Errai

Erral CDI Reference Guide

[l (=] = Vo1 < T \Y;

1. DOCUMENT CONVENTIONSiiiiitieeiiiiieeeeeii e e e eet e e e et e e e eet e e e eate e e e eata e eeeeteaaeeeeteaeeanes %

A =T | o - Tod %

I @1] I T 4 o o 1¥¥ox 1T] o RPN 1
B Y - R O B T 1= = 1= SN 3
2.1. Integration with the CDI event SUDSYSIEMcccoviiiiiiiiiiii e 3
2.1.1. ConVersational BVENLScouuiiiiiieii et e 4

2.2. RPC Style Invocations on CDI DEANSccuviiiiiiiiiii e 5

2.3. Publish/Subscribe with CDI managed COMPONENLSoveeiviiieiiiiiieieiii e 5

A o1]I = (oo (1 o= £ PP 5

3. Client-Server Event EXampPle ..o 7
/o =Y o Vo) Y1 o o TR =1 - VI 1 I] 11
4.1. Deployment in Development MOAEcoouiiiiiiiiiiiiii e 11

4.2. Deployment to a Servliet ENQINEooovuiiiiiiiiii e 12

4.3. Deployment to an Application SEIVErccoouuiiiiiiiiiie e 12

4.4, Configuration OPLIONScieuiiiiieiiiii e e e e e e e e e et e e et eeaneaaanaaes 13

5. LIicenSe and BEULA ..ot 15
6. CDI INTFOTUCTION Luuiiiiii ettt e et e e et e e e et e e e et eeeeeaa s 17
A = = U O T I =T 1= P 19
7.1. Integration with the CDI event SUDSYSIEMccccviiiiiiiiiiiieei e 19
7.1.1. Conversational EVENLSociuuiiiiiiei e 20

7.2. RPC Style Invocations on CDI bEaANSccuuviiiiiiiiiicii e 21

7.3. Publish/Subscribe with CDI managed COMPONENLSooeviiviiieiiiiineeeiiieeeeiienne 21

A T o1]I o (oo (8 o= = TP 21

8. Client-Server Event EXamMpPle ..o 23
LS I B 1Y o] [o) VAT o Lo I =1 -V 4 D 27
9.1. Deployment in Development Modeooooiiiiiiiiiiie e 27

9.2. Deployment to a Servlet ENGINEoiiiiiiiiiciie e e 28

9.3. Deployment to an APPlICAtioN SEIVETc..uuiiiiiiiiieiiii e 28

9.4, Configuration OPLIONSuuiiiiiiiii e e e e e 29

0 o= 1= P 31
y N =YY Y10 I 13 (] 2P 33

Preface

1. Document Conventions

2. Feedback

Vi

Chapter 1.

CDI Introduction

CDI (Contexts and Dependency Injection) is the Jave EE standard (JSR-299) for handling
dependency injection. In addition to dependency injection, the standard encompasses component
lifecycle, application configuration, call-interception and a decoupled, type-safe eventing
specification.

The Errai CDI extension implements a subset of the specification for use inside of client-side
applications within Errai, as well as additional capabilities such as distributed eventing.

Errai CDI does not currently implement all life cycles specified in JSR-299 or interceptors. These
deficiencies may be addressed in future versions.

Important

The Errai CDI extension itself is implemented on top of the
Errai I0C [https://docs.jboss.org/author/pages/viewpage.action?pageld=5931397]
Framework, which itself implements the JSR-330 specification. Inclusion of the CDI
module your GWT project will result in the extensions automatically being loaded
and made available to your application.

https://docs.jboss.org/author/pages/viewpage.action?pageId=5931397
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931397

Chapter 2.

Erral CDI Features

Beans that are deployed to a CDI container will automatically be registered with Errai and exposed
to your GWT client application. So, you can use Errai to communicate between your GWT client
components and your CDI backend beans. There are several very easy-to-use options:

« Wiring up your GWT application with the CDI event subsystem
« RPC style invocations on beans through a typed interface
« Access beans in a publish/subscribe manner

Further, Errai enables you to make use of CDI producer methods and fields in your GWT client!

2.1. Integration with the CDI event subsystem

Any CDI managed component may produce and consume events [http://docs.jboss.org/weld/
reference/latest/en-US/html/events.html] . This allows beans to interact in a completely decoupled
fashion. Beans consume events by registering for a particular event type and optional qualifiers.
The Errai CDI extension simply extends this concept into the client tier. A GWT client application
can simply register an Observer for a particular event type and thus receive events that are
produced on the server-side. Likewise and using the same API, GWT clients can produce events
that are consumed by a server-side observer.

Let's take a look at an example.

Example 2.1. FraudClient.java

public class FraudCient extends LayoutPanel {

@ nj ect
private Event<AccountActivity> event; (1)

private HTM. responsePanel ;

public Frauddient() {
super (new BoxLayout (BoxLayout. Ori entati on. VERTI CAL)) ;

@Post Construct
public void buildU () {
Button button = new Button("Create activity", new dickHandl er() {
public void onCick(dickEvent clickEvent) {
event.fire(new AccountActivity());
}
IF

http://docs.jboss.org/weld/reference/latest/en-US/html/events.html
http://docs.jboss.org/weld/reference/latest/en-US/html/events.html
http://docs.jboss.org/weld/reference/latest/en-US/html/events.html

Chapter 2. Errai CDI Features

responsePanel = new HTM.();
add(button);
add(responsePanel) ;

public void processFraud(@bserves @etected Fraud fraudEvent) { (2)
responsePanel . set Text ("Fraud detected: " + fraudEvent.getTi mestanp());

Two things are noteworthy in this example:

1. Injection of an Event dispatcher proxy
2. Creation of an Qoser ver method for a particular event type

The event dispatcher is responsible for sending events created on the client-side to the server-
side event subsystem (CDI container). This means any event that is fired through a dispatcher
will eventually be consumed by a CDI managed bean, if there is an corresponding Qoser ver
registered for it on the server side.

In order to consume events that are created on the server-side you need to declare an client-side
observer method for a particular event type. In case an event is fired on the server this method
will be invoked with an event instance of type you declared.

To complete the example, let's look at the corresponding server-side CDI bean:

Example 2.2. AccountService.java

@\ppl i cati onScoped
public class Account Service {

@nj ect @etected
private Event <Fraud> event;

public void watchActivity(@bserves AccountActivity activity) {
Fraud fraud = new Fraud(SystemcurrentTimeMI1lis());
event.fire(fraud);

2.1.1. Conversational events

A server can address a single client in response to an event by using @onver sat i onal . Consider
a service that responds to a subscription event. Naturally, only the newly subscribed client should
receive the response.

RPC Style Invocations on CDI beans

Example 2.3. SubscriptionService.java

@\ppl i cati onScoped
public class SubscriptionService {

@ nj ect
private Event <Docunent s> wel comeEvent ;

@onver sat i onal

public void onSubscription(@bserves Subscription subscription) {
Document docs = creat e\l conePackage(subscri ption);
wel comeEvent . fire(docs);

2.2. RPC Style Invocations on CDI beans

When choosing RPC style invocations on beans, you basically rely on a typed java interface the
CDI managed bean needs to expose. A GWT client component can then create an invocation
proxy based on this interface. For more information see chapter on RPC mechanism [https://
docs.jboss.org/author/pages/viewpage.action?pageld=5931313] .

2.3. Publish/Subscribe with CDI managed components

If you choose publish/subscribe then your CDI bean needs to implement the
MessageCal | back interface, as described in chapter Messaging [https://docs.jboss.org/
author/pages/viewpage.action?pageld=5931263] . Any bean exposed in this way can be
accessed through the MessageBuilderAPI [https://docs.jboss.org/author/pages/viewpage.action?
pageld=5931280] .

2.4. CDI Producers

Producer methods and fields act as sources of objects to be injected. They are useful when
additional control over object creation is needed before injections can take place e.g. when you
need to make a decision at runtime before an object can be created and injected.

Example 2.4. App.java

@nt r yPoi nt
public class App {

@r oduces @upport ed
publi c MyBaseW dget createWdget() {

https://docs.jboss.org/author/pages/viewpage.action?pageId=5931313
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931313
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931313
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931263
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931263
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931263
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931280
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931280
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931280

Chapter 2. Errai CDI Features

return (Canvas.isSupported()) ? new MyHt ml 5Wdget () : new MyDef aul t Wdget () ;
}

Example 2.5. MyComposite.java

@\ppl i cati onScoped
public class MyConposite extends Conposite {

@ nj ect @dupported
publ i c MyBaseW dget wi dget;

For more information on CDI producers, see the CDI specification [http://docs.jboss.org/
cdi/spec/1.0/html/] and the WELD reference documentation [http://seamframework.org/Weld/
WeldDocumentation] .

http://docs.jboss.org/cdi/spec/1.0/html/
http://docs.jboss.org/cdi/spec/1.0/html/
http://docs.jboss.org/cdi/spec/1.0/html/
http://seamframework.org/Weld/WeldDocumentation
http://seamframework.org/Weld/WeldDocumentation
http://seamframework.org/Weld/WeldDocumentation

Chapter 3.

Client-Server Event Example

A key feature of the Errai CDI framework is the ability to federate the CDI eventing bus between
the client and the server. This permits the observation of server produced events on the client,
and vice-versa.

Example server code:

Example 3.1. MyServerBean.java

@\ppl i cati onScoped
public class MyServerBean {
@ nj ect
Event <MyResponseEvent > nyResponseEvent;

public void nmydient Cbserver (@bserves M/Request Event event) {
M/ResponseEvent response;

if (event.isThankYou()) {
/'l aww, that's nice!
response = new MyResponseEvent ("Well, you're wel come!");

}

el se {
/1 how rude!
response = new MyResponseEvent ("Wat ? Nobody says 'thank you' anynore?");

nmyResponseEvent . fire(response);

Domain-model:

Example 3.2. MyRequestEvent.java

@xposeEntity
public class MyRequest Event ({
private bool ean thankYou;

publ i ¢ MyRequest Event (bool ean t hankYou) {

set ThankYou(t hankYou) ;

public void set ThankYou(bool ean t hankYou) {
t hi s.thankYou = thankYou;

Chapter 3. Client-Server Even...

publ i c bool ean i sThankYou() ({
return thankYou;

Example 3.3. MyResponseEvent.java

@xposeEntity
public class My/ResponseEvent {
private String nmessage;

publ i c MyRequest Event (String message) {
set Message(nmessage) ;

public void set Message(String nessage) ({
thi s. nessage = nessage;

public String get Message() {
return nessage,;

Client application logic:

Example 3.4. MyClientBean.java

@nt r yPoi nt
public class MyClientBean {
@ nj ect
Event <MyRequest Event > r equest Event ;

public voi d nyResponseCbserver (@bserves My/ResponseEvent event) {
W ndow. al ert ("Server replied: " + event.getMessage());

@ost Const ruct
public void init() {
Button thankYou = new Button("Say Thank You!");
t hankYou. addd i ckHandl er (new d i ckHandl er () {
public void onCick(dickEvent event) {
request Event . fi re(new MyRequest Event (true));

Butt on not hi ng = new Button("Say nothing!");
not hi ng. addd i ckHandl er (new Cl i ckHandl er () {
public void onCick(dickEvent event) {
request Event . fire(new M/Request Event (fal se));

Vertical Panel vPanel = new Verti cal Panel ();
vPanel . add(t hankYou) ;
vPanel . add(not hi ng) ;

Root Panel . get (). add(vPanel);

10

Chapter 4.

Deploying Errai CDI

If you do not care about the deployment details for now and just want to get started
take a look at the CDI Quickstart Guide [https://docs.jboss.org/author/pages/viewpage.action?
pageld=5931395] .

The CDI integration is a plugin to the Errai core framework and represents a CDI portable
extension. Which means it is discovered automatically by both Errai and the CDI container. In
order to use it, you first need to understand the different runtime models involved when working
GWT, Errai and CDI.

Typically a GWT application lifecycle begins in Development Mode [http://code.google.com/
webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html] and finally a web application
containing the GWT client code will be deployed to a target container (Servlet Engine, Application
Server). This is no way different when working with CDI components to back your application.

What's different however is availability of the CDI container across the different runtimes. In
GWT development mode and in a pure servlet environment you need to provide and bootstrap
the CDI environment on your own. While any Java EE 6 Application Server already provides a
preconfigured CDI container. To accomodate these differences, we need to do a little trickery
when executing the GWT Development Mode and packaging our application for deployment.

4.1. Deployment in Development Mode

In development mode we need to bootstrap the CDI environment on our own and make both Errai
and CDI available through JNDI (common denominator across all runtimes). Since GWT uses
Jetty, that only supports read only JNDI, we need to replace the default Jetty launcher with a
custom one that will setup the JNDI bindings:

<pl ugi n>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifactld>gwt-nmaven plugin</artifactld>
<versi on>${gwt . maven} </ ver si on>

<configuration>
<server>org.jboss.errai.cdi.server.gw.JettylLauncher</server>
</ confi guration>

<executi ons>

</ execut i ons>
</ pl ugi n>

11

https://docs.jboss.org/author/pages/viewpage.action?pageId=5931395
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931395
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931395
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html

Chapter 4. Deploying Errai CDI

Once this is set up correctly, we can bootstrap the CDI container through a servlet listener:

<web- app>

<listener>
<l istener-class>org.jboss.errai.container. DevMbdeCDI Boot strap</1|i st ener-
cl ass>
</listener>

<r esour ce- env-ref >
<descri pti on>0bj ect factory for the CDI Bean Manager </ descri pti on>
<resour ce- env-ref - name>BeanManager </ r esour ce- env-r ef - nane>
<resource-env-ref-type>j avax. enterprise.inject.spi.BeanManager </ resource-
env-ref-type>
</ resource-env-ref>

</ web- app>

maven archetype

4.2. Deployment to a Servlet Engine

Deployment to servlet engine has basically the same requirements as running in development
mode. You need to include the servlet listener that bootstraps the CDI container and make sure
both Errai and CDI are accessible through JNDI. For Jetty you can re-use the artefacts we
ship with the archetype. In case you want to run on tomcat, please consult the Apache Tomcat
Documentation [http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html] .

4.3. Deployment to an Application Server

We provide integration with the JBoss Application Server [http://jboss.org/jbossas] , but the
requirements are basically the same for other vendors. When running a GWT client app that

12

https://docs.jboss.org/author/pages/viewpage.action?pageId=5931395
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931395
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931395
http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html
http://jboss.org/jbossas
http://jboss.org/jbossas

Configuration Options

leverages CDI beans on a Java EE 6 application server, CDI is already part of the container and
accessible through JNDI (j ava: / BeanManager).

4.4. Configuration Options

Since the discovery of service implementations (beans) is delegated to the CDI container, we
need to disable Errai's own service discovery mechanism. In order to do so, simply turn off the
auto-discovery feature in Err ai Servi ce. properties

errai.auto_di scover_services=fal se

13

14

Chapter 5.

License and EULA

Errai CDI is distributed under the terms of the Apache License, Version 2.0. See the full Apache
license text [http://www.apache.org/licenses/LICENSE-2.0] .

15

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

16

Chapter 6.

CDI Introduction

CDI (Contexts and Dependency Injection) is the Jave EE standard (JSR-299) for handling
dependency injection. In addition to dependency injection, the standard encompasses component
lifecycle, application configuration, call-interception and a decoupled, type-safe eventing
specification.

The Errai CDI extension implements a subset of the specification for use inside of client-side
applications within Errai, as well as additional capabilities such as distributed eventing.

Errai CDI does not currently implement all life cycles specified in JSR-299 or interceptors. These
deficiencies may be addressed in future versions.

Important

The Errai CDI extension itself is implemented on top of the
Errai I0C [https://docs.jboss.org/author/pages/viewpage.action?pageld=5931397]
Framework, which itself implements the JSR-330 specification. Inclusion of the CDI
module your GWT project will result in the extensions automatically being loaded
and made available to your application.

17

https://docs.jboss.org/author/pages/viewpage.action?pageId=5931397
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931397

18

Chapter 7.

Erral CDI Features

Beans that are deployed to a CDI container will automatically be registered with Errai and exposed
to your GWT client application. So, you can use Errai to communicate between your GWT client
components and your CDI backend beans. There are several very easy-to-use options:

« Wiring up your GWT application with the CDI event subsystem
« RPC style invocations on beans through a typed interface
« Access beans in a publish/subscribe manner

Further, Errai enables you to make use of CDI producer methods and fields in your GWT client!

7.1. Integration with the CDI event subsystem

Any CDI managed component may produce and consume events [http://docs.jboss.org/weld/
reference/latest/en-US/html/events.html] . This allows beans to interact in a completely decoupled
fashion. Beans consume events by registering for a particular event type and optional qualifiers.
The Errai CDI extension simply extends this concept into the client tier. A GWT client application
can simply register an Observer for a particular event type and thus receive events that are
produced on the server-side. Likewise and using the same API, GWT clients can produce events
that are consumed by a server-side observer.

Let's take a look at an example.

Example 7.1. FraudClient.java

public class FraudCient extends LayoutPanel {

@ nj ect
private Event<AccountActivity> event; (1)

private HTM. responsePanel ;

public Frauddient() {
super (new BoxLayout (BoxLayout. Ori entati on. VERTI CAL)) ;

@Post Construct
public void buildU () {
Button button = new Button("Create activity", new dickHandl er() {
public void onCick(dickEvent clickEvent) {
event.fire(new AccountActivity());
}
IF

19

http://docs.jboss.org/weld/reference/latest/en-US/html/events.html
http://docs.jboss.org/weld/reference/latest/en-US/html/events.html
http://docs.jboss.org/weld/reference/latest/en-US/html/events.html

Chapter 7. Errai CDI Features

responsePanel = new HTM.();
add(button);
add(responsePanel) ;

public void processFraud(@bserves @etected Fraud fraudEvent) { (2)
responsePanel . set Text ("Fraud detected: " + fraudEvent.getTi mestanp());

Two things are noteworthy in this example:

1. Injection of an Event dispatcher proxy
2. Creation of an Qoser ver method for a particular event type

The event dispatcher is responsible for sending events created on the client-side to the server-
side event subsystem (CDI container). This means any event that is fired through a dispatcher
will eventually be consumed by a CDI managed bean, if there is an corresponding Qoser ver
registered for it on the server side.

In order to consume events that are created on the server-side you need to declare an client-side
observer method for a particular event type. In case an event is fired on the server this method
will be invoked with an event instance of type you declared.

To complete the example, let's look at the corresponding server-side CDI bean:

Example 7.2. AccountService.java

@\ppl i cati onScoped
public class Account Service {

@nj ect @etected
private Event <Fraud> event;

public void watchActivity(@bserves AccountActivity activity) {
Fraud fraud = new Fraud(SystemcurrentTimeMI1lis());
event.fire(fraud);

7.1.1. Conversational events

A server can address a single client in response to an event by using @onver sat i onal . Consider
a service that responds to a subscription event. Naturally, only the newly subscribed client should
receive the response.

20

RPC Style Invocations on CDI beans

Example 7.3. SubscriptionService.java

@\ppl i cati onScoped
public class SubscriptionService {

@ nj ect
private Event <Docunent s> wel comeEvent ;

@onver sat i onal

public void onSubscription(@bserves Subscription subscription) {
Document docs = creat e\l conePackage(subscri ption);
wel comeEvent . fire(docs);

7.2. RPC Style Invocations on CDI beans

When choosing RPC style invocations on beans, you basically rely on a typed java interface the
CDI managed bean needs to expose. A GWT client component can then create an invocation
proxy based on this interface. For more information see chapter on RPC mechanism [https://
docs.jboss.org/author/pages/viewpage.action?pageld=5931313] .

7.3. Publish/Subscribe with CDI managed components

If you choose publish/subscribe then your CDI bean needs to implement the
MessageCal | back interface, as described in chapter Messaging [https://docs.jboss.org/
author/pages/viewpage.action?pageld=5931263] . Any bean exposed in this way can be
accessed through the MessageBuilderAPI [https://docs.jboss.org/author/pages/viewpage.action?
pageld=5931280] .

7.4. CDI Producers

Producer methods and fields act as sources of objects to be injected. They are useful when
additional control over object creation is needed before injections can take place e.g. when you
need to make a decision at runtime before an object can be created and injected.

Example 7.4. App.java

@nt r yPoi nt
public class App {

@r oduces @upport ed
publi c MyBaseW dget createWdget() {

21

https://docs.jboss.org/author/pages/viewpage.action?pageId=5931313
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931313
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931313
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931263
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931263
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931263
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931280
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931280
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931280

Chapter 7. Errai CDI Features

return (Canvas.isSupported()) ? new MyHt ml 5Wdget () : new MyDef aul t Wdget () ;
}

Example 7.5. MyComposite.java

@\ppl i cati onScoped
public class MyConposite extends Conposite {

@ nj ect @dupported
publ i c MyBaseW dget wi dget;

For more information on CDI producers, see the CDI specification [http://docs.jboss.org/
cdi/spec/1.0/html/] and the WELD reference documentation [http://seamframework.org/Weld/
WeldDocumentation] .

22

http://docs.jboss.org/cdi/spec/1.0/html/
http://docs.jboss.org/cdi/spec/1.0/html/
http://docs.jboss.org/cdi/spec/1.0/html/
http://seamframework.org/Weld/WeldDocumentation
http://seamframework.org/Weld/WeldDocumentation
http://seamframework.org/Weld/WeldDocumentation

Chapter 8.

Client-Server Event Example

A key feature of the Errai CDI framework is the ability to federate the CDI eventing bus between
the client and the server. This permits the observation of server produced events on the client,
and vice-versa.

Example server code:

Example 8.1. MyServerBean.java

@\ppl i cati onScoped
public class MyServerBean {
@ nj ect
Event <MyResponseEvent > nyResponseEvent;

public void nmydient Cbserver (@bserves M/Request Event event) {
M/ResponseEvent response;

if (event.isThankYou()) {
/'l aww, that's nice!
response = new MyResponseEvent ("Well, you're wel come!");

}

el se {
/1 how rude!
response = new MyResponseEvent ("Wat ? Nobody says 'thank you' anynore?");

nmyResponseEvent . fire(response);

Domain-model:

Example 8.2. MyRequestEvent.java

@xposeEntity
public class MyRequest Event ({
private bool ean thankYou;

publ i ¢ MyRequest Event (bool ean t hankYou) {

set ThankYou(t hankYou) ;

public void set ThankYou(bool ean t hankYou) {
t hi s.thankYou = thankYou;

23

Chapter 8. Client-Server Even...

publ i c bool ean i sThankYou() ({
return thankYou;

Example 8.3. MyResponseEvent.java

@xposeEntity
public class My/ResponseEvent {
private String nmessage;

publ i c MyRequest Event (String message) {
set Message(nmessage) ;

public void set Message(String nessage) ({
thi s. nessage = nessage;

public String get Message() {
return nessage,;

Client application logic:

Example 8.4. MyClientBean.java

@nt r yPoi nt
public class MyClientBean {
@ nj ect
Event <MyRequest Event > r equest Event ;

public voi d nyResponseCbserver (@bserves My/ResponseEvent event) {
W ndow. al ert ("Server replied: " + event.getMessage());

@ost Const ruct
public void init() {
Button thankYou = new Button("Say Thank You!");
t hankYou. addd i ckHandl er (new d i ckHandl er () {
public void onCick(dickEvent event) {
request Event . fi re(new MyRequest Event (true));

24

Butt on not hi ng = new Button("Say nothing!");
not hi ng. addd i ckHandl er (new Cl i ckHandl er () {
public void onCick(dickEvent event) {
request Event . fire(new M/Request Event (fal se));

Vertical Panel vPanel = new Verti cal Panel ();
vPanel . add(t hankYou) ;
vPanel . add(not hi ng) ;

Root Panel . get (). add(vPanel);

25

26

Chapter 9.

Deploying Errai CDI

If you do not care about the deployment details for now and just want to get started
take a look at the CDI Quickstart Guide [https://docs.jboss.org/author/pages/viewpage.action?
pageld=5931395] .

The CDI integration is a plugin to the Errai core framework and represents a CDI portable
extension. Which means it is discovered automatically by both Errai and the CDI container. In
order to use it, you first need to understand the different runtime models involved when working
GWT, Errai and CDI.

Typically a GWT application lifecycle begins in Development Mode [http://code.google.com/
webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html] and finally a web application
containing the GWT client code will be deployed to a target container (Servlet Engine, Application
Server). This is no way different when working with CDI components to back your application.

What's different however is availability of the CDI container across the different runtimes. In
GWT development mode and in a pure servlet environment you need to provide and bootstrap
the CDI environment on your own. While any Java EE 6 Application Server already provides a
preconfigured CDI container. To accomodate these differences, we need to do a little trickery
when executing the GWT Development Mode and packaging our application for deployment.

9.1. Deployment in Development Mode

In development mode we need to bootstrap the CDI environment on our own and make both Errai
and CDI available through JNDI (common denominator across all runtimes). Since GWT uses
Jetty, that only supports read only JNDI, we need to replace the default Jetty launcher with a
custom one that will setup the JNDI bindings:

<pl ugi n>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifactld>gwt-nmaven plugin</artifactld>
<versi on>${gwt . maven} </ ver si on>

<configuration>
<server>org.jboss.errai.cdi.server.gw.JettylLauncher</server>
</ confi guration>

<executi ons>

</ execut i ons>
</ pl ugi n>

27

https://docs.jboss.org/author/pages/viewpage.action?pageId=5931395
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931395
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931395
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html

Chapter 9. Deploying Errai CDI

Once this is set up correctly, we can bootstrap the CDI container through a servlet listener:

<web- app>

<listener>
<l istener-class>org.jboss.errai.container. DevMbdeCDI Boot strap</1|i st ener-
cl ass>
</listener>

<r esour ce- env-ref >
<descri pti on>0bj ect factory for the CDI Bean Manager </ descri pti on>
<resour ce- env-ref - name>BeanManager </ r esour ce- env-r ef - nane>
<resource-env-ref-type>j avax. enterprise.inject.spi.BeanManager </ resource-
env-ref-type>
</ resource-env-ref>

</ web- app>

maven archetype

9.2. Deployment to a Servlet Engine

Deployment to servlet engine has basically the same requirements as running in development
mode. You need to include the servlet listener that bootstraps the CDI container and make sure
both Errai and CDI are accessible through JNDI. For Jetty you can re-use the artefacts we
ship with the archetype. In case you want to run on tomcat, please consult the Apache Tomcat
Documentation [http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html] .

9.3. Deployment to an Application Server

We provide integration with the JBoss Application Server [http://jboss.org/jbossas] , but the
requirements are basically the same for other vendors. When running a GWT client app that

28

https://docs.jboss.org/author/pages/viewpage.action?pageId=5931395
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931395
https://docs.jboss.org/author/pages/viewpage.action?pageId=5931395
http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-resources-howto.html
http://jboss.org/jbossas
http://jboss.org/jbossas

Configuration Options

leverages CDI beans on a Java EE 6 application server, CDI is already part of the container and
accessible through JNDI (j ava: / BeanManager).

9.4. Configuration Options

Since the discovery of service implementations (beans) is delegated to the CDI container, we
need to disable Errai's own service discovery mechanism. In order to do so, simply turn off the
auto-discovery feature in Err ai Servi ce. properties

errai.auto_di scover_services=fal se

29

30

Chapter 10.

License

Errai CDI is distributed under the terms of the Apache License, Version 2.0. See the full Apache
license text [http://www.apache.org/licenses/LICENSE-2.0] .

31

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

32

Appendix A. Revision History

Revision History
Revision ToDo 0-0 ToDo Wed Jan 19 2011 ToDo DudeToDo

McPants<ToDo Dude. McPant s@xanpl e. con»
ToDo Initial creation of book

33

34

	Errai
	Table of Contents
	Preface
	1. Document Conventions
	2. Feedback

	Chapter 1. CDI Introduction
	Chapter 2. Errai CDI Features
	2.1. Integration with the CDI event subsystem
	2.1.1. Conversational events

	2.2. RPC Style Invocations on CDI beans
	2.3. Publish/Subscribe with CDI managed components
	2.4. CDI Producers

	Chapter 3. Client-Server Event Example
	Chapter 4. Deploying Errai CDI
	4.1. Deployment in Development Mode
	4.2. Deployment to a Servlet Engine
	4.3. Deployment to an Application Server
	4.4. Configuration Options

	Chapter 5. License and EULA
	Chapter 6. CDI Introduction
	Chapter 7. Errai CDI Features
	7.1. Integration with the CDI event subsystem
	7.1.1. Conversational events

	7.2. RPC Style Invocations on CDI beans
	7.3. Publish/Subscribe with CDI managed components
	7.4. CDI Producers

	Chapter 8. Client-Server Event Example
	Chapter 9. Deploying Errai CDI
	9.1. Deployment in Development Mode
	9.2. Deployment to a Servlet Engine
	9.3. Deployment to an Application Server
	9.4. Configuration Options

	Chapter 10. License
	Appendix A. Revision History

