
JBoss Cache User Guide

2

A clustered,

transactional cache

Authors
Manik Surtani

Bela Ban

Ben Wang

Brian Stansberry

Galder Zamarreño

Daniel Huang

Mircea Markus
ISBN:

Publication date: May 2008

JBoss Cache User Guide

JBoss Cache User Guide: A clustered, transactional cache:

Authors
by Manik Surtani, Bela Ban, Ben Wang, Brian Stansberry, Galder Zamarreño, Daniel Huang,

and Mircea Markus

Copyright © 2004, 2005, 2006, 2007, 2008 JBoss, a division of Red Hat Inc.

JBoss Cache User Guide

v

Preface ... ix

I. Introduction to JBoss Cache ... 1

1. Overview ... 3

1. What is JBoss Cache? .. 3

1.1. And what is Pojo Cache? .. 3

2. Summary of Features .. 3

3. Requirements ... 4

4. License ... 5

2. User API ... 7

1. API Classes .. 7

2. Instantiating and Starting the Cache ... 7

3. Caching and Retrieving Data .. 8

4. The Fqn Class ... 9

5. Stopping and Destroying the Cache .. 10

6. Cache Modes .. 11

7. Adding a Cache Listener - registering for cache events 12

8. Using Cache Loaders .. 14

9. Using Eviction Policies ... 15

3. Configuration ... 17

1. Configuration Overview .. 17

2. Creating a Configuration .. 17

2.1. Parsing an XML-based Configuration File 17

2.2. Programmatic Configuration ... 19

2.3. Using an IOC Framework .. 20

3. Composition of a Configuration Object 20

4. Dynamic Reconfiguration .. 21

5. Overriding the Configuration Via the Option API 21

4. Deploying JBoss Cache ... 23

1. Standalone Use / Programatic Deployment 23

2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.x) 23

3. Via JBoss Microcontainer (JBoss AS 5.x) 24

4. Binding to JNDI in JBoss AS .. 27

5. Runtime Management Information ... 28

5.1. JBoss Cache MBeans ... 28

5.2. Registering the CacheJmxWrapper with the MBeanServer

.. 29

5.2.1. Programatic Registration ... 29

5.2.2. JMX-Based Deployment in JBoss AS (JBoss AS

4.x and 5.x) ... 30

5.2.3. Via JBoss Microcontainer (JBoss AS 5.x) 30

5.3. JBoss Cache Statistics .. 32

5.4. Receiving JMX Notifications ... 33

5.5. Accessing Cache MBeans in a Standalone Environment 35

5. Version Compatibility and Interoperability .. 37

JBoss Cache User Guide

vi

1. Compatibility Matrix .. 37

II. JBoss Cache Architecture .. 39

6. Architecture ... 41

1. Data Structures Within The Cache .. 41

2. SPI Interfaces .. 41

3. Method Invocations On Nodes .. 42

3.1. Interceptors ... 42

3.1.1. Writing Custom Interceptors 43

3.2. MethodCalls .. 43

3.3. InvocationContexts .. 43

4. Managers For Subsystems ... 43

4.1. RpcManager ... 43

4.2. BuddyManager .. 44

4.3. CacheLoaderManager ... 44

5. Marshalling And Wire Formats .. 44

5.1. The Marshaller Interface .. 44

5.2. VersionAwareMarshaller .. 44

5.2.1. CacheLoaders .. 45

5.3. CacheMarshaller200 .. 45

6. Class Loading and Regions .. 45

7. Clustering .. 47

1. Cache Replication Modes ... 47

1.1. Local Mode ... 47

1.2. Replicated Caches .. 47

1.2.1. Replicated Caches and Transactions 47

1.2.2. Buddy Replication .. 48

2. Invalidation .. 52

3. State Transfer ... 52

3.1. State Transfer Types ... 52

3.2. Byte array and streaming based state transfer 52

3.3. Full and partial state transfer ... 53

3.4. Transient ("in-memory") and persistent state transfer 54

3.5. Configuring State Transfer ... 55

8. Cache Loaders .. 57

1. The CacheLoader Interface and Lifecycle 57

2. Configuration ... 58

2.1. Singleton Store Configuration ... 61

3. Shipped Implementations ... 62

3.1. File system based cache loaders 62

3.2. Cache loaders that delegate to other caches 63

3.3. JDBCCacheLoader .. 63

3.3.1. JDBCCacheLoader configuration 64

3.4. S3CacheLoader .. 67

3.4.1. Amazon S3 Library ... 68

vii

3.4.2. Configuration .. 68

3.5. TcpDelegatingCacheLoader ... 69

3.6. Transforming Cache Loaders ... 70

4. Cache Passivation ... 71

4.1. Cache Loader Behavior with Passivation Disabled vs.

Enabled ... 72

5. Strategies .. 73

5.1. Local Cache With Store ... 73

5.2. Replicated Caches With All Caches Sharing The Same

Store ... 73

5.3. Replicated Caches With Only One Cache Having A Store 74

5.4. Replicated Caches With Each Cache Having Its Own Store

.. 74

5.5. Hierarchical Caches .. 75

5.6. Multiple Cache Loaders ... 75

9. Eviction Policies ... 77

1. Configuring Eviction Policies ... 77

1.1. Basic Configuration ... 77

1.2. Eviction Regions ... 78

1.2.1. Overlapping Eviction Regions 78

1.3. Resident Nodes .. 79

1.4. Programmatic Configuration ... 79

2. Shipped Eviction Policies ... 80

2.1. LRUPolicy - Least Recently Used 80

2.2. FIFOPolicy - First In, First Out ... 80

2.3. MRUPolicy - Most Recently Used 81

2.4. LFUPolicy - Least Frequently Used 81

2.5. ExpirationPolicy ... 81

2.6. ElementSizePolicy - Eviction based on number of

key/value pairs in a node ... 82

3. Writing Your Own Eviction Policies ... 83

3.1. Eviction Policy Plugin Design ... 83

3.2. Interfaces to implement ... 83

10. Transactions and Concurrency ... 85

1. Concurrent Access ... 85

1.1. Locks ... 85

1.2. Pessimistic locking .. 85

1.2.1. Isolation levels ... 86

1.2.2. Insertion and Removal of Nodes 87

1.3. Optimistic Locking ... 87

1.3.1. Architecture .. 87

1.3.2. Data Versioning .. 88

1.3.3. Configuration .. 88

2. Transactional Support .. 89

JBoss Cache User Guide

viii

III. JBoss Cache Configuration References ... 91

11. Configuration References ... 93

1. Sample XML Configuration File .. 93

2. Reference table of XML attributes .. 97

12. JMX References .. 103

1. JBoss Cache Statistics ... 103

2. JMX MBean Notifications .. 105

ix

Preface

This is the official JBoss Cache user guide. Along with its accompanying documents

(an FAQ, a tutorial and a whole set of documents on PojoCache), this is freely

available on the JBoss Cache documentation site. [http://labs.jboss.com/jbosscache]

When used, JBoss Cache refers to JBoss Cache Core, a tree-structured, clustered,

transactional cache. Pojo Cache, also a part of the JBoss Cache distribution, is

documented separately. (Pojo Cache is a cache that deals with Plain Old Java

Objects, complete with object relationships, with the ability to cluster such pojos while

maintaining their relationships. Please see the Pojo Cache documentation for more

information about this.)

This book is targeted at both developers wishing to use JBoss Cache as a clustering

and caching library in their codebase, as well as people who wish to "OEM" JBoss

Cache by building on and extending its features. As such, this book is split into two

major sections - one detailing the "User" API and the other going much deeper into

specialist topics and the JBoss Cache architecture.

In general, a good knowledge of the Java programming language along with a strong

appreciation and understanding of transactions and concurrent threads is necessary.

No prior knowledge of JBoss Application Server is expected or required.

For further discussion, use the user forum

[http://jboss.org/index.html?module=bb&op=main&c=29] linked on the JBoss

Cache website. [http://labs.jboss.com/jbosscache] We also provide a mechanism

for tracking bug reports and feature requests on the JBoss Cache JIRA issue

tracker. [http://jira.jboss.com/jira/browse/JBCACHE] If you are interested

in the development of JBoss Cache or in translating this documentation

into other languages, we'd love to hear from you. Please post a message

on the user forum [http://jboss.org/index.html?module=bb&op=main&c=29]

or contact us by using the JBoss Cache developer mailing list.

[https://lists.jboss.org/mailman/listinfo/jbosscache-dev]

This book is specifically targeted at the JBoss Cache release of the same version

number. It may not apply to older or newer releases of JBoss Cache. It is important

that you use the documentation appropriate to the version of JBoss Cache you

intend to use.

http://labs.jboss.com/jbosscache
http://labs.jboss.com/jbosscache
http://jboss.org/index.html?module=bb&op=main&c=29
http://jboss.org/index.html?module=bb&op=main&c=29
http://labs.jboss.com/jbosscache
http://labs.jboss.com/jbosscache
http://jira.jboss.com/jira/browse/JBCACHE
http://jira.jboss.com/jira/browse/JBCACHE
http://jira.jboss.com/jira/browse/JBCACHE
http://jboss.org/index.html?module=bb&op=main&c=29
http://jboss.org/index.html?module=bb&op=main&c=29
https://lists.jboss.org/mailman/listinfo/jbosscache-dev
https://lists.jboss.org/mailman/listinfo/jbosscache-dev

x

Part I. Introduction to JBoss Cache
This section covers what developers would need to quickly start using JBoss Cache in

their projects. It covers an overview of the concepts and API, configuration and deployment

information.

Chapter 1.

3

Overview

1. What is JBoss Cache?

JBoss Cache is a tree-structured, clustered, transactional cache. It is the backbone

for many fundamental JBoss Application Server clustering services, including - in

certain versions - clustering JNDI, HTTP and EJB sessions.

JBoss Cache can also be used as a standalone transactional and clustered caching

library or even an object oriented data store. It can even be embedded in other

enterprise Java frameworks and application servers such as BEA WebLogic or

IBM WebSphere, Tomcat, Spring, Hibernate, and many others. It is also very

commonly used directly by standalone Java applications that do not run from within

an application server, to maintain clustered state.

1.1. And what is Pojo Cache?

Pojo Cache is an extension of the core JBoss Cache API. Pojo Cache offers

additional functionality such as:

• maintaining object references even after replication or persistence.

• fine grained replication, where only modified object fields are replicated.

• "API-less" clustering model where pojos are simply annotated as being clustered.

Pojo Cache has a complete and separate set of documentation, including a user

guide, FAQ and tutorial and as such, Pojo Cache is not discussed further in this

book.

2. Summary of Features

JBoss Cache offers a simple and straightforward API, where data (simple Java

objects) can be placed in the cache and, based on configuration options selected,

this data may be one or all of:

• replicated to some or all cache instances in a cluster.

• persisted to disk and/or a remote cluster ("far-cache").

• garbage collected from memory when memory runs low, and passivated to disk so

state isn't lost.

In addition, JBoss Cache offers a rich set of enterprise-class features:

• being able to participate in JTA transactions (works with Java EE compliant

TransactionManagers).

Chapter 1. Overview

4

• attach to JMX servers and provide runtime statistics on the state of the cache.

• allow client code to attach listeners and receive notifications on cache events.

A cache is organised as a tree, with a single root. Each node in the tree essentially

contains a Map, which acts as a store for key/value pairs. The only requirement

placed on objects that are cached is that they implement java.io.Serializable .

Note that this requirement does not exist for Pojo Cache.

JBoss Cache can be either local or replicated. Local trees exist only inside the JVM

in which they are created, whereas replicated trees propagate any changes to some

or all other trees in the same cluster. A cluster may span different hosts on a network

or just different JVMs on a single host.

When a change is made to an object in the cache and that change is done in the

context of a transaction, the replication of changes is deferred until the transaction

commits successfully. All modifications are kept in a list associated with the

transaction for the caller. When the transaction commits, we replicate the changes.

Otherwise, (on a rollback) we simply undo the changes locally resulting in zero

network traffic and overhead. For example, if a caller makes 100 modifications and

then rolls back the transaction, we will not replicate anything, resulting in no network

traffic.

If a caller has no transaction associated with it (and isolation level is not NONE -

more about this later), we will replicate right after each modification, e.g. in the above

case we would send 100 messages, plus an additional message for the rollback.

In this sense, running without a transaction can be thought of as analogous as

running with auto-commit switched on in JDBC terminology, where each operation is

committed automatically.

JBoss Cache works out of the box with most popular transaction managers, and

even provides an API where custom transaction manager lookups can be written.

The cache is also completely thread-safe. It uses a pessimistic locking scheme for

nodes in the tree by default, with an optimistic locking scheme as a configurable

option. With pessimistic locking, the degree of concurrency can be tuned using a

number of isolation levels, corresponding to database-style transaction isolation

levels, i.e., SERIALIZABLE, REPEATABLE_READ, READ_COMMITTED,

READ_UNCOMMITTED and NONE. Concurrency, locking and isolation levels will be

discussed later.

3. Requirements

JBoss Cache requires Java 5.0 (or newer).

However, there is a way to build JBoss Cache as a Java 1.4.x compatible

binary using JBossRetro [http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossRetro]

to retroweave the Java 5.0 binaries. However, Red Hat Inc. does not offer

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossRetro
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossRetro

License

5

professional support around the retroweaved binary at this time and the

Java 1.4.x compatible binary is not in the binary distribution. See this wiki

[http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHabaneroJava1.4] page for

details on building the retroweaved binary for yourself.

In addition to Java 5.0, at a minimum, JBoss Cache has dependencies

on JGroups [http://www.jgroups.org] , and Apache's commons-logging

[http://jakarta.apache.org/commons/logging/] . JBoss Cache ships with all dependent

libraries necessary to run out of the box.

4. License

JBoss Cache is an open source product, using the business and

OEM-friendly OSI-approved [http://www.opensource.org/] LGPL license.

[http://www.gnu.org/copyleft/lesser.html] Commercial development support,

production support and training for JBoss Cache is available through JBoss, a

division of Red Hat Inc. [http://www.jboss.com] JBoss Cache is a part of JBoss

Professional Open Source JEMS [http://www.jboss.comindex] (JBoss Enterprise

Middleware Suite).

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHabaneroJava1.4
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHabaneroJava1.4
http://www.jgroups.org
http://www.jgroups.org
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/logging/
http://www.opensource.org/
http://www.opensource.org/
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
http://www.jboss.com
http://www.jboss.com
http://www.jboss.com
http://www.jboss.comindex
http://www.jboss.comindex

6

Chapter 2.

7

User API

1. API Classes

The Cache interface is the primary mechanism for interacting with JBoss Cache. It

is constructed and optionally started using the CacheFactory . The CacheFactory

allows you to create a Cache either from a Configuration object or an XML file.

Once you have a reference to a Cache , you can use it to look up Node objects in the

tree structure, and store data in the tree.

Reviewing the javadoc for the above interfaces is the best way to learn the API.

Below we cover some of the main points.

2. Instantiating and Starting the Cache

An instance of the Cache interface can only be created via a CacheFactory . (This

is unlike JBoss Cache 1.x, where an instance of the old TreeCache class could be

directly instantiated.)

CacheFactory provides a number of overloaded methods for creating a Cache , but

they all do the same thing:

• Gain access to a Configuration , either by having one passed in as a method

parameter, or by parsing XML content and constructing one. The XML content can

come from a provided input stream or from a classpath or filesystem location. See

the chapter on Configuration for more on obtaining a Configuration .

• Instantiate the Cache and provide it with a reference to the Configuration .

• Optionally invoke the cache's create() and start() methods.

An example of the simplest mechanism for creating and starting a cache, using the

default configuration values:

 CacheFactory factory = new DefaultCacheFactory();

 Cache cache = factory.createCache();

Here we tell the CacheFactory to find and parse a configuration file on the classpath:

 CacheFactory factory = new DefaultCacheFactory();

Chapter 2. User API

8

 Cache cache = factory.createCache("cache-configuration.xml");

Here we configure the cache from a file, but want to programatically change a

configuration element. So, we tell the factory not to start the cache, and instead do it

ourselves:

 CacheFactory factory = new DefaultCacheFactory();

 Cache cache = factory.createCache("cache-configuration.xml",

 false);

 Configuration config = cache.getConfiguration();

 config.setClusterName(this.getClusterName());

 // Have to create and start cache before using it

 cache.create();

 cache.start();

3. Caching and Retrieving Data

Next, let's use the Cache API to access a Node in the cache and then do some simple

reads and writes to that node.

 // Let's get ahold of the root node.

 Node rootNode = cache.getRoot();

 // Remember, JBoss Cache stores data in a tree structure.

 // All nodes in the tree structure are identified by Fqn

 objects.

 Fqn peterGriffinFqn = Fqn.fromString("/griffin/peter");

 // Create a new Node

 Node peterGriffin = rootNode.addChild(peterGriffinFqn);

 // let's store some data in the node

 peterGriffin.put("isCartoonCharacter", Boolean.TRUE);

 peterGriffin.put("favouriteDrink", new Beer());

 // some tests (just assume this code is in a JUnit test case)

 assertTrue(peterGriffin.get("isCartoonCharacter"));

 assertEquals(peterGriffinFqn, peterGriffin.getFqn());

 assertTrue(rootNode.hasChild(peterGriffinFqn));

 Set keys = new HashSet();

 keys.add("isCartoonCharacter");

 keys.add("favouriteDrink");

The Fqn Class

9

 assertEquals(keys, peterGriffin.getKeys());

 // let's remove some data from the node

 peterGriffin.remove("favouriteDrink");

 assertNull(peterGriffin.get("favouriteDrink");

 // let's remove the node altogether

 rootNode.removeChild(peterGriffinFqn);

 assertFalse(rootNode.hasChild(peterGriffinFqn));

The Cache interface also exposes put/get/remove operations that take an Fqn as an

argument:

 Fqn peterGriffinFqn = Fqn.fromString("/griffin/peter");

 cache.put(peterGriffinFqn, "isCartoonCharacter", Boolean.TRUE);

 cache.put(peterGriffinFqn, "favouriteDrink", new Beer());

 assertTrue(peterGriffin.get(peterGriffinFqn,

 "isCartoonCharacter"));

 assertTrue(cache.getRootNode().hasChild(peterGriffinFqn));

 cache.remove(peterGriffinFqn, "favouriteDrink");

 assertNull(cache.get(peterGriffinFqn, "favouriteDrink");

 cache.removeNode(peterGriffinFqn);

 assertFalse(cache.getRootNode().hasChild(peterGriffinFqn));

4. The Fqn Class

The previous section used the Fqn class in its examples; now let's learn a bit more

about that class.

A Fully Qualified Name (Fqn) encapsulates a list of names which represent a path to

a particular location in the cache's tree structure. The elements in the list are typically

String s but can be any Object or a mix of different types.

This path can be absolute (i.e., relative to the root node), or relative to any node in

the cache. Reading the documentation on each API call that makes use of Fqn will

tell you whether the API expects a relative or absolute Fqn .

Chapter 2. User API

10

The Fqn class provides are variety of constructors; see the javadoc for all the

possibilities. The following illustrates the most commonly used approaches to

creating an Fqn:

 // Create an Fqn pointing to node 'Joe' under parent node

 'Smith'

 // under the 'people' section of the tree

 // Parse it from a String

 Fqn<String> abc = Fqn.fromString("/people/Smith/Joe/");

 // Build it directly. Marginally more efficient to construct

 than parsing

 String[] strings = new String[] { "people", "Smith", "Joe" };

 Fqn<String> abc = new Fqn<String>(strings);

 // Here we want to use types other than String

 Object[] objs = new Object[]{ "accounts", "NY", new

 Integer(12345) };

 Fqn<Object> acctFqn = new Fqn<Object>(objs);

Note that

Fqn<String> f = new Fqn<String>("/a/b/c");

is not the same as

Fqn<String> f = Fqn.fromString("/a/b/c");

The former will result in an Fqn with a single element, called "/a/b/c" which hangs

directly under the cache root. The latter will result in a 3 element Fqn, where "c"

idicates a child of "b", which is a child of "a", and "a" hangs off the cache root.

Another way to look at it is that the "/" separarator is only parsed when it forms part

of a String passed in to Fqn.fromString() and not otherwise.

The JBoss Cache API in the 1.x releases included many overloaded convenience

methods that took a string in the /a/b/c format in place of an Fqn . In the interests of

API simplicity, no such convenience methods are available in the JBC 2.x API.

5. Stopping and Destroying the Cache

It is good practice to stop and destroy your cache when you are done using it,

particularly if it is a clustered cache and has thus used a JGroups channel. Stopping

and destroying a cache ensures resources like the JGroups channel are properly

cleaned up.

Cache Modes

11

 cache.stop();

 cache.destroy();

Not also that a cache that has had stop() invoked on it can be started again with a

new call to start() . Similarly, a cache that has had destroy() invoked on it can

be created again with a new call to create() (and then started again with a start()

call).

6. Cache Modes

Although technically not part of the API, the mode in which the cache is configured

to operate affects the cluster-wide behavior of any put or remove operation, so we'll

briefly mention the various modes here.

JBoss Cache modes are denoted by the

org.jboss.cache.config.Configuration.CacheMode enumeration. They consist

of:

• LOCAL - local, non-clustered cache. Local caches don't join a cluster and don't

communicate with other caches in a cluster. Therefore their contents don't need to

be Serializable; however, we recommend making them Serializable, allowing you

the flexibility to change the cache mode at any time.

• REPL_SYNC - synchronous replication. Replicated caches replicate all changes to

the other caches in the cluster. Synchronous replication means that changes are

replicated and the caller blocks until replication acknowledgements are received.

• REPL_ASYNC - asynchronous replication. Similar to REPL_SYNC above,

replicated caches replicate all changes to the other caches in the cluster. Being

asynchronous, the caller does not block until replication acknowledgements are

received.

• INVALIDATION_SYNC - if a cache is configured for invalidation rather than

replication, every time data is changed in a cache other caches in the cluster

receive a message informing them that their data is now stale and should be

evicted from memory. This reduces replication overhead while still being able to

invalidate stale data on remote caches.

• INVALIDATION_ASYNC - as above, except this invalidation mode causes

invalidation messages to be broadcast asynchronously.

See the chapter on Clustering for more details on how the cache's mode affects

behavior. See the chapter on Configuration for info on how to configure things like

the cache's mode.

Chapter 2. User API

12

7. Adding a Cache Listener - registering for cache

events

JBoss Cache provides a convenient mechanism for registering notifications on cache

events.

 Object myListener = new MyCacheListener();

 cache.addCacheListener(myListener);

Similar methods exist for removing or querying registered listeners. See the javadocs

on the Cache interface for more details.

Basically any public class can be used as a listener, provided it is annotated

with the @CacheListener annotation. In addition, the class needs to have one

or more methods annotated with one of the method-level annotations (in the

org.jboss.cache.notifications.annotation package). Methods annotated as

such need to be public, have a void return type, and accept a single parameter of

type org.jboss.cache.notifications.event.Event or one of its subtypes.

• @CacheStarted - methods annotated such receive a notification when the cache

is started. Methods need to accept a parameter type which is assignable from

CacheStartedEvent .

• @CacheStopped - methods annotated such receive a notification when the cache

is stopped. Methods need to accept a parameter type which is assignable from

CacheStoppedEvent .

• @NodeCreated - methods annotated such receive a notification when a node

is created. Methods need to accept a parameter type which is assignable from

NodeCreatedEvent .

• @NodeRemoved - methods annotated such receive a notification when a node is

removed. Methods need to accept a parameter type which is assignable from

NodeRemovedEvent .

• @NodeModified - methods annotated such receive a notification when a node

is modified. Methods need to accept a parameter type which is assignable from

NodeModifiedEvent .

• @NodeMoved - methods annotated such receive a notification when a node is

moved. Methods need to accept a parameter type which is assignable from

NodeMovedEvent .

• @NodeVisited - methods annotated such receive a notification when a node

is started. Methods need to accept a parameter type which is assignable from

NodeVisitedEvent .

Adding a Cache Listener - registering for cache

events

13

• @NodeLoaded - methods annotated such receive a notification when a node is

loaded from a CacheLoader . Methods need to accept a parameter type which is

assignable from NodeLoadedEvent .

• @NodeEvicted - methods annotated such receive a notification when a node

is evicted from memory. Methods need to accept a parameter type which is

assignable from NodeEvictedEvent .

• @NodeActivated - methods annotated such receive a notification when a node

is activated. Methods need to accept a parameter type which is assignable from

NodeActivatedEvent .

• @NodePassivated - methods annotated such receive a notification when a node

is passivated. Methods need to accept a parameter type which is assignable from

NodePassivatedEvent .

• @TransactionRegistered - methods annotated such receive a notification

when the cache registers a javax.transaction.Synchronization with a

registered transaction manager. Methods need to accept a parameter type which

is assignable from TransactionRegisteredEvent .

• @TransactionCompleted - methods annotated such receive a notification

when the cache receives a commit or rollback call from a registered transaction

manager. Methods need to accept a parameter type which is assignable from

TransactionCompletedEvent .

• @ViewChanged - methods annotated such receive a notification when the group

structure of the cluster changes. Methods need to accept a parameter type which

is assignable from ViewChangedEvent .

• @CacheBlocked - methods annotated such receive a notification when the cluster

requests that cache operations are blocked for a state transfer event. Methods

need to accept a parameter type which is assignable from CacheBlockedEvent .

• @CacheUnblocked - methods annotated such receive a notification when the

cluster requests that cache operations are unblocked after a state transfer

event. Methods need to accept a parameter type which is assignable from

CacheUnblockedEvent .

Refer to the javadocs on the annotations as well as the Event subtypes for details of

what is passed in to your method, and when.

Example:

 @CacheListener

 public class MyListener

 {

Chapter 2. User API

14

 @CacheStarted

 @CacheStopped

 public void cacheStartStopEvent(Event e)

 {

 switch (e.getType())

 {

 case Event.Type.CACHE_STARTED:

 System.out.println("Cache has started");

 break;

 case Event.Type.CACHE_STOPPED:

 System.out.println("Cache has stopped");

 break;

 }

 }

 @NodeCreated

 @NodeRemoved

 @NodeVisited

 @NodeModified

 @NodeMoved

 public void logNodeEvent(NodeEvent ne)

 {

 log("An event on node " + ne.getFqn() + " has occured");

 }

 }

8. Using Cache Loaders

Cache loaders are an important part of JBoss Cache. They allow persistence of

nodes to disk or to remote cache clusters, and allow for passivation when caches

run out of memory. In addition, cache loaders allow JBoss Cache to perform 'warm

starts', where in-memory state can be preloaded from persistent storage. JBoss

Cache ships with a number of cache loader implementations.

• org.jboss.cache.loader.FileCacheLoader - a basic, filesystem based cache

loader that persists data to disk. Non-transactional and not very performant, but a

very simple solution. Used mainly for testing and not recommended for production

use.

• org.jboss.cache.loader.JDBCCacheLoader - uses a JDBC connection to store

data. Connections could be created and maintained in an internal pool (uses

the c3p0 pooling library) or from a configured DataSource. The database this

CacheLoader connects to could be local or remotely located.

• org.jboss.cache.loader.BdbjeCacheLoader - uses Oracle's BerkeleyDB

file-based transactional database to persist data. Transactional and very

performant, but potentially restrictive license.

Using Eviction Policies

15

• org.jboss.cache.loader.JdbmCacheLoader - an upcoming open source

alternative to the BerkeleyDB.

• org.jboss.cache.loader.tcp.TcpCacheLoader - uses a TCP socket to "persist"

data to a remote cluster, using a "far cache" pattern. 1

• org.jboss.cache.loader.ClusteredCacheLoader - used as a "read-only"

CacheLoader, where other nodes in the cluster are queried for state.

These CacheLoaders, along with advanced aspects and tuning issues, are

discussed in the chapter dedicated to CacheLoaders .

9. Using Eviction Policies

Eviction policies are the counterpart to CacheLoaders. They are necessary to

make sure the cache does not run out of memory and when the cache starts to

fill, the eviction algorithm running in a separate thread offloads in-memory state to

the CacheLoader and frees up memory. Eviction policies can be configured on a

per-region basis, so different subtrees in the cache could have different eviction

preferences. JBoss Cache ships with several eviction policies:

• org.jboss.cache.eviction.LRUPolicy - an eviction policy that evicts the least

recently used nodes when thresholds are hit.

• org.jboss.cache.eviction.LFUPolicy - an eviction policy that evicts the least

frequently used nodes when thresholds are hit.

• org.jboss.cache.eviction.MRUPolicy - an eviction policy that evicts the most

recently used nodes when thresholds are hit.

• org.jboss.cache.eviction.FIFOPolicy - an eviction policy that creates a

first-in-first-out queue and evicts the oldest nodes when thresholds are hit.

• org.jboss.cache.eviction.ExpirationPolicy - an eviction policy that selects

nodes for eviction based on an expiry time each node is configured with.

• org.jboss.cache.eviction.ElementSizePolicy - an eviction policy that selects

nodes for eviction based on the number of key/value pairs held in the node.

Detailed configuration and implementing custom eviction policies are discussed in

the chapter dedicated to eviction policies. .

16

Chapter 3.

17

Configuration

1. Configuration Overview

The org.jboss.cache.config.Configuration class (along with its component

parts) is a Java Bean that encapsulates the configuration of the Cache and all of its

architectural elements (cache loaders, evictions policies, etc.)

The Configuration exposes numerous properties which are summarized in the

configuration reference section of this book and many of which are discussed in

later chapters. Any time you see a configuration option discussed in this book, you

can assume that the Configuration class or one of its component parts exposes a

simple property setter/getter for that configuration option.

2. Creating a Configuration

As discussed in the User API section , before a Cache can be created, the

CacheFactory must be provided with a Configuration object or with a file name

or input stream to use to parse a Configuration from XML. The following sections

describe how to accomplish this.

2.1. Parsing an XML-based Configuration File

The most convenient way to configure JBoss Cache is via an XML file. The JBoss

Cache distribution ships with a number of configuration files for common use cases.

It is recommended that these files be used as a starting point, and tweaked to meet

specific needs.

Here is a simple example configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<!--

 ===

 -->

<!--

 -->

<!-- Sample JBoss Cache Service Configuration

 -->

<!--

 -->

<!--

 ===

 -->

<server>

Chapter 3. Configuration

18

 <mbean code="org.jboss.cache.jmx.CacheJmxWrapper"

 name="jboss.cache:service=Cache">

 <!-- Configure the TransactionManager -->

 <attribute name="TransactionManagerLookupClass">

 org.jboss.cache.transaction.GenericTransactionManagerLookup

 </attribute>

 <!-- Node locking level : SERIALIZABLE

 REPEATABLE_READ (default)

 READ_COMMITTED

 READ_UNCOMMITTED

 NONE -->

 <attribute name="IsolationLevel">READ_COMMITTED</attribute>

 <!-- Lock parent before doing node additions/removes -->

 <attribute

 name="LockParentForChildInsertRemove">true</attribute>

 <!-- Valid modes are LOCAL (default)

 REPL_ASYNC

 REPL_SYNC

 INVALIDATION_ASYNC

 INVALIDATION_SYNC -->

 <attribute name="CacheMode">LOCAL</attribute>

 <!-- Max number of milliseconds to wait for a lock

 acquisition -->

 <attribute name="LockAcquisitionTimeout">15000</attribute>

 <!-- Specific eviction policy configurations. This is LRU -->

 <attribute name="EvictionConfig">

 <config>

 <attribute name="wakeUpIntervalSeconds">5</attribute>

 <attribute

 name="policyClass">org.jboss.cache.eviction.LRUPolicy</attribute>

 <!-- Cache wide default -->

 <region name="/_default_">

 <attribute name="maxNodes">5000</attribute>

 <attribute name="timeToLiveSeconds">1000</attribute>

 </region>

 </config>

 </attribute>

 </mbean>

</server>

Programmatic Configuration

19

Another, more complete, sample XML file is included in the configuration reference

section of this book, along with a handy look-up table explaining the various options.

For historical reasons, the format of the JBoss Cache configuraton file follows that of

a JBoss AS Service Archive (SAR) deployment descriptor (and still can be used as

such inside JBoss AS). Because of this dual usage, you may see elements in some

configuration files (such as depends or classpath) that are not relevant outside

JBoss AS. These can safely be ignored.

Here's how you tell the CacheFactory to create and start a cache by finding and

parsing a configuration file on the classpath:

 CacheFactory factory = new DefaultCacheFactory();

 Cache cache = factory.createCache("cache-configuration.xml");

2.2. Programmatic Configuration

In addition to the XML-based configuration above, the Configuration can be built

up programatically, using the simple property mutators exposed by Configuration

and its components. When constructed, the Configuration object is preset with

JBoss Cache defaults and can even be used as-is for a quick start.

Following is an example of programatically creating a Configuration configured to

match the one produced by the XML example above, and then using it to create a

Cache :

 Configuration config = new Configuration();

 String tmlc = GenericTransactionManagerLookup.class.getName();

 config.setTransactionManagerLookupClass(tmlc);

 config.setIsolationLevel(IsolationLevel.READ_COMMITTED);

 config.setCacheMode(CacheMode.LOCAL);

 config.setLockParentForChildInsertRemove(true);

 config.setLockAcquisitionTimeout(15000);

 EvictionConfig ec = new EvictionConfig();

 ec.setWakeupIntervalSeconds(5);

 ec.setDefaultEvictionPolicyClass(LRUPolicy.class.getName());

 EvictionRegionConfig erc = new EvictionRegionConfig();

 erc.setRegionName("_default_");

 LRUConfiguration lru = new LRUConfiguration();

 lru.setMaxNodes(5000);

 lru.setTimeToLiveSeconds(1000);

 erc.setEvictionPolicyConfig(lru);

Chapter 3. Configuration

20

 List<EvictionRegionConfig> ercs = new

 ArrayList<EvictionRegionConfig>();

 ercs.add(erc);

 ec.setEvictionRegionConfigs(erc);

 config.setEvictionConfig(ec);

 CacheFactory factory = new DefaultCacheFactory();

 Cache cache = factory.createCache(config);

Even the above fairly simple configuration is pretty tedious programming; hence the

preferred use of XML-based configuration. However, if your application requires it,

there is no reason not to use XML-based configuration for most of the attributes, and

then access the Configuration object to programatically change a few items from

the defaults, add an eviction region, etc.

Note that configuration values may not be changed programmatically when a

cache is running, except those annotated as @Dynamic . Dynamic properties are

also marked as such in the configuration reference table. Attempting to change a

non-dynamic property will result in a ConfigurationException .

2.3. Using an IOC Framework

The Configuration class and its component parts are all Java Beans that expose

all config elements via simple setters and getters. Therefore, any good IOC

framework should be able to build up a Configuration from an XML file in the

framework's own format. See the deployment via the JBoss micrcontainer section for

an example of this.

3. Composition of a Configuration Object

A Configuration is composed of a number of subobjects:

Following is a brief overview of the components of a Configuration . See the

javadoc and the linked chapters in this book for a more complete explanation of the

configurations associated with each component.

• Configuration : top level object in the hierarchy; exposes the configuration

properties listed in the configuration reference section of this book.

• BuddyReplicationConfig : only relevant if buddy replication is used. General

buddy replication configuration options. Must include a:

• BuddyLocatorConfig : implementation-specific configuration object for the

BuddyLocator implementation being used. What configuration elements are

exposed depends on the needs of the BuddyLocator implementation.

Dynamic Reconfiguration

21

• EvictionConfig : only relevant if eviction is used. General eviction configuration

options. Must include at least one:

• EvictionRegionConfig : one for each eviction region; names the region, etc.

Must include a:

• EvictionPolicyConfig : implementation-specific configuration object for the

EvictionPolicy implementation being used. What configuration elements are

exposed depends on the needs of the EvictionPolicy implementation.

• CacheLoaderConfig : only relevant if a cache loader is used. General cache

loader configuration options. Must include at least one:

• IndividualCacheLoaderConfig : implementation-specific configuration object

for the CacheLoader implementation being used. What configuration elements are

exposed depends on the needs of the CacheLoader implementation.

• RuntimeConfig : exposes to cache clients certain information about the cache's

runtime environment (e.g. membership in buddy replication groups if buddy

replication is used.) Also allows direct injection into the cache of needed external

services like a JTA TransactionManager or a JGroups ChannelFactory .

4. Dynamic Reconfiguration

Dynamically changing the configuration of some options while the cache is running

is supported, by programmatically obtaining the Configuration object from the

running cache and changing values. E.g.,

 Configuration liveConfig = cache.getConfiguration();

 liveConfig.setLockAcquisitionTimeout(2000);

A complete listing of which options may be changed

dynamically is in the configuration reference section. An

org.jboss.cache.config.ConfigurationException will be thrown if you attempt

to change a setting that is not dynamic.

5. Overriding the Configuration Via the Option API

The Option API allows you to override certain behaviours of the

cache on a per invocation basis. This involves creating an instance of

org.jboss.cache.config.Option , setting the options you wish to override on the

Option object and passing it in the InvocationContext before invoking your method

on the cache.

E.g., to override the default node versioning used with optimistic locking:

Chapter 3. Configuration

22

 DataVersion v = new MyCustomDataVersion();

 cache.getInvocationContext().getOptionOverrides().setDataVersion(v);

 Node ch = cache.getRoot().addChild(Fqn.fromString("/a/b/c"));

E.g., to suppress replication of a put call in a REPL_SYNC cache:

 Node node = cache.getChild(Fqn.fromString("/a/b/c"));

 cache.getInvocationContext().getOptionOverrides().setLocalOnly(true);

 node.put("localCounter", new Integer(2));

See the javadocs on the Option class for details on the options available.

Chapter 4.

23

Deploying JBoss Cache

1. Standalone Use / Programatic Deployment

When used in a standalone Java program, all that needs to be done is to instantiate

the cache using the CacheFactory and a Configuration instance or an XML file, as

discussed in the User API and Configuration chapters.

The same techniques can be used when an application running in an application

server wishes to programatically deploy a cache rather than relying on an application

server's deployment features. An example of this would be a webapp deploying a

cache via a javax.servlet.ServletContextListener .

If, after deploying your cache you wish to expose a management interface to it in

JMX, see the section on Programatic Registration in JMX .

2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x

and 4.x)

If JBoss Cache is run in JBoss AS then the cache can be deployed as an MBean

simply by copying a standard cache configuration file to the server's deploy

directory. The standard format of JBoss Cache's standard XML configuration file

(as shown in the Configuration Reference) is the same as a JBoss AS MBean

deployment descriptor, so the AS's SAR Deployer has no trouble handling it. Also,

you don't have to place the configuration file directly in deploy ; you can package it

along with other services or JEE components in a SAR or EAR.

In AS 5, if you're using a server config based on the standard all config, then

that's all you need to do; all required jars will be on the classpath. Otherwise, you

will need to ensure jbosscache.jar and jgroups-all.jar are on the classpath.

You may need to add other jars if you're using things like JdbmCacheLoader . The

simplest way to do this is to copy the jars from the JBoss Cache distribution's lib

directory to the server config's lib directory. You could also package the jars with

the configuration file in Service Archive (.sar) file or an EAR.

It is possible to deploy a JBoss Cache 2.0 instance in JBoss AS 4.x (at least in

4.2.0.GA; other AS releases are completely untested). However, the significant API

changes between the JBoss Cache 2.x and 1.x releases mean none of the standard

AS 4.x clustering services (e.g. http session replication) that rely on JBoss Cache

will work with JBoss Cache 2.x. Also, be aware that usage of JBoss Cache 2.x in AS

4.x is not something the JBoss Cache developers are making any significant effort to

test, so be sure to test your application well (which of course you're doing anyway.)

Note in the example the value of the mbean element's code attribute:

org.jboss.cache.jmx.CacheJmxWrapper . This is the class JBoss Cache uses to

Chapter 4. Deploying JBoss Cache

24

handle JMX integration; the Cache itself does not expose an MBean interface. See

the JBoss Cache MBeans section for more on the CacheJmxWrapper .

Once your cache is deployed, in order to use it with an in-VM client such as a servlet,

a JMX proxy can be used to get a reference to the cache:

 MBeanServer server = MBeanServerLocator.locateJBoss();

 ObjectName on = new ObjectName("jboss.cache:service=Cache");

 CacheJmxWrapperMBean cacheWrapper =

 (CacheJmxWrapperMBean)

 MBeanServerInvocationHandler.newProxyInstance(server, on,

 CacheJmxWrapperMBean.class, false);

 Cache cache = cacheWrapper.getCache();

 Node root = cache.getRoot(); // etc etc

The MBeanServerLocator class is a helper to find the (only) JBoss MBean server

inside the current JVM. The javax.management.MBeanServerInvocationHandler

class' newProxyInstance method creates a dynamic proxy implementing the given

interface and uses JMX to dynamically dispatch methods invoked against the

generated interface to the MBean. The name used to look up the MBean is the same

as defined in the cache's configuration file.

Once the proxy to the CacheJmxWrapper is obtained, the getCache() will return a

reference to the Cache itself.

3. Via JBoss Microcontainer (JBoss AS 5.x)

Beginning with AS 5, JBoss AS also supports deployment of POJO services via

deployment of a file whose name ends with -beans.xml . A POJO service is one

whose implementation is via a "Plain Old Java Object", meaning a simple java

bean that isn't required to implement any special interfaces or extend any particular

superclass. A Cache is a POJO service, and all the components in a Configuration

are also POJOS, so deploying a cache in this way is a natural step.

Deployment of the cache is done using the JBoss Microcontainer that forms the

core of JBoss AS. JBoss Microcontainer is a sophisticated IOC framework (similar to

Spring). A -beans.xml file is basically a descriptor that tells the IOC framework how

to assemble the various beans that make up a POJO service.

For each configurable option exposed by the Configuration components, a

getter/setter must be defined in the configuration class. This is required so that JBoss

Microcontainer can, in typical IOC way, call these methods when the corresponding

properties have been configured.

Via JBoss Microcontainer (JBoss AS 5.x)

25

The rules for how to deploy the file, how to package it, how to ensure the required

jars are on the classpath, etc. are the same as for a JMX-based deployment .

Following is an example -beans.xml file. If you look in the server/all/deploy

directory of an AS 5 installation, you can find several more examples.

<?xml version="1.0" encoding="UTF-8"?>

 <deployment xmlns="urn:jboss:bean-deployer:2.0">

 <!-- First we create a Configuration object for the cache

 -->

 <bean name="ExampleCacheConfig"

 class="org.jboss.cache.config.Configuration">

 <!-- Externally injected services -->

 <property name="runtimeConfig">

 <bean name="ExampleCacheRuntimeConfig"

 class="org.jboss.cache.config.RuntimeConfig">

 <property name="transactionManager">

 <inject bean="jboss:service=TransactionManager"

 property="TransactionManager"/>

 </property>

 <property name="muxChannelFactory"><inject

 bean="JChannelFactory"/></property>

 </bean>

 </property>

 <property name="multiplexerStack">udp</property>

 <property name="clusterName">Example-EntityCache</property>

 <!--

 Node locking level : SERIALIZABLE

 REPEATABLE_READ (default)

 READ_COMMITTED

 READ_UNCOMMITTED

 NONE

 -->

 <property name="isolationLevel">REPEATABLE_READ</property>

 <!-- Valid modes are LOCAL

 REPL_ASYNC

 REPL_SYNC

 -->

 <property name="cacheMode">REPL_SYNC</property>

 <!-- The max amount of time (in milliseconds) we wait until

 the

Chapter 4. Deploying JBoss Cache

26

 initial state (ie. the contents of the cache) are retrieved

 from

 existing members in a clustered environment

 -->

 <property

 name="initialStateRetrievalTimeout">15000</property>

 <!-- Number of milliseconds to wait until all responses

 for a

 synchronous call have been received.

 -->

 <property name="syncReplTimeout">20000</property>

 <!-- Max number of milliseconds to wait for a lock

 acquisition -->

 <property name="lockAcquisitionTimeout">15000</property>

 <property name="exposeManagementStatistics">true</property>

 <!-- Must be true if any entity deployment uses a scoped

 classloader -->

 <property name="useRegionBasedMarshalling">true</property>

 <!-- Must match the value of "useRegionBasedMarshalling" -->

 <property name="inactiveOnStartup">true</property>

 <!-- Specific eviction policy configurations. This is LRU

 -->

 <property name="evictionConfig">

 <bean name="ExampleEvictionConfig"

 class="org.jboss.cache.config.EvictionConfig">

 <property name="defaultEvictionPolicyClass">

 org.jboss.cache.eviction.LRUPolicy

 </property>

 <property name="wakeupIntervalSeconds">5</property>

 <property name="evictionRegionConfigs">

 <list>

 <bean name="ExampleDefaultEvictionRegionConfig"

 class="org.jboss.cache.config.EvictionRegionConfig">

 <property name="regionName">/_default_</property>

 <property name="evictionPolicyConfig">

 <bean name="ExampleDefaultLRUConfig"

 class="org.jboss.cache.eviction.LRUConfiguration">

 <property name="maxNodes">5000</property>

 <property name="timeToLiveSeconds">1000</property>

 </bean>

 </property>

 </bean>

 </list>

 </property>

Binding to JNDI in JBoss AS

27

 </bean>

 </property>

 </bean>

 <!-- Factory to build the Cache. -->

 <bean name="DefaultCacheFactory"

 class="org.jboss.cache.DefaultCacheFactory">

 <constructor

 factoryClass="org.jboss.cache.DefaultCacheFactory"

 factoryMethod="getInstance"/>

 </bean>

 <!-- The cache itself -->

 <bean name="ExampleCache" class="org.jboss.cache.Cache">

 <constructor factoryMethod="createCache">

 <factory bean="DefaultCacheFactory"/>

 <parameter

 class="org.jboss.cache.config.Configuration"><inject

 bean="ExampleCacheConfig"/></parameter>

 <parameter class="boolean">false</false>

 </constructor>

 </bean>

</deployment>

See the JBoss Microcontainer documentation 1 for details on the above syntax.

Basically, each bean element represents an object; most going to create a

Configuration and its constituent parts .

An interesting thing to note in the above example is the use of the RuntimeConfig

object. External resources like a TransactionManager and a JGroups

ChannelFactory that are visible to the microcontainer are dependency injected

into the RuntimeConfig . The assumption here is that in some other deployment

descriptor in the AS, the referenced beans have been described.

4. Binding to JNDI in JBoss AS

With the 1.x JBoss Cache releases, a proxy to the cache could be bound into JBoss

AS's JNDI tree using the AS's JRMPProxyFactory service. With JBoss Cache

2.x, this no longer works. An alternative way of doing a similar thing with a POJO

(i.e. non-JMX-based) service like a Cache is under development by the JBoss AS

1http://labs.jboss.com/jbossmc/docs

Chapter 4. Deploying JBoss Cache

28

team 2 . That feature is not available as of the time of this writing, although it will be

completed before AS 5.0.0.GA is released. We will add a wiki page describing how to

use it once it becomes available.

5. Runtime Management Information

JBoss Cache includes JMX MBeans to expose cache functionality and provide

statistics that can be used to analyze cache operations. JBoss Cache can also

broadcast cache events as MBean notifications for handling via JMX monitoring

tools.

5.1. JBoss Cache MBeans

JBoss Cache provides an MBean that can be registered with your environments

JMX server to allow access to the cache instance via JMX. This MBean is the

org.jboss.cache.jmx.CacheJmxWrapper . It is a StandardMBean, so it's MBean

interface is org.jboss.cache.jmx.CacheJmxWrapperMBean . This MBean can be

used to:

• Get a reference to the underlying Cache.

• Invoke create/start/stop/destroy lifecycle operations on the underlying Cache .

• Inspect various details about the cache's current state (number of nodes, lock

information, etc.)

• See numerous details about the cache's configuration, and change those

configuration items that can be changed when the cache has already been started.

See the CacheJmxWrapperMBean javadoc for more details.

It is important to note a significant architectural difference between JBoss Cache

1.x and 2.x. In 1.x, the old TreeCache class was itself an MBean, and essentially

exposed the cache's entire API via JMX. In 2.x, JMX has been returned to it's

fundamental role as a management layer. The Cache object itself is completely

unaware of JMX; instead JMX functionality is added through a wrapper class

designed for that purpose. Furthermore, the interface exposed through JMX has

been limited to management functions; the general Cache API is no longer exposed

through JMX. For example, it is no longer possible to invoke a cache put or get via

the JMX interface.

If a CacheJmxWrapper is registered, JBoss Cache

also provides MBeans for each interceptor configured

in the cache's interceptor stack. These MBeans

are used to capture and expose statistics related

to cache operations. They are hierarchically

associated with the CacheJmxWrapper MBean and

2http://jira.jboss.com/jira/browse/JBAS-4456

Registering the CacheJmxWrapper with the

MBeanServer

29

have service names that reflect this relationship.

For example, a replication interceptor MBean for the

jboss.cache:service=TomcatClusteringCache instance will be

accessible through the service named

jboss.cache:service=TomcatClusteringCache,cache-

interceptor=ReplicationInterceptor .

5.2. Registering the CacheJmxWrapper with the MBeanServer

The best way to ensure the CacheJmxWrapper is registered in JMX depends on how

you are deploying your cache:

5.2.1. Programatic Registration

Simplest way to do this is to create your Cache and pass it to the CacheJmxWrapper

constructor.

 CacheFactory factory = new DefaultCacheFactory();

 // Build but don't start the cache

 // (although it would work OK if we started it)

 Cache cache = factory.createCache("cache-configuration.xml",

 false);

 CacheJmxWrapperMBean wrapper = new CacheJmxWrapper(cache);

 MBeanServer server = getMBeanServer(); // however you do it

 ObjectName on = new ObjectName("jboss.cache:service=TreeCache");

 server.registerMBean(wrapper, on);

 // Invoking lifecycle methods on the wrapper results

 // in a call through to the cache

 wrapper.create();

 wrapper.start();

 ... use the cache

 ... on application shutdown

 // Invoking lifecycle methods on the wrapper results

 // in a call through to the cache

 wrapper.stop();

 wrapper.destroy();

Alternatively, build a Configuration object and pass it to the CacheJmxWrapper .

The wrapper will construct the Cache :

Chapter 4. Deploying JBoss Cache

30

 Configuration config = buildConfiguration(); // whatever it does

 CacheJmxWrapperMBean wrapper = new CacheJmxWrapper(config);

 MBeanServer server = getMBeanServer(); // however you do it

 ObjectName on = new ObjectName("jboss.cache:service=TreeCache");

 server.registerMBean(wrapper, on);

 // Call to wrapper.create() will build the Cache if one wasn't

 injected

 wrapper.create();

 wrapper.start();

 // Now that it's built, created and started, get the cache from

 the wrapper

 Cache cache = wrapper.getCache();

 ... use the cache

 ... on application shutdown

 wrapper.stop();

 wrapper.destroy();

5.2.2. JMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.x)

When you deploy your cache in JBoss AS using a -service.xml file , a

CacheJmxWrapper is automatically registered. There is no need to do anything

further. The CacheJmxWrapper is accessible from an MBean server through the

service name specified in the cache configuration file's mbean element.

5.2.3. Via JBoss Microcontainer (JBoss AS 5.x)

CacheJmxWrapper is a POJO, so the microcontainer has no problem creating one.

The trick is getting it to register your bean in JMX. This can be done by specifying

the org.jboss.aop.microcontainer.aspects.jmx.JMX annotation on the

CacheJmxWrapper bean:

<?xml version="1.0" encoding="UTF-8"?>

 <deployment xmlns="urn:jboss:bean-deployer:2.0">

 <!-- First we create a Configuration object for the cache -->

 <bean name="ExampleCacheConfig"

 class="org.jboss.cache.config.Configuration">

 ... build up the Configuration

Registering the CacheJmxWrapper with the

MBeanServer

31

 </bean>

 <!-- Factory to build the Cache. -->

 <bean name="DefaultCacheFactory"

 class="org.jboss.cache.DefaultCacheFactory">

 <constructor

 factoryClass="org.jboss.cache.DefaultCacheFactory"

 factoryMethod="getInstance"/>

 </bean>

 <!-- The cache itself -->

 <bean name="ExampleCache" class="org.jboss.cache.CacheImpl">

 <constructor factoryMethod="createnewInstance">

 <factory bean="DefaultCacheFactory"/>

 <parameter><inject bean="ExampleCacheConfig"/></parameter>

 <parameter>false</false>

 </constructor>

 </bean>

 <!-- JMX Management -->

 <bean name="ExampleCacheJmxWrapper"

 class="org.jboss.cache.jmx.CacheJmxWrapper">

 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss.cache:service=ExampleTreeCache",

 exposedInterface=org.jboss.cache.jmx.CacheJmxWrapperMBean.class,

 registerDirectly=true)</annotation>

 <constructor>

 <parameter><inject bean="ExampleCache"/></parameter>

 </constructor>

 </bean>

</deployment>

As discussed in the Programatic Registration section, CacheJmxWrapper can

do the work of building, creating and starting the Cache if it is provided with a

Configuration . With the microcontainer, this is the preferred approach, as it saves

the boilerplate XML needed to create the CacheFactory :

<?xml version="1.0" encoding="UTF-8"?>

 <deployment xmlns="urn:jboss:bean-deployer:2.0">

Chapter 4. Deploying JBoss Cache

32

 <!-- First we create a Configuration object for the cache -->

 <bean name="ExampleCacheConfig"

 class="org.jboss.cache.config.Configuration">

 ... build up the Configuration

 </bean>

 <bean name="ExampleCache"

 class="org.jboss.cache.jmx.CacheJmxWrapper">

 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss.cache:service=ExampleTreeCache",

 exposedInterface=org.jboss.cache.jmx.CacheJmxWrapperMBean.class,

 registerDirectly=true)</annotation>

 <constructor>

 <parameter><inject bean="ExampleCacheConfig"/></parameter>

 </constructor>

 </bean>

</deployment>

5.3. JBoss Cache Statistics

JBoss Cache captures statistics in its interceptors and exposes the statistics through

interceptor MBeans. Gathering of statistics is enabled by default; this can be

disabled for a specific cache instance through the ExposeManagementStatistics

configuration attribute. Note that the majority of the statistics are provided

by the CacheMgmtInterceptor , so this MBean is the most significant in

this regard. If you want to disable all statistics for performance reasons,

you set ExposeManagementStatistics to false as this will prevent the

CacheMgmtInterceptor from being included in the cache's interceptor stack when

the cache is started.

If a CacheJmxWrapper is registered with JMX, the wrapper also ensures that

an MBean is registered in JMX for each interceptor that exposes statistics 3 .

Management tools can then access those MBeans to examine the statistics. See

the section in the JMX Reference chapter pertaining to the statistics that are made

available via JMX.

3 Note that if the CacheJmxWrapper is not registered in JMX, the interceptor MBeans will not be registered either.

The JBoss Cache 1.4 releases included code that would try to "discover" an MBeanServer and automatically register

the interceptor MBeans with it. For JBoss Cache 2.x we decided that this sort of "discovery" of the JMX environment

was beyond the proper scope of a caching library, so we removed this functionality.

Receiving JMX Notifications

33

The name under which the interceptor MBeans will be registered is

derived by taking the ObjectName under which the CacheJmxWrapper is

registered and adding a cache-interceptor attribute key whose value

is the non-qualified name of the interceptor class. So, for example, if the

CacheJmxWrapper were registered under jboss.cache:service=TreeCache

, the name of the CacheMgmtInterceptor MBean would be

jboss.cache:service=TreeCache,cache-interceptor=CacheMgmtInterceptor .

Each interceptor's MBean exposes a StatisticsEnabled attribute that can be used

to disable maintenance of statistics for that interceptor. In addition, each interceptor

MBean provides the following common operations and attributes.

• dumpStatistics - returns a Map containing the interceptor's attributes and values.

• resetStatistics - resets all statistics maintained by the interceptor.

• setStatisticsEnabled(boolean) - allows statistics to be disabled for a specific

interceptor.

5.4. Receiving JMX Notifications

JBoss Cache users can register a listener to receive cache events described earlier

in the User API chapter. Users can alternatively utilize the cache's management

information infrastructure to receive these events via JMX notifications. Cache events

are accessible as notifications by registering a NotificationListener for the

CacheJmxWrapper .

See the section in the JMX Reference chapter pertaining to JMX notifications for a

list of notifications that can be received through the CacheJmxWrapper .

The following is an example of how to programmatically receive cache notifications

when running in a JBoss AS environment. In this example, the client uses a filter to

specify which events are of interest.

 MyListener listener = new MyListener();

 NotificationFilterSupport filter = null;

 // get reference to MBean server

 Context ic = new InitialContext();

 MBeanServerConnection server =

 (MBeanServerConnection)ic.lookup("jmx/invoker/RMIAdaptor");

 // get reference to CacheMgmtInterceptor MBean

 String cache_service =

 "jboss.cache:service=TomcatClusteringCache";

 ObjectName mgmt_name = new ObjectName(cache_service);

Chapter 4. Deploying JBoss Cache

34

 // configure a filter to only receive node created and removed

 events

 filter = new NotificationFilterSupport();

 filter.disableAllTypes();

 filter.enableType(CacheNotificationBroadcaster.NOTIF_NODE_CREATED);

 filter.enableType(CacheNotificationBroadcaster.NOTIF_NODE_REMOVED);

 // register the listener with a filter

 // leave the filter null to receive all cache events

 server.addNotificationListener(mgmt_name, listener, filter,

 null);

 // ...

 // on completion of processing, unregister the listener

 server.removeNotificationListener(mgmt_name, listener, filter,

 null);

The following is the simple notification listener implementation used in the previous

example.

 private class MyListener implements NotificationListener,

 Serializable

 {

 public void handleNotification(Notification notification,

 Object handback)

 {

 String message = notification.getMessage();

 String type = notification.getType();

 Object userData = notification.getUserData();

 System.out.println(type + ": " + message);

 if (userData == null)

 {

 System.out.println("notification data is null");

 }

 else if (userData instanceof String)

 {

 System.out.println("notification data: " + (String)

 userData);

 }

 else if (userData instanceof Object[])

 {

 Object[] ud = (Object[]) userData;

Accessing Cache MBeans in a Standalone

Environment

35

 for (Object data : ud)

 {

 System.out.println("notification data: " +

 data.toString());

 }

 }

 else

 {

 System.out.println("notification data class: " +

 userData.getClass().getName());

 }

 }

 }

Note that the JBoss Cache management implementation only listens to cache events

after a client registers to receive MBean notifications. As soon as no clients are

registered for notifications, the MBean will remove itself as a cache listener.

5.5. Accessing Cache MBeans in a Standalone Environment

JBoss Cache MBeans are easily accessed when running cache instances in an

application server that provides an MBean server interface such as JBoss JMX

Console. Refer to your server documentation for instructions on how to access

MBeans running in a server's MBean container.

In addition, though, JBoss Cache MBeans are also accessible when running in a

non-server environment if the JVM is JDK 5.0 or later. When running a standalone

cache in a JDK 5.0 environment, you can access the cache's MBeans as follows.

1. Set the system property -Dcom.sun.management.jmxremote when starting the

JVM where the cache will run.

2. Once the JVM is running, start the JDK 5.0 jconsole utility, located in your JDK's

/bin directory.

3. When the utility loads, you will be able to select your running JVM and connect to

it. The JBoss Cache MBeans will be available on the MBeans panel.

Note that the jconsole utility will automatically register as a listener for cache

notifications when connected to a JVM running JBoss Cache instances.

The following figure shows cache interceptor MBeans in jconsole . Cache statistics

are displayed for the CacheMgmtInterceptor :

Figure 4.1. CacheMgmtInterceptor MBean in jconsole

36

Chapter 5.

37

Version Compatibility and

Interoperability
Within a major version, releases of JBoss Cache are meant to be compatible and

interoperable. Compatible in the sense that it should be possible to upgrade an

application from one version to another by simply replacing the jars. Interoperable in

the sense that if two different versions of JBoss Cache are used in the same cluster,

they should be able to exchange replication and state transfer messages. Note

however that interoperability requires use of the same JGroups version in all nodes

in the cluster. In most cases, the version of JGroups used by a version of JBoss

Cache can be upgraded.

As such, JBoss Cache 2.x.x is not API or binary compatible with prior 1.x.x versions.

However, JBoss Cache 2.1.x will be API and binary compatible with 2.0.x.

A configuration attribute, ReplicationVersion, is available and is used to control

the wire format of inter-cache communications. They can be wound back from more

efficient and newer protocols to "compatible" versions when talking to older releases.

This mechanism allows us to improve JBoss Cache by using more efficient wire

formats while still providing a means to preserve interoperability.

1. Compatibility Matrix

A compatibility matrix

[http://labs.jboss.com/portal/jbosscache/compatibility/index.html] is maintained on

the JBoss Cache website, which contains information on different versions of JBoss

Cache, JGroups and JBoss AS.

http://labs.jboss.com/portal/jbosscache/compatibility/index.html
http://labs.jboss.com/portal/jbosscache/compatibility/index.html

38

Part II. JBoss Cache Architecture
This section digs deeper into the JBoss Cache architecture, and is meant for developers

wishing to extend or enhance JBoss Cache, write plugins or are just looking for detailed

knowledge of how things work under the hood.

Chapter 6.

41

Architecture

1. Data Structures Within The Cache

A Cache consists of a collection of Node instances, organised in a tree structure.

Each Node contains a Map which holds the data objects to be cached. It is important

to note that the structure is a mathematical tree, and not a graph; each Node has

one and only one parent, and the root node is denoted by the constant fully qualitied

name, Fqn.ROOT .

The reason for organising nodes as such is to improve concurrent access to data

and make replication and persistence more fine-grained.

Figure 6.1. Data structured as a tree

In the diagram above, each box represents a JVM. You see 2 caches in separate

JVMs, replicating data to each other. These VMs can be located on the same

physical machine, or on 2 different machines connected by a network link. The

underlying group communication between networked nodes is done using JGroups

[http://www.jgroups.org] .

Any modifications (see API chapter) in one cache instance will be replicated to the

other cache. Naturally, you can have more than 2 caches in a cluster. Depending

on the transactional settings, this replication will occur either after each modification

or at the end of a transaction, at commit time. When a new cache is created, it can

optionally acquire the contents from one of the existing caches on startup.

2. SPI Interfaces

In addition to Cache and Node interfaces, JBoss Cache exposes more powerful

CacheSPI and NodeSPI interfaces, which offer more control over the internals

of JBoss Cache. These interfaces are not intended for general use, but are

designed for people who wish to extend and enhance JBoss Cache, or write custom

Interceptor or CacheLoader instances.

Figure 6.2. SPI Interfaces

The CacheSPI interface cannot be created, but is injected into Interceptor and

CacheLoader implementations by the setCache(CacheSPI cache) methods on

these interfaces. CacheSPI extends Cache so all the functionality of the basic API is

made available.

http://www.jgroups.org
http://www.jgroups.org

Chapter 6. Architecture

42

Similarly, a NodeSPI interface cannot be created. Instead, one is obtained

by performing operations on CacheSPI , obtained as above. For example,

Cache.getRoot() : Node is overridden as CacheSPI.getRoot() : NodeSPI .

It is important to note that directly casting a Cache or Node to it's SPI counterpart is

not recommended and is bad practice, since the inheritace of interfaces it is not a

contract that is guaranteed to be upheld moving forward. The exposed public APIs,

on the other hand, is guaranteed to be upheld.

3. Method Invocations On Nodes

Since the cache is essentially a collection of nodes, aspects such as clustering,

persistence, eviction, etc. need to be applied to these nodes when operations are

invoked on the cache as a whole or on individual nodes. To achieve this in a clean,

modular and extensible manner, an interceptor chain is used. The chain is built up

of a series of interceptors, each one adding an aspect or particular functionality. The

chain is built when the cache is created, based on the configuration used.

It is important to note that the NodeSPI offers some methods (such as the

xxxDirect() method family) that operate on a node directly without passing through

the interceptor stack. Plugin authors should note that using such methods will affect

the aspects of the cache that may need to be applied, such as locking, replication,

etc. Basically, don't use such methods unless you really know what you're doing!

3.1. Interceptors

An Interceptor is an abstract class, several of which comprise an interceptor

chain. It exposes an invoke() method, which must be overridden by implementing

classes to add behaviour to a call before passing the call down the chain by calling

super.invoke() .

Figure 6.3. SPI Interfaces

JBoss Cache ships with several interceptors, representing different configuration

options, some of which are:

• TxInterceptor - looks for ongoing transactions and registers with transaction

managers to participate in synchronization events

• ReplicationInterceptor - replicates state across a cluster using a JGroups

channel

• CacheLoaderInterceptor - loads data from a persistent store if the data

requested is not available in memory

MethodCalls

43

The interceptor chain configured for your cache instance can be obtained and

inspected by calling CacheSPI.getInterceptorChain() , which returns an ordered

List of interceptors.

3.1.1. Writing Custom Interceptors

Custom interceptors to add specific aspects or features can be written by extending

Interceptor and overriding invoke() . The custom interceptor will need to be

added to the interceptor chain by using the CacheSPI.addInterceptor() method.

Adding custom interceptors via XML is not supported at this time.

3.2. MethodCalls

org.jboss.cache.marshall.MethodCall is a class that encapsulates a

java.lang.reflection.Method and an Object[] representing the method's

arguments. It is an extension of the org.jgroups.blocks.MethodCall class, that

adds a mechanism for identifying known methods using magic numbers and method

ids, which makes marshalling and unmarshalling more efficient and performant.

This is central to the Interceptor architecture, and is the only parameter passed in

to Interceptor.invoke() .

3.3. InvocationContexts

InvocationContext holds intermediate state for the duration of a single invocation,

and is set up and destroyed by the InvocationContextInterceptor which sits at

the start of the chain.

InvocationContext , as its name implies, holds contextual information

associated with a single cache method invocation. Contextual

information includes associated javax.transaction.Transaction or

org.jboss.cache.transaction.GlobalTransaction , method invocation origin (

InvocationContext.isOriginLocal()) as well as Option overrides .

The InvocationContext can be obtained by calling

Cache.getInvocationContext() .

4. Managers For Subsystems

Some aspects and functionality is shared by more than a single interceptor. Some of

these have been encapsulated into managers, for use by various interceptors, and

are made available by the CacheSPI interface.

4.1. RpcManager

This class is responsible for calls made via the JGroups channel for all RPC calls to

remote caches, and encapsulates the JGroups channel used.

Chapter 6. Architecture

44

4.2. BuddyManager

This class manages buddy groups and invokes group organisation remote calls to

organise a cluster of caches into smaller sub-groups.

4.3. CacheLoaderManager

Sets up and configures cache loaders. This class wraps individual CacheLoader

instances in delegating classes, such as SingletonStoreCacheLoader

or AsyncCacheLoader , or may add the CacheLoader to a chain using the

ChainingCacheLoader .

5. Marshalling And Wire Formats

Early versions of JBoss Cache simply wrote cached data to the network by writing

to an ObjectOutputStream during replication. Over various releases in the JBoss

Cache 1.x.x series this approach was gradually deprecated in favour of a more

mature marshalling framework. In the JBoss Cache 2.x.x series, this is the only

officially supported and recommended mechanism for writing objects to datastreams.

Figure 6.4. The Marshaller interface

5.1. The Marshaller Interface

The Marshaller interface extends RpcDispatcher.Marshaller from JGroups. This

interface has two main implementations - a delegating VersionAwareMarshaller

and a concrete CacheMarshaller200 .

The marshaller can be obtained by calling CacheSPI.getMarshaller() , and

defaults to the VersionAwareMarshaller . Users may also write their own

marshallers by implementing the Marshaller interface and adding it to their

configuration, by using the MarshallerClass configuration attribute.

5.2. VersionAwareMarshaller

As the name suggests, this marshaller adds a version short to the start of any

stream when writing, enabling similar VersionAwareMarshaller instances to read

the version short and know which specific marshaller implementation to delegate

the call to. For example, CacheMarshaller200 , is the marshaller for JBoss Cache

2.0.x. JBoss Cache 2.1.x, say, may ship with CacheMarshaller210 with an improved

wire protocol. Using a VersionAwareMarshaller helps achieve wire protocol

compatibility between minor releases but still affords us the flexibility to tweak and

improve the wire protocol between minor or micro releases.

CacheMarshaller200

45

5.2.1. CacheLoaders

Some of the existing cache loaders, such as the JDBCCacheLoader and the

FileCacheLoader relied on persisting data using ObjectOutputStream as well, but

now, they are using the VersionAwareMarshaller to marshall the persisted data to

their cache stores.

5.3. CacheMarshaller200

This marshaller treats well-known objects that need marshalling - such as

MethodCall , Fqn , DataVersion , and even some JDK objects such as String ,

List , Boolean and others as types that do not need complete class definitions.

Instead, each of these well-known types are represented by a short , which is a lot

more efficient.

In addition, reference counting is done to reduce duplication of writing certain objects

multiple times, to help keep the streams small and efficient.

Also, if UseRegionBasedMarshalling is enabled (disabled by default) the marshaller

adds region information to the stream before writing any data. This region information

is in the form of a String representation of an Fqn . When unmarshalling, the

RegionManager can be used to find the relevant Region , and use a region-specific

ClassLoader to unmarshall the stream. This is specifically useful when used

to cluster state for application servers, where each deployment has it's own

ClassLoader . See the section below on regions for more information.

6. Class Loading and Regions

When used to cluster state of application servers, applications deployed in the

application tend to put instances of objects specific to their application in the cache

(or in an HttpSession object) which would require replication. It is common for

application servers to assign separate ClassLoader instances to each application

deployed, but have JBoss Cache libraries referenced by the application server's

ClassLoader .

To enable us to successfully marshall and unmarshall objects from such class

loaders, we use a concept called regions. A region is a portion of the cache which

share a common class loader (a region also has other uses - see eviction policies).

A region is created by using the Cache.getRegion(Fqn fqn, boolean

createIfNotExists) method, and returns an implementation of the Region

interface. Once a region is obtained, a class loader for the region can be set or

unset, and the region can be activated/deactivated. By default, regions are active

unless the InactiveOnStartup configuration attribute is set to true .

46

Chapter 7.

47

Clustering
This chapter talks about aspects around clustering JBoss Cache.

1. Cache Replication Modes

JBoss Cache can be configured to be either local (standalone) or clustered. If in a

cluster, the cache can be configured to replicate changes, or to invalidate changes. A

detailed discussion on this follows.

1.1. Local Mode

Local caches don't join a cluster and don't communicate with other caches in

a cluster. Therefore their elements don't need to be serializable - however, we

recommend making them serializable, enabling a user to change the cache mode at

any time. The dependency on the JGroups library is still there, although a JGroups

channel is not started.

1.2. Replicated Caches

Replicated caches replicate all changes to some or all of the other cache instances in

the cluster. Replication can either happen after each modification (no transactions),

or at the end of a transaction (commit time).

Replication can be synchronous or asynchronous . Use of either one of the options

is application dependent. Synchronous replication blocks the caller (e.g. on a put()

) until the modifications have been replicated successfully to all nodes in a cluster.

Asynchronous replication performs replication in the background (the put() returns

immediately). JBoss Cache also offers a replication queue, where modifications

are replicated periodically (i.e. interval-based), or when the queue size exceeds a

number of elements, or a combination thereof.

Asynchronous replication is faster (no caller blocking), because synchronous

replication requires acknowledgments from all nodes in a cluster that they received

and applied the modification successfully (round-trip time). However, when a

synchronous replication returns successfully, the caller knows for sure that all

modifications have been applied to all cache instances, whereas this is not be the

case with asynchronous replication. With asynchronous replication, errors are simply

written to a log. Even when using transactions, a transaction may succeed but

replication may not succeed on all cache instances.

1.2.1. Replicated Caches and Transactions

When using transactions, replication only occurs at the transaction boundary - i.e.,

when a transaction commits. This results in minimising replication traffic since a

single modification is broadcast rather than a series of individual modifications, and

Chapter 7. Clustering

48

can be a lot more efficient than not using transactions. Another effect of this is that if

a transaction were to roll back, nothing is broadcast across a cluster.

Depending on whether you are running your cluster in asynchronous or synchronous

mode, JBoss Cache will use either a single phase or two phase commit

[http://en.wikipedia.org/wiki/Two-phase_commit_protocol] protocol, respectively.

1.2.1.1. One Phase Commits

Used when your cache mode is REPL_ASYNC. All modifications are replicated

in a single call, which instructs remote caches to apply the changes to their local

in-memory state and commit locally. Remote errors/rollbacks are never fed back to

the originator of the transaction since the communication is asynchronous.

1.2.1.2. Two Phase Commits

Used when your cache mode is REPL_SYNC. Upon committing your transaction,

JBoss Cache broadcasts a prepare call, which carries all modifications relevant to

the transaction. Remote caches then acquire local locks on their in-memory state

and apply the modifications. Once all remote caches respond to the prepare call, the

originator of the transaction broadcasts a commit. This instructs all remote caches

to commit their data. If any of the caches fail to respond to the prepare phase, the

originator broadcasts a rollback.

Note that although the prepare phase is synchronous, the commit and

rollback phases are asynchronous. This is because Sun's JTA specification

[http://java.sun.com/products/jta/] does not specify how transactional resources

should deal with failures at this stage of a transaction; and other resources

participating in the transaction may have indeterminate state anyway. As such,

we do away with the overhead of synchronous communication for this phase

of the transaction. That said, they can be forced to be synchronous using the

SyncCommitPhase and SyncRollbackPhase configuration attributes.

1.2.2. Buddy Replication

Buddy Replication allows you to suppress replicating your data to all instances in

a cluster. Instead, each instance picks one or more 'buddies' in the cluster, and

only replicates to these specific buddies. This greatly helps scalability as there is no

longer a memory and network traffic impact every time another instance is added to

a cluster.

One of the most common use cases of Buddy Replication is when a replicated cache

is used by a servlet container to store HTTP session data. One of the pre-requisites

to buddy replication working well and being a real benefit is the use of session

affinity , more casually known as sticky sessions in HTTP session replication speak.

What this means is that if certain data is frequently accessed, it is desirable that

this is always accessed on one instance rather than in a round-robin fashion as this

http://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/

Replicated Caches

49

helps the cache cluster optimise how it chooses buddies, where it stores data, and

minimises replication traffic.

If this is not possible, Buddy Replication may prove to be more of an overhead than a

benefit.

1.2.2.1. Selecting Buddies

Figure 7.1. BuddyLocator

Buddy Replication uses an instance of a BuddyLocator which contains the logic

used to select buddies in a network. JBoss Cache currently ships with a single

implementation, NextMemberBuddyLocator , which is used as a default if no

implementation is provided. The NextMemberBuddyLocator selects the next member

in the cluster, as the name suggests, and guarantees an even spread of buddies for

each instance.

The NextMemberBuddyLocator takes in 2 parameters, both optional.

• numBuddies - specifies how many buddies each instance should pick to back its

data onto. This defaults to 1.

• ignoreColocatedBuddies - means that each instance will try to select a buddy

on a different physical host. If not able to do so though, it will fall back to colocated

instances. This defaults to true .

1.2.2.2. BuddyPools

Also known as replication groups , a buddy pool is an optional construct where

each instance in a cluster may be configured with a buddy pool name. Think of this

as an 'exclusive club membership' where when selecting buddies, BuddyLocator

s that support buddy pools would try and select buddies sharing the same buddy

pool name. This allows system administrators a degree of flexibility and control

over how buddies are selected. For example, a sysadmin may put two instances

on two separate physical servers that may be on two separate physical racks in the

same buddy pool. So rather than picking an instance on a different host on the same

rack, BuddyLocator s would rather pick the instance in the same buddy pool, on a

separate rack which may add a degree of redundancy.

1.2.2.3. Failover

In the unfortunate event of an instance crashing, it is assumed that the client

connecting to the cache (directly or indirectly, via some other service such as

HTTP session replication) is able to redirect the request to any other random cache

instance in the cluster. This is where a concept of Data Gravitation comes in.

Data Gravitation is a concept where if a request is made on a cache in the cluster

and the cache does not contain this information, it asks other instances in the cluster

Chapter 7. Clustering

50

for the data. In other words, data is lazily transferred, migrating only when other

nodes ask for it. This strategy prevents a network storm effect where lots of data is

pushed around healthy nodes because only one (or a few) of them die.

If the data is not found in the primary section of some node, it would (optionally) ask

other instances to check in the backup data they store for other caches. This means

that even if a cache containing your session dies, other instances will still be able to

access this data by asking the cluster to search through their backups for this data.

Once located, this data is transferred to the instance which requested it and is added

to this instance's data tree. The data is then (optionally) removed from all other

instances (and backups) so that if session affinity is used, the affinity should now be

to this new cache instance which has just taken ownership of this data.

Data Gravitation is implemented as an interceptor. The following (all optional)

configuration properties pertain to data gravitation.

• dataGravitationRemoveOnFind - forces all remote caches that own the data

or hold backups for the data to remove that data, thereby making the requesting

cache the new data owner. This removal, of course, only happens after the new

owner finishes replicating data to its buddy. If set to false an evict is broadcast

instead of a remove, so any state persisted in cache loaders will remain. This is

useful if you have a shared cache loader configured. Defaults to true .

• dataGravitationSearchBackupTrees - Asks remote instances to search through

their backups as well as main data trees. Defaults to true . The resulting effect is

that if this is true then backup nodes can respond to data gravitation requests in

addition to data owners.

• autoDataGravitation - Whether data gravitation occurs for every cache miss. By

default this is set to false to prevent unnecessary network calls. Most use cases

will know when it may need to gravitate data and will pass in an Option to enable

data gravitation on a per-invocation basis. If autoDataGravitation is true this

Option is unnecessary.

1.2.2.4. Configuration

<!-- Buddy Replication config -->

<attribute name="BuddyReplicationConfig">

 <config>

 <!-- Enables buddy replication. This is the ONLY mandatory

 configuration element here. -->

 <buddyReplicationEnabled>true</buddyReplicationEnabled>

 <!-- These are the default values anyway -->

Replicated Caches

51

 <buddyLocatorClass>org.jboss.cache.buddyreplication.NextMemberBuddyLocator</

buddyLocatorClass>

 <!-- numBuddies is the number of backup nodes each node

 maintains. ignoreColocatedBuddies means

 that each node will *try* to select a buddy on a

 different physical host. If not able to do so though,

 it will fall back to colocated nodes. -->

 <buddyLocatorProperties>

 numBuddies = 1

 ignoreColocatedBuddies = true

 </buddyLocatorProperties>

 <!-- A way to specify a preferred replication group. If

 specified, we try and pick a buddy which shares

 the same pool name (falling back to other buddies if not

 available). This allows the sysdmin to

 hint at backup buddies are picked, so for example, nodes

 may be hinted topick buddies on a different

 physical rack or power supply for added fault tolerance.

 -->

 <buddyPoolName>myBuddyPoolReplicationGroup</buddyPoolName>

 <!-- Communication timeout for inter-buddy group organisation

 messages (such as assigning to and

 removing from groups, defaults to 1000. -->

 <buddyCommunicationTimeout>2000</buddyCommunicationTimeout>

 <!-- Whether data is removed from old owners when gravitated

 to a new owner. Defaults to true. -->

 <dataGravitationRemoveOnFind>true</dataGravitationRemoveOnFind>

 <!-- Whether backup nodes can respond to data gravitation

 requests, or only the data owner is

 supposed to respond. Defaults to true. -->

 <dataGravitationSearchBackupTrees>true</

dataGravitationSearchBackupTrees>

 <!-- Whether all cache misses result in a data gravitation

 request. Defaults to false, requiring

 callers to enable data gravitation on a per-invocation

 basis using the Options API. -->

 <autoDataGravitation>false</autoDataGravitation>

 </config>

</attribute>

Chapter 7. Clustering

52

2. Invalidation

If a cache is configured for invalidation rather than replication, every time data is

changed in a cache other caches in the cluster receive a message informing them

that their data is now stale and should be evicted from memory. Invalidation, when

used with a shared cache loader (see chapter on Cache Loaders) would cause

remote caches to refer to the shared cache loader to retrieve modified data. The

benefit of this is twofold: network traffic is minimised as invalidation messages are

very small compared to replicating updated data, and also that other caches in the

cluster look up modified data in a lazy manner, only when needed.

Invalidation messages are sent after each modification (no transactions), or at the

end of a transaction, upon successful commit. This is usually more efficient as

invalidation messages can be optimised for the transaction as a whole rather than on

a per-modification basis.

Invalidation too can be synchronous or asynchronous, and just as in the case of

replication, synchronous invalidation blocks until all caches in the cluster receive

invalidation messages and have evicted stale data while asynchronous invalidation

works in a 'fire-and-forget' mode, where invalidation messages are broadcast but

doesn't block and wait for responses.

3. State Transfer

State Transfer refers to the process by which a JBoss Cache instance prepares

itself to begin providing a service by acquiring the current state from another cache

instance and integrating that state into its own state.

3.1. State Transfer Types

There are three divisions of state transfer types depending on a point of view related

to state transfer. First, in the context of particular state transfer implementation, the

underlying plumbing, there are two starkly different state transfer types: byte array

and streaming based state transfer. Second, state transfer can be full or partial

state transfer depending on a subtree being transferred. Entire cache tree transfer

represents full transfer while transfer of a particular subtree represents partial state

transfer. And finally state transfer can be "in-memory" and "persistent" transfer

depending on a particular use of cache.

3.2. Byte array and streaming based state transfer

Byte array based transfer was a default and only transfer methodology for cache

in all previous releases up to 2.0. Byte array based transfer loads entire state

transferred into a byte array and sends it to a state receiving member. Major

Full and partial state transfer

53

limitation of this approach is that the state transfer that is very large (>1GB) would

likely result in OutOfMemoryException. Streaming state transfer provides an

InputStream to a state reader and an OutputStream to a state writer. OutputStream

and InputStream abstractions enable state transfer in byte chunks thus resulting in

smaller memory requirements. For example, if application state is represented as a

tree whose aggregate size is 1GB, rather than having to provide a 1GB byte array

streaming state transfer transfers the state in chunks of N bytes where N is user

configurable.

Byte array and streaming based state transfer are completely API transparent,

interchangeable, and statically configured through a standard cache configuration

XML file. Refer to JGroups documentation on how to change from one type of

transfer to another.

3.3. Full and partial state transfer

If either in-memory or persistent state transfer is enabled, a full or partial state

transfer will be done at various times, depending on how the cache is used. "Full"

state transfer refers to the transfer of the state related to the entire tree -- i.e. the root

node and all nodes below it. A "partial" state transfer is one where just a portion of

the tree is transferred -- i.e. a node at a given Fqn and all nodes below it.

If either in-memory or persistent state transfer is enabled, state transfer will occur at

the following times:

1. Initial state transfer. This occurs when the cache is first started (as part of the

processing of the start() method). This is a full state transfer. The state is

retrieved from the cache instance that has been operational the longest. 1 If there

is any problem receiving or integrating the state, the cache will not start.

Initial state transfer will occur unless:

a. The cache's InactiveOnStartup property is true . This property is used in

conjunction with region-based marshalling.

b. Buddy replication is used. See below for more on state transfer with buddy

replication.

2. Partial state transfer following region activation. When region-based marshalling is

used, the application needs to register a specific class loader with the cache. This

class loader is used to unmarshall the state for a specific region (subtree) of the

cache.

After registration, the application calls cache.getRegion(fqn,

true).activate() , which initiates a partial state transfer of the relevant

subtree's state. The request is first made to the oldest cache instance in the

cluster. However, if that instance responds with no state, it is then requested from

Chapter 7. Clustering

54

each instance in turn until one either provides state or all instances have been

queried.

Typically when region-based marshalling is used, the cache's

InactiveOnStartup property is set to true . This suppresses initial state transfer,

which would fail due to the inability to deserialize the transferred state.

3. Buddy replication. When buddy replication is used, initial state transfer is disabled.

Instead, when a cache instance joins the cluster, it becomes the buddy of one or

more other instances, and one or more other instances become its buddy. Each

time an instance determines it has a new buddy providing backup for it, it pushes

it's current state to the new buddy. This "pushing" of state to the new buddy is

slightly different from other forms of state transfer, which are based on a "pull"

approach (i.e. recipient asks for and receives state). However, the process of

preparing and integrating the state is the same.

This "push" of state upon buddy group formation only occurs if the

InactiveOnStartup property is set to false . If it is true , state transfer amongst

the buddies only occurs when the application activates the region on the various

members of the group.

Partial state transfer following a region activation call is slightly different in the

buddy replication case as well. Instead of requesting the partial state from one

cache instance, and trying all instances until one responds, with buddy replication

the instance that is activating a region will request partial state from each instance

for which it is serving as a backup.

3.4. Transient ("in-memory") and persistent state transfer

The state that is acquired and integrated can consist of two basic types:

1. "Transient" or "in-memory" state. This consists of the actual in-memory state

of another cache instance - the contents of the various in-memory nodes in

the cache that is providing state are serialized and transferred; the recipient

deserializes the data, creates corresponding nodes in its own in-memory tree, and

populates them with the transferred data.

"In-memory" state transfer is enabled by setting the cache's FetchInMemoryState

configuration attribute to true .

2. "Persistent" state. Only applicable if a non-shared cache loader is used. The

state stored in the state-provider cache's persistent store is deserialized and

transferred; the recipient passes the data to its own cache loader, which persists it

to the recipient's persistent store.

"Persistent" state transfer is enabled by setting a cache loader's

fetchPersistentState attribute to true . If multiple cache loaders are

Configuring State Transfer

55

configured in a chain, only one can have this property set to true; otherwise you

will get an exception at startup.

Persistent state transfer with a shared cache loader does not make sense, as the

same persistent store that provides the data will just end up receiving it. Therefore,

if a shared cache loader is used, the cache will not allow a persistent state transfer

even if a cache loader has fetchPersistentState set to true .

Which of these types of state transfer is appropriate depends on the usage of the

cache.

1. If a write-through cache loader is used, the current cache state is fully represented

by the persistent state. Data may have been evicted from the in-memory state, but

it will still be in the persistent store. In this case, if the cache loader is not shared,

persistent state transfer is used to ensure the new cache has the correct state.

In-memory state can be transferred as well if the desire is to have a "hot" cache --

one that has all relevant data in memory when the cache begins providing service.

(Note that the <cacheloader><preload> element in the CacheLoaderConfig

configuration parameter can be used as well to provide a "warm" or "hot" cache

without requiring an in-memory state transfer. This approach somewhat reduces

the burden on the cache instance providing state, but increases the load on the

persistent store on the recipient side.)

2. If a cache loader is used with passivation, the full representation of the state can

only be obtained by combining the in-memory (i.e. non-passivated) and persistent

(i.e. passivated) states. Therefore an in-memory state transfer is necessary. A

persistent state transfer is necessary if the cache loader is not shared.

3. If no cache loader is used and the cache is solely a write-aside cache (i.e. one

that is used to cache data that can also be found in a persistent store, e.g. a

database), whether or not in-memory state should be transferred depends on

whether or not a "hot" cache is desired.

3.5. Configuring State Transfer

To ensure state transfer behaves as expected, it is important that all nodes in the

cluster are configured with the same settings for persistent and transient state. This

is because byte array based transfers, when requested, rely only on the requester's

configuration while stream based transfers rely on both the requester and sender's

configuration, and this is expected to be identical.

56

Chapter 8.

57

Cache Loaders
JBoss Cache can use a CacheLoader to back up the in-memory cache to a backend

datastore. If JBoss Cache is configured with a cache loader, then the following

features are provided:

• Whenever a cache element is accessed, and that element is not in the cache (e.g.

due to eviction or due to server restart), then the cache loader transparently loads

the element into the cache if found in the backend store.

• Whenever an element is modified, added or removed, then that modification is

persisted in the backend store via the cache loader. If transactions are used,

all modifications created within a transaction are persisted. To this end, the

CacheLoader takes part in the two phase commit protocol run by the transaction

manager, although it does not do so explicitly.

1. The CacheLoader Interface and Lifecycle

Figure 8.1. The CacheLoader interface

The interaction between JBoss Cache and a CacheLoader implementation is as

follows. When CacheLoaderConfiguration (see below) is non-null, an instance

of each configured CacheLoader is created when the cache is created, and started

when the cache is started.

CacheLoader.create() and CacheLoader.start() are called when the cache

is started. Correspondingly, stop() and destroy() are called when the cache is

stopped.

Next, setConfig() and setCache() are called. The latter can be used to store

a reference to the cache, the former is used to configure this instance of the

CacheLoader . For example, here a database cache loader could establish a

connection to the database.

The CacheLoader interface has a set of methods that are called when no

transactions are used: get() , put() , remove() and removeData() : they

get/set/remove the value immediately. These methods are described as javadoc

comments in the interface.

Then there are three methods that are used with transactions: prepare() , commit()

and rollback() . The prepare() method is called when a transaction is to be

committed. It has a transaction object and a list of modfications as argument. The

transaction object can be used as a key into a hashmap of transactions, where

the values are the lists of modifications. Each modification list has a number of

Modification elements, which represent the changes made to a cache for a given

Chapter 8. Cache Loaders

58

transaction. When prepare() returns successfully, then the cache loader must be

able to commit (or rollback) the transaction successfully.

JBoss Cache takes care of calling prepare(), commit() and rollback() on the cache

loaders at the right time.

The commit() method tells the cache loader to commit the transaction, and the

rollback() method tells the cache loader to discard the changes associated with

that transaction.

See the javadocs on this interface for a detailed explanation on each method and the

contract implementations would need to fulfil.

2. Configuration

Cache loaders are configured as follows in the JBoss Cache XML file. Note that you

can define several cache loaders, in a chain. The impact is that the cache will look

at all of the cache loaders in the order they've been configured, until it finds a valid,

non-null element of data. When performing writes, all cache loaders are written to

(except if the ignoreModifications element has been set to true for a specific

cache loader. See the configuration section below for details.

<!-- Cache loader config block -->

 <attribute name="CacheLoaderConfiguration">

 <config>

 <!-- if passivation is true, only the first cache loader is

 used; the rest are ignored -->

 <passivation>false</passivation>

 <!-- comma delimited FQNs to preload -->

 <preload>/</preload>

 <!-- are the cache loaders shared in a cluster? -->

 <shared>false</shared>

 <!-- we can now have multiple cache loaders, which get

 chained -->

 <!-- the 'cacheloader' element may be repeated -->

 <cacheloader>

 <class>org.jboss.cache.loader.JDBCCacheLoader</class>

 <!-- properties to pass in to the cache loader -->

 <properties>

 cache.jdbc.driver=com.mysql.jdbc.Driver

 cache.jdbc.url=jdbc:mysql://localhost:3306/jbossdb

 cache.jdbc.user=root

 cache.jdbc.password=

 cache.jdbc.sql-concat=concat(1,2)

 </properties>

Configuration

59

 <!-- whether the cache loader writes are asynchronous -->

 <async>false</async>

 <!-- only one cache loader in the chain may set

 fetchPersistentState to true.

 An exception is thrown if more than one cache loader sets

 this to true. -->

 <fetchPersistentState>true</fetchPersistentState>

 <!-- determines whether this cache loader ignores writes -

 defaults to false. -->

 <ignoreModifications>false</ignoreModifications>

 <!-- if set to true, purges the contents of this cache

 loader when the cache starts up.

 Defaults to false. -->

 <purgeOnStartup>false</purgeOnStartup>

 <!-- defines the cache loader as a singleton store where

 only the coordinator of the

 cluster will store modifications. -->

 <singletonStore>

 <!-- if true, singleton store functionality is enabled,

 defaults to false -->

 <enabled>false</enabled>

 <!-- implementation class for singleton store functionality

 which must extend

 org.jboss.cache.loader.AbstractDelegatingCacheLoader.

 Default implementation

 is org.jboss.cache.loader.SingletonStoreCacheLoader -->

 <class>org.jboss.cache.loader.SingletonStoreCacheLoader</class>

 <!-- properties and default values for the default singleton

 store functionality

 implementation -->

 <properties>

 pushStateWhenCoordinator=true

 pushStateWhenCoordinatorTimeout=20000

 </properties>

 </singletonStore>

 </cacheloader>

 </config>

</attribute>

The class element defines the class of the cache loader implementation. (Note

that, because of a bug in the properties editor in JBoss AS, backslashes in variables

Chapter 8. Cache Loaders

60

for Windows filenames might not get expanded correctly, so replace="false" may

be necessary). Note that an implementation of cache loader has to have an empty

constructor.

The properties element defines a configuration specific to the given

implementation. The filesystem-based implementation for example defines

the root directory to be used, whereas a database implementation might

define the database URL, name and password to establish a database

connection. This configuration is passed to the cache loader implementation via

CacheLoader.setConfig(Properties) . Note that backspaces may have to be

escaped.

preload allows us to define a list of nodes, or even entire subtrees, that are visited

by the cache on startup, in order to preload the data associated with those nodes.

The default ("/") loads the entire data available in the backend store into the cache,

which is probably not a good idea given that the data in the backend store might

be large. As an example, /a, /product/catalogue loads the subtrees /a and

/product/catalogue into the cache, but nothing else. Anything else is loaded lazily

when accessed. Preloading makes sense when one anticipates using elements

under a given subtree frequently. .

fetchPersistentState determines whether or not to fetch the persistent state of a

cache when joining a cluster. Only one configured cache loader may set this property

to true; if more than one cache loader does so, a configuration exception will be

thrown when starting your cache service.

async determines whether writes to the cache loader block until completed, or

are run on a separate thread so writes return immediately. If this is set to true, an

instance of org.jboss.cache.loader.AsyncCacheLoader is constructed with

an instance of the actual cache loader to be used. The AsyncCacheLoader then

delegates all requests to the underlying cache loader, using a separate thread if

necessary. See the Javadocs on AsyncCacheLoader for more details. If unspecified,

the async element defaults to false .

Note on using the async element: there is always the possibility of dirty reads

since all writes are performed asynchronously, and it is thus impossible to guarantee

when (and even if) a write succeeds. This needs to be kept in mind when setting the

async element to true.

ignoreModifications determines whether write methods are pushed down to

the specific cache loader. Situations may arise where transient application data

should only reside in a file based cache loader on the same server as the in-memory

cache, for example, with a further shared JDBCCacheLoader used by all servers

in the network. This feature allows you to write to the 'local' file cache loader but

not the shared JDBCCacheLoader . This property defaults to false , so writes are

propagated to all cache loaders configured.

Singleton Store Configuration

61

purgeOnStatup empties the specified cache loader (if ignoreModifications is

false) when the cache loader starts up.

shared indicates that the cache loader is shared among different cache instances,

for example where all instances in a cluster use the same JDBC settings t talk

to the same remote, shared database. Setting this to true prevents repeated

and unnecessary writes of the same data to the cache loader by different cache

instances. Default value is false .

2.1. Singleton Store Configuration

singletonStore element enables modifications to be stored by only one node

in the cluster, the coordinator. Essentially, whenever any data comes in to some

node it is always replicated so as to keep the caches' in-memory states in sync; the

coordinator, though, has the sole responsibility of pushing that state to disk. This

functionality can be activated setting the enabled subelement to true in all nodes, but

again only the coordinator of the cluster will store the modifications in the underlying

cache loader as defined in cacheloader element. You cannot define a cache loader

as shared and with singletonStore enabled at the same time. Default value for

enabled is false .

Optionally, within the singletonStore element, you can define

a class element that specifies the implementation class that

provides the singleton store functionality. This class must extend

org.jboss.cache.loader.AbstractDelegatingCacheLoader , and if absent, it

defaults to org.jboss.cache.loader.SingletonStoreCacheLoader .

The properties subelement defines properties that allow changing the

behaivour of the class providing the singleton store functionality. By default,

pushStateWhenCoordinator and pushStateWhenCoordinatorTimeout properties

have been defined, but more could be added as required by the user-defined class

providing singleton store functionality.

pushStateWhenCoordinator allows the in-memory state to be pushed to the cache

store when a node becomes the coordinator, as a result of the new election of

coordinator due to a cluster topology change. This can be very useful in situations

where the coordinator crashes and there's a gap in time until the new coordinator

is elected. During this time, if this property was set to false and the cache was

updated, these changes would never be persisted. Setting this property to true

would ensure that any changes during this process also get stored in the cache

loader. You would also want to set this property to true if each node's cache loader

is configured with a different location. Default value is true .

pushStateWhenCoordinatorTimeout is only relevant if pushStateWhenCoordinator

is true in which case, sets the maximum number of milliseconds that the process of

pushing the in-memory state to the underlying cache loader should take, reporting a

PushStateException if exceeded. Default value is 20000.

Chapter 8. Cache Loaders

62

Note on using the singletonStore element: setting up a cache loader as a

singleton and using cache passivation (via evictions) can lead to undesired effects.

If a node is to be passivated as a result of an eviction, while the cluster is in the

process of electing a new coordinator, the data will be lost. This is because no

coordinator is active at that time and therefore, none of the nodes in the cluster will

store the passivated node. A new coordinator is elected in the cluster when either,

the coordinator leaves the cluster, the coordinator crashes or stops responding.

3. Shipped Implementations

The currently available implementations shipped with JBoss Cache are as follows.

3.1. File system based cache loaders

JBoss Cache ships with several cache loaders that utilise the file system as a

data store. They all require that the <cacheloader><properties> configuration

element contains a location property, which maps to a directory to be used as a

persistent store. (e.g., location=/tmp/myDataStore). Used mainly for testing and

not recommended for production use.

• FileCacheLoader , which is a simple filesystem-based implementation.

By default, this cache loader checks for any potential character portability

issues in the location or tree node names, for example invalid characters,

producing warning messages. These checks can be disabled adding

check.character.portability property to the <properties> element and

setting it to false (e.g., check.character.portability=false).

The FileCacheLoader has some severe limitations which restrict it's use in a

production environment, or if used in such an environment, it should be used with

due care and sufficient understanding of these limitations.

• Due to the way the FileCacheLoader represents a tree structure on disk

(directories and files) traversal is inefficient for deep trees.

• Usage on shared filesystems like NFS, Windows shares, etc. should be avoided

as these do not implement proper file locking and can cause data corruption.

• Usage with an isolation level of NONE can cause corrupt writes as multiple

threads attempt to write to the same file.

• File systems are inherently not transactional, so when attempting to use your

cache in a transactional context, failures when writing to the file (which happens

during the commit phase) cannot be recovered.

As a rule of thumb, it is recommended that the FileCacheLoader not be used in a

highly concurrent, transactional or stressful environment, and it's use is restricted

to testing.

Cache loaders that delegate to other caches

63

BdbjeCacheLoader , which is a cache loader implementation

based on the Oracle/Sleepycat's BerkeleyDB Java Edition

[http://www.oracle.com/database/berkeley-db/index.html] .

• JdbmCacheLoader , which is a cache loader implementation based on the JDBM

engine [http://jdbm.sourceforge.net/] , a fast and free alternative to BerkeleyDB.

Note that the BerkeleyDB implementation is much more efficient than the

filesystem-based implementation, and provides transactional guarantees,

but requires a commercial license if distributed with an application (see

http://www.oracle.com/database/berkeley-db/index.html for details).

3.2. Cache loaders that delegate to other caches

• LocalDelegatingCacheLoader , which enables loading from and storing to

another local (same JVM) cache.

• ClusteredCacheLoader , which allows querying of other caches in the same

cluster for in-memory data via the same clustering protocols used to replicate

data. Writes are not 'stored' though, as replication would take care of any updates

needed. You need to specify a property called timeout , a long value telling the

cache loader how many milliseconds to wait for responses from the cluster before

assuming a null value. For example, timeout = 3000 would use a timeout value

of 3 seconds.

3.3. JDBCCacheLoader

JBossCache is distributed with a JDBC-based cache loader implementation that

stores/loads nodes' state into a relational database. The implementing class is

org.jboss.cache.loader.JDBCCacheLoader .

The current implementation uses just one table. Each row in the table represents one

node and contains three columns:

• column for Fqn (which is also a primary key column)

• column for node contents (attribute/value pairs)

• column for parent Fqn

Fqn 's are stored as strings. Node content is stored as a BLOB. WARNING: JBoss

Cache does not impose any limitations on the types of objects used in Fqn but

this implementation of cache loader requires Fqn to contain only objects of type

java.lang.String . Another limitation for Fqn is its length. Since Fqn is a primary

key, its default column type is VARCHAR which can store text values up to some

maximum length determined by the database in use.

http://www.oracle.com/database/berkeley-db/index.html
http://www.oracle.com/database/berkeley-db/index.html
http://jdbm.sourceforge.net/
http://jdbm.sourceforge.net/
http://jdbm.sourceforge.net/

Chapter 8. Cache Loaders

64

See http://wiki.jboss.org/wiki/Wiki.jsp?page=JDBCCacheLoader

[http://wiki.jboss.org/wiki/Wiki.jsp?page=JDBCCacheLoader] for configuration tips

with specific database systems.

3.3.1. JDBCCacheLoader configuration

3.3.1.1. Table configuration

Table and column names as well as column types are configurable with the following

properties.

• cache.jdbc.table.name - the name of the table. Can be prepended with schema

name for the given table: <schema_name>.<table_name>. The default value is

'jbosscache'.

• cache.jdbc.table.primarykey - the name of the primary key for the table. The

default value is 'jbosscache_pk'.

• cache.jdbc.table.create - can be true or false. Indicates whether to create the table

during startup. If true, the table is created if it doesn't already exist. The default

value is true.

• cache.jdbc.table.drop - can be true or false. Indicates whether to drop the table

during shutdown. The default value is true.

• cache.jdbc.fqn.column - FQN column name. The default value is 'fqn'.

• cache.jdbc.fqn.type - FQN column type. The default value is 'varchar(255)'.

• cache.jdbc.node.column - node contents column name. The default value is 'node'.

• cache.jdbc.node.type - node contents column type. The default value is 'blob'. This

type must specify a valid binary data type for the database being used.

3.3.1.2. DataSource

If you are using JBossCache in a managed environment (e.g., an application server)

you can specify the JNDI name of the DataSource you want to use.

• cache.jdbc.datasource - JNDI name of the DataSource. The default value is

java:/DefaultDS .

3.3.1.3. JDBC driver

If you are not using DataSource you have the following properties to configure

database access using a JDBC driver.

http://wiki.jboss.org/wiki/Wiki.jsp?page=JDBCCacheLoader
http://wiki.jboss.org/wiki/Wiki.jsp?page=JDBCCacheLoader

JDBCCacheLoader

65

• cache.jdbc.driver - fully qualified JDBC driver name.

• cache.jdbc.url - URL to connect to the database.

• cache.jdbc.user - user name to connect to the database.

• cache.jdbc.password - password to connect to the database.

3.3.1.4. c3p0 connection pooling

JBoss Cache implements JDBC connection pooling when running outside of an

application server standalone using the c3p0:JDBC DataSources/Resource Pools

library. In order to enable it, just edit the following property:

• cache.jdbc.connection.factory - Connection factory class name. If not set, it

defaults to standard non-pooled implementation. To enable c3p0 pooling, just set

the connection factory class for c3p0. See example below.

You can also set any c3p0 parameters in the same cache loader properties

section but don't forget to start the property name with 'c3p0.'. To find a

list of available properties, please check the c3p0 documentation for the

c3p0 library version distributed in c3p0:JDBC DataSources/Resource Pools

[http://sourceforge.net/projects/c3p0] . Also, in order to provide quick and easy

way to try out different pooling parameters, any of these properties can be set via

a System property overriding any values these properties might have in the JBoss

Cache XML configuration file, for example: -Dc3p0.maxPoolSize=20 . If a c3p0

property is not defined in either the configuration file or as a System property, default

value, as indicated in the c3p0 documentation, will apply.

3.3.1.5. Configuration example

Below is an example of a JDBCCacheLoader using Oracle as database. The

CacheLoaderConfiguration XML element contains an arbitrary set of properties

which define the database-related configuration.

<attribute name="CacheLoaderConfiguration">

 <config>

 <passivation>false</passivation>

 <preload>/some/stuff</preload>

 <cacheloader>

 <class>org.jboss.cache.loader.JDBCCacheLoader</class>

 <properties>

 cache.jdbc.table.name=jbosscache

 cache.jdbc.table.create=true

 cache.jdbc.table.drop=true

 cache.jdbc.table.primarykey=jbosscache_pk

 cache.jdbc.fqn.column=fqn

http://sourceforge.net/projects/c3p0
http://sourceforge.net/projects/c3p0

Chapter 8. Cache Loaders

66

 cache.jdbc.fqn.type=varchar(255)

 cache.jdbc.node.column=node

 cache.jdbc.node.type=blob

 cache.jdbc.parent.column=parent

 cache.jdbc.driver=oracle.jdbc.OracleDriver

 cache.jdbc.url=jdbc:oracle:thin:@localhost:1521:JBOSSDB

 cache.jdbc.user=SCOTT

 cache.jdbc.password=TIGER

 cache.jdbc.sql-concat=concat(1,2)

 </properties>

 <async>false</async>

 <fetchPersistentState>true</fetchPersistentState>

 <ignoreModifications>false</ignoreModifications>

 <purgeOnStartup>false</purgeOnStartup>

 </cacheloader>

 </config>

</attribute>

As an alternative to configuring the entire JDBC connection, the name of an existing

data source can be given:

<attribute name="CacheLoaderConfiguration">

<config>

<passivation>false</passivation>

 <preload>/some/stuff</preload>

<cacheloader>

<class>org.jboss.cache.loader.JDBCCacheLoader</class>

<properties>

cache.jdbc.datasource=java:/DefaultDS

</properties>

<async>false</async>

<fetchPersistentState>true</fetchPersistentState>

<ignoreModifications>false</ignoreModifications>

<purgeOnStartup>false</purgeOnStartup>

</cacheloader>

</config>

</attribute>

Cconfiguration example for a cache loader using c3p0 JDBC connection pooling:

<attribute name="CacheLoaderConfiguration">

 <config>

 <passivation>false</passivation>

 <preload>/some/stuff</preload>

 <cacheloader>

 <class>org.jboss.cache.loader.JDBCCacheLoader</class>

S3CacheLoader

67

 <properties>

 cache.jdbc.table.name=jbosscache

 cache.jdbc.table.create=true

 cache.jdbc.table.drop=true

 cache.jdbc.table.primarykey=jbosscache_pk

 cache.jdbc.fqn.column=fqn

 cache.jdbc.fqn.type=varchar(255)

 cache.jdbc.node.column=node

 cache.jdbc.node.type=blob

 cache.jdbc.parent.column=parent

 cache.jdbc.driver=oracle.jdbc.OracleDriver

 cache.jdbc.url=jdbc:oracle:thin:@localhost:1521:JBOSSDB

 cache.jdbc.user=SCOTT

 cache.jdbc.password=TIGER

 cache.jdbc.sql-concat=concat(1,2)

 cache.jdbc.connection.factory=org.jboss.cache.loader.C3p0ConnectionFactory

 c3p0.maxPoolSize=20

 c3p0.checkoutTimeout=5000

 </properties>

 <async>false</async>

 <fetchPersistentState>true</fetchPersistentState>

 <ignoreModifications>false</ignoreModifications>

 <purgeOnStartup>false</purgeOnStartup>

 </cacheloader>

 </config>

</attribute>

3.4. S3CacheLoader

The S3CacheLoader uses the Amazon S3 [http://aws.amazon.com/] (Simple Storage

Solution) for storing cache data. Since Amazon S3 is remote network storage and

has fairly high latency, it is really best for caches that store large pieces of data, such

as media or files. But consider this cache loader over the JDBC or file system based

cache loaders if you want remotely managed, highly reliable storage. Or, use it for

applications running on Amazon's EC2 (Elastic Compute Cloud).

If you're planning to use Amazon S3 for storage, consider using it with JBoss Cache.

JBoss Cache itself provides in-memory caching for your data to minimize the amount

of remote access calls, thus reducing the latency and cost of fetching your Amazon

S3 data. With cache replication, you are also able to load data from your local cluster

without having to remotely access it every time.

Note that Amazon S3 does not support transactions. If transactions are used in

your application then there is some possibility of state inconsistency when using this

cache loader. However, writes are atomic, in that if a write fails nothing is considered

written and data is never corrupted.

http://aws.amazon.com/
http://aws.amazon.com/

Chapter 8. Cache Loaders

68

Data is stored in keys based on the Fqn of the Node and Node data is serialized as a

java.util.Map using the CacheSPI.getMarshaller() instance. Read the javadoc on

how data is structured and stored. Data is stored using Java serialization. Be aware

this means data is not readily accessible over HTTP to non-JBoss Cache clients.

Your feedback and help would be appreciated to extend this cache loader for that

purpose.

With this cache loader, single-key operations such as Node.remove(Object)

and Node.put(Object, Object) are the slowest as data is stored in a single

Map instance. Use bulk operations such as Node.replaceAll(Map) and

Node.clearData() for more efficiency. Try the cache.s3.optimize option as well.

3.4.1. Amazon S3 Library

The S3 cache loader is provided with the default distribution but requires a library

to access the service at runtime. This runtime library may be obtained through a

Sourceforge Maven Repository. Include the following sections in your pom.xml file:

<repository>

 <id>e-xml.sourceforge.net</id>

<url>http://e-xml.sourceforge.net/maven2/repository</url>

 </repository>

 ...

 <dependency>

 <groupId>net.noderunner</groupId>

 <artifactId>amazon-s3</artifactId>

 <version>1.0.0.0</version>

 <scope>runtime</scope>

 </dependency>

If you do not use Maven, you can still download the amazon-s3 library by navigating

the repository or through this URL

[http://e-xml.sourceforge.net/maven2/repository/net/noderunner/amazon-s3/1.0.0.0/

amazon-s3-1.0.0.0.jar].

3.4.2. Configuration

At a minimum, you must configure your Amazon S3 access key and secret access

key. The following configuration keys are listed in general order of utility.

• cache.s3.accessKeyId - Amazon S3 Access Key, available from your account

profile.

• cache.s3.secretAccessKey - Amazon S3 Secret Access Key, available from your

account profile. As this is a password, be careful not to distribute it or include this

secret key in built software.

http://e-xml.sourceforge.net/maven2/repository/net/noderunner/amazon-s3/1.0.0.0/amazon-s3-1.0.0.0.jar
http://e-xml.sourceforge.net/maven2/repository/net/noderunner/amazon-s3/1.0.0.0/amazon-s3-1.0.0.0.jar
http://e-xml.sourceforge.net/maven2/repository/net/noderunner/amazon-s3/1.0.0.0/amazon-s3-1.0.0.0.jar

TcpDelegatingCacheLoader

69

• cache.s3.secure - The default isfalse: Traffic is sent unencrypted over the

public Internet. Set to true to use HTTPS. Note that unencrypted uploads and

downloads use less CPU.

• cache.s3.bucket - Name of the bucket to store data. For different caches using

the same access key, use a different bucket name. Read the S3 documentation on

the definition of a bucket. The default value is jboss-cache.

• cache.s3.callingFormat - One of PATH, SUBDOMAIN, or VANITY. Read the S3

documentation on the use of calling domains. The default value is SUBDOMAIN.

• cache.s3.optimize - The default is false. If true, put(Map) operations replace

the data stored at an Fqn rather than attempt to fetch and merge. (This option is

fairly experimental at the moment.)

• cache.s3.parentCache - The default is true. Set this value to false if you are

using multiple caches sharing the same S3 bucket, that remove parent nodes of

nodes being created in other caches. (This is not a common use case.)

• JBoss Cache stores nodes in a tree format and automatically creates

intermediate parent nodes as necessary. The S3 cache loader must also create

these parent nodes as well to allow for operations such as getChildrenNames to

work properly. Checking if all parent nodes exists for every put operation is fairly

expensive, so by default the cache loader caches the existence of these parent

nodes.

• cache.s3.location - This choses a primary storage location for your data to

reduce loading and retrevial latency. Set to EU to store data in Europe. The default

is null, to store data in the United States.

3.5. TcpDelegatingCacheLoader

This cache loader allows to delegate loads and stores to another instance of JBoss

Cache, which could reside (a) in the same address space, (b) in a different process

on the same host, or (c) in a different process on a different host.

A TcpDelegatingCacheLoader talks to a remote

org.jboss.cache.loader.tcp.TcpCacheServer , which can be a standalone

process started on the command line, or embedded as an MBean inside JBoss AS.

The TcpCacheServer has a reference to another JBoss Cache instance, which it can

create itself, or which is given to it (e.g. by JBoss, using dependency injection).

As of JBoss Cache 2.1.0, the TcpDelegatingCacheLoader transparently handles

reconnects if the connection to the TcpCacheServer is lost.

The TcpDelegatingCacheLoader is configured with the host and port of the remote

TcpCacheServer, and uses this to communicate to it. In addition, 2 new optional

parameters are used to control transparent reconnecting to the TcpCacheServer.

Chapter 8. Cache Loaders

70

The timeout property (defaults to 5000) specifies the length of time the cache loader

must continue retrying to connect to the TcpCacheServer before giving up and

throwing an exception. The reconnectWaitTime (defaults to 500) is how long the

cache loader should wait before attempting a reconnect if it detects a communication

failure. The last two parameters can be used to add a level of fault tolerance to the

cache loader, do deal with TcpCacheServer restarts.

The configuration looks as follows:

<attribute name="CacheLoaderConfiguration">

 <config>

 <cacheloader>

 <class>org.jboss.cache.loader.TcpDelegatingCacheLoader</class>

 <properties>

 host=myRemoteServer

 port=7500

 timeout=10000

 reconnectWaitTime=250

 </properties>

 </cacheloader>

 </config>

</attribute>

This means this instance of JBoss Cache will delegate all load and store requests to

the remote TcpCacheServer running on myRemoteServer:7500 .

A typical use case could be multiple replicated instances of JBoss Cache in the same

cluster, all delegating to the same TcpCacheServer instance. The TcpCacheServer

might itself delegate to a database via JDBCCacheLoader, but the point here is that

- if we have 5 nodes all accessing the same dataset - they will load the data from the

TcpCacheServer, which has do execute one SQL statement per unloaded data set.

If the nodes went directly to the database, then we'd have the same SQL executed

multiple times. So TcpCacheServer serves as a natural cache in front of the DB

(assuming that a network round trip is faster than a DB access (which usually also

include a network round trip)).

To alleviate single point of failure, we could configure several cache loaders. The first

cache loader is a ClusteredCacheLoader, the second a TcpDelegatingCacheLoader,

and the last a JDBCacheLoader, effectively defining our cost of access to a cache in

increasing order.

3.6. Transforming Cache Loaders

The way cached data is written to FileCacheLoader and JDBCCacheLoader based

cache stores has changed in JBoss Cache 2.0 in such way that these cache loaders

now write and read data using the same marhalling framework used to replicate

data accross the network. Such change is trivial for replication purpouses as it just

Cache Passivation

71

requires the rest of the nodes to understand this format. However, changing the

format of the data in cache stores brings up a new problem: how do users, which

have their data stored in JBoss Cache 1.x.x format, migrate their stores to JBoss

Cache 2.0 format?

With this in mind, JBoss Cache 2.0 comes with two cache loader implementations

called org.jboss.cache.loader.TransformingFileCacheLoader and

org.jboss.cache.loader.TransformingJDBCCacheLoader located within the

optional jbosscache-cacheloader-migration.jar file. These are one-off cache loaders

that read data from the cache store in JBoss Cache 1.x.x format and write data to

cache stores in JBoss Cache 2.0 format.

The idea is for users to modify their existing cache configuration file(s) momentarily

to use these cache loaders and for them to create a small Java application that

creates an instance of this cache, recursively reads the entire cache and writes

the data read back into the cache. Once the data is transformed, users can revert

back to their original cache configuration file(s). In order to help the users with this

task, a cache loader migration example has been constructed which can be located

under the examples/cacheloader-migration directory within the JBoss Cache

distribution. This example, called examples.TransformStore , is independent of the

actual data stored in the cache as it writes back whatever it was read recursively. It

is highly recommended that anyone interested in porting their data run this example

first, which contains a readme.txt file with detailed information about the example

itself, and also use it as base for their own application.

4. Cache Passivation

A cache loader can be used to enforce node passivation and activation on eviction in

a cache.

Cache Passivation is the process of removing an object from in-memory cache

and writing it to a secondary data store (e.g., file system, database) on eviction.

Cache Activation is the process of restoring an object from the data store into the

in-memory cache when it's needed to be used. In both cases, the configured cache

loader will be used to read from the data store and write to the data store.

When an eviction policy in effect evicts a node from the cache, if passivation is

enabled, a notification that the node is being passivated will be emitted to the cache

listeners and the node and its children will be stored in the cache loader store. When

a user attempts to retrieve a node that was evicted earlier, the node is loaded (lazy

loaded) from the cache loader store into memory. When the node and its children

have been loaded, they're removed from the cache loader and a notification is

emitted to the cache listeners that the node has been activated.

To enable cache passivation/activation, you can set passivation to true. The

default is false . When passivation is used, only the first cache loader configured is

used and all others are ignored.

Chapter 8. Cache Loaders

72

4.1. Cache Loader Behavior with Passivation Disabled vs.

Enabled

When passivation is disabled, whenever an element is modified, added or removed,

then that modification is persisted in the backend store via the cache loader. There is

no direct relationship between eviction and cache loading. If you don't use eviction,

what's in the persistent store is basically a copy of what's in memory. If you do use

eviction, what's in the persistent store is basically a superset of what's in memory

(i.e. it includes nodes that have been evicted from memory).

When passivation is enabled, there is a direct relationship between eviction and

the cache loader. Writes to the persistent store via the cache loader only occur

as part of the eviction process. Data is deleted from the persistent store when the

application reads it back into memory. In this case, what's in memory and what's in

the persistent store are two subsets of the total information set, with no intersection

between the subsets.

Following is a simple example, showing what state is in RAM and in the persistent

store after each step of a 6 step process:

1. Insert /A

2. Insert /B

3. Eviction thread runs, evicts /A

4. Read /A

5. Eviction thread runs, evicts /B

6. Remove /B

When passivation is disabled:

 1) RAM: /A Disk: /A

 2) RAM: /A, /B Disk: /A, /B

 3) RAM: /B Disk: /A, /B

 4) RAM: /A, /B Disk: /A, /B

 5) RAM: /A Disk: /A, /B

 6) RAM: /A Disk: /A

When passivation is enabled:

Strategies

73

 1) RAM: /A Disk:

 2) RAM: /A, /B Disk:

 3) RAM: /B Disk: /A

 4) RAM: /A, /B Disk:

 5) RAM: /A Disk: /B

 6) RAM: /A Disk:

5. Strategies

This section discusses different patterns of combining different cache loader types

and configuration options to achieve specific outcomes.

5.1. Local Cache With Store

This is the simplest case. We have a JBoss Cache instance, whose cache mode

is LOCAL , therefore no replication is going on. The cache loader simply loads

non-existing elements from the store and stores modifications back to the store.

When the cache is started, depending on the preload element, certain data can be

preloaded, so that the cache is partly warmed up.

5.2. Replicated Caches With All Caches Sharing The Same

Store

The following figure shows 2 JBoss Cache instances sharing the same backend

store:

Figure 8.2. 2 nodes sharing a backend store

Both nodes have a cache loader that accesses a common shared backend store.

This could for example be a shared filesystem (using the FileCacheLoader), or a

shared database. Because both nodes access the same store, they don't necessarily

need state transfer on startup. 1 Rather, the FetchInMemoryState attribute could

be set to false, resulting in a 'cold' cache, that gradually warms up as elements are

accessed and loaded for the first time. This would mean that individual caches in a

cluster might have different in-memory state at any given time (largely depending on

their preloading and eviction strategies).

When storing a value, the writer takes care of storing the change in the backend

store. For example, if node1 made change C1 and node2 C2, then node1 would tell

its cache loader to store C1, and node2 would tell its cache loader to store C2.

1Of course they can enable state transfer, if they want to have a warm or hot cache after startup.

Chapter 8. Cache Loaders

74

5.3. Replicated Caches With Only One Cache Having A Store

Figure 8.3. 2 nodes but only one accesses the backend store

This is a similar case to the previous one, but here only one node in the cluster

interacts with a backend store via its cache loader. All other nodes perform

in-memory replication. The idea here is all application state is kept in memory in

each node, with the existence of multiple caches making the data highly available.

(This assumes that a client that needs the data is able to somehow fail over from one

cache to another.) The single persistent backend store then provides a backup copy

of the data in case all caches in the cluster fail or need to be restarted.

Note that here it may make sense for the cache loader to store changes

asynchronously, that is not on the caller's thread, in order not to slow down the

cluster by accessing (for example) a database. This is a non-issue when using

asynchronous replication.

A weakness with this architecture is that the cache with access to the cache loader

becomes a single point of failure. Furthermore, if the cluster is restarted, the cache

with the cache loader must be started first (easy to forget). A solution to the first

problem is to configure a cache loader on each node, but set the singletonStore

configuration to true. With this kind of setup, one but only one node will always

be writing to a persistent store. However, this complicates the restart problem,

as before restarting you need to determine which cache was writing before the

shutdown/failure and then start that cache first.

5.4. Replicated Caches With Each Cache Having Its Own Store

Figure 8.4. 2 nodes each having its own backend store

Here, each node has its own datastore. Modifications to the cache are (a) replicated

across the cluster and (b) persisted using the cache loader. This means that all

datastores have exactly the same state. When replicating changes synchronously

and in a transaction, the two phase commit protocol takes care that all modifications

are replicated and persisted in each datastore, or none is replicated and persisted

(atomic updates).

Note that JBoss Cache is not an XA Resource, that means it doesn't implement

recovery. When used with a transaction manager that supports recovery, this

functionality is not available.

The challenge here is state transfer: when a new node starts it needs to do the

following:

Hierarchical Caches

75

1. Tell the coordinator (oldest node in a cluster) to send it the state. This is always a

full state transfer, overwriting any state that may already be present.

2. The coordinator then needs to wait until all in-flight transactions have completed.

During this time, it will not allow for new transactions to be started.

3. Then the coordinator asks its cache loader for the entire state using

loadEntireState() . It then sends back that state to the new node.

4. The new node then tells its cache loader to store that state in its store, overwriting

the old state. This is the CacheLoader.storeEntireState() method

5. As an option, the transient (in-memory) state can be transferred as well during the

state transfer.

6. The new node now has the same state in its backend store as everyone else in

the cluster, and modifications received from other nodes will now be persisted

using the local cache loader.

5.5. Hierarchical Caches

If you need to set up a hierarchy within a single JVM, you can use the

LocalDelegatingCacheLoader . This type of hierarchy can currently only be set up

programmatically.

Hierarchical caches could also be set up spanning more than one JVM or server,

using the TcpDelegatingCacheLoader .

Figure 8.5. TCP delegating cache loader

5.6. Multiple Cache Loaders

You can set up more than one cache loader in a chain. Internally, a delegating

ChainingCacheLoader is used, with references to each cache loader you have

configured. Use cases vary depending on the type of cache loaders used in the

chain. One example is using a filesystem based cache loader, colocated on the

same host as the JVM, used as an overflow for memory. This ensures data is

available relatively easily and with low cost. An additional remote cache loader, such

as a TcpDelegatingCacheLoader provides resilience between server restarts.

Figure 8.6. Multiple cache loaders in a chain

76

Chapter 9.

77

Eviction Policies
Eviction policies control JBoss Cache's memory management by managing how

many nodes are allowed to be stored in memory and their life spans. Memory

constraints on servers mean cache cannot grow indefinitely, so policies need to be in

place to restrict the size of the cache. Eviction policies are most often used alongside

cache loaders cache loaders .

1. Configuring Eviction Policies

1.1. Basic Configuration

The basic eviction policy configuration element looks like:

 ...

 <attribute name="EvictionConfig">

 <config>

 <attribute name="wakeUpIntervalSeconds">3</attribute>

 <!-- This defaults to 200000 if not specified -->

 <attribute name="eventQueueSize">100000</attribute>

 <!-- Name of the DEFAULT eviction policy class. -->

 <attribute

 name="policyClass">org.jboss.cache.eviction.LRUPolicy</attribute>

 <!-- Cache wide default -->

 <region name="/_default_">

 <attribute name="maxNodes">100</attribute>

 </region>

 <!-- override policy used for this region -->

 <region name="/org/jboss/data"

 policyClass="org.jboss.cache.eviction.LRUPolicy">

 <attribute name="maxNodes">250</attribute>

 <attribute name="minTimeToLiveSeconds">10</attribute>

 </region>

 <!-- We expect a lot of events for this region,

 so override the default event queue size -->

 <region name="/org/jboss/test/data"

 eventQueueSize="500000">

 <attribute name="maxNodes">60000</attribute>

 </region>

Chapter 9. Eviction Policies

78

 </config>

 </attribute>

 ...

• wakeUpIntervalSeconds - this required parameter defines how often the eviction

thread runs

• eventQueueSize - this optional parameter defines the size of the queue which

holds eviction events. If your eviction thread does not run often enough, you may

need to increase this. This can be overridden on a per-region basis.

• policyClass - this is required, unless you set individual policyClass attributes on

each and every region. This defines the eviction policy to use if one is not defined

for a region.

1.2. Eviction Regions

The concept of regions and the Region class were visited earlier when talking

about marshalling. Regions also have another use, in that they are used to define

the eviction policy used within the region. In addition to using a region-specific

configuration, you can also configure a default, cache-wide eviction policy for nodes

that do not fall into predefined regions or if you do not wish to define specific regions.

It is important to note that when defining regions using the configuration XML file, all

elements of the Fqn that defines the region are java.lang.String objects.

Looking at the eviction configuration snippet above, we see that a default region,

default , holds attributes which apply to nodes that do not fall into any of the

other regions defined.

For each region, you can define parameters which affect how the policy which

applies to the region chooses to evict nodes. In the example above, the LRUPolicy

allows a maxNodes parameter which defines how many nodes can exist in the region

before it chooses to start evicting nodes. See the javadocs for each policy for a list

of allowed parameters. It also defines a minTimeToLiveSeconds parameter, which

defines a minimum time a node must exist in memory before being considered for

eviction.

1.2.1. Overlapping Eviction Regions

It's possible to define regions that overlap. In other words, one region can be defined

for /a/b/c , and another defined for /a/b/c/d (which is just the d subtree of the /a/b/c

sub-tree). The algorithm, in order to handle scenarios like this consistently, will

always choose the first region it encounters. In this way, if the algorithm needed to

decide how to handle /a/b/c/d/e , it would start from there and work its way up the

tree until it hits the first defined region - in this case /a/b/c/d .

Resident Nodes

79

1.3. Resident Nodes

Nodes marked as resident (using Node.setResident() API) will be ignored by

the eviction policies both when checking whether to trigger the eviction and when

proceeding with the actual eviction of nodes. E.g. if a region is configured to have

a maximum of 10 nodes, resident nodes won't be counted when deciding whether

to evict nodes in that region. In addition, resident nodes will not be considered for

eviction when the region's eviction threshold is reached.

In order to mark a node as resident the Node.setResident() API should be used.

By default, the newly created nodes are not resident. The resident attribute of a

node is neither replicated, persisted nor transaction-aware.

A sample use case for resident nodes would be ensuring "path" nodes don't add

"noise" to an eviction policy. E.g.,:

...

 Map lotsOfData = generateData();

 cache.put("/a/b/c", lotsOfData);

 cache.getRoot().getChild("/a").setResident(true);

 cache.getRoot().getChild("/a/b").setResident(true);

...

In this example, the nodes /a and /a/b are paths which exist solely to support the

existence of node /a/b/c and don't hold any data themselves. As such, they are

good candidates for being marked as resident. This would lead to better memory

management as no eviction events would be generated when accessing /a and/a/b.

N.B. when adding attributes to a resident node, e.g. cache.put("/a", "k", "v")

in the above example, it would make sense to mark the nodes as non-resident again

and let them be considered for eviction..

1.4. Programmatic Configuration

Configuring eviction using the Configuration object entails the use of the

org.jboss.cache.config.EvictionConfig bean, which is passed into

Configuration.setEvictionConfig() . See the chapter on Configuration for more

on building a Configuration programatically.

The use of simple POJO beans to represent all elements in a cache's configuration

also makes it fairly easy to programatically add eviction regions after the cache is

started . For example, assume we had an existing cache configured via XML with

the EvictionConfig element shown above. Now at runtime we wished to add a new

eviction region named "/org/jboss/fifo", using LRUPolicy but a different number of

maxNodes :

Chapter 9. Eviction Policies

80

 Fqn fqn = Fqn.fromString("/org/jboss/fifo");

 // Create a configuration for an LRUPolicy

 LRUConfiguration lruc = new LRUConfiguration();

 lruc.setMaxNodes(10000);

 // Create the region and set the config

 Region region = cache.getRegion(fqn, true);

 region.setEvictionPolicy(lruc);

2. Shipped Eviction Policies

2.1. LRUPolicy - Least Recently Used

org.jboss.cache.eviction.LRUPolicy controls both the node lifetime and age.

This policy guarantees a constant order (O (1)) for adds, removals and lookups

(visits). It has the following configuration parameters:

• maxNodes - This is the maximum number of nodes allowed in this region. 0

denotes no limit.

• timeToLiveSeconds - The amount of time a node is not written to or read (in

seconds) before the node is swept away. 0 denotes no limit.

• maxAgeSeconds - Lifespan of a node (in seconds) regardless of idle time before the

node is swept away. 0 denotes no limit.

• minTimeToLiveSeconds - the minimum amount of time a node must be allowed

to live after being accessed before it is allowed to be considered for eviction. 0

denotes that this feature is disabled, which is the default value.

2.2. FIFOPolicy - First In, First Out

org.jboss.cache.eviction.FIFOPolicy controls the eviction in a proper first in

first out order. This policy guarantees a constant order (O (1)) for adds, removals

and lookups (visits). It has the following configuration parameters:

• maxNodes - This is the maximum number of nodes allowed in this region. 0

denotes no limit.

• minTimeToLiveSeconds - the minimum amount of time a node must be allowed

to live after being accessed before it is allowed to be considered for eviction. 0

denotes that this feature is disabled, which is the default value.

MRUPolicy - Most Recently Used

81

2.3. MRUPolicy - Most Recently Used

org.jboss.cache.eviction.MRUPolicy controls the eviction in based on most

recently used algorithm. The most recently used nodes will be the first to evict with

this policy. This policy guarantees a constant order (O (1)) for adds, removals and

lookups (visits). It has the following configuration parameters:

• maxNodes - This is the maximum number of nodes allowed in this region. 0

denotes no limit.

• minTimeToLiveSeconds - the minimum amount of time a node must be allowed

to live after being accessed before it is allowed to be considered for eviction. 0

denotes that this feature is disabled, which is the default value.

2.4. LFUPolicy - Least Frequently Used

org.jboss.cache.eviction.LFUPolicy controls the eviction in based on least

frequently used algorithm. The least frequently used nodes will be the first to evict

with this policy. Node usage starts at 1 when a node is first added. Each time it is

visted, the node usage counter increments by 1. This number is used to determine

which nodes are least frequently used. LFU is also a sorted eviction algorithm. The

underlying EvictionQueue implementation and algorithm is sorted in ascending order

of the node visits counter. This class guarantees a constant order (O (1)) for adds,

removal and searches. However, when any number of nodes are added/visited to the

queue for a given processing pass, a single quasilinear (O (n * log n)) operation

is used to resort the queue in proper LFU order. Similarly if any nodes are removed

or evicted, a single linear (O (n)) pruning operation is necessary to clean up the

EvictionQueue. LFU has the following configuration parameters:

• maxNodes - This is the maximum number of nodes allowed in this region. 0

denotes no limit.

• minNodes - This is the minimum number of nodes allowed in this region. This

value determines what the eviction queue should prune down to per pass. e.g. If

minNodes is 10 and the cache grows to 100 nodes, the cache is pruned down to

the 10 most frequently used nodes when the eviction timer makes a pass through

the eviction algorithm.

• minTimeToLiveSeconds - the minimum amount of time a node must be allowed

to live after being accessed before it is allowed to be considered for eviction. 0

denotes that this feature is disabled, which is the default value.

2.5. ExpirationPolicy

org.jboss.cache.eviction.ExpirationPolicy is a policy that evicts nodes

based on an absolute expiration time. The expiration time is indicated using the

Chapter 9. Eviction Policies

82

org.jboss.cache.Node.put() method, using a String key expiration and the

absolute time as a java.lang.Long object, with a value indicated as milliseconds

past midnight January 1st, 1970 UTC (the same relative time as provided by

java.lang.System.currentTimeMillis()).

This policy guarantees a constant order (O (1)) for adds and removals. Internally,

a sorted set (TreeSet) containing the expiration time and Fqn of the nodes is stored,

which essentially functions as a heap.

This policy has the following configuration parameters:

• expirationKeyName - This is the Node key name used in the eviction algorithm.

The configuration default is expiration .

• maxNodes - This is the maximum number of nodes allowed in this region. 0

denotes no limit.

The following listing shows how the expiration date is indicated and how the policy is

applied:

 Cache cache = DefaultCacheFactory.createCache();

 Fqn fqn1 = Fqn.fromString("/node/1");

 Long future = new Long(System.currentTimeMillis() + 2000);

 // sets the expiry time for a node

 cache.getRoot().addChild(fqn1).put(ExpirationConfiguration.EXPIRATION_KEY,

 future);

 assertTrue(cache.getRoot().hasChild(fqn1));

 Thread.sleep(5000);

 // after 5 seconds, expiration completes

 assertFalse(cache.getRoot().hasChild(fqn1));

Note that the expiration time of nodes is only checked when the region manager

wakes up every wakeUpIntervalSeconds , so eviction may happen a few seconds

later than indicated.

2.6. ElementSizePolicy - Eviction based on number of key/value

pairs in a node

org.jboss.cache.eviction.ElementSizePolicy controls the eviction in based on

the number of key/value pairs in the node. Nodes The most recently used nodes will

be the first to evict with this policy. It has the following configuration parameters:

Writing Your Own Eviction Policies

83

• maxNodes - This is the maximum number of nodes allowed in this region. 0

denotes no limit.

• maxElementsPerNode - This is the trigger number of attributes per node for the

node to be selected for eviction. 0 denotes no limit.

• minTimeToLiveSeconds - the minimum amount of time a node must be allowed

to live after being accessed before it is allowed to be considered for eviction. 0

denotes that this feature is disabled, which is the default value.

3. Writing Your Own Eviction Policies

3.1. Eviction Policy Plugin Design

The design of the JBoss Cache eviction policy framework is based on an

EvictionInterceptor to handle cache events and relay them back to the eviction

policies. During the cache start up, an EvictionInterceptor will be added to the

cache interceptor stack if the eviction policy is specified. Then whenever a node is

added, removed, evicted, or visited, the EvictionInterceptor will maintain state

statistics and information will be relayed to each individual eviction region.

There is a single eviction thread (timer) that will run at a configured interval.

This thread will make calls into each of the policy providers and inform it of

any aggregated adds, removes and visits (gets) events to the cache during the

configured interval. The eviction thread is responsible for kicking off the eviction

policy processing (a single pass) for each configured eviction cache region.

3.2. Interfaces to implement

In order to implement an eviction policy, the following interfaces must be

implemented:

• org.jboss.cache.eviction.EvictionPolicy

• org.jboss.cache.eviction.EvictionAlgorithm

• org.jboss.cache.eviction.EvictionQueue

• org.jboss.cache.config.EvictionPolicyConfig

When compounded together, each of these interface implementations define all the

underlying mechanics necessary for a complete eviction policy implementation.

Note that:

• The EvictionPolicyConfig implementation should maintain getter and

setter methods for whatever configuration properties the policy supports (e.g.

for LRUConfiguration among others there is a int getMaxNodes() and a

Chapter 9. Eviction Policies

84

setMaxNodes(int)). When the "EvictionConfig" section of an XML configuration

is parsed, these properties will be set by reflection.

Alternatively, the implementation of a new eviction policy provider can be simplified

by extending BaseEvictionPolicy and BaseEvictionAlgorithm . Or for properly

sorted EvictionAlgorithms (sorted in eviction order - see LFUAlgorithm) extending

BaseSortedEvictionAlgorithm and implementing SortedEvictionQueue takes

care of most of the common functionality available in a set of eviction policy provider

classes

Note that:

• The BaseEvictionAlgorithm class maintains a processing structure. It will

process the ADD, REMOVE, and VISIT events queued by the region first. It also

maintains an collection of items that were not properly evicted during the last go

around because of held locks. That list is pruned. Finally, the EvictionQueue itself

is pruned for entries that should be evicted based upon the configured eviction

rules for the region.

• The BaseSortedEvictionAlgorithm class will maintain a boolean through the

algorithm processing that will determine if any new nodes were added or visited.

This allows the Algorithm to determine whether to resort the eviction queue items

(in first to evict order) or to skip the potentially expensive sorting if there have been

no changes to the cache in this region.

• The SortedEvictionQueue interface defines the contract used by the

BaseSortedEvictionAlgorithm abstract class that is used to resort the

underlying queue. Again, the queue sorting should be sorted in first to evict order.

The first entry in the list should evict before the last entry in the queue. The last

entry in the queue should be the last entry that will require eviction.

Chapter 10.

85

Transactions and Concurrency

1. Concurrent Access

JBoss Cache is a thread safe caching API, and uses its own efficient mechanisms of

controlling concurrent access. It uses a pessimistic locking scheme by default for this

purpose. Optimistic locking may alternatively be used, and is discussed later.

1.1. Locks

Locking is done internally, on a node-level. For example when we want to access

"/a/b/c", a lock will be acquired for nodes "a", "b" and "c". When the same transaction

wants to access "/a/b/c/d", since we already hold locks for "a", "b" and "c", we only

need to acquire a lock for "d".

Lock owners are either transactions (call is made within the scope of an

existing transaction) or threads (no transaction associated with the call).

Regardless, a transaction or a thread is internally transformed into an instance of

GlobalTransaction , which is used as a globally unique identifier for modifications

across a cluster. E.g. when we run a two-phase commit protocol across the cluster,

the GlobalTransaction uniquely identifies a unit of work across a cluster.

Locks can be read or write locks. Write locks serialize read and write access,

whereas read-only locks only serialize read access. When a write lock is held, no

other write or read locks can be acquired. When a read lock is held, others can

acquire read locks. However, to acquire write locks, one has to wait until all read

locks have been released. When scheduled concurrently, write locks always have

precedence over read locks. Note that (if enabled) read locks can be upgraded to

write locks.

Using read-write locks helps in the following scenario: consider a tree with entries

"/a/b/n1" and "/a/b/n2". With write-locks, when Tx1 accesses "/a/b/n1", Tx2 cannot

access "/a/b/n2" until Tx1 has completed and released its locks. However, with

read-write locks this is possible, because Tx1 acquires read-locks for "/a/b" and a

read-write lock for "/a/b/n1". Tx2 is then able to acquire read-locks for "/a/b" as well,

plus a read-write lock for "/a/b/n2". This allows for more concurrency in accessing the

cache.

1.2. Pessimistic locking

By default, JBoss Cache uses pessimistic locking. Locking is not exposed directly to

user. Instead, a transaction isolation level which provides different locking behaviour

is configurable.

Chapter 10. Transactions and ...

86

1.2.1. Isolation levels

JBoss Cache supports the following transaction isolation levels, analogous to

database ACID isolation levels. A user can configure an instance-wide isolation level

of NONE, READ_UNCOMMITTED, READ_COMMITTED, REPEATABLE_READ, or

SERIALIZABLE. REPEATABLE_READ is the default isolation level used.

1. NONE. No transaction support is needed. There is no locking at this level, e.g.,

users will have to manage the data integrity. Implementations use no locks.

2. READ_UNCOMMITTED. Data can be read anytime while write operations are

exclusive. Note that this level doesn't prevent the so-called "dirty read" where data

modified in Tx1 can be read in Tx2 before Tx1 commits. In other words, if you

have the following sequence,

 Tx1 Tx2

 W

 R

using this isolation level will not prevent Tx2 read operation. Implementations

typically use an exclusive lock for writes while reads don't need to acquire a lock.

3. READ_COMMITTED. Data can be read any time as long as there is no write. This

level prevents the dirty read. But it doesn’t prevent the so-called ‘non-repeatable

read’ where one thread reads the data twice can produce different results. For

example, if you have the following sequence,

 Tx1 Tx2

 R

 W

 R

where the second read in Tx1 thread will produce different result.

Implementations usually use a read-write lock; reads succeed acquiring the lock

when there are only reads, writes have to wait until there are no more readers

holding the lock, and readers are blocked acquiring the lock until there are no

more writers holding the lock. Reads typically release the read-lock when done, so

that a subsequent read to the same data has to re-acquire a read-lock; this leads

to nonrepeatable reads, where 2 reads of the same data might return different

values. Note that, the write only applies regardless of transaction state (whether it

has been committed or not).

4. REPEATABLE_READ. Data can be read while there is no write and vice versa.

This level prevents "non-repeatable read" but it does not completely prevent

Optimistic Locking

87

the so-called "phantom read" where new data can be inserted into the tree from

another transaction. Implementations typically use a read-write lock. This is the

default isolation level used.

5. SERIALIZABLE. Data access is synchronized with exclusive locks. Only 1 writer

or reader can have the lock at any given time. Locks are released at the end of

the transaction. Regarded as very poor for performance and thread/transaction

concurrency.

1.2.2. Insertion and Removal of Nodes

By default, before inserting a new node into the tree or removing an existing node

from the tree, JBoss Cache will only attempt to acquire a read lock on the new

node's parent node. This approach does not treat child nodes as an integral part

of a parent node's state. This approach allows greater concurrency if nodes are

frequently added or removed, but at a cost of lesser correctness. For use cases

where greater correctness is necessary, JBoss Cache provides a configuration

option LockParentForChildInsertRemove . If this is set to true , insertions and

removals of child nodes require the acquisition of a write lock on the parent node.

In addition to the above, in version 2.1.0 and above, JBoss Cache

offers the ability to override this configuration on a per-node basis. See

Node.setLockForChildInsertRemove() and it's corresponding javadocs for details.

1.3. Optimistic Locking

The motivation for optimistic locking is to improve concurrency. When a lot of threads

have a lot of contention for access to the data tree, it can be inefficient to lock

portions of the tree - for reading or writing - for the entire duration of a transaction

as we do in pessimistic locking. Optimistic locking allows for greater concurrency

of threads and transactions by using a technique called data versioning, explained

here. Note that isolation levels (if configured) are ignored if optimistic locking is

enabled.

1.3.1. Architecture

Optimistic locking treats all method calls as transactional 1 . Even if you do not invoke

a call within the scope of an ongoing transaction, JBoss Cache creates an implicit

transaction and commits this transaction when the invocation completes. Each

transaction maintains a transaction workspace, which contains a copy of the data

used within the transaction.

For example, if a transaction calls cache.getRoot().getChild(

Fqn.fromString("/a/b/c")) , nodes a, b and c are copied from the main data

tree and into the workspace. The data is versioned and all calls in the transaction

1Because of this requirement, you must always have a transaction manager configured when using optimistic locking.

Chapter 10. Transactions and ...

88

work on the copy of the data rather than the actual data. When the transaction

commits, its workspace is merged back into the underlying tree by matching

versions. If there is a version mismatch - such as when the actual data tree has a

higher version than the workspace, perhaps if another transaction were to access

the same data, change it and commit before the first transaction can finish - the

transaction throws a RollbackException when committing and the commit fails.

Optimistic locking uses the same locks we speak of above, but the locks are only

held for a very short duration - at the start of a transaction to build a workspace, and

when the transaction commits and has to merge data back into the tree.

So while optimistic locking may occasionally fail if version validations fail or may

run slightly slower than pessimistic locking due to the inevitable overhead and extra

processing of maintaining workspaces, versioned data and validating on commit, it

does buy you a near-SERIALIZABLE degree of data integrity while maintaining a

very high level of concurrency.

1.3.2. Data Versioning

Optimistic locking makes use of the DataVersion interface (and an internal and

default DefaultDataVersion implementation to keep a track of node versioning. In

certain cases, where cached data is an in-memory representation of data from an

external source such as a database, it makes sense to align the versions used in

JBoss Cache with the versions used externally. As such, using the options API , it is

possible to set the DataVersion you wish to use on a per-invocation basis, allowing

you to implement the DataVersion interface to hold the versioning information

obtained externally before putting your data into the cache.

1.3.3. Configuration

Optimistic locking is enabled by using the NodeLockingScheme XML attribute, and

setting it to "OPTIMISTIC":

...

 <!--

 Node locking scheme:

 OPTIMISTIC

 PESSIMISTIC (default)

 -->

 <attribute name="NodeLockingScheme">OPTIMISTIC</attribute>

...

It is generally advisable that if you have an eviction policy defined along with

optimistic locking, you define the eviction policy's minTimeToLiveSeconds parameter

Transactional Support

89

to be slightly greater than the transaction timeout value set in your transaction

manager. This ensures that data versions in the cache are not evicted while

transactions are in progress 2 .

2. Transactional Support

JBoss Cache can be configured to use and participate in JTA compliant transactions.

Alternatively, if transaction support is disabled, it is equivalent to setting AutoCommit

to on where modifications are potentially 3 replicated after every change (if replication

is enabled).

What JBoss Cache does on every incoming call is:

1. Retrieve the current javax.transaction.Transaction associated with the

thread

2. If not already done, register a javax.transaction.Synchronization with the

transaction manager to be notified when a transaction commits or is rolled back.

In order to do this, the cache has to be provided with a reference to environment's

javax.transaction.TransactionManager . This is usually done by configuring the

cache with the class name of an implementation of the TransactionManagerLookup

interface. When the cache starts, it will create an instance of this class and

invoke its getTransactionManager() method, which returns a reference to the

TransactionManager .

JBoss Cache ships with JBossTransactionManagerLookup and

GenericTransactionManagerLookup . The JBossTransactionManagerLookup is

able to bind to a running JBoss AS instance and retrieve a TransactionManager

while the GenericTransactionManagerLookup is able to bind to most popular Java

EE application servers and provide the same functionality. A dummy implementation

- DummyTransactionManagerLookup - is also provided, primarily for unit tests. Being

a dummy, this is just for demo and testing purposes and is not recommended for

production use.

An alternative to configuring a TransactionManagerLookup is to programatically

inject a reference to the TransactionManager into the Configuration object's

RuntimeConfig element:

 TransactionManager tm = getTransactionManager(); // magic method

 cache.getConfiguration().getRuntimeConfig().setTransactionManager(tm);

2See JBCACHE-1155 [http://jira.jboss.com/jira/browse/JBCACHE-1155]
3Depending on whether interval-based asynchronous replication is used

http://jira.jboss.com/jira/browse/JBCACHE-1155
http://jira.jboss.com/jira/browse/JBCACHE-1155

Chapter 10. Transactions and ...

90

Injecting the TransactionManager is the recommended approach when the

Configuration is built by some sort of IOC container that already has a reference to

the TM.

When the transaction commits, we initiate either a one- two-phase commit protocol.

See replicated caches and transactions for details.

Part III. JBoss Cache

Configuration References
This section contains technical references for easy look ups.

Chapter 11.

93

Configuration References

1. Sample XML Configuration File

This is what a typical XML configuration file looks like. It is recommended that you

use one of the configurations shipped with the JBoss Cache distribution and tweak

according to your needs rather than write one from scratch.

<?xml version="1.0" encoding="UTF-8"?>

<!--

 ===

 -->

<!--

 -->

<!-- Sample JBoss Cache Service Configuration

 -->

<!--

 -->

<!--

 ===

 -->

<server>

 <!--

 ==

 -->

 <!-- Defines JBoss Cache configuration

 -->

 <!--

 ==

 -->

 <!-- Note the value of the 'code' attribute has changed since

 JBC 1.x -->

 <mbean code="org.jboss.cache.jmx.CacheJmxWrapper"

 name="jboss.cache:service=Cache">

 <!-- Ensure JNDI and the TransactionManager are started

 before the

 cache. Only works inside JBoss AS; ignored otherwise

 -->

 <depends>jboss:service=Naming</depends>

 <depends>jboss:service=TransactionManager</depends>

Chapter 11. Configuration Ref...

94

 <!-- Configure the TransactionManager -->

 <attribute name="TransactionManagerLookupClass">

 org.jboss.cache.transaction.GenericTransactionManagerLookup

 </attribute>

 <!-- Node locking level : SERIALIZABLE

 REPEATABLE_READ (default)

 READ_COMMITTED

 READ_UNCOMMITTED

 NONE -->

 <attribute name="IsolationLevel">REPEATABLE_READ</attribute>

 <!-- Lock parent before doing node additions/removes -->

 <attribute

 name="LockParentForChildInsertRemove">true</attribute>

 <!-- Valid modes are LOCAL (default)

 REPL_ASYNC

 REPL_SYNC

 INVALIDATION_ASYNC

 INVALIDATION_SYNC -->

 <attribute name="CacheMode">REPL_ASYNC</attribute>

 <!-- Name of cluster. Needs to be the same for all JBoss

 Cache nodes in a

 cluster in order to find each other.

 -->

 <attribute name="ClusterName">JBossCache-Cluster</attribute>

 <!--Uncomment next three statements to use the JGroups

 multiplexer.

 This configuration is dependent on the JGroups multiplexer

 being

 registered in an MBean server such as JBossAS. This type

 of

 dependency injection only works in the AS; outside it's up

 to

 your code to inject a ChannelFactory if you want to use

 one.

 -->

 <!--

 <depends optional-attribute-name="MultiplexerService"

 proxy-type="attribute">jgroups.mux:name=Multiplexer</depends>

 <attribute name="MultiplexerStack">tcp</attribute>

 -->

 <!-- JGroups protocol stack properties.

Sample XML Configuration File

95

 ClusterConfig isn't used if the multiplexer is enabled

 above.

 -->

 <attribute name="ClusterConfig">

 <config>

 <!-- UDP: if you have a multihomed machine, set the

 bind_addr

 attribute to the appropriate NIC IP address -->

 <!-- UDP: On Windows machines, because of the media

 sense feature

 being broken with multicast (even after disabling

 media sense)

 set the loopback attribute to true -->

 <UDP mcast_addr="228.1.2.3" mcast_port="48866"

 ip_ttl="64" ip_mcast="true"

 mcast_send_buf_size="150000"

 mcast_recv_buf_size="80000"

 ucast_send_buf_size="150000"

 ucast_recv_buf_size="80000"

 loopback="false"/>

 <PING timeout="2000" num_initial_members="3"/>

 <MERGE2 min_interval="10000" max_interval="20000"/>

 <FD shun="true"/>

 <FD_SOCK/>

 <VERIFY_SUSPECT timeout="1500"/>

 <pbcast.NAKACK gc_lag="50"

 retransmit_timeout="600,1200,2400,4800" />

 <UNICAST timeout="600,1200,2400",4800/>

 <pbcast.STABLE desired_avg_gossip="400000"/>

 <FC max_credits="2000000" min_threshold="0.10"/>

 <FRAG2 frag_size="8192"/>

 <pbcast.GMS join_timeout="5000" shun="true"

 print_local_addr="true"/>

 <pbcast.STATE_TRANSFER/>

 </config>

 </attribute>

 <!--

 The max amount of time (in milliseconds) we wait until

 the

 initial state (ie. the contents of the cache) are

 retrieved from

 existing members in a clustered environment

 -->

 <attribute name="StateRetrievalTimeout">20000</attribute>

 <!--

 Number of milliseconds to wait until all responses for a

 synchronous call have been received.

Chapter 11. Configuration Ref...

96

 -->

 <attribute name="SyncReplTimeout">20000</attribute>

 <!-- Max number of milliseconds to wait for a lock

 acquisition -->

 <attribute name="LockAcquisitionTimeout">15000</attribute>

 <!-- Shutdown hook behavior. Valid choices are: DEFAULT,

 REGISTER and DONT_REGISTER.

 If this element is omitted, DEFAULT is used. -->

 <attribute name="ShutdownHookBehavior">DEFAULT</attribute>

 <!-- Enables or disables lazy unmarshalling. If omitted, the

 default is that lazy unmarshalling is enabled. -->

 <attribute name="UseLazyDeserialization">true</attribute>

 <!-- Specific eviction policy configurations. This is LRU -->

 <attribute name="EvictionConfig">

 <config>

 <attribute name="wakeUpIntervalSeconds">5</attribute>

 <!-- This defaults to 200000 if not specified -->

 <attribute name="eventQueueSize">200000</attribute>

 <attribute

 name="policyClass">org.jboss.cache.eviction.LRUPolicy</attribute>

 <!-- Cache wide default -->

 <region name="/_default_">

 <attribute name="maxNodes">5000</attribute>

 <attribute name="timeToLiveSeconds">1000</attribute>

 </region>

 <region name="/org/jboss/data">

 <attribute name="maxNodes">5000</attribute>

 <attribute name="timeToLiveSeconds">1000</attribute>

 </region>

 <region name="/org/jboss/test/data">

 <attribute name="maxNodes">5</attribute>

 <attribute name="timeToLiveSeconds">4</attribute>

 </region>

 <region name="/test">

 <attribute name="maxNodes">10000</attribute>

 <attribute name="timeToLiveSeconds">4</attribute>

 </region>

 <region name="/maxAgeTest">

 <attribute name="maxNodes">10000</attribute>

 <attribute name="timeToLiveSeconds">8</attribute>

 <attribute name="maxAgeSeconds">10</attribute>

 </region>

 </config>

Reference table of XML attributes

97

 </attribute>

 </mbean>

</server>

2. Reference table of XML attributes

A list of definitions of each of the XML attributes used above. If the description of an

attribute states that it is dynamic , that means it can be changed after the cache is

created and started.

Name Description

BuddyReplicationConfig An XML element that contains detailed

buddy replication configuration. See

section on Buddy Replication for details.

CacheLoaderConfig An XML element that contains detailed

cache loader configuration. See chapter

on Cache Loaders for details.

CacheLoaderConfiguration Deprecated . Use CacheLoaderConfig .

CacheMode LOCAL, REPL_SYNC, REPL_ASYNC,

INVALIDATION_SYNC or

INVALIDATION_ASYNC. Defaults to

LOCAL. See the chapter on Clustering

for details.

ClusterConfig The configuration of the underlying

JGroups stack. Ignored if

MultiplexerService and

MultiplexerStack are used.

See the various *-service.xml

files in the source distribution

resources/config-samples folder

for examples. See the JGroups

documentation [http://www.jgroups.org]

or the JGroups wiki page [http://

wiki.jboss.org/wiki/

Wiki.jsp?page=JGroups] for more

information.

ClusterName Name of cluster. Needs to be the same

for all nodes in a cluster in order for

them to communicate with each other.

EvictionPolicyConfig Configuration parameter for the

specified eviction policy. See chapter on

eviction policies for details. This property

is dynamic .

http://www.jgroups.org
http://www.jgroups.org
http://www.jgroups.org
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

Chapter 11. Configuration Ref...

98

ExposeManagementStatistics Specifies whether interceptors

that provide statistics should have

statistics gathering enabled at

startup. Also controls whether a

CacheMgmtInterceptor (whose sole

purpose is gathering statistics) should

be added to the interceptor chain.

Default value is true . See the JBoss

Cache Statistics section section for

more details.

FetchInMemoryState Whether or not to acquire the initial

in-memory state from existing members.

Allows for hot caches when enabled.

Also see the fetchPersistentState

element in CacheLoaderConfig .

Defaults to true . This property is

dynamic .

InactiveOnStartup Whether or not the entire tree

is inactive upon startup, only

responding to replication messages

after activateRegion() is

called to activate one or more

parts of the tree. If true, property

FetchInMemoryState is ignored. This

property should only be set to true if

UseRegionBasedMarshalling is also

true .

StateRetrievalTimeout Time in milliseconds to wait for state

retrieval. This should be longer than

LockAcquisitionTimeout as the node

providing state may need to wait that

long to acquire necessary read locks on

the cache. This property is dynamic .

IsolationLevel Node locking isolation level :

SERIALIZABLE, REPEATABLE_READ

(default), READ_COMMITTED,

READ_UNCOMMITTED, and

NONE. Note that this is ignored if

NodeLockingScheme is OPTIMISTIC.

Case doesn't matter. See

documentation on Transactions and

Concurrency for more details.

Reference table of XML attributes

99

LockAcquisitionTimeout Time in milliseconds to wait for a lock

to be acquired. If a lock cannot be

acquired an exception will be thrown.

This property is dynamic .

LockParentForChildInsertRemove Controls whether inserting or removing a

node requires a write lock on the node's

parent (when pessimistic locking is

used) or whether it results in an update

of the parent node's version (when

optimistic locking is used). The default

value is false .

MarshallerClass An instance of org.jboss.cache.marshall.Marshaller

used to serialize data to byte streams.

Defaults to org.jboss.cache.marshall.VersionAwareMarshaller

if not specified.

MultiplexerService The JMX object name of the service

that defines the JGroups multiplexer. In

JBoss AS 5.0 this service is normally

defined in the jgroups-multiplexer.sar.

This XML attribute can only be handled

by the JBoss AS MBean deployment

services; if it is included in a file passed

to a CacheFactory the factory's creation

of the cache will fail. Inside JBoss AS,

the attribute should be specified using

the "depends optional-attribute-name"

syntax shown in the example above.

Inside the AS if this attribute is defined,

an instance of org.jgroups.jmx.JChannelFactoryMBean

will be injected into the

CacheJmxWrapper which will use it to

obtain a multiplexed JGroups channel.

The configuration of the channel will be

that associated with MultiplexerStack

. The ClusterConfig attribute will be

ignored.

MultiplexerStack The name of the JGroups stack to be

used with the cache cluster. Stacks

are defined in the configuration of

the external MultiplexerService

discussed above. In JBoss AS 5 this is

normally done in the jgroups-

multiplexer.sar/META-INF/multiplexer-

Chapter 11. Configuration Ref...

100

stacks.xml file. The default stack is udp .

This attribute is used in conjunction with

MultiplexerService .

NodeLockingScheme May be PESSIMISTIC (default) or

OPTIMISTIC.

ReplicationVersion Tells the cache to serialize cluster

traffic in a format consistent with that

used by the given release of JBoss

Cache. Different JBoss Cache versions

use different wire formats; setting this

attribute tells a cache from a later

release to serialize data using the

format from an earlier release. This

allows caches from different releases to

interoperate. For example, a 2.1.0 cache

could have this value set to "2.0.0",

allowing it to interoperate with a 2.0.0

cache. Valid values are a dot-separated

release number, with any final qualifer

also separated by a dot, e.g. "2.0.0" or

"2.0.0.GA". Values that indicate a 1.x

release are not supported in the 2.x

series.

ReplQueueInterval Time in milliseconds for elements from

the replication queue to be replicated.

Only used if UseReplQueue is enabled.

This property is dynamic .

ReplQueueMaxElements Max number of elements in the

replication queue until replication

kicks in. Only used if UseReplQueue is

enabled. This property is dynamic .

SyncCommitPhase This option is used to control the

behaviour of the commit part of a

2-phase commit protocol, when using

REPL_SYNC (does not apply to other

cache modes). By default this is set to

false . There is a performance penalty

to enabling this, especially when running

in a large cluster, but the upsides are

greater cluster-wide data integrity. See

the chapter on clustered caches for

more information on this. This property

is dynamic .

Reference table of XML attributes

101

SyncReplTimeout For synchronous replication: time in

milliseconds to wait until replication acks

have been received from all nodes in

the cluster. It is usually best that this is

greater than LockAcquisitionTimeout

. This property is dynamic .

SyncRollbackPhase This option is used to control the

behaviour of the rollback part of a

2-phase commit protocol, when using

REPL_SYNC (does not apply to other

cache modes). By default this is set to

false . There is a performance penalty

to enabling this, especially when running

in a large cluster, but the upsides are

greater cluster-wide data integrity. See

the chapter on clustered caches for

more information on this. This property

is dynamic .

TransactionManagerLookupClass The fully qualified name

of a class implementing

TransactionManagerLookup. Default

is JBossTransactionManagerLookup.

There is also an option of

GenericTransactionManagerLookup for

example.

UseInterceptorMbeans Deprecated . Use

ExposeManagementStatistics .

UseRegionBasedMarshalling When unmarshalling replicated data,

this option specifies whether or not to

support use of different classloaders

for different cache regions. This

defaults to false if unspecified.

DEPRECATED. This option will

disappear in JBoss Cache 3.x. See

UseLazyDeserialization instead.

UseReplQueue For asynchronous replication: whether

or not to use a replication queue.

Defaults to false .

ShutdownHookBehavior An optional parameter that controls

whether JBoss Cache registers a

shutdown hook with the JVM runtime.

Allowed values areDEFAULT, REGISTER

Chapter 11. Configuration Ref...

102

and DONT_REGISTER. REGISTER and

DONT_REGISTER forces or suppresses

the registration of a shutdown hook,

respectively, and DEFAULT registers

one if an MBean server (other than the

JDK default) cannot be found and it is

assumed that the cache is running in

a managed environment. The default if

unspecified is, as expected, DEFAULT.

UseLazyDeserialization An optional parameter that can be

used to enable or disable the use of

lazy deserialization for cached objects.

Defaults tofalse, since it adds a

small processing overhead. If lazy

deserialization is disabled, support for

implicitly using context class loaders

registered with the calling thread goes

away.

ObjectInputStreamPoolSize and

ObjectOutputStreamPoolSize

Since JBoss Cache 2.1.0, object input

and output streams - used to serialize

and deserialize RPC calls in a cluster

- are pooled to reduce the overhead

of constructing such streams. They

are reused by making use of special

resettable stream implementations.

by default, these stream pools are set at

50 objects each. You could increase or

decrease the pool size if, while profiling,

you see a lot of threads blocking on

ObjectStreamPool.getInputStream() orObjectStreamPool.getOutputStream().

In general, having more streams is

better than having fewer than needed.

Based on your application, make sure

you have more streams available

than number of threads you expect to

concurrently write to the cache.

Chapter 12.

103

JMX References

1. JBoss Cache Statistics

The following table describes the statistics currently available and may be collected

via JMX.

Chapter 12. JMX References

104

MBean Name Attribute Type Description

ActivationInterceptor Activations long Number of passivated nodes

that have been activated.

CacheLoaderInterceptorCacheLoaderLoads long Number of nodes loaded

through a cache loader.

CacheLoaderInterceptorCacheLoaderMisses long Number of unsuccessful

attempts to load a node

through a cache loader.

CacheMgmtInterceptorHits long Number of successful

attribute retrievals.

CacheMgmtInterceptorMisses long Number of unsuccessful

attribute retrievals.

CacheMgmtInterceptorStores long Number of attribute store

operations.

CacheMgmtInterceptorEvictions long Number of node evictions.

CacheMgmtInterceptorNumberOfAttributes int Number of attributes currently

cached.

CacheMgmtInterceptorNumberOfNodes int Number of nodes currently

cached.

CacheMgmtInterceptorElapsedTime long Number of seconds that the

cache has been running.

CacheMgmtInterceptorTimeSinceReset long Number of seconds since the

cache statistics have been

reset.

CacheMgmtInterceptorAverageReadTime long Average time in milliseconds

to retrieve a cache attribute,

including unsuccessful

attribute retrievals.

CacheMgmtInterceptorAverageWriteTime long Average time in milliseconds

to write a cache attribute.

CacheMgmtInterceptorHitMissRatio double Ratio of hits to hits and

misses. A hit is a get attribute

operation that results in an

object being returned to the

client. The retrieval may be

from a cache loader if the

entry isn't in the local cache.

CacheMgmtInterceptorReadWriteRatio double Ratio of read operations to

write operations. This is the

ratio of cache hits and misses

to cache stores.

CacheStoreInterceptorCacheLoaderStores long Number of nodes written to

the cache loader.

InvalidationInterceptorInvalidations long Number of cached nodes that

have been invalidated.

PassivationInterceptorPassivations long Number of cached nodes that

have been passivated.

TxInterceptor Prepares long Number of transaction

prepare operations performed

by this interceptor.

TxInterceptor Commits long Number of transaction commit

operations performed by this

interceptor.

TxInterceptor Rollbacks long Number of transaction

rollbacks operations

performed by this interceptor.

Table 12.1. JBoss Cache Management Statistics

JMX MBean Notifications

105

2. JMX MBean Notifications

The following table depicts the JMX notifications available for JBoss Cache as well

as the cache events to which they correspond. These are the notifications that can

be received through the CacheJmxWrapper MBean. Each notification represents a

single event published by JBoss Cache and provides user data corresponding to the

parameters of the event.

Notification Type Notification Data CacheListener Event

org.jboss.cache.CacheStartedString : cache service

name

cacheStarted

org.jboss.cache.CacheStoppedString : cache service

name

cacheStopped

org.jboss.cache.NodeCreatedString : fqn NodeCreated

org.jboss.cache.NodeEvictedString : fqn NodeEvicted

org.jboss.cache.NodeLoadedString : fqn NodeLoaded

org.jboss.cache.NodeModifedString : fqn NodeModifed

org.jboss.cache.NodeRemovedString : fqn NodeRemoved

org.jboss.cache.NodeVisitedString : fqn NodeVisited

org.jboss.cache.ViewChangeString : view ViewChange

org.jboss.cache.NodeActivateObject[0]=String: fqn

Object[1]=Boolean: pre

NodeActivate

org.jboss.cache.NodeEvict Object[0]=String: fqn

Object[1]=Boolean: pre

NodeEvict

org.jboss.cache.NodeModify Object[0]=String: fqn

Object[1]=Boolean: pre

Object[2]=Boolean:

isLocal

NodeModify

org.jboss.cache.NodePassivateObject[0]=String: fqn

Object[1]=Boolean: pre

NodePassivate

org.jboss.cache.NodeRemoveObject[0]=String: fqn

Object[1]=Boolean: pre

Object[2]=Boolean:

isLocal

NodeRemove

Table 12.2. JBoss Cache MBean Notifications

106

	JBoss Cache User Guide
	Table of Contents
	Preface
	Part I. Introduction to JBoss Cache
	Chapter 1. Overview
	1. What is JBoss Cache?
	1.1. And what is Pojo Cache?

	2. Summary of Features
	3. Requirements
	4. License

	Chapter 2. User API
	1. API Classes
	2. Instantiating and Starting the Cache
	3. Caching and Retrieving Data
	4. The Fqn Class
	5. Stopping and Destroying the Cache
	6. Cache Modes
	7. Adding a Cache Listener - registering for cache events
	8. Using Cache Loaders
	9. Using Eviction Policies

	Chapter 3. Configuration
	1. Configuration Overview
	2. Creating a Configuration
	2.1. Parsing an XML-based Configuration File
	2.2. Programmatic Configuration
	2.3. Using an IOC Framework

	3. Composition of a Configuration Object
	4. Dynamic Reconfiguration
	5. Overriding the Configuration Via the Option API

	Chapter 4. Deploying JBoss Cache
	1. Standalone Use / Programatic Deployment
	2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.x)
	3. Via JBoss Microcontainer (JBoss AS 5.x)
	4. Binding to JNDI in JBoss AS
	5. Runtime Management Information
	5.1. JBoss Cache MBeans
	5.2. Registering the CacheJmxWrapper with the MBeanServer
	5.2.1. Programatic Registration
	5.2.2. JMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.x)
	5.2.3. Via JBoss Microcontainer (JBoss AS 5.x)

	5.3. JBoss Cache Statistics
	5.4. Receiving JMX Notifications
	5.5. Accessing Cache MBeans in a Standalone Environment

	Chapter 5. Version Compatibility and Interoperability
	1. Compatibility Matrix

	Part II. JBoss Cache Architecture
	Chapter 6. Architecture
	1. Data Structures Within The Cache
	2. SPI Interfaces
	3. Method Invocations On Nodes
	3.1. Interceptors
	3.1.1. Writing Custom Interceptors

	3.2. MethodCalls
	3.3. InvocationContexts

	4. Managers For Subsystems
	4.1. RpcManager
	4.2. BuddyManager
	4.3. CacheLoaderManager

	5. Marshalling And Wire Formats
	5.1. The Marshaller Interface
	5.2. VersionAwareMarshaller
	5.2.1. CacheLoaders

	5.3. CacheMarshaller200

	6. Class Loading and Regions

	Chapter 7. Clustering
	1. Cache Replication Modes
	1.1. Local Mode
	1.2. Replicated Caches
	1.2.1. Replicated Caches and Transactions
	1.2.1.1. One Phase Commits
	1.2.1.2. Two Phase Commits

	1.2.2. Buddy Replication
	1.2.2.1. Selecting Buddies
	1.2.2.2. BuddyPools
	1.2.2.3. Failover
	1.2.2.4. Configuration

	2. Invalidation
	3. State Transfer
	3.1. State Transfer Types
	3.2. Byte array and streaming based state transfer
	3.3. Full and partial state transfer
	3.4. Transient ("in-memory") and persistent state transfer
	3.5. Configuring State Transfer

	Chapter 8. Cache Loaders
	1. The CacheLoader Interface and Lifecycle
	2. Configuration
	2.1. Singleton Store Configuration

	3. Shipped Implementations
	3.1. File system based cache loaders
	3.2. Cache loaders that delegate to other caches
	3.3. JDBCCacheLoader
	3.3.1. JDBCCacheLoader configuration
	3.3.1.1. Table configuration
	3.3.1.2. DataSource
	3.3.1.3. JDBC driver
	3.3.1.4. c3p0 connection pooling
	3.3.1.5. Configuration example

	3.4. S3CacheLoader
	3.4.1. Amazon S3 Library
	3.4.2. Configuration

	3.5. TcpDelegatingCacheLoader
	3.6. Transforming Cache Loaders

	4. Cache Passivation
	4.1. Cache Loader Behavior with Passivation Disabled vs. Enabled

	5. Strategies
	5.1. Local Cache With Store
	5.2. Replicated Caches With All Caches Sharing The Same Store
	5.3. Replicated Caches With Only One Cache Having A Store
	5.4. Replicated Caches With Each Cache Having Its Own Store
	5.5. Hierarchical Caches
	5.6. Multiple Cache Loaders

	Chapter 9. Eviction Policies
	1. Configuring Eviction Policies
	1.1. Basic Configuration
	1.2. Eviction Regions
	1.2.1. Overlapping Eviction Regions

	1.3. Resident Nodes
	1.4. Programmatic Configuration

	2. Shipped Eviction Policies
	2.1. LRUPolicy - Least Recently Used
	2.2. FIFOPolicy - First In, First Out
	2.3. MRUPolicy - Most Recently Used
	2.4. LFUPolicy - Least Frequently Used
	2.5. ExpirationPolicy
	2.6. ElementSizePolicy - Eviction based on number of key/value pairs in a node

	3. Writing Your Own Eviction Policies
	3.1. Eviction Policy Plugin Design
	3.2. Interfaces to implement

	Chapter 10. Transactions and Concurrency
	1. Concurrent Access
	1.1. Locks
	1.2. Pessimistic locking
	1.2.1. Isolation levels
	1.2.2. Insertion and Removal of Nodes

	1.3. Optimistic Locking
	1.3.1. Architecture
	1.3.2. Data Versioning
	1.3.3. Configuration

	2. Transactional Support

	Part III. JBoss Cache Configuration References
	Chapter 11. Configuration References
	1. Sample XML Configuration File
	2. Reference table of XML attributes

	Chapter 12. JMX References
	1. JBoss Cache Statistics
	2. JMX MBean Notifications

