Weld-OSGi - Weld OSGi integration

Design specification

Mathieu Ancelin

<mat hi eu. ancel i n@erli.conp

Matthieu Clochard

<mat t hi eu. cl ochard@er!li.conw

Pl e ... i e e %

1. About Nnaming and FEFEIENCES ... o e et \Y
1L REFBIBNCES ..ottt %

2 210 To [N Y o 1= PP Y

2. What is this SpeCifiCation fOr 2 ... \Y
P I ©o] 4 |1 - T £ O v

2.2. What IS WEI-OSGI 2 ..ottt e e v

2.3. Third party dependencies and enVirONMENtooiuiiiiiiii e v

[ArChiteCture Of WEIU-OSGIouuitiiit et 1
1. Framework OrganiSation ... e 3
B2 = q (=Y 1= o T I o - o P 7
2.0 APLBUNGIE ..o s 7

2.2. Extension bundle: the puppet Masteroiiiiii s 7

T a1 (=T L= 14T] o T o T o T 9
3L SPI BUNGIE e 9

3.2. Integration bundle: provide Weld CONtaiNersc.oiiiiiiiii e 9

4. WEld-OSGi FEALUIES ...ttt ettt ettt 11
5. Weld-OSGi WOTKFIOW ... e aaes 13
6. Bean bundles [ife CYCIE ... 15
7. Bean bundle CharaCteriStiCSt 19
7.1. The META-INF/bean.xml fileo e 19

7.2. The Embedded-CDIContainer META-INF/Manifest. MF headerccoooiiiiiiinnnn. 19

II. Programming model Of WEI-OSGiuiuiiiiiiii et aeas 21
8. CDI activation in bean BUNAIES ... 23
9. Service auto publication and INJECLION ...t 25
9.1. Service bean and auto-published OSGi service descriptionccooeiiiiiiiiiiiiiieaieann.. 25

9.2. OSGi service auto-publication with Publish annotationccooiiiiiiiiiiiiiins 25

9.2.1. Service type reSOIULION ...ttt e 25

9.2.2. Service type DIAaCKISt ..o 26

9.3. OSGiService annotated or Service<T> typed injection PoiNtsccooeviiiiiiiiiiiiiiiannn.n. 26

9.4. OSGiServiceBean and OSGiServiceProviderBeancoooiiiiiiiiiiiiiis 26

9.5. Clearly specify a service implementationooiiiiiii e 27

9.5.1. Link between qualifiers and OSGi LDAP Propertiesovevvieiiiiieiiiniinnnannns 27

9.5.2. Filter and Properties qualifiers ... 28

9.5.3. Filter and Properties StEreOtYPESvuui ittt 29

9.5.4. Final LDAP fIlIEI .. .voeee e e 30

9.5.5. USING SErvice filteringo.oiuiii i 31

9.6. Bean disambiguation and annotated type ProCesSiNgccoveeiiiiiaiiaiiiaiieaiieaiieaaens 32

9.6. 0. EXAMPIES ...t 32

9.6.2. JUSHIFICALION ..t 34

9.7. CONEXLUAL SEIVICES ...ttt et ettt ees 35

9.7.1. OSGI SEIVICE SCOPES ...ttt ettt et ettt et et et et et et e e ateeateanaeanes 35

9.8, REQUIITEI SEBIVICES ..ottt ettt ettt 35

9.9. Inaccessible service at rUNtiMe ... 35

10, WEIA-OSGi BVENTS . .niitiiiiit ittt ettt ettt ettt et 37
10.1. CDI container lIifECYCIE EVENLSt as 37

10.2. Bundle lifECYCIE BVENLS ...ttt 37

10.3. Service lIfECYIE BVENTS ... et e e 38

10.4. Bean bundle required service dependency validation eventsccocviiiiiiiiiinnn.. 38

10.5. Intra and inter bundles commUNICAtIoON BVENTSciviiiiitiiii e 38

11, OSGI FACHITALION .ottt e ettt 41
N 7= T o S =T 1) £ VPP 41

12.2. OSGI ULIHIES . oneteie it 41

Weld-OSGi - Weld OSGi integration

11.3. TRE FEOISIIALION ...ttt e ettt et e et

Preface
1. About naming and references

1.1. References

This document uses both CDI and OSGi specification documentations as technical references. You may refer to
these documents for a better understanding of CDI and OSGi functionality, references and naming conventions.
Weld-OSGi comes with other documentations and you may refer to APl JavaDoc and user manual for a better
understanding of Weld-OSGi.

1.2. Bundle types

This document discners differents bundle types for OSGi environment using Weld-OSGi:

» Bundle reffers to any bundle deployable in the OSGi environment as a Java archive containing OSGi marker
headers in its META- | NF/ Mani f est . MF file.

» Bean bundle reffers to any bundle deployable in the OSGi environment and managable by Weld-OSGi as a bundle
containing CDI marker file META- | NF/ bean. xm .

» Regular bundle reffers to any bundle deployable in the OSGi environment and not managable by Weld-OSGi as
a bundle not containing CDI marker file.

2. What is this specification for ?

2.1. Contracts

This specification defines:

» The architecture, organization and workflow of the Weld-OSGi framework.
» The programming model for, and responsabilities of, application developper who uses the Weld-OSGi framework.

» The programming model for, and responsabilities of, vendor who provides the compatibility of another CDI
implementation.

TODO table of content presentation

2.2. What is Weld-OSGi ?

Weld-OSGi is an extension to the Weld project as a framework for developping applications in OSGi environment.
Weld-OSGi aims at:

» Providing a support for OSGi environments to the Weld project.
» Adressing the OSGi complexity using the CDI programming model.

Weld-OSGi is a group of four bundles deployable in any OSGi environment. It allows the usage of bean bundles
in these OSGi environments.

2.3. Third party dependencies and environment

Weld-OSGi may run into an OSGi environment, therefore it requires an OSGi implementation framework to run in
(such as Apache Felix, Equinox, Knopflerfish ...).

Preface

Weld-OSGi logs its operations using the SLF4J logging facade and the LogBack logging implementation.

Weld-OSGi is a part of the Weld project and may use any of the Weld project dependencies.

vi

Part |. Architecture of Weld-OSGi

Chapter 1.

Framework organisation

Weld-OSGi is composed of five bundles:

e The API bundle that describes the programming model and the OSGi extension mechanism.
* The SPI bundle that describes the CDI implementatio hooking mechanism.

e The third party API bundle that provides all the needed third party API.

* The extension bundle that extends the OSGi environment by managing bean bundles,

e The integration bundle that provides OSGi ready Weld containers to the extension bundle.

Note that as Weld-OSGi runs in an OSGi environment it is implicit that there is an OSGi core bundle too. This one
provide OSGi features for all other bundles, including bean bundles. But it is not an actual part of Weld-OSGi.

Chapter 1. Framework organisation

This figure shows the five bundles of Weld-OSGi and the links between them.

Figure 1.1. The five bundles of Weld-OSGi

These bundles could regroup in two part (as shown in the figure above):

» Extension part: this part represents the actual OSGi extension. It detects and manages bean bundles and provides
the programming model. This part is more described in chapter 2.

* Integration part: this part represents the Weld integration. It provides all the Weld containers needed by the
extension part and defines how these containers should hookup with bean bundles. This part is more described
in chapter 3.

e The third party API bundle : this bundle does not actually belong to a part.

Chapter 2.

Extension part

2.1. APl bundle

The extension API defines all the features provided to OSGi environment using CDI specification. It exposes all the
new utilities and defines the comportment of the extension bundle.

It exposes all the interfaces, events and annotations usable by a developers in order to develop its client bean
bundles. It defines the programming model of bean bundle. Mostly it is about publishing and consuming injectable
services in a CDI way.

It also describes the object the extension bundle needs to orchestrate bean bundles.

So this is where to search for new usages of OSGi.

2.2. Extension bundle: the puppet master

The extension bundle is the orchestrator of Weld-OSGi. It may be use by any application that requires Weld-OSGi.
It may be just started at the beginning of a Weld-OSGi application. It requests the extension APl bundle as a
dependency.

The extension bundle is the heart of Weld-OSGi applications. Once it is started, provided that it finds a started
integration bundle, it manages all the bean bundles. It is in charge of service automatic publishing, service injections,
CDI event notifications and bundle communications.

It runs in background, it just need to be started with the OSGi environment, then everything is transparent to the
user. Client bean bundles do not have to do anything in order to use Weld-OSGi functionality.

In order to perform injections the extension bundle search for a CDI compliant container service provider once it is
started. Thus it can only work coupled with a bundle providing such a service: the integration bundle.

The extension bundle provides an extension to OSGi as an extender pattern. The extension bundle, the extender,
tracks for bean bundles, the extensions, to be started. Then CDI utilities are enabled for these bean bundles over
OSGi environment.

The extension bundle works that way:

BEA N
start
WH LE ! integration_bundle.isStarted
wai t
END_VHI LE
obt ai n_cont ai ner _factory
FOR bean_bundl e : started_bundl es
manage_bean_bundl e
provi de_cont ai ner
END_FOR
VWH LE integration_bundle.isStarted
wai t _event
OnBeanBundl| eSt ar t
manage_bean_bundl e
provi de_cont ai ner
OnBeanBundl eSt op
unnanage_bean_bundl e

Chapter 2. Extension part

END_VHI LE
st op
FOR bean_bundl e : nanmaged_bundl es
unmanage_bean_bundl e
st op_bean_bundl e
END_FOR
END

So this is where the magic happens and where OSGi applications become much more simple.

Chapter 3.

Integration part

3.1. SPI bundle

The SPI bundle defines how a CDI container, such as Weld, should bootstrap with the extension bundle. So any
CDI environment implementation could be used by the extension bundle transparently. The CDI compliant container
may be provided using an integration bundle.

This aims at providing the minimum integration in order to start a CDI compliant container with every managed bean
bundle. Then the extension bundle can get a CDI container to provide to every one of its manages bean bundle.

Moreover the integration API allows to mix CDI compliant container in the same application by providing an
embedded mode. In this mode a bean bundle is decoupled from the extension bundle and is managed on its own.
Thus various implementations of CDI container can be used or the behavior of a particular bean bundle can be
particularized.

All this bootstrapping mechanism works using the service layer of OSGi. A CDI compliant integration bundle may
provide a service that allows the extension bundle to obtain a new container for every bean bundle.

So this is where to search to make Weld-OSGi use a specific CDI compliant container.

3.2. Integration bundle: provide Weld containers

The integration bundle is responsible for providing Weld containers to the extension bundle. It may be started with the
extension bundle and publish a CDI container factory service. It request the integration API bundle as a dependency.

The integration bundle may work that way:

BEG N
start
regi ster_container_factory_service
WHI LE true
wai t
OnCont ai ner Request
provi de_cont ai ner
END_WHI LE
unr egi ster_contai ner_factory_service
END

10

Chapter 4.

Weld-OSGi features

As an extension to OSGi, Weld-OSGi provides several features :
« Complete integration with OSGi world by the use of extender pattern and extension bundle. Thus complete
compatibility with already existing tools.

« Non intruding, configurable and customizable behavior in new or upgraded application. Simple configuration and
usage with annotations, completely xml free.

¢ Fullinternal CDI support for bean bundles: injection, producers, interceptors, decorators ...
Lot of ease features for OSGi usages: injectable services, event notifications, inter-bundle communication ...

¢ OSGi and CDI compliance all along the way ensuring compatibility with all CDI compliant container and easy
application realisation or portage.

11

12

Chapter 5.

Weld-OSGi workflow

13

Chapter 5. Weld-OSGi workflow

This figure shows the steps of the Weld-OSGi starting and stopping protocol. Between
step 8 and step 11 the framework is in stable state and manages bean bundles.

Figure 5.1. Weld-OSGi framework start and stop protocol

14

Chapter 6.

Bean bundles life cycle

This section presents the lifecycle of a bean bundle and how it impacts CDI and OSGi regular behaviors. Mostly
bean bundles follow the same lifecycle than a regular bundle. There are only two new possible states and they do
not modify the behavior from OSGi side.

15

Chapter 6. Bean bundles life ...

16

This figure shows the two new states a bean bundle can be in. These states are triggered by two new
events and address the CDI container dependency resolution (i.e. services annotated @Required).

Figure 6.1. The bean bundle lifecycle

The regular OSGi lifecycle is not modified by the new Weld-OSGi states as they have the same meaning than
the ACTIVE state from an OSGi point of view. They only add information about the validation of required service

availability.

17

18

Chapter 7.

Bean bundle characteristics

There are very few things to do in order to obtain a bean bundle from a bean archive or a bundle. Mostly it is just
adding the missing marker files and headers in the archive:

« Make a bean archive a bean bundle by adding special OSGi marker headers in its META- | NF/ Mani f est . MF
file.
« Or, in the other way, make a bundle a bean bundle by adding a META- | NF/ bean. xnl file.

Thus a bean bundle has both META-| NF/ bean. xml file and OSGi marker headers in its META- | NF/
Mani f est . VF file.

However there is a few other information that Weld-OSGi might need in order to perform a correct extension. In
particular a bean bundle can not be manage by the extension bundle but by his own embedded CDI container. For
that there is a new manifest header.

7.1. The vera- 1 nerbean. xni file

The beans.xml file follows no particular rules and should be the same as in a native CDI environment. Thus it can
be completely empty or declare interceptors, decorators or alternatives as a regular CDI beans.xml file.

There will be no different behavior with a classic bean archive except for Weld-OSGi extension new utilities. But
these don't need any modification on the META- | NF/ bean. xmni file.

7.2. The Embedded-CDIContainer vera i ne/ vani fest. ve header

This header prevents the extension bundle to automatically manage the bean bundle that set this manifest header
to true. So the bean bundle can be manage more finely by the user or use a different CDI container. If this header
is set to false or is not present in the META- | NF/ Mani f est . MF file then the bean bundle will be automatically
manage by the extension bundle (if it is started).

19

20

Part Il. Programming
model of Weld-OSGi

Chapter 8.

CDI activation in bean bundles

Weld-OSGi detects a bundle as a bean bundle if:

* it possesses a META-INF/beans.xml file at its root path

» or/and it possesses one or more inner jar or zip files that possesses a META-INF/beans.xml file at their root paths
The managed set of bean classes of a bean class contains all the class file under all META-INF/beans.xml root paths.
CDI and Weld-OSGi features are enabled for all these manageable paths.

Everything possible in CDI application is possible in bean bundle. They can take advantage of injection, producers,
interceptors, decorators and alternative. But influence boundary of the CDI compliant container stay within the
bean bundle managed paths for classic CDI usages. So external dependencies cannot be injected and interceptor,
decorator or alternative of another bean bundle cannot be used (yet interceptors, decorators and alternatives still
need to be declares in the bean bundle bean.xml file).

That is all we will say about classic CDI usages, please report to CDI documentation for more information.

23

24

Chapter 9.

Service auto publication and
Injection
9.1. Service bean and auto-published OSGi service

description

A Weld-OSGi auto-published service is described by these attributes (and their equivalents for a regular OSGi
service):

* A (nonempty) set of service contracts (service class names)
» A set of qualifiers (service properties)

* A scope

« A Publ i sh annotated CDI bean instance (service instance)

A Weld-OSGi service bean is described by these attributes (and their equivalents for OSGi service lookup):

« An OSG Ser vi ce annotated or Ser vi ce<T> typed injection point
» Atype (lookup type)
« AFilter qualifier (lookup LDAP filter)

* A (possibly empty) set of reachable instance (lookup result)

9.2. OSGi service auto-publication with eubiish annotation

Annotate a CDI bean class with a Publ i sh annotation makes Weld-OSGi register this bean as a OSGi service.
Such a service is accessible through Weld-OSGi service injection and OSGi classic mechanisms.

Automatically publish a new service implementation:

@ubl i sh
public class MyServicel npl inplenments MyService {
}

However, such an implementation also provides a regular CDI managed bean, so MyServicelmpl can also be injected
using CDI within the bean bundle.

9.2.1. Service type resolution

Weld-OSGi auto-published service get their types from the following algorithm:

« If a (nonempty) contract list is provided (as an array of Cl ass) with the Publ i sh annotation the service is
registered for all these types. This is how define a contract list:

@,ubl i sh(contracts = {

25

Chapter 9. Service auto publi...

MySer vi ce. cl ass,
Abstract d ass. cl ass

})

public class M/Servicelnpl extends Abstractd ass inplenments MyService, Gherlnterface {

}

The implementation class may be assignable for all of the contract types. If not, Weld-OSGi detects the problem
and treats it as an error.

 Else if the implementation class possesses a (nonempty) list of non-blacklisted interfaces the service is registered
for all these interface types.The blacklist is described below.

» Else if Weld-OSGi the implementation class possesses a non-blacklisted superclass the service is registered for
this superclass type.

 Last if the implementation class has neither contract nor non-blacklisted interface or superclass, the service is
register with is the implementation class type.

9.2.2. Service type blacklist

TODO
9.3. osai service @anNNoOtated Or service<t> typed injection points
A OSG Ser vi ce annotated or a Ser vi ce<T> typed injection point is managed by Weld-OSGi through the creation

of a new service bean.OSG Ser vi ce annotation and Ser vi ce<T> type are exclusive on injection point. If an
injection point has both, Weld-OSGi detects the problem and treats it as an error.

« Direct injection with OSG Ser vi ce annotation and OSG Ser vi ceBean:
@nj ect @SG Service MyService service;

Such an injection point (an OSGi service injection point) will match an unique Weld-OSGi OSG Ser vi ceBean.
For every different OSGi service injection point an unique OSG Ser vi ceBean is generated by Weld-OSGi.

« Injection using programmatic lookup with Ser vi ce<T> type and OSG Ser vi cePr ovi der Bean:
@nj ect Service<MyService> services;

Such an injection point (an OSGi service provider injection point) will match an uniqgue Weld-OSGi
OSG Servi ceProvi der Bean.

For every different OSGi service provider injection point an unique OSG Ser vi cePr ovi der Bean is generated
by Weld-OSGi.

OSG Ser vi ce annotated or a Ser vi ce<T> typed injection points are not eligible to regular CDI injection.

9.4. 0sa servi ceBean aNd csa ser vi cePr ovi der Bean

OSG Ser vi ceBean injects an instance of the first service implementation matching the injection point.

26

Clearly specify a service implementation

OSG Ser vi ceProvi der Bean injects a service provider (as a Ser vi ce<T>) for all the service implementations
matching the injection point.

Service provider allows to over-specify the matching service implementation set with additional OSGi service
properties.

Service provider does not allow to subtype the matching service implementation set.

Service provider allows to instantiate the first service implementation matching the (possibly) over-specified injection
point.

Service implementation are search into the OSGi service registry, it may be:

* An Weld-OSGi auto-published service

* An regular OSGi service

9.5. Clearly specify a service implementation

Qual i fi er annotated annotations might be use for both specifying auto-published services and service injection
points. Such qualifiers should be seen as OSGi service properties, thus every set of qualifiers corresponds to a set
of OSGi service properties and so to a OSGi service LDAP filter.

However qualifiers keep a regular meaning for the CDI generated bean of an auto-published service class.

9.5.1. Link between qualifiers and OSGi LDAP properties

A qualifier will generate an OSGi service property for each of its valued element (an element with a default value
is always considered valued) following these rules:

« Avalued element generate a property with this template:

decapitalized_qualifier_nane.decapitalized_el ement _nanme=el enent _val ue.toString()

@#&Qualifier(lang="EN', country="US")
will generate:

(nyqualifier.lang=EN)
(nyqualifier.country=US)

« A non valued element with a default value generate a property with this template:

decapitalized_qualifier_nane.decapitalized_el enent _nanme=el enent _def aul t _val ue.toString()

@¥Qualifier(lang="EN")

27

Chapter 9. Service auto publi...

will generate:

(rmyqual i fier.|lang=EN)
(rmyqual ifier.country=US) //admtting USis the default value for the el enent country

* A non valued element with no default value generate a property with this template:

decapitalized_qualifier_nane. decapitalized_el ement _nanme=*

@y Qualifier(lang="EN")
will generate:

(rmyqual i fier.|ang=EN)
(myqual i fier.country=*) //admtting there is no default value for the el enent country

» A qualifier with no element generate a property with this template:

decapi talized_qualifier_nane=*

@¥yQualifier()
will generate:

(rmyqual i fier=*)

» Some qualifiers follow a specific processing:
« OSG Ser vi ce qualifier will not generate any service property
* Requi r ed qualifier will not generate any service property
« Def aul t qualifier will not generate any service property
» Any qualifier will not generate any service property

e Filter and Properti es qualifiers processing is described below

9.5.2. Filter and Properties qualifiers

Filter qualifier allows to specify a OSGi LDAP filter for a OSG Servi ceBean
OSG Ser vi cePr oducer Bean injection point.

or

28

Filter and Properties stereotypes

A Fi | t er qualifier generate a "as it is" OSGi LDAP filter.

Pr operti es qualifier allows to specify OSGi LDAP properties for a auto-published service class or for a
OSG Ser vi ceBean or a OSG Ser vi cePr oducer Bean injection point.

A Properti es qualifier generate a property for every one of its Pr oper t y annotation with this template:

Property. name() =Property. val ue()

@roperties({@roperty(name = "lang", value = "EN')
@roperty(name = "country", value = "US"

})

will generate:

(1 ang=EN)

(count ry=US)

Ifa Fi | t er qualifier is used on a bean class Weld-OSGi detects the problem and treats it as an error.

It is discourage to use the Pr oper ti es qualifier on a bean that might be use as a regular CDI bean.

9.5.3. Fitter and properties Stereotypes

An annotation annotated with a Fi | t er qualifier is considered similar to the Fi | t er qualifier alone.
An annotation annotated with a Pr oper t i es qualifier is considered similar to the Pr oper t i es qualifier alone.

Declaring a filter stereotype:

@ilter("name=1")
public @nterface Namel {
}

@nj ect @Nanel Servi ce<MyServi ce> nanedlServices;

is similar to:

@nject @ilter("name=1") Service<My/Service> nanedlServi ces;
Declaring a properties stereotype:

@roperties({@oroperty(name = "nane", value = "1")})

29

Chapter 9. Service auto publi...

public @nterface Namel {
}

@ubl i sh
@lanel
public class M/Servicel npl inplenments MyService {

}

is similar to:

@ubl i sh

@roperties({@roperty(name = "nane", value = "1")})
public class MyServicelnpl inplenments MyService {

}

9.5.4. Final LDAP filter

Weld-OSGi processes all the OSGi LDAP properties (from regular qualifiers and Pr operti es qualifier) and
provided OSGi LDAP filter (from Fi | t er qualifier) to generate a global OSGi LDAP filter as:

» With multiple OSGi LDAP properties and a provided OSGi LDAP filter

(& provided_| dap_filter (ldap_property_1) (ldap_property_2) ... (ldap_property_i))

» With multiple OSGi LDAP properties and no provided OSGi LDAP filter

(& (I dap_property_1) (ldap_property_2) ... (ldap_property_i))

* With one OSGi LDAP properties and a provided OSGi LDAP filter

(& provided_|l dap_filter (Idap_property))

« With one OSGi LDAP properties and no provided OSGi LDAP filter

(1 dap_property)

* With no OSGi LDAP properties and a provided OSGi LDAP filter

provided_|l dap_filter

» With no OSGi LDAP properties and no provided OSGi LDAP filter

30

Using service filtering

nul |

Weld-OSGi never ensure that, neither the provided OSGi LDAP properties, neither the provided OSGi LDAP filter,
neither the generated OSGi LDAP filter, are valid.

9.5.5. Using service filtering
« On an auto-published service class:

@ubl i sh

@\nyQualifier
public class MyServiceQualifiedl npl inplements MyService {

}

Will generate an AnyQual i fi er qualified regular CDI bean and register an OSGi service with the property
(anyqualifier=").

* On an OSGi service injection point:

@nject @SG Service @nyQualifier M/Service qualifiedService;
@nject @nyQualifier Service<MyService> qualifiedServices;

Will generate an OSG Ser vi ceBean and an OSG Ser vi cePr oducer Bean looking up for OSGi services
with the property (anyqualifier=*).

« With an OSG Ser vi cePr oducer Bean:
servi ces. sel ect (new Annot ati onLiteral <AnyQualifier>() {}).get().deSonething();

Will over-specify the valid service implementation set to those matching the property (anyqualifier=*).

« Using the special Pr oper ti es qualifier:

@ubl i sh
@roperties({@roperty(name = "country", value = "US")
@roperty(name = "lang", value = "EN')

})
public class MyServiceQualifiedl npl inplements MyService {

}

Will generate an Pr operti es(. ..) qualified regular CDI bean and register an OSGi service with the properties
(lang=EN) and (country=US).

 Using the special Fi | t er qualifier:

31

Chapter 9. Service auto publi...

@nject @SG Service @ilter("(&Iang=EN) (country=US))") MService qualifiedService;
@nject @ilter("(&1ang=EN)(country=US))") Service<MyService> qualifiedServices;

Will generate an OSG Ser vi ceBean and an OSG Ser vi cePr oducer Bean looking up for OSGi services
matching the OSGi LDAP filter (&(lang=EN)(country=US)).

9.6. Bean disambiguation and annotated type
processing

Weld-OSGi ensures that every OSG Ser vi ce annotated or Ser vi ce<T> typed injection point matches an unique
OSG Ser vi ceBean or OSG Ser vi ceProvi der Bean.
Therefore, for every bean bundle Weld-OSGi:

» Processes annotated types
» Wraps every OSG Ser vi ce annotated injection point

OSG Ser vi ce annotated injection points are wrapped as:
@nject @SG Service @ilter(Calculated_filter) Type var_nane;

The global OSGi LDAP filter of the final Fi | t er qualifier is calculated from:

» The original set of qualifiers (except OSG Ser vi ce and Fi | ter)
» The OSGi LDAP filter value of the original Fi | t er qualifier

» The set of properties of the original Fi | t er annotation
9.6.1. Examples
@nject @SG Service MyService qualifiedService;
will become:

@nject @SG Service @ilter("") M/Service qualifiedService;

@nj ect @SG Service @nyQualifier MyService qualifiedService;

will become:

32

Examples

@nject @SG Service @ilter("(anyqualifier=*)") MService qualifiedService;

@nject @SG Service @nyQualifier Service<MService> qualifiedServices;

will generate an error.

@ nj ect
@DSG Service @nyQualifier @ilter(value="(lang=EN)", properti es={"country=US", "currency=*"})
MyServi ce qualifiedService;

will become:

@nject @SG Service @ilter(" (& anyqualifier=*)(lang=EN)(country=US)(currency=*)) MyService
qual i fi edService;

33

Chapter 9. Service auto publi...

9.6.2. Justification

34

Contextual services

This figure show the need for a annotated type processing in order to remove the ambiguous dependency between
regular CDI and Weld-OSGi injection points.

Figure 9.1. Annotated type processing justification

9.7. Contextual services

An auto-published service instance is a CDI contextual instance, so:

 The instance injected through a OSG Ser vi ce annotated or Ser vi ce<T> typed injection point might be a CDI
contextual instance

* The instance obtained through a regular OSGi service checkout might be a CDI contextual instance

* In either cases Weld-OSGi ensures that the injected or obtained instance is contextual if no similar service is
published using regular OSGi mechanism

It is discourage to use regular OSGi service publication mechanisms in a Weld-OSGi application.

9.7.1. OSGi service scopes

A CDI scope might be precised for every auto-published service class:

« If no scope is provided Dependent is assumed, granting a capacity similar to regular OSGi service
» Only one scope may be precised for every auto-published service class
» The scope is shared by both generated regular CDI bean and OSGi service

e The available scopes are: Dependent, Singleton, ApplicationScoped, SessionScoped,
Conver sat i onScoped and Request Scoped

» Other scope or pseudo-scope may not be supported by Weld-OSGi

@,ubl i sh
@\ppl i cati onScoped
public class MyServicel npl inplenments MyService {

@verride
public void doSonet hing() {
}

9.8. Required services

A OSG Ser vi ce annotated or Ser vi ce<T> typed injection point might be annotated Requi r ed

 with no influence on this injection point

« with influence on the Val i d and | nval i d events management in the current bean bundle

9.9. Inaccessible service at runtime

OSG Servi ceBean and OSG Servi ceProvi der Beans bean instances are dynamically obtained OSGi
service instance.

35

Chapter 9. Service auto publi...

No instance might be available at runtime due to OSGi dynamism, in such case a
OSG Servi ceUnavai | abl eExcepti on is thrown with any OSG Servi ceBean method call or the
OSG Servi ceProvi der Beans get method call.

36

Chapter 10.

Weld-OSGi events

Weld-OSGi provides numerous events about OSGi events and bean bundle lifecycle events. It also allows decoupled
bean bundle communication.

All these features uses CDI events mechanisms:

« These events may be listened with a Gbser ves annotated parameter method

public void bi ndBundl e(@bserves AbstractBundl eEvent event) {
}

* These events may be fires with the regular CDI mechanisms

BeanManager beanManager ;

beanManager . fireEvent (new
Bundl eCont ai ner Event s. Bundl eCont ai ner | ni ti al i zed(bundl e. get Bundl eContext()));

Event <Cbj ect > event;

event . sel ect (Abstract Bundl eEvent. cl ass). fire(new Bundl el nstal | ed(bundl e));

10.1. CDI container lifecycle events

Weld-OSGi provides a CDI event notification for bean bundle about bean bundle CDI container lifecycle events:

« ABundl eContai nerlnitializedeventis fired every time a bean bundle CDI container is initialized

« A Bundl eCont ai ner Shut down event is fired every time a bean bundle CDI container is shutdown

10.2. Bundle lifecycle events

Weld-OSGi provides a CDI event notification for bean bundle about bundle lifecycle events:

e Such an event is fired every time the correspondent OSGi bundle event is fired
« All bundle lifecycle events may be listen using the Abst r act Bundl eEvent event

» Specific bundle lifecycle events are: Bundl el nst al | ed, Bundl eUni nst al | ed,
Bundl eLazyActi vati on, Bundl eResol ved, Bundl eUnr esol ved, Bundl eUpdat ed,
Bundl eSt art ed, Bundl eSt art i ng, Bundl eSt opped and Bundl eSt oppi ng

It is possible to filter the listened source bundle by bundle symbolic name and (optional) version

public void bindBundl e(@bserves @undl eNane("com sanpl e. gui ") @undl eVersion("4.2.1")
Abst ract Bundl eEvent event) {

37

Chapter 10. Weld-OSGi events

}
public voi d bi ndBundl e(@bserves @undl eNane("com sanpl e.gui ") Bundl elnstalled event) {

}

Only the events from the corresponding bundle are listened.

If a Bundl eVer si on annotation is provided without a Bundl eNane annotation Weld-OSGi detects the problem
and treats it as an error.

10.3. Service lifecyle events

Weld-OSGi provides a CDI event notification for bean bundle about service lifecycle events:

» Such an event is fired every time the correspondent OSGi service event is fired
« All service lifecycle events may be listen using the Abst r act Ser vi ceEvent event
« Specific bundle lifecycle events are: Ser vi ceArri val , Servi ceDepart ur e and Ser vi ceChanged

It is possible to filter the listened source service by specification and or OSGi LDAP properties and filter

public voi d bi ndServi ce(@bserves @pecification(M/Service.class) Abstract Servi ceEvent event) {

}
public void bindService(@hbserves @nyQualifier ServiceArrival event) {

}
public void bindService(@bserves @bpecification(MService.class) @ilter(" (&I ang=EN)
(country=US))") ServiceChanged event) {

}

Only the corresponding service events are listened.

10.4. Bean bundle required service dependency
validation events

Weld-OSGi provides a CDI event natification for bean bundle about bean bundle required service dependency
validation:

« AVal i d eventis fired every time a bean bundle got all its required service dependency validated

« Al nvali deventis fired every time a bean bundle got one of its required service dependency invalidated

10.5. Intra and inter bundles communication events

Weld-OSGi provides a way to communicate within and between bean bundles:

« Al nterBundl eEvent is fired by a bean bundle

@ nj ect Event<InterBundl eEvent > event;
M/Message nyMessage = new MyMessage();

38

Intra and inter bundles communication events

event.fire(new I nterBundl eEvent (nmyMessage)) ;

e Al nter Bundl eEvent may be listened by every active bean bundle

It is possible to filter the listened source message by message type and ignoring the events from the current bundle

public void listenAll Event sFron her Bundl es(@bserves @ent | nterBundl eEvent event) {

}

public void |istenM/MessageEvent s(@hbserves @dpecificati on(M/Message. class) |nterBundl eEvent
event) {

}

public voi d i stenMyMessageEvent sFrom her Bundl es(@bser ves @ent
@ppeci ficati on(M/Message. cl ass) | nterBundl eEvent event) {

}

Only the corresponding events are listened.

39

40

Chapter 11.

OSGi facilitation

11.1. Service registry

Weld-OSGi allows bean bundles to directly interact with the OSGi service registry by getting a Ser vi ceRegi stry
bean:

@nj ect ServiceRegistry registry,;

This bean is injectable everywhere into a bean bundle.

It allows to:

Register a service implementation
Obtain a service provider as a Ser vi ce<T>
Obtain all existing registrations

Obtain a specific set of registrations

11.2. OSGi utilities

Weld-OSGi allows to obtain, by injection into bean bundles, some of the useful objects of the OSGi environment:

The current bundle

@nj ect Bundl e bundl e;

The current bundle context

@nj ect Bundl eCont ext bundl eCont ext ;

The current bundle headers

@ nj ect @undl eHeaders Map<String, String>net adat a;

A specific current bundle header

@ nj ect @undl eHeader (" Bundl e- Synbol i cNanme") String synbol i cNane;

A specific current bundle resource file

41

Chapter 11. OSGi facilitation

@nject @undl eDataFile("test.txt") File file;

It is possible to precise an external bundle by bundle symbolic name and (optional) version

@ nj ect @undl eNanme("com sanpl e. gui ") @undl eVersion("4.2.1") bundl e;
@nj ect @undl eNanme("com sanpl e.gui ") bundl e;

@ nj ect @undl eName("com sanpl e.gui ") @Bundl eVersion("4.2.1") Bundl eCont ext bundl eCont ext ;

@ nj ect @undl eName(" com sanpl e. gui ") @undl eVersion("4.2.1") @undl eHeader s
Map<String, Stri ng>net adat a;

@ nj ect @undl eNanme("com sanpl e. gui ") @undl eVersion("4.2.1") @undl eHeader (" Bundl e-
Synbol i cNane") String synbol i cNane;

@ nj ect @undl eNane("com sanpl e. gui ") @undl eVersion("4.2.1") @undl eDataFile("test.txt") File
file;

If a Bundl eVer si on annotation is provided without a Bundl eNane annotation Weld-OSGi detects the problem
and treats it as an error.

11.3. The registration

Weld-OSGi allows to obtain, by injection into bean bundles, Regi st r at i on<T> of a specific type. A registration
object represent all the bindings between a service contract class and its OSGi Ser vi ceRegi strati on.

@nj ect Registrati on<MyService> registrations;
It is possible to filter the obtained bindings by specifying OSGi LDAP properties and filter.

@nject @nyQualifier Registrati on<MyService> qualifiedRegistrations;
@nject @ilter("(&1ang=EN)(country=US))") Registrati on<MyService> qualifiedRegistrations;

A Regi stration<T> allows to:

* lterate over the contained bindings

» Select a subset of the bindings using OSGi LDAP properties and filter

42

The registration

« Obtain a service provider, as a Ser vi ce<T> for the current bindings

« Unregister all the services for the current bindings

43

a4

	Weld-OSGi - Weld OSGi integration
	Table of Contents
	Preface
	1. About naming and references
	1.1. References
	1.2. Bundle types

	2. What is this specification for ?
	2.1. Contracts
	2.2. What is Weld-OSGi ?
	2.3. Third party dependencies and environment

	Part I. Architecture of Weld-OSGi
	Chapter 1. Framework organisation
	Chapter 2. Extension part
	2.1. API bundle
	2.2. Extension bundle: the puppet master

	Chapter 3. Integration part
	3.1. SPI bundle
	3.2. Integration bundle: provide Weld containers

	Chapter 4. Weld-OSGi features
	Chapter 5. Weld-OSGi workflow
	Chapter 6. Bean bundles life cycle
	Chapter 7. Bean bundle characteristics
	7.1. The META-INF/bean.xml file
	7.2. The Embedded-CDIContainer META-INF/Manifest.MF header

	Part II. Programming model of Weld-OSGi
	Chapter 8. CDI activation in bean bundles
	Chapter 9. Service auto publication and injection
	9.1. Service bean and auto-published OSGi service description
	9.2. OSGi service auto-publication with Publish annotation
	9.2.1. Service type resolution
	9.2.2. Service type blacklist

	9.3. OSGiService annotated or Service<T> typed injection points
	9.4. OSGiServiceBean and OSGiServiceProviderBean
	9.5. Clearly specify a service implementation
	9.5.1. Link between qualifiers and OSGi LDAP properties
	9.5.2. Filter and Properties qualifiers
	9.5.3. Filter and Properties stereotypes
	9.5.4. Final LDAP filter
	9.5.5. Using service filtering

	9.6. Bean disambiguation and annotated type processing
	9.6.1. Examples
	9.6.2. Justification

	9.7. Contextual services
	9.7.1. OSGi service scopes

	9.8. Required services
	9.9. Inaccessible service at runtime

	Chapter 10. Weld-OSGi events
	10.1. CDI container lifecycle events
	10.2. Bundle lifecycle events
	10.3. Service lifecyle events
	10.4. Bean bundle required service dependency validation events
	10.5. Intra and inter bundles communication events

	Chapter 11. OSGi facilitation
	11.1. Service registry
	11.2. OSGi utilities
	11.3. The registration

