
Seam Solder

Reference Guide

Pete Muir

Stuart Douglas

Dan Allen

John Ament

iii

Introduction ... v

1. Getting Started .. 1

1.1. Maven dependency configuration ... 1

1.2. Transitive dependencies .. 2

1.3. Pre-Servlet 3.0 configuration ... 3

I. Extensions and Utilities for Developers .. 5

2. Enhancements to the CDI Programming Model ... 7

2.1. Preventing a class from being processed ... 7

2.1.1. @Veto ... 7

2.1.2. @Requires .. 8

2.2. @Exact .. 8

2.3. @Client .. 9

2.4. Named packages .. 9

2.5. @FullyQualified bean names ... 10

3. Annotation Literals .. 13

4. Evaluating Unified EL .. 15

5. Resource Loading .. 17

5.1. Extending the Resource Loader ... 18

6. Logging, redesigned .. 19

6.1. JBoss Logging: The foundation .. 19

6.2. Solder Logging: Feature set .. 20

6.3. Typed loggers ... 20

6.4. Native logger API .. 22

6.5. Typed message bundles ... 23

6.6. Implementation classes ... 24

6.6.1. Generating the implementation classes .. 24

6.6.2. Including the implementation classes in Arquillian tests 26

II. Utilities for Framework Authors ... 27

7. Annotation and AnnotatedType Utilities .. 29

7.1. Annotated Type Builder ... 29

7.2. Annotation Instance Provider ... 30

7.3. Annotation Inspector ... 31

7.4. Synthetic Qualifiers ... 32

7.5. Reflection Utilities ... 33

8. Obtaining a reference to the BeanManager ... 35

9. Bean Utilities ... 37

10. Properties .. 39

10.1. Working with properties ... 39

10.2. Querying for properties .. 40

10.3. Property Criteria .. 40

10.3.1. AnnotatedPropertyCriteria ... 40

10.3.2. NamedPropertyCriteria .. 41

10.3.3. TypedPropertyCriteria ... 41

10.3.4. Creating a custom property criteria .. 42

Seam Solder

iv

10.4. Fetching the results ... 42

III. Configuration Extensions for Framework Authors .. 45

11. Unwrapping Producer Methods ... 47

12. Default Beans .. 49

13. Generic Beans ... 51

13.1. Using generic beans ... 51

13.2. Defining Generic Beans ... 54

14. Service Handler .. 57

v

Introduction

Seam Solder is a library of Generally Useful Stuff (tm), particularly if you are developing an

application based on CDI (JSR-299 Java Contexts and Dependency Injection), or a CDI based

library or framework.

This guide is split into three parts. Part I, “Extensions and Utilities for Developers” details

extensions and utilities which are likely to be of use to any developer using CDI; Part II, “Utilities for

Framework Authors” describes utilities which are likely to be of use to developers writing libraries

and frameworks that work with CDI; Part III, “Configuration Extensions for Framework Authors”

discusses extensions which can be used to implement configuration for a framework

vi

Chapter 1.

1

Getting Started
Getting started with Seam Solder is easy. All you need to do is put the API and implementation

JARs on the classpath of your CDI application. The features provided by Seam Solder will be

enabled automatically.

Some additional configuration, covered at the end of this chapter, is required if you are using a

pre-Servlet 3.0 environment.

1.1. Maven dependency configuration

If you are using Maven [http://maven.apache.org/] as your build tool, first make sure you have

configured your build to use the JBoss Community repository [http://community.jboss.org/wiki/

MavenGettingStarted-Users], where you can find all the Seam artifacts. Then, add the following

single dependency to your pom.xml file to get started using Seam Solder:

<dependency>

 <groupId>org.jboss.seam.solder</groupId>

 <artifactId>seam-solder</artifactId>

 <version>${seam.solder.version}</version>

</dependency>

This artifact includes the combined API and implementation.

Tip

Substitute the expression ${seam.solder.version} with the most recent or

appropriate version of Seam Solder. Alternatively, you can create a Maven user-

defined property to satisfy this substitution so you can centrally manage the

version.

To be more strict, you can use the API at compile time and only include the implementation at

runtime. This protects you from inadvertantly depending on an implementation class.

<dependency>

 <groupId>org.jboss.seam.solder</groupId>

 <artifactId>seam-solder-api</artifactId>

 <version>${seam.solder.version}</version>

 <scope>compile</scope>

</dependency>

http://maven.apache.org/
http://maven.apache.org/
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users

Chapter 1. Getting Started

2

<dependency>

 <groupId>org.jboss.seam.solder</groupId>

 <artifactId>seam-solder-impl</artifactId>

 <version>${seam.solder.version}</version>

 <scope>runtime</scope>

</dependency>

In a Servlet 3.0 or Java EE 6 environment, your configuration is now complete!

1.2. Transitive dependencies

Most of Seam Solder has very few dependencies, only one of which is not provided by Java EE 6:

• javax.enterprise:cdi-api (provided by Java EE 6)

• javax.inject:javax:inject (provided by Java EE 6)

• javax.annotation:jsr250-api (provided by Java EE 6)

• javax.interceptor:interceptor-api (provided by Java EE 6)

• javax.el:el-api (provided by Java EE 6)

Tip

The POM for Seam Solder specifies the versions required. If you are using Maven

3, you can easily import the dependencyManagement into your POM by declaring

the following in your depdendencyManagement section:

<dependency>

 <groupId>org.jboss.seam.solder</groupId>

 <artifactId>seam-solder-parent</artifactId>

 <version>${seam.solder.version}</version>

 <type>pom</type>

 <scope>import</scope>

</dependency>

Some features of Seam Solder require additional dependencies (which are declared optional, so

will not be added as transitive dependencies):

org.javassist:javassist

Service Handlers, Unwrapping Producer Methods

Pre-Servlet 3.0 configuration

3

javax.servlet:servlet-api

Accessing resources from the Servlet Context

In addition, a logger implementation (SLF4J, Log4J, JBoss Log Manager or the JDK core logging

facility) is required. Refer to Chapter 6, Logging, redesigned for more information about how

logging is handled in Solder.

1.3. Pre-Servlet 3.0 configuration

If you are using Java EE 5 or some other Servlet 2.5 container, then you need to manually register

a Servlet component in your application's web.xml to access resources from the Servlet Context.

<listener>

 <listener-class>org.jboss.seam.solder.resourceLoader.servlet.ResourceListener</listener-

class>

</listener>

This registration happens automatically in a Servlet 3.0 environment through the use of a /META-

INF/web-fragment.xml included in the Solder implementation.

You're all setup. It's time to dive into all the useful stuff that Seam Solder provides!

4

Part I. Extensions and

Utilities for Developers

Chapter 2.

7

Enhancements to the CDI

Programming Model
Seam Solder provides a number enhancements to the CDI programming model which are under

trial and may be included in later releases of Contexts and Dependency Injection.

2.1. Preventing a class from being processed

2.1.1. @Veto

Annotating a class @Veto will cause the type to be ignored, such that any definitions on the type

will not be processed, including:

• the managed bean, decorator, interceptor or session bean defined by the type

• any producer methods or producer fields defined on the type

• any observer methods defined on the type

For example:

@Veto

class Utilities {

 ...

}

Besides, a package can be annotated with @Veto, causing all beans in the package to be

prevented from registration.

Example 2.1. package-info.java

@Veto

package com.example;

import org.jboss.seam.solder.core.Veto;

Note

The ProcessAnnotatedType container lifecycle event will be called for vetoed

types.

Chapter 2. Enhancements to th...

8

2.1.2. @Requires

Annotating a class with @Requires will cause the type to be ignored if the class dependencies

cannot be satisfied. Any definitions on the type will not be processed:

• the managed bean, decorator, interceptor or session bean defined by the type

• any producer methods or producer fields defined on the type

• any observer methods defined on the type

Tip

Solder will use the Thread Context ClassLoader, as well as the classloader of the

type annotated @Requires to attempt to satisfy the class dependency.

For example:

@Requires(EntityManager.class)

class EntityManagerProducer {

 @Produces

 EntityManager getEntityManager() {

 ...

 }

}

Annotating a package with @Requires causes all beans in the package to be ignored if the class

dependencies cannot be satisfied. If both a class and it's package are annotated with @Requires,

both package-level and class-level dependencies have to be satisfied for the bean to be installed.

Note

The ProcessAnnotatedType container lifecycle event will be called for vetoed

types.

2.2. @Exact

Annotating an injection point with @Exact allows you to select an exact implementation of the

injection point type to inject. For example:

@Client

9

interface PaymentService {

 ...

}

class ChequePaymentService implements PaymentService {

 ...

}

class CardPaymentService implements PaymentService {

 ...

}

class PaymentProcessor {

 @Inject @Exact(CardPaymentService.class)

 PaymentService paymentService;

 ...

}

2.3. @Client

It is common to want to qualify a bean as belonging to the current client (for example we want

to differentiate the default system locale from the current client's locale). Seam Solder provides

a built in qualifier, @Client for this purpose.

2.4. Named packages

Seam Solder allows you to annotate the package @Named, which causes every bean defined in

the package to be given its default name. Package annotations are defined in the file package-

info.java. For example, to cause any beans defined in com.acme to be given their default name:

@Named

package com.acme

Chapter 2. Enhancements to th...

10

2.5. @FullyQualified bean names

According to the CDI standard, the @Named annotation assigns a name to a bean equal to the

value specified in the @Named annotation or, if a value is not provided, the simple name of the bean

class. This behavior aligns is with the needs of most application developers. However, framework

writers should avoid trampling on the "root" bean namespace. Instead, frameworks should specify

qualified names for built-in components. The motivation is the same as qualifying Java types. The

@FullyQualified provides this facility without sacrificing type-safety.

Seam Solder allows you to customize the bean name using the complementary @FullyQualified

annotation. When the @FullyQualified annotation is added to a @Named bean type, producer

method or producer field, the standard bean name is prefixed with the name of the Java package

in which the bean resides, the segments separated by a period. The resulting fully-qualified bean

name (FQBN) replaces the standard bean name.

package com.acme;

@FullyQualified @Named

public class NamedBean {

 public String getAge()

 {

 return 5;

 }

}

The bean in the previous code listing is assigned the name com.acme.namedBean. The value of its

property age would be referenced in an EL expression (perhaps in a JSF view template) as follows:

#{com.acme.namedBean.age}

The @FullyQualified annotation is permitted on a bean type, producer method or producer field.

It can also be used on a Java package, in which case all @Named beans in that package get a

bean name which is fully-qualified.

@FullyQualified

package com.acme;

If you want to use a different Java package as the namespace of the bean, rather than the Java

package of the bean, you specify any class in that alternative package in the annotation value.

@FullyQualified bean names

11

package com.acme;

@FullyQualified(ClassInOtherPackage.class) @Named

public class CustomNamespacedNamedBean {

 ...

}

12

Chapter 3.

13

Annotation Literals
Seam Solder provides a complete set of AnnotationLiteral classes cooresponding to the

annotation types defined in the CDI (JSR-299) and Injection (JSR-330) specifications. These

literals are located in the org.jboss.seam.solder.literal package.

For any annotation that does not define an attribute, its cooresponding AnnotationLiteral

contains a static INSTANCE member. You should use this static member whenever you need a

reference to an annotation instance rather than creating a new instance explicitly.

new AnnotatedTypeBuilder<X>().readFromType(type).addToClass(NamedLiteral.INSTANCE);

Literals are provided for the following annotations from Context and Dependency Injection

(including annotations from Dependency Injection for Java):

• @Alternative

• @Any

• @ApplicationScoped

• @ConversationScoped

• @Decorator

• @Default

• @Delegate

• @Dependent

• @Disposes

• @Inject

• @Model

• @Named

• @New

• @Nonbinding

• @NormalScope

• @Observes

• @Produces

Chapter 3. Annotation Literals

14

• @RequestScoped

• @SessionScoped

• @Specializes

• @Stereotype

• @Typed

Literals are also provided for the following annotations from Seam Solder:

• @Client

• @DefaultBean

• @Exact

• @Generic

• @GenericType

• @Mapper

• @MessageBundle

• @Requires

• @Resolver

• @Resource

• @Unwraps

• @Veto

For more information about these annotations, consult the cooresponding API documentation.

Chapter 4.

15

Evaluating Unified EL
Seam Solder provides a method to evaluate EL that is not dependent on JSF or JSP, a facility

sadly missing in Java EE. To use it inject Expressions into your bean. You can evaluate value

expressions, or method expressions. The Seam Solder API provides type inference for you. For

example:

class FruitBowl {

 @Inject Expressions expressions;

 public void run() {

 String fruitName = expressions.evaluateValueExpression("#{fruitBowl.fruitName}");

 Apple fruit = expressions.evaluateMethodExpression("#{fruitBown.getFruit}");

 }

}

16

Chapter 5.

17

Resource Loading
Seam Solder provides an extensible, injectable resource loader. The resource loader can provide

URLs or managed input streams. By default the resource loader will look at the classpath, and

the servlet context if available.

If the resource name is known at development time, the resource can be injected, either as a URL

or an InputStream:

 @Inject

 @Resource("WEB-INF/beans.xml")

 URL beansXml;

 @Inject

 @Resource("WEB-INF/web.xml")

 InputStream webXml;

If the resource name is not known, the ResourceProvider can be injected, and the resource

looked up dynamically:

 @Inject

 void readXml(ResourceProvider provider, String fileName) {

 InputStream is = provider.loadResourceStream(fileName);

 }

If you need access to all resources under a given name known to the resource loader (as opposed

to first resource loaded), you can inject a collection of resources:

 @Inject

 @Resource("WEB-INF/beans.xml")

 Collection<URL> beansXmls;

 @Inject

 @Resource("WEB-INF/web.xml")

 Collection<InputStream> webXmls;

Chapter 5. Resource Loading

18

Tip

Any input stream injected, or created directly by the ResourceProvider is

managed, and will be automatically closed when the bean declaring the injection

point of the resource or provider is destroyed.

If the resource is a Properties bundle, you can also inject it as a set of Properties:

 @Inject

 @Resource("META-INF/aws.properties")

 Properties awsProperties;

5.1. Extending the Resource Loader

If you want to load resources from another location, you can provide an additional resource loader.

First, create the resource loader implementation:

class MyResourceLoader implements ResourceLoader {

 ...

}

And then register it as a service by placing the fully qualified class name of the implementation in a

file called META-INF/services/org.jboss.seam.solder.resourceLoader.ResourceLoader.

Chapter 6.

19

Logging, redesigned
Seam Solder brings a fresh perspective to the ancient art of logging. Rather than just giving you an

injectable version of the same old logging APIs, Solder goes the extra mile by embracing the type-

safety of CDI and eliminating brittle, boilerplate logging statements. The best part is, no matter

how you decide to roll it out, you still get to keep your logging engine of choice (for the logging

wars will never end!).

6.1. JBoss Logging: The foundation

Before talking about Solder Logging, you need to first be introduced to JBoss Logging 3. The

reason is, JBoss Logging provides the foundation on which Solder's declarative programming

model for logging is built. Plus, we have to convince you that you aren't tied to JBoss AS by using it.

JBoss Logging acts as a logging bridge. If you don't add any other logging libraries to your project, it

will delegate all logging calls it handles to the logging facility built into the Java platform (commonly

referred to as JDK logging). That's nice, because it means your deployment headaches caused

by missing logging jars are gone. And you accomplish it all through the use of this interface:

org.jboss.logging.Logger

If you want to use another logging engine, such as SLF4J or Log4J, you just have to add the

native library to the deployment. Keep in mind, though, if your application server provides one of

these frameworks, it will get choosen instead. On JBoss AS, JBoss Logging will prefer the JBoss

LogManager because it's the built-in logging engine. (We are looking into more sophisticated

runtime selection of the logging engine).

Here are the providers JBoss Logging supports (and the order in which it looks for them):

• JBoss LogManager

• Log4J

• SLF4J

• JDK logging

So you get that JBoss Logging is an abtraction. What else is it good for?

JBoss Logging has a facility for formatting log messages, using either the printf syntax or

MessageFormat. This makes it possible to use positional parameters to build dynamic log

messages based on contextual information.

The most significant and distinguishing feature of JBoss Logging is support for typed loggers.

A typed logger is an interface that defines methods which serve as logging operations. When

Chapter 6. Logging, redesigned

20

a method is invoked on one of these interfaces, the message defined in an annotation on the

method is interpolated and written to the underlying logging engine. These messages can also

be internationalized. (There is also parallel suppot for typed message bundles, which return the

formatted message rather than log it). This feature is the centerpiece of Solder's logging (and

message bundle) programming model. We'll get into the details of typed loggers and how to use

them in a later section.

There you have it. JBoss Logging is a low-level API that provides logging abstraction, message

formatting and internationalization, and typed loggers. But it doesn't tie you to JBoss AS! With that

understanding, we'll now move on to what Solder does to turn this foundation into a programming

model and how to make use of it.

6.2. Solder Logging: Feature set

Solder builds on JBoss Logging 3 to provide the following feature set:

• An abstraction over common logging backends and frameworks (such as JDK Logging, log4j

and slf4j)

• An innovative, typed message logger (and bundle) defined using an interface (see below for

examples)

• Full support for internationalization and localization

• Developers can work with interfaces and annotations only

• Translators can work with message bundles in properties files

• Build time tooling to generate typed loggers for production, and runtime generation of typed

loggers for development

• Access to the "Mapped Diagonostic Context" (MDC) and/or the "Nested Diagonostic

Context" (NDC) (if the underlying logger supports it)

• Serializable loggers

Note

Seam's international module builds on this programming model to provide even

more features for producing localized message strings.

Without further discussion, let's get into it.

6.3. Typed loggers

To define a typed logger, first create an interface, annotated it, then add methods that will act as

log operations and configure the message it will print using another annotation:

Typed loggers

21

import org.jboss.seam.solder.messages.Message;

import org.jboss.seam.solder.logging.Log;

import org.jboss.seam.solder.logging.MessageLogger;

@MessageLogger

public interface TrainSpotterLog {

 @Log @Message("Spotted %s diesel trains")

 void dieselTrainsSpotted(int number);

}

We have configured the log messages to use printf-style interpolations of parameters (%s).

Note

Make sure you are using the annotations from Seam Solder

(org.jboss.seam.solder.messages and org.jboss.seam.solder.logging

packages only).

You can then inject the typed logger with no further configuration necessary. We use another

annotation to set the category of the logger to "trains" at the injection point:

 @Inject @Category("trains")

 private TrainSpotterLog log;

We log a message by simply invoking a method of the typed logger interface:

 log.dieselTrainsSpotted(7);

The default locale will be used unless overridden. Here we configure the logger to use the UK

locale:

 @Inject @Category("trains") @Locale("en_GB")

 private TrainSpotterLog log;

Typed loggers also provide internationalization support. Simply add the @MessageBundle

annotation to the logger interface.

Chapter 6. Logging, redesigned

22

You can also log exceptions.

import org.jboss.seam.solder.messages.Message;

import org.jboss.seam.solder.messages.Cause;

import org.jboss.seam.solder.logging.Log;

import org.jboss.seam.solder.logging.MessageLogger;

@MessageLogger

public interface TrainSpotterLog {

 @Log @Message("Failed to spot train %s")

 void missedTrain(String trainNumber, @Cause Exception exception);

}

You can then log a message with an exception as follows:

catch (Exception e) {

 log.missedTrain("RH1", e);

}

The stacktrace of the exception parameter will be written to the log along with the message.

6.4. Native logger API

You can also inject a "plain old" Logger (from the JBoss Logging API):

import javax.inject.Inject;

import org.jboss.logging.Logger;

public class LogService {

 @Inject

 private Logger log;

 public void logMessage() {

 log.info("Hey sysadmins!");

 }

}

Typed message bundles

23

Log messages created from this Logger will have a category (logger name) equal to the fully-

qualified class name of the bean implementation class. You can specify a category explicitly using

an annotation.

 @Inject @Category("billing")

 private Logger log;

You can also specify a category using a reference to a type:

 @Inject @TypedCategory(BillingService.class)

 private Logger log;

6.5. Typed message bundles

Often times you need to access a localized message. For example, you need to localize an

exception message. Seam Solder let's you retrieve this message from a typed message logger

to avoid having to use hard-coded string messages.

To define a typed message bundle, first create an interface, annotated it, then add methods that

will act as message retrievers and configure the message to produce using another annotation:

import org.jboss.seam.solder.messages.Message;

import org.jboss.seam.solder.messages.MessageBundle;

@MessageBundle

public interface TrainMessages {

 @Message("No trains spotted due to %s")

 String noTrainsSpotted(String cause);

}

Inject it:

 @Inject @MessageBundle

 private TrainMessages messages;

And use it:

Chapter 6. Logging, redesigned

24

 throw new BadDayException(messages.noTrainsSpotted("leaves on the line"));

6.6. Implementation classes

You may have noticed that throughout this chapter, we've only defined interfaces. Yet, we are

injecting and invoking them as though they are concrete classes. So where's the implementation?

Good news. The typed logger and message bundle implementations are generated automatically!

You'll see this strategy used often in Seam 3. It's declarative programming at its finest (or to an

extreme, depending on how you look at it). Either way, it saves you from a whole bunch of typing.

So how are they generated? Let's find out!

6.6.1. Generating the implementation classes

The first time you need logging in your application, you'll likely start with the more casual approach

of using the Logger API directly. There's no harm in that, but it's certainly cleaner to use the

typed loggers, and at the same time leverage the parallel benefits of the typed bundles. So we

recommend that as your long term strategy.

Once you are ready to move to the the typed loggers and message bundles, you'll need to generate

the concrete implementation classes as part of the build. These classes are generated by using

an annotation processor that is provided by Solder and based on the JBoss Logging tools project

[https://github.com/jamezp/jboss-logging-tools]. Don't worry, setting it up is a lot simpler than it

sounds. You just need to do these two simple steps:

• Set the Java compliance to 1.6 (or better)

• Add the Solder tooling library to the build classpath

Warning

If you forget to add the annotation processor to your build, you'll get an error when

you deploy the application that reports: "Invalid bundle interface (implementation

not found)". This error occurs because the concrete implementation classes are

missing.

Setting the Java compliance to 1.6 enables any annotation processors on the classpath to be

activated during compilation.

If you're using Maven, here's how the configuration in your POM file looks:

<dependencies>

 <!-- Annotation processor for generating typed logger and message bundle classes -->

 <dependency>

https://github.com/jamezp/jboss-logging-tools
https://github.com/jamezp/jboss-logging-tools

Generating the implementation classes

25

 <groupId>org.jboss.seam.solder</groupId>

 <artifactId>seam-solder-tooling</artifactId>

 <scope>provided</scope>

 <optional>true</optional>

 </dependency>

 ...

</dependencies>

<build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.6</source>

 <target>1.6</target>

 </configuration>

 </plugin>

 </plugins>

</build>

Note

In the future, you can expect IDE plugins like JBoss Tools to setup this configuration

automatically.

Here are the classes that will be generated for the examples above:

TrainSpotterLog_$logger.java

TrainSpotterLog_$logger_en_GB.java

TrainMessages_$bundle.java

Classes are generated for each language referenced by an annotation or if there is a .properties

language file in the same package as the interface and has the same root name. For instance, if

we wanted to generate a French version of TrainMessages, we would have to create the following

properties file in the same package as the interface:

TrainMessages_fr.properties

Then populate it with the translations:

Chapter 6. Logging, redesigned

26

noTrainsSpotted=pas de trains repéré en raison de %s

Now the annotation processor will generate the following class:

TrainMessages_$bundle_fr.java

Now you can add typed loggers and message bundles at will (and you won't have to worry about

unsatisified dependencies).

6.6.2. Including the implementation classes in Arquillian tests

If you are writing an Arquillian test, be sure to include the concrete classes in the ShrinkWrap

archive. Otherwise, you may can an exception like:

Invalid bundle interface org.example.log.AppLog (implementation not found)

The best approach is to put your typed message loggers and bundles in their own package. Then,

you include the package in the ShrinkWrap archive:

ShrinkWrap.create(JavaArchive.class, "test.jar")

 .addPackage(AppLog.class.getPackage());

This strategy will effectively package the interface and the generated implementation class(es)

(even though you can't see the generated implementation classes in your source tree).

Part II. Utilities for

Framework Authors

Chapter 7.

29

Annotation and AnnotatedType

Utilities
Seam Solder provides a number of utilility classes that make working with annotations and

AnnotatedTypes easier. This chapter walks you through each utility, and gives you some ideas

about how to use it. For more detail, take a look at the JavaDoc on each class.

7.1. Annotated Type Builder

Seam Solder provides an AnnotatedType implementation that should be suitable for the needs of

most portable extensions. The AnnotatedType is created from AnnotatedTypeBuilder, typically

in an extension's observer method, as follows:

AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()

 .readFromType(type, true) /* readFromType can read from an AnnotatedType or a class */

 .addToClass(ModelLiteral.INSTANCE); /* add the @Model annotation */

Here we create a new builder, and initialize it using an existing AnnotatedType. We can then add

or remove annotations from the class, and its members. When we have finished modifying the

type, we call create() to spit out a new, immutable, AnnotatedType.

AnnotatedType redefinedType = builder.create();

One place this is immensely useful is for replacing the AnnotatedType in an extension that

observes the ProcessAnnotatedType event:

public <X> void processAnnotatedType(@Observes ProcessAnnotatedType<X> evt) {

 AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()

 .readFromType(evt.getAnnotatedType(), true)

 .addToClass(ModelLiteral.INSTANCE);

 evt.setAnnotatedType(builder.create());

}

This type is now effectively annotated with @Model, even if the annotation is not present on the

class definition in the Java source file.

AnnotatedTypeBuilder also allows you to specify a "redefinition", which can be applied to the

type, a type of member, or all members. The redefiner will receive a callback for any annotations

present which match the annotation type for which the redefinition is applied.

Chapter 7. Annotation and Ann...

30

For example, to remove the qualifier @Unique from the type and any of its members, use this:

AnnotatedTypeBuilder builder = new AnnotatedTypeBuilder()

 .readFromType(type, true)

 .redefine(Unique.class, new AnnotationRedefiner<Unique>() {

 public void redefine(RedefinitionContext<A> ctx) {

 ctx.getAnnotationBuilder().remove(Unique.class);

 }

 });

AnnotatedType redefinedType = builder.create();

No doubt, this is a key blade in Solder's army knife arsenal of tools. You can quite effectively

change the picture of the type metadata CDI discovers when it scans and processes the classpath

of a bean archive.

7.2. Annotation Instance Provider

Sometimes you may need an annotation instance for an annotation whose type is not known at

development time. Seam Solder provides a AnnotationInstanceProvider class that can create

an AnnotationLiteral instance for any annotation at runtime. Annotation attributes are passed

in via a Map<String,Object>. For example given the follow annotation:

@Retention(RetentionPolicy.RUNTIME)

public @interface MultipleMembers {

 int intMember();

 long longMember();

 short shortMember();

 float floatMember();

 double doubleMember();

 byte byteMember();

 char charMember();

 boolean booleanMember();

 int[] intArrayMember();

Annotation Inspector

31

}

We can create an annotation instance as follows:

/* Create a new provider */

AnnotationInstanceProvider provider = new AnnotationInstanceProvider();

/* Set the value for each of attributes */

Map<String, Object> values = new HashMap<String, Object>();

values.put("intMember", 1);

values.put("longMember", 1);

values.put("shortMember", 1);

values.put("floatMember", 0);

values.put("doubleMember", 0);

values.put("byteMember", ((byte) 1));

values.put("charMember", 'c');

values.put("booleanMember", true);

values.put("intArrayMember", new int[] { 0, 1 });

/* Generate the instance */

MultipleMembers an = provider.get(MultipleMembers.class, values);

7.3. Annotation Inspector

The Annotation Inspector allows you to easily discover annotations which are meta-annotated.

For example:

/* Discover all annotations on type which are meta-annotated @Constraint */

Set<Annotation> constraints = AnnotationInspector.getAnnotations(type, Constraint.class, beanManager);

/* Load the annotation instance for @FacesValidator the annotation may declared on the type, */

/* or, if the type has any stereotypes, on the stereotypes */

FacesValidator validator = AnnotationInspector.getAnnotation(

 type, FacesValidator.class, true, beanManager);

The utility methods work correctly on Stereotypes as well. Let's say you're working with a bean

that was decorated @Model, running the following example will still show you the underlying @Named

// assuming you have a class..

@Model

Chapter 7. Annotation and Ann...

32

public class User {

 ...

}

// Assume type represents the User class

assert AnnotationInspector.isAnnotationPresent(type, Named.class, beanManager);

// Retrieves the underlying @Named instance on the stereotype

Named name = AnnotationInspector.getAnnotation(type, Named.class, true, beanManager);

The search algorithm will first check to see if the annotation is present directly on the annotated

element first, then searches within the stereotype annotations on the element. If you only

want to search for Annotations on Stereotypes, then you can use either of the methods

AnnotationInspector.getAnnotationFromStereotype.

There is an overloaded form of isAnnotationPresent and getAnnotation to control whether it

will search on Stereotypes or not. For both of these methods, a search is performed first directly

on the element before searching in stereotypes.

7.4. Synthetic Qualifiers

When developing an extension to CDI, it can be useful to detect certain injection points, or bean

definitions and based on annotations or other metadata, add qualifiers to further disambiguate

the injection point or bean definition for the CDI bean resolver. Solder's synthetic qualifers can be

used to easily generate and track such qualifers.

In this example, we will create a synthetic qualifier provider, and use it to create a qualifier. The

provider will track the qualifier, and if a qualifier is requested again for the same original annotation,

the same instance will be returned.

/* Create a provider, giving it a unique namespace */

Synthetic.Provider provider = new Synthetic.Provider("com.acme");

/* Get the a synthetic qualifier for the original annotation instance */

Synthetic synthetic = provider.get(originalAnnotation);

/* Later calls with the same original annotation instance will return the same instance */

/* Alternatively, we can "get and forget" */

Synthetic synthetic2 = provider.get();

Reflection Utilities

33

7.5. Reflection Utilities

Seam Solder comes with a number miscellaneous reflection utilities; these extend JDK reflection,

and some also work on CDI's Annotated metadata. See the javadoc on Reflections for more.

Solder also includes a simple utility, PrimitiveTypes for converting between primitive and their

respective wrapper types, which may be useful when performing data type conversion. Sadly, this

is functionality which is missing from the JDK.

InjectableMethod allows an AnnotatedMethod to be injected with parameter values obtained

by following the CDI type safe resolution rules, as well as allowing the default parameter values

to be overridden.

34

Chapter 8.

35

Obtaining a reference to the

BeanManager
When developing a framework that builds on CDI, you may need to obtain the BeanManager for the

application, can't simply inject it as you are not working in an object managed by the container. The

CDI specification allows lookup of java:comp/BeanManager in JNDI, however some environments

don't support binding to this location (e.g. servlet containers such as Tomcat and Jetty) and some

environments don't support JNDI (e.g. the Weld SE container). For this reason, most framework

developers will prefer to avoid a direct JNDI lookup.

Often it is possible to pass the correct BeanManager to the object in which you require it, for

example via a context object. For example, you might be able to place the BeanManager in the

ServletContext, and retrieve it at a later date.

On some occasions however there is no suitable context to use, and in this case, you can

take advantage of the abstraction over BeanManager lookup provided by Seam Solder. To

lookup up a BeanManager, you can extend the abstract BeanManagerAware class, and call

getBeanManager():

public class WicketIntegration extends BeanManagerAware {

 public WicketManager getWicketManager() {

 Bean<?> bean = getBeanManager().getBean(Instance.class);

 ... // and so on to lookup the bean

 }

}

The benefit here is that BeanManagerAware class will first look to see if its BeanManager injection

point was satisified before consulting the providers. Thus, if injection becomes available to the

class in the future, it will automatically start the more efficient approach.

Occasionally you will be working in an existing class hierarchy, in which case you can use the

accessor on BeanManagerLocator. For example:

public class ResourceServlet extends HttpServlet {

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 BeanManager beanManager = new BeanManagerLocator().getBeanManager();

 ...

Chapter 8. Obtaining a refere...

36

 }

}

If this lookup fails to resolve a BeanManager, the BeanManagerUnavailableException, a runtime

exception, will be thrown. If you want to perform conditional logic based on whether the

BeanManager is available, you can use this check:

public class ResourceServlet extends HttpServlet {

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 BeanManagerLocator locator = new BeanManagerLocator();

 if (locator.isBeanManagerAvailable()) {

 BeanManager beanManager = locator.getBeanManager();

 ... // work with the BeanManager

 }

 else {

 ... // work without the BeanManager

 }

 }

}

However, keep in mind that you can inject into Servlets in Java EE 6!! So it's very likely the lookup

isn't necessary, and you can just do this:

public class ResourceServlet extends HttpServlet {

 @Inject

 private BeanManager beanManager;

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 ... // work with the BeanManager

 }

}

Chapter 9.

37

Bean Utilities
Seam Solder provides a number of base classes which can be extended to create custom beans.

Seam Solder also provides bean builders which can be used to dynamically create beans using

a fluent API.

AbstractImmutableBean

An immutable (and hence thread-safe) bean, whose constructor will substitute specification

defaults if null is passed for a particular attribute. Subclasses must implement the create()

and destroy() methods.

AbstractImmutableProducer

An immutable (and hence thread-safe) abstract class for creating producers. Subclasses must

implement produce() and dispose().

BeanBuilder

A builder for creating immutable beans which can read the type and annotations from an

AnnotatedType.

Beans

A set of utilities for working with beans.

ForwardingBean

A base class for implementing Bean which forwards all calls to delegate().

ForwardingInjectionTarget

A base class for implementing InjectionTarget which forwards all calls to delegate().

ForwardingObserverMethod

A base class for implementing ObserverMethod which forwards all calls to delegate().

ImmutableBean

An immutable (and hence thread-safe) bean, whose constructor will substitute

specification defaults if null is passed for a particular attribute. An implementation of

ContextualLifecycle may be registered to receive lifecycle callbacks.

ImmutableInjectionPoint

An immutable (and hence thread-safe) injection point.

ImmutableNarrowingBean

An immutable (and hence thread-safe) narrowing bean. Narrowing beans allow you to build

a general purpose bean (likely a producer method), and register it for a narrowed type (or

qualifiers).

ImmutablePassivationCapableBean

An immutable (and hence thread-safe) bean, whose constructor will substitute

specification defaults if null is passed for a particular attribute. An implementation of

Chapter 9. Bean Utilities

38

ContextualLifecycle may be registered to receive lifecycle callbacks. The bean implements

PassivationCapable, and an id must be provided.

ImmutablePassivationCapableNarrowingBean

An immutable (and hence thread-safe) narrowing bean. Narrowing beans allow you to build

a general purpose bean (likely a producer method), and register it for a narrowed type (or

qualifiers). The bean implements PassivationCapable, and an id must be provided.

NarrowingBeanBuilder

A builder for creating immutable narrowing beans which can read the type and annotations

from an AnnotatedType.

The use of these classes is in general trivially understood with an understanding of basic

programming patterns and the CDI specification, so no in depth explanation is provided here. The

JavaDoc for each class and method provides more detail.

Chapter 10.

39

Properties
Properties are a convenient way of locating and working with JavaBean [http://en.wikipedia.org/

wiki/JavaBean] properties. They can be used with properties exposed via a getter/setter method,

or directly via the field of a bean, providing a uniform interface that allows you all properties in

the same way.

Property queries allow you to interrogate a class for properties which match certain criteria.

10.1. Working with properties

The Property<V> interface declares a number of methods for interacting with bean properties.

You can use these methods to read or set the property value, and read the property type

information. Properties may be readonly.

Table 10.1. Property methods

Method Description

String getName(); Returns the name of the

property.

Type getBaseType(); Returns the property type.

Class<V> getJavaClass(); Returns the property class.

AnnotatedElement

getAnnotatedElement();

Returns the annotated

element -either the Field or

Method that the property is

based on.

V getValue(); Returns the value of the

property.

void setValue(V value); Sets the value of the property.

Class<?>

getDeclaringClass();

Gets the class declaring the

property.

boolean isReadOnly(); Check if the property can be

written as well as read.

Given a class with two properties, personName and postcode:'

class Person {

 PersonName personName;

 Address address;

http://en.wikipedia.org/wiki/JavaBean
http://en.wikipedia.org/wiki/JavaBean
http://en.wikipedia.org/wiki/JavaBean

Chapter 10. Properties

40

 void setPostcode(String postcode) {

 address.setPostcode(postcode);

 }

 String getPostcode() {

 return address.getPostcode();

 }

}

You can create two properties:

 Property<PersonName> personNameProperty = Properties.createProperty(Person.class.getField("personName");

 Property<String> postcodeProperty = Properties.createProperty(Person.class.getMethod("getPostcode"));

10.2. Querying for properties

To create a property query, use the PropertyQueries class to create a new PropertyQuery

instance:

 PropertyQuery<?> query = PropertyQueries.createQuery(Foo.class);

If you know the type of the property that you are querying for, you can specify it via a type

parameter:

 PropertyQuery<String> query = PropertyQueries.<String>createQuery(identityClass);

10.3. Property Criteria

Once you have created the PropertyQuery instance, you can add search criteria. Seam Solder

provides three built-in criteria types, and it is very easy to add your own. A criteria is added to a

query via the addCriteria() method. This method returns an instance of the PropertyQuery,

so multiple addCriteria() invocations can be stacked.

10.3.1. AnnotatedPropertyCriteria

This criteria is used to locate bean properties that are annotated with a certain annotation type.

For example, take the following class:

NamedPropertyCriteria

41

 public class Foo {

 private String accountNumber;

 private @Scrambled String accountPassword;

 private String accountName;

 }

To query for properties of this bean annotated with @Scrambled, you can use an

AnnotatedPropertyCriteria, like so:

 PropertyQuery<String> query = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(new AnnotatedPropertyCriteria(Scrambled.class));

This query matches the accountPassword property of the Foo bean.

10.3.2. NamedPropertyCriteria

This criteria is used to locate a bean property with a particular name. Take the following class:

public class Foo {

 public String getBar() {

 return "foobar";

 }

}

The following query will locate properties with a name of "bar":

 PropertyQuery<String> query = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(new NamedPropertyCriteria("bar"));

10.3.3. TypedPropertyCriteria

This criteria can be used to locate bean properties with a particular type.

public class Foo {

 private Bar bar;

}

Chapter 10. Properties

42

The following query will locate properties with a type of Bar:

PropertyQuery<Bar> query = PropertyQueries.<Bar>createQuery(Foo.class)

 .addCriteria(new TypedPropertyCriteria(Bar.class));

10.3.4. Creating a custom property criteria

To create your own property criteria, simply implement the

org.jboss.seam.solder.properties.query.PropertyCriteria interface, which declares the

two methods fieldMatches() and methodMatches. In the following example, our custom criteria

implementation can be used to locate whole number properties:

public class WholeNumberPropertyCriteria implements PropertyCriteria {

 public boolean fieldMatches(Field f) {

 return f.getType() == Integer.class || f.getType() == Integer.TYPE.class ||

 f.getType() == Long.class || f.getType() == Long.TYPE.class ||

 f.getType() == BigInteger.class;

 }

 boolean methodMatches(Method m) {

 return m.getReturnType() == Integer.class || m.getReturnType() == Integer.TYPE.class ||

 m.getReturnType() == Long.class || m.getReturnType() == Long.TYPE.class ||

 m.getReturnType() == BigInteger.class;

 }

}

10.4. Fetching the results

After creating the PropertyQuery and setting the criteria, the query can be executed by invoking

either the getResultList() or getFirstResult() methods. The getResultList() method

returns a List of Property objects, one for each matching property found that matches all the

specified criteria:

 List<Property<String>> results = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(TypedPropertyCriteria(String.class))

 .getResultList();

If no matching properties are found, getResultList() will return an empty List. If you know that

the query will return exactly one result, you can use the getFirstResult() method instead:

Fetching the results

43

 Property<String> result = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(NamedPropertyCriteria("bar"))

 .getFirstResult();

If no properties are found, then getFirstResult() will return null. Alternatively, if more than one

result is found, then getFirstResult() will return the first property found.

Alternatively, if you know that the query will return exactly one result, and you want to assert that

assumption is true, you can use the getSingleResult() method instead:

 Property<String> result = PropertyQueries.<String>createQuery(Foo.class)

 .addCriteria(NamedPropertyCriteria("bar"))

 .getSingleResult();

If no properties are found, or more than one property is found, then getSingleResult() will throw

an exception. Otherwise, getSingleResult() will return the sole property found.

Sometimes you may not be interested in read only properties, so

getResultList(),getFirstResult() and getSingleResult() have corresponding

getWritableResultList(),getWritableFirstResult() and getWritableSingleResult()

methods, that will only return properties that are not read-only. This means that if there is a field and

a getter method that resolve to the same property, instead of getting a read-only MethodProperty

you will get a writable FieldProperty.

44

Part III. Configuration Extensions

for Framework Authors

Chapter 11.

47

Unwrapping Producer Methods
Unwrapping producer methods allow you to create injectable objects that have "self-managed""

lifecycles, and are particularly useful if you have need a bean whose lifecycle does not exactly

match one of the lifecycle of one of the existing scopes. The lifecycle of the bean is are managed by

the bean that defines the producer method, and changes to the unwrapped object are immediately

visible to all clients.

You can declare a method to be an unwrapping producer method by annotating it @Unwraps. The

return type of the managed producer must be proxyable (see Section 5.4.1 of the CDI specification,

"Unproxyable bean types"). Every time a method is called on unwrapped object the invocation is

forwarded to the result of calling the unwrapping producer method - the unwrapped object.

Important

Seam Solder implements this by injecting a proxy rather than the original object.

Every invocation on the injected proxy will cause the unwrapping producer method

to be invoked to obtain the instance on which to invoke the method called. Seam

Solder will then invoke the method on unwrapped instance.

Because of this, it is very important the producer method is lightweight.

For example consider a permission manager (that manages the current permission), and a

security manager (that checks the current permission level). Any changes to permission in the

permission manager are immediately visible to the security manager.

@SessionScoped

class PermissionManager {

 Permission permission;

 void setPermission(Permission permission) {

 this.permission=permission;

 }

 @Unwraps @Current

 Permission getPermission() {

 return this.permission;

 }

}

Chapter 11. Unwrapping Produc...

48

@SessionScoped

class SecurityManager {

 @Inject @Current

 Permission permission;

 boolean checkAdminPermission() {

 return permission.getName().equals("admin");

 }

}

When permission.getName() is called, the unwrapped Permission forwards the invocation of

getName() to the result of calling PermissionManager.getPermission().

For example you could raise the permission level before performing a sensitive operation, and

then lower it again afterwards:

public class SomeSensitiveOperation {

 @Inject

 PermissionManager permissionManager;

 public void perform() {

 try {

 permissionManager.setPermission(Permissions.ADMIN);

 // Do some sensitive operation

 } finally {

 permissionManager.setPermission(Permissions.USER);

 }

 }

}

Unwrapping producer methods can have parameters injected, including InjectionPoint (which

repreents) the calling method.

Chapter 12.

49

Default Beans
Suppose you have a situation where you want to provide a default implementation of a particular

service and allow the user to override it as needed. Although this may sound like a job for an

alternative, they have some restrictions that may make them undesirable in this situation. If you

were to use an alternative it would require an entry in every beans.xml file in an application.

Developers consuming the extension will have to open up the any jar file which references the

default bean, and edit the beans.xml file within, in order to override the service. This is where

default beans come in.

Default beans allow you to create a default bean with a specified type and set of qualifiers. If no

other bean is installed that has the same type and qualifiers, then the default bean will be installed.

Let's take a real world example - a module that allows you to evaluate EL (something that Seam

Solder provides!). If JSF is available we want to use the FunctionMapper provided by the JSF

implementation to resolve functions, otherwise we just want to use a a default FunctionMapper

implementation that does nothing. We can achieve this as follows:

@DefaultBean(type = FunctionMapper.class)

@Mapper

class FunctionMapperImpl extends FunctionMapper {

 @Override

 Method resolveFunction(String prefix, String localName) {

 return null;

 }

}

And in the JSF module:

class FunctionMapperProvider {

 @Produces

 @Mapper

 FunctionMapper produceFunctionMapper() {

 return FacesContext.getCurrentInstance().getELContext().getFunctionMapper();

 }

}

Chapter 12. Default Beans

50

If FunctionMapperProvider is present then it will be used by default, otherwise the default

FunctionMapperImpl is used.

A producer method or producer field may be defined to be a default producer by placing the

@DefaultBean annotation on the producer. For example:

class CacheManager {

 @DefaultBean(Cache.class)

 Cache getCache() {

 ...

 }

}

Any producer methods or producer fields declared on a default managed bean are

automatically registered as default producers, with Method.getGenericReturnType() or

Field.getGenericType() determining the type of the default producer. The default producer

type can be overridden by specifying @DefaultBean on the producer method or field.

Chapter 13.

51

Generic Beans
Many common services and API's require the use of more than just one class. When exposing

these services via CDI, it would be time consuming and error prone to force the end developer to

provide producers for all the different classes required. Generic beans provide a solution, allowing

a framework author to provide a set of related beans, one for each single configuration point

defined by the end developer. The configuration points specifies the qualifiers which are inherited

by all beans in the set.

To illustrate the use of generic beans, we'll use the following example. Imagine we are writing an

extension to integrate our custom messaging solution "ACME Messaging" with CDI. The ACME

Messaging API for sending messages consists of several interfaces:

MessageQueue

The message queue, onto which messages can be placed, and acted upon by ACME

Messaging

MessageDispatcher

The dispatcher, responsible for placing messages created by the user onto the queue

DispatcherPolicy

The dispatcher policy, which can be used to tweak the dispatch policy by the client

MessageSystemConfiguration

The messaging system configuration

We want to be able to create as many MessageQueue configurations's as they need, however

we do not want to have to declare each producer and the associated plumbing for every queue.

Generic beans are an ideal solution to this problem.

13.1. Using generic beans

Before we take a look at creating generic beans, let's see how we will use them.

Generic beans are configured via producer methods and fields. We want to create two queues

to interact with ACME Messaging, a default queue that is installed with qualifier @Default and a

durable queue that has qualifier @Durable:

class MyMessageQueues {

 @Produces

 @ACMEQueue("defaultQueue")

 MessageSystemConfiguration defaultQueue = new MessageSystemConfiguration();

 @Produces @Durable @ConversationScoped

Chapter 13. Generic Beans

52

 @ACMEQueue("durableQueue")

 MessageSystemConfiguration producerDefaultQueue() {

 MessageSystemConfiguration config = new MessageSystemConfiguration();

 config.setDurable(true);

 return config;

 }

}

Looking first at the default queue, in addition to the @Produces annotation, the generic

configuration annotation ACMEQueue, is used, which defines this to be a generic configuration point

for ACME messaging (and cause a whole set of beans to be created, exposing for example the

dispatcher). The generic configuration annotation specifies the queue name, and the value of the

producer field defines the messaging system's configuration (in this case we use all the defaults).

As no qualifier is placed on the definition, @Default qualifier is inherited by all beans in the set.

The durable queue is defined as a producer method (as we want to alter the configuration of the

queue before having Seam Solder use it). Additionally, it specifies that the generic beans created

(that allow for their scope to be overridden) should be placed in the conversation scope. Finally,

it specifies that the generic beans created should inherit the qualifier @Durable.

We can now inject our generic beans as normal, using the qualifiers specified on the configuration

point:

class MessageLogger {

 @Inject

 MessageDispatcher dispatcher;

 void logMessage(Payload payload) {

 /* Add metaddata to the message */

 Collection<Header> headers = new ArrayList<Header>();

 ...

 Message message = new Message(headers, payload);

 dispatcher.send(message);

 }

}

class DurableMessageLogger {

 @Inject @Durable

 MessageDispatcher dispatcher;

Using generic beans

53

 @Inject @Durable

 DispatcherPolicy policy;

 /* Tweak the dispatch policy to enable duplicate removal */

 @Inject

 void tweakPolicy(@Durable DispatcherPolicy policy) {

 policy.removeDuplicates();

 }

 void logMessage(Payload payload) {

 ...

 }

}

It is also possible to configure generic beans using beans by sub-classing the configuration type,

or installing another bean of the configuration type through the SPI (e.g. using Seam XML). For

example to configure a durable queue via sub-classing:

@Durable @ConversationScoped

@ACMEQueue("durableQueue")

class DurableQueueConfiguration extends MessageSystemConfiguration {

 public DurableQueueConfiguration()

 {

 this.durable = true;

 }

}

And the same thing via Seam XML:

<my:MessageSystemConfiguration>

 <my:Durable/>

 <s:ConversationScoped/>

 <my:ACMEQueue>durableQueue</my:ACMEQueue>

 <my:durable>true</my:durable>

</my:MessageSystemConfiguration>

Chapter 13. Generic Beans

54

13.2. Defining Generic Beans

Having seen how we use the generic beans, let's look at how to define them. We start by creating

the generic configuration annotation:

@Retention(RUNTIME)

@GenericType(MessageSystemConfiguration.class)

@interface ACMEQueue {

 String name();

}

The generic configuration annotation a defines the generic configuration type (in this case

MessageSystemConfiguration); the type produced by the generic configuration point must be of

this type. Additionally it defines the member name, used to provide the queue name.

Next, we define the queue manager bean. The manager has one producer method, which creates

the queue from the configuration:

@GenericConfiguration(ACMEQueue.class) @ApplyScope

class QueueManager {

 @Inject @Generic

 MessageSystemConfiguration systemConfig;

 @Inject

 ACMEQueue config;

 MessageQueueFactory factory;

 @PostConstruct

 void init() {

 factory = systemConfig.createMessageQueueFactory();

 }

 @Produces @ApplyScope

 public MessageQueue messageQueueProducer() {

 return factory.createMessageQueue(config.name());

 }

}

Defining Generic Beans

55

The bean is declared to be a generic bean for the @ACMEQueue generic configuration type

annotation by placing the @GenericConfiguration annotation on the class. We can inject the

generic configuration type using the @Generic qualifier, as well the annotation used to define the

queue.

Placing the @ApplyScope annotation on the bean causes it to inherit the scope from the generic

configuration point. As creating the queue factory is a heavy operation we don't want to do it more

than necessary.

Having created the MessageQueueFactory, we can then expose the queue, obtaining its name

from the generic configuration annotation. Additionally, we define the scope of the producer

method to be inherited from the generic configuration point by placing the annotation @ApplyScope

on the producer method. The producer method automatically inherits the qualifiers specified by

the generic configuration point.

Finally we define the message manager, which exposes the message dispatcher, as well as

allowing the client to inject an object which exposes the policy the dispatcher will use when

enqueing messages. The client can then tweak the policy should they wish.

@Generic(ACMEQueue.class)

class MessageManager {

 @Inject @Generic

 MessageQueue queue;

 @Produces @ApplyScope

 MessageDispatcher messageDispatcherProducer() {

 return queue.createMessageDispatcher();

 }

 @Produces

 DispatcherPolicy getPolicy() {

 return queue.getDispatcherPolicy();

 }

}

56

Chapter 14.

57

Service Handler
The service handler facility allow you to declare interfaces and abstract classes as automatically

implemented beans. Any call to an abstract method on the interface or abstract class will be

forwarded to the invocation handler for processing.

If you wish to convert some non-type-safe lookup to a type-safe lookup, then service handlers

may be useful for you, as they allow the end user to map a lookup to a method using domain

specific annotations.

We will work through using this facility, taking the example of a service which can execute JPA

queries upon abstract method calls. First we define the annotation used to mark interfaces as

automatically implemented beans. We meta-annotate it, defining the invocation handler to use:

@ServiceHandlerType(QueryHandler.class)

@Retention(RUNTIME)

@Target({TYPE})

@interface QueryService {}

We now define an annotation which provides the query to execute:

@Retention(RUNTIME)

@Target({METHOD})

@interface Query {

 String value();

}

And finally, the invocation handler, which simply takes the query, and executes it using JPA,

returning the result:

class QueryHandler {

 @Inject EntityManager em;

 @AroundInvoke

 Object handle(InvocationContext ctx) {

 return em.createQuery(ctx.getMethod().getAnnotation(Query.class).value()).getResultList();

 }

Chapter 14. Service Handler

58

}

Note

• The invocation handler is similar to an interceptor. It must have

an @AroundInvoke method that returns and object and takes an

InvocationContext as an argument.

• Do not call InvocationContext.proceed() as there is no method to proceed to.

• Injection is available into the handler class, however the handler is not a bean

definition, so observer methods, producer fields and producer methods defined

on the handler will not be registered.

Finally, we can define (any number of) interfaces which define our queries:

@QueryService

interface UserQuery {

 @Query("select u from User u");

 public List<User> getAllUsers();

}

Finally, we can inject the query interface, and call methods, automatically executing the JPA query.

class UserListManager {

 @Inject

 UserQuery userQuery;

 List<User> users;

 @PostConstruct

 void create() {

 users=userQuery.getAllUsers();

 }

}

	Seam Solder
	Table of Contents
	Introduction
	Chapter 1. Getting Started
	1.1. Maven dependency configuration
	1.2. Transitive dependencies
	1.3. Pre-Servlet 3.0 configuration

	Part I. Extensions and Utilities for Developers
	Chapter 2. Enhancements to the CDI Programming Model
	2.1. Preventing a class from being processed
	2.1.1. @Veto
	2.1.2. @Requires

	2.2. @Exact
	2.3. @Client
	2.4. Named packages
	2.5. @FullyQualified bean names

	Chapter 3. Annotation Literals
	Chapter 4. Evaluating Unified EL
	Chapter 5. Resource Loading
	5.1. Extending the Resource Loader

	Chapter 6. Logging, redesigned
	6.1. JBoss Logging: The foundation
	6.2. Solder Logging: Feature set
	6.3. Typed loggers
	6.4. Native logger API
	6.5. Typed message bundles
	6.6. Implementation classes
	6.6.1. Generating the implementation classes
	6.6.2. Including the implementation classes in Arquillian tests

	Part II. Utilities for Framework Authors
	Chapter 7. Annotation and AnnotatedType Utilities
	7.1. Annotated Type Builder
	7.2. Annotation Instance Provider
	7.3. Annotation Inspector
	7.4. Synthetic Qualifiers
	7.5. Reflection Utilities

	Chapter 8. Obtaining a reference to the BeanManager
	Chapter 9. Bean Utilities
	Chapter 10. Properties
	10.1. Working with properties
	10.2. Querying for properties
	10.3. Property Criteria
	10.3.1. AnnotatedPropertyCriteria
	10.3.2. NamedPropertyCriteria
	10.3.3. TypedPropertyCriteria
	10.3.4. Creating a custom property criteria

	10.4. Fetching the results

	Part III. Configuration Extensions for Framework Authors
	Chapter 11. Unwrapping Producer Methods
	Chapter 12. Default Beans
	Chapter 13. Generic Beans
	13.1. Using generic beans
	13.2. Defining Generic Beans

	Chapter 14. Service Handler

