0 page. Other
implementations are detailed on Wikipedia . This hash function was the default one used by the
Hot Rod server until Infinispan 4.2.1. Since Infinispan 5.0, the server never uses hash version 1.
Since Infinispan 9.0, the client ignores hash version 1.

2. Version 2 (single byte, 0x02) Since Infinispan 5.0, a new hash function is used by default which
is based on Austin Appleby’s MurmurHash 3.0 algorithm. Detailed information about the hash
function can be found in this wiki. Compared to 2.0, it provides better performance and spread.
Since Infinispan 7.0, the server only uses version 2 for HotRod 1.x clients.

3. Version 3 (single byte, 0x03) Since Infinispan 7.0, a new hash function is used by default. The
function is still based on wiki, but is also aware of the hash segments used in the server’s
ConsistentHash.

20.6.16. Hot Rod Admin Tasks

Admin operations are handled by the Exec operation with a set of well known tasks. Admin tasks
are named according to the following rules:

@@context@name

All parameters are UTF-8 encoded strings. Parameters are specific to each task, with the exception
of the flags parameter which is common to all commands. The flags parameter contains zero or
more space-separated values which may affect the behaviour of the command. The following table
lists all currently available flags.

Admin tasks return the result of the operation represented as a JSON string.

Table 32. FLAGS

Flag Description

permanent Requests that the command’s effect be made permanent into the server’s
configuration. If the server cannot comply with the request, the entire
operation will fail with an error

Admin tasks

Table 33. @@cache@create

335

https://github.com/infinispan/infinispan/blob/master/commons/src/main/java/org/infinispan/commons/hash/MurmurHash2.java
https://github.com/infinispan/infinispan/blob/master/commons/src/main/java/org/infinispan/commons/hash/MurmurHash2.java
http://sites.google.com/site/murmurhash/
http://en.wikipedia.org/wiki/MurmurHash
https://github.com/infinispan/infinispan/blob/master/commons/src/main/java/org/infinispan/commons/hash/MurmurHash3.java
http://code.google.com/p/smhasher/wiki/MurmurHash3
http://code.google.com/p/smhasher/wiki/MurmurHash3
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/distribution/ch/ConsistentHash.java

Parameter Description Required

name The name of the cache to create. Yes

template The name of the cache configuration template to use for the new No
cache.

configuration the XML declaration of a cache configuration to use. No

flags See the flags table above. No

Table 34. @@cache@remove

Parameter Description Required
name The name of the cache to remove. Yes

flags See the flags table above. No
@@cache@names

Returns the cache names as a JSON array of strings, e.g. ["cachel”, "cache2"]

Table 35. @@cache@reindex

Parameter Description Required

name The name of the cache to reindex. Yes

flags See the flags table above. No, all flags
will be
ignored

20.7. Java Hot Rod client

Hot Rod is a binary, language neutral protocol. This article explains how a Java client can interact
with a server via the Hot Rod protocol. A reference implementation of the protocol written in Java
can be found in all {brandname} distributions, and this article focuses on the capabilities of this
java client.

Q Looking for more clients? Visit this website for clients written in a variety of
different languages.

20.7.1. Configuration

The Java Hot Rod client can be configured both programmatically and externally, through a
configuration file.

The code snippet below illustrates the creation of a client instance using the available Java fluent
API:

336

http://infinispan.org/hotrod-clients

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb
= new org.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.tcpNoDelay(true)
.connectionPool()
.numTestsPerEvictionRun(3)
.testOnBorrow(false)
.testOnReturn(false)
.testWhileIdle(true)
.addServer()
.host("localhost")
.port(11222);
RemoteCacheManager rmc = new RemoteCacheManager(cb.build());

For a complete reference to the available configuration option please refer to the
ConfigurationBuilder's javadoc.

It is also possible to configure the Java Hot Rod client using a properties file, e.g.:

infinispan.client.hotrod.transport_factory =
org.infinispan.client.hotrod.impl.transport.tcp.TcpTransportFactory
infinispan.client.hotrod.server_list = 127.0.0.1:11222
infinispan.client.hotrod.marshaller =
org.infinispan.commons.marshall.jboss.GenericJBossMarshaller
infinispan.client.hotrod.async_executor_factory =
org.infinispan.client.hotrod.impl.async.DefaultAsyncExecutorFactory
infinispan.client.hotrod.default_executor_factory.pool_size = 1
infinispan.client.hotrod.default_executor_factory.queue_size = 10000
infinispan.client.hotrod.tcp_no_delay = true
infinispan.client.hotrod.request_balancing_strategy =
org.infinispan.client.hotrod.impl.transport.tcp.RoundRobinBalancingStrategy
infinispan.client.hotrod.key_size_estimate = 64
infinispan.client.hotrod.value_size_estimate = 512
infinispan.client.hotrod.force_return_values = false
infinispan.client.hotrod.client_intelligence = HASH_DISTRIBUTION_AWARE
infinispan.client.hotrod.batch_Size = 10000

below is connection pooling config
maxActive=-1

maxTotal = -1

maxIdle = -1

whenExhaustedAction = 1
timeBetweenEvictionRunsMillis=120000
minEvictableIdleTimeMillis=300000
testWhileIdle = true

minIdle = 1

The properties file is then passed to one of constructors of RemoteCacheManager. You can use
property substitution to replace values at runtime with Java system properties:

337

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/configuration/ConfigurationBuilder.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html#RemoteCacheManager-java.net.URL-
https://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

infinispan.client.hotrod.server_list = ${server_list}

In the above example the value of the infinispan.client.hotrod.server_list property will be expanded
to the value of the server_list Java system property.

which means that the wvalue should be taken from a system property named
jboss.bind.address.management and if it is not defined use 127.0.0.1.

For a complete reference of the available configuration options for the properties file please refer
to remote client configuration javadoc.

20.7.2. Authentication

If the server has set up authentication, you need to configure your client accordingly. Depending on
the mechs enabled on the server, the client must provide the required information.

0 This section is about client configuration. If you want to set up the server to
require authentication, read the Hot Rod server authentication section.

DIGEST-MD5

DIGEST-MD5 is the recommended approach for simple username/password authentication
scenarios. If you are using the default realm on the server ("ApplicationRealm"), all you need to do is
provide your credentials as follows:

Hot Rod client configuration with DIGEST-MD5 authentication

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
.addServer()
.host("127.0.0.1")
.port(11222)
.security()
.ss1()
.username("myuser")
.password("qwer1234!");
remoteCacheManager = new RemoteCacheManager(clientBuilder.build());
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

PLAIN

The PLAIN mechanism is not really recommended unless the connection is also encrypted, as
anyone can sniff the clear-text password being sent along the wire.

338

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/configuration/package-summary.html#package.description
../server_guide/server_guide.html#security:hotrod_auth

Hot Rod client configuration with DIGEST-MD5 authentication

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
.addServer()
.host("127.0.0.1")
.port(11222)
.security()
.authentication()
.sas1Mechanism("PLAIN")
.username("myuser")
.password("qwer1234!");
remoteCacheManager = new RemoteCacheManager(clientBuilder.build());
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

EXTERNAL

The EXTERNAL mechanism is special in that it doesn’t explicitly provide credentials but uses the
client certificate as identity. In order for this to work, in addition to the TrustStore (to validate the
server certificate) you need to provide a KeyStore (to supply the client certificate).

Hot Rod client configuration with EXTERNAL authentication (client cert)

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
.addServer()
.host("127.0.0.1")
.port(11222)
.security()
.ss1()
// TrustStore is a KeyStore which contains part of the server certificate
chain (e.g. the CA Root public cert)
.trustStoreFileName("/path/to/truststore")
.trustStorePassword("truststorepassword".toCharArray())
// KeyStore containing this client's own certificate
.keyStoreFileName("/path/to/keystore")
.keyStorePassword("keystorepassword".toCharArray())
.authentication()
.sas1Mechanism("EXTERNAL");
remoteCacheManager = new RemoteCacheManager(clientBuilder.build());
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

For more details, read the Encryption section below.

GSSAPI (Kerberos)

GSSAPI/Kerberos requires a much more complex setup, but it is used heavily in enterprises with
centralized authentication servers. To successfully authenticate with Kerberos, you need to create a
LoginContext. This will obtain a Ticket Granting Ticket (TGT) which will be used as a token to
authenticate with the service.

339

#hr_encryption

You will need to define a login module in a login configuration file:

gss.conf

GssExample {
com.sun.security.auth.module.Krb5LoginModule required client=TRUE;

b
If you are using the IBM JDK, the above becomes:

gss-ibm.conf

GssExample {
com.ibm.security.auth.module.Krb5LoginModule required client=TRUE;

¥
You will also need to set the following system properties:
java.security.auth.login.config=gss.conf

java.security.krb5.conf=/etc/krb5.conf

The krb5.conf file is dependent on your environment and needs to point to your KDC. Ensure that

you can authenticate via Kerberos using kinit.
Next up, configure your client as follows:

Hot Rod client GSSAPI configuration

LoginContext 1c = new LoginContext("GssExample", new BasicCallbackHandler("krb_user",

"krb_password".toCharArray()));
lc.login();
Subject clientSubject = lc.getSubject();

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
.addServer()
.host("127.0.0.1")
.port(11222)
.security()
.authentication()
.enable()
.serverName("infinispan-server")
.sas1Mechanism("GSSAPI")
.clientSubject(clientSubject)
.callbackHandler(new BasicCallbackHandler());
remoteCacheManager = new RemoteCacheManager(clientBuilder.build());

RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

For brevity we used the same callback handler both for obtaining the client subject

340

and for

handling authentication in the SASL GSSAPI mech, however different callbacks will actually be
invoked: NameCallback and PasswordCallback are needed to construct the client subject, while the
AuthorizeCallback will be called during the SASL authentication.

Custom CallbackHandlers

In all of the above examples, the Hot Rod client is setting up a default CallbackHandler for you that
supplies the provided credentials to the SASL mechanism. For advanced scenarios it may be
necessary to provide your own custom CallbackHandler:

Hot Rod client configuration with authentication via callback

public class MyCallbackHandler implements CallbackHandler {
final private String username;
final private char[] password;
final private String realm;

public MyCallbackHandler(String username, String realm, char[] password) {
this.username = username;
this.password = password;
this.realm = realm;

public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {
for (Callback callback : callbacks) {

if (callback instanceof NameCallback) {
NameCallback nameCallback = (NameCallback) callback;
nameCallback.setName(username);

} else if (callback instanceof PasswordCallback) {
PasswordCallback passwordCallback = (PasswordCallback) callback;
passwordCallback.setPassword(password);

} else if (callback instanceof AuthorizeCallback) {
AuthorizeCallback authorizeCallback = (AuthorizeCallback) callback;
authorizeCallback.setAuthorized(authorizeCallback.getAuthenticationID()

.equals(
authorizeCallback.getAuthorizationID()));

} else if (callback instanceof RealmCallback) {
RealmCallback realmCallback = (RealmCallback) callback;
realmCallback.setText(realm);

} else {
throw new UnsupportedCallbackException(callback);

}

}

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
.addServer()

341

.host("127.0.0.1")
.port(11222)
.security()
.authentication()
.enable()
.serverName("myhotrodserver")
.sas1Mechanism("DIGEST-MD5")
.callbackHandler(new MyCallbackHandler("myuser", "ApplicationRealm",
"qwer1234!".toCharArray()));
remoteCacheManager = new RemoteCacheManager(clientBuilder.build());
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

The actual type of callbacks that your CallbackHandler will need to be able to handle are mech-
specific, so the above is just a simple example.

20.7.3. Encryption

0 This section is about client configuration. If you want to set up the server to
require encryption, read the Hot Rod server encryption section.

Encryption uses TLS/SSL, so it requires setting up an appropriate server certificate chain. Generally,
a certificate chain looks like the following:

Certificate Hierarchw:

- Rca
HotRodServer

Version: 3
Subiect: | CN=HotRodServer.OU=Infinispan.0=JBoss.L=Red Hat &
Issuer: | CN=CA.OU=Infinispan.0=JBoss.L=Red Hat]
Serial Number: | Ox41603743
Valid From: | 2/9/2018 4:22:49 PM CET

Valid Until: | 2/9/2019 4:22:49 PM CET

Public Kev: RSA 2048 bits T
Sianature Aloorithm: | SHAZS6WITHRSA
Fingerorint: | SHA-1 ¥ | B TROD:42:D8:46:B2:BD:79:85:98: 1E:BC:03:BB:26:C @

Figure 16. Certificate chain

In the above example there is one certificate authority "CA" which has issued a certificate for
"HotRodServer". In order for a client to trust the server, it needs at least a portion of the above

342

../server_guide/server_guide.html#security:hotrod_rest_encryption

chain (usually, just the public certificate for "CA"). This certificate needs to placed in a keystore and
used as a TrustStore on the client and used as shown below:

Hot Rod client configuration with TLS (server cert)

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
.addServer()
.host("127.0.0.1")
.port(11222)
.security()
.ss1()
// TrustStore is a KeyStore which contains part of the server certificate
chain (e.g. the CA Root public cert)
.trustStoreFileName("/path/to/truststore")
.trustStorePassword("truststorepassword".toCharArray());
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

SNI

The server may have been configured with TLS/SNI support (Server Name Indication). This means
that the server is presenting multiple identities (probably bound to separate cache containers). The
client can specify which identity to connect to by specifying its name:

Hot Rod client configuration with SNI (server cert)

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
.addServer ()
.host("127.0.0.1")
.port(11222)
.security()
.ss1()
.sniHostName("myservername")
// TrustStore is a KeyStore which contains part of the server certificate
chain (e.g. the CA Root public cert)
.trustStoreFileName("/path/to/truststore")
.trustStorePassword("truststorepassword".toCharArray());
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

Client certificates

With the above configurations the client trusts the server. For increased security, a server
administrator may have set up the server to require the client to offer a valid certificate for mutual
trust. This kind of configuration requires the client to present its own certificate, usually issued by
the same certificate authority as the server. This certificate must be stored in a keystore and used as
follows:

343

https://en.wikipedia.org/wiki/Server_Name_Indication

Hot Rod client configuration with TLS (server and client cert)

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder
.addServer()
.host("127.0.0.1")
.port(11222)
.security()
.ss1()
// TrustStore is a KeyStore which contains part of the server certificate
chain (e.g. the CA Root public cert)
.trustStoreFileName("/path/to/truststore")
.trustStorePassword("truststorepassword".toCharArray())
// KeyStore containing this client's own certificate
.keyStoreFileName("/path/to/keystore")
.keyStorePassword("keystorepassword".toCharArray())
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

Please read the KeyTool documentation for more details on KeyStores. Additionally, the KeyStore
Explorer is a great GUI tool for easily managing KeyStores.

20.7.4. Basic API

Below is a sample code snippet on how the client API can be used to store or retrieve information
from a Hot Rod server using the Java Hot Rod client. It assumes that a Hot Rod server has been
started bound to the default location (localhost:11222)

//API entry point, by default it connects to localhost:11222
CacheContainer cacheContainer = new RemoteCacheManager();

//obtain a handle to the remote default cache
Cache<String, String> cache = cacheContainer.getCache();

//now add something to the cache and make sure it is there
CaChe.pUt("Car", "ferrari“);
assert cache.get("car").equals("ferrari");

//remove the data
cache.remove("car");
assert !cache.containsKey("car") : "Value must have been removed!";

The client API maps the local API: RemoteCacheManager corresponds to DefaultCacheManager
(both implement CacheContainer). This common API facilitates an easy migration from local calls
to remote calls through Hot Rod: all one needs to do is switch between DefaultCacheManager and
RemoteCacheManager - which is further simplified by the common CacheContainer interface that
both inherit.

344

{jdkroot}/technotes/tools/unix/keytool.html
http://keystore-explorer.org/
http://keystore-explorer.org/
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/manager/DefaultCacheManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/manager/CacheContainer.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/manager/DefaultCacheManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/manager/CacheContainer.html

20.7.5. RemoteCache(.keySet |.entrySet|.values)

The collection methods keySet, entrySet and values are backed by the remote cache. That is that
every method is called back into the RemoteCache. This is useful as it allows for the various Kkeys,
entries or values to be retrieved lazily, and not requiring them all be stored in the client memory at
once if the user does not want. These collections adhere to the Map specification being that add and
addAl1l are not supported but all other methods are supported.

One thing to note is the Iterator.remove and Set.remove or Collection.remove methods require more
than 1 round trip to the server to operate. You can check out the RemoteCache Javadoc to see more
details about these and the other methods.

Iterator Usage

The iterator method of these collections uses retrieveEntries internally, which is described below.
If you notice retrieveEntries takes an argument for the batch size. There is no way to provide this
to the iterator. As such the batch size can be configured via system property
infinispan.client.hotrod.batch_size or through the ConfigurationBuilder when configuring the
RemoteCacheManager.

Also the retrieveEntries iterator returned is Closeable as such the iterators from keySet, entrySet
and values return an Auto(Closeable variant. Therefore you should always close these "Iterator's
when you are done with them.

try (Closeablelterator<Entry<K, V>> iterator = remoteCache.entrySet().iterator) {

}

What if I want a deep copy and not a backing collection?

Previous version of RemoteCache allowed for the retrieval of a deep copy of the keySet. This is still
possible with the new backing map, you just have to copy the contents yourself. Also you can do
this with entrySet and values, which we didn’t support before.

Set<K> keysCopy = remoteCache.keySet().stream().collect(Collectors.toSet());

Please use extreme cautiong with this as a large number of keys can and will cause
OutOfMemoryError in the client.

Set keys = remoteCache.keySet();

20.7.6. Remote Iterator

Alternatively, if memory is a concern (different batch size) or you wish to do server side filtering or
conversion), use the remote iterator api to retrieve entries from the server. With this method you
can limit the entries that are retrieved or even returned a converted value if you dont' need all

345

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/configuraion/ConfigurationBuilder.html#batchSize-int-

properties of your entry.

// Retrieve all entries in batches of 1000
int batchSize = 1000;
try (Closeablelterator<Entry<Object, Object>> iterator = remoteCache.retrieveEntries
(null, batchSize)) {

while(iterator.hasNext()) {

// Do something

}

}

// Filter by segment
Set<Integer> segments = ...
try (Closeablelterator<Entry<Object, Object>> iterator = remoteCache.retrieveEntries
(null, segments, batchSize)) {

while(iterator.hasNext()) {

// Do something

}

}

// Filter by custom filter
try (Closeablelterator<Entry<Object, Object>> iterator = remoteCache.retrieveEntries(
"myFilterConverterFactory", segments, batchSize)) {
while(iterator.hasNext()) {
// Do something

}

In order to use custom filters, it’s necessary to deploy them first in the server. Follow the steps:

* Create a factory for the filter extending KeyValueFilterConverterFactory, annotated with
@NamedFactory containing the name of the factory, example:

346

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/filter/KeyValueFilterConverterFactory.html

import java.io.Serializable;

import org.infinispan.filter.AbstractKeyValueFilterConverter;
import org.infinispan.filter.KeyValueFilterConverter;

import org.infinispan.filter.KeyValueFilterConverterFactory;
import org.infinispan.filter.NamedFactory;

import org.infinispan.metadata.Metadata;

@NamedFactory(name = "myFilterConverterFactory")
public class MyKeyValueFilterConverterFactory implements
KeyValueFilterConverterFactory {

@0verride
public KeyValueFilterConverter<String, SampleEntity1, SampleEntity2>
getFilterConverter() {
return new MyKeyValueFilterConverter();
}
// Filter implementation. Should be serializable or externalizable for DIST caches
static class MyKeyValueFilterConverter extends AbstractKeyValueFilterConverter
<String, SampleEntity1, SampleEntity2> implements Serializable {
@0verride
public SampleEntity2 filterAndConvert(String key, SampleEntity1 entity, Metadata
metadata) {
// returning null will case the entry to be filtered out
// return SampleEntity2 will convert from the cache type SampleEntity1

}

@0verride
public MediaType format() {
// returns the MediaType that data should be presented to this converter.
// When ommitted, the server will use "application/x-java-object".
// Returning null will cause the filter/converter to be done in the storage
format.

}

* Create a jar with a META-INF/services/org.infinispan.filter.KeyValueFilterConverterFactory file
and within it, write the fully qualified class name of the filter factory class implementation.

» Optional: If the filter uses custom key/value classes, these must be included in the JAR so that
the filter can correctly unmarshall key and/or value instances.

* Deploy the JAR file in the {brandname} Server.

20.7.7. Versioned API

A RemoteCacheManager provides instances of RemoteCache interface that represents a handle to
the named or default cache on the remote cluster. API wise, it extends the Cache interface to which
it also adds some new methods, including the so called versioned API. Please find below some

347

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html

examples of this API link:#server_hotrod_failover[but to understand the motivation behind it, make
sure you read this section.

The code snippet bellow depicts the usage of these versioned methods:

// To use the versioned API, remote classes are specifically needed
RemoteCacheManager remoteCacheManager = new RemoteCacheManager();
RemoteCache<String, String> cache = remoteCacheManager.getCache();

remoteCache.put("car”, "ferrari");
RemoteCache.VersionedValue valueBinary = remoteCache.getVersioned("car");

// removal only takes place only if the version has not been changed

// in between. (a new version is associated with 'car' key on each change)
assert remoteCache.remove("car", valueBinary.getVersion());

assert !cache.containsKey("car");

In a similar way, for replace:

remoteCache.put("car", "ferrari");
RemoteCache.VersionedValue valueBinary = remoteCache.getVersioned("car");
assert remoteCache.replace("car”, "lamborghini”, valueBinary.getVersion());

For more details on versioned operations refer to RemoteCache 's javadoc.

20.7.8. Async API

This is "borrowed" from the {brandname} core and it is largely discussed here.

20.7.9. Streaming API

When sending / receiving large objects, it might make sense to stream them between the client and
the server. The Streaming API implements methods similar to the Hot Rod Basic API and Hot Rod
Versioned API described above but, instead of taking the value as a parameter, they return
instances of InputStream and OutputStream. The following example shows how one would write a
potentially large object:

RemoteStreamingCache<String> streamingCache = remoteCache.streaming();
OutputStream os = streamingCache.put("a_large_object");

os.write(...);

os.close();

Reading such an object through streaming:

348

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
#cache_asynchronous_api
#hr_basic_api
#hr_versioned_api
#hr_versioned_api

RemoteStreamingCache<String> streamingCache = remoteCache.streaming();
InputStream is = streamingCache.get("a_large_object");
for(int b = is.read(); b >= 0; b = is.read()) {

}

is.close();

The streaming API does not apply marshalling/unmarshalling to the values. For

O this reason you cannot access the same entries using both the streaming and non-
streaming API at the same time, unless you provide your own marshaller to detect
this situation.

The InputStream returned by the RemoteStreamingCache.get(K key) method implements the
VersionedMetadata interface, so you can retrieve version and expiration information:

RemoteStreamingCache<String> streamingCache = remoteCache.streaming();
InputStream is = streamingCache.get("a_large_object");

int version = ((VersionedMetadata) is).getVersion();

for(int b = is.read(); b >= 0; b = is.read()) {

}

is.close();

Conditional write methods (putIfAbsent, replace) only perform the actual condition
0 check once the value has been completely sent to the server (i.e. when the close()
method has been invoked on the OutputStream.

20.7.10. Creating Event Listeners

Java Hot Rod clients can register listeners to receive cache-entry level events. Cache entry created,
modified and removed events are supported.

Creating a client listener is very similar to embedded listeners, except that different annotations
and event classes are used. Here’s an example of a client listener that prints out each event
received:

349

import org.infinispan.client.hotrod.annotation.*;
import org.infinispan.client.hotrod.event.*;

public class EventPrintListener {

public void handleCreatedEvent(ClientCacheEntryCreatedEvent e) {
System.out.println(e);
}

public void handleModifiedEvent(ClientCacheEntryModifiedEvent e) {
System.out.println(e);
}

public void handleRemovedEvent(ClientCacheEntryRemovedEvent e) {
System.out.println(e);
}

ClientCacheEntryCreatedEvent and ClientCacheEntryModifiedEvent instances provide information on
the affected key, and the version of the entry. This version can be used to invoke conditional
operations on the server, such as replacellithVersion or removeWithVersion.

ClientCacheEntryRemovedEvent events are only sent when the remove operation succeeds. In other
words, if a remove operation is invoked but no entry is found or no entry should be removed, no
event is generated. Users interested in removed events, even when no entry was removed, can
develop event customization logic to generate such events. More information can be found in the
customizing client events section.

All ClientCacheEntryCreatedEvent, ClientCacheEntryModifiedEvent and ClientCacheEntryRemovedEvent
event instances also provide a boolean isCommandRetried() method that will return true if the write
command that caused this had to be retried again due to a topology change. This could be a sign
that this event has been duplicated or another event was dropped and replaced (eg:
ClientCacheEntryModifiedEvent replaced ClientCacheEntryCreatedEvent).

Once the client listener implementation has been created, it needs to be registered with the server.
To do so, execute:

RemoteCache<?, 7> cache = ...
cache.addClientListener(new EventPrintListener());

350

#customizing_events

20.7.11. Removing Event Listeners

When an client event listener is not needed any more, it can be removed:

EventPrintListener listener = ...
cache.removeClientListener(listener);

20.7.12. Filtering Events

In order to avoid inundating clients with events, users can provide filtering functionality to limit
the number of events fired by the server for a particular client listener. To enable filtering, a cache
event filter factory needs to be created that produces filter instances:

import org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory;
import org.infinispan.filter.NamedFactory;

(name = "static-filter")
class StaticCacheEventFilterFactory implements CacheEventFilterFactory {

public CacheEventFilterFactory<Integer, String> getFilter(Object[] params) {
return new StaticCacheEventFilter();

}
}

// Serializable, Externalizable or marshallable with Infinispan Externalizers
// needed when running in a cluster

class StaticCacheEventFilter implements CacheEventFilter<Integer, String>,
Serializable {

public boolean accept(Integer key, String oldValue, Metadata oldMetadata,
String newValue, Metadata newMetadata, EventType eventType) {
if (key.equals(1)) // static key
return true;

return false;

The cache event filter factory instance defined above creates filter instances which statically filter
out all entries except the one whose key is 1.

To be able to register a listener with this cache event filter factory, the factory has to be given a
unique name, and the Hot Rod server needs to be plugged with the name and the cache event filter
factory instance. Plugging the {brandname} Server with a custom filter involves the following steps:

1. Create a JAR file with the filter implementation within it.

2. Optional: If the cache uses custom key/value classes, these must be included in the JAR so that
the callbacks can be executed with the correctly unmarshalled key and/or value instances. If the

351

client listener has useRawData enabled, this is not necessary since the callback key/value
instances will be provided in binary format.

3. Create a META-
INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory file
within the JAR file and within it, write the fully qualified class name of the filter class
implementation.

4. Deploy the JAR file in the {brandname} Server.

On top of that, the client listener needs to be linked with this cache event filter factory by adding
the factory’s name to the @ClientListener annotation:

(filterFactoryName = "static-filter")
public class EventPrintListener { ... }

And, register the listener with the server:

RemoteCache<?, 7> cache = ...
cache.addClientListener(new EventPrintListener());

Dynamic filter instances that filter based on parameters provided when the listener is registered
are also possible. Filters use the parameters received by the filter factories to enable this option. For
example:

352

import org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory;
import org.infinispan.notifications.cachelistener.filter.CacheEventFilter;

class DynamicCacheEventFilterFactory implements CacheEventFilterFactory {

public CacheEventFilter<Integer, String> getFilter(Object[] params) {
return new DynamicCacheEventFilter(params);

}
}

// Serializable, Externalizable or marshallable with Infinispan Externalizers
// needed when running in a cluster
class DynamicCacheEventFilter implements CacheEventFilter<Integer, String>,
Serializable {

final Object[] params;

DynamicCacheEventFilter(Object[] params) {
this.params = params;

}

public boolean accept(Integer key, String oldValue, Metadata oldMetadata,
String newValue, Metadata newMetadata, EventType eventType) {
if (key.equals(params[0])) // dynamic key
return true;

return false;

The dynamic parameters required to do the filtering are provided when the listener is registered:

RemoteCache<?, ?> cache = ...
cache.addClientListener(new EventPrintListener(), new Object[]{1}, null);

Filter instances have to marshallable when they are deployed in a cluster so that
the filtering can happen right where the event is generated, even if the even is

A generated in a different node to where the listener is registered. To make them
marshallable, either make them extend Serializable, Externalizable, or provide a
custom Externalizer for them.

20.7.13. Customizing Events

The events generated by default contain just enough information to make the event relevant but
they avoid cramming too much information in order to reduce the cost of sending them. Optionally,
the information shipped in the events can be customised in order to contain more information,
such as values, or to contain even less information. This customization is done with

353

CacheEventConverter instances generated by a CacheEventConverterFactory:

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory;
import org.infinispan.notifications.cachelistener.filter.CacheEventConverter;
import org.infinispan.filter.NamedFactory;

@NamedFactory(name = "static-converter")
class StaticConverterFactory implements CacheEventConverterFactory {

final CacheEventConverter<Integer, String, CustomEvent> staticConverter = new
StaticCacheEventConverter();

public CacheEventConverter<Integer, String, CustomEvent> getConverter(final
Object[] params) {

return staticConverter;

¥

¥

// Serializable, Externalizable or marshallable with Infinispan Externalizers
// needed when running in a cluster
class StaticCacheEventConverter implements CacheEventConverter<Integer, String,
CustomEvent>, Serializable {

public CustomEvent convert(Integer key, String oldValue, Metadata oldMetadata,
String newValue, Metadata newMetadata, EventType eventType) {

return new CustomEvent(key, newValue);

}

}

// Needs to be Serializable, Externalizable or marshallable with Infinispan
Externalizers
// regardless of cluster or local caches
static class CustomEvent implements Serializable {
final Integer key;
final String value;
CustomEvent(Integer key, String value) {
this.key = key;
this.value = value;

In the example above, the converter generates a new custom event which includes the value as well
as the key in the event. This will result in bigger event payloads compared with default events, but
if combined with filtering, it can reduce its network bandwidth cost.

The target type of the converter must be either Serializable or Externalizable. In
this particular case of converters, providing an Externalizer will not work by
default since the default Hot Rod client marshaller does not support them.

Handling custom events requires a slightly different client listener implementation to the one

demonstrated previously. To be more precise, it needs to handle ClientCacheEntryCustomEvent
instances:

354

import org.infinispan.client.hotrod.annotation.*;
import org.infinispan.client.hotrod.event.*;

public class CustomEventPrintListener {

public void handleCustomEvent(ClientCacheEntryCustomEvent<CustomEvent> e) {
System.out.println(e);
}

The ClientCacheEntryCustomEvent received in the callback exposes the custom event via getEventData
method, and the getType method provides information on whether the event generated was as a
result of cache entry creation, modification or removal.

Similar to filtering, to be able to register a listener with this converter factory, the factory has to be
given a unique name, and the Hot Rod server needs to be plugged with the name and the cache
event converter factory instance. Plugging the {brandname} Server with an event converter
involves the following steps:

1. Create a JAR file with the converter implementation within it.

2. Optional: If the cache uses custom key/value classes, these must be included in the JAR so that
the callbacks can be executed with the correctly unmarshalled key and/or value instances. If the
client listener has useRawData enabled, this is not necessary since the callback key/value
instances will be provided in binary format.

3. Create a META-
INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory
file within the JAR file and within it, write the fully qualified class name of the converter class
implementation.

4. Deploy the JAR file in the {brandname} Server.

On top of that, the client listener needs to be linked with this converter factory by adding the
factory’s name to the @ClientListener annotation:

(converterFactoryName = "static-converter")
public class CustomEventPrintListener { ... }

And, register the listener with the server:

RemoteCache<?, 7> cache = ...
cache.addClientListener (new CustomEventPrintListener());

355

Dynamic converter instances that convert based on parameters provided when the listener is
registered are also possible. Converters use the parameters received by the converter factories to
enable this option. For example:

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory;
import org.infinispan.notifications.cachelistener.filter.CacheEventConverter;

@NamedFactory(name = "dynamic-converter")
class DynamicCacheEventConverterFactory implements CacheEventConverterFactory {
public CacheEventConverter<Integer, String, CustomEvent> getConverter(final
Object[] params) {
return new DynamicCacheEventConverter(params);
}
}

// Serializable, Externalizable or marshallable with Infinispan Externalizers needed
when running in a cluster
class DynamicCacheEventConverter implements CacheEventConverter<Integer, String,
CustomEvent>, Serializable {

final Object[] params;

DynamicCacheEventConverter(Object[] params) {
this.params = params;

}

public CustomEvent convert(Integer key, String oldValue, Metadata oldMetadata,
String newValue, Metadata newMetadata, EventType eventType) {
// If the key matches a key given via parameter, only send the key information
if (params[0].equals(key))
return new CustomEvent(key, null);

return new CustomEvent(key, newValue);

The dynamic parameters required to do the conversion are provided when the listener is
registered:

RemoteCache<?, 7> cache = ...
cache.addClientListener(new EventPrintListener(), null, new Object[]{1});

Converter instances have to marshallable when they are deployed in a cluster, so
that the conversion can happen right where the event is generated, even if the

A even is generated in a different node to where the listener is registered. To make
them marshallable, either make them extend Serializable, Externalizable, or
provide a custom Externalizer for them.

356

20.7.14. Filter and Custom Events

If you want to do both event filtering and customization, it’s easier to implement
org.infinispan.notifications.cachelistener.filter.CacheEventFilterConverter which allows both
filter and customization to happen in a single step. For convenience, it’'s recommended to extend
org.infinispan.notifications.cachelistener.filter.AbstractCacheEventFilterConverter instead of
implementing org.infinispan.notifications.cachelistener.filter.CacheEventFilterConverter
directly. For example:

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory;
import org.infinispan.notifications.cachelistener.filter.CacheEventConverter;

@NamedFactory(name = "dynamic-filter-converter")
class DynamicCacheEventFilterConverterFactory implements
CacheEventFilterConverterFactory {
public CacheEventFilterConverter<Integer, String, CustomEvent> getFilterConverter
(final Object[] params) {
return new DynamicCacheEventFilterConverter(params);

}

// Serializable, Externalizable or marshallable with Infinispan Externalizers needed
when running in a cluster
//
class DynamicCacheEventFilterConverter extends AbstractCacheEventFilterConverter
<Integer, String, CustomEvent>, Serializable {

final Object[] params;

DynamicCacheEventFilterConverter(Object[] params) {
this.params = params;

}

public CustomEvent filterAndConvert(Integer key, String oldValue, Metadata
oldMetadata,
String newValue, Metadata newMetadata, EventType eventType) {
// If the key matches a key given via parameter, only send the key information
if (params[0].equals(key))
return new CustomEvent(key, null);

return new CustomEvent(key, newValue);

Similar to filters and converters, to be able to register a listener with this combined filter/converter
factory, the factory has to be given a unique name via the @NamedFactory annotation, and the Hot
Rod server needs to be plugged with the name and the cache event converter factory instance.
Plugging the {brandname} Server with an event converter involves the following steps:

1. Create a JAR file with the converter implementation within it.

357

2. Optional: If the cache uses custom key/value classes, these must be included in the JAR so that
the callbacks can be executed with the correctly unmarshalled key and/or value instances. If the
client listener has useRawData enabled, this is not necessary since the callback key/value
instances will be provided in binary format.

3. Create a META-
INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventFilterConverterFac

tory file within the JAR file and within it, write the fully qualified class name of the converter
class implementation.

4. Deploy the JAR file in the {brandname} Server.

From a client perspective, to be able to use the combined filter and converter class, the client
listener must define the same filter factory and converter factory names, e.g.:

(filterFactoryName = "dynamic-filter-converter", converterFactoryName =
"dynamic-filter-converter")
public class CustomEventPrintListener { ... }

The dynamic parameters required in the example above are provided when the listener is
registered via either filter or converter parameters. If filter parameters are non-empty, those are
used, otherwise, the converter parameters:

RemoteCache<?, ?> cache = ...
cache.addClientListener(new CustomEventPrintListener(), new Object[]{1}, null);

20.7.15. Event Marshalling

Hot Rod servers can store data in different formats, but in spite of that, Java Hot Rod client users
can still develop CacheEventConverter or CacheEventFilter instances that work on typed objects. By
default, filters and converter will use data as POJO (application/x-java-object) but it is possible to
override the desired format by overriding the method format() from the filter/converter. If the
format returns null, the filter/converter will receive data as it’s stored.

As indicated in the Marshalling Data section, Hot Rod Java clients can be configured to use a
different org.infinispan.commons.marshall.Marshaller instance. If doing this and deploying
CacheEventConverter or CacheEventFilter instances, to be able to present filters/converter with Java
Objects rather than marshalled content, the server needs to be able to convert between objects and
the binary format produced by the marshaller.

To deploy a Marshaller instance server-side, follow a similar method to the one used to deploy
CacheEventConverter or CacheEventFilter instances:
1. Create a JAR file with the converter implementation within it.

2. Create a META-INF/services/org.infinispan.commons.marshall.Marshaller file within the JAR file
and within it, write the fully qualified class name of the marshaller class implementation.

3. Deploy the JAR file in the {brandname} Server.

358

#hot_rod_marshalling_data

Note that the Marshaller could be deployed in either a separate jar, or in the same jar as the
CacheEventConverter and/or CacheEventFilter instances.

Deploying Protostream Marshallers

If a cache stores protobuf content, as it happens when using protostream marshaller in the Hot Rod
client, it’s not necessary to deploy a custom marshaller since the format is already support by the
server: there are transcoders from protobuf format to most common formats like JSON and POJO.

When using filters/converters with those caches, and it’s desirable to use filter/converters with Java
Objects rather binary prototobuf data, it’s necessary to deploy the extra protostream marshallers so
that the server can unmarshall the data before filtering/converting. To do so, follow these steps:

1. Create a jar and include an implementation of the interface
org.infinispan.query.remote.client.ProtostreamSerializationContextInitializer, adding extra
marshallers and optionally extra protobuf files to the cache manager’s Serialization context.

2. Create a META-
INF/services/org.infinispan.query.remote.client.ProtostreamSerializationContextInitializer
file within the JAR file containing the fully qualified class name of the
ProtostreamSerializationContextInitializer class implementation.

3. Create a META-INF/MANIFESTMF with Dependencies: org.infinispan.protostream,
org.infinispan.remote-query.client

4. Deploy the JAR file in the {brandname} Server in the standalone/deployments folder

5. Configure this deployment in the desired cache manager:

<cache-container name="local" default-cache="default">
<modules>
<module name="deployment.my-file.jar"/>
</modules>

</cache-container>

A The deployment must be available during the server startup!

20.7.16. Listener State Handling

Client listener annotation has an optional includeCurrentState attribute that specifies whether state
will be sent to the client when the listener is added or when there’s a failover of the listener.

By default, includeCurrentState is false, but if set to true and a client listener is added in a cache
already containing data, the server iterates over the cache contents and sends an event for each
entry to the client as a ClientCacheEntryCreated (or custom event if configured). This allows clients
to build some local data structures based on the existing content. Once the content has been
iterated over, events are received as normal, as cache updates are received. If the cache is
clustered, the entire cluster wide contents are iterated over.

includeCurrentState also controls whether state is received when the node where the client event

359

listener is registered fails and it’s moved to a different node. The next section discusses this topic in
depth.

20.7.17. Listener Failure Handling

When a Hot Rod client registers a client listener, it does so in a single node in a cluster. If that node
fails, the Java Hot Rod client detects that transparently and fails over all listeners registered in the
node that failed to another node.

During this fail over the client might miss some events. To avoid missing these events, the client
listener annotation contains an optional parameter called includeCurrentState which if set to true,
when the failover happens, the cache contents can iterated over and ClientCacheEntryCreated
events (or custom events if configured) are generated. By default, includeCurrentState is set to false.

Java Hot Rod clients can be made aware of such fail over event by adding a callback to handle it:

public void handleFailover(ClientCacheFailoverEvent e) {

This is very useful in use cases where the client has cached some data, and as a result of the fail
over, taking in account that some events could be missed, it could decide to clear any locally cached
data when the fail over event is received, with the knowledge that after the fail over event, it will
receive events for the contents of the entire cache.

20.7.18. Near Caching

The Java Hot Rod client can be optionally configured with a near cache, which means that the Hot
Rod client can keep a local cache that stores recently used data. Enabling near caching can
significantly improve the performance of read operations get and getVersioned since data can
potentially be located locally within the Hot Rod client instead of having to go remote.

To enable near caching, the user must set the near cache mode to INVALIDATED. By doing that near
cache is populated upon retrievals from the server via calls to get or getVersioned operations. When
near cached entries are updated or removed server-side, the cached near cache entries are
invalidated. If a key is requested after it’s been invalidated, it’ll have to be re-fetched from the
server.

ﬁ You should not use maxIdle expiration with near caches, as near-cache reads will
not propagate the last access change to the server and to the other clients.

When near cache is enabled, its size must be configured by defining the maximum number of
entries to keep in the near cache. When the maximum is reached, near cached entries are evicted
using a least-recently-used (LRU) algorithm. If providing 0 or a negative value, it is assumed that the
near cache is unbounded.

360

Users should be careful when configuring near cache to be unbounded since it
A shifts the responsibility to keep the near cache’s size within the boundaries of the
client JVM to the user.

The Hot Rod client’s near cache mode is configured using the NearCacheMode enumeration and
calling:

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;
import org.infinispan.client.hotrod.configuration.NearCacheMode;

// Unbounded invalidated near cache
ConfigurationBuilder unbounded = new ConfigurationBuilder();
unbounded.nearCache().mode(NearCacheMode.INVALIDATED).maxEntries(-1);

// Bounded invalidated near cache
ConfigurationBuilder bounded = new ConfigurationBuilder();
bounded.nearCache().mode(NearCacheMode.INVALIDATED) .maxEntries(100);

Since the configuration is shared by all caches obtained from a single RemoteCacheManager, you may
not want to enable near-caching for all of them. You can use the cacheNamePattern configuration
attribute to define a regular expression which matches the names of the caches for which you want
near-caching. Caches whose name don’t match the regular expression, will not have near-caching
enabled.

// Bounded invalidated near cache with pattern matching
ConfigurationBuilder bounded = new ConfigurationBuilder();
bounded.nearCache()
.mode(NearCacheMode.INVALIDATED)
.maxEntries(100)
.cacheNamePattern("near.*"); // enable near-cache only for caches whose name starts
with 'near'

Near caches work the same way for local caches as they do for clustered caches,

0 but in a clustered cache scenario, if the server node sending the near cache
notifications to the Hot Rod client goes down, the Hot Rod client transparently fails
over to another node in the cluster, clearing the near cache along the way.

20.7.19. Unsupported methods

Some of the Cache methods are not being supported by the RemoteCache . Calling one of these
methods results in an UnsupportedOperationException being thrown. Most of these methods do not
make sense on the remote cache (e.g. listener management operations), or correspond to methods
that are not supported by local cache as well (e.g. containsValue). Another set of unsupported
operations are some of the atomic operations inherited from ConcurrentMap :

361

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javase/8/docs/api/java/lang/UnsupportedOperationException.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html

boolean remove(Object key, Object value);
boolean replace(Object key, Object value);
boolean replace(Object key, Object oldValue, Object value);

RemoteCache offers alternative versioned methods for these atomic operations, that are also
network friendly, by not sending the whole value object over the network, but a version identifier.
See the section on versioned API.

Each one of these unsupported operation is documented in the RemoteCache javadoc.

20.7.20. Return values
There is a set of methods that alter a cached entry and return the previous existing value, e.g.:

V remove(Object key);
V put(K key, V value);

By default on RemoteCache, these operations return null even if such a previous value exists. This
approach reduces the amount of data sent over the network. However, if these return values are
needed they can be enforced on a per invocation basis using flags:

cache.put("aKey", "initialValue");

assert null == cache.put("aKey", "aValue");

assert "aValue".equals(cache.withFlags(Flag.FORCE_RETURN_VALUE).put("aKey",
"newValue"));

This default behavior can can be changed through force-return-value=true configuration
parameter (see configuration section bellow).

20.7.21. Hot Rod Transactions
You can configure and use Hot Rod clients in JTA Transactions.

To participate in a transaction, the Hot Rod client requires the TransactionManager with which it
interacts and whether it participates in the transaction through the Synchronization or XAResource
interface.

Transactions are optimistic in that clients acquire write locks on entries during the
prepare phase. To avoid data inconsistency, be sure to read about Detecting
Conflicts with Transactions.

Configuring the Server

Caches in the server must also be transactional for clients to participate in JTA Transactions.

The following server configuration is required, otherwise transactions rollback only:

362

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/Transaction.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.oracle.com/javaee/7/api/javax/transaction/Synchronization.html
https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html
#hr_transactions_force_return_value
#hr_transactions_force_return_value
https://docs.oracle.com/javaee/7/api/javax/transaction/Transaction.html

e Isolation level must be REPEATABLE_READ.

* Locking mode must be PESSIMISTIC. In a future release, OPTIMISTIC locking mode will be
supported.

e Transaction mode should be NON_XA or NON_DURABLE_XA. Hot Rod transactions cannot use FULL_ XA
because it degrades performance.

Hot Rod transactions have their own recovery mechanism.

Configuring Hot Rod Clients

When you create the RemoteCacheManager, you can set the default TransactionManager and
TransactionMode that the RemoteCache uses.

The RemoteCacheManager lets you create only one configuration for transactional caches, as in the
following example:

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb = new org
.infinispan.client.hotrod.configuration.ConfigurationBuilder();

//other client configuration parameters
cb.transaction().transactionManagerLookup(GenericTransactionManagerLookup.getInstance(

)i

cb.transaction().transactionMode(TransactionMode.NON_XA);
cb.transaction().timeout(1, TimeUnit.MINUTES)
RemoteCacheManager rmc = new RemoteCacheManager(cb.build());

The preceding configuration applies to all instances of a remote cache. If you need to apply
different configurations to remote cache instances, you can override the RemoteCache
configuration. See Overriding RemoteCacheManager Configuration.

See ConfigurationBuilder Javadoc for documentation on configuration parameters.

You can also configure the Java Hot Rod client with a properties file, as in the following example:
infinispan.client.hotrod.transaction.transaction_manager_lookup =
org.infinispan.client.hotrod.transaction.lookup.GenericTransactionManagerLookup

infinispan.client.hotrod.transaction.transaction_mode = NON_XA
infinispan.client.hotrod.transaction.timeout = 60000

TransactionManagerLookup Interface

TransactionManagerLookup provides an entry point to fetch a TransactionManager.
Available implementations of TransactionManagerLookup:

GenericTransactionManagerLookup

A lookup class that locates TransactionManagers running in Java EE application servers.
Defaults to the RemoteTransactionManager if it cannot find a TransactionManager.

363

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/configuration/TransactionMode.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
#hr_transactions_override_rcm
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/configuration/ConfigurationBuilder.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/transaction/lookup/GenericTransactionManagerLookup.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/transaction/manager/RemoteTransactionManager.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html

In most cases, GenericTransactionManagerLookup is suitable. However, you can
Q implement the TransactionManagerLookup interface if you need to integrate a
custom TransactionManager.

RemoteTransactionManagerLookup

A basic, and volatile, TransactionManager if no other implementation is available. Note that this
implementation has significant limitations when handling concurrent transactions and
recovery.

Transaction Modes

TransactionMode controls how a RemoteCache interacts with the TransactionManager.

Configure transaction modes on both the {brandname} server and your client
application. If clients attempt to perform transactional operations on non-
transactional caches, runtime exceptions can occur.

Transaction modes are the same in both the {brandname} configuration and client settings. Use the
following modes with your client, see the {brandname} configuration schema for the server:

NONE

The RemoteCache does not interact with the TransactionManager. This is the default mode and
is non-transactional.

NON_XA
The RemoteCache interacts with the TransactionManager via Synchronization.

NON_DURABLE_XA

The RemoteCache interacts with the TransactionManager via XAResource. Recovery capabilities
are disabled.

FULL _XA

The RemoteCache interacts with the TransactionManager via XAResource. Recovery capabilities
are enabled. Invoke the XaResource.recover () method to retrieve transactions to recover.

Overriding Configuration for Cache Instances

Because RemoteCacheManager does not support different configurations for each cache instance.
However, RemoteCacheManager includes the getCache(String) method that returns the
RemoteCache instances and lets you override some configuration parameters, as follows:

getCache(String cacheName, TransactionMode transactionMode)
Returns a RemoteCache and overrides the configured TransactionMode.

getCache(String cacheName, boolean forceReturnValue, TransactionMode transactionMode)
Same as previous, but can also force return values for write operations.

getCache(String cacheName, TransactionManager transactionManager)
Returns a RemoteCache and overrides the configured TransactionManager.

364

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/transaction/lookup/GenericTransactionManagerLookup.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/transaction/lookup/RemoteTransactionManagerLookup.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/configuration/TransactionMode.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.oracle.com/javaee/7/api/javax/transaction/Synchronization.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/configuration/TransactionMode.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html

getCache(String cacheName, boolean forceReturnValue, TransactionManager transactionManager)
Same as previous, but can also force return values for write operations.

getCache(String cacheName, TransactionMode transactionMode, TransactionManager
transactionManager)

Returns a RemoteCache and overrides the configured TransactionManager and
TransactionMode. Uses the configured values, if transactionManager or transactionMode is null.

getCache(String cacheName, boolean forceReturnValue, TransactionMode transactionMode,
TransactionManager transactionManager)

Same as previous, but can also force return values for write operations.

The getCache(String) method returns RemoteCache instances regardless of

9 whether they are transaction or not. RemoteCache includes a
getTransactionManager() method that returns the TransactionManager that the
cache uses. If the RemoteCache is not transactional, the method returns null.

Detecting Conflicts with Transactions

Transactions use the initial values of keys to detect conflicts. For example, "k" has a value of "v"
when a transaction begins. During the prepare phase, the transaction fetches "k" from the server to
read the value. If the value has changed, the transaction rolls back to avoid a conflict.

o Transactions use versions to detect changes instead of checking value equality.

The forceReturnValue parameter controls write operations to the RemoteCache and helps avoid
conflicts. It has the following values:

o If true, the TransactionManager fetches the most recent value from the server before
performing write operations. However, the forceReturnValue parameter applies only to write
operations that access the key for the first time.

o If false, the TransactionManager does not fetch the most recent value from the server before
performing write operations. Because this setting

0 This parameter does not affect conditional write operations such as replace or
putIfAbsent because they require the most recent value.

The following transactions provide an example where the forceReturnValue parameter can prevent
conflicting write operations:

Transaction 1 (TX1)

RemoteCache<String, String> cache = ...
TransactionManager tm = ...

tm.begin();

Cache_put("k", |lv1ll);
tm.commit();

365

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/configuration/TransactionMode.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html

Transaction 2 (TX2)

RemoteCache<String, String> cache = ...
TransactionManager tm = ...

tm.begin();
cache.put("k", "v2");
tm.commit();

In this example, TX1 and TX2 are executed in parallel. The initial value of "k" is "v".

» If forceReturnValue = true, the cache.put() operation fetches the value for "k" from the server in
both TX1 and TX2. The transaction that acquires the lock for "k" first then commits. The other
transaction rolls back during the commit phase because the transaction can detect that "k" has a
value other than "v".

o If forceReturnValue = false, the cache.put() operation does not fetch the value for "k" from the
server and returns null. Both TX1 and TX2 can successfully commit, which results in a conflict.
This occurs because neither transaction can detect that the initial value of "k" changed.

The following transactions include cache.get() operations to read the value for "k" before doing the
cache.put() operations:

Transaction 1 (TX1)

RemoteCache<String, String> cache = ...
TransactionManager tm = ...

tm.begin();
cache.get("k");
cache.put("k", "v1");
tm.commit();

Transaction 2 (TX2)

RemoteCache<String, String> cache = ...
TransactionManager tm = ...

tm.begin();
cache.get("k");
cache.put("k", "v2");
tm.commit();

In the preceding examples, TX1 and TX2 both read the key so the forceReturnValue parameter does
not take effect. One transaction commits, the other rolls back. However, the cache.get() operation
requires an additional server request. If you do not need the return value for the cache.put()
operation that server request is inefficient.

366

Using the Configured Transaction Manager and Transaction Mode

The following example shows how to use the TransactionManager and TransactionMode that you
configure in the RemoteCacheManager:

//Configure the transaction manager and transaction mode.
org.infinispan.client.hotrod.confiqguration.ConfigurationBuilder cb = new org
.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.transaction().transactionManagerLookup(RemoteTransactionManagerLookup.getInstance()
);

cb.transaction().transactionMode(TransactionMode.NON_XA);
RemoteCacheManager rcm = new RemoteCacheManager(cb.build());

//The my-cache instance uses the RemoteCacheManager configuration.
RemoteCache<String, String> cache = rcm.getCache("my-cache");

//Return the transaction manager that the cache uses.
TransactionManager tm = cache.getTransactionManager();

//Perform a simple transaction.

tm.begin();

cache.put("k1", "v1");

System.out.println("K1 value is " + cache.get("k1"));
tm.commit();

Overriding the Transaction Manager

The following example shows how to override TransactionManager with the getCache method:

367

//Configure the transaction manager and transaction mode.
org.infinispan.client.hotrod.confiqguration.ConfigurationBuilder cb = new org
.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.transaction().transactionManagerLookup(RemoteTransactionManagerLookup.getInstance()
);

cb.transaction().transactionMode(TransactionMode.NON_XA);
RemoteCacheManager rcm = new RemoteCacheManager(cb.build());

//Define a custom TransactionManager.
TransactionManager myCustomTM = ...

//0verride the TransactionManager for the my-cache instance. Use the default
configuration if null is returned.
RemoteCache<String, String> cache = rcm.getCache("my-cache”, null, myCustomTM);

//Perform a simple transaction.

myCustomTM.begin();

cache.put("k1", "v1");

System.out.println("K1 value is " + cache.get("k1"));
myCustomTM. commit();

Overriding the Transaction Mode

The following example shows how to override TransactionMode with the getCache method:

//Configure the transaction manager and transaction mode.
org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb = new org
.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.transaction().transactionManagerLookup(RemoteTransactionManagerLookup.getInstance()
)i

cb.transaction().transactionMode(TransactionMode.NON XA);
RemoteCacheManager rcm = new RemoteCacheManager(cb.build());

//0verride the transaction mode for the my-cache instance.
RemoteCache<String, String> cache = rcm.getCache("my-cache", TransactionMode
.NON_DURABLE_XA, null);

//Return the transaction manager that the cache uses.
TransactionManager tm = cache.getTransactionManager();

//Perform a simple transaction.

tm.begin();

cache.put("k1", "v1");

System.out.println("K1 value is " + cache.get("k1"));
tm.commit();

368

20.7.22. Client Intelligence
HotRod defines three level of intelligence for the clients:

1. basic client, interested in neither cluster nor hash information
2. topology-aware client, interested in cluster information

3. hash-distribution-aware client, that is interested in both cluster and hash information

The java client supports all 3 levels of intelligence. It is transparently notified whenever a new
server is added/removed from the HotRod cluster. At startup it only needs to know the address of
one HotRod server (ip:host). On connection to the server the cluster topology is piggybacked to the
client, and all further requests are being dispatched to all available servers. Any further topology
change is also piggybacked.

Distribution-aware client

Another aspect of the 3rd level of intelligence is the fact that it is hash-distribution-aware. This
means that, for each operation, the client chooses the most appropriate remote server to go to: the
data owner. As an example, for a put(k,v) operation, the client calculates k’s hash value and knows
exactly on which server the data resides on. Then it picks up a tcp connection to that particular
server and dispatches the operation to it. This means less burden on the server side which would
otherwise need to lookup the value based on the key’s hash. It also results in a quicker response
from the server, as an additional network roundtrip is skipped. This hash-distribution-aware aspect
is only relevant to the distributed HotRod clusters and makes no difference for replicated server
deployments.

20.7.23. Request Balancing

Request balancing is only relevant when the server side is configured with replicated {brandname}
cluster (on distributed clusters the hash-distribution-aware client logic is used, as discussed in the
previos paragraph). Because the client is topology-aware, it knows the list of available servers at all
the time. Request balancing has to do with how the client dispatches requests to the available
servers.

The default strategy is round-robin: requests are being dispatched to all existing servers in a
circular manner. E.g. given a cluster of servers {s1, s2, s3} here is how request will be dispatched:

CacheContainer cacheContainer = new RemoteCacheManager();
Cache<String, String> cache = cacheContainer.getCache();

cache.put("key1", "aValue"); //this goes to s
cache.put("key2", "aValue"); //this goes to s2
String value = cache.get("key1"); //this goes to s3

cache.remove("key2"); //this is dispatched to s1 again, and so on...

Custom types of balancing policies can defined by implementing the
FailoverRequestBalancingStrategy and by specifying it through the infinispan.client.hotrod.request-

369

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/FailoverRequestBalancingStrategy.html

balancing-strategy configuration property. Please refer to configuration section for more details on
this.

20.7.24. Persistent connections

In order to avoid creating a TCP connection on each request (which is a costly operation), the client
keeps a pool of persistent connections to all the available servers and it reuses these connections
whenever it is possible. The validity of the connections is checked using an async thread that
iterates over the connections in the pool and sends a HotRod ping command to the server. By using
this connection validation process the client is being proactive: there’s a hight chance for broken
connections to be found while being idle in the pool and no on actual request from the application.

The number of connections per server, total number of connections, how long should a connection
be kept idle in the pool before being closed - all these (and more) can be configured. Please refer to
the javadoc of RemoteCacheManager for a list of all possible configuration elements.

20.7.25. Marshalling data

The Hot Rod client allows one to plug in a custom marshaller for transforming user objects into
byte arrays and the other way around. This transformation is needed because of Hot Rod’s binary
nature - it doesn’t know about objects.

The marshaller can be plugged through the "marshaller" configuration element (see Configuration
section): the value should be the fully qualified name of a class implementing the Marshaller
interface. This is a optional parameter, if not specified it defaults to the GenericJBossMarshaller - a
highly optimized implementation based on the JBoss Marshalling library.

Since version 6.0, there’s a new marshaller available to Java Hot Rod clients based on Protostream
which generates portable payloads. You can find more information about it here.

WARNING: If developing your own custom marshaller, take care of potential injection attacks.

To avoid such attacks, make the marshaller verify that any class names read, before instantiating it,
is amongst the expected/allowed class names.

The client configuration can be enhanced with a list of regular expressions for classes that are
allowed to be read.

WARNING: These checks are opt-in, so if not configured, any class can be read.

In the example below, only classes with fully qualified names containing Person or Employee would
be allowed:

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;

ConfigurationBuilder configBuilder = ...
configBuilder.addJavaSerialWhitelList(".*Person.*", ".*Employee.*");

370

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/marshall/Marshaller.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/marshall/jboss/GenericJBossMarshaller.html
http://www.jboss.org/jbossmarshalling
#query_remote

20.7.26. Reading data in different data formats

By default, every Hot Rod client operation will use the configured marshaller when reading and
writing from the server for both keys and values. See Marshalling Data. Using the DataFormat API,
it’s possible to decorate remote caches so that all operations can happen with a custom data format.

Using different marshallers for Key and Values

Marshallers for Keys and Values can be overridden at run time. For example, to bypass all
serialization in the Hot Rod client and read the byte[] as they are stored in the server:

// Existing Remote cache instance
RemoteCache<String, Pojo> remoteCache = ...

// IdentityMarshaller is a no-op marshaller
DataFormat rawKeyAndValues = DataFormat.builder().keyMarshaller(IdentityMarshaller
.INSTANCE) .valueMarshaller(IdentityMarshaller.INSTANCE).build();

// Will create a new instance of RemoteCache with the supplied DataFormat
RemoteCache<byte[], byte[]> rawResultsCache = remoteCache.withDataFormat
(rawKeyAndValues);

Reading data in different formats

Apart from defining custom key and value marshallers, it’s also possible to request/send data in
different formats specified by a org.infinispan.commons.dataconversion.MediaType:

// Existing remote cache using ProtostreamMarshaller
RemoteCache<String, Pojo> protobufCache = ...

// Request values returned as JSON, using the UTF8StringMarshaller that converts
between UTF-8 to String:

DataFormat jsonString = DataFormat.builder().valueType(MediaType.APPLICATION_JSON)
.valueMarshaller(new UTF8StringMarshaller().build();

RemoteCache<String, String> jsonStrCache = remoteCache.withDataFormat(jsonString);

// Alternativelly, it's possible to request JSON values but marshalled/unmarshalled
with a custom value marshaller that returns ‘org.codehaus.jackson.JsonNode' objects:
DataFormat jsonNode = DataFormat.builder().valueType(MediaType.APPLICATION_JSON)
.valueMarshaller(new CustomJacksonMarshaller().build();

RemoteCache<String, JsonNode> jsonNodeCache = remoteCache.withDataFormat(jsonNode);
The data conversions happen in the server, and if it doesn’t support converting
o from the storage format to the request format and vice versa, an error will be

returned. For more details on server data format configuration and supported
conversions, see here.

371

#hot_rod_marshalling_data
#encoding_media_type

Using different marshallers and formats for the key, with .keyMarshaller() and
.keyType() may interfere with the client intelligence routing mechanism, causing it

A contact the server that is not the owner of the key during Hot Rod operations. This
will not result in errors but can result in extra hops inside the cluster to execute
the operation. If performance is critical, make sure to use the keys in the format
stored by the server.

20.7.27. Statistics

Various server usage statistics can be obtained through the RemoteCache .stats() method. This
returns a ServersStatistics object - please refer to javadoc for details on the available statistics.

20.7.28. Multi-Get Operations

The Java Hot Rod client does not provide multi-get functionality out of the box but clients can build
it themselves with the given APIs.

20.7.29. Failover capabilities

Hot Rod clients' capabilities to keep up with topology changes helps with request balancing and
more importantly, with the ability to failover operations if one or several of the servers fail.

Some of the conditional operations mentioned above, including putIfAbsent, replace with and
without version, and conditional remove have strict method return guarantees, as well as those
operations where returning the previous value is forced.

In spite of failures, these methods return values need to be guaranteed, and in order to do so, it’s
necessary that these methods are not applied partially in the cluster in the event of failure. For
example, imagine a replace() operation called in a server for key=k1 with Flag.FORCE_RETURN_VALUE,
whose current value is A and the replace wants to set it to B. If the replace fails, it could happen that
some servers contain B and others contain A, and during the failover, the original replace() could
end up returning B, if the replace failovers to a node where B is set, or could end up returning A.

To avoid this kind of situations, whenever Java Hot Rod client users want to use conditional
operations, or operations whose previous value is required, it’s important that the cache is
configured to be transactional in order to avoid incorrect conditional operations or return values.

20.7.30. Site Cluster Failover

On top of the in-cluster failover, Hot Rod clients are also able to failover to different clusters, which
could be represented as an independent site.

The way site cluster failover works is that if all the main cluster nodes are not available, the client
checks to see if any other clusters have been defined in which cases it tries to failover to the
alternative cluster. If the failover succeeds, the client will remain connected to the alternative
cluster until this becomes unavailable, in which case it'll try any other clusters defined, and
ultimately, it’ll try the original server settings.

To configure a cluster in the Hot Rod client, one host/port pair details must be provided for each of

372

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/ServerStatistics.html

the clusters configured. For example:

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb

= new org.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.addCluster().addClusterNode("remote-cluster-host", 11222);
RemoteCacheManager rmc = new RemoteCacheManager(cb.build());

Remember that regardless of the cluster definitions, the initial server(s)
configuration must be provided unless the initial servers can be resolved using the
default server host and port details.

20.7.31. Manual Site Cluster Switch

As well as supporting automatic site cluster failover, Java Hot Rod clients can also switch between
site clusters manually by calling RemoteCacheManager’s switchToCluster(clusterName) and
switchToDefaultCluster().

Using switchToCluster(clusterName), users can force a client to switch to one of the clusters pre-
defined in the Hot Rod client configuration. To switch to the initial servers defined in the client
configuration, call switchToDefaultCluster().

20.7.32. Monitoring the Hot Rod client

The Hot Rod client can be monitored and managed via JMX similarly to what is described in the
Management chapter. By enabling statistics, an MBean will be registered for the RemoteCacheManager
as well as for each RemoteCache obtained through it. Through these MBeans it is possible to obtain
statistics about remote and near-cache hits/misses and connection pool usage.

20.7.33. Concurrent Updates

Data structures, such as {brandname} Cache , that are accessed and modified concurrently can
suffer from data consistency issues unless there’re mechanisms to guarantee data correctness.
{brandname} Cache, since it implements ConcurrentMap , provides operations such as conditional
replace , putIlfAbsent , and conditional remove to its clients in order to guarantee data correctness.
It even allows clients to operate against cache instances within JTA transactions, hence providing
the necessary data consistency guarantees.

However, when it comes to Hot Rod protocol backed servers, clients do not yet have the ability to
start remote transactions but they can call instead versioned operations to mimic the conditional
methods provided by the embedded {brandname} cache instance API. Let’s look at a real example
to understand how it works.

Data Consistency Problem

Imagine you have two ATMs that connect using Hot Rod to a bank where an account’s balance is
stored. Two closely followed operations to retrieve the latest balance could return 500 CHF (swiss
francs) as shown below:

373

#jmx_mgmt_tooling
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/Cache.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#putIfAbsent-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#remove-java.lang.Object-java.lang.Object-
http://community.jboss.org/wiki/HotRodProtocol

~__ (1) Show account (3) 500
balance

(2) get(balance) Infinispan

Hot Rod

K=balance,
V=500

(5) get(balance)

___ (4) Show account
balance

(6) 500

Figure 17. Concurrent readers

Next a customer connects to the first ATM and requests 400 CHF to be retrieved. Based on the last
value read, the ATM could calculate what the new balance is, which is 100 CHF, and request a put
with this new value. Let’s imagine now that around the same time another customer connects to
the ATM and requests 200 CHF to be retrieved. Let’s assume that the ATM thinks it has the latest
balance and based on its calculations it sets the new balance to 300 CHF:

|
(1) Retrieve 400

@
' (2) put(balance,
(2) put(balance, Infinispan 300)
100) Hot Rod
K=balance,

V=100

Obviously, this would be wrong. Two concurrent updates have resulted in an incorrect account
balance. The second update should not have been allowed since the balance the second ATM had
was incorrect. Even if the ATM would have retrieved the balance before calculating the new
balance, someone could have updated between the new balance being retrieved and the update.
Before finding out how to solve this issue in a client-server scenario with Hot Rod, let’s look at how
this is solved when {brandname} clients run in peer-to-peer mode where clients and {brandname}
live within the same JVM.

&

Infinispan
Hot Rod

K=balance,
V=300

(1) Retrieve 200
|

Embedded-mode Solution

If the ATM and the {brandname} instance storing the bank account lived in the same JVM, the ATM
could use the conditional replace API referred at the beginning of this article. So, it could send the
previous known value to verify whether it has changed since it was last read. By doing so, the first

374

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-

operation could double check that the balance is still 500 CHF when it was to update to 100 CHF.
Now, when the second operation comes, the current balance would not be 500 CHF any more and
hence the conditional replace call would fail, hence avoiding data consistency issues:

(1) Retrieve 400

-l— Error, old value != 500

V=100

I 1
I | 1
1 | 1
i | 1
| | [}
| | 1
| | 1
| | 1
| : 1
! 1
- i raplace{balanca Embeddad K=balance, i
Embedded ! [
. o ! | {
(2) mgg;i{gg;ﬂmﬂ | Infinispan ' 500, 300) Infmlspan V=100 {
J K=balance, | |! | !
| | 1
I | i
| | 1
I | [
I | 1
I | i
I | 1
I | 1
] | 1
I | 1
] | |
| |
I

(1) Retrieve 200
]

Figure 18. P2P solution

Client-Server Solution

In theory, Hot Rod could use the same p2p solution but sending the previous value would be not
practical. In this example, the previous value is just an integer but the value could be a lot bigger
and hence forcing clients to send it to the server would be rather wasteful. Instead, Hot Rod offers
versioned operations to deal with this situation.

Basically, together with each key/value pair, Hot Rod stores a version number which uniquely
identifies each modification. So, using an operation called getVersioned or getWithVersion , clients
can retrieve not only the value associated with a key, but also the current version. So, if we look at
the previous example once again, the ATMs could call getVersioned and get the balance’s version:

(1) Show account

balance - (3) 500, 1
(2) getVersioned
- K=balance
balance —)
() Infinispan V=500,
(5) getVersioned — Version=1
(balance)
(4) Show account (6) 500, 1
- balance

Figure 19. Get versioned

When the ATMs wanted to modify the balance, instead of just calling put, they could call

375

http://community.jboss.org/wiki/HotRodProtocol#getWithVersion_response

replacelfUnmodified operation passing the latest version number of which the clients are aware of.
The operation will only succeed if the version passed matches the version in the server. So, the first
modification by the ATM would be allowed since the client passes 1 as version and the server side
version for the balance is also 1. On the other hand, the second ATM would not be able to make the
modification because after the first ATMs modification the version would have been incremented
to 2, and now the passed version (1) and the server side version (2) would not match:

I
(1) Retrieve 400

¥
g N\
alange;
V= K=balance,

ion . Infinispan
sion= —
(2) replacelfUnmodified _y. Hot R V=100,
d Version=2

(2) replacelfUnmodified .| Infinispan (balance, 300, 1)
bal 100. 1 Hot Rod
(balance, 100, 1) K=balance,
V=100,
Version=2
N 4 Error, version numbers
do not match

(1) Retrieve 200
|

Figure 20. Replace if versions match

20.7.34. Javadocs

It is highly recommended to read the following Javadocs (this is pretty much all the public API of
the client):

* RemoteCacheManager

* RemoteCache

20.8. REST Server

The {brandname} Server distribution contains a module that implements RESTful HTTP access to
the {brandname} data grid, built on Netty.

20.8.1. Running the REST server

The REST server endpoint is part of the {brandname} Server and by default listens on port 8080. To
run the server locally, download the zip distribution and execute in the extracted directory:

bin/standalone.sh -b 0.0.0.0
or alternatively, run via docker:

docker run -it -p 8080:8080 -e "APP_USER=user" -e "APP_PASS=changeme"
jboss/infinispan-server

376

http://community.jboss.org/wiki/HotRodProtocol#removeIfUnmodified_request
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/client/hotrod/RemoteCache.html
http://en.wikipedia.org/wiki/Representational_State_Transfer
https://github.com/netty/netty
http://infinispan.org/download/

Security

The REST server is protected by authentication, so before usage it is necessary to create an
application login. When running via docker, this is achieved by the APP_USER and APP_PASS
command line arguments, but when running locally, this can be done with:

bin/add-user.sh -u user -p changeme -a

20.8.2. Supported protocols

The REST Server supports HTTP/1.1 as well as HTTP/2 protocols. It is possible to switch to HTTP/2 by
either performing a HTTP/1.1 Upgrade procedure or by negotiating communication protocol using
TLS/ALPN extension.

Note: TLS/ALPN with JDK8 requires additional steps from the client perspective. Please refer to
your client documentation but it is very likely that you will need Jetty ALPN Agent or OpenSSL
bindings.

20.8.3. REST API

HTTP PUT and POST methods are used to place data in the cache, with URLs to address the cache
name and key(s) - the data being the body of the request (the data can be anything you like). Other
headers are used to control the cache settings and behaviour.

Data formats

Configuration

Each cache exposed via REST stores data in a configurable data format defined by a MediaType.
More details in the configuration here.

An example of storage configuration is as follows:

<cache>
<encoding>
<key media-type="application/x-java-object; type=java.lang.Integer"/>
<value media-type="application/xml; charset=UTF-8"/>
</encoding>
</cache>

When no MediaType is configured, {brandname} assumes "application/octet-stream" for both keys
and values, with the following exceptions:

* If the cache is indexed, it assumes "application/x-protostream"

« If the cache is configured with compatibility mode, it assumes "application/x-java-object"

377

https://http2.github.io/http2-spec/#discover-http
https://http2.github.io/http2-spec/#versioning
https://en.wikipedia.org/wiki/Media_type
#encoding_media_type

Supported formats

Data can be written and read in different formats than the storage format; {brandname} can
convert between those formats when required.

The following "standard" formats can be converted interchangeably:

* application/x-java-object
 application/octet-stream
* application/x-www-form-urlencoded

* text/plain
The following formats can be converted to/from the formats above:

* application/xml

* application/json

* application/x-jboss-marshalling
* application/x-protostream

* application/x-java-serialized
Finally, the following conversion is also supported:
* Between application/x-protostream and application/json

All the REST API calls can provide headers describing the content written or the required format of
the content when reading. {brandname} supports the standard HTTP/1.1 headers "Content-Type"
and "Accept"” that are applied for values, plus the "Key-Content-Type" with similar effect for keys.

Accept header

The REST server is compliant with the RFC-2616 Accept header, and will negotiate the correct
MediaType based on the conversions supported. Example, sending the following header when
reading data:

Accept: text/plain;q=0.7, application/json;q=0.8, */*;q=0.6

will cause {brandname} to try first to return content in JSON format (higher priority 0.8). If it’s not
possible to convert the storage format to JSON, next format tried will be text/plain (second highest
priority 0.7), and finally it falls back to ** that will pick a format suitable for displaying
automatically based on the cache configuration.

Key-Content-Type header

Most REST API calls have the Key included in the URL. {brandname} will assume the Key is a
java.lang.String when handling those calls, but it’s possible to use a specific header Key-Content-
Type for keys in different formats.

378

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Examples:
» Specifying a byte[] Key as a Base64 string:

API call:

*PUT /my-cache/AQIDBDM="

Headers:
Key-Content-Type: application/octet-stream
» Specifying a byte[] Key as a hexadecimal string:
API call:
GET /my-cache/0x01CA03042F

Headers:

Key-Content-Type: application/octet-stream; encoding=hex

* Specifying a double Key:
API call:
POST /my-cache/3.141456

Headers:

Key-Content-Type: application/x-java-object;type=java.lang.Double

The type parameter for application/x-java-object is restricted to:

* Primitive wrapper types
* java.lang.String

* Bytes, making application/x-java-object;type=Bytes equivalent
stream;encoding=hex

Putting data in

PUT /{cacheName}/{cacheKey}

to application/octet-

A PUT request of the above URL form will place the payload (body) in the given cache, with the
given key (the named cache must exist on the server). For example http://someserver/hr/payRoll-3
(in which case hr is the cache name, and payRoll-3 is the key). Any existing data will be replaced,

and Time-To-Live and Last-Modified values etc will updated (if applicable).

379

http://someserver/hr/payRoll-3
http://someserver/hr/payRoll-3
http://someserver/hr/payRoll-3
http://someserver/hr/payRoll-3
http://someserver/hr/payRoll-3

POST /{cacheName}/{cacheKey}

Exactly the same as PUT, only if a value in a cache/key already exists, it will return a Http CONFLICT
status (and the content will not be updated).

Headers

Key-Content-Type: OPTIONAL The content type for the Key present in the URL.
Content-Type : OPTIONAL The MediaType of the Value being sent.

performAsync : OPTIONAL true/false (if true, this will return immediately, and then replicate
data to the cluster on its own. Can help with bulk data inserts/large clusters.)

timeToLiveSeconds : OPTIONAL number (the number of seconds before this entry will
automatically be deleted). If no parameter is sent, {brandname} assumes configuration default
value. Passing any negative value will create an entry which will live forever.

maxlIdleTimeSeconds : OPTIONAL number (the number of seconds after last usage of this entry
when it will automatically be deleted). If no parameter is sent, {brandname} configuration
default value. Passing any negative value will create an entry which will live forever.

Passing 0 as parameter for timeToLiveSeconds and/or maxIdleTimeSeconds

If both timeTolLiveSeconds and maxIdleTimeSeconds are 0O, the cache will use the default 1ifespan
and maxIdle values configured in XML/programmatically

If only maxIdleTimeSeconds is 0, it uses the timeTolLiveSeconds value passed as parameter (or -1 if
not present), and default maxIdle configured in XML/programmatically

If only timeTolLiveSeconds is 0, it uses default 1ifespan configured in XML/programmatically, and
maxIdle is set to whatever came as parameter (or -1 if not present)

JSON/Protostream conversion

When caches are indexed, or specifically configured to store application/x-protostream, it’s possible
to send and receive JSON documents that are automatically converted to/from protostream. In
order for the conversion to work, a protobuf schema must be registered.

The registration can be done via REST, by doing a POST/PUT in the __protobuf metadata cache.
Example using cURL:

curl -u user:password -X POST --data-binary @./schema.proto
http://127.0.0.1:8080/rest/___protobuf_metadata/schema.proto

When writing a JSON document, a special field _type must be present in the document to identity

the

protobuf Message corresponding to the document.

For example, consider the following schema:

message Person {

}

380

required string name = 1;
required int32 age = 2;

#rest_key_content_type
https://en.wikipedia.org/wiki/Media_type

A conformant JSON document would be:

{
"_type": "Person",
"name": "user1",
"age": 32
}
Getting data back out

HTTP GET and HEAD are used to retrieve data from entries.

GET /{cacheName}/{cacheKey}

This will return the data found in the given cacheName, under the given key - as the body of the
response. A Content-Type header will be present in the response according to the Media Type
negotiation. Browsers can use the cache directly of course (eg as a CDN). An ETag will be returned
unique for each entry, as will the Last-Modified and Expires headers field indicating the state of the
data at the given URL. ETags allow browsers (and other clients) to ask for data only in the case
where it has changed (to save on bandwidth) - this is standard HTTP and is honoured by
{brandname}.

Headers

* Key-Content-Type: OPTIONAL The content type for the Key present in the URL. When omitted,
application/x-java-object; type=java.lang.String is assumed

» Accept: OPTIONAL The required format to return the content

It is possible to obtain additional information by appending the "extended" parameter on the query
string, as follows:

GET /cacheName/cacheKey?extended

This will return the following custom headers:

* Cluster-Primary-Owner: the node name of the primary owner for this key
* Cluster-Node-Name: the JGroups node name of the server that has handled the request
* Cluster-Physical-Address: the physical JGroups address of the server that has handled the

request.

HEAD /{cacheName}/{cacheKey}

The same as GET, only no content is returned (only the header fields). You will receive the same
content that you stored. E.g., if you stored a String, this is what you get back. If you stored some
XML or JSON, this is what you will receive. If you stored a binary (base 64 encoded) blob, perhaps a
serialized; Java; object - you will need to; deserialize this yourself.

Similarly to the GET method, the HEAD method also supports returning extended information via
headers. See above.

381

http://en.wikipedia.org/wiki/HTTP_ETag
#rest_key_content_type
#rest_accept

Headers

* Key-Content-Type: OPTIONAL The content type for the Key present in the URL. When omitted,
application/x-java-object; type=java.lang.String is assumed
Listing keys
GET /{cacheName}

This will return a list of keys present in the given cacheName as the body of the response. The
format of the response can be controlled via the Accept header as follows:

* application/xml - the list of keys will be returned in XML format.
* application/json - the list of keys will be return in JSON format.

* text/plain - the list of keys will be returned in plain text format, one key per line

If the cache identified by cacheName is distributed, only the keys owned by the node handling the
request will be returned. To return all keys, append the "global" parameter to the query, as follows:

GET /cacheName?global

Removing data

Data can be removed at the cache key/element level, or via a whole cache name using the HTTP
delete method.

DELETE /{cacheName}/{cacheKey}

Removes the given key name from the cache.

Headers

» Key-Content-Type: OPTIONAL The content type for the Key present in the URL. When omitted,
application/x-java-object; type=java.lang.String is assumed

DELETE /{cacheName}
Removes ALL the entries in the given cache name (i.e., everything from that path down). If the

operation is successful, it returns 200 code.

Make it quicker!

Q Set the header performAsync to true to return immediately and let the removal
happen in the background.

Querying

The REST server supports Ickle Queries in JSON format. It’s important that the cache is configured
with application/x-protostream for both Keys and Values. If the cache is indexed, no configuration is
needed.

382

#rest_key_content_type
#rest_key_content_type

GET /{cacheName}?action=search&query={ickle query}

Will execute an Ickle query in the given cache name.

Request parameters
* query: REQUIRED the query string
o max_results: OPTIONAL the number of results to return, default is 10
* offset: OPTIONAL the index of the first result to return, default is 0

* query_mode: OPTIONAL the execution mode of the query once it’s received by server. Valid
values are FETCH and BROADCAST. Default is FETCH.

Query Result

Results are JSON documents containing one or more hits. Example:

{
"total _results" : 150,
"hits" : [{
"hit" @ {
"name" : "user1",
"age" : 35
}
oA
"hit" @ {
"name" : "user2",
"age" : 42
}
oA
"hit" @ {
"name" : "user3",
"age" : 12
}
}]
}

* total_results: NUMBER, the total number of results from the query.
* hits: ARRAY, list of matches from the query

* hit: OBJECT, each result from the query. Can contain all fields or just a subset of fields in case a
Select clause is used.

POST /{cacheName}?action=search

Similar to que query using GET, but the body of the request is used instead to specify the query
parameters.

Example:

383

#query_clustered_query_api

{
"query":"from Entity where name:\"user1\"",
"max_results":20,
"offset":10

}

20.8.4. CORS
The REST server supports CORS including preflight and rules based on the request origin.

Example:

<rest-connector name="rest1" socket-binding="rest" cache-container="default">
<cors-rules>
<cors-rule name="restrict host1" allow-credentials="false">
<allowed-origins>http://host1,https://host1</allowed-origins>
<allowed-methods>GET</allowed-methods>
</cors-rule>
<cors-rule name="allow ALL" allow-credentials="true" max-age-seconds="2000">
<allowed-origins>*</allowed-origins>
<allowed-methods>GET,OPTIONS,POST,PUT,DELETE</allowed-methods>
<allowed-headers>Key-Content-Type</allowed-headers>
</cors-rule>
</cors-rules>
</rest-connector>

The rules are evaluated sequentially based on the "Origin" header set by the browser; in the
example above if the origin is either "http://hostl" or "https://host1l" the rule "restrict host1" will
apply, otherwise the next rule will be tested. Since the rule "allow ALL" permits all origins, any
script coming from a different origin will be able to perform the methods specified and use the

headers supplied.

The <cors-rule> element can be configured as follows:

Config Description Mandatory

name The name of the rule yes

allow-credentials Enable CORS requests to use no
credentials

allowed-origins A comma separated list used to yes

set the CORS 'Access-Control-
Allow-Origin' header to indicate
the response can be shared
with the origins

384

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Config Description Mandatory

allowed-methods A comma separated list used to yes
set the CORS 'Access-Control-
Allow-Methods' header in the
preflight response to specify the
methods allowed for the
configured origin(s)

max-age-seconds The amount of time CORS no
preflight request headers can
be cached

expose-headers A comma separated list used to no

set the CORS 'Access-Control-
Expose-Headers' in the preflight
response to specify which
headers can be exposed to the
configured origin(s)

20.8.5. Client side code

Part of the point of a RESTful service is that you don’t need to have tightly coupled client
libraries/bindings. All you need is a HTTP client library. For Java, Apache HTTP Commons Client
works just fine (and is used in the integration tests), or you can use java.net APIL.

Ruby example

Shows how to interact with the REST api from ruby.
No special libraries, just standard net/http

#

Author: Michael Neale

#

require 'net/http’

uri = URI.parse('http://localhost:8080/rest/default/MyKey")
http = Net::HTTP.new(uri.host, uri.port)

#Create new entry

post = Net::HTTP::Post.new(uri.path, {"Content-Type" => "text/plain"})
post.basic_auth('user', 'pass")
post.body = "DATA HERE"

resp = http.request(post)

puts "POST response code : " + resp.code
#get it back

get = Net::HTTP::Get.new(uri.path)
get.basic_auth('user', 'pass')

385

resp = http.request(get)

puts "GET response code: " + resp.code
puts "GET Body: " + resp.body

#iuse PUT to overwrite

put = Net::HTTP::Put.new(uri.path, {"Content-Type" => "text/plain"})
put.basic_auth('user', 'pass")
put.body = "ANOTHER DATA HERE"

resp = http.request(put)

puts "PUT response code : " + resp.code

#and remove...
delete = Net::HTTP::Delete.new(uri.path)
delete.basic_auth('user', 'pass')

resp = http.request(delete)

puts "DELETE response code : " + resp.code

#Create binary data like this... just the same...

uri = URI.parse('http://localhost:8080/rest/default/MyLogo")

put = Net::HTTP::Put.new(uri.path, {"Content-Type" => "application/octet-stream"})
put.basic_auth('user', 'pass")

put.body = File.read('./logo.png")

resp = http.request(put)

puts "PUT response code : " + resp.code

#and if you want to do json...
require 'rubygems'
require 'json'

#inow for fun, lets do some JSON !

uri = URI.parse('http://localhost:8080/rest/jsonCache/user")

put = Net::HTTP::Put.new(uri.path, {"Content-Type" => "application/json"})
put.basic_auth('user', 'pass")

data = { => "michael", => 42 }
put.body = data.to_json

resp = http.request(put)

puts "PUT response code : " + resp.code

get = Net::HTTP::Get.new(uri.path)

386

get.basic_au
resp = http.

th('user', 'pass’)
request(get)

puts "GET Body: " + resp.body

Python 3 example

import urlli

Setup basi
base uri = '
auth_handler

=base _uri)
opener = url
urllib.reque

putting da
data = "SOME

req = urllib.request.Request(url=base_uri + '/Key', data=data.encode("UTF-8"), method

='PUT",

with urllib.
pass

print(f.stat
print(f.reas

getting da
resp = urlli
print(resp.r

Java example

package org.

import java.
import java.
import java.
import java.
import java.
import java.
import java.

/**

* Rest exam
*

b.request

¢ auth
http://localhost:8080/rest/default’

= urllib.request.HTTPBasicAuthHandler ()
auth_handler.add_password(user="user"', passwd="'pass'

lib.request.build_opener(auth_handler)
st.install_opener(opener)

ta in
DATA HERE \!"

headers={"Content-Type": "text/plain"})

request.urlopen(req) as f:

us)
on)

ta out
b.request.urlopen(base_uri + '/Key')
ead().decode('utf-8"))

infinispan;

io.BufferedReader;
i0.I0Exception;
i0.InputStreamReader;
i0.0utputStreamWriter;
net.HttpURLConnection;
net.URL;

util.Baseb4;

ple accessing a cache.

, realm="ApplicationRealm', uri

387

* @author Samuel Tauil (samuel@redhat.com)
*/
public class RestExample {

/**
* Method that puts a String value in cache.

* @param urlServerAddress URL containing the cache and the key to insert

* @param value Text to insert

* @param user Used for basic auth
* @param password Used for basic auth
*/

public void putMethod(String urlServerAddress, String value, String user, String
password) throws IOException {

System. out . printLn(" —-- - - m o "
System.out.println("Executing PUT");
System. ot . primtIn(" - - <o "

URL address = new URL(urlServerAddress);

System.out.println("executing request " + urlServerAddress);
HttpURLConnection connection = (HttpURLConnection) address.openConnection();
System.out.println("Executing put method of value: " + value);
connection.setRequestMethod("PUT");
connection.setRequestProperty("Content-Type", "text/plain");
addAuthorization(connection, user, password);

connection.setDoOutput(true);

OutputStreamWriter outputStreamWriter = new OutputStreamWriter(connection
.getOutputStream());
outputStreamWriter.write(value);

connection.connect();

outputStreamWriter.flush();

System.out.println("-----------------cim "Y;

System.out.println(connection.getResponseCode() + " " + connection
.getResponseMessage());

System.out.println("----------------mmee "N

connection.disconnect();

* Method that gets a value by a key in url as param value.

* @param urlServerAddress URL containing the cache and the key to read

* @param user Used for basic auth
* @param password Used for basic auth
* @return String value

*/

public String getMethod(String urlServerAddress, String user, String password)
throws IOException {
String line;
StringBuilder stringBuilder = new StringBuilder();

388

System. out . printLn(" - <o "
System.out.println("Executing GET");
System. out . printIn(" - <o "

URL address = new URL(urlServerAddress);
System.out.println("executing request " + urlServerAddress);
HttpURLConnection connection = (HttpURLConnection) address.openConnection();
connection.setRequestMethod("GET");
connection.setRequestProperty("Content-Type", "text/plain");
addAuthorization(connection, user, password);

connection.setDoOutput(true);

BufferedReader bufferedReader = new BufferedReader(new InputStreamReader
(connection.getInputStream()));

connection.connect();

while ((line = bufferedReader.readline()) != null) {
stringBuilder.append(line).append('\n");
}

System.out.println("Executing get method of value: " + stringBuilder.toString

0);
SSIENCIE DRI s=osesssensssscaccsonasssonssonasssosas ")
System.out.println(connection.getResponseCode() + " " + connection
.getResponseMessage());
B e L e e ");

connection.disconnect();

return stringBuilder.toString();

}
private void addAuthorization(HttpURLConnection connection, String user, String
pass) {
String credentials = user + ":" + pass;

String basic = Base64.getEncoder().encodeToString(credentials.getBytes());
connection.setRequestProperty("Authorization", "Basic " + basic);

}

/**
* Main method example.
*/
public static void main(String[] args) throws IOException {
RestExample restExample = new RestExample();
String user = "user";
String pass = "pass";
restExample.putMethod("http://localhost:8080/rest/default/1", "Infinispan REST

389

Test", user, pass);
restExample.getMethod("http://localhost:8080/rest/default/1", user, pass);
}

20.9. Memcached Server

The {brandname} Server distribution contains a server module that implements the Memcached
text protocol. This allows Memcached clients to talk to one or several {brandname} backed
Memcached servers. These servers could either be working standalone just like Memcached does
where each server acts independently and does not communicate with the rest, or they could be
clustered where servers replicate or distribute their contents to other {brandname} backed
Memcached servers, thus providing clients with failover capabilities. Please refer to {brandname}
Server’s memcached server guide for instructions on how to configure and run a Memcached
server.

20.9.1. Client Encoding

The memcached text protocol assumes data values read and written by clients are raw bytes. The
support for type negotiation will come with the memcached binary protocol implementation, as
part of ISPN-8726.

Although it’s not possible for a memcached client to negotiate the data type to obtain data from the
server or send data in different formats, the server can optionally be configured to handle values
encoded with a certain Media Type. By setting the client-encoding attribute in the memcached-
connector element, the server will return content in this configured format, and clients also send
data in this format.

The client-encoding is useful when a single cache is accessed from multiple remote endpoints (Rest,
HotRod, Memcached) and it allows to tailor the responses/requests to memcached text clients. For
more infomarmation on interoperability between endpoints, consult Endpoint Interop guide.

20.9.2. Command Clarifications

Flush All

Even in a clustered environment, flush_all command leads to the clearing of the {brandname}
Memcached server where the call lands. There’s no attempt to propagate this flush to other nodes
in the cluster. This is done so that flush_all with delay use case can be reproduced with the
{brandname} Memcached server. The aim of passing a delay to flush_all is so that different
Memcached servers in a full can be flushed at different times, and hence avoid overloading the
database with requests as a result of all Memcached servers being empty. For more info, check the
Memcached text protocol section on flush_all .

20.9.3. Unsupported Features

This section explains those parts of the memcached text protocol that for one reason or the other,
are not currently supported by the {brandname} based memcached implementation.

390

http://github.com/memcached/memcached/blob/master/doc/protocol.txt
http://github.com/memcached/memcached/blob/master/doc/protocol.txt
../server_guide/server_guide.html#memcached
https://github.com/memcached/memcached/wiki/BinaryProtocolRevamped#data-types
https://issues.jboss.org/browse/ISPN-8726
#endpoint_interop
http://github.com/memcached/memcached/blob/master/doc/protocol.txt

Individual Stats

Due to difference in nature between the original memcached implementation which is C/C\\ based
and the {brandname} implementation which is Java based, there’re some general purpose stats that
are not supported. For these unsupported stats, {brandname} memcached server always returns O.

Unsupported statistics
* pid
* pointer_size
* rusage_user
* rusage_system
* bytes
e curr_connections
e total_connections
e connection_structures
e auth_cmds
e auth_errors
¢ limit_maxbytes
 threads
» conn_yields

e reclaimed

Statistic Settings

The settings statistics section of the text protocol has not been implemented due to its volatility.

Settings with Arguments Parameter

Since the arguments that can be send to the Memcached server are not documented, {brandname}
Memcached server does not support passing any arguments to stats command. If any parameters
are passed, the {brandname} Memcached server will respond with a CLIENT_ERROR .

Delete Hold Time Parameter

Memcached does no longer honor the optional hold time parameter to delete command and so the
{brandname} based memcached server does not implement such feature either.

Verbosity Command

Verbosity command is not supported since {brandname} logging cannot be simplified to defining
the logging level alone.

391

20.9.4. Talking To {brandname} Memcached Servers From Non-Java Clients

This section shows how to talk to {brandname} memcached server via non-java client, such as a
python script.

Multi Clustered Server Tutorial

The example showcases the distribution capabilities of {brandname} memcached severs that are
not available in the original memcached implementation.

« Start two clustered nodes: This configuration is the same one used for the GUI demo:

$./bin/standalone.sh -c clustered.xml -Djboss.node.name=nodeA
$./bin/standalone.sh -c clustered.xml -Djboss.node.name=nodeB
-Djboss.socket.binding.port-offset=100

Alternatively use
$./bin/domain.sh

Which automatically starts two nodes.

* Execute test_memcached write.py script which basically executes several write operations
against the {brandname} memcached server bound to port 11211. If the script is executed
successfully, you should see an output similar to this:

Connecting to 127.0.0.1:11211

Testing set ['Simple_Key': Simple value] ... 0K
Testing set ['Expiring_Key' : 999 : 3] ... 0K

Testing increment 3 times ['Incr_Key' : starting at 1]
Initialise at 1 ... OK

Increment by one ... OK
Increment again ... OK
Increment yet again ... OK

Testing decrement 1 time ['Decr_Key' : starting at 4]
Initialise at 4 ... OK

Decrement by one ... OK

Testing decrement 2 times in one call ['Multi_Decr_Key' : 3]
Initialise at 3 ... OK

Decrement by 2 ... OK

* Execute test_memcached_read.py script which connects to server bound to 127.0.0.1:11311 and
verifies that it can read the data that was written by the writer script to the first server. If the
script is executed successfully, you should see an output similar to this:

392

https://github.com/infinispan/infinispan/tree/master/server/memcached/src/test/resources/test_memcached_write.py
https://github.com/infinispan/infinispan/tree/master/server/memcached/src/test/resources/test_memcached_read.py

Connecting to 127.0.0.1:11311

Testing get ['Simple_Key'] should return Simple value ... OK
Testing get ['Expiring_Key'] should return nothing... OK
Testing get ['Incr_Key'] should return 4 ... OK

Testing get ['Decr_Key'] should return 3 ... OK

Testing get ['Multi_Decr_Key'] should return 1 ... OK

20.10. Executing code in the Remote Grid

In an earlier section we described executing code in the grid. Unfortunately these methods are
designed to be used in an embedded scenario with direct access to the grid. This section will detail
how you can perform similar functions but while using a remote client connected to the grid.

20.11. Scripting

Scripting is a feature of {brandname} Server which allows invoking server-side scripts from remote
clients. Scripting leverages the JDK’s javax.script ScriptEngines, therefore allowing the use of any
JVM languages which offer one. By default, the JDK comes with Nashorn, a ScriptEngine capable of
running JavaScript.

20.11.1. Installing scripts

Scripts are stored in a special script cache, named '__script_cache'. Adding a script is therefore as
simple as put+ting it into the cache itself. If the name of the script contains a filename extension,
e.g. +myscript.js, then that extension determines the engine that will be used to execute it.
Alternatively the script engine can be selected using script metadata (see below). Be aware that,
when security is enabled, access to the script cache via the remote protocols requires that the user
belongs to the '___script_manager' role.

20.11.2. Script metadata

Script metadata is additional information about the script that the user can provide to the server to
affect how a script is executed. It is contained in a specially-formatted comment on the first lines of
the script.

Properties are specified as key=value pairs, separated by commas. You can use several different
comment styles: The //, ;;, # depending on the scripting language you use. You can split metadata
over multiple lines if necessary, and you can use single () or double (") quotes to delimit your
values.

The following are examples of valid metadata comments:

// name=test, language=javascript
// mode=local, parameters=[a,b,c]

393

Metadata properties

The following metadata property keys are available

» mode: defines the mode of execution of a script. Can be one of the following values:

o local: the script will be executed only by the node handling the request. The script itself
however can invoke clustered operations

o distributed: runs the script using the Distributed Executor Service
 language: defines the script engine that will be used to execute the script, e.g. Javascript

» extension: an alternative method of specifying the script engine that will be used to execute the
script, e.g. js

* role: a specific role which is required to execute the script

» parameters: an array of valid parameter names for this script. Invocations which specify
parameter names not included in this list will cause an exception.

» datatype: optional property providing information, in the form of Media Types (also known as
MIME) about the type of the data stored in the caches, as well as parameter and return values.
Currently it only accepts a single value which is text/plain; charset=utf-8, indicating that data
is String UTF-8 format. This metadata parameter is designed for remote clients that only support
a particular type of data, making it easy for them to retrieve, store and work with parameters.

Since the execution mode is a characteristic of the script, nothing special needs to be done on the
client to invoke scripts in different modes.

20.11.3. Script bindings

The script engine within {brandname} exposes several internal objects as bindings in the scope of
the script execution. These are:

* cache: the cache against which the script is being executed

* marshaller: the marshaller to use for marshalling/unmarshalling data to the cache

* cacheManager: the cacheManager for the cache

* scriptingManager: the instance of the script manager which is being used to run the script. This
can be used to run other scripts from a script.

20.11.4. Script parameters

Aside from the standard bindings described above, when a script is executed it can be passed a set
of named parameters which also appear as bindings. Parameters are passed as name,value pairs
where name is a string and value can be any value that is understood by the marshaller in use.

The following is an example of a JavaScript script which takes two parameters, multiplicand and
multiplier and multiplies them. Because the last operation is an expression evaluation, its result is
returned to the invoker.

394

// mode=local, language=javascript
multiplicand * multiplier

To store the script in the script cache, use the following Hot Rod code:

RemoteCache<String, String> scriptCache = cacheManager.getCache("___script_cache");
scriptCache.put("multiplication.js",

"// mode=local,language=javascript\n" +

"multiplicand * multiplier\n");

20.11.5. Running Scripts using the Hot Rod Java client

The following example shows how to invoke the above script by passing two named parameters.

RemoteCache<String, Integer> cache = cacheManager.getCache();
// Create the parameters for script execution

Map<String, Object> params = new HashMap<>();
params.put("multiplicand", 10);

params.put("multiplier", 20);

// Run the script on the server, passing in the parameters
Object result = cache.execute("multiplication.js", params);

20.11.6. Distributed execution

The following is a script which runs on all nodes. Each node will return its address, and the results

from all nodes will be collected in a List and returned to the client.

// mode:distributed, language=javascript
cacheManager.getAddress().toString();

20.12. Server Tasks

Server tasks are server-side scripts defined in Java language. To develop a server task, you should
define a class that extends org.infinispan.tasks.ServerTask interface, defined in infinispan-tasks-

api module.

A typical server task implementation would implement these methods:

 setTaskContext allows server tasks implementors to access execution context information. This
includes task parameters, cache reference on which the task is executed...etc. Normally,
implementors would store this information locally and use it when the task is actually executed.

* getName should return a unique name for the task. The client will use this name to to invoke the

task.

» getExecutionMode is used to decide whether to invoke the task in 1 node in a cluster of N nodes

395

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/tasks/ServerTask.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/tasks/ServerTask.html#setTaskContext-org.infinispan.tasks.TaskContext-
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/tasks/Task.html#getName--
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/tasks/Task.html#getExecutionMode--

or invoke it in N nodes. For example, server tasks that invoke stream processing are only
required to be executed in 1 node in the cluster. This is because stream processing itself makes
sure processing is distributed to all nodes in cluster.

e callis the method that’s invoked when the user invokes the server task.

Here’s an example of a hello greet task that takes as parameter the name of the person to greet.

package example;

import org.infinispan.tasks.ServerTask;
import org.infinispan.tasks.TaskContext;

public class HelloTask implements ServerTask<String> {

private TaskContext ctx;

public void setTaskContext(TaskContext ctx) {
this.ctx = ctx;

}

public String call() throws Exception {
String name = (String) ctx.getParameters().get().get("name");
return "Hello " + name;

public String getName() {
return "hello-task";

}

Once the task has been implemented, it needs to be wrapped inside a jar. The jar is then deployed to
the {brandname} Server and from them on it can be invoked. The {brandname} Server uses service
loader pattern to load the task, so implementations need to adhere to these requirements. For
example, server task implementations must have a zero-argument constructor.

Moreover, the jar must contain a META-INF/services/org.infinispan.tasks.ServerTask file
containing the fully qualified name(s) of the server tasks included in the jar. For example:

example.HelloTask

With jar packaged, the next step is to push the jar to the {brandname} Server. The server is
powered by WildFly Application Server, so if using Maven Wildfly’s Maven plugin can be used for
this:

396

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html?is-external=true#call--
https://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html
https://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html
https://docs.jboss.org/wildfly/plugins/maven/latest/index.html

<plugin>
<groupId>org.wildfly.plugins</groupld>
<artifactId>wildfly-maven-plugin</artifactId>
<version>1.2.0.Final</version>

</plugin>

Then call the following from command line:

$ mvn package wildfly:deploy

Alternative ways of deployment jar files to Wildfly Application Server are explained here.

Executing the task can be done using the following code:

// Create a configuration for a locally-running server
ConfigurationBuilder builder = new ConfigurationBuilder();
builder.addServer().host("127.0.0.1").port(11222);

// Connect to the server
RemoteCacheManager cacheManager = new RemoteCacheManager(builder.build());

// Obtain the remote cache
RemoteCache<String, String> cache = cacheManager.getCache();

// Create task parameters
Map<String, String> parameters = new HashMap<>();
parameters.put("name", "developer");

// Execute task

String greet = cache.execute("hello-task", parameters);
System.out.println(greet);

397

https://docs.jboss.org/author/display/WFLY10/Application+deployment

Chapter 21. Compatibility Mode

Compatibility mode is deprecated and will be removed from {brandname}. To
A achieve interoperability between remote endpoints, you should use protocol
interoperability capabilities. See Protocol Interoperability.

Compatibility mode configures {brandname} caches so that you can access {brandname} in
multiple ways. Achieving such compatibility requires extra work from {brandname} in order to
make sure that contents are converted back and forth between the different formats of each
endpoint and this is the reason why compatibility mode is disabled by default.

21.1. Enable Compatibility Mode

For compatibility mode to work as expected, all endpoints need to be configured with the same
cache manager, and need to talk to the same cache. If you’re using the brand new {brandname}
Server distribution , this is all done for you. If you’re in the mood to experiment with this in a
standalone unit test, this class shows you how you can start multiple endpoints from a single class.

So, to get started using {brandname}'s compatibility mode, it needs to be enabled, either via XML:
infinispan.xml

<local-cache>
<compatibility/>
</local-cache>

Or programmatically:

ConfigurationBuilder builder = ...
builder.compatibility().enable();

The key thing to remember about {brandname}'s compatibility mode is that where possible, it tries
to store data unmarshalling or deserializing it. It does so because the most common use case is for it
to store Java objects and having Java objects stored in deserialized form means that they’re very
easy to use from an embedded cache. With this in mind, it makes some assumptions. For example,
if something is stored via Hot Rod, it’s most likely coming from the reference Hot Rod client, which
is written in Java, and which uses a marshaller that keeps binary payloads very compact. So, when
the Hot Rod operation reaches the compatibility layer, it will try to unmarshall it, by default using
the same default marshaller used by the Java Hot Rod client, hence providing good out-of-the-box
support for the majority of cases.

21.1.1. Optional: Configuring Compatibility Marshaller

It could happen though the client might be using a Hot Rod client written for another language
other than Java, say Ruby or Python . In this case, some kind of custom marshaller needs to be
configured that either translates that serialized payload into a Java object to be stored in the cache,

398

#endpoint_interop
http://www.jboss.org/infinispan/downloads
http://www.jboss.org/infinispan/downloads
https://github.com/infinispan/infinispan/blob/master/integrationtests/compatibility-mode-it/src/test/java/org/infinispan/it/compatibility/CompatibilityCacheFactory.java
https://github.com/infinispan/ruby-client
https://github.com/infinispan/python-client

or keeps it in serialized form. Both options are valid, but of course it will have an impact on what
kind of objects are retrieved from {brandname} if using the embedded cache. The marshaller is
expected to implement this interface. Configuring the compatibility marshaller is optional and can
be done via XML:

infinispan.xml

<local-cache>
<compatibility marshaller="com.acme.CustomMarshaller"/>
</local-cache>

Or programmatically:

ConfigurationBuilder builder = ...
builder.compatibility().enable().marshaller(new com.acme.CustomMarshaller());

One concrete example of this marshaller logic can be found in the
SpyMemcachedCompatibleMarshaller . Spy Memcached uses their own transcoders in order to
marshall objects, so the compatibility marshaller created is in charge of marshalling/unmarshalling
data stored via Spy Memcached client. If you want to retrieve data stored via Spy Memcached via
say Hot Rod, you can configure the Java Hot Rod client to use this same marshaller, and this is
precisely what the test where the Spy Memcached marshaller is located is demonstrating.

21.2. Code examples

The best code examples available showing compatibility in action can be found in the {brandname}
Compatibility Mode testsuite, but more will be developed in the near future.

399

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/commons/marshall/Marshaller.html
https://github.com/infinispan/infinispan/blob/master/integrationtests/compatibility-mode-it/src/test/java/org/infinispan/it/compatibility/EmbeddedRestMemcachedHotRodTest.java#L161
https://code.google.com/p/spymemcached/
https://github.com/infinispan/infinispan/tree/master/integrationtests/compatibility-mode-it/src/test/java/org/infinispan/it/compatibility
https://github.com/infinispan/infinispan/tree/master/integrationtests/compatibility-mode-it/src/test/java/org/infinispan/it/compatibility

Chapter 22. Protocol Interoperability

Clients exchange data with {brandname} through endpoints such as REST or Hot Rod.

Each endpoint uses a different protocol so that clients can read and write data in a suitable format.
Because {brandname} can interoperate with multiple clients at the same time, it must convert data
between client formats and the storage formats.

To configure {brandname} endpoint interoperability, you should define the MediaType that sets the
format for data stored in the cache.

22.1. Considerations with Media Types and Endpoint
Interoperability

Configuring {brandname} to store data with a specific media type affects client interoperability.

Although REST clients do support sending and receiving encoded binary data, they are better at
handling text formats such as JSON, XML, or plain text.

Memcached text clients can handle String-based keys and byte[] values but cannot negotiate data
types with the server. These clients do not offer much flexibility when handling data formats
because of the protocol definition.

Java Hot Rod clients are suitable for handling Java objects that represent entities that reside in the
cache. Java Hot Rod clients use marshalling operations to serialize and deserialize those objects into
byte arrays.

Similarly, non-Java Hot Rod clients, such as the C++, C#, and Javascript clients, are suitable for
handling objects in the respective languages. However, non-Java Hot Rod clients can interoperate
with Java Hot Rod clients using platform independent data formats.

22.2. REST, Hot Rod, and Memcached Interoperability
with Text-Based Storage

You can configure key and values with a text-based storage format.

For example, specify text/plain; charset=UTF-8, or any other character set, to set plain text as the
media type. You can also specify a media type for other text-based formats such as JSON
(application/json) or XML (application/xml) with an optional character set.

The following example configures the cache to store entries with the text/plain; charset=UTF-8
media type:

400

#encoding_media_type
#rest_key_content_type

<cache>
<encoding>
<key media-type="text/plain; charset=UTF-8"/>
<value media-type="text/plain; charset=UTF-8"/>
</encoding>
</cache>

To handle the exchange of data in a text-based format, you must configure Hot Rod clients with the
org.infinispan.commons.marshall.StringMarshaller marshaller.

REST clients must also send the correct headers when writing and reading from the cache, as
follows:

* Write: Content-Type: text/plain; charset=UTF-8
* Read: Accept: text/plain; charset=UTF-8

Memcached clients do not require any configuration to handle text-based formats.

This configuration is compatible with...

REST clients Yes
Java Hot Rod clients Yes
Memcached clients Yes
Non-Java Hot Rod clients No
Querying and Indexing No
Custom Java objects No

22.3. REST, Hot Rod, and Memcached Interoperability
with Custom Java Objects

If you store entries in the cache as marshalled, custom Java objects, you should configure the cache
with the MediaType of the marshalled storage.

Java Hot Rod clients use the JBoss marshalling storage format as the default to store entries in the
cache as custom Java objects.

The following example configures the cache to store entries with the application/x-jboss-
marshalling media type:

<distributed-cache name="my-cache">
<encoding>
<key media-type="application/x-jboss-marshalling"/>
<value media-type="application/x-jboss-marshalling"/>
</encoding>
</distributed-cache>

401

If you use the Protostream marshaller, configure the MediaType as application/x-protostream. For
UTF8Marshaller, configure the MediaType as text/plain.

Q If only Hot Rod clients interact with the cache, you do not need to configure the
MediaType.

Because REST clients are most suitable for handling text formats, you should use primitives such as
java.lang.String for keys. Otherwise, REST clients must handle keys as bytes[] using a supported
binary encoding.

REST clients can read values for cache entries in XML or JSON format. However, the classes must be
available in the server.

To read and write data from Memcached clients, you must use java.lang.String for keys. Values are
stored and returned as marshalled objects.

Some Java Memcached clients allow data transformers that marshall and unmarshall objects. You
can also configure the Memcached server module to encode responses in different formats, such as
'TSON' which is language neutral. This allows non-Java clients to interact with the data even if the
storage format for the cache is Java-specific. See Client Encoding details for the {brandname}
Memcached server module.

0 Storing Java objects in the cache requires you to deploy entity classes to
{ProductName}. See Deploying Entity Classes.

This configuration is compatible with...

REST clients Yes
Java Hot Rod clients Yes
Memcached clients Yes
Non-Java Hot Rod clients No
Querying and Indexing No
Custom Java objects Yes

22.4. Java and Non-Java Client Interoperability with
Protobuf

Storing data in the cache as Protobuf encoded entries provides a platform independent
configuration that enables Java and Non-Java clients to access and query the cache from any
endpoint.

If indexing is configured for the cache, {brandname} automatically stores keys and values with the
application/x-protostream media type.

If indexing is not configured for the cache, you can configure it to store entries with the
application/x-protostream media type as follows:

402

#rest_key_content_type
#rest_key_content_type
#memcached_client_encoding
#entities_deploy

<distributed-cache name="my-cache">
<encoding>
<key media-type="application/x-protostream"/>
<value media-type="application/x-protostream"/>
</encoding>
</distributed-cache>

{brandname} converts between application/x-protostream and application/json, which allows
REST clients to read and write JSON formatted data. However REST clients must send the correct
headers, as follows:

Read Header

Read: Accept: application/json

Write Header

Write: Content-Type: application/json

The application/x-protostream media type uses Protobuf encoding, which requires
you to register a Protocol Buffers schema definition that describes the entities and
marshallers that the clients use. See Storing Protobuf Entities.

This configuration is compatible with...

REST clients Yes
Java Hot Rod clients Yes
Non-Java Hot Rod clients Yes
Querying and Indexing Yes
Custom Java objects Yes

22.5. Custom Code Interoperability

You can deploy custom code with {brandname}. For example, you can deploy scripts, tasks,
listeners, converters, and merge policies. Because your custom code can access data directly in the
cache, it must interoperate with clients that access data in the cache through different endpoints.

For example, you might create a remote task to handle custom objects stored in the cache while
other clients store data in binary format.

To handle interoperability with custom code you can either convert data on demand or store data
as Plain Old Java Objects (POJOs).

22.5.1. Converting Data On Demand

If the cache is configured to store data in a binary format such as application/x-protostream or

403

#storing_protobuf

application/x-jboss-marshalling, you can configure your deployed code to perform cache
operations using Java objects as the media type. See Overriding the MediaType Programmatically.

This approach allows remote clients to use a binary format for storing cache entries, which is
optimal. However, you must make entity classes available to the server so that it can convert
between binary format and Java objects.

Additionally, if the cache uses Protobuf (application/x-protostream) as the binary format, you must
deploy protostream marshallers so that {ProductName} can unmarshall data from your custom
code. See Deploying Protostream Marshallers.

22.5.2. Storing Data as POJOs

Storing unmarshalled Java objects in the server is not recommended. Doing so requires
{brandname} to serialize data when remote clients read from the cache and then deserialize data
when remote clients write to the cache.

The following example configures the cache to store entries with the application/x-java-object
media type:

<distributed-cache name="my-cache">
<encoding>
<key media-type="application/x-java-object"/>
<value media-type="application/x-java-object"/>
</encoding>
</distributed-cache>

Hot Rod clients must use a supported marshaller when data is stored as POJOs in the cache, either
the JBoss marshaller or the default Java serialization mechanism. You must also deploy the classes
must be deployed in the server.

REST clients must use a storage format that {brandname} can convert to and from Java objects,
currently JSON or XML.

O Storing Java objects in the cache requires you to deploy entity classes to
{brandname}. See Deploying Entity Classes.

Memcached clients must send and receive a serialized version of the stored POJO, which is a JBoss
marshalled payload by default. However if you configure the Client Encoding in the appropriate
Memcached connector, you change the storage format so that Memcached clients use a platform
neutral format such as JSON.

This configuration is compatible with...

REST clients Yes
Java Hot Rod clients Yes
Non-Java Hot Rod clients No

404

#mediatype_override
#protostream_deployment
#entities_deploy
#memcached_client_encoding

This configuration is compatible with...

Querying and Indexing Yes. However, querying and indexing works
with POJOs only if the entities are annotated.

Custom Java objects Yes

22.6. Deploying Entity Classes

If you plan to store entries in the cache as custom Java objects or POJOs, you must deploy entity
classes to {brandname}. Clients always exchange objects as bytes[]. The entity classes represent
those custom objects so that {brandname} can serialize and deserialize them.

To make entity classes available to the server, do the following:

* Create a JAR file that contains the entities and dependencies.

» Stop {brandname} if it is running.

{brandname} loads entity classes during boot. You cannot make entity classes available to
{brandname} if the server is running.

* Copy the JAR file to the $INFINISPAN_HOME/standalone/deployments/ directory.

» Specify the JAR file as a module in the cache manager configuration, as in the following
example:

<cache-container name="local" default-cache="default">
<modules>
<module name="deployment.my-entities.jar"/>
</modules>

</cache-container>

22.7. Trying the Interoperability Demo

Try the demo for protocol interoperability using the {brandname} Docker image at:
https://github.com/infinispan-demos/endpoint-interop

405

#query_library
https://github.com/infinispan-demos/endpoint-interop

Chapter 23. Security

Security within {brandname} is implemented at several layers:

» within the core library, to provide coarse-grained access control to CacheManagers, Caches and
data

* over remote protocols, to obtain credentials from remote clients and to secure the transport
using encryption

* between nodes in a cluster, so that only authorized nodes can join and to secure the transport
using encryption

In order to maximize compatibility and integration, {brandname} uses widespread security
standards where possible and appropriate, such as X.509 certificates, SSL/TLS encryption and
Kerberos/GSSAPI. Also, to avoid pulling in any external dependencies and to increase the ease of
integration with third party libraries and containers, the implementation makes use of any facilities
provided by the standard Java security libraries (JAAS, JSSE, JCA, JCE, SASL, etc). For this reason, the
{brandname} core library only provides interfaces and a set of basic implementations.

23.1. Embedded Security

Applications interact with {brandname} using its API within the same JVM. The two main
components which are exposed by the {brandname} API are CacheManagers and Caches. If an
application wants to interact with a secured CacheManager and Cache, it should provide an identity
which {brandname}’s security layer will validate against a set of required roles and permissions. If
the identity provided by the user application has sufficient permissions, then access will be granted,
otherwise an exception indicating a security violation will be thrown. The identity is represented
by the javax.security.auth.Subject class which is a wrapper around multiple Principals, e.g. a user
and all the groups it belongs to. Since the Principal name is dependent on the owning system (e.g. a
Distinguished Name in LDAP), {brandname} needs to be able to map Principal names to roles.
Roles, in turn, represent one or more permissions. The following diagram shows the relationship
between the various elements:

Subject Role CacheManager/Cache
Principal | : Mapper > Permission <:::]ROIe
Principal Permission Role
Principal Permission Role

Figure 21. Roles/Permissions mapping

23.1.1. Embedded Permissions

Access to a cache manager or a cache is controlled by using a list of required permissions.
Permissions are concerned with the type of action that is performed on one of the above entities

406

and not with the type of data being manipulated. Some of these permissions can be narrowed to
specifically named entities, where applicable (e.g. a named cache). Depending on the type of entity,
there are different types of permission available:

Cache Manager permissions

CONFIGURATION (defineConfiguration): whether a new cache configuration can be defined

LISTEN (addListener): whether listeners can be registered against a cache manager

LIFECYCLE (stop): whether the cache manager can be stopped

* ALL: a convenience permission which includes all of the above

Cache permissions

* READ (get, contains): whether entries can be retrieved from the cache

* WRITE (put, putlfAbsent, replace, remove, evict): whether data can be
written/replaced/removed/evicted from the cache

* EXEC (distexec, streams): whether code execution can be run against the cache

* LISTEN (addListener): whether listeners can be registered against a cache

* BULK_READ (keySet, values, entrySet, query): whether bulk retrieve operations can be executed
* BULK_WRITE (clear, putAll): whether bulk write operations can be executed

* LIFECYCLE (start, stop): whether a cache can be started / stopped

* ADMIN (getVersion, addInterceptor®, removelnterceptor, getInterceptorChain,
getEvictionManager, getComponentRegistry, getDistributionManager,
getAuthorizationManager, evict, getRpcManager, getCacheConfiguration, getCacheManager,
getInvocationContextContainer, setAvailability, getDataContainer, getStats, getXAResource):
whether access to the underlying components/internal structures is allowed

* ALL: a convenience permission which includes all of the above
e ALL_READ: combines READ and BULK_READ
o ALL_WRITE: combines WRITE and BULK_WRITE
Some permissions might need to be combined with others in order to be useful. For example,

suppose you want to allow only "supervisors" to be able to run stream operations, while "standard"
users can only perform puts and gets, you would define the following mappings:

<role name="standard" permission="READ WRITE" />
<role name="supervisors" permission="READ WRITE EXEC BULK"/>

23.1.2. Embedded API

When a DefaultCacheManager has been constructed with security enabled using either the
programmatic or declarative configuration, it returns a SecureCache which will check the security
context before invoking any operations on the underlying caches. A SecureCache also makes sure
that applications cannot retrieve lower-level insecure objects (such as DataContainer). In Java,

407

executing code with a specific identity usually means wrapping the code to be executed within a
PrivilegedAction:

import org.infinispan.security.Security;

Security.doAs(subject, new PrivilegedExceptionAction<Void>() {
public Void run() throws Exception {
cache.put("key", "value");
}
1)

If you are using Java 8, the above call can be simplified to:
Security.doAs(mySubject, PrivilegedAction<String>() -> cache.put("key", "value"));

Notice the use of Security.doAs() in place of the typical Subject.doAs(). While in {brandname} you
can use either, unless you really need to modify the AccessControlContext for reasons specific to
your application’s security model, using Security.doAs() provides much better performance. If you
need the current Subject, use the following:

Security.getSubject();

which will automatically retrieve the Subject either from the {brandname}'s context or from the
AccessControlContext.

{brandname} also fully supports running under a full-blown SecurityManager. The {brandname}
distribution contains an example security.policy file which you should customize with the
appropriate paths before supplying it to your JVM.

23.1.3. Embedded Configuration

There are two levels of configuration: global and per-cache. The global configuration defines the set
of roles/permissions mappings while each cache can decide whether to enable authorization checks
and the required roles.

408

Programmatic

GlobalConfigurationBuilder global = new GlobalConfigurationBuilder();
global
.security()
.authorization()
.principalRoleMapper(new IdentityRoleMapper())
.role("admin")
.permission(AuthorizationPermission.ALL)
.role("supervisor")
.permission(AuthorizationPermission.EXEC)
.permission(AuthorizationPermission.READ)
.permission(AuthorizationPermission.WRITE)
.role("reader")
.permission(AuthorizationPermission.READ);
ConfigurationBuilder config = new ConfigurationBuilder();
config
.security()
.authorization()
.enable()
.role("admin")
.role("supervisor")
.role("reader");

Declarative

<infinispan>
<cache-container default-cache="secured">
<security>
<authorization enabled="true">
<identity-role-mapper />
<role name="admin" permissions="ALL" />
<role name="reader" permissions="READ" />
<role name="writer" permissions="WRITE" />
<role name="supervisor" permissions="READ WRITE EXEC BULK"/>
</authorization>
</security>
<local-cache name="secured">
<security>
<authorization roles="admin reader writer supervisor" />
</security>
</local-cache>
</cache-container>

</infinispan>

Role Mappers

In order to convert the Principals in a Subject into a set of roles to be used when authorizing, a
suitable PrincipalRoleMapper must be specified in the global configuration. {brandname} comes

409

with 3 mappers and also allows you to provide a custom one:

IdentityRoleMapper (Java: org.infinispan.security.impl.IdentityRoleMapper, XML: <identity-role-
mapper />): this mapper just uses the Principal name as the role name

CommonNameRoleMapper (Java: org.infinispan.security.impl.CommonRoleMapper, XML:
<common-name-role-mapper />): if the Principal name is a Distinguished Name (DN), this
mapper extracts the Common Name (CN) and uses it as a role name. For example the DN
cn=managers,ou=people,dc=example,dc=com will be mapped to the role managers

ClusterRoleMapper (Java: org.infinispan.security.impl.ClusterRoleMapper XML: <cluster-role-
mapper />): a mapper which uses the ClusterRegistry to store principal to role mappings. This
allows the use of the CLI’s GRANT and DENY commands to add/remove roles to a principal.

Custom role mappers (XML: <custom-role-mapper class="a.b.c" />): just supply the fully-
qualified class name of an implementation of org.infinispan.security.PrincipalRoleMapper

23.2. Security Audit

{brandname} offers a pluggable audit logger which tracks whether a cache or a cache manager
operation was allowed or denied. The audit logger is configured at the cache container
authorization level:

Programmatic

GlobalConfigurationBuilder global = new GlobalConfigurationBuilder();
global
.authorization()
.auditLogger (new LoggingAuditLogger());

Declarative

<infinispan>

<cache-container default-cache="secured">
<security>
<authorization audit-logger="org.infinispan.security.impl.LoggingAuditLogger

</authorization>
</security>

</cache-container>

</infinispan>

In embedded mode the default audit logger is org.infinispan.security.impl.NullAuditLogger which
does nothing. {brandname} also comes with the org.infinispan.security.impl.LoggingAuditLogger
which outputs audit logs through the available logging framework (e.g. Log4]) at level TRACE and
category AUDIT. These logs look like:

410

[ALLOW|DENY] user READ cache[defaultCache]

Using an appropriate logging appender it is possible to send the AUDIT category either to a log file,
a JMS queue, a database, etc. The user which is included in the log above is the name of the first
non-java.security.acl.Group principal in the Subject.

23.3. Cluster security

JGroups can be configured so that nodes need to authenticate each other when joining / merging.
The authentication uses SASL and is setup by adding the SASL protocol to your JGroups XML
configuration above the GMS protocol, as follows:

<SASL mech="DIGEST-MD5"
client _name="node user"
client_password="node_password"
server_callback handler _class=
"org.example.infinispan.security.JGroupsSaslServerCallbackHandler"
client _callback _handler_class=
"org.example.infinispan.security.JGroupsSaslClientCallbackHandler"
sasl_props="com.sun.security.sasl.digest.realm=test_realm" />

In the above example, the SASL mech will be DIGEST-MD5. Each node will need to declare the user
and password it will use when joining the cluster. The behaviour of a node differs depending on
whether it is the coordinator or any other node. The coordinator acts as the SASL server, whereas
joining/merging nodes act as SASL clients. Therefore two different CallbackHandlers are required,
the server_callback _handler_class will be wused by the coordinator, and the
client_callback_handler_class will be used by the other nodes. The SASL protocol in JGroups is only
concerned with the authentication process. If you wish to implement node authorization, you can
do so within the server callback handler, by throwing an Exception. The following example shows
how this can be done:

411

public class AuthorizingServerCallbackHandler implements CallbackHandler {

@0verride
public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {
for (Callback callback : callbacks) {

if (callback instanceof AuthorizeCallback) {
AuthorizeCallback acb = (AuthorizeCallback) callback;
UserProfile user = UserManager.loadUser(acb.getAuthenticationID());
if (luser.hasRole("myclusterrole")) {
throw new SecurityException("Unauthorized node

tuser);

}

412

Chapter 24. Integrations

{brandname} can be integrated with a number of other projects, as detailed below.

24.1. Apache Spark

{brandname} provides an Apache Spark connector capable of exposing caches as an RDD, allowing
batch and stream jobs to be run against data stored in {brandname}. For further details, see the
{brandname} Spark connector documentation. Also check the Docker based Twitter demo.

24.2. Apache Hadoop

The {brandname} Hadoop connector can be used to expose {brandname} as a Hadoop compliant
data source and sink that implements InputFormat/OutputFormat. For further details, refer to the
full documentation.

24.3. Apache Lucene
{brandname} includes a highly scalable distributed Apache Lucene Directory implementation.

This directory closely mimics the same semantics of the traditional filesystem and RAM-based
directories, being able to work as a drop-in replacement for existing applications using Lucene and
providing reliable index sharing and other features of {brandname} like node auto-discovery,
automatic failover and rebalancing, optionally transactions, and can be backed by traditional
storage solutions as filesystem, databases or cloud store engines.

The implementation extends Lucene’s org.apache.lucene.store.Directory so it can be used to store
the index in a cluster-wide shared memory, making it easy to distribute the index. Compared to
rsync-based replication this solution is suited for use cases in which your application makes
frequent changes to the index and you need them to be quickly distributed to all nodes. Consistency
levels, synchronicity and guarantees, total elasticity and auto-discovery are all configurable; also
changes applied to the index can optionally participate in a JTA transaction, optionally supporting
XA transactions with recovery.

Two different LockFactory implementations are provided to guarantee only one IndexWriter at a
time will make changes to the index, again implementing the same semantics as when opening an
index on a local filesystem. As with other Lucene Directories, you can override the LockFactory if
you prefer to use an alternative implementation.

24.3.1. Lucene compatibility

Apache Lucene versions 5.5.X

24.3.2. Maven dependencies

All you need is the following:

413

http://spark.apache.org
https://github.com/infinispan/infinispan-spark/blob/master/README.md
https://github.com/infinispan/infinispan-spark/tree/master/examples/twitter/README.md
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/InputFormat.html
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/OutputFormat.html
https://github.com/infinispan/infinispan-hadoop/blob/master/README.md
http://lucene.apache.org

pom.xml

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-lucene-directory</artifactId>
<version>${version.infinispan}</version>
</dependency>

Replace ${version.infinispan} with the appropriate version of {brandname}.

24.3.3. How to use it

See the below example of using the {brandname} Lucene Directory in order to index and query a
single Document:

414

import java.io.IOException;

import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;

import org.apache.lucene.document.Field;

import org.apache.lucene.document.StringField;

import org.apache.lucene.index.DirectoryReader;

import org.apache.lucene.index.IndexWriter;

import org.apache.lucene.index.IndexWriterConfig;

import org.apache.lucene.index.Term;

import org.apache.lucene.search.IndexSearcher;

import org.apache.lucene.search.TermQuery;

import org.apache.lucene.search.TopDocs;

import org.apache.lucene.store.Directory;

import org.infinispan.lucene.directory.DirectoryBuilder;
import org.infinispan.manager.DefaultCacheManager;

// Create caches that will store the index. Here the programmatic configuration is
used

DefaultCacheManager defaultCacheManager = new DefaultCacheManager();

Cache metadataCache = defaultCacheManager.getCache("metadataCache");

Cache dataCache = defaultCacheManager.getCache("dataCache");

Cache lockCache = defaultCacheManager.getCache("lockCache");

// Create the directory
Directory directory = DirectoryBuilder.newDirectoryInstance(metadataCache, dataCache,
lockCache, indexName).create();

// Use the directory in Lucene
IndexWriterConfig indexWriterConfig = new IndexWriterConfig(new StandardAnalyzer())
.setOpenMode (IndexWriterConfig.OpenMode.CREATE_OR_APPEND);

IndexWriter indexWriter = new IndexWriter(directory, indexWriterConfig);

// Index a single document

Document doc = new Document();

doc.add(new StringField("field", "value", Field.Store.NO));
indexWriter.addDocument(doc);

indexWriter.close();

// Querying the inserted document

DirectoryReader directoryReader = DirectoryReader.open(directory);
IndexSearcher searcher = new IndexSearcher(directoryReader);
TermQuery query = new TermQuery(new Term("field", "value"));
TopDocs topDocs = searcher.search(query, 10);
System.out.println(topDocs.totalHits);

The indexName in the DirectoryBuilder is a unique key to identify your index. It takes the same role
as the path did on filesystem based indexes: you can create several different indexes giving them

415

different names. When you use the same indexName in another instance connected to the same
network (or instantiated on the same machine, useful for testing) they will join, form a cluster and
share all content. Using a different indexName allows you to store different indexes in the same set
of Caches.

The metadataCache, dataCache and lockCache are the caches that will store the indexes. More
details provided below.

New nodes can be added or removed dynamically, making the service administration very easy and
also suited for cloud environments: it’s simple to react to load spikes, as adding more memory and
CPU power to the search system is done by just starting more nodes.

24.3.4. Configuration

{brandname} can be configured as LOCAL clustering mode, in which case it will disable clustering
features and serve as a cache for the index, or any clustering mode. A transaction manager is not
mandatory, but when enabled the changes to the index can participate in transactions.

Batching was required in previous versions, it’s not strictly needed anymore.

As pointed out in the javadocs of DirectoryBuilder, it’s possible for it to use more than a single
cache, using specific configurations for different purposes. Each cache is explained below:

Lock Cache

The lock cache is used to store a single entry per index that will function as the directory lock.
Given the small storage requirement this cache is usually configured as REPL_SYNC. Example of
declarative configuration:

<replicated-cache name="LuceneIndexesLocking" mode="SYNC" remote-timeout="25000">
<transaction mode="NONE"/>
<indexing index="NONE" />
<memory>
<object size="-1"/>
</memory>
</replicated-cache>

Metadata Cache

The metadata cache is used to store information about the files of the directory, such as buffer sizes
and number of chunks. It uses more space than the Lock Cache, but not as much as the Data Cache,
so using a REPL_SYNC cache should be fine for most cases. Example of configuration:

416

https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/lucene/directory/DirectoryBuilder.html

<replicated-cache name="LuceneIndexesMetadaData" mode="SYNC" remote-timeout="25000">
<transaction mode="NONE"/>
<indexing index="NONE" />
<memory>
<object size="-1"/>
</memory>
</replicated-cache>

Data Cache

The {brandname} Lucene directory splits large (bigger than the chunkSize configuration) files into
chunks and stores them in the Data cache. This is the largest of the 3 index caches, and both
DIST_SYNC/REPL_SYNC cache modes can be used. Usage of REPL_SYNC offers lower latencies for
queries since each node holds the whole index locally; DIST_SYNC, on the other hand, will affect
query latency due to remote calls to fetch for chunks, but offers better scalability.

Example of configuration:

<distributed-cache name="LuceneIndexesData" mode="SYNC" remote-timeout="25000">
<transaction mode="NONE"/>
<indexing index="NONE" />
<memory>
<object size="-1"/>
</memory>
</distributed-cache>

24.3.5. Using a CacheLoader

Using a CacheLoader you can have the index content backed up to a permanent storage; you can
use a shared store for all nodes or one per node, see cache passivation for more details.

When using a CacheLoader to store a Lucene index, to get best write performance you would need
to configure the CacheLoader with async=true .

24.3.6. Storing the index in a database

It might be useful to store the Lucene index in a relational database; this would be very slow but
{brandname} can act as a cache between the application and the JDBC interface, making this
configuration useful in both clustered and non-clustered configurations. When storing indexes in a
JDBC database, it’s suggested to use the JdbcStringBasedCacheStore , which will need the key-to-
string-mapper attribute to be set to org.infinispan.lucene.LuceneKey2StringMapper:

<jdbc:string-keyed-jdbc-store preload="true" key-to-string-mapper=
"org.infinispan.lucene.LuceneKey2StringMapper">

417

#cache_passivation

24.3.7. Loading an existing Lucene Index

The org.infinispan.lucene.cachestore.LuceneCacheLoader is an {brandname} CacheLoader able to
have {brandname} directly load data from an existing Lucene index into the grid. Currently this
supports reading only.

Property Description Default

location The path where the indexes are none (mandatory)
stored. Subdirectories (of first
level only) should contain the
indexes to be loaded, each
directory matching the index
name attribute of the
{brandname} Directory
constructor.

autoChunkSize A threshold in bytes: if any 32MB
segment is larger than this, it
will be transparently chunked
in smaller cache entries up to
this size.

I's worth noting that the 10 operations are delegated to Lucene’s standard
org.apache.lucene.store.FSDirectory , which will select an optimal approach for the running
platform.

Implementing write-through should not be hard: you’re welcome to try implementing it.

24.3.8. Architectural limitations

This Directory implementation makes it possible to have almost real-time reads across multiple
nodes. A fundamental limitation of the Lucene design is that only a single IndexWriter is allowed to
make changes on the index: a pessimistic lock is acquired by the writer; this is generally ok as a
single IndexWriter instance is very fast and accepts update requests from multiple threads. When
sharing the Directory across {brandname} nodes the IndexWriter limitation is not lifted: since you
can have only one instance, that reflects in your application as having to apply all changes on the
same node. There are several strategies to write from multiple nodes on the same index:

Index write strategies

* One node writes, the other delegate to it sending messages

* Each node writes on turns

* You application makes sure it will only ever apply index writes on one node
The {brandname} Lucene Directory protects its content by implementing a distributed locking
strategy, though this is designed as a last line of defense and is not to be considered an efficient

mechanism to coordinate multiple writes: if you don’t apply one of the above suggestions and get
high write contention from multiple nodes you will likely get timeout exception.

418

24.3.9. Suggestions for optimal performance

JGroups and networking stack

JGroups manages all network I0 and as such it is a critical component to tune for your specific
environment. Make sure to read the JGroups reference documentation, and play with the
performance tests included in JGroups to make sure your network stack is setup appropriately.
Don’t forget to check also operating system level parameters, for example buffer sizes dedicated for
networking. JGroups will log warning when it detects something wrong, but there is much more
you can look into.

Using a CacheStore

Currently all CacheStore implementations provided by {brandname} have a significant slowdown;
we hope to resolve that soon but for the time being if you need high performance on writes with
the Lucene Directory the best option is to disable any CacheStore; the second best option is to
configure the CacheStore as async . If you only need to load a Lucene index from read-only storage,
see the above description for org.infinispan.lucene.cachestore.LuceneCacheLoader .

Apply standard Lucene tuning

All known options of Lucene apply to the {brandname} Lucene Directory as well; of course the
effect might be less significant in some cases, but you should definitely read the Apache Lucene
documentation .

Disable batching and transactions

Early versions required {brandname} to have batching or transactions enabled. This is no longer a
requirement, and in fact disabling them should provide little improvement in performance.

Set the right chunk size

The chunk size can be specified using the DirectoryBuilder fluent API. To correctly set this variable
you need to estimate what the expected size of your segments is; generally this is trivial by looking
at the file size of the index segments generated by your application when it’s using the standard
FSDirectory. You then have to consider:

* The chunk size affects the size of internally created buffers, and large chunk sizes will cause
memory usage to grow. Also consider that during index writing such arrays are frequently
allocated.

» If a segment doesn’t fit in the chunk size, it’s going to be fragmented. When searching on a

fragmented segment performance can’t peak.

Using the org.apache.lucene.index.IndexWriterConfig you can tune your index writing to
approximately keep your segment size to a reasonable level, from there then tune the chunksize,
after having defined the chunksize you might want to revisit your network configuration settings.

419

http://jgroups.org/manual-3.x/html/index.html
http://lucene.apache.org/core/index.html
http://lucene.apache.org/core/index.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/lucene/directory/DirectoryBuilder.html

24.3.10. Demo

There is a simple command-line demo of its capabilities distributed with {brandname} under
demos/lucene-directory; make sure you grab the "Binaries, server and demos" package from
download page, which contains all demos.

Start several instances, then try adding text in one instance and searching for it on the other. The
configuration is not tuned at all, but should work out-of-the box without any changes. If your
network interface has multicast enabled, it will cluster across the local network with other
instances of the demo.

24.3.11. Additional Links

* Issue tracker: https://jira.jboss.org/browse/ISPN/component/12312732

* Source code: https://github.com/infinispan/infinispan/tree/master/lucene/lucene-directory/src/
main/java/org/infinispan/lucene

24.4. Directory Provider for Hibernate Search

Hibernate Search applications can use {brandname} as a directory provider, taking advantage of
{brandname}'s distribution and low latency capabilities to store the Lucene indexes.

24.4.1. Maven dependencies

pom.xml

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-directory-provider</artifactId>
<version>${version.infinispan}</version>

</dependency>

Replace ${version.infinispan} with the appropriate version of {brandname}.

24.4.2. How to use it

The directory provider alias is "infinispan”, and to enable it for an index, the following property
should be in the Hibernate Search configuration:

hibernate.search.MyIndex.directory_provider = infinispan
to enable it by default for all indexes:
hibernate.search.default.directory_provider = infinispan

The {brandname} cluster will start with a default configuration, see below how to override it.

420

https://jira.jboss.org/browse/ISPN/component/12312732
https://github.com/infinispan/infinispan/tree/master/lucene/lucene-directory/src/main/java/org/infinispan/lucene
https://github.com/infinispan/infinispan/tree/master/lucene/lucene-directory/src/main/java/org/infinispan/lucene
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#configuration
https://github.com/infinispan/infinispan/blob/master/lucene/directory-provider/src/main/resources/default-hibernatesearch-infinispan.xml

24.4.3. Configuration

Optional properties allow for a custom {brandname} configuration or to use an existent
EmbeddedCacheManager:

Property Description Example value

hibernate.search.infinispan.co Custom configuration for config/infinispan.xml
nfiguration_resourcename {brandname}

hibernate.search.infinispan.co Qverrides the JGroups stack in jgroups-ec2.xml
nfiguration.transport_override the {brandname} configuration

resourcename
- file

hibernate.search.infinispan.ca Specifies the JNDI name under Jjava:jboss/infinispan/containe
chemanager_jndiname which the r/hibernate-search

EmbeddedCacheManager to use
is bound. Will cause the
properties above to be ignored
when present

24.4.4. Architecture considerations

The same limitations presented in the Lucene Directory apply here, meaning the index will be
shared across several nodes and only one IndexWriter can have the lock.

One common strategy is to use Hibernate Search’s JMS Master/Slave or JGroups backend together
with the {brandname} directory provider: instead of sending updates directly to the index, they are
sent to a JMS queue or JGroups channel and a single node applies all the changes on behalf of all
other nodes.

Refer to the Hibernate Search documentation for instructions on how to setup JMS or JGroups
backends.

24.5. JPA/Hibernate 2L Cache

Hibernate manages a second-level cache where it moves data into and out as a result of operations
performed by Session or EntityManager (JPA). The second-level cache is pluggable via an SPI which
{brandname} implements. This enables {brandname} to be used as second-level cache for
Hibernate.

Hibernate documentation contains a lot of information about second-level cache, types of caches...
etc. This chapter focuses on what you need to know to use {brandname} as second-level cache
provider with Hibernate.

Applications running in environments where {brandname} is not default cache provider for
Hibernate will need to depend on the correct cache provider version.

The {brandname} cache provider version suitable for your application depends on the Hibernate
version in use:

421

https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/
https://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#caching

Hibernate 5.3

Use the following Maven coordinates:

<dependency>
<groupId>org.infinispan</groupld>
<artifactId>infinispan-hibernate-cache-v53</artifactId>
<version>${version.infinispan}</version>

</dependency>

Replace ${version.infinispan} with the appropriate version of {brandname}.

Hibernate 5.2

0 Hibernate 5.2 is supported in {brandname} 9.2.x only.

Use the following Maven coordinates:

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-hibernate-cache</artifactId>
<version>${version.infinispan}</version> <!-- 9.2.x.Final -->
</dependency>

Replace ${version.infinispan} with the appropriate version of {brandname} 9.2.x.

Hibernate 5.1

Use the following Maven coordinates:

<dependency>
<groupId>org.infinispan</groupld>
<artifactId>infinispan-hibernate-cache-v51</artifactId>
<version>${version.infinispan}</version>

</dependency>

Replace ${version.infinispan} with the appropriate version of {brandname}.

Hibernate version 5.0 and earlier: the {brandname} cache provider is shipped by
Hibernate. Documentation and Maven coordinates are located in the Hibernate
documentation.

Apart from {brandname} specific configuration, it’s worth noting that enabling second cache
requires some changes to the descriptor file (persistence.xml for JPA or application.properties for
Spring). To use second level cache, you first need to enable the second level cache so that entities
and/or collections can be cached:

Table 36. Enable second-level cache

422

https://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/Hibernate_User_Guide.html#caching-provider-infinispan
https://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/Hibernate_User_Guide.html#caching-provider-infinispan

JPA <property name="hibernate.cache.use_second_level_cache" value="true"/>

Spring SPring.jpa.properties.hibernate.cache.use_second_level_cache=true

To select which entities/collections to cache, first annotate them with javax.persistence.Cacheable.
Then make sure shared cache mode is set to ENABLE_SELECTIVE:

Table 37. Enable selective shared cached mode
JPA <shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>
Spring SPring.jpa.properties.javax.persistence.sharedCache.mode=ENABLE_SELECTIVE

This is the most common way of selecting which entities/collections to cache.
However, there are alternative ways to which are explained in the Hibernate
documentation.

Optionally, queries can also be cached but for that query cache needs to be enabled:

Table 38. Enable query cache
JPA <property name="hibernate.cache.use_query_cache" value="true"/>

Spring SPring.jpa.properties.hibernate.cache.use_query_cache=true

As well as enabling query cache, forcing a query to be cached requires the query
0 to be made cacheable. For example, for JPA queries:
query.setHint("org.hibernate.cacheable", Boolean.TRUE).

The best way to find out whether second level cache is working or not is to inspect the statistics. By
inspecting the statistics you can verify if the cache is being hit, if any new data is stored in cache...
etc. Statistics are disabled by default, so it is recommended that you enable statistics:

Table 39. Enable statistics
JPA <property name="hibernate.generate_statistics" value="true" />

Spring SPring.jpa.properties.hibernate.generate_statistics=true

24.5.1. Deployment Scenarios

How to configure {brandname} to be the second level cache provider varies slightly depending on
the deployment scenario:

Single-Node Standalone Hibernate Application

In standalone library mode, a JPA/Hibernate application runs inside a Java SE application or inside
containers that don’t offer {brandname} integration.

Enabling {brandname} second level cache provider inside a JPA/Hibernate application that runs in
single node is very straightforward. First, make sure the Hibernate {brandname} cache provider is
available in the classpath. Then, modify the persistence.xml to include these properties:

423

https://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#caching-mappings
https://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#caching-mappings

<!-- Use Infinispan second level cache provider -->
<property name="hibernate.cache.region.factory_class" value="infinispan"/>

<l--
Force using local configuration when only using a single node.
Otherwise a clustered configuration is loaded.
-->
<property name="hibernate.cache.infinispan.cfg"
value="org/infinispan/hibernate/cache/commons/builder/infinispan-configs-
local.xml"/>

By default when running standalone, the {brandname} second-level cache provider uses an
{brandname} configuration that’s designed for clustered environments. However, {brandname}
also provides a configuration designed for local, single node, environments. To enable that
configuration, set hibernate.cache.infinispan.cfg to
org/infinispan/hibernate/cache/commons/builder/infinispan-configs-local.xml value. You can find
more about the configuration check the Default Local Configuration section.

A simple tutorial showing how to use {brandname} as Hibernate cache provider in a standalone
application can be found here.

Single-Node Standalone Spring Application

Using Hibernate within Spring applications is a very common use case. In this section you will
learn what you need to do configure Hibernate within Spring to use {brandname} as second-level
cache provider.

As in the previous case, start by making sure that Hibernate {brandname} Cache provider is
available in the classpath. Then, modify application.properties file to contain:

Use Infinispan second level cache provider
spring.jpa.properties.hibernate.cache.region.factory_class=infinispan

#

Force using local configuration when only using a single node.

Otherwise a clustered configuration is loaded.
spring.jpa.properties.hibernate.cache.infinispan.cfg=org/infinispan/hibernate/cache/co
mmons/builder/infinispan-configs-local.xml

By default when running standalone, the {brandname} second-level cache provider uses an
{brandname} configuration that’s designed for clustered environments. However, {brandname}
also provides a configuration designed for local, single node, environments. To enable that
configuration, set spring.jpa.properties.hibernate.cache.infinispan.cfg to
org/infinispan/hibernate/cache/commons/builder/infinispan-configs-local.xml value. You can find
more about the configuration check the Default Local Configuration section.

A simple tutorial showing how to use {brandname} as Hibernate cache provider in a Spring
application can be found here.

424

#default_local_configuration_second_level
https://github.com/infinispan/infinispan-simple-tutorials/tree/master/hibernate-cache/local
#default_local_configuration_second_level
https://github.com/infinispan/infinispan-simple-tutorials/tree/master/hibernate-cache/spring-local

Single-Node WildFly Application

In WildFly, {brandname} is the default second level cache provider for JPA/Hibernate. This means
that when using JPA in WildFly, region factory is already set to infinispan. {brandname}'s
configuration is located in WildFly’s standalone.xml file. It follows the same settings explained in
Default Local Configuration section.

ﬁ When running in Wildfly, do not set hibernate.cache.infinispan.cfg. The
configuration of the caches comes from WildFly’s configuration file.

Several aspects of the {brandname} second level cache provider can be configured directly in
persistence.xml. This means that some of those tweaks do not require changing WildFly’s
standalone.xml file. You can find out more about these changes in the Configuration Properties
section.

So, to enable Hibernate to use {brandname} as second-level cache, all you need to do is enable
second-level cache. This is explained in detail in the introduction of this chapter.

A simple tutorial showing how to use {brandname} as Hibernate cache provider in a WildFly
application can be found here.

Multi-Node Standalone Hibernate Application

When running a JPA/Hibernate in a multi-node environment and enabling {brandname} second-
level cache, it is necessary to cluster the second-level cache so that cache consistency can be
guaranteed. Clustering the {brandname} second-level cache provider is as simple as adding the
following property to the persistence.xml file:

<!-- Use Infinispan second level cache provider -->
<property name="hibernate.cache.region.factory_class" value="infinispan"/>

The default {brandname} configuration used by the second-level cache provider is already
configured to work in a cluster environment, so no need to add any extra properties. You can find
more about the configuration check the Default Cluster Configuration section.

Multi-Node Standalone Spring Application

If interested in running a Spring application that uses Hibernate and {brandname} as second level
cache, the cache needs to be clustered. Clustering the {brandname} second-level cache provider is
as simple as adding the following property to the application.properties file:

Use Infinispan second level cache provider
spring.jpa.properties.hibernate.cache.region.factory_class=infinispan

The default {brandname} configuration used by the second-level cache provider is already
configured to work in a cluster environment, so no need to add any extra properties. You can find
more about the configuration check the Default Cluster Configuration section.

425

#default_local_configuration_second_level
#configuration_properties
https://github.com/infinispan/infinispan-simple-tutorials/tree/master/hibernate-cache/wildfly-local
#default_cluster_configuration_second_level
#default_cluster_configuration_second_level

Multi-Node Wildfly Application

As mentioned in the single node Wildfly case, {brandname} is the default second level cache
provider for JPA/Hibernate when running inside Wildfly. This means that when using JPA in
WildFly, region factory is already set to infinispan.

When running Wildfly multi-node clusters, it is recommended that you start off by using
standalone-ha.xml configuration file. Within this file you can find Hibernate {brandname} caches
configured with the correct settings to work in a clustered environment. You can find more about
the configuration check the Default Cluster Configuration section.

Several aspects of the {brandname} second level cache provider can be configured directly in
persistence.xml. This means that some of those tweaks do not require changing WildFly’s
standalone-ha.xml file. You can find out more about these changes in the Configuration Properties
section.

So, to enable Hibernate to use {brandname} as second-level cache, all you need to do is enable
second-level cache. Enabling second-level cache is explained in detail in the introduction of this
chapter.

24.5.2. Configuration Reference

This section is dedicated at explaining configuration in detail as well as some extra configuration
options.

Default Local Configuration

{brandname} second-level cache provider comes with a configuration designed for local, single
node, environments. These are the characteristics of such configuration:

Entities, collections, queries and timestamps are stored in non-transactional local caches.
Entities and collections query caches are configured with the following eviction settings:

» Eviction wake up interval is 5 seconds.
 Max number of entries are 10,000.

* Max idle time before expiration is 100 seconds.

Default eviction algorithm is LRU, least recently used.

You can change these settings on a per entity or collection basis or per individual entity or
collection type. More information in the Configuration Properties section below.

No eviction/expiration is configured for timestamp caches, nor it’s allowed.

Default Cluster Configuration

{brandname} second-level cache provider default configuration is designed for multi-node
clustered environments. The aim of this section is to explain the default settings for each of the
different global data type caches (entity, collection, query and timestamps), why these were chosen
and what are the available alternatives. These are the characteristics of such configuration:

426

#default_cluster_configuration_second_level
#configuration_properties
#configuration_properties

Entities and Collections

By default all entities and collections are configured to use a synchronous invalidation as clustering
mode. Whenever a new entity or collection is read from database and needs to be cached, it’s only
cached locally in order to reduce intra-cluster traffic. This option can be changed so that
entities/collections are cached cluster wide, by switching the entity/collection cache to be replicated
or distributed. How to change this option is explained in the Configuration Properties section.

When data read from the database is put in the cache, with replicated or
distributed caches, the data is propagated to other nodes using asynchronous
communication. In the presence of concurrent database loads, one operation will

A succeed while others might fail (silently). This is fine because they’d all be trying to
put the same data loaded from the database. This has the side effect that under
these circumstances, the cache might not be up to date right after making the JPA
call that leads to the database load. However, the cache will eventually contain the
data loaded, even if it happens after a short delay.

All entities and collections are configured to use a synchronous invalidation as clustering mode. This
means that when an entity is updated, the updated cache will send a message to the other members
of the cluster telling them that the entity has been modified. Upon receipt of this message, the other
nodes will remove this data from their local cache, if it was stored there. This option can be
changed so that both local and remote nodes contain the updates by configuring entities or
collections to use a replicated or distributed cache. With replicated caches all nodes would contain
the update, whereas with distributed caches only a subset of the nodes. How to change this option
is explained in the Configuration Properties section.

All entities and collections have initial state transfer disabled since there’s no need for it.

Entities and collections are configured with the following eviction settings. You can change these
settings on a per entity or collection basis or per individual entity or collection type. More
information in the Configuration Properties section below.

 Eviction wake up interval is 5 seconds.

* Max number of entries are 10,000.

* Max idle time before expiration is 100 seconds.

* Default eviction algorithm is LRU, least recently used.

Queries

Assuming that query caching has been enabled for the persistence unit (see chapter introduction),

the query cache is configured so that queries are only cached locally. Alternatively, you can

configure query caching to use replication by selecting the replicated-query as query cache name.

However, replication for query cache only makes sense if, and only if, all of this conditions are true:
» Performing the query is quite expensive.

* The same query is very likely to be repeatedly executed on different cluster nodes.

* The query is unlikely to be invalidated out of the cache

427

#configuration_properties
#configuration_properties
#configuration_properties

Hibernate must aggressively invalidate query results from the cache any time any
instance of one of the entity types targeted by the query. All such query results are
invalidated, even if the change made to the specific entity instance would not have

0 affected the query result. For example: the cached result of SELECT id FROM cars
where color = 'red' is thrown away when you call INSERT INTO cars VALUES -,
color = 'blue'. Also, the result of an update within a transaction is not visible to
the result obtained from the query cache.

query cache uses the same eviction/expiration settings as for entities/collections.
query cache has initial state transfer disabled. It is not recommended that this is enabled.

Up to Hibernate 5.2 both transactional and non-transactional query caches have been supported,
though non-transactional variant is recommended. Hibernate 5.3 drops support for transactional
caches, only non-transactional variant is supported. If the cache is configured with transactions this
setting is ignored and warning is logged.

Timestamps

The timestamps cache is configured with asynchronous replication as clustering mode. Local or
invalidated cluster modes are not allowed, since all cluster nodes must store all timestamps. As a
result, no eviction/expiration is allowed for timestamp caches either.

Asynchronous replication was selected as default for timestamps cache for
performance reasons. A side effect of this choice is that when an entity/collection

o is updated, for a very brief period of time stale queries might be returned. It’s
important to note that due to how {brandname} deals with asynchronous
replication, stale queries might be found even query is done right after an
entity/collection update on same node.

Hibernate must aggressively invalidate query results from the cache any time any
instance of one of the entity types is modified. All cached query results referencing
given entity type are invalidated, even if the change made to the specific entity
instance would not have affected the query result. The timestamps cache plays

O here an important role - it contains last modification timestamp for each entity
type. After a cached query results is loaded, its timestamp is compared to all
timestamps of the entity types that are referenced in the query. If any of these is
higher, the cached query result is discarded and the query is executed against DB.
This requires synchronization of the wall clock across the cluster to work as
expected.

Configuration Properties

As explained above, {brandname} second-level cache provider comes with default configuration in
infinispan-config.xml that is suited for clustered use. If there’s only single JVM accessing the DB,
you can use more performant infinispan-config-local.xml by setting the
hibernate.cache.infinispan.cfg property. If you require further tuning of the cache, you can
provide your own configuration. Caches that are not specified in the provided configuration will
default to infinispan-config.xml (if the provided configuration uses clustering) or infinispan-

428

config-local.xml.

It is not possible to specify the configuration this way in WildFly. Cache
configuration changes in Wildfly should be done either modifying the cache

A configurations inside the application server configuration, or creating new caches
with the desired tweaks and plugging them accordingly. See examples below on
how entity/collection specific configurations can be applied.

Example 1. Use custom {brandname} configuration

<property
name="hibernate.cache.infinispan.cfg"
value="my-infinispan-configuration.xml" />

If the cache is configured as transactional, {brandname} cache provider
automatically sets transaction manager so that the TM used by {brandname} is the
same as TM used by Hibernate.

Cache configuration can differ for each type of data stored in the cache. In order to override the
cache configuration template, use property hibernate.cache.infinispan.data-type.cfg where data-
type can be one of:

* entity: Entities indexed by @Id or @EmbeddedId attribute.

» immutable-entity: Entities tagged with @Immutable annotation or set as mutable=false in mapping
file.

* naturalid: Entities indexed by their @Naturalld attribute.

* collection: All collections.

» timestamps: Mapping entity type — last modification timestamp. Used for query caching.
* query: Mapping query — query result.

» pending-puts: Auxiliary caches for regions using invalidation mode caches.

For specifying cache template for specific region, use region name instead of the data-type:

429

Example 2. Use custom cache template

<property
name="hibernate.cache.infinispan.entities.cfg"
value="custom-entities" />

<property
name="hibernate.cache.infinispan.query.cfg"
value="custom-query-cache" />

<property
name="hibernate.cache.infinispan.com.example.MyEntity.cfqg"
value="my-entities" />

<property
name="hibernate.cache.infinispan.com.example.MyEntity.someCollection.cfg"
value="my-entities-some-collection" />

Use custom cache template in Wildfly

When applying entity/collection level changes inside JPA applications deployed in Wildfly, it is
necessary to specify deployment name and persistence unit name (separated by # character):

<property
name=
"hibernate.cache.infinispan._war_or_ear_name_#_unit_name_.com.example.MyEntity.cfg

value="my-entities" />
<property

name=
"hibernate.cache.infinispan._war_or_ear_name_#_unit_name_.com.example.MyEntity.som
eCollection.cfg"

value="my-entities-some-collection" />

0 Cache configurations are used only as a template for the cache created for given
region. Usually each entity hierarchy or collection has its own region

g Except for eviction/expiration settings, it is highly recommended not to deviate
from the template configuration settings.

Some options in the cache configuration can also be overridden directly through properties. These
are:

* hibernate.cache.infinispan.something.eviction.strateqy: Available options are NONE, LRU and
LIRS.

* hibernate.cache.infinispan.something.eviction.max_entries: Maximum number of entries in
the cache.

430

* hibernate.cache.infinispan.something.expiration.lifespan: Lifespan of entry from insert into
cache (in milliseconds).

* hibernate.cache.infinispan.something.expiration.max_idle: Lifespan of entry from last
read/modification (in milliseconds).

* hibernate.cache.infinispan.something.expiration.wake_up_interval: Period of thread checking
expired entries.

* hibernate.cache.infinispan.statistics: Globally enables/disable {brandname} statistics
collection, and their exposure via JMX.

Example:

<property name="hibernate.cache.infinispan.entity.eviction.strategy"
value= "LRU"/>

<property name="hibernate.cache.infinispan.entity.eviction.wake_up_interval"
value= "2000"/>

<property name="hibernate.cache.infinispan.entity.eviction.max_entries"
value= "5000"/>

<property name="hibernate.cache.infinispan.entity.expiration.lifespan"
value= "60000"/>

<property name="hibernate.cache.infinispan.entity.expiration.max_idle"
value= "30000"/>

With the above configuration, you’re overriding whatever eviction/expiration settings were defined
for the default entity cache name in the {brandname} cache configuration used. This happens
regardless of whether it’s the default one or user defined. More specifically, we’re defining the
following:

 All entities to use LRU eviction strategy

* The eviction thread to wake up every 2 seconds (2000 milliseconds)

* The maximum number of entities for each entity type to be 5000 entries

The lifespan of each entity instance to be 1 minute (60000 milliseconds).
* The maximum idle time for each entity instance to be 30 seconds (30000 milliseconds).
You can also override eviction/expiration settings on a per entity/collection type basis. This allows

overrides that only affects a particular entity (i.e. com.acme.Person) or collection type (i.e.
com.acme.Person.addresses). Example:

<property name="hibernate.cache.infinispan.com.acme.Person.eviction.strategy"
value= "LIRS"/>

Inside of Wildfly, same as with the entity/collection configuration override, eviction/expiration
settings would also require deployment name and persistence unit information (a working
example can be found here):

431

https://github.com/infinispan/infinispan-simple-tutorials/tree/master/hibernate-cache/wildfly-local

<property name=
"hibernate.cache.infinispan._war_or_ear_name_#_unit_name_.com.acme.Person.eviction.str
ategy"

value= "LIRS"/>
<property name=
"hibernate.cache.infinispan._war_or_ear_name_#_unit_name_.com.acme.Person.expiration.l
ifespan”

value= "65000"/>

24.5.3. Cache Strategies

{brandname} cache provider supports all Hibernate cache strategies: transactional, read-write,
nonstrict-read-write and read-only.

Integrations with Hibernate 4.x required transactional invalidation caches and in
integrations with Hibernate ≤ 5.2 transactional invalidation caches are supported (in
JTA environment). However for all 5.x versions non-transactional caches are preferred.
With Hibernate 5.3 the support for transactional caches has been dropped completely, and both
<code>read-write</code> and <code>transactional</code> use the same implementation.
{brandname} provides the same consistency guarantees for both <code>transactional</code> and
<code>read-write</code> strategies, use of transactions is considered an implementation detail.

In integrations with Hibernate 5.2 or lower the actual setting of cache concurrency mode (read-
write vs. transactional) is not honored on invalidation caches, the appropriate strategy is selected
based on the cache configuration (non-transactional vs. transactional).

Support for replicated/distributed caches for read-write and read-only strategies has been added
during 5.x development and this requires exclusively non-transactional configuration. Also eviction
should not be used in this configuration as it can lead to consistency issues. Expiration (with
reasonably long max-idle times) can be used.

Nonstrict-read-write strategy is supported on non-transactional distributed/replicated caches, but
the eviction should be turned off as well. In addition to that, the entities must use versioning. This
means that this strategy cannot be used for caching natural IDs (which are never versioned). This
mode mildly relaxes the consistency - between DB commit and end of transaction commit a stale
read may occur in another transaction. However this strategy uses less RPCs and can be more
performant than the other ones.

Read-only mode is supported in all configurations mentioned above but use of this mode currently
does not bring any performance gains.

The available combinations are summarized in table below:

Table 40. Cache concurrency strategy/cache mode compatibility table

Concurrency strategy Cache transactions Cache mode Eviction

transactional ≤ 5.2 transactional invalidation yes

432

Concurrency strategy Cache transactions Cache mode Eviction

transactional ≥ 5.3 non- invalidation yes
transactional

read-write non-transactional invalidation yes

read-write non-transactional distributed/replicated no

nonstrict-read-write non-transactional distributed/replicated no

Changing caches to behave different to the default behaviour explained in previous section is
explained in the Configuration Properties section.

Use of transactional caches is possible only in JTA environment. Hibernate
supports JDBC-only transactions but {brandname} transactional caches do not

0 integrate with these. Therefore, in non-JTA environment the only option is to use
read-write, nonstrict-read-write or read-only on non-transactional cache.
Configuring the cache as transactional in non-JTA can lead to undefined
behaviour.

Example 3. Stale read with nonstrict-read-write strategy

A=0 (non-cached), B=0 (cached in 2LC)

TX1: write A = 1, write B = 1

TX1: start commit

TX1: commit A, B in DB

TX2: read A = 1 (from DB), read B = @ (from 2LC) // breaks transactional atomicity
TX1: update A, B in 2LC

TX1: end commit

Tx3: read A =1, B =1 // reads after TX1 commit completes are consistent again

24.5.4. Using minimal puts

Hibernate offers a configuration option hibernate.cache.use_minimal_puts which is off by default in
{brandname} implementation. This option checks if the cache contains given key before updating
the value from database (put-from-load) and omits the update if the cached value is already
present. When using invalidation caches it makes sense to keep this off as the put-from-load is local
node-only and silently fails if the entry is locked. With replicated/distributed caches the update is
applied to remote nodes, even if the local node already contains the entry, and this has higher
performance impact, so it might make sense to turn this option on and avoid updating the cache.

24.6. JPA /| Hibernate OGM

Hibernate can perform CRUD operations directly on an {brandname} cluster.

Hibernate OGM is an extension of the popular Hibernate ORM project which makes the Hibernate
API suited to interact with NoSQL databases such as {brandname}.

433

#configuration_properties

When some of your object graphs need high scalability and elasticity, you can use Hibernate OGM
to store these specific entities into {brandname} instead of your traditional RDBMS. The drawback
is that {brandname} - not being a relational database - can not run complex relational queries.

Hibernate OGM allows you to get started with {brandname} in minutes, as:

the JPA API and its annotations are simple and well known
* you don’t need to learn Protobuf or Externalizer encoding formats

¢ no need to learn the {brandname} API

the Hot Rod client is also setup and managed for you

It will still be beneficial to eventually learn how to configure {brandname} for top performance and
learn about all capabilities it has, but you can get a proof of concept application done quickly with
the example configuration.

Hibernate OGM also gives you several more benefits; being designed and implemented in
collaboration with the {brandname} team it incorporates experience and deep understanding of
how to best perform some common operations.

For example a common mistake for people new to {brandname} is to "serialize" Java POJOs for long
term storage of important information; the {brandname} API allows this as it’s useful for short
lived caching of metadata, but you wouldn’t be able to de-serialize your data when you make any
changes to your model. You wouldn’t want to wipe your database after any and each update of your
application, would you?

In the best of cases such an encoding wouldn’t be very efficient; in some worse scenarios your team
might not have thought such details though and you get stuck into a complex migration on your live
data.

Just like when using Hibernate ORM with a relational database, data stored over Hibernate OGM is
easy to recover even using other tools as it’s encoded using a well defined Protobuf schema.

Being able to "map" new domain objects by simply adding a couple of annotations is going to make
you more productive than re-inventing such error-prone encoding techniques, or figuring out how
to best store object graphs and relations into {brandname}.

Finally, using Hibernate OGM allows you to use all existing framework integration points, such as
injecting an EntityManager as usual: it’s not yet another tool but it’s the real Hibernate, so inheriting
all well known integrations: this will work in Java EE, Spring, Grails, Jhipster, ... and all other
technologies integrating with Hibernate.

It’s booted like any Hibernate instance: compared to using it with an RDBMS you just have to
change some configuration properties, and of course omit the DataSource as {brandname} won’t use
one.

For more details, check the Hibernate OGM project and the Hibernate OGM / {brandname} section
of the documentation.

434

http://hibernate.org/ogm/
https://docs.jboss.org/hibernate/stable/ogm/reference/en-US/html_single/#ogm-infinispan

24.7. Using {brandname} with Spring

{brandname} integrates with the Spring Framework to make it easy to add caching capabilities to
your applications.

0 {brandname} supports Spring 4 and Spring 5 with different sets of dependencies.

24.7.1. Spring Boot Starter

Check out the {brandname} Spring Boot Starter on GitHub to quickly get up and running.

24.7.2. Setting Up {brandname} as a Spring Cache Provider

{brandname} implements the Spring SPI to offer high-performance, in-memory caching
capabilities.

Adding Spring Cache Support

The Spring Framework offers a cache abstraction with two simple annotations:

e @Cacheable adds entries to the cache.

» @CacheEvict removes entries from the cache.
To add caching support to your application, do the following:

1. Enable cache annotations in your application context either declaratively or programmatically.

- Declaratively: Add <cache:annotation-driven/> to your application context.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:cache="http://www.springframework.org/schema/cache"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache.xsd">

<cache:annotation-driven />

</beans>
- Programmatically: Enable cache support as follows:

@EnableCaching @Configuration
public class Config {
}

435

https://github.com/infinispan/infinispan-spring-boot
http://spring.io/
https://docs.spring.io/spring/docs/5.1.3.RELEASE/spring-framework-reference/integration.html#cache

2. Add {brandname} and the Spring integration module to your pom. xml.

Spring 4
- Embedded mode: infinispan-spring4-embedded

o Remote client-server mode: infinispan-spring4-remote

Spring 5
- Embedded mode: infinispan-spring5-embedded

o Remote client-server mode: infinispan-spring5-remote

The following is an example with Spring 5 in embedded mode:

<dependencies>
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-spring5-embedded</artifactId>
<version>${version.infinispan}</version>
</dependency>
<!-- Tip: Use the Spring Boot starter
instead of the spring-boot artifact. -->
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>${version.spring}</version>
</dependency>
</dependencies>

Replace:
» ${version.infinispan} with the appropriate version of {brandname}.

» ${version.spring} with the appropriate version of Spring.

Configuring {brandname} as the Spring Cache Provider

The Spring cache provider SPI has two interfaces through which it interacts with {brandname}:
org.springframework.cache.CacheManager and org.springframework.cache.Cache. The CacheManager
interface acts as a factory for named Cache instances.

At runtime Spring looks for a CacheManager implementation that has a bean named cacheManager in
the application context.

You can configure your application context either declaratively or programmatically.

* Declaratively:

436

<!-- Infinispan cache manager -->
<bean id="cacheManager"
class=
"org.infinispan.spring.embedded.provider.SpringEmbeddedCacheManagerFactoryBean"
p:configurationFilelocation=
"classpath:/org/infinispan/spring/embedded/provider/sample/books-infinispan-
config.xml" />

* Programmatically:

@EnableCaching
@Configuration
public class Config {

@Bean
public CacheManager cacheManager() {
return new SpringEmbeddedCacheManager (infinispanCacheManager());

}

private EmbeddedCacheManager infinispanCacheManager() {
return new DefaultCacheManager();

}

24.7.3. Adding Caching to Your Application

Add the @Cacheable and @CacheEvict annotations to your application code.

Adding Cache Entries

The @Cacheable annotation adds returned values to a defined cache.

For instance, you have a data access object (DAO) for books. You want book instances to be cached
after they have been loaded from the underlying database using BookDao#findBook (Integer bookId).

Annotate the findBook(Integer bookId) method with @Cacheable as follows:

@Transactional
@Cacheable(value = "books", key = "#bookId")
public Book findBook(Integer bookId) {...}

Any Book instances returned from findBook(Integer bookId) are stored in a cache named books,
using bookId as the key.

Note that "#bookId" is an expression in the Spring Expression Language that evaluates the bookId
argument.

437

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html

If your application needs to reference entries in the cache directly, you should
include the key attribute. Without this attribute, Spring generates a hash from the
supplied method arguments to use as the cache key.

Deleting Cache Entries

The @CacheEvict annotation deletes entries from a defined cache.

Annotate the deleteBook(Integer bookId) method with @CacheEvict as follows:

// Evict all entries in the "books" cache

(value="books", key = "#bookId", allEntries = true)
public void deleteBookAllEntries() {...}

// Evict entries in the "books" cache that match #bookId

(value="books", key = "#bookId")
public void deleteBook(Integer bookId) {...]}

24.7.4. Configuring Timeouts for Cache Operations

The {brandname} Spring cache provider defaults to blocking behaviour when performing read and
write operations. By default operations are synchronous and do not time out. However, you might
want to set a maximum time to wait for operations before timing out in some situations. For
example, timeouts are useful if you need to ensure that an operation completes within a certain
time and you can ignore the cached value.

infinispan.spring.operation.read. timeout

Specifies the time, in milliseconds, to wait for read operations to complete. The default is @ which
means unlimited wait time.

infinispan.spring.operation.write.timeout

Specifies the time, in milliseconds, to wait for write operations to complete. The default is 0
which means unlimited wait time.

To configure timeouts for cache operations, set the properties in the context XML for your
application on either SpringEmbeddedCacheManagerFactoryBean or
SpringRemoteCacheManagerFactoryBean.

Q In remote client-server mode, you can also add these properties to hotrod-
client.properties.

The following example shows the timeout properties in the context XML for
SpringRemoteCacheManagerFactoryBean:

438

<bean 1id="springRemoteCacheManagerConfiguredUsingConfigurationProperties"
class="
org.infinispan.spring.remote.provider.SpringRemoteCacheManagerFactoryBean">
<property name="configurationProperties">
<props>
<prop key="infinispan.spring.operation.read.timeout">500</prop>
<prop key="infinispan.spring.operation.write.timeout">700</prop>
</props>
</property>
</bean>

24.7.5. Externalizing Sessions Using Spring Session

Spring Session lets you externalize user session information into {brandname}.
To configure Spring Session integration in your application, do the following:
Add dependencies to your pom.xml as follows:

Spring 4
* Embedded mode: infinispan-spring4-embedded

* Remote client-server mode: infinispan-spring4-remote

» Spring Framework: spring-session

The following is an example with Spring 4 in embedded mode:

439

http://docs.spring.io/spring-session/docs/current/reference/html5

<dependencies>
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-core</artifactId>
</dependency>
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-spring4-embedded</artifactId>
<version>${version.infinispan}</version>
</dependency>
<dependency>
<groupIld>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>${version.spring}</version>
</dependency>
<dependency>
<groupld>org.springframework</groupId>
<artifactId>spring-session</artifactId>
<version>${version.spring}</version>
</dependency>
<dependency>
<groupld>org.springframework</groupId>
<artifactId>spring-web</artifactId>
<version>${version.spring}</version>
</dependency>
</dependencies>

Replace:

» ${version.infinispan} with the appropriate version of {brandname}.

» ${version.spring} with the appropriate version of Spring.

Spring 5
* Embedded mode: infinispan-spring5-embedded
* Remote client-server mode: infinispan-spring5-remote

» Spring Framework: spring-session-core

The following is an example with Spring 5 in remote client-server mode:

440

<dependencies>
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-core</artifactId>
</dependency>
<dependency>
<groupId>org.infinispan</groupld>
<artifactId>infinispan-spring5-remote</artifactId>
<version>${version.infinispan}</version>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>${version.spring}</version>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-session-core</artifactId>
<version>${version.spring}</version>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-web</artifactId>
<version>${version.spring}</version>
</dependency>
</dependencies>

Replace:

» ${version.infinispan} with the appropriate version of {brandname}.

» ${version.spring} with the appropriate version of Spring.
After you add dependencies, do the following:

1. Specify the appropriate FactoryBean to expose a CacheManager instance.
o Embedded mode: SpringEmbeddedCacheManagerFactoryBean
o Remote client-server mode: SpringRemoteCacheManagerFactoryBean
2. Enable Spring Session with the appropriate annotation.
- Embedded mode: @EnableInfinispanEmbeddedHttpSession

o Remote client-server mode: @EnableInfinispanRemoteHttpSession
These annotations have optional parameters:

= maxInactivelntervalInSeconds sets session expiration time in seconds. The default is 1800.

= cacheName specifies the name of the cache that stores sessions. The default is sessions.

The following example shows a complete, annotation-based configuration:

441

public class Config {

public SpringEmbeddedCacheManagerFactoryBean springCacheManager() {
return new SpringEmbeddedCacheManagerFactoryBean();

}

//An optional configuration bean responsible for replacing the default
//cookie that obtains configuration.
//For more information refer to the Spring Session documentation.

public HttpSessionStrategy httpSessionStrategy() {
return new HeaderHttpSessionStrategy();

}

24.8. {brandname} modules for WildFly / EAP

As the {brandname} modules shipped with WildFly / EAP are tailored to its internal usage, it is
recommend to install separate modules if you want to use {brandname} in your application that is
deployed to WildFly / EAP. By installing these modules, it is possible to deploy user applications
without packaging the {brandname} JARs within the deployments (WARs, EARs, etc), thus
minimizing their size. Also, there will be no conflict with WildFly / EAP’s internal modules since the
slot will be different.

24.8.1. Installation

The modules for WildFly / EAP are available in the downloads section of our site. After extracting
the zip, copy the contents of the modules directory to the WILDFLY_HOME/modules directory, so that for
example the {brandname} core module would be under WILDFLY_HOME/modules/system/add-
ons/{moduleprefix}/org/infinispan/core.

24.8.2. Application Dependencies

If you are using Maven to build your application, mark the {brandname} dependencies as provided
and configure your artifact archiver to generate the appropriate MANIFEST.MF file:

442

http://wildfly.org/
https://www.redhat.com/en/technologies/jboss-middleware/application-platform
http://infinispan.org/download/

pom.xml

<dependencies>
<dependency>
<groupId>org.infinispan</groupIld>
<artifactId>infinispan-core</artifactld>
<version>${version.infinispan}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-cachestore-jdbc</artifactId>
<version>${version.infinispan}</version>
<scope>provided</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-war-plugin</artifactId>
<confiquration>
<archive>
<manifestEntries>
<Dependencies>org.infinispan.core:${version.slot} services,
org.infinispan.cachestore.jdbc:${version.slot} services</Dependencies>
</manifestEntries>
</archive>
</configuration>
</plugin>
</plugins>
</build>

Replace:

» ${version.infinispan} with the appropriate version of {brandname}.

» ${version.slot} with the slot version, ispn-9.4.

The next section illustrates the manifest entries for different types of {brandname}'s dependencies.

{brandname} core

In order expose only {brandname} core dependencies to your application, add the follow to the
manifest:

MANIFEST.MF

Manifest-Version: 1.0
Dependencies: org.infinispan:ispn-9.4 services

443

Remote

If you need to connect to remote {brandname} servers via Hot Rod, including execution of remote
queries, use the module org.infinispan.remote that exposes the needed dependencies conveniently:

MANIFEST.MF

Manifest-Version: 1.0
Dependencies: org.infinispan.remote:ispn-9.4 services

Embedded Query

For embedded querying, including the {brandname} Query DSL, Lucene and Hibernate Search
Queries, add the following:

MANIFEST.MF

Manifest-Version: 1.0
Dependencies: org.infinispan:ispn-9.4 services, org.infinispan.query:ispn-9.4 services

Lucene Directory

Lucene users who wants to simple use {brandname} as a org.apache.lucene.store.Directory don’t
need to add the query module, the entry below is sufficient:

MANIFEST.MF

Manifest-Version: 1.0
Dependencies: org.infinispan.lucene-directory:ispn-9.4

Hibernate Search directory provider for {brandname}

The Hibernate Search directory provider for {brandname} is also contained within the
{brandname} modules zip. It is not necessary to add an entry to the manifest file since the
Hibernate Search module already has an optional dependency to it. When choosing the
{brandname} module zip to use, start by checking which Hibernate Search is in use, more details
below.

Usage with Wildfy’s internal Hibernate Search modules

The Hibernate Search module present in Wildfly 10.x has slot "5.5", which in turn has an optional
dependency to org.infinispan.hibernate-search.directory-provider:for-hibernatesearch-5.5. This
dependency will be available once the {brandname} modules are installed.

Usage with other Hibernate Search modules

The module org.hibernate.search:ispn-9.4 distributed with {brandname} is to be used together
with {brandname} Query only (querying data from caches), and should not be used by Hibernate
ORM applications. To use a Hibernate Search with a different version that is present in Wildfly,

444

#modules_installation_section

please consult the Hibernate Search documentation.

Make sure that the chosen Hibernate Search optional slot for org.infinispan.hibernate-
search.directory-provider matches the one distributed with {brandname}.

24.8.3. Usage

There are two possible ways for your application to utilize {brandname} within Wildfly, embedded
mode and server mode.

Embedded Mode

All CacheManagers and cache instances are created in your application logic. The lifecycle of your
EmbeddedCacheManager is tightly coupled with your application’s lifecycle, resulting in any
manager instances created by your application being destroyed with your application.

Server Mode

In server mode, it is possible for cache containers and caches to be created before runtime as part
of Wildfly’s standalone/domain.xml configuration. This allows cache instances to be shared across
multiple applications, with the lifecycle of the underlying cache container being independent of the
deployed application.

Configuration

To enable server mode, it is necessary to make the following additions to your wildfly configuration
in standalone/domain.xml. Note, that only steps 1-4 are required for local cache instances:

1. Add the {brandname} extensions to your <extensions> section.

<extensions>
<extension module="org.infinispan.extension:ispn-9.4"/>
<extension module="org.infinispan.server.endpoint:ispn-9.4"/>
<extension module="org.jgroups.extension:ispn-9.4"/>

<!--Other wildfly extensions-->
</extensions>

2. Configure the {brandname} subsystem, along with your required containers and caches, in the
server profile which requires {brandname}. Note, it’s important that the module attribute is
defined so that correct {brandname} classes are loaded.

445

https://docs.jboss.org/hibernate/search/5.6/reference/en-US/html_single/#search-configuration-deploy-on-wildfly

<subsystem xmlns="urn:infinispan:server:core:9.4">
<cache-container module="org.infinispan.extension:ispn-9.4" name=
"infinispan_container" default-cache="default">

<transport/>

<global-state/>

<distributed-cache name="default"/>

<distributed-cache name="memcachedCache"/>

<distributed-cache name="namedCache"/>
</cache-container>
</subsystem>

3. Define the Wildfly socket-bindings required by the endpoint and/or JGroup subsystems

4. Configure any endpoints that you require via the endpoint subsystem:

<subsystem xmlns="urn:infinispan:server:endpoint:9.4">
<hotrod-connector socket-binding="hotrod" cache-container="infinispan_container">
<topology-state-transfer lazy-retrieval="false" lock-timeout="1000" replication-
timeout="5000"/>
</hotrod-connector>
<rest-connector socket-binding="rest" cache-container="infinispan_container">
<authentication security-realm="ApplicationRealm" auth-method="BASIC"/>
</rest-connector>
</subsystem>

5. Define JGroups transport, ensuring that you define the model attribute for all protocols
specified.

446

https://docs.jboss.org/author/display/WFLY10/Interfaces+and+ports

<subsystem xmlns="urn:infinispan:server:jgroups:9.4">
<channels default="cluster">
<channel name="cluster" stack="udp"/>
</channels>
<stacks>
<stack name="udp">
<transport type="UDP" socket-binding="jgroups-udp" module="org.jgroups:ispn-9.4
/>
<protocol type="PING" module="org.jgroups:ispn-9.4"/>
<protocol type="MERGE3" module="org.jgroups:ispn-9.4"/>
<protocol type="FD_SOCK" socket-binding="jgroups-udp-fd" module=
org.jgroups:ispn-9.4"/>
<protocol type="FD_ALL" module="org.jgroups:ispn-9.4"/>
<protocol type="VERIFY_SUSPECT" module="org.jgroups:ispn-9.4"/>
<protocol type="pbcast.NAKACK2" module="org.jgroups:ispn-9.4"/>
<protocol type="UNICAST3" module="org.jgroups:ispn-9.4"/>
<protocol type="pbcast.STABLE" module="org.jgroups:ispn-9.4"/>
<protocol type="pbcast.GMS" module="org.jgroups:ispn-9.4"/>
<protocol type="UFC" module="org.jgroups:ispn-9.4"/>
<protocol type="MFC" module="org.jgroups:ispn-9.4"/>
<protocol type="FRAG2" module="org.jgroups:ispn-9.4"/>
</stack>
</stacks>
</subsystem>

Accessing Containers and Caches

Once a container has been defined in your server’s configuration, it is possible to inject an instance
of a CacheContainer or Cache into your application using the @Resource JNDI lookup. A container is
accessed using the following string java:jboss/datagrid-infinispan/container/<container_name> and
similarly a cache is accessed via java:jboss/datagrid-
infinispan/container/<container_name>/cache/<cache_name>

The example below shows how to inject the CacheContainer called "infinispan_container" and the
distributed cache "namedCache" into an application.

public class ExampleApplication {
@Resource(lookup = "java:jboss/datagrid-infinispan/container/infinispan_container
Il)

CacheContainer container;

@Resource(lookup = "java:jboss/datagrid-
infinispan/container/infinispan_container/cache/namedCache")
Cache cache;

}

447

24.8.4. Troubleshooting

Enable logging

Enabling trace on org.jboss.modules can be useful to debug issues like LinkageError and
(lassNotFoundException. To enable it at runtime using the Wildfly CLI:

bin/jboss-cli.sh -c¢ '/subsystem=1ogging/logger=org.jboss.modules:add’
bin/jboss-cli.sh -c '/subsystem=1ogging/logger=org.jboss.modules:write-
attribute(name=1evel,value=TRACE)'

Print dependency tree

The following command can be used to print all dependencies for a certain module. For example, to
obtain the tree for the module org.infinispan:ispn-9.4, execute from WILDFLY_HOME:

java -jar jboss-modules.jar -deptree -mp modules/ "org.infinispan:ispn-9.4"

448

Chapter 25. Grid File System

{brandname}'s GridFileSystem is an experimental API that exposes an {brandname}-backed data
grid as a file system.

A This is an experimental API. Use at your own risk.

Specifically, the API works as an extension to the JDK’s File , InputStream and OutputStream
classes: specifically, GridFile, GridinputStream and GridOutputStream. A helper class,
GridFilesystem, is also included.

Essentially, the GridFilesystem is backed by 2 {brandname} caches - one for metadata (typically
replicated) and one for the actual data (typically distributed). The former is replicated so that each
node has metadata information locally and would not need to make RPC calls to list files, etc. The
latter is distributed since this is where the bulk of storage space is used up, and a scalable
mechanism is needed here. Files themselves are chunked and each chunk is stored as a cache entry,
as a byte array.

Here is a quick code snippet demonstrating usage:

Cache<String,byte[]> data = cacheManager.getCache("distributed");
Cache<String,GridFile.Metadata> metadata = cacheManager.getCache("replicated");
GridFilesystem fs = new GridFilesystem(data, metadata);

// Create directories
File file=fs.getFile("/tmp/testfile/stuff");
fs.mkdirs(); // creates directories /tmp/testfile/stuff

// List all files and directories under "/usr/local"
file=fs.qgetFile("/usr/local");
File[] files=file.listFiles();

// Create a new file
file=fs.qgetFile("/tmp/testfile/stuff/README.txt");
file.createNewFile();

Copying stuff to the grid file system:

InputStream in=new FileInputStream("/tmp/my-movies/dvd-image.iso");
OutputStream out=fs.getOutput("/grid-movies/dvd-image.iso");

byte[] buffer=new byte[20000];

int len;

while((len=in.read(buffer, 0, buffer.length)) != -1) out.write(buffer, 0, len);
in.close();

out.close();

Reading stuff from the grid:

449

https://docs.oracle.com/javase/8/docs/api/java/io/File.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/OutputStream.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/io/GridFile.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/io/GridInputStream.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/io/GridOutputStream.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/io/GridFilesystem.html
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/io/GridFilesystem.html

InputStream in=in.getInput("/grid-movies/dvd-image.iso");

OutputStream out=new FileOutputStream("/tmp/my-movies/dvd-image.iso");

byte[] buffer=new byte[200000];

int len;

while((len=in.read(buffer, 0, buffer.length)) != -1) out.write(buffer, 0, len);

in.close();
out.close();

25.1. WebDAV demo

{brandname} ships with a demo WebDAV application that makes use of the grid file system APIs.
This demo app is packaged as a WAR file which can be deployed in a servlet container, such as
JBoss AS or Tomcat, and exposes the grid as a file system over WebDAV. This could then be mounted

as a remote drive on your operating system.

450

http://en.wikipedia.org/wiki/WebDAV
http://en.wikipedia.org/wiki/WAR_(Sun_file_format)

Chapter 26. Cross site replication

Cross site (x-site) replication allows backing up the data from one cluster to other clusters,
potentially situated in different geographical location. The cross-site replication is built on top of
JGroups' RELAY2 protocol . This document describes the technical design of cross site replication in
more detail.

Cross site replication needs the backup cache running in the site master node(s)
(i.e. node which receives the backup and applies it). The backup cache starts
automatically when it receives the first backup request.

26.1. Sample deployment

The diagram below depicts a possible setup of replicated sites, followed by a description of
individual elements present in the deployment. Options are then explained at large in future
paragraphs. Comments on the diagram above:

LON NYC
CacheMarager

/ CachelManager \ échen.’lanagcr JGgups Cacha M:—}rmqh

users users
JGrouos IGrduas)

Cachel anager CacheManacer CacheManager
JiEroups

/&gﬁﬁ\ users users

LGroups /

CaclheManager Cotiheldanager
users LSers

3 2/

e there are 3 sites: LON, NYC and SFO.

* in each site there is a running {brandname} cluster with a (potentially) different number of

451

http://www.jgroups.org/manual-3.x/html/user-advanced.html#Relay2Advanced
https://community.jboss.org/wiki/DesignForCrossSiteReplication

physical nodes: 3 nodes in LON, 4 nodes in NYC and 3 nodes in SFO

 the "users" cache is active in LON, NYC and SFO. Updates on the "users" cache in any of these
sites gets replicated to the other sites as well

* it is possible to use different replication mechanisms between sites. E.g. One can configure SFO
to backup data synchronously to NYC and asynchronously to LON

 the "users" cache can have a different configuration from one site to the other. E.g. it might be
configured as distributed with numOwners=2 in the LON site, REPL in the NYC site and
distributed with numOwners=1 in the SFO site

* JGroups is used for both inter-site and intra-site communication. RELAY2 is used for inter-site
communication

* "orders" is a site local to LON, i.e. updates to the data in "orders" don’t get replicated to the
remote sites The following sections discuss specific aspects of cross site replication into more
detail. The foundation of the cross-site replication functionality is RELAY2 so it highly
recommended to read JGroups' RELAY2 documentation before moving on into cross-site.
Configuration

The cross-site replication configuration spreads over the following files:
1. the backup policy for each individual cache is defined in the {brandname} .xml configuration
file (infinispan.xml)

2. cluster’s JGroups xml configuration file: RELAY2 protocol needs to be added to the JGroups
protocol stack (jgroups.xml)

3. RELAY2 configuration file: RELAY2 has an own configuration file (relay2.xml)

4. the JGroups channel that is used by RELAY2 has its own configuration file (jgroups-relay2.xml)
{brandname} XML configuration file

The local site is defined in the the global configuration section. The local is the site where the node
using this configuration file resides (in the example above local site is "LON").

infinispan.xml

<transport site="LON" />

The same setup can be achieved programatically:

GlobalConfigurationBuilder lonGec = GlobalConfigurationBuilder.defaultClusteredBuilder

0);
lonGe.site().localSite("LON");

The names of the site (case sensitive) should match the name of a site as defined within JGroups'
RELAY?2 protocol configuration file. Besides the global configuration, each cache specifies its backup
policy in the "site" element:

452

http://www.jgroups.org/manual-3.x/html/user-advanced.html#Relay2Advanced
http://www.jgroups.org/manual-3.x/html/user-advanced.html#Relay2Advanced
https://gist.github.com/maniksurtani/cdd5420af764c907e342
http://www.jgroups.org/manual-3.x/html/user-advanced.html#Relay2Advanced
https://gist.github.com/maniksurtani/409fe5ece5fe4bcf679f
https://gist.github.com/maniksurtani/8c7238dae7921d2c883e
https://gist.github.com/maniksurtani/cbc1a297a367b1176feb

infinispan.xml

<distributed-cache name="users">
<backups>
<backup site="NYC" failure-policy="WARN" strategy="SYNC" timeout="12000"/>
<backup site="SFQ" failure-policy="IGNORE" strategy="ASYNC"/>
<backup site="LON" strategy="SYNC" enabled="false"/>
</backups>
</distributed-cache>

The "users" cache backups its data to the "NYC" and "SFO" sites. Even though the "LON" appears as a
backup site, it has the "enabled" attribute set to false so it will be ignored . For each site backup, the
following configuration attributes can be specified:

* strategy - the strategy used for backing up data, either "SYNC" or "ASYNC". Defaults to "ASYNC"

* failure-policy - Decides what the system would do in case of failure during backup. Possible
values are:

o IGNORE - allow the local operation/transaction to succeed
o WARN - same as IGNORE but also logs a warning message. Default.

o FAIL - only in effect if "strategy" is "SYNC" - fails local cluster operation/transaction by
throwing an exception to the user

o CUSTOM - user provided, see "failurePolicyClass" below

» failurePolicyClass - If the 'failure-policy’ is set to 'CUSTOM' then this attribute is required and
should contain the fully qualified name of a class implementing
org.infinispan.xsite.CustomFailurePolicy

 timeout - The timeout(milliseconds) to be used when backing up data remotely. Defaults to
10000 (10 seconds)

The same setup can be achieved programatically:

ConfigurationBuilder lon = new ConfigurationBuilder();
lon.sites().addBackup()
.site("NYC")
.backupFailurePolicy(BackupFailurePolicy.WARN)
.strategy(BackupConfiguration.BackupStrategy.SYNC)
.replicationTimeout(12000)
.sites().addInUseBackupSite("NYC")
.sites().addBackup()
.site("SF0")
.backupFailurePolicy(BackupFailurePolicy.IGNORE)
.strategy(BackupConfiquration.BackupStrategy.ASYNC)
.sites().addInUseBackupSite("SF0")

The "users" cache above doesn’t know on which cache on the remote sites its data is being
replicated. By default the remote site writes the backup data to a cache having the same name as

4353

the originator, i.e. "users". This behaviour can be overridden with an "backupFor" element. For
example the following configuration in SFO makes the "usersLONBackup" cache act as the backup
cache for the "users" cache defined above in the LON site:

infinispan.xml

<infinispan>
<cache-container default-cache="">
<distributed-cache name="usersLONBackup">
<backup-for remote-cache="users" remote-site="LON"/>
</distributed-cache>
</cache-container>
</infinispan>

The same setup can be achieved programatically:

ConfigurationBuilder cb = new ConfigurationBuilder();
cb.sites().backupFor().remoteCache("users").remoteSite("LON");

26.1.1. Local cluster’s jgroups .xml configuration

This is the configuration file for the local (intra-site) {brandname} cluster. It is referred from the
{brandname} configuration file, see "configurationFile" below:

infinispan.xml

<infinispan>
<jgroups>
<stack-file name="external-file" path="jgroups.xml"/>
</jgroups>
<cache-container>
<transport stack="external-file" />
</cache-container>

</infinispan>

In order to allow inter-site calls, the RELAY2 protocol needs to be added to the protocol stack
defined in the jgroups configuration (see attached jgroups.xml for an example).

26.1.2. RELAY2 configuration file

The RELAY2 configuration file is linked from the jgroups.xml (see attached relay2.xml). It defines
the sites seen by this cluster and also the JGroups configuration file that is used by RELAY2 in order
to communicate with the remote sites.

454

https://gist.github.com/maniksurtani/409fe5ece5fe4bcf679f
https://gist.github.com/maniksurtani/8c7238dae7921d2c883e

26.2. Data replication

For both transactional and non-transactional caches, the backup calls are performed in parallel
with local cluster calls, e.g. if we write data to node N1 in LON then replication to the local nodes N2
and N3 and remote backup sites SFO and NYC happen in parallel.

26.2.1. Non transactional caches

In the case of non-transactional caches the replication happens during each operation. Given that
data is sent in parallel to backups and local caches, it is possible for the operations to succeed
locally and fail remotely, or the other way, causing inconsistencies

26.2.2. Transactional caches

For synchronous transactional caches, {brandname} internally uses a two phase commit protocol:
lock acquisition during the 1st phase (prepare) and apply changes during the 2nd phase (commit).
For asynchronous caches the two phases are merged, the "apply changes" message being sent
asynchronously to the owners of data. This 2PC protocol maps to 2PC received from the JTA
transaction manager. For transactional caches, both optimistic and pessimistic, the backup to
remote sites happens during the prepare and commit phase only.

Synchronous local cluster with async backup

In this scenario the backup call happens during local commit phase(2nd phase). That means that if
the local prepare fails, no remote data is being sent to the remote backup.

Synchronous local cluster with sync backup

In this case there are two backup calls:
* during prepare a message is sent across containing all the modifications that happened within
this transaction

« if the remote backup cache is transactional then a transaction is started remotely and all these
modifications are being written within this transaction’s scope. The transaction is not
committed yet (see below)

« if the remote backup cache is not transactional, then the changes are applied remotely
* during the commit/rollback, a commit/rollback message is sent across

« if the remote backups cache is transactional then the transaction started at the previous phase
is committed/rolled back

+ if the remote backup is not transactional then this call is ignored

Both the local and the backup call(if the "backupFailurePolicy" is set to "FAIL") can veto
transaction’s prepare outcome

Asynchronous local cluster

In the case of asynchronous local clusters, the backup data is sent during the commit phase. If the

455

backup call fails and the "backupFailurePolicy" is set to "FAIL" then the user is notified through an
exception.

26.3. Taking a site offline

If backing up to a site fails for a certain number of times during a time interval, then it is possible to
automatically mark that site as offline. When a site is marked as offline the local site won’t try to
backup data to it anymore. In order to be taken online a system administrator intervention being
required.

26.3.1. Configuration
The taking offline of a site can be configured as follows:
infinispan.xml
<replicated-cache name="bestEffortBackup">
<backups>
<backup site="NYC" strategy="SYNC" failure-policy="FAIL">
<take-offline after-failures="500" min-wait="10000"/>

</backup>
</backups>

</replicated-cache>

The take-offline element under the backup configures the taking offline of a site:

* after-failures - the number of failed backup operations after which this site should be taken
offline. Defaults to 0 (never). A negative value would mean that the site will be taken offline
after minTimeToWait

* min-wait - the number of milliseconds in which a site is not marked offline even if it is
unreachable for 'afterFailures' number of times. If smaller or equal to 0, then only afterFailures
is considered.

The equivalent programmatic configuration is:

lon.sites().addBackup()
.site("NYC")
.backupFailurePolicy(BackupFailurePolicy.FAIL)
.strategy(BackupConfiguration.BackupStrategy.SYNC)
.takeOffline()
.afterFailures(500)
.minTimeToWait(10000);

456

26.3.2. Bringing Sites Back Online

After taking sites offline, invoke the bringSiteOnline(siteName) operation via the following JMX
MBeans to bring sites back online:

» XSiteAdmin enables replication on caches across clusters in a remote site.

* GlobalXSiteAdminOperations enables replication on cache containers across clusters in a remote

site.

The bringSiteOnline(siteName) operation enables replication only and does not do a full update. For
this reason, when you bring sites back online, they only contain new entries. You should push
transfer to sites after you bring them online to synchronize the most recent data.

Q Pushing state transfer brings sites back online. You can do that instead of invoking
bringSiteOnline(siteName).

26.4. Pushing State Transfer to Sites

Transferring state from one site to another synchronizes the data between the two sites.

You should always transfer state from the currently active site, which contains the most up-to-date
data, to another site. The site to which you push state transfer can be online or offline. If you push
state transfer to an offline site, it brings that site back online.

Caches on sites to which you transfer state from another site do not need to be empty. However,
state transfer only overwrites existing keys on receiving sites and does not delete keys.

For example, key K exists on site A and site B. You transfer state from site A to site B. In this case,
{brandname} overwrites key K. However, key Y exists on site B but not site A. After you transfer
state from site A to site B, key Y still exists on site B.

You can receive state transfer from only one site at a time. Likewise, if you invoke
9 a state transfer operation on a site, {brandname} ignores subsequent invocations
on that site.

Invoke the pushState(String) operation via the following JMX MBeans to bring sites back online:

* XSiteAdminOperations synchronizes state for caches between the site on which you invoke the
operation and a remote site. Brings the site online if it is offline.

* GlobalXSiteAdminOperations synchronizes state for cache containers between the site on which
you invoke the operation and a remote site. Brings the site online if it is offline.

When you invoke the pushState(String) operation on the site that transfers state, you specify the
name of the site that receives the state.

The following figure shows the pushState(String) operation in JConsole:

4357

pid: 10025 surefirebootert 261641396605 jar /home/pedro/ideaProjects/infinispan/core/|

target/surefire/surefire84702: 4464779tmp /home/pedro/ideaProjects/

Overview | Memory | Threads | Classes | VM Summary|MBSanS‘

» Jiimplementation rOperation invocation

> com.sun.management 2valana SEri
v \nF\nlspan—352688Fc—5295—488 Javalang.string [briﬁgSiteOmUne‘ (site[String])

¥ Cache
¥ " defaultcache(dist_syn
¥ "DefaultCacheianager” | - o, —
ava.lang. Strin

» @ Activation ! 2 9 |skatus| ()
» @ Cache
» @ DistributioniManager
* @ LockManager java.lang.String P ;) : L)
» @ RollingUpgradeMana [setTakeOFHmeMlnT\meToWaltJ (site [String , minTimeTowWait E)
* @ RpcManager
» @ StateTransferManag

. Stgtistics . FlEng g [takeSiteOFHineI (sice I Skring l)
¥ @ XSiteAdmin
Cpe

1 perations
— — : .
* infinispan-80161eab-3b2 : || lavalang String [setTakeOFFLineAFterFaiLures‘ (site [String], afterFailures E)
*» infinispan-8dc456a2-fcf2-4a2k
» infinispan-982804a1-8cdf-4ba
» javalang 5 s
> java.nio javalangs etTakeOFHimeMinTimeToWaitj (site [String])

» java.utillogging S

lavalang.String pushState | (SiteName)

lavalang,String [Sitestatusl (site l String l)

java utiLList | g mringstateTranster| ()

favalang.String [getTakeOFHineAFterFailuresJ (site [String])

java.lang.String [amendTakeOFFUne‘ { site [String], afterFailures E, minTimeTeWait E)

e

Figure 22. Pushing state via JConsole

26.4.1. Handling join/leave nodes

The current implementation automatically handles the topology changes in producer or consumer
site. Also, the cross-site state transfer can run in parallel with a local site state transfer.

26.4.2. Handling broken link between sites

A System Administrator action is needed if the link between the producer and consumer site is
broken during the cross-site state transfer (data consistency is not ensured in consumer site). The
producer site retries for a while before giving up. Then, it gets back to normal state. However, the
consumer site is not able to get back to normal state and, here, an action from System
Administrator is need. The System Administrator should use the operation
cancelReceiveState(String siteName) to bring the consumer site to normal state.

26.4.3. System Administrator Operations

A set of operations can be performed to control the cross-site state transfer:

pushState(String siteName) - It starts the cross-site state transfer to the site name specified;

» cancelPushState(String siteName) - It cancels the cross-site state transfer to the site name
specified;

» getRunningStateTransfer() - It returns a list of site name to which this site is pushing the state;

» getSendingSiteName() - It returns the site name that is pushing state to this site;

458

* cancelReceiveState(String siteName) - It restores the site to normal state. Should be used when
the link between the sites is broken during the state transfer (as described above);

» getPushStateStatus() - It returns the status of completed cross-site state transfer;

* clearPushStateStatus() - It clears the status of completed cross-site state transfer.

For more technical information, you can check the Cross Site design document. See Reference.

26.4.4. Configuration

State transfer between sites cannot be enabled or disabled but it allows to tune some parameters.
The values shown below are the default values:

infinispan.xml
<replicated-cache name="xSiteStateTransfer">
<backups>
<backup site="NYC" strategy="SYNC" failure-policy="FAIL">
<state-transfer chunk-size="512" timeout="1200000" max-retries="30" wait-
time="2000" />

</backup>
</backups>

</replicated-cache>
The equivalent programmatic configuration is:

lon.sites().addBackup()
.site("NYC")
.backupFailurePolicy(BackupFailurePolicy.FAIL)
.strategy(BackupConfiguration.BackupStrategy.SYNC)
.stateTransfer()
.chunkSize(512)
.timeout(1200000)
.maxRetries(30)
.waitingTimeBetweenRetries(2000);

Below, it is the parameters description:
* chunk-size - The number of keys to batch before sending them to the consumer site. A negative
or a zero value is not a valid value. Default value is 512 keys.

e timeout - The time (in milliseconds) to wait for the consumer site acknowledge the reception
and appliance of a state chunk. A negative or zero value is not a valid value. Default value is 20
minutes.

* max-retries - The maximum number of retries when a push state command fails. A negative or a
zero value means that the command will not retry in case of failure. Default value is 30.

459

#x_site_reference

* wait-time - The waiting time (in milliseconds) between each retry. A negative or a zero value is
not a valid value. Default value is 2 seconds.

26.5. Reference

This document describes the technical design of cross site replication in more detail.

460

https://community.jboss.org/wiki/DesignForCrossSiteReplication

Chapter 27. Performing Rolling Upgrades

Upgrade {brandname} without downtime or data loss. You can perform rolling upgrades in Remote
Client/Server Mode to start using a more recent version of {brandname}.

i

This section explains how to upgrade {brandname} servers, see the appropriate
documentation for your Hot Rod client for upgrade procedures.

From a high-level, you do the following to perform rolling upgrades:

1. Set up a target cluster. The target cluster is the {brandname} version to which you want to
migrate data. The source cluster is the {brandname} deployment that is currently in use. After
the target cluster is running, you configure all clients to point to it instead of the source cluster.

2. Synchronize data from the source cluster to the target cluster.

27.1. Setting Up a Target Cluster

1. Start the target cluster with unique network properties or a different JGroups cluster name to
keep it separate from the source cluster.

2. Configure a RemoteCacheStore on the target cluster for each cache you want to migrate from the
source cluster.

RemoteCacheStore settings

o

o

o

remote-server must point to the source cluster via the outbound-socket-binding property.
remoteCacheName must match the cache name on the source cluster.

hotrod-wrapping must be true (enabled).

shared must be true (enabled).

purge must be false (disabled).

passivation must be false (disabled).

protocol-version matches the Hot Rod protocol version of the source cluster.

461

Example RemoteCacheStore Configuration

<distributed-cache>
<remote-store cache="MyCache" socket-timeout="60000" tcp-no-delay="true"
protocol-version="2.5" shared="true" hotrod-wrapping="true" purge="false"

passivation="false">
<remote-server outbound-socket-binding="remote-store-hotrod-server"/>

</remote-store>
</distributed-cache>

<socket-binding-group name="standard-sockets" default-interface="public"
port-offset="${jboss.socket.binding.port-offset:0}">

<outbound-socket-binding name="remote-store-hotrod-server">
<remote-destination host="198.51.100.0" port="11222"/>
</outbound-socket-binding>

</socket-binding-group>

3. Configure the target cluster to handle all client requests instead of the source cluster:
a. Configure all clients to point to the target cluster instead of the source cluster.

b. Restart each client node.

The target cluster lazily loads data from the source cluster on demand via RemoteCacheStore.

27.2. Synchronizing Data from the Source Cluster

1. Call the synchronizeData() method in the TargetMigrator interface. Do one of the following on
the target cluster for each cache that you want to migrate:

JMX
Invoke the synchronizeData operation and specify the hotrod parameter on the
RollingUpgradeManager MBean.

CLI

$ IDG_HOME/bin/cli.sh --connect controller=127.0.0.1:9990 -c
"/subsystem=datagrid-infinispan/cache-container=clustered/distributed-
cache=MyCache:synchronize-data(migrator-name=hotrod)"

Data migrates to all nodes in the target cluster in parallel, with each node receiving a subset
of the data.
Use the following parameters to tune the operation:

o read-batch configures the number of entries to read from the source cluster at a time. The
default value is 10000.

462

o write-threads configures the number of threads used to write data. The default value is
the number of processors available.

For example:

synchronize-data(migrator-name=hotrod, read-batch=100000, write-threads=3)

2. Disable the RemoteCacheStore on the target cluster. Do one of the following:

JMX
Invoke the disconnectSource operation and specify the hotrod parameter on the
RollingUpgradeManager MBean.

CLI

$ IDG_HOME/bin/cli.sh --connect controller=127.0.0.1:9990 -c
"/subsystem=datagrid-infinispan/cache-container=clustered/distributed-
cache=MyCache:disconnect-source(migrator-name=hotrod)"

3. Decommission the source cluster. == Extending {brandname} {brandname} can be extended to
provide the ability for an end user to add additional configurations, operations and components
outside of the scope of the ones normally provided by {brandname}.

27.3. Custom Commands

{brandname} makes use of a command/visitor pattern to implement the various top-level methods
you see on the public-facing API. This is explained in further detail in the Architectural Overview
section. While the core commands - and their corresponding visitors - are hard-coded as a part of
{brandname}'s core module, module authors can extend and enhance {brandname} by creating
new custom commands.

As a module author (such as infinispan-query, etc.) you can define your own commands.
You do so by:

1. Create a META-INF/services/org.infinispan.commands.module.ModuleCommandExtensions file and
ensure this is packaged in your jar.

2. Implementing ModuleCommandFactory, ModuleCommandInitializer and ModuleCommandExtensions

3. Specifying the fully-qualified class name of the ModuleCommandExtensions implementation in
META-INF/services/org.infinispan.commands.module.ModuleCommandExtensions.

4. Implement your custom commands and visitors for these commands

27.3.1. An Example

Here is an example of an META-
INF/services/org.infinispan.commands.module.ModuleCommandExtensions file, configured accordingly:

463

http://en.wikipedia.org/wiki/Command_pattern
#arch_overview
https://github.com/infinispan/infinispan/tree/master/query
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/commands/module/ModuleCommandFactory.java
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/commands/module/ModuleCommandInitializer.java
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/commands/module/ModuleCommandExtensions.java
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/commands/module/ModuleCommandExtensions.java

org.infinispan.commands.module.ModuleCommandExtensions

org.infinispan.query.QueryModuleCommandExtensions

For a full, working example of a sample module that makes use of custom commands and visitors,
check out {brandname} Sample Module .

27.3.2. Preassigned Custom Command Id Ranges

This is the list of Command identifiers that are used by {brandname} based modules or frameworks.
{brandname} users should avoid using ids within these ranges. (RANGES to be finalised yet!) Being
this a single byte, ranges can’t be too large.

{brandname} Query: 100-119
Hibernate Search: 120-139
Hot Rod Server: 140 - 141

27.4. Extending the configuration builders and parsers

If your custom module requires configuration, it is possible to enhance {brandname}'s
configuration builders and parsers. Look at the custom module tests for a detail example on how to
implement this.

464

https://github.com/infinispan/infinispan-sample-module
https://github.com/infinispan/infinispan/blob/master/core/src/test/java/org/infinispan/configuration/module

Chapter 28. Architectural Overview

This section contains a high level overview of {brandname}'s internal architecture. This document
is geared towards people with an interest in extending or enhancing {brandname}, or just curious
about {brandname}’s internals.

28.1. Cache hierarchy

{brandname}'s Cache interface extends the JRE’s ConcurrentMap interface which provides for a
familiar and easy-to-use API.

public interface Cache<K, V> extends BasicCache<K, V> {

}

public interface BasicCache<K, V> extends ConcurrentMap<K, V> { ... } -

Caches are created by using a CacheContainer instance - either the EmbeddedCacheManager or a
RemoteCacheManager. In addition to their capabilities as a factory for Caches, CacheContainers
also act as a registry for looking up Caches.

EmbeddedCacheManagers create either clustered or standalone Caches that reside in the same
JVM. RemoteCacheManagers, on the other hand, create RemoteCaches that connect to a remote
cache tier via the Hot Rod protocol.

28.2. Commands

Internally, each and every cache operation is encapsulated by a command. These command objects
represent the type of operation being performed, and also hold references to necessary parameters.
The actual logic of a given command, for example a ReplaceCommand, is encapsulated in the
command’s perform() method. Very object-oriented and easy to test.

All of these commands implement the VisitableCommand inteface which allow a Visitor (described
in next section) to process them accordingly.

public class PutKeyValueCommand extends VisitableCommand {

}

public class GetKeyValueCommand extends VisitableCommand { ... }

i etc...-—

465

28.3. Visitors

Commands are processed by the various Visitors. The visitor interface, displayed below, exposes
methods to visit each of the different types of commands in the system. This gives us a type-safe
mechanism for adding behaviour to a call.Commands are processed by Visitor's. The visitor
interface, displayed below, exposes methods to visit each of the different types of commands in the
system. This gives us a type-safe mechanism for adding behaviour to a call.

public interface Vistor {
Object visitPutKeyValueCommand(InvocationContext ctx, PutKeyValueCommand command)
throws Throwable;

Object visitRemoveCommand(InvocationContext ctx, RemoveCommand command) throws
Throwable;

Object visitReplaceCommand(InvocationContext ctx, ReplaceCommand command) throws
Throwable;

Object visitClearCommand(InvocationContext ctx, ClearCommand command) throws
Throwable;

Object visitPutMapCommand(InvocationContext ctx, PutMapCommand command) throws
Throwable;

i etc...}-—

An AbstractVisitor class in the org.infinispan.commands package is provided with no-op
implementations of each of these methods. Real implementations then only need override the
visitor methods for the commands that interest them, allowing for very concise, readable and
testable visitor implementations.

28.4. Interceptors

Interceptors are special types of Visitors, which are capable of visiting commands, but also acts in a
chain. A chain of interceptors all visit the command, one in turn, until all registered interceptors
visit the command.

The class to note is the CommandInterceptor. This abstract class implements the interceptor
pattern, and also implements Visitor. {brandname}'s interceptors extend CommandInterceptor, and
these add specific behaviour to specific commands, such as distribution across a network or writing
through to disk.

466

//https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/interceptors/base/CommandInterceptor.html

There is also an experimental asynchronous interceptor which can be used. The interface used for
asynchronous interceptors is Asynclnterceptor and a base implementation which should be used
when a custom implementation is desired BaseCustomAsyncInterceptor. Note this class also
implements the Visitor interface.

28.5. Putting it all together

So how does this all come together? Invocations on the cache cause the cache to first create an
invocation context for the call. Invocation contexts contain, among other things, transactional
characteristics of the call. The cache then creates a command for the call, making use of a command
factory which initialises the command instance with parameters and references to other
subsystems.

The cache then passes the invocation context and command to the InterceptorChain, which calls
each and every registered interceptor in turn to visit the command, adding behaviour to the call.
Finally, the command’s perform() method is invoked and the return value, if any, is propagated
back to the caller.

28.6. Subsystem Managers

The interceptors act as simple interception points and don’t contain a lot of logic themselves. Most
behavioural logic is encapsulated as managers in various subsystems, a small subset of which are:

28.6.1. DistributionManager

Manager that controls how entries are distributed across the cluster.

28.6.2. TransactionManager

Manager than handles transactions, usually supplied by a third party.

28.6.3. RpcManager

Manager that handles replicating commands between nodes in the cluster.

28.6.4. LockManager

Manager that handles locking keys when operations require them.

28.6.5. PersistenceManager

Manager that handles persisting data to any configured cache stores.

28.6.6. DataContainer

Container that holds the actual in memory entries.

467

//https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/interceptors/AsyncInterceptor.html
//https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/interceptors/BaseCustomAsyncInterceptor.html

28.6.7. Configuration

A component detailing all of the configuration in this cache.

28.7. ComponentRegistry

A registry where the various managers above and components are created and stored for use in the
cache. All of the other managers and crucial componanets are accesible through the registry.

The registry itself is a lightweight dependency injection framework, allowing components and
managers to reference and initialise one another. Here is an example of a component declaring a
dependency on a DataContainer and a Configuration, and a DataContainerFactory declaring its
ability to construct DataContainers on the fly.

public void injectDependencies(DataContainer container, Configuration
configuration) {
this.container = container;
this.configuration = configuration;

}

@DefaultFactoryFor
public class DataContainerFactory extends AbstractNamedCacheComponentFactory {

Components registered with the ComponentRegistry may also have a lifecycle, and methods
annotated with @Start or @Stop will be invoked before and after they are used by the component

registry.

public void init() {
useliriteSkewCheck = configuration.locking().writeSkewCheck();

}

@Stop(priority=20)

public void stop() {
notifier.removelListener(listener);
executor.shutdownNow();

In the example above, the optional priority parameter to @Stop is used to indicate the order in
which the component is stopped, in relation to other components. This follows a Unix Sys-V style

468

ordering, where smaller priority methods are called before higher priority ones. The default
priority, if not specified, is 10.

469

	{brandname} 9.4 User Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. What is {brandname} ?
	1.2. Why use {brandname} ?
	1.2.1. As a local cache
	1.2.2. As a clustered cache
	1.2.3. As a clustering building block for your applications
	1.2.4. As a remote cache
	1.2.5. As a data grid
	1.2.6. As a geographical backup for your data

	Chapter 2. The Embedded CacheManager
	2.1. Configuration
	2.1.1. Configuring caches declaratively
	2.1.2. Configuring caches programmatically
	2.1.3. Configuration Migration Tools
	2.1.4. Clustered Configuration

	2.2. Obtaining caches
	2.3. Clustering Information
	2.3.1. Member Information
	2.3.2. Other methods

	Chapter 3. The Cache API
	3.1. The Cache interface
	3.1.1. Performance Concerns of Certain Map Methods
	3.1.2. Mortal and Immortal Data
	3.1.3. Expiration and Mortal Data
	3.1.4. putForExternalRead operation

	3.2. The AdvancedCache interface
	3.2.1. Flags
	3.2.2. Custom Interceptors

	3.3. Listeners and Notifications
	3.3.1. Cache-level notifications
	3.3.2. Cache manager-level notifications
	3.3.3. Synchronicity of events

	3.4. Asynchronous API
	3.4.1. Why use such an API?
	3.4.2. Which processes actually happen asynchronously?
	3.4.3. Notifying futures
	3.4.4. Further reading

	3.5. Invocation Flags
	3.5.1. Examples

	3.6. Tree API Module
	3.6.1. What is Tree API about?
	3.6.2. Using the Tree API
	3.6.3. Creating a Tree Cache
	3.6.4. Manipulating data in a Tree Cache
	3.6.5. Common Operations
	3.6.6. Locking in the Tree API
	3.6.7. Listeners for tree cache events

	3.7. Functional Map API
	3.7.1. Asynchronous and Lazy
	3.7.2. Function transparency
	3.7.3. Constructing Functional Maps
	3.7.4. Read-Only Map API
	3.7.5. Write-Only Map API
	3.7.6. Read-Write Map API
	3.7.7. Metadata Parameter Handling
	3.7.8. Invocation Parameter
	3.7.9. Functional Listeners
	3.7.10. Marshalling of Functions
	3.7.11. Use Cases for Functional API

	3.8. Encoding
	3.8.1. Overview
	3.8.2. Default encoders
	3.8.3. Overriding programmatically
	3.8.4. Defining custom Encoders
	3.8.5. MediaType

	Chapter 4. Eviction and Data Container
	4.1. Enabling Eviction
	4.1.1. Eviction strategy
	4.1.2. Eviction types
	4.1.3. Storage type
	4.1.4. More defaults

	4.2. Expiration
	4.2.1. Difference between Eviction and Expiration

	4.3. Expiration details
	4.3.1. Maximum Idle Expiration
	4.3.2. Configuration
	4.3.3. Memory Based Eviction Configuration
	4.3.4. Default values
	4.3.5. Using expiration

	4.4. Expiration designs

	Chapter 5. Persistence
	5.1. Configuration
	5.2. Cache Passivation
	5.2.1. Limitations
	5.2.2. Cache Loader Behavior with Passivation Disabled vs Enabled

	5.3. Cache Loaders and transactional caches
	5.4. Write-Through And Write-Behind Caching
	5.4.1. Write-Through (Synchronous)
	5.4.2. Write-Behind (Asynchronous)
	5.4.3. Segmented Stores

	5.5. Filesystem based cache stores
	5.5.1. Single File Store
	5.5.2. Soft-Index File Store

	5.6. JDBC String based Cache Store
	5.6.1. Connection management (pooling)
	5.6.2. Sample configurations

	5.7. Remote store
	5.7.1. Segmentation support
	5.7.2. Sample Usage

	5.8. Cluster cache loader
	5.9. Command-Line Interface cache loader
	5.10. RocksDB Cache Store
	5.10.1. Introduction
	5.10.2. Segmentation support
	5.10.3. Configuration
	5.10.4. Additional References

	5.11. LevelDB Cache Store
	5.12. JPA Cache Store
	5.12.1. Sample Usage
	5.12.2. Configuration
	5.12.3. Additional References

	5.13. Custom Cache Stores
	5.13.1. HotRod Deployment

	5.14. Store Migrator
	5.14.1. Migrating Cache Stores
	5.14.2. Store Migrator Properties

	5.15. SPI
	5.16. More implementations

	Chapter 6. Clustering
	6.1. Which cache mode should I use?
	6.2. Local Mode
	6.2.1. Simple Cache

	6.3. Invalidation Mode
	6.4. Replicated Mode
	6.5. Distribution Mode
	6.5.1. Read consistency
	6.5.2. Key Ownership
	6.5.3. Initial cluster size
	6.5.4. L1 Caching
	6.5.5. Server Hinting
	6.5.6. Key affinity service
	6.5.7. The Grouping API

	6.6. Scattered Mode
	6.7. Asynchronous Options
	6.7.1. Asynchronous Communications
	6.7.2. Asynchronous API
	6.7.3. Return Values

	6.8. Partition handling
	6.8.1. Split brain
	6.8.2. Successive nodes stopped
	6.8.3. Conflict Manager
	6.8.4. Usage
	6.8.5. Configuring partition handling
	6.8.6. Monitoring and administration

	Chapter 7. Marshalling
	7.1. The Role Of JBoss Marshalling
	7.2. Support For Non-Serializable Objects
	7.2.1. Store As Binary

	7.3. Advanced Configuration
	7.3.1. Troubleshooting

	7.4. User Defined Externalizers
	7.4.1. Benefits of Externalizers
	7.4.2. User Friendly Externalizers
	7.4.3. Advanced Externalizers

	Chapter 8. Transactions
	8.1. Configuring transactions
	8.2. Isolation levels
	8.3. Transaction locking
	8.3.1. Pessimistic transactional cache
	8.3.2. Optimistic transactional cache
	8.3.3. What do I need - pessimistic or optimistic transactions?

	8.4. Write Skews
	8.4.1. Forcing write locks on keys in pessimitic transactions

	8.5. Deadlock detection
	8.6. Dealing with exceptions
	8.7. Enlisting Synchronizations
	8.8. Batching
	8.8.1. API
	8.8.2. Batching and JTA

	8.9. Transaction recovery
	8.9.1. When to use recovery
	8.9.2. How does it work
	8.9.3. Configuring recovery
	8.9.4. Recovery cache
	8.9.5. Integration with the transaction manager
	8.9.6. Reconciliation
	8.9.7. Want to know more?

	8.10. Total Order based commit protocol
	8.10.1. Overview
	8.10.2. Configuration
	8.10.3. When to use it?

	Chapter 9. Locking and Concurrency
	9.1. Locking implementation details
	9.1.1. How does it work in clustered caches?
	9.1.2. Transactional caches
	9.1.3. Isolation levels
	9.1.4. The LockManager
	9.1.5. Lock striping
	9.1.6. Concurrency levels
	9.1.7. Lock timeout
	9.1.8. Consistency

	9.2. Data Versioning

	Chapter 10. Executing code in the Grid
	10.1. Cluster Executor
	10.1.1. Filtering execution nodes
	10.1.2. Timeout
	10.1.3. Single Node Submission
	10.1.4. Example: PI Approximation

	10.2. Streams
	10.2.1. Common stream operations
	10.2.2. Key filtering
	10.2.3. Segment based filtering
	10.2.4. Local/Invalidation
	10.2.5. Example

	10.3. Distribution/Replication/Scattered
	10.3.1. Rehash Aware
	10.3.2. Serialization
	10.3.3. Parallel Computation
	10.3.4. Task timeout
	10.3.5. Injection
	10.3.6. Distributed Stream execution
	10.3.7. Key based rehash aware operators
	10.3.8. Intermediate operation exceptions
	10.3.9. Examples

	10.4. Locked Streams
	10.5. Distributed Execution
	10.5.1. DistributedCallable API
	10.5.2. Callable and CDI
	10.5.3. DistributedExecutorService, DistributedTaskBuilder and DistributedTask API
	10.5.4. Distributed task failover
	10.5.5. Distributed task execution policy
	10.5.6. Examples

	Chapter 11. Indexing and Querying
	11.1. Overview
	11.2. Embedded Querying
	11.2.1. Quick example
	11.2.2. Indexing
	11.2.3. Querying APIs

	11.3. Remote Querying
	11.3.1. Storing Protobuf encoded entities
	11.3.2. Using annotations
	11.3.3. Indexing of Protobuf encoded entries
	11.3.4. A remote query example

	11.4. Statistics
	11.5. Performance Tuning
	11.5.1. Batch writing in SYNC mode
	11.5.2. Writing using async mode
	11.5.3. Index reader async strategy
	11.5.4. Lucene Options

	Chapter 12. Clustered Counters
	12.1. Installation and Configuration
	12.1.1. List counter names

	12.2. The CounterManager interface.
	12.2.1. Remove a counter via CounterManager

	12.3. The Counter
	12.3.1. The StrongCounter interface: when the consistency or bounds matters.
	12.3.2. The WeakCounter interface: when speed is needed

	12.4. Notifications and Events

	Chapter 13. Clustered Lock
	13.1. Installation
	13.2. ClusteredLock Configuration
	13.2.1. Ownership
	13.2.2. Reentrancy

	13.3. ClusteredLockManager Interface
	13.4. ClusteredLock Interface
	13.4.1. Usage Examples

	13.5. ClusteredLockManager Configuration

	Chapter 14. Multimap Cache
	14.1. Installation and configuration
	14.2. MultimapCache API
	14.2.1. CompletableFuture<Void> put(K key, V value)
	14.2.2. CompletableFuture<Collection<V>> get(K key)
	14.2.3. CompletableFuture<Boolean> remove(K key)
	14.2.4. CompletableFuture<Boolean> remove(K key, V value)
	14.2.5. CompletableFuture<Void> remove(Predicate<? super V> p)
	14.2.6. CompletableFuture<Boolean> containsKey(K key)
	14.2.7. CompletableFuture<Boolean> containsValue(V value)
	14.2.8. CompletableFuture<Boolean> containsEntry(K key, V value)
	14.2.9. CompletableFuture<Long> size()
	14.2.10. boolean supportsDuplicates()

	14.3. Creating a Multimap Cache
	14.3.1. Embedded mode
	14.3.2. Server mode

	14.4. Limitations
	14.4.1. Support for duplicates
	14.4.2. Eviction
	14.4.3. Transactions

	Chapter 15. CDI Support
	15.1. Maven Dependencies
	15.2. Embedded cache integration
	15.2.1. Inject an embedded cache
	15.2.2. Override the default embedded cache manager and configuration
	15.2.3. Configure the transport for clustered use

	15.3. Remote cache integration
	15.3.1. Inject a remote cache
	15.3.2. Override the default remote cache manager

	15.4. Use a custom remote/embedded cache manager for one or more cache
	15.5. Use JCache caching annotations
	15.6. Use Cache events and CDI

	Chapter 16. JCache (JSR-107) provider
	16.1. Dependencies
	16.2. Create a local cache
	16.3. Create a remote cache
	16.4. Store and retrieve data
	16.5. Comparing java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs
	16.6. Clustering JCache instances

	Chapter 17. Management Tooling
	17.1. JMX
	17.1.1. Understanding The Exposed MBeans
	17.1.2. Enabling JMX Statistics
	17.1.3. Monitoring cluster health
	17.1.4. Multiple JMX Domains
	17.1.5. Registering MBeans In Non-Default MBean Servers
	17.1.6. Available MBeans

	17.2. Command-Line Interface (CLI)
	17.2.1. Commands
	17.2.2. upgrade
	17.2.3. version
	17.2.4. Data Types
	17.2.5. Time Values

	17.3. Hawt.io
	17.4. Writing plugins for other management tools

	Chapter 18. Custom Interceptors
	18.1. Adding custom interceptors declaratively
	18.2. Adding custom interceptors programatically
	18.3. Custom interceptor design

	Chapter 19. Running on Cloud Services
	19.1. Generic Discovery protocols
	19.1.1. TCPPing
	19.1.2. GossipRouter

	19.2. Amazon Web Services
	19.2.1. S3_PING
	19.2.2. JDBC_PING

	19.3. Microsoft Azure
	19.3.1. AZURE_PING

	19.4. Google Compute Engine
	19.4.1. GOOGLE_PING

	19.5. Kubernetes and OpenShift
	19.5.1. Using Kubernetes and OpenShift Rolling Updates
	19.5.2. Rolling upgrades with Kubernetes and OpenShift

	Chapter 20. Client/Server
	20.1. Why Client/Server?
	20.2. Why use embedded mode?
	20.3. Server Modules
	20.4. Which protocol should I use?
	20.5. Using Hot Rod Server
	20.6. Hot Rod Protocol
	20.6.1. Hot Rod Protocol 1.0
	20.6.2. Hot Rod Protocol 1.1
	20.6.3. Hot Rod Protocol 1.2
	20.6.4. Hot Rod Protocol 1.3
	20.6.5. Hot Rod Protocol 2.0
	20.6.6. Hot Rod Protocol 2.1
	20.6.7. Hot Rod Protocol 2.2
	20.6.8. Hot Rod Protocol 2.3
	20.6.9. Hot Rod Protocol 2.4
	20.6.10. Hot Rod Protocol 2.5
	20.6.11. Hot Rod Protocol 2.6
	20.6.12. Hot Rod Protocol 2.7
	20.6.13. Hot Rod Protocol 2.8
	20.6.14. Hot Rod Protocol 2.9
	20.6.15. Hot Rod Hash Functions
	20.6.16. Hot Rod Admin Tasks

	20.7. Java Hot Rod client
	20.7.1. Configuration
	20.7.2. Authentication
	20.7.3. Encryption
	20.7.4. Basic API
	20.7.5. RemoteCache(.keySet|.entrySet|.values)
	20.7.6. Remote Iterator
	20.7.7. Versioned API
	20.7.8. Async API
	20.7.9. Streaming API
	20.7.10. Creating Event Listeners
	20.7.11. Removing Event Listeners
	20.7.12. Filtering Events
	20.7.13. Customizing Events
	20.7.14. Filter and Custom Events
	20.7.15. Event Marshalling
	20.7.16. Listener State Handling
	20.7.17. Listener Failure Handling
	20.7.18. Near Caching
	20.7.19. Unsupported methods
	20.7.20. Return values
	20.7.21. Hot Rod Transactions
	20.7.22. Client Intelligence
	20.7.23. Request Balancing
	20.7.24. Persistent connections
	20.7.25. Marshalling data
	20.7.26. Reading data in different data formats
	20.7.27. Statistics
	20.7.28. Multi-Get Operations
	20.7.29. Failover capabilities
	20.7.30. Site Cluster Failover
	20.7.31. Manual Site Cluster Switch
	20.7.32. Monitoring the Hot Rod client
	20.7.33. Concurrent Updates
	20.7.34. Javadocs

	20.8. REST Server
	20.8.1. Running the REST server
	20.8.2. Supported protocols
	20.8.3. REST API
	20.8.4. CORS
	20.8.5. Client side code

	20.9. Memcached Server
	20.9.1. Client Encoding
	20.9.2. Command Clarifications
	20.9.3. Unsupported Features
	20.9.4. Talking To {brandname} Memcached Servers From Non-Java Clients

	20.10. Executing code in the Remote Grid
	20.11. Scripting
	20.11.1. Installing scripts
	20.11.2. Script metadata
	20.11.3. Script bindings
	20.11.4. Script parameters
	20.11.5. Running Scripts using the Hot Rod Java client
	20.11.6. Distributed execution

	20.12. Server Tasks

	Chapter 21. Compatibility Mode
	21.1. Enable Compatibility Mode
	21.1.1. Optional: Configuring Compatibility Marshaller

	21.2. Code examples

	Chapter 22. Protocol Interoperability
	22.1. Considerations with Media Types and Endpoint Interoperability
	22.2. REST, Hot Rod, and Memcached Interoperability with Text-Based Storage
	22.3. REST, Hot Rod, and Memcached Interoperability with Custom Java Objects
	22.4. Java and Non-Java Client Interoperability with Protobuf
	22.5. Custom Code Interoperability
	22.5.1. Converting Data On Demand
	22.5.2. Storing Data as POJOs

	22.6. Deploying Entity Classes
	22.7. Trying the Interoperability Demo

	Chapter 23. Security
	23.1. Embedded Security
	23.1.1. Embedded Permissions
	23.1.2. Embedded API
	23.1.3. Embedded Configuration

	23.2. Security Audit
	23.3. Cluster security

	Chapter 24. Integrations
	24.1. Apache Spark
	24.2. Apache Hadoop
	24.3. Apache Lucene
	24.3.1. Lucene compatibility
	24.3.2. Maven dependencies
	24.3.3. How to use it
	24.3.4. Configuration
	24.3.5. Using a CacheLoader
	24.3.6. Storing the index in a database
	24.3.7. Loading an existing Lucene Index
	24.3.8. Architectural limitations
	24.3.9. Suggestions for optimal performance
	24.3.10. Demo
	24.3.11. Additional Links

	24.4. Directory Provider for Hibernate Search
	24.4.1. Maven dependencies
	24.4.2. How to use it
	24.4.3. Configuration
	24.4.4. Architecture considerations

	24.5. JPA/Hibernate 2L Cache
	24.5.1. Deployment Scenarios
	24.5.2. Configuration Reference
	24.5.3. Cache Strategies
	24.5.4. Using minimal puts

	24.6. JPA / Hibernate OGM
	24.7. Using {brandname} with Spring
	24.7.1. Spring Boot Starter
	24.7.2. Setting Up {brandname} as a Spring Cache Provider
	24.7.3. Adding Caching to Your Application
	24.7.4. Configuring Timeouts for Cache Operations
	24.7.5. Externalizing Sessions Using Spring Session

	24.8. {brandname} modules for WildFly / EAP
	24.8.1. Installation
	24.8.2. Application Dependencies
	24.8.3. Usage
	24.8.4. Troubleshooting

	Chapter 25. Grid File System
	25.1. WebDAV demo

	Chapter 26. Cross site replication
	26.1. Sample deployment
	26.1.1. Local cluster’s jgroups .xml configuration
	26.1.2. RELAY2 configuration file

	26.2. Data replication
	26.2.1. Non transactional caches
	26.2.2. Transactional caches

	26.3. Taking a site offline
	26.3.1. Configuration
	26.3.2. Bringing Sites Back Online

	26.4. Pushing State Transfer to Sites
	26.4.1. Handling join/leave nodes
	26.4.2. Handling broken link between sites
	26.4.3. System Administrator Operations
	26.4.4. Configuration

	26.5. Reference

	Chapter 27. Performing Rolling Upgrades
	27.1. Setting Up a Target Cluster
	27.2. Synchronizing Data from the Source Cluster
	27.3. Custom Commands
	27.3.1. An Example
	27.3.2. Preassigned Custom Command Id Ranges

	27.4. Extending the configuration builders and parsers

	Chapter 28. Architectural Overview
	28.1. Cache hierarchy
	28.2. Commands
	28.3. Visitors
	28.4. Interceptors
	28.5. Putting it all together
	28.6. Subsystem Managers
	28.6.1. DistributionManager
	28.6.2. TransactionManager
	28.6.3. RpcManager
	28.6.4. LockManager
	28.6.5. PersistenceManager
	28.6.6. DataContainer
	28.6.7. Configuration

	28.7. ComponentRegistry

