JBoss Cache User Guide

A clustered, transactional cache

Release 2.1.0 Alegrias
November 2007

Authors:

ManikSurtani(manik@jboss.org)
BelaBan(bela@jboss.com)
BenWang(ben.wang@jboss.com)
BrianStansberry(brian.stansberry@jboss.com)
GalderZamarrefio(galder.zamarreno@jboss.com)
DanielHuang(dhuang@jboss.org)

MirceaMarkus(mircea.markus@jboss.com)

Copyright © 2004, 2005, 2006, 2007 JBoss, a division of Red Hat Inc.

Table of Contents

(= =0 TP %
[. INtroduction t0 JBOSS CACNEcceeeiiiiiiieiiiee ettt e e e e e e e e e e e e s e reeeeeeeeeeanes 1
T Y o T SRR 2
1.1, What iS IJBOSS CACNE? ...ttt ettt e e s e e e e e e e snnneraeeeaee s 2
1.1.1. And What iS POJO CaCNE?eiiiiiiiiiie e 2

1.2, SUMMArY Of FEALUIESvveiiiiee ittt e e e e e e e s e neees 2

1.3, REQUITEIMENES ...t e e s e e e e e e e e et e e e e e e e s s e anraaeaeaeens 3

O I o= 0L RS 4

2 U L N PSP 5
N I N o O =SS SR 5

2.2. Instantiating and Starting the CaChe ... 7

2.3. Caching and RetrieVing Datacceevieeeiiiiiiiiiiiie e e e e e 7

A N 0 TC N o T R O 9

2.5. Stopping and Destroying the CaCheuueueiiiiiii s 10

2.6. CACNE MOUESeoeiiieeiiie et e e e e e e e e e e 10

2.7. Adding @ CaCheLiStENErcooiiiiieeiie e 10

2.8. USING CAChE LOBOENS ...ttt 13

2.9. USING EVICHON POIICIESuvviiiiiie ettt e a e 13

I @001 1T [0 (o] o [P PPRPPRRN 15
3.1, Configuration OVEIVIEWcceeie e e s s e a e e e 15

3.2. Creating @ Confi gUI ati 0N ceeeeiieiieiiieeee e e st e e e e e e e s s ee e e e e e e e e e eneeeeeeeeaeeeeeannneeees 15
3.2.1. Parsing an XML-based Configuration Fileccoccvveeiiiiiiiiii e 15

3.2.2. ProgrammatiC CONfIQUIaLioNcccorueieeiiiiiiieeiniieie et e e 17

3.2.3. Using an |OC FrameWOrKcccoiiciiuiiieiee e ciiiieeee e sssiinree e e e e e 18

3.3. Composition of a Configuration ODJECEc.evvvieiiieiiiie e, 18

3.4. DynamicC RECONTIQUIELIONeuieeeeeiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessseeseessesesseeeeeeeenenenenes 19

3.5. Overriding the Configuration Viathe Option APl ..., 19

4. DePloying JBOSS CBCHEcceeiiuiiiiieiiiiie ettt e e s e e e s r e e e s e e e aaaes 21
4.1. Standalone Use / Programatic DeployMENTovviiiiiiieiiiiiiee e 21

4.2. IMX-Based Deployment in JBoss AS (JBOSS AS 5.X and 4.X) ...ccvvveeeriiieeeeiiiinenennns 21

4.3. Via JBoss Microcontainer (JBOSS AS 5.X) ..ocicuiiriiieieeiiiiiiiiieee e e e e 22

4.4. Binding t0 INDI iNJBOSS AS ..ottt e e et re e e e e e 25

4.5. Runtime Management INfOrmMationuuuueeiiiriiiirmiiieieerireeerr.—. 25
4.5.1. JBOSS CaChE MBEENSoviiieeiiiiiiiiiet e e e e ettt e e e e e e e e e e e e e e ennneeeeeeeas 25

4.5.2. Registering the CacheJmxWrapper with the MBeanServerccccceeevineen. 26

4.5.2.1. ProgramatiC REQISIIalionccoocuviieiiiiieieeiiiiiee e 26

4.5.2.2. IMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.X) 27

4.5.2.3. ViaJBoss Microcontainer (JBOSSAS 5.X) c.ooccvvieeieeeeeiiiiciiiiieeee e 27

4.5.3. JB0OSS CaChe SEALSHICSeeeeieeeeiiiiiiiiiie et e e e e eeeeas 28

4.5.4. Recalving JMX NOUTICAIIONSuvveiiiiiiiie it 29

4.5.5. Accessing Cache MBeans in a Standalone Environmentcccccoooecvvvveennn.. 31

5. Version Compatibility and Interoperabilityccooiueiiiiiiiiieeiieceeeieee e 33
5.1. Compatibility IMaLIiX ...ccooeieiiiiies e e e e e e e e e e s e eaa e e 33

Release 2.1.0 Alegrias ii

JBoss Cache User Guide

[1. JBOSS CaChe ATCHITECIUIEeeeiieee et e e e e e e et e e e e e e e e nnneeeeeeeeeeas 34
A o 1L (= ox LU = SRR SOUUPRRRR 35
6.1. Data Structures Within The Cacheccoeevveiei i 35
B.2. SPI INtEIfaCescoooeeieieee 36
6.3. Method INVOCatioNS ON NOGESccoiiiiiiiiiiiiie et 38
oG I I 1 1 0= o (0= 38
6.3.1.1. Writing Custom INtErCEPLOrSuuuruuurrrrrernrrrnrnnnenenrnenenrnennnnnenrnnnrnnnnns 40

6.3.2. MEtNOUCEAIIS ..o e et ee e e as 40
SRCTC I 101V 0= 1o 0 @0 0] = q TSRS 40

6.4. Managers FOr SUDSYSIEMScooiiiiiiiiiic s 40
L I o Toi Y = 0 = [PP UPPPPPPPTR 41
=100 [0 1YY =g o = R 41
6.4.3. CacheL 0aderManagerccccoeieieie e e 41

6.5. Marshalling And Wir€ FOIMELScuvviiiiiiiiieeeiiee e 411
6.5.1. The Marshaller INLEIfaCEcevveeeiiiiiiieiiee e 42
6.5.2. VersonAWareMarshall€rccooiiiiiiiiiiiiee e e 43
6.5.2.1. CaChELOATEISeviiiiiiiiiie e 43

6.5.3. CaCheMarshaller200c.eeieiiuiiiee it e e e 43

6.6. Class Loading and REJIONSccoiiiiiiiiiiiiiiiiisi s nnnnnas 43
A O 1 (= g1y LT OO PPP R POPPPPPPPPPP 44
7.1. Cache RepliCation MOOESoviiiiiiiieeiiie ettt 44
711 LOCAl MOOE ... nananannnns 44
7.1.2. Replicated CaChesccuviiiiiiie et a e e 44
7.1.2.1. Replicated Caches and Transactionscccveeeveeeeeiiiiiieeeeee e 44

7.1.2.2. Buddy REPIICALIONcoeeiiiiiee et 45

%728 1 0177 L 7= 1 o o SR 48
AT - oI I = 11 = SRS 49
7.3.1. StAle TranSter TYPES ..ccoiuieeee ettt e e s 49
7.3.2. Byte array and streaming based state transferccccceeeeeeiiiiiiiiieeee e, 49
7.3.3. Full and partial state transfereevvveeiiiiiieeee e 49
7.3.4. Transient ("in-memory") and persistent state transfercccoeeeeeeeeeeeee, 50
7.3.5. Configuring State TranSfer ... 51

8. CAChE LOAUEYSttt ettt e e e e ettt e e e e e s e et te e e e e e e e e e e annrnreeeaeeeeeannne 52
8.1. The CachelLoader Interface and LIfECYCIEcoouviiiiiiiiiiiiiie e 53
LS ©Ce 01 1To U] (o] o RSSO 54
8.2.1. Singleton Store ConfiguIationccccvviiiieeeei i 56

8.3. Shipped IMpPIEMENtALIONScooiiiiiiiiee e 57
8.3.1. File system based cache loaders ..., 57
8.3.2. Cache loaders that delegate to other CaChesc.eevveviiiiieiiiie e 58
8.3.3. IDBCCACNELOBIESceeeiieiiee ettt 58
8.3.3.1. IDBCCacheL oader configurationcccveeeernieeeeniniieeessiieee e 59

8.3.4. TcpDelegatingCachel 0adercooiviiiiiiiie e 62
8.3.5. Transforming Cache LOAdENSceeiiieiiiiiiiiiiieee e 63

8.4. CaChe PaSSIVALION ...ttt ettt e e e e e e e e e e e e e s e e eaeeeeeaaans 64
8.4.1. Cache Loader Behavior with Passivation Disabled vs. Enabled 64

Release 2.1.0 Alegrias iii

JBoss Cache User Guide

TS 1= = (1 == PPNt 65
8.5.1. Local Cache With SIOFecoceeeiiiiiieeeee e 65
8.5.2. Replicated Caches With All Caches Sharing The Same Store............cceeeeneee. 65
8.5.3. Replicated Caches With Only One Cache Having A Store.........cccceovvveeeennee 67
8.5.4. Replicated Caches With Each Cache Having Its Own Store..........ocooevvuvnneee. 68
8.5.5. Hierarchical CaChesccuuiiiiiiiiiie e 69
8.5.6. Multiple CaChe LOBTENSccooiieiiiiiciii i 70
9. EVICHON POICIESieiiieiiieee ettt e e e ettt e e e e e e e e ettt e e e e e e e s aannsnneeeeaaeeeeanns 73
9.1. Configuring EVICtiON POIICIEScoiiiiiiiiiiiieee e 73
9.1.1. BaSIC CONFIQUIBLIONeeeeiiiiiieeiiiiiee ettt e 73
9.1.2. EVICHION REJIONSvviiiiiieee ettt ee ettt e e e e e st e e e e e e e s s nnnraaeeeaeeeeaas 74
9.1.2.1. Overlapping EVIction REJIONScccuviieiiieeeiicciiieeeee e 74
9.1.3. ReSIAENt NOUESooeieiieeeee e e e 74
9.1.4. ProgrammatiC CONfIQUIALIONcccvreeeriiiiieeiiiee e 75
9.2. Shipped EVICLION POIICIES ...ttt 76
9.2.1. LRUPOlicy - Least Recently USedcoccviiiiiiiiiiiiiiiece e 76
9.2.2. FIFOPOlicy - First IN, FIrst OULcccoeiiiiiiiiiieieee e 76
9.2.3. MRUPalicy - Most Recently Usedccooviiiiiieiiii e 76
9.2.4. LFUPolicy - Least Frequently USedcccceeiiiieeeiiiiie e 76
9.2.5. EXPITAIONPOIICY ...ccieeieieiiiieie ettt 77
9.2.6. ElementSizePolicy - Eviction based on number of key/value pairsin anode
.. 78
9.3. Writing Your OWn EVICtion POIICIESccvveeiii it 78
9.3.1. Eviction Policy PIugin DESIONuvviiiieeeiiiciiieieee e 78
9.3.2. Interfacestoimplement ... 78
10. Transactions @anNd CONCUITENCYeeereeeiiaeieieeereaeeeaaaeeieeeeeeaeessaaneneeeeeaaeeessaannsenneeeaaeesaannes 80
J0O.1. CONCUITEINT ACCESS ..tttttttutueutttntutntntuestutataestaeaeseeeaeseeeaeseseaeseaeabsesbsbsssbsesssssbssssnsnennes 80
0 50t O o o< RS 80
10.1.2. PeSSIMiStiC IOCKINGuvvvvieiieeee it e et e e e e ee e 80
10.1.2.1. 1S0lEtiON [EVEIS ...eeeeiiiieiee e 80
10.1.2.2. Insertion and Removal of NOdEeSccvvieeeieeeiiiiieeee e 82
10.2.3. OptiMIStiC LOCKING ...ceviieiiiiiiiieiee e a e 82
0 0 G T AN o g 1 o = SR 82
10.1.3.2. DA VEISIONING ...uevveeeiiiiiieeiiiieee et ee et e e s e e e e snneee e e enees 83
10.2.3.3. CoNfigUIaLioNcvviiieieee e e e e e e e e e e 83
10.2. Transactional SUPPOITveeeiieeeeiiiiiiiiee e e e e e s e ettt e e e e e e e s et e e e e e e e s s sanraaeeeeaeeeeennnes 84
[11. JBOSS CaChe REFEIENCESooiiiiiiiie ettt s e e et e e e et e e e anneeees 86
11. Configuration REFEIENCEScccooiiieiie e, 87
11.1. Sample XML Configuration Fileccooiiiiiiiiiiiiiee e 87
11.2. Reference table of XML atriDULESccceeeiiiiciiiiiiiiie et e e 20
12, IMX REFEIEICES ...uvvviiiiieeiiiie et ettt e e e e s e e e e e e e e e e e b e e e e e e e e s s sasstaaeeaaaeessannneees 94
12.1. IBOSS CaCNE SEALISICSvvveeeiiiiiieeiiiiie ettt ettt e s 9
12.2. IMX MBeaN NOtTICAHONSceeeiiiiiiieiiiiiie e eeeee e 96

Release 2.1.0 Alegrias iv

Preface

Thisisthe official JBoss Cache user guide. Along with its accompanying documents (an FAQ, atutorial
and awhole set of documents on PojoCache), thisis freely available on the JBoss Cache documentation
site. [http://labs.jboss.com/jbosscache]

When used, JBoss Cache refers to JBoss Cache Core, a tree-structured, clustered, transactional cache.
Pojo Cache, also a part of the JBoss Cache distribution, is documented separately. (Pojo Cacheisacache
that deals with Plain Old Java Objects, complete with object relationships, with the ability to cluster such
pojoswhile maintaining their relationships. Please see the Pojo Cache documentation for more information
about this.)

This book is targeted at both developers wishing to use JBoss Cache as a clustering and caching library
in their codebase, as well as people who wish to "OEM" JBoss Cache by building on and extending its
features. As such, this book is split into two magjor sections - one detailing the "User" API and the other
going much deeper into specialist topics and the JBoss Cache architecture.

In general, a good knowledge of the Java programming language along with a strong appreciation
and understanding of transactions and concurrent threads is necessary. No prior knowledge of JBoss
Application Server is expected or required.

For further discussion, use the user forum [http://imww.jboss.com/
index.html?module=bb& op=viewforum&f=157] linked on the JBoss Cache website. [http://
labs.jboss.com/jbosscache] We aso provide a mechanism for tracking bug reports and feature requests
on the JBoss Cache JIRA issuetracker. [http://jira.jboss.com/jiralbrowse/ IBBCACHE] If you areinterested
in the development of JBoss Cache or in trandating this documentation into other languages,
wed love to hear from you. Please post a message on the user forum [http://www.jboss.com/
index.html?modul e=bb& op=viewforum&f=157] or contact us by using the JBoss Cache developer
mailing list. [https://lists.jboss.org/mailman/listinfo/jbosscache-dev]

Thisbook is specifically targeted at the JBoss Cache rel ease of the same version number. It may not apply
to older or newer releases of JBoss Cache. It isimportant that you use the documentation appropriate to
the version of JBoss Cache you intend to use.

Release 2.1.0 Alegrias %

http://labs.jboss.com/jbosscache
http://labs.jboss.com/jbosscache
http://labs.jboss.com/jbosscache
http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://labs.jboss.com/jbosscache
http://labs.jboss.com/jbosscache
http://labs.jboss.com/jbosscache
http://jira.jboss.com/jira/browse/JBCACHE
http://jira.jboss.com/jira/browse/JBCACHE
http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
https://lists.jboss.org/mailman/listinfo/jbosscache-dev
https://lists.jboss.org/mailman/listinfo/jbosscache-dev
https://lists.jboss.org/mailman/listinfo/jbosscache-dev

Part I. Introduction to JBoss Cache

This section covers what developers would need to quickly start using JBoss Cache in their projects. It covers an
overview of the concepts and API, configuration and deployment information.

Overview

1.1. What is JBoss Cache?

JBoss Cache is atree-structured, clustered, transactional cache. It is the backbone for many fundamental
JBoss Application Server clustering services, including - in certain versions - clustering JNDI, HTTP and
EJB sessions.

JBoss Cache can al so be used as a standal one transactional and clustered caching library or even an object
oriented data store. It can even be embedded in other enterprise Java frameworks and application servers
such as BEA WebL ogic or IBM WebSphere, Tomcat, Spring, Hibernate, and many others. It isaso very
commonly used directly by standal one Java applications that do not run from within an application server,
to maintain clustered state.

1.1.1. And what is Pojo Cache?

Pojo Cacheisan extension of the core JBoss Cache API. Pojo Cache offersadditional functionality such as:
* maintaining object references even after replication or persistence.

« fine grained replication, where only modified object fields are replicated.

« "API-less’ clustering model where pojos are simply annotated as being clustered.

Pojo Cache has a complete and separate set of documentation, including a user guide, FAQ and tutorial
and as such, Pojo Cache is not discussed further in this book.

1.2. Summary of Features

JBoss Cache offers a simple and straightforward API, where data (sSsmple Java objects) can be placed in
the cache and, based on configuration options selected, this data may be one or al of:

* replicated to some or al cache instancesin acluster.
 persisted to disk and/or aremote cluster ("far-cache").

« garbage collected from memory when memory runs low, and passivated to disk so state isn't lost.
In addition, JBoss Cache offers arich set of enterprise-class features:

* being able to participate in JTA transactions (works with Java EE compliant TransactionManagers).

Release 2.1.0 Alegrias 2

Overview

 attach to IMX servers and provide runtime statistics on the state of the cache.
» alow client code to attach listeners and receive notifications on cache events.

A cacheisorganised as atree, with asingle root. Each node in the tree essentially contains a Map, which
acts as a store for key/value pairs. The only requirement placed on objects that are cached is that they
implement j ava. i 0. Seri al i zabl e . Note that this requirement does not exist for Pojo Cache.

JBoss Cache can be either local or replicated. Local trees exist only inside the VM in which they are
created, whereas replicated trees propagate any changes to some or al other trees in the same cluster. A
cluster may span different hosts on a network or just different JVMs on a single host.

When a change is made to an object in the cache and that change is done in the context of a transaction,
the replication of changes is deferred until the transaction commits successfully. All modifications are
kept in alist associated with the transaction for the caller. When the transaction commits, we replicate the
changes. Otherwise, (on arollback) we simply undo the changes locally resulting in zero network traffic
and overhead. For example, if a caller makes 100 modifications and then rolls back the transaction, we
will not replicate anything, resulting in no network traffic.

If acaller has no transaction associated with it (and isolation level is not NONE - more about this later),
we will replicate right after each modification, e.g. in the above case we would send 100 messages, plus
an additional message for the rollback. In this sense, running without a transaction can be thought of
as analogous as running with auto-commit switched on in JDBC terminology, where each operation is
committed automatically.

JBoss Cache works out of the box with most popular transaction managers, and even provides an API
where custom transaction manager lookups can be written.

The cache is also completely thread-safe. It uses a pessimistic locking scheme for nodes in the tree
by default, with an optimistic locking scheme as a configurable option. With pessimistic locking, the
degree of concurrency can be tuned using a number of isolation levels, corresponding to database-
styletransaction isolation levels, i.e., SERIALIZABLE, REPEATABLE_READ, READ_COMMITTED,
READ_UNCOMMITTED and NONE. Concurrency, locking and isolation levels will be discussed later.

1.3. Requirements

JBoss Cache requires Java 5.0 (or newer).

However, there is a way to build JBoss Cache as a Java 1.4.x compatible binary using JBossRetro
[http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossRetro] to retroweave the Java 5.0 binaries. However,
Red Hat Inc. does not offer professional support around the retroweaved binary at this time and the
Java 1.4.x compatible binary is not in the binary distribution. See this wiki [http://wiki.jboss.org/wiki/
Wiki.jsp?page=JBossCacheHabaneroJaval.4] page for details on building the retroweaved binary for
yourself.

Inaddition to Java5.0, at aminimum, JBoss Cache has dependencies on JGroups [http://www.jgroups.org]
, and Apache's commons-logging [http://jakarta.apache.org/commons/logging/] . JBoss Cache shipswith
all dependent libraries necessary to run out of the box.

Release 2.1.0 Alegrias 3

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossRetro
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossRetro
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHabaneroJava1.4
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHabaneroJava1.4
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHabaneroJava1.4
http://www.jgroups.org
http://www.jgroups.org
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/logging/

Overview

1.4. License

JBoss Cache is an open source product, using the business and OEM-friendly OSl-approved
[http:/imww.opensource.org/] LGPL license. [http://www.gnu.org/copyleft/lesser.ntml] Commercial
development support, production support and training for JBoss Cache is available through JBoss, a
division of Red Hat Inc. [http://www.jboss.com] JBoss Cache isapart of JBoss Professional Open Source
JEMS [http:/www.jboss.comindex] (JBoss Enterprise Middleware Suite).

Release 2.1.0 Alegrias 4

http://www.opensource.org/
http://www.opensource.org/
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
http://www.jboss.com
http://www.jboss.com
http://www.jboss.com
http://www.jboss.comindex
http://www.jboss.comindex

User API
2.1. API Classes

The cache interface is the primary mechanism for interacting with JBoss Cache. It is constructed and
optionally started using the CacheFact ory . The CacheFact ory allowsyou to create a Cache either from a
Conf i gur ati on object or an XML file. Once you have areference to a Cache , you can use it to look up
Node objectsin the tree structure, and store datain the tree.

Release 2.1.0 Alegrias 5

User AP

[Public AP ||

CacheFaclory [j
forg.jbozz.cache)

+oregteCachely Cache

+oregteCachel stant D hoolean } o Cache

+oreateCachel confighileMame [String } - Cache

+oregteCachel confighileMame | String, stardt [boolear) Cache
+oregteCachel configuration | Configuration) Cache

+oregteCachel configuration | Configuration, stard [boolean) Cache

i

z
I

Default Cache Factory
forg.jboss. cache)

Cache ()
(org.jbozz.cache)

< < gatter==+getConfigurations | Configuration

< < getter=>=+getloots - Mode

+addCachelistenery] . Cachelistetery void

+addCachelistefery regioh Fgr, | . Cachelistensr } | void
+remowvelachealisteneri | Cachelistener i void
+ramovelachelistenari region : Fgh, 1 Cackelistaner) void

< < getter==+getCachelistanarsi Sat

< < getterz=>=+getCachelisteners region Fgh y Sat

+outs fgre D Fge, key D Object value | Dhjact 3 - Ohjact
+outborExternalReads fgr Fgn, key @ Okjact, value - Objact » - void
+outs fgie D Fger, data) Map o void

+ramowel fgn o Fgh, key - Okjact » o Objact

+ramaowveNodes fgn Fgn i void

< < getterz==+gets fgn Fgr, key - Olject o Ohjact

+avicti fgn - Fgr, recursive [booleal D void

< < getter=>=+getRegiond fgn Fgr, createlfAbsant [boolean - Region
+oreataly fvoid

+startiy [void

+stopd void

+dastroysy D woid

< < getter==+getinvocatichContexts lnvocatiohContaxt

< < satter=s=+satinvocatichContexts oty D lnvocationContaxt) void
<< getterz=>=+getlocaldddresso Address

< < getter==+getMeamberssy List

+maowel rodeToMove Fgr, hewlarent Fgn i void

< < gatter=>=+getVersioh [String

Reviewing the javadoc for the above interfaces is the best way to learn the API. Below we cover some
of the main points.

Release 2.1.0 Alegrias 6

User AP

2.2. Instantiating and Starting the Cache

An instance of the cache interface can only be created viaa CacheFact ory . (Thisis unlike JBoss Cache
1.x, where an instance of the old Tr eeCache class could be directly instantiated.)

CacheFact ory provides a number of overloaded methods for creating a Cache , but they al do the same
thing:

« Gainaccessto acConfiguration, either by having one passed in as a method parameter, or by parsing
XML content and constructing one. The XML content can come from a provided input stream or
from a classpath or filesystem location. See the chapter on Configuration for more on obtaining a
Configuration.

« Instantiate the cache and provide it with areferenceto the Confi guration .
» Optionally invoke the cache'screate() andstart () methods.
An example of the simplest mechanism for creating and starting a cache, using the default configuration

values:

CacheFactory factory = Defaul t CacheFactory. getlnstance();
Cache cache = factory. createCache();

Here wetell the CacheFact ory to find and parse a configuration file on the classpath:

CacheFactory factory = Defaul t CacheFactory. getl nstance();
Cache cache = factory. createCache("cache-configuration.xm");

Here we configure the cache from afile, but want to programatically change a configuration element. So,
wetell the factory not to start the cache, and instead do it ourselves:

CacheFactory factory = Defaul t CacheFactory. getl nstance();

Cache cache = factory. createCache("cache-configuration.xm", false);
Configuration config = cache. get Configuration();

config.setd usterNane(this.getC usterNane());

// Have to create and start cache before using it
cache.create();
cache.start();

2.3. Caching and Retrieving Data

Next, let's use the cache API to access a Node in the cache and then do some simple reads and writes to
that node.

Release 2.1.0 Alegrias 7

User AP

/1 Let's get ahold of the root node.
Node root Node = cache. get Root () ;

/'l Remenber, JBoss Cache stores data in a tree structure.
/1 Al nodes in the tree structure are identified by Fgn objects.
Fan peterGiffinFgn = Fgn.fronString("/griffin/peter");

/1 Create a new Node
Node peterGiffin = rootNode. addChil d(peterGiffinFqgn);

/1 let's store sone data in the node
peterGiffin.put("isCartoonCharacter", Bool ean. TRUE);
peterGiffin.put("favouriteDrink", new Beer());

/] some tests (just assune this code is in a JUnit test case)
assert True(peterGiffin.get("isCartoonCharacter"));

assert Equal s(peterGiffinFgn, peterGiffin.getFqn());
assert True(root Node. hasChi |l d(peterGiffinFgn));

Set keys = new HashSet ();

keys. add("i sCartoonCharacter");

keys. add("favouriteDrink");

assert Equal s(keys, peterGiffin.getKeys()):

/l let's renove sone data fromthe node
peterGiffin.renmove("favouriteDrink");

assertNul | (peterGiffin.get("favouriteDrink");

/1 let's renpve the node altogether
r oot Node. removeChi | d(peterGi ffinFqgn);

assert Fal se(root Node. hasChi l d(peterGriffinFgn));

The cache interface also exposes put/get/remove operations that take an Fgn as an argument:

Fgn peterGiffinFgn = Fgn.fronString("/griffin/peter");

cache. put (peterGiffinFgn, "isCartoonCharacter", Bool ean. TRUE);
cache. put (peterGiffinFgn, "favouriteDrink", new Beer());

assert True(peterGiffin.get(peterGiffinFgn, "isCartoonCharacter"));
assert True(cache. get Root Node() . hasChi | d(peterGiffinFqgn));

cache.renove(peterGiffinFgn, "favouriteDrink");
assert Nul | (cache. get (peterGiffinFgn, "favouriteDrink");
cache. removeNode(peterGi ffinFqn);

assert Fal se(cache. get Root Node() . hasChi |l d(peterGiffinFgn));

Release 2.1.0 Alegrias

User AP

2.4. The Fgn Class

The previous section used the Fqn classin its examples; now let's learn a bit more about that class.

A Fully Qualified Name (Fgn) encapsulates a list of names which represent a path to a particular location
in the cache's tree structure. The elements in the list are typically string s but can be any j ect or a
mix of different types.

This path can be absolute (i.e., relative to the root node), or relative to any node in the cache. Reading the
documentation on each API call that makes use of Fqn will tell you whether the APl expects a relative
or absolute Fgn .

The Fgn class provides are variety of constructors; see the javadoc for all the possibilities. The following
illustrates the most commonly used approaches to creating an Fgn:

/'l Create an Fqn pointing to node 'Joe' under parent node 'Smith'
/'l under the 'people' section of the tree

/1 Parse it froma String
Fgn<String> abc = Fgn.fronString("/ peopl e/ Sm th/ Joe/");

[/ Build it directly. A bit nore efficient to construct than parsing
String[] strings = new String[] { "people", "Smth", "Joe" };
Fgn<String> abc = new Fqn<String>(strings);

/1l Here we want to use types other than String
oj ect[] objs = new Object[]{ "accounts", "NY', new |nteger(12345) };
Fgn<Obj ect > acct Fqn = new Fgn<QObj ect >(obj s);

Note that

Fqn<String> f = new Fqn<String>("/alb/c"); ‘
is not the same as

Fgn<String> f = Fgqn.fronBtring("/al/b/c"); ‘

Theformer will result in an Fgn with asingle element, called "/alb/c" which hangs directly under the cache
root. The latter will result in a 3 element Fgn, where "c" idicates a child of "b", which is a child of "a",
and "a' hangs off the cache root. Another way to look at it isthat the "/* separarator is only parsed when
it forms part of a String passed into Fgn. fr onst ri ng() and not otherwise.

The JBoss Cache API inthe 1.x releasesincluded many overloaded convenience methods that took astring
inthe "/alb/c" format in place of an Fgn . In the interests of API simplicity, no such convenience methods
are availablein the JBBC 2.x API.

Release 2.1.0 Alegrias 9

User AP

2.5. Stopping and Destroying the Cache

Itisgood practiceto stop and destroy your cache when you are done using it, particularly if itisaclustered
cache and has thus used a JGroups channel. Stopping and destroying a cache ensures resources like the
JGroups channel are properly cleaned up.

cache. stop();
cache. destroy();

Not also that a cache that has had st op() invoked on it can be started again with anew call tostart() .
Similarly, acache that has had dest roy() invoked on it can be created again with anew call tocreat e()
(and then started again with ast art () call).

2.6. Cache Modes

Although technically not part of the API, the mode in which the cache is configured to operate affects the
cluster-wide behavior of any put or r enove operation, so well briefly mention the various modes here.

JBoss Cache modes are denoted by the org.jboss. cache. config. Configuration. CacheMode
enumeration. They consist of:

e LOCAL - local, non-clustered cache. Local cachesdon't join acluster and don't communicate with other
caches in a cluster. Therefore their contents don't need to be Seridizable; however, we recommend
making them Serializable, allowing you the flexibility to change the cache mode at any time.

« REPL_SYNC - synchronousreplication. Replicated cachesreplicate all changesto the other cachesinthe
cluster. Synchronous replication meansthat changes are replicated and the caller blocks until replication
acknowledgements are received.

* REPL_ASYNC - asynchronous replication. Similar to REPL_SY NC above, replicated caches replicate
al changes to the other caches in the cluster. Being asynchronous, the caller does not block until
replication acknowledgements are received.

« INVALIDATION_SYNC - if a cache is configured for invalidation rather than replication, every time
datais changed in a cache other cachesin the cluster receive a message informing them that their data
is now stale and should be evicted from memory. This reduces replication overhead while still being
able to invalidate stale data on remote caches.

* INVALIDATION_ASYNC - as above, except this invalidation mode causes invalidation messages to be
broadcast asynchronously.

See the chapter on Clustering for more details on how the cache's mode affects behavior. See the chapter
on Configuration for info on how to configure things like the cache's mode.

2.7. Adding a CachelListener

The @rg.jboss.cache. notifications. annotation. CacheLi stener annotation is a convenient
mechanism for receiving notifications from a cache about events that happen in the cache.

Release 2.1.0 Alegrias 10

User AP

Classes annotated with @acheListener need to be public classes. In addition, the class
needs to have one or more methods annotated with one of the method-level annotations
(in the org.jboss.cache. notifications.annotation package). Methods annotated as such
need to be publicc have a void return type, and accept a single parameter of type
org. j boss. cache. noti fications. event . Event Or one of it's subtypes.

e @acheStarted - methods annotated such receive a notification when the cache
is stated. Methods need to accept a parameter type which is assignable from
org.j boss. cache. notifications.event. CacheStartedEvent .

* @acheStopped - methods annotated such receive a notification when the cache
is stopped. Methods need to accept a parameter type which is assignable from

org.j boss. cache. notifications. event. CacheSt oppedEvent .

e @bdeCreated - methods annotated such receive a notification when a node is
created. Methods need to accept a parameter type which is assignable from

org.j boss. cache. notifications. event. NodeCr eat edEvent .

e @bdeReroved - methods annotated such receive a notification when a node is
removed. Methods need to accept a parameter type which is assignable from

org. j boss. cache. notifications. event. NodeRenovedEvent .

e @bdeMdified - methods annotated such receive a notification when a node is
modified. Methods need to accept a parameter type which is assignable from

org.j boss. cache. notifications. event. NodeModi fi edEvent .

¢ @odeMved - methods annotated such receive a notification when a node is
moved. Methods need to accept a parameter type which is assignable from

org.j boss. cache. notifications. event. NodeMvedEvent .

e @bdevisited - methods annotated such receive a notification when a node is
started. Methods need to accept a parameter type which is assignable from

org. j boss. cache. notifications. event. NodeVi si t edEvent .

* @bodelLoaded - methods annotated such receive a notification when a node is loaded from
a CacheLoader . Methods need to accept a parameter type which is assignable from

org.j boss.cache. notifications. event. NodeLoadedEvent .

* @bdeEvicted - methods annotated such recelve a notification when a node is evicted
from memory. Methods need to accept a parameter type which is assignable from
org.j boss. cache. notifications. event. NodeEvi ct edEvent .

e @bodeActivated - methods annotated such receive a notification when a node is
activated. Methods need to accept a parameter type which is assignable from

org.j boss. cache. notifications. event. NodeActi vat edEvent .

e @bodePassivated - methods annotated such receive a notification when a node is
passivated. Methods need to accept a parameter type which is assignable from

org.j boss. cache. notifications. event. NodePassi vat edEvent .

Release 2.1.0 Alegrias 11

User AP

* @ransactionRegi stered - methods annotated such receive a notification when the
cache registers a javax.transaction.Synchronization Wwith a registered transaction
manager. Methods need to accept a parameter type which is assignable from

org.j boss.cache. notifications.event. Transacti onRegi st eredEvent .

e @ransacti onConpl et ed - methods annotated such receive a notification when the cache receives a
commit or rollback call from aregistered transaction manager. Methods need to accept a parameter type
which isassignable from or g. j boss. cache. noti ficati ons. event. Transact i onConpl et edEvent .

e @iewcChanged - methods annotated such receive a notification when the group structure of
the cluster changes. Methods need to accept a parameter type which is assignable from

org.j boss. cache. notifications. event. Vi ewnChangedEvent .

* @acheBl ocked - methods annotated such receive a notification when the cluster requests that cache
operations are blocked for a state transfer event. Methods need to accept a parameter type which is
assignable from or g. j boss. cache. noti fi cati ons. event . CacheBl ockedEvent .

* @acheUnbl ocked - methods annotated such receive a notification when the cluster requests that cache
operations are unblocked after a state transfer event. Methods need to accept a parameter type whichis
assignable from or g. j boss. cache. noti fi cati ons. event . CacheUnbl ockedEvent .

Refer to the javadocs on the annotations as well as the Event subtypes for details of what is passed in to
your method, and when.

Example:

@cacheli st ener
public class MLi stener

{

@acheSt art ed
@acheSt opped
public void cacheStart St opEvent (Event e)
{
switch (e.getType())
{
case Event. Type. CACHE STARTED:
Systemout. println("Cache has started");
br eak;
case Event. Type. CACHE STOPPED:
System out . println("Cache has stopped");
br eak;

@odeCr eat ed

@\odeRenoved

@\odeVi si t ed

@lodeModi fi ed

@\odeMoved

public void | ogNodeEvent (NodeEvent ne)

Release 2.1.0 Alegrias 12

User AP

| og("An event on node " + ne.getFgn() + " has occured");

2.8. Using Cache Loaders

Cache loaders are an important part of JBoss Cache. They allow persistence of nodesto disk or to remote
cache clusters, and allow for passivation when caches run out of memory. In addition, cache loaders allow
JBoss Cache to perform 'warm starts, where in-memory state can be preloaded from persistent storage.
JBoss Cache ships with anumber of cache loader implementations.

e org.jboss. cache. | oader. Fi | eCacheLoader - abasic, filesystem based cache |loader that persists data
to disk. Non-transactional and not very performant, but a very simple solution. Used mainly for testing
and not recommended for production use.

* org.jboss. cache. | oader. JDBCCacheLoader - uses a JDBC connection to store data. Connections
could be created and maintained in an internal pool (usesthe c3p0 pooling library) or from aconfigured
DataSource. The database this Cachel oader connects to could be local or remotely located.

e org.jboss. cache. | oader. Bdbj eCacheLoader - uses Oracle's BerkeleyDB file-based transactional
database to persist data. Transactional and very performant, but potentially restrictive license.

* org.jboss. cache. | oader. JdbnCacheLoader - an upcoming open source aternative to the
BerkeleyDB.

e org.jboss. cache. | oader .t cp. TcpCacheLoader - uses a TCP socket to "persist” data to a remote
cluster, using a"far cache" pattern.

e org.jboss. cache. | oader. C ust er edCacheLoader - used as a "read-only" Cachel oader, where other
nodesin the cluster are queried for state.

These Cachel oaders, along with advanced aspects and tuning issues, are discussed in the chapter dedi cated

to Cachel oaders .

2.9. Using Eviction Policies

Eviction policies are the counterpart to Cachel oaders. They are necessary to make sure the cache does not
run out of memory and when the cache starts to fill, the eviction algorithm running in a separate thread
offloads in-memory state to the Cachel.oader and frees up memory. Eviction policies can be configured
on a per-region basis, so different subtrees in the cache could have different eviction preferences. JBoss
Cache ships with several eviction policies:

e org.jboss. cache. evi ction. LRUPol i cy - an eviction policy that evicts the least recently used nodes
when thresholds are hit.

e org.jboss. cache. evi cti on. LFUPol i cy - an eviction policy that evicts the least frequently used nodes
when thresholds are hit.

Release 2.1.0 Alegrias 13

User AP

e org.jboss. cache. evi ction. MRUPol i cy - an eviction policy that evicts the most recently used nodes
when thresholds are hit.

* org.jboss. cache. evi cti on. FI FOPol i cy - an eviction policy that creates afirst-in-first-out queue and
evicts the oldest nodes when thresholds are hit.

e org.jboss. cache. evi ction. Expi rationPol i cy - an eviction policy that selects nodes for eviction
based on an expiry time each node is configured with.

e org.jboss. cache. evi cti on. El enent Si zePol i cy - an eviction policy that selects nodes for eviction
based on the number of key/value pairs held in the node.

Detailed configuration and implementing custom eviction policies are discussed in the chapter dedicated

to eviction palicies. .

Release 2.1.0 Alegrias 14

Configuration

3.1. Configuration Overview

Theorg. j boss. cache. confi g. Confi gurat i on class (along with its component parts) is a Java Bean that
encapsulates the configuration of the cache and all of its architectural elements (cache loaders, evictions
policies, etc.)

The Conf i gur ati on exposes numerous properties which are summarized in the configuration reference
section of this book and many of which are discussed in later chapters. Any time you see a configuration
option discussed in this book, you can assume that the Conf i gur at i on class or one of its component parts
exposes asimple property setter/getter for that configuration option.

3.2. Creating a Configuration

Asdiscussed in the User API section , before acache can be created, the CacheFact ory must be provided
with a Confi gurati on object or with afile name or input stream to use to parse a Conf i gur ati on from
XML. The following sections describe how to accomplish this.

3.2.1. Parsing an XML-based Configuration File

The most convenient way to configure JBoss Cacheisviaan XML file. The JBoss Cache distribution ships
with a number of configuration files for common use cases. It is recommended that these files be used as
astarting point, and tweaked to meet specific needs.

Hereis asimple example configuration file:

<?xm version="1.0" encodi ng="UTF-8""?>

< -

<l--

<I-- Sanpl e JBoss Cache Service Configuration
<l--

[B T
V V. V V V

<l--

<server >
<mbean code="org.j boss. cache. j mx. CacheJnxW apper" nanme="j boss. cache: servi ce=Cache">

<l-- Configure the Transacti onManager -->
<attri bute name="Transacti onManager LookupC ass" >

Release 2.1.0 Alegrias 15

Configuration

org.j boss. cache.transacti on. Generi cTransacti onManager Lookup
</attribute>

<I-- Node | ocking |level : SERIALIZABLE
REPEATABLE _READ (defaul t)
READ COWM TTED
READ_UNCOWM TTED
NONE -->
<attribute name="Isol ati onLevel ">READ COWM TTED</ attri but e>

<l-- Lock parent before doing node additions/renoves -->
<attribute name="LockParent For Chi | dl nsert Renove" >t rue</attri bute>

<l-- Valid nodes are LOCAL (default)
REPL_ASYNC
REPL_SYNC
I NVALI DATI ON_ASYNC
| NVALI DATI ON_SYNC -->
<attribute name="CacheMbde">LOCAL</ attri bute>

<I-- Max nunber of mlliseconds to wait for a |ock acquisition -->
<attribute name="LockAcqui sitionTi meout">15000</attri bute>

<I-- Specific eviction policy configurations. This is LRU -->
<attribute name="EvictionConfig">
<confi g>
<attribute name="wakeUpl nt erval Seconds" >5</attri bute>
<attribute name="policyC ass">org.jboss. cache. evi ction. LRUPol i cy</attri bute>

<l-- Cache wi de default -->
<regi on nane="/_default ">
<attribute name="maxNodes">5000</attri bute>
<attribute name="ti neToLi veSeconds">1000</attri bute>
</regi on>
</ confi g>
</attribute>
</ nmbean>
</ server>

Another, more complete, sample XML fileisincluded in the configuration reference section of this book,
along with a handy look-up table explaining the various options.

For historical reasons, the format of the JBoss Cache configuraton file followsthat of aJBoss AS Service
Archive (SAR) deployment descriptor (and still can be used as such inside JBoss AS). Because of this
dual usage, you may see elements in some configuration files (such as depends or cl asspat h) that are
not relevant outside JBoss AS. These can safely be ignored.

Here's how you tell the cacheFact ory to create and start a cache by finding and parsing a configuration
file on the classpath:

CacheFactory factory = Defaul t CacheFactory. getlnstance();

Release 2.1.0 Alegrias 16

Configuration

Cache cache = factory. createCache("cache-configuration.xm");

3.2.2. Programmatic Configuration

In addition to the XML-based configuration above, the Confi gurati on can be built up programatically,
using the simple property mutators exposed by Confi gurati on and its components. When constructed,
the Conf i gur at i on object is preset with JBoss Cache defaults and can even be used as-isfor aquick start.

Following is an example of programatically creating a Confi guration configured to match the one
produced by the XML example above, and then using it to create a Cache :

Configuration config = new Configuration();

String tm c = GenericTransacti onManager Lookup. cl ass. get Nane() ;
config. set Transacti onManager LookupC ass(tm c);

config.setlsol ationLevel (Isol ati onLevel . READ_COW TTED) ;

confi g. set CacheMbde(CacheMbde. LOCAL) ;

confi g. set LockPar ent For Chi | dl nsert Renove(true);

config. set LockAcqui si ti onTi meout (15000) ;

Evi cti onConfig ec = new EvictionConfig();
ec. set Wakeupl nt er val Seconds(5) ;
ec. set Def aul t Evi cti onPol i cyCl ass(LRUPol i cy. cl ass. get Nane());

Evi cti onRegi onConfi g erc = new Evi cti onRegi onConfi g();
erc. set Regi onNane(" _default_");

LRUConfiguration |ru = new LRUConfiguration();

| ru. set MaxNodes(5000) ;

I ru. set Ti neToLi veSeconds(1000) ;

erc. setEvi ctionPol i cyConfig(lru);

Li st <Evi cti onRegi onConfi g> ercs = new Arrayli st <Evi cti onRegi onConfi g>();
ercs. add(erc);

ec. set Evi cti onRegi onConfi gs(erc);

config. set Evicti onConfi g(ec);

CacheFactory factory = Defaul t CacheFactory. getl nstance();
Cache cache = factory. createCache(config);

Even the above fairly simple configuration is pretty tedious programming; hence the preferred use of
XML-based configuration. However, if your application requires it, there is no reason not to use XML-
based configuration for most of the attributes, and then accessthe Conf i gur at i on object to programatically
change a few items from the defaults, add an eviction region, etc.

Note that configuration values may not be changed programmatically when a cache is running, except
those annotated as @ynani ¢ . Dynamic properties are also marked as such in the configuration reference
table. Attempting to change a non-dynamic property will result in a Conf i gur at i onException .

Release 2.1.0 Alegrias 17

Configuration

3.2.3. Using an IOC Framework
The Confi gurati on class and its component parts are all Java Beans that expose al config elements via
simple settersand getters. Therefore, any good |OC framework should be ableto build up aconfi gur ati on

from an XML filein the framework's own format. See the deployment viathe JBoss micrcontainer section
for an example of this.

3.3. Composition of a Confi gurati on Object

A Confi guration iscomposed of anumber of subobjects:

1 Configuration

.1
0.1 0. !
BuddyReplicationConfig EvictionConfig CacheloaderConfig
1 1 1
1 1.2 1.2
Buddyl_ocatorConfig EvictionRegionConfig IndividualCachelLoaderCor
1
EvictionPolicyConrfig

Following is a brief overview of the components of a Confi gurati on . See the javadoc and the linked
chapters in this book for a more complete explanation of the configurations associated with each
component.

e Configuration : top level abject in the hierarchy; exposes the configuration properties listed in the
configuration reference section of this book.

e BuddyReplicationConfig : only relevant if buddy replication is used. General buddy replication
configuration options. Must include a

e BuddyLocatorConfig : implementation-specific configuration object for the BuddyLocat or
implementation being used. What configuration elements are exposed depends on the needs of the
BuddyLocat or implementation.

Release 2.1.0 Alegrias 18

Configuration

e EvictionConfig:onlyrelevantif evictionisused. General eviction configuration options. Must include
at least one:

e EvictionRegi onConfi g : onefor each eviction region; names the region, etc. Must include a:

e EvictionPolicyConfig : implementation-specific configuration object for the EvictionPolicy
implementation being used. What configuration elements are exposed depends on the needs of the
Evi cti onPol i cy implementation.

e CacheLoader Confi g : only relevant if acacheloader isused. General cacheloader configuration options.
Must include at least one:

| ndi vi dual CacheLoader Confi g : implementation-specific configuration object for the CacheLoader
implementation being used. What configuration elements are exposed depends on the needs of the
CacheLoader implementation.

* RuntineConfig : exposes to cache clients certain information about the cache's runtime environment
(e.g. membership in buddy replication groups if buddy replication is used.) Also allows direct
injection into the cache of needed external services like a JTA Transacti onManager or a JGroups

Channel Factory .

3.4. Dynamic Reconfiguration

Dynamically changing the configuration of some options while the cache is running is supported, by
programmatically obtaining the Conf i gur at i on object from the running cache and changing values. E.g.,

Configuration |liveConfig = cache. get Configuration();
i veConfig.set LockAcqui sitionTi neout (2000);

A completelisting of which options may be changed dynamically isin the configuration reference section.
Anorg. j boss. cache. confi g. Confi gurati onExcept i on will bethrownif you attempt to change a setting
that is not dynamic.

3.5. Overriding the Configuration Via the Option API

The Option API allows you to override certain behaviours of the cache on a per invocation basis. This
involves creating an instance of org.j boss. cache. config. Option , Setting the options you wish to
override on the opt i on object and passing it inthe I nvocat i onCont ext before invoking your method on
the cache.

E.g., to override the default node versioning used with optimistic locking:

Dat aVersi on v = new MyCust onDat aVer si on() ;
cache. get Il nvocati onCont ext (). get Opti onOverri des(). set Dat aVer si on(Vv);
Node ch = cache. get Root (). addChi |l d(Fqn.fronString("/a/b/c"));

Release 2.1.0 Alegrias 19

Configuration

E.g., to suppress replication of aput call in aREPL_SYNC cache:

Node node = cache. get Child(Fqn.fronString("/a/b/c"));

cache. get I nvocati onCont ext (). get Opti onOverri des(). set Local Onl y(true);

node. put ("l ocal Counter", new I nteger(2));

See the javadocs on the opt i on class for details on the options available.

Release 2.1.0 Alegrias

20

Deploying JBoss Cache

4.1. Standalone Use / Programatic Deployment

When used in a standalone Java program, all that needs to be done is to instantiate the cache using
the cacheFactory and a Confi guration instance or an XML file, as discussed in the User APl and
Configuration chapters.

The same techniques can be used when an application running in an application server wishes to
programatically deploy a cache rather than relying on an application server's deployment features. An
example of this would be awebapp deploying acache viaaj avax. servl et. Servl et Cont ext Li st ener .

If, after deploying your cache you wish to expose a management interface to it in IMX, see the section
on Programatic Registration in IMX .

4.2. IMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.x)

If JBoss Cache is run in JBoss AS then the cache can be deployed as an MBean simply by copying a
standard cache configuration file to the server's depl oy directory. The standard format of JBoss Cache's
standard XML configuration file (as shown in the Configuration Reference) is the same as a JBoss AS
MBean deployment descriptor, so the AS's SAR Deployer has no trouble handling it. Also, you don't have
to place the configuration file directly in depl oy ; you can package it along with other services or JEE
componentsin a SAR or EAR.

In AS5, if you're using a server config based on the standard al | config, then that's all you need to do; all
required jars will be on the classpath. Otherwise, you will need to ensurej bosscache. j ar andj gr oups-

al | . jar areonthe classpath. Y ou may need to add other jarsif you're using things like JdbnCachelLoader

. The simplest way to do thisisto copy the jars from the JBoss Cache distribution's | i b directory to the
server config's! i b directory. Y ou could also package the jarswith the configuration filein Service Archive
(.sar) fileor an EAR.

Itispossibleto deploy aJBoss Cache 2.0 instancein JBossAS4.x (at least in 4.2.0.GA; other ASreleases
are completely untested). However, the significant API changes between the JBoss Cache 2.x and 1.x
releases mean none of the standard AS 4.x clustering services (e.g. http session replication) that rely on
JBoss Cache will work with JBoss Cache 2.x. Also, be aware that usage of JBoss Cache 2.x in AS4.x is
not something the JBoss Cache devel opers are making any significant effort to test, so be sureto test your
application well (which of course you're doing anyway.)

Note in the example the vaue of the nbean element's code attribute
org. j boss. cache. j mx. CacheJmxW apper . Thisisthe class JBoss Cache usesto handle IM X integration;

Release 2.1.0 Alegrias 21

Deploying JBoss Cache

the cache itself does not expose an MBean interface. See the JBoss Cache MBeans section for more on
the CacheJnmxW apper .

Once your cache is deployed, in order to use it with an in-VM client such as a servlet, a IMX proxy can
be used to get areference to the cache:

MBeanServer server = MBeanServerlLocator. | ocateJBoss();
Cbj ect Nane on = new Obj ect Nanme("] boss. cache: servi ce=Cache");
CacheJnmxW apper MBean cacheW apper =
(CacheJnxW apper MBean) MBeanSer ver | nvocat i onHandl er . newPr oxyl nst ance(server, pon,
CacheJnmxW apper MBean. cl ass, fal se);
Cache cache = cacheW apper. get Cache();
Node root = cache.getRoot(); // etc etc

The MBeanServerLocator class is a helper to find the (only) JBoss MBean server inside the current
JVM. Thej avax. managenent . MBeanSer ver | nvocat i onHandl er €lass newPr oxy! nst ance method creates
adynamic proxy implementing the giveninterface and uses JIM X to dynamically dispatch methodsinvoked
against the generated interface to the MBean. The name used to |ook up the MBean isthe same as defined
in the cache's configuration file.

Once the proxy to the CacheJmxW apper is obtained, the get Cache() will return areference to the Cache
itself.

4.3. Via JBoss Microcontainer (JBoss AS 5.x)

Beginning with AS 5, JBoss AS aso supports deployment of POJO services via deployment of a file
whose name ends with - beans. xmi . A POJO service is one whose implementation is viaa "Plain Old
Java Object", meaning asimplejavabean that isn't required to implement any special interfaces or extend
any particular superclass. A cache isaPOJO service, and al the componentsin acConfi gurati on are aso
POJOS, so deploying a cache in thisway is anatural step.

Deployment of the cache is done using the JBoss Microcontainer that forms the core of JBoss AS. JBoss
Microcontainer is a sophisticated 10C framework (similar to Spring). A -beans. xni file is basically a
descriptor that tells the IOC framework how to assemble the various beans that make up a POJO service.

Therulesfor how to deploy thefile, how to packageit, how to ensure the required jars are on the classpath,
etc. are the same as for a IM X -based deployment .

Following is an example - beans. xm file. If you look in the server/al I / depl oy directory of an AS 5
installation, you can find several more examples.

<?xm version="1.0" encodi ng="UTF-8""?>

<depl oynment xm ns="urn:j boss: bean-depl oyer: 2. 0">

<I-- First we create a Configuration object for the cache -->

Release 2.1.0 Alegrias 22

Deploying JBoss Cache

<bean nane="Exanpl eCacheConfi g"
cl ass="org. j boss. cache. confi g. Confi guration">

<I-- Externally injected services -->
<property nane="runti meConfi g">
<bean name="Exanpl eCacheRunti meConfi g" cl ass="org.jboss. cache. confi g. Runti neConfi g">
<property nane="transacti onManager" >
<i nj ect bean="j boss: servi ce=Transacti onManager"
property="Transact i onManager"/>
</ property>
<property nane="nuxChannel Fact ory"><i nj ect bean="JChannel Factory"/></property>
</ bean>
</ property>

<property name="mul ti pl exer St ack" >udp</ pr operty>
<property nane="cl ust er Nane" >Exanpl e- Enti t yCache</ property>

<l--
Node | ocking |l evel : SERIALIZABLE

REPEATABLE_READ (defaul t)
READ_COWM TTED
READ_UNCOWM TTED
NONE

-->

<property nane="isol ati onLevel ">REPEATABLE READ</ property>

<l-- Valid nodes are LOCAL
REPL_ASYNC
REPL_SYNC
-->
<property nane="cacheMde" >REPL_SYNC</ property>

<l-- The max anpunt of tine (in mlliseconds) we wait until the
initial state (ie. the contents of the cache) are retrieved from
exi sting nmenbers in a clustered environnent

-->

<property nane="initial StateRetrieval Ti neout">15000</ property>

<I-- Nurmber of milliseconds to wait until all responses for a
synchronous call have been received.

-->

<property nane="syncRepl Ti neout " >20000</ pr operty>

<I-- Max nunber of milliseconds to wait for a |ock acquisition -->
<property nane="l ockAcqui sitionTi neout">15000</ property>

<property nane="exposeManagenent Stati stics">true</property>

<l-- Must be true if any entity depl oynent uses a scoped cl assl oader -->
<property nanme="useRegi onBasedMarshal | i ng">true</ property>
<I-- Mist match the val ue of "useRegi onBasedMarshalling" -->

<property nanme="inactiveOnStartup">true</property>

<I-- Specific eviction policy configurations. This is LRU -->
<property nane="evictionConfig">
<bean name="Exanpl eEvi cti onConfi g"

Release 2.1.0 Alegrias 23

Deploying JBoss Cache

cl ass="org. j boss. cache. confi g. Evi cti onConfi g">
<property nane="defaul t Evi cti onPol i cyd ass" >
org. j boss. cache. evi cti on. LRUPol i cy
</ property>
<property nane="wakeupl nt erval Seconds" >5</ property>
<property nanme="evicti onRegi onConfi gs">
<list>
<bean nane="Exanpl eDef aul t Evi cti onRegi onConfi g"
cl ass="org. j boss. cache. confi g. Evi cti onRegi onConfi g">
<property nane="regi onNane" >/ _default_</property>
<property nane="evictionPolicyConfig">
<bean name="Exanpl eDef aul t LRUConfi g"
cl ass="org.j boss. cache. evi cti on. LRUConfi gurati on">
<property nane="nmaxNodes" >5000</ property>
<property name="ti neToLi veSeconds" >1000</ property>
</ bean>
</ property>
</ bean>
</list>
</ property>
</ bean>
</ property>

</ bean>

<l-- Factory to build the Cache. -->
<bean nane="Def aul t CacheFactory" cl ass="org. | boss. cache. Def aul t CacheFact ory">
<constructor factoryC ass="org.jboss. cache. Def aul t CacheFact ory"
fact oryMet hod="get | nst ance"/ >
</ bean>

<l-- The cache itself -->
<bean nane="Exanpl eCache" cl ass="org.j boss. cache. Cachel mpl ">

<constructor factoryMethod="createCache">
<factory bean="Def aul t CacheFactory"/>
<par anet er ><i nj ect bean="Exanpl eCacheConfi g"/ ></ par anet er >
<par anet er >f al se</f al se>

</ constructor>

</ bean>

</ depl oynent >

See the JBoss Microcontainer documentation * for details on the above syntax. Basically, each bean

element represents an object; most going to create a Conf i gur at i on and its constituent parts .

Aninteresting thing to notein the above exampleistheuse of theRunt i meConf i g object. External resources
like a Transacti onvanager and a JGroups Channel Fact ory that are visible to the microcontainer are
dependency injected into the Runti neConfig . The assumption here is that in some other deployment

descriptor in the AS, the referenced beans have been described.

1http:// labs.jboss.com/jbossmc/docs

Release 2.1.0 Alegrias

Deploying JBoss Cache

4.4. Binding to JNDI in JBoss AS

Withthe 1.x JBoss Cacherel eases, aproxy to the cache could be bound into JBoss ASsJINDI treeusing the
AS'SJIRVWPPr oxyFact or y service. With JBoss Cache 2.x, this no longer works. An aternative way of doing
asimilar thing with a POJO (i.e. non-JM X-based) service like a Cache isunder development by the JBoss

ASteam 2. That featureis not available as of thetime of thiswriti ng, athough it will be completed before
AS5.0.0.GA isreleased. We will add awiki page describing how to use it once it becomes available.

4.5. Runtime Management Information

JBoss Cache includes IMX MBeans to expose cache functionality and provide statistics that can be used
to analyze cache operations. JBoss Cache can aso broadcast cache events as MBean notifications for
handling via JM X monitoring tools.

45.1. JBoss Cache MBeans

JBoss Cache provides an MBean that can be registered with your environments IMX server to allow
accessto the cacheinstanceviaJMX. ThisMBeanistheor g. j boss. cache. j nx. CacheJnxW apper . Itisa
StandardM Bean, so it'sMBean interfaceisor g. j boss. cache. j mx. CacheJnxW apper MBean . ThisMBean
can be used to:

» Get areference to the underlying Cache .
* Invoke create/start/stop/destroy lifecycle operations on the underlying Cache .
* |nspect various details about the cache's current state (number of nodes, lock information, etc.)

¢ See numerous details about the cache's configuration, and change those configuration items that can be
changed when the cache has already been started.
See the CacheJmxW apper MBean javadoc for more details.

It isimportant to note asignificant architectural difference between JBoss Cache 1.x and 2.x. In 1.x, theold
Tr eeCache classwasitself an MBean, and essentially exposed the cache'sentire APl viaJM X. In 2.x, IMX
has been returned to it's fundamental role as a management layer. The Cache object itself is completely
unaware of IMX; instead JIM X functionality is added through a wrapper class designed for that purpose.
Furthermore, the interface exposed through IMX has been limited to management functions; the genera
cache API isnolonger exposed through IM X. For example, it isno longer possible to invoke a cache put
or get viathe IMX interface.

If a cacheJnmxW apper is registered, JBoss Cache also provides MBeans for each interceptor configured
in the cache's interceptor stack. These MBeans are used to capture and expose statistics related to
cache operations. They are hierarchically associated with the CacheJnmxW apper MBean and have
service names that reflect this relationship. For example, a replication interceptor MBean for the
j boss. cache: servi ce=Tontat O ust eri ngCache instance will be accessible through the service named

j boss. cache: servi ce=Tontat O ust eri ngCache, cache-i nt ercept or=Repl i cationl nterceptor .

2http://j ira,jboss.com/jira/lbrowse/JBAS-4456

Release 2.1.0 Alegrias 25

Deploying JBoss Cache

4.5.2. Registering the CacheJmxWrapper with the MBeanServer

The best way to ensure the CacheJnmxW apper is registered in IMX depends on how you are deploying

your cache:

4.5.2.1. Programatic Registration

Simplest way to do thisisto create your Cache and passit to the CacheJnmxW apper constructor.

CacheFactory factory = Defaul t CacheFactory. getl nstance();

/1 Build but don't start the cache

/1 (although it would work OK if we started it)

Cache cache = factory. createCache("cache-configuration.xm", false);

CacheJmxW apper MBean wr apper = new CacheJmxW apper (cache) ;
MBeanServer server = getMBeanServer(); // however you do it

Cbj ect Nane on = new Obj ect Nanme("] boss. cache: servi ce=TreeCache");
server. regi st er MBean(w apper, on);

/1 Invoking |lifecycle nethods on the wapper results
/1 in a call through to the cache

wr apper.create();

wr apper.start();

use the cache

on application shutdown
/1 Invoking |lifecycle nethods on the wapper results
/1 in a call through to the cache

wr apper . st op();
wr apper . destroy();

Alternatively, build a Confi guration object and pass it to the cacheJmxW apper . The wrapper will
construct the Cache :

Configuration config = buildConfiguration(); // whatever it does

CacheJmxW apper MBean wr apper = new CacheJnxW apper (confi g);
MBeanServer server = get MBeanServer(); // however you do it

Cbj ect Nane on = new Obj ect Name("] boss. cache: servi ce=TreeCache");
server. regi st er MBean(w apper, on);

/[l Call to wapper.create() will build the Cache if one wasn't injected

wr apper.create();
wr apper.start();

/1 Now that it's built, created and started, get the cache fromthe wjapper

Cache cache = wapper. get Cache();

use the cache

Release 2.1.0 Alegrias

26

Deploying JBoss Cache

on application shutdown

wr apper . st op();
wr apper . destroy();

4.5.2.2. JIMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.x)

When you deploy your cachein JBoss AS using a-servicexml file, aCacheJmxW apper isautomatically
registered. There is no need to do anything further. The CacheJmxW apper is accessible from an MBean
server through the service name specified in the cache configuration file's nbean element.

4.5.2.3. Via JBoss Microcontainer (JBoss AS 5.x)

CacheJmxW apper is a POJO, so the microcontainer has no problem creating one. The
trick is getting it to register your bean in JMX. This can be done by specifying the
org.j boss. aop. m crocont ai ner. aspect s. j mx. JMX annotation on the CacheJnxW apper bean:

<?xm version="1.0" encodi ng="UTF-8""?>
<depl oyment xm ns="urn:j boss: bean-depl oyer: 2. 0">

<I-- First we create a Configuration object for the cache -->
<bean nane="Exanpl eCacheConfi g"
cl ass="org. j boss. cache. confi g. Confi guration">

build up the Configuration
</ bean>

<l-- Factory to build the Cache. -->
<bean nane="Def aul t CacheFactory" cl ass="org. | boss. cache. Def aul t CacheFact ory">
<constructor factoryC ass="org.jboss. cache. Def aul t CacheFact ory"
fact oryMet hod="get | nst ance"/ >
</ bean>

<l-- The cache itself -->
<bean nane="Exanpl eCache" cl ass="org. | boss. cache. Cachel mpl ">

<constructor factoryMethod="createnew nstance">
<factory bean="Def aul t CacheFactory"/>
<par anet er ><i nj ect bean="Exanpl eCacheConfi g"/ ></ par anet er >
<par anet er >f al se</f al se>

</ constructor>

</ bean>

<l-- JMX Managenent -->
<bean nane="Exanpl eCacheJnmxW apper" cl ass="org. | boss. cache.jnx. CacheJnxW apper" >

<annot ati on>@r g. j boss. aop. m crocont ai ner. aspect s. j nk. JMX(nane="] boss. cache: seryvi ce=Exanpl
exposedl nt er f ace=or g. j boss. cache. j nx. CacheJnxW apper MBean. cl ass,

Release 2.1.0 Alegrias 27

Deploying JBoss Cache

regi sterDirectly=true) </ annotati on>
<const ructor>
<par anet er ><i nj ect bean="Exanpl eCache"/ ></ par anet er >
</ const ructor >

</ bean>

</ depl oynment >

As discussed in the Programatic Registration section, CacheJnxW apper can do the work of building,
creating and starting the cache if it is provided with a Confi gur ati on . With the microcontainer, thisis
the preferred approach, as it saves the boilerplate XML needed to create the CacheFactory :

<?xm version="1.0" encodi ng="UTF-8""?>
<depl oyment xm ns="urn:j boss: bean-depl oyer: 2. 0">
<I-- First we create a Configuration object for the cache -->
<bean nane="Exanpl eCacheConfi g"
cl ass="org. j boss. cache. confi g. Confi guration">
build up the Configuration
</ bean>
<bean nane="Exanpl eCache" cl ass="org. | boss. cache.jnx. CacheJnxW apper" >
<annot ati on>@r g. j boss. aop. m crocont ai ner. aspect s. j nk. JIMX(nane="] boss. cache: seryvi ce=Exanp
exposedl nt er f ace=or g. j boss. cache. j nx. CacheJnxW apper MBean. cl ass,
regi sterDirectly=true)</annotati on>
<construct or>
<par anet er ><i nj ect bean="Exanpl eCacheConfi g"/></ par anet er >
</ constructor >

</ bean>

</ depl oyment >

4.5.3. JBoss Cache Statistics

JBoss Cache captures statistics in its interceptors and exposes the statistics through interceptor MBeans.
Gathering of statistics is enabled by default; this can be disabled for a specific cache instance through the
ExposeManagenent St at i sti cs configuration attribute. Note that the majority of the statistics are provided
by the CacheMyntt | nt er cept or , SO thisMBean isthe most significant in thisregard. If you want to disable
all statistics for performance reasons, you set ExposeManagenent St ati sti cs tOf al se asthiswill prevent
the cacheMgntt | nt er cept or from being included in the cache'sinterceptor stack when the cacheis started.

Release 2.1.0 Alegrias 28

Deploying JBoss Cache

If a cachedmxW apper is registered with IMX, the wrapper also ensures that an MBean is registered in

JMX for each interceptor that exposes statistics 3, Management tools can then access those MBeans to
examine the statistics. See the section in the IMX Reference chapter pertaining to the statistics that are
made available viaJM X.

The name under which the interceptor MBeans will be registered is derived by taking the j ect Narre
under which the CacheJnxW apper is registered and adding a cache-i nterceptor attribute key whose
value is the non-qualified name of the interceptor class. So, for example, if the CacheJmxW apper were
registered under j boss. cache: servi ce=Tr eeCache , the hame of the CacheMynt I nt er cept or MBean
would bej boss. cache: servi ce=Tr eeCache, cache- i nt er cept or =CacheMynt | nt er cept or .

Each interceptor's MBean exposesast at i st i csEnabl ed attribute that can be used to disable maintenance
of statistics for that interceptor. In addition, each interceptor MBean provides the following common
operations and attributes.

e dunpStatistics - returnsanmap containing the interceptor's attributes and values.
* resetStatistics - resetsall statistics maintained by the interceptor.

e setStatisticsEnabl ed(bool ean) - allows statistics to be disabled for a specific interceptor.

4.5.4. Receiving JMX Notifications

JBoss Cache users can register alistener to receive cache events described earlier in the User API chapter.
Users can alternatively utilize the cache's management information infrastructure to receive these events
viaJM X notifications. Cache eventsare accessibleasnotificationsby registeringanot i fi cat i onLi st ener

for the cacheJmxW apper .

See the section in the IMX Reference chapter pertaining to IMX notifications for alist of notifications
that can be received through the CacheJmxW apper .

The following is an example of how to programmatically receive cache notifications when running in a
JBoss AS environment. In this example, the client uses afilter to specify which events are of interest.

M/Li stener |istener = new MyLi stener();
NotificationFilterSupport filter = null;

/'l get reference to MBean server
Context ic = new Initial Context();
MBeanSer ver Connecti on server = (MBeanServer Connection)ic. | ookup("jnx/invoker/RM Adapt or

/'l get reference to CacheMgnt | nterceptor MBean
String cache_service = "jboss. cache: servi ce=Tontat Cl ust eri ngCache";
Cbj ect Nane ngnt _nane = new bj ect Nanme(cache_servi ce);

3 Note that if the cacheJmxW apper is not registered in IMX, the interceptor MBeans will not be registered either. The JBoss Cache 1.4 releases
included code that would try to "discover" an MBeanSer ver and automatically register the interceptor MBeans with it. For JBoss Cache 2.x we
decided that this sort of "discovery" of the IMX environment was beyond the proper scope of a caching library, so we removed this functionality.

Release 2.1.0 Alegrias 29

Deploying JBoss Cache

/1 configure a filter to only receive node created and renpved events
filter = new NotificationFilterSupport();

filter.disabl eAll Types();

filter.enabl eType(CacheNoti fi cati onBroadcaster. NOTI F_NODE_CREATED) ;
filter.enabl eType(CacheNotifi cati onBroadcaster. NOTI F_NODE_REMOVED) ;

/] register the listener with a filter
/'l leave the filter null to receive all cache events
server.addNoti ficationLi stener(nmgnt_nane, listener, filter, null);

Il

/1 on conpl etion of processing, unregister the |istener
server.renoveNoti ficationLi stener(ngnt _nanme, |istener, filter, null);

The following is the simple notification listener implementation used in the previous example.

private class MListener inplenments NotificationListener, Serializable

{

public void handl eNotification(Notification notification, Cbject handback)

{
String message = notification. get Message();
String type = notification.getType();
oj ect userData = notification.getUserData();
Systemout.println(type + ": " + nessage);
if (userData == null)
{
Systemout. println("notification data is null");
}
el se if (userData instanceof String)
{
Systemout.println("notification data: " + (String) userData);
}
else if (userData instanceof Cbject[])
{
bject[] ud = (Object[]) userData;
for (Qoject data : ud)
{
Systemout.printin("notification data: " + data.toString());
}
}
el se
{
Systemout.println("notification data class: "
}
}

+ user Dat a. get A ass(|)) . get Nanme()

Release 2.1.0 Alegrias

30

Deploying JBoss Cache

Note that the JBoss Cache management implementation only listensto cache events after aclient registers
to receive MBean notifications. As soon as no clients are registered for notifications, the MBean will
remove itself as a cache listener.

4.5.5. Accessing Cache MBeans in a Standalone Environment

JBoss Cache MBeans are easily accessed when running cache instances in an application server that
provides an MBean server interface such as JBoss IMX Console. Refer to your server documentation for
instructions on how to access MBeans running in a server's MBean container.

In addition, though, JBoss Cache M Beans are al so accessible when running in anon-server environment if
the VM isJDK 5.0 or later. When running a standalone cache in a JDK 5.0 environment, you can access
the cache's MBeans as follows.

1. Set the system property - Dcom sun. managenent . j mxr enot e When starting the VM where the cache
will run.

2. Oncethe VM isrunning, start the JDK 5.0 consol e utility, located in your JDK's/ bi n directory.

3. When the utility loads, you will be able to select your running VM and connect to it. The JBoss Cache
MBeans will be available on the MBeans panel.

Note that the j consol e utility will automatically register as a listener for cache notifications when
connected to a VM running JBoss Cache instances.

Thefollowing figure shows cache interceptor MBeansinj consol e . Cache statistics are displayed for the
CacheMnt I nt erceptor :

Release 2.1.0 Alegrias 31

Deploying JBoss Cache

& J75E 5.0 Monitoring & Management Consale: 2780olocalhost
Connection
[Summary ' Memory | Threads | Classes | MBeans | VM |
MBeans
P Tree Attributes | Operations | Notifications | Inf
o= _Julmplamentatiﬂn : T Valia
& ijavalang |AverageReadTime 0
o= (] java.util logging |AveragewriteTime 2
¢ Jiboss.cache |ElapsedTime 531
¢ [ClusterTreeCache |Evictions 0
® [Cachomgmintereentol] | HitrissRatic 0.8571428571428571
@ Callinterceptor Hits 6
@ PessimisticLockinterceptor -jMisses : 1
@ Replicationinterceptor “|NumberOfAttributes 6
%@ Tulnterceptor INumberoMNodes 3
4@ Unlockinterceptor -|ReadwriteRatio 0.7
o=] TomeatClusteringCache : StatisticsEnabled frue
“|Stares 10
A TimeSinceReset 541
Refresh

Figure 4.1. CacheM gmtInter ceptor MBean in jconsole

Release 2.1.0 Alegrias

32

Version Compatibility and Interoperability

Within amajor version, releases of JBoss Cache are meant to be compatible and interoperable. Compatible
in the sense that it should be possible to upgrade an application from one version to another by simply
replacing the jars. Interoperable in the sense that if two different versions of JBoss Cache are used in the
same cluster, they should be able to exchange replication and state transfer messages. Note however that
interoperability requires use of the same JGroups version in al nodes in the cluster. In most cases, the
version of JGroups used by aversion of JBoss Cache can be upgraded.

As such, JBoss Cache 2.x.x is not API or binary compatible with prior 1.x.x versions. However, JB0oss
Cache 2.1.x will be API and binary compatible with 2.0.x.

A configuration attribute, Repl i cat i onVer si on, isavailable and isused to control thewireformat of inter-
cache communications. They can be wound back from more efficient and newer protocolsto "compatible”
versions when talking to older rel eases. This mechanism allows usto improve JBoss Cache by using more
efficient wire formats while still providing a means to preserve interoperability.

5.1. Compatibility Matrix

A compatibility matrix [http://labs.jboss.com/portal/jbosscache/compatibility/index.html] is maintained
on the JBoss Cache website, which contains information on different versions of JBoss Cache, JGroups
and JBoss AS.

Release 2.1.0 Alegrias 33

http://labs.jboss.com/portal/jbosscache/compatibility/index.html
http://labs.jboss.com/portal/jbosscache/compatibility/index.html

Part Il. JBoss Cache Architecture

This section digs deeper into the JBoss Cache architecture, and is meant for devel opers wishing to extend or enhance
JBoss Cache, write plugins or are just looking for detailed knowledge of how things work under the hood.

Architecture

6.1. Data Structures Within The Cache

A cache consists of acollection of Node instances, organised in atree structure. Each Node contains avap
which holds the data objects to be cached. It isimportant to note that the structure is a mathematical tree,

and not agraph; each Node has one and only one parent, and the root node is denoted by the constant fully
qualitied name, Fqn. ROOT .

The reason for organising nodes as such isto improve concurrent access to data and make replication and
persistence more fine-grained.

s N

. J o\

Figure6.1. Data structured asatree

In the diagram above, each box represents a VM. Y ou see 2 cachesin separate VMs, replicating datato
each other. These VM s can belocated on the same physical machine, or on 2 different machines connected

Release 2.1.0 Alegrias 35

Architecture

by a network link. The underlying group communication between networked nodesis done using JGroups
[http://www.jgroups.org] .

Any modifications (see API chapter) in one cacheinstance will be replicated to the other cache. Naturally,
you can have more than 2 caches in acluster. Depending on the transactional settings, this replication will
occur either after each modification or at the end of a transaction, at commit time. When a new cacheis
created, it can optionally acquire the contents from one of the existing caches on startup.

6.2. SPI Interfaces

In addition to cache and Node interfaces, JBoss Cache exposes more powerful CacheSPl and NodeSPI
interfaces, which offer more control over the internals of JBoss Cache. These interfaces are not intended
for general use, but are designed for people who wish to extend and enhance JBoss Cache, or write custom
I nt er cept or Or CacheLoader instances.

Release 2.1.0 Alegrias 36

http://www.jgroups.org
http://www.jgroups.org

Architecture

Release 2.1

-

(5P
o
Node

(org.jbozz.cache)
A

:

forg.jbozz.cache)

NodesFl)

< < getterE=E4+getChildrenloadeds hooleal

< < setterEzE4setChildrenloaded? loaded [hoolean) voild

< s getter==+getDatal oadeddy | hoolean

< setterzm4setDatal oadedy datal oaded [hoolezn } vold
< s getter=E4getCachedy | CacheiFl

< s getterzE4getQrCreateChilds rame | Olject x| GlokalTransaction b NodeSFl
< < getter=E4getlocks Modelocok

< setterEEdsetEgre FORgR D vaid

< < getterz=E4+getChildreniMaplivectsy - Mag

< s getterzEisheletedsy hoolean

+arkA sDeletedr marker [hoolean ;o void

+arkA sDeleteds marker | boolean, Feclirsive D hoolean p D vaid
+addChilds rodelMame | Olject, hodeToA dd Naode - vaid
+aritDetailss sk StringRuffer, indent Dint y o vald

+EEite sk StringRuffer, indent vt o vaold

< setterEEdsetVersiond version [DataVersion } o yvaold

< s getter=E4getVersiond DataVersion

< s getterE=E4getChildrenbivecty D Set

+remave ChildrenDivects | vaid

< < getterEzE4getChildrenbivecty includeMarkedA sDeleted " hoolearn § 0 Set
< < getter=E4getChildBivecty childMName - Olject) - NaodeSFl
+addChildDirects childMame - Fgi r - Mode5Fl

< < getterzE4getChildBivecty childMame - Fgi by - NodeSFEl
+remaoveChildDirects fon Fgn o void

+remave ChildDivecty childMam e | Olyject y - void
+remavelirects key | Olyject 3 0 Olject

FpliDirects ke C Olyject walle | Glject } o Ohject

< < getter==4getDatalivectsy - Map

< wgetterEzEdgetDivects ey | Olject b Olyject
+olearDatalivects | vaild

< wgetter=EdgetieysDirecty D St

< wgetter=E4getChildrenMNamesDivecty - Sat

< < getter=E=4getParentsy NodeiFl

+setChildrenMapDivecty children - Map ;

+el AN e ot data - Map »

L]
L]
ol
L]
L]
L]
L]
L]
T H7 &
L]
ol
Tire
L]
T H7 &
T H7 &
L]
L]

c

org.jbods.cache
igure 6.2. SPI Interfaces torg] !

+ads

™= rhat Pl

Architecture

The cachesPl interface cannot be created, but is injected into Interceptor and CacheLoader
implementations by theset Cache(CacheSPlI cache) methodson theseinterfaces. CachesPl extendsCache
so al the functionality of the basic APl is made available.

Similarly, a NodesPI interface cannot be created. Instead, one is obtained by performing operations
on cachespl , obtained as above. For example, Cache.getRoot() : Node IS overridden as
CacheSPI . get Root () : NodeSPI .

It isimportant to note that directly casting acCache or Node to it's SPI counterpart is not recommended and
is bad practice, since the inheritace of interfacesit is not a contract that is guaranteed to be upheld moving
forward. The exposed public APIs, on the other hand, is guaranteed to be upheld.

6.3. Method Invocations On Nodes

Since the cache is essentially a collection of nodes, aspects such as clustering, persistence, eviction, etc.
need to be applied to these nodes when operations are invoked on the cache as awhole or on individual
nodes. To achieve thisin a clean, modular and extensible manner, an interceptor chain is used. The chain
is built up of a series of interceptors, each one adding an aspect or particular functionality. The chain is
built when the cache is created, based on the configuration used.

It is important to note that the NodesPI offers some methods (such as the xxxDi rect () method family)
that operate on a node directly without passing through the interceptor stack. Plugin authors should note
that using such methods will affect the aspects of the cache that may need to be applied, such as locking,
replication, etc. Basically, don't use such methods unless you really know what you're doing!

6.3.1. Interceptors
An Interceptor is an abstract class, severa of which comprise an interceptor chain. It exposes an

i nvoke() method, which must be overridden by implementing classes to add behaviour to a call before
passing the call down the chain by calling super . i nvoke() .

Release 2.1.0 Alegrias 38

Architecture

[Interceptn:ur]J

rerceptor
rorg.jbosz.cache.interceptors)

<-<constructors=>=+Interceptord

<-zetterz=4zetMextd i Interceptor) woid
<-getter>=>=+getMextd ; Interceptor
<-zetter>=x=+4zetCachel cache CachesPl) : woid

+invoke! m MethodCall) ; Object
<-<getter>=>=+getitatizticzEnabled(: boalean
<-<zetter>=x=+zetitatizticzEnabled] enabled : boolean b : vaoid
<-<getter>=>=+getlaztd ; Interceptor

<-zetter>=+4zetlazty lazt | Interceptor) woid
+dumpstatizticz0 ; Map<k->=5tring, V->=>0hject >
+rezetitatizticzd vaid

<-getter>==gizActiveltx Tranzaction) : boolean

<< getter>=>=#izPreparing{ tx . Tranzaction) : boalean
<-<getter>=gizWalid{tx . Tranzaction) : boolean
<-<getter>==#izOnePhazeZommitPreparedMebody m : MethodZall) boolean
+tostringd : String

InvocationContext
rorg.jbozz.cache)

<= Cconstructor=>~lnvocationCantextd

<= zetter>>=+zetLocalRollbackOnly localRollbackonly boalean) waoid
<= getter>=>=+getTranzactiond : Tranzaction
<=zetter>=>=+zetTranzaction{tranzaction : Tranzaction) woid

<= getter>=>=+getGlobalTranzactiond : ClobalTranzaction

<= zetter>=>=+zetClobalTranzactiond globalTranzaction ; GlobalTranzaction i ; woid
<= getter>==+getOptionOverridesd - Option
<=zetterz=+zetDdptionCwerrides{ optionOwverrides © Option) woid
<= getter>==+izOriginLacald : boalean

<= zetter>=>=+zetdriginLocal{ originLocal : boolean) : woid
+tostringd ;o string

<-=getter>=>=+izTxHazModz : boolean
<-=zetter>=>=+zetTxHasMod:z{ b : boolean) : woid

<= getter>=>=+izLocalRollbackOnlyd - boaolean

+rezetd woid

+cloned InvocationContext

<= zetter>>=+zetstate template ; InvocationContext) woid
+equals{ o Object) : boolean

+hazhCoded) : int

<= getter>>=+getCachelistenerBventz] ; List<E-=MethodCall=
+addCachelistenerBEvent{ event | MethodCall) ; waoid
+clearCachelistenerBEvents{ woid

Figure 6.3. SPI Interfaces

Release 2.1.0 Alegrias 39

Architecture

JBoss Cache ships with several interceptors, representing different configuration options, some of which
are:

* TxlInterceptor - looksfor ongoing transactions and registers with transaction managers to participate
in synchronization events

* Replicationlnterceptor - replicates state across a cluster using a JGroups channel

e CacheLoader I nt er cept or - loads data from a persistent store if the data requested is not available in
memory

The interceptor chain configured for your cache instance can be obtained and inspected by calling

CacheSPI . get | nt er cept or Chai n() , which returns an ordered Li st of interceptors.

6.3.1.1. Writing Custom Interceptors

Custom interceptors to add specific aspects or features can be written by extending I nt er cept or and
overriding i nvoke() . The custom interceptor will need to be added to the interceptor chain by using the
CacheSPI . addl nt er cept or () method.

Adding custom interceptors via XML is not supported at thistime.

6.3.2. MethodCalls

org. j boss. cache. marshal | . Met hodCal | is a class that encapsulates aj ava. | ang. refl ecti on. Met hod
and an bject[] representing the method's arguments. It is an extenson of the
org.j groups. bl ocks. Met hodCal | class, that adds a mechanism for identifying known methods using
magic numbers and method ids, which makes marshalling and unmarshalling more efficient and
performant.

This is central to the Interceptor architecture, and is the only parameter passed in to

Interceptor.invoke() .

6.3.3. InvocationContexts

I nvocat i onCont ext holds intermediate state for the duration of a single invocation, and is set up and
destroyed by the I nvocat i onCont ext I nt er cept or Which sits at the start of the chain.

InvocationContext , as its name implies, holds contextua information associated
with a single cache method invocation. Contextua information includes associated
j avax.transaction. Transaction Or org.jboss. cache.transaction. d obal Transaction , method
invocation origin (1 nvocat i onCont ext . i sOri gi nLocal ()) aswell as Opti on overrides .

Thel nvocati onCont ext can be obtained by calling Cache. get I nvocat i onCont ext () .
6.4. Managers For Subsystems
Some aspects and functionality is shared by more than a single interceptor. Some of these have been

encapsulated into managers, for use by various interceptors, and are made available by the CacheSPlI
interface.

Release 2.1.0 Alegrias 40

Architecture

6.4.1. RpcManager

This class is responsible for calls made via the JGroups channel for all RPC calls to remote caches, and
encapsul ates the JGroups channel used.

6.4.2. BuddyManager

This class manages buddy groups and invokes group organisation remote calls to organise a cluster of
caches into smaller sub-groups.

6.4.3. CacheLoaderManager

Sets up and configures cache loaders. This class wraps individual CacheLoader instances in delegating
classes, such as Si ngl et onSt or eCachelLoader OF AsyncCachelLoader , or may add the CacheLoader to a
chain using the chai ni ngCacheloader .

6.5. Marshalling And Wire Formats

Early versions of JBoss Cache simply wrote cached data to the network by writing to an
Qbj ect Qut put Stream during replication. Over various releases in the JBoss Cache 1.x.x series this
approach was gradually deprecated in favour of a more mature marshalling framework. In the JBoss
Cache 2.x.x series, thisisthe only officialy supported and recommended mechanism for writing objects
to datastreams.

Release 2.1.0 Alegrias 41

Architecture

[Marshallerﬂ

oy
RpcDispatcher.Marshaller

From arg.jgroups.blocks

Marshaller {:j

+object ToDkjactStraam ok Okjact, out ;| OljectOuiputitresm }
+objectErom OkjactStreamdin . Okjectinputitream » o Ohjact

+objectEromStream {is [lnputitream » 0 Okject
+object ToDhjactStraams ol - Okjact, ouwt © OhjactQuiputitream, Fagion - Fghn

iy
|

AbstractMarshaller
forg.jbosz.cache.marzhall)

Yers ionAwareMarshaller

CacheMarshaller 200

rorg.jbosz.cache.marzhall)

T rorg.jboss.cache.marzhall

Delegates to
Zachemarshaller
200 for streams
that hawe used
version 200,

Figure6.4. The Marshaller interface

6.5.1. The Marshaller Interface

Thewnar shal | er interfaceextendsRpcDi spat cher . Mar shal | er from JGroups. Thisinterface hastwomain
implementations - a delegating Ver si onAwar eMar shal | er and a concrete CacheMar shal | er 200 .

The marshaller can be obtained by calling CacheSPI.getMarshaller() , and defaults to the
Ver si onAwar eMar shal | er . Users may also write their own marshallers by implementing the var shal | er
interface and adding it to their configuration, by using the var shal | er d ass configuration attribute.

Release 2.1.0 Alegrias

42

Architecture

6.5.2. VersionAwareMarshaller

Asthe name suggests, thismarshaller addsaversionshor t tothestart of any stream when writing, enabling
similar Ver si onAwar eMar shal | er instances to read the version short and know which specific marshaller
implementation to delegate the call to. For example, CacheMar shal | er 200 , is the marshaller for JBoss
Cache 2.0.x. JBoss Cache 2.1.x, say, may ship with CacheMar shal | er 210 with animproved wire protocol.
Using a Ver si onAvar eMar shal | er helps achieve wire protocol compatibility between minor releases but
dtill affords us the flexibility to tweak and improve the wire protocol between minor or micro releases.

6.5.2.1. CachelLoaders

Some of the existing cache loaders, such as the JDBCCachelLoader and the Fi | eCachelLoader relied on
persisting data using ovj ect Qut put St r eamaswell, but now, they are using the Ver si onAwar eMar shal | er
to marshall the persisted data to their cache stores.

6.5.3. CacheMarshaller200

Thismarshaller treats well-known objectsthat need marshalling - such asmet hodcal | , Fgn , Dat aVer si on
, and even some JDK objectssuchasst ring, Li st , Bool ean and others astypesthat do not need complete
class definitions. Instead, each of these well-known types are represented by ashort , which isalot more
efficient.

In addition, reference counting is done to reduce duplication of writing certain objects multiple times, to
help keep the streams small and efficient.

Also, if UseRegi onBasedMarshal ling is enabled (disabled by default) the marshaller adds region
information to the stream before writing any data. This region information is in the form of a String
representation of an Fqn . When unmarshalling, the Regi onManager can be used to find the relevant Regi on
, and use a region-specific d assLoader to unmarshall the stream. Thisis specifically useful when used
to cluster state for application servers, where each deployment hasit'sown d assLoader . See the section
below on regions for more information.

6.6. Class Loading and Regions

When used to cluster state of application servers, applications deployed in the application tend to put
instances of objects specific to their application in the cache (or in an Ht t pSessi on object) which would
require replication. It is common for application servers to assign separate d assLoader instancesto each
application deployed, but have JBoss Cache libraries referenced by the application server'sc assLoader .

To enable us to successfully marshall and unmarshall objects from such class loaders, we use a concept
called regions. A region is a portion of the cache which share a common class loader (a region also has
other uses - see eviction policies).

A regioniscreated by using the Cache. get Regi on(Fgn fgn, bool ean creat el f Not Exi st s) method, and
returns an implementation of the Regi on interface. Once aregion is obtained, a class loader for the region
can be set or unset, and the region can be activated/deactivated. By default, regions are active unless the
I nact i veOnSt ar t up configuration attribute isset tot r ue .

Release 2.1.0 Alegrias 43

Clustering

This chapter talks about aspects around clustering JBoss Cache.

7.1. Cache Replication Modes

JBoss Cache can be configured to be either local (standalone) or clustered. If in a cluster, the cache can be
configured to replicate changes, or to invalidate changes. A detailed discussion on this follows.

7.1.1. Local Mode

Local caches don't join a cluster and don't communicate with other caches in a cluster. Therefore their
elements don't need to be serializable - however, we recommend making them serializable, enabling auser
to change the cache mode at any time. The dependency on the JGroups library is still there, although a
JGroups channel is not started.

7.1.2. Replicated Caches

Replicated cachesreplicate all changesto someor al of the other cacheinstancesin the cluster. Replication
can either happen after each modification (no transactions), or at the end of a transaction (commit time).

Replication can be synchronous or asynchronous. Use of either one of the optionsis application dependent.
Synchronous replication blocks the caller (e.g. on aput ()) until the modifications have been replicated
successfully to all nodes in a cluster. Asynchronous replication performs replication in the background
(the put () returns immediately). JBoss Cache aso offers a replication queue, where modifications are
replicated periodically (i.e. interval-based), or when the queue size exceeds a number of elements, or a
combination thereof.

Asynchronous replication is faster (no caller blocking), because synchronous replication requires
acknowledgments from all nodes in a cluster that they received and applied the modification successfully
(round-trip time). However, when a synchronous replication returns successfully, the caller knows for
sure that al modifications have been applied to al cache instances, whereas this is not be the case with
asynchronous replication. With asynchronous replication, errors are simply written to alog. Even when
using transactions, a transaction may succeed but replication may not succeed on all cache instances.

7.1.2.1. Replicated Caches and Transactions

When using transactions, replication only occurs at the transaction boundary - i.e., when a transaction
commits. Thisresultsin minimising replication traffic since asingle modification is broadcast rather than
aseries of individual modifications, and can be alot more efficient than not using transactions. Another
effect of thisisthat if atransaction wereto roll back, nothing is broadcast across a cluster.

Release 2.1.0 Alegrias 44

Clustering

Depending on whether you are running your cluster in asynchronous or synchronous mode, JBoss
Cache will use either a single phase or two phase commit [http://en.wikipedia.org/wiki/Two-
phase_commit_protocol] protocol, respectively.

7.1.2.1.1. One Phase Commits

Used when your cache mode is REPL_ASYNC. All modifications are replicated in a single call, which
instructs remote caches to apply the changes to their local in-memory state and commit locally. Remote
errors/rollbacks are never fed back to the originator of the transaction since the communication is
asynchronous.

7.1.2.1.2. Two Phase Commits

Used when your cache modeisREPL_SY NC. Upon committing your transaction, JBoss Cache broadcasts
aprepare call, which carriesall modifications relevant to the transaction. Remote caches then acquirelocal
locks on their in-memory state and apply the modifications. Once al remote caches respond to the prepare
call, the originator of the transaction broadcasts acommit. Thisinstructs al remote caches to commit their
data. If any of the cachesfail to respond to the prepare phase, the originator broadcasts a rollback.

Note that although the prepare phase is synchronous, the commit and rollback phases are asynchronous.
This is because Sun's JTA specification [http://javasun.com/products/jta/] does not specify how
transactional resources should deal with failures at this stage of a transaction; and other resources
participating in the transaction may have indeterminate state anyway. As such, we do away with the
overhead of synchronous communication for this phase of the transaction. That said, they can be forced
to be synchronous using the syncCommi t Phase and SyncRol | backPhase configuration attributes.

7.1.2.2. Buddy Replication

Buddy Replication allows you to suppress replicating your data to all instancesin a cluster. Instead, each
instance picks one or more 'buddies' in the cluster, and only replicates to these specific buddies. This
greatly helps scalability as there is no longer a memory and network traffic impact every time another
instance is added to a cluster.

One of the most common use cases of Buddy Replication is when a replicated cache is used by a servlet
container to store HTTP session data. One of the pre-requisites to buddy replication working well and
being areal benefit isthe use of session affinity , more casually known as sticky sessions in HTTP session
replication speak. What this means is that if certain data is frequently accessed, it is desirable that this
is aways accessed on one instance rather than in a round-robin fashion as this helps the cache cluster
optimise how it chooses buddies, where it stores data, and minimises replication traffic.

If thisis not possible, Buddy Replication may prove to be more of an overhead than a benefit.

Release 2.1.0 Alegrias 45

http://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/

Clustering

7.1.2.2.1. Selecting Buddies

[BuddyReplication l|

Buddyl gcator
forg.jbozz. cache buddyreplicat

< getteyr==4getConfigh BuddvlocatorConfig
+indts config CBuddylocatorConfig d o void
+HocateBuddiess buddePoolMapy - Map <K -=Address, V-=5tring=, currertMembearshie o,

q_

1
NextMember BuddyLoc;
rorg.jboszz.cache buddyrepl

Figure 7.1. BuddyL ocator

Buddy Replication uses an instance of aBuddyLocat or Which containsthelogic used to select buddiesina
network. JBoss Cache currently ships with a single implementation, Next Menber BuddyLocat or , wWhichis
used asadefault if noimplementationisprovided. The Next Menber BuddyLocat or Selectsthe next member
in the cluster, as the name suggests, and guarantees an even spread of buddies for each instance.

The Next Menber BuddyLocat or takesin 2 parameters, both optional.

* nunBuddi es - specifies how many buddies each instance should pick to back its data onto. This defaults
to 1.

e i gnoreCol ocat edBuddi es - means that each instance will try to select a buddy on a different physical
host. If not able to do so though, it will fall back to colocated instances. This defaultstot r ue .

7.1.2.2.2. BuddyPools

Also known asreplication groups, a buddy pool is an optional construct where each instance in a cluster
may be configured with abuddy pool name. Think of this as an ‘exclusive club membership' where when
selecting buddies, BuddyLocat or sthat support buddy poolswould try and select buddies sharing the same
buddy pool name. This allows system administrators a degree of flexibility and control over how buddies
are selected. For example, asysadmin may put two instances on two separate physical serversthat may be
on two separate physical racks in the same buddy pool. So rather than picking an instance on a different
host on the samerack, BuddyLocat or swould rather pick theinstancein the same buddy pool, on aseparate
rack which may add a degree of redundancy.

7.1.2.2.3. Failover

In the unfortunate event of an instance crashing, it is assumed that the client connecting to the cache
(directly or indirectly, via some other service such as HTTP session replication) is able to redirect the

Release 2.1.0 Alegrias 46

Clustering

request to any other random cache instance in the cluster. This is where a concept of Data Gravitation
comesin.

Data Gravitation is a concept where if arequest is made on a cache in the cluster and the cache does not
contain this information, it asks other instances in the cluster for the data. In other words, data is lazily
transferred, migrating only when other nodesask for it. Thisstrategy preventsanetwork storm effect where
lots of datais pushed around healthy nodes because only one (or afew) of them die.

If the data is not found in the primary section of some node, it would (optionally) ask other instances
to check in the backup data they store for other caches. This means that even if a cache containing your
session dies, other instances will till be able to access this data by asking the cluster to search through
their backups for this data.

Once located, this datais transferred to the instance which requested it and is added to this instance's data
tree. The dataisthen (optionally) removed from all other instances (and backups) so that if session affinity
is used, the affinity should now be to this new cache instance which has just taken ownership of this data.

Data Gravitation is implemented as an interceptor. The following (all optional) configuration properties
pertain to data gravitation.

e dataG avitationRemovenFi nd - forces all remote caches that own the data or hold backups for the
data to remove that data, thereby making the requesting cache the new data owner. This removal, of
course, only happens after the new owner finishes replicating datato its buddy. If set tof al se an evict
is broadcast instead of a remove, so any state persisted in cache loaders will remain. This is useful if
you have a shared cache loader configured. Defaultsto t r ue .

* dataG avitati onSear chBackupTr ees - ASKS remote instances to search through their backups as well
as main data trees. Defaultsto t rue . The resulting effect is that if thisistrue then backup nodes can
respond to data gravitation requests in addition to data owners.

e autoDat aG avi t ati on - Whether data gravitation occurs for every cache miss. By default thisis set to
f al se to prevent unnecessary network calls. Most use caseswill know when it may need to gravitate data
and will passinan opt i on to enable data gravitation on aper-invocation basis. If aut obat aGr avi t at i on
istrue thisOpti on is unnecessary.

7.1.2.2.4. Configuration

<I-- Buddy Replication config -->
<attribute name="BuddyRepli cati onConfi g">
<confi g>

<l -- Enabl es buddy replication. This is the ONLY mandatory configuration el enent here. -->
<buddyRepl i cati onEnabl ed>t r ue</ buddyRepl i cat i onEnabl ed>

<l-- These are the default val ues anyway -->
<buddyLocat or Cl ass>or g. j boss. cache. buddyr epl i cati on. Next Menber BuddyLocat or </ buddyLocat or C

<l-- nunBuddi es is the nunber of backup nodes each node nmi ntains. ignoreCol ocatedBuddi es

Release 2.1.0 Alegrias 47

Clustering

that each node will *try* to select a buddy on a different physical host.| If not ab
it will fall back to col ocated nodes. -->
<buddyLocat or Properti es>
nunBuddi es = 1
i gnor eCol ocat edBuddi es = true
</ buddyLocat or Properti es>

<I-- Away to specify a preferred replication group. If specified, we try and pick a buddy
the same pool nanme (falling back to other buddies if not available). This |all ows the
hint at backup buddi es are picked, so for exanple, nodes may be hinted topick buddi es
physi cal rack or power supply for added fault tol erance. -->

<buddyPool Nane>nyBuddyPool Repl i cati onG oup</ buddyPool Name>

<l -- Communi cation tinmeout for inter-buddy group organi sati on nessages (such as assi gning
renovi ng from groups, defaults to 1000. -->
<buddyConmmuni cat i onTi meout >2000</ buddy Conmuni cat i onTi meout >

<I-- \Wether data is renoved fromold owners when gravitated to a new owner. Defaults to t
<dat aGravi t ati onRenmoveOnFi nd>t r ue</ dat aG avi t ati onRenoveOnFi nd>

<I-- \Wether backup nodes can respond to data gravitation requests, or only the data owner
supposed to respond. Defaults to true. -->
<dat aGravi t at i onSear chBackupTr ees>t rue</ dat aG avi t ati onSear chBackupTr ees>

<I-- \Wether all cache nmisses result in a data gravitation request. Defaults to fal se, rec
callers to enable data gravitation on a per-invocation basis using the Options API. -
<aut oDat aGr avi t ati on>f al se</ aut oDat aG avi tati on>

</ confi g>
</attribute>

7.2. Invalidation

If acacheisconfigured for invalidation rather than replication, every time datais changed in a cache other
caches in the cluster receive a message informing them that their datais now stale and should be evicted
from memory. Invalidation, when used with a shared cache |oader (see chapter on Cache Loaders) would
cause remote caches to refer to the shared cache loader to retrieve maodified data. The benefit of thisis
twofold: network traffic is minimised as invalidation messages are very small compared to replicating
updated data, and also that other caches in the cluster look up modified datain alazy manner, only when
needed.

Invalidation messages are sent after each modification (no transactions), or at the end of a transaction,
upon successful commit. Thisis usually more efficient as invalidation messages can be optimised for the
transaction as awhole rather than on a per-modification basis.

Invalidation too can be synchronous or asynchronous, and just as in the case of replication, synchronous
invalidation blocks until al caches in the cluster receive invalidation messages and have evicted stale
data while asynchronous invalidation works in a ‘fire-and-forget' mode, where invalidation messages are
broadcast but doesn't block and wait for responses.

Release 2.1.0 Alegrias 48

Clustering

7.3. State Transfer

Sate Transfer refers to the process by which a JBoss Cache instance prepares itself to begin providing a
service by acquiring the current state from another cache instance and integrating that state into its own
State.

7.3.1. State Transfer Types

There arethree divisions of state transfer types depending on apoint of view related to state transfer. First,
in the context of particular state transfer implementation, the underlying plumbing, there are two starkly
different state transfer types: byte array and streaming based state transfer. Second, state transfer can be
full or partial state transfer depending on a subtree being transferred. Entire cache tree transfer represents
full transfer while transfer of a particular subtree represents partial state transfer. And finally state transfer
can be "in-memory" and "persistent” transfer depending on a particular use of cache.

7.3.2. Byte array and streaming based state transfer

Byte array based transfer was a default and only transfer methodology for cache in all previous releases
up to 2.0. Byte array based transfer loads entire state transferred into a byte array and sends it to a state
receiving member. Major limitation of this approach is that the state transfer that is very large (>1GB)
would likely result in OutOfMemoryException. Streaming state transfer provides an InputStream to astate
reader and an OutputStream to a state writer. OutputStream and InputStream abstractions enable state
transfer in byte chunks thus resulting in smaller memory requirements. For example, if application state
is represented as a tree whose aggregate size is 1GB, rather than having to provide a 1GB byte array
streaming state transfer transfers the state in chunks of N bytes where N is user configurable.

Byte array and streaming based state transfer are completely APl transparent, interchangeable, and
statically configured through a standard cache configuration XML file. Refer to JGroups documentation
on how to change from one type of transfer to another.

7.3.3. Full and partial state transfer

If either in-memory or persistent state transfer is enabled, a full or partial state transfer will be done at
various times, depending on how the cache is used. "Full" state transfer refers to the transfer of the state
related to the entire tree -- i.e. the root node and all nodes below it. A "partial" state transfer is one where
just a portion of the tree istransferred -- i.e. anode at a given Fgn and al nodes below it.

If either in-memory or persistent state transfer is enabled, state transfer will occur at the following times:

1. Initial statetransfer. Thisoccurs when the cacheisfirst started (as part of the processing of thest art ()
method). This is a full state transfer. The state is retrieved from the cache instance that has been

operational the longest. Lif thereis any problem receiving or integrating the state, the cache will not
Start.

Initial state transfer will occur unless;

a. Thecache'sl nacti venSt art up property istrue . Thisproperty isused in conjunction with region-
based marshalling.

Release 2.1.0 Alegrias 49

Clustering

b. Buddy replication is used. See below for more on state transfer with buddy replication.

2. Partial state transfer following region activation. When region-based marshalling is used, the
application needs to register a specific class loader with the cache. This class loader is used to
unmarshall the state for a specific region (subtree) of the cache.

After registration, the application calls cache. get Regi on(fgn, true).activate() ,whichinitiatesa
partial state transfer of the relevant subtree's state. The request isfirst made to the oldest cache instance
in the cluster. However, if that instance responds with no state, it is then requested from each instance
in turn until one either provides state or all instances have been queried.

Typicaly when region-based marshalling is used, the cache's | nacti veOnSt art up property is set to
true . This suppresses initial state transfer, which would fail due to the inability to deserialize the
transferred state.

3. Buddy replication. When buddy replication is used, initial state transfer is disabled. Instead, when a
cache instance joins the cluster, it becomes the buddy of one or more other instances, and one or more
other instances become its buddy. Each time an instance determines it has a new buddy providing
backup for it, it pushesit's current state to the new buddy. This"pushing” of state to the new buddy is
dightly different from other forms of state transfer, which are based on a"pull” approach (i.e. recipient
asks for and receives state). However, the process of preparing and integrating the state is the same.

This"push" of state upon buddy group formation only occursif thel nact i veOnSt ar t up property is set
tofalse.Ifitistrue, state transfer amongst the buddies only occurs when the application activates
the region on the various members of the group.

Partial state transfer following aregion activation call isslightly different in the buddy replication case
as well. Instead of requesting the partial state from one cache instance, and trying all instances until
one responds, with buddy replication the instance that is activating a region will request partial state
from each instance for which it is serving as a backup.

7.3.4. Transient ("in-memory") and persistent state transfer
The state that is acquired and integrated can consist of two basic types:

1. "Transient” or "in-memory" state. This consists of the actual in-memory state of another cache instance
- the contents of the various in-memory nodes in the cache that is providing state are serialized and
transferred; the recipient deserializes the data, creates corresponding nodes in its own in-memory tree,
and populates them with the transferred data.

"In-memory" state transfer is enabled by setting the cache's Fet chl nMenoryState configuration
atributeto t r ue .

2. "Persistent” state. Only applicable if a non-shared cache loader is used. The state stored in the state-
provider cache's persistent store is deserialized and transferred; the recipient passes the data to its own
cache loader, which persistsit to the recipient's persistent store.

Release 2.1.0 Alegrias 50

Clustering

"Persistent” state transfer is enabled by setting a cache loader's f et chPer si st ent St at e attribute to
true . If multiple cache loaders are configured in a chain, only one can have this property set to true;
otherwise you will get an exception at startup.

Persistent state transfer with a shared cache loader does not make sense, as the same persistent store
that providesthe datawill just end up receiving it. Therefore, if ashared cache loader is used, the cache
will not allow a persistent state transfer even if acache loader hasf et chPersi stent St ate Settotrue .

Which of these types of state transfer is appropriate depends on the usage of the cache.

1. If awrite-through cache loader is used, the current cache state is fully represented by the persistent
state. Data may have been evicted from the in-memory state, but it will still be in the persistent store.
In this case, if the cache loader is not shared, persistent state transfer is used to ensure the new cache
has the correct state. In-memory state can be transferred as well if the desire is to have a "hot" cache
-- one that has all relevant data in memory when the cache begins providing service. (Note that the
<cachel oader ><pr el oad> element in the CacheLoader Conf i g configuration parameter can be used as
well to provide a"warm" or "hot" cache without requiring an in-memory state transfer. This approach
somewhat reduces the burden on the cache instance providing state, but increases the load on the
persistent store on the recipient side.)

2. If a cache loader is used with passivation, the full representation of the state can only be obtained
by combining the in-memory (i.e. non-passivated) and persistent (i.e. passivated) states. Therefore an
in-memory state transfer is necessary. A persistent state transfer is necessary if the cache loader is not
shared.

3. If no cache loader is used and the cache is solely awrite-aside cache (i.e. one that is used to cache data
that can also be found in a persistent store, e.g. a database), whether or not in-memory state should be
transferred depends on whether or not a "hot" cache is desired.

7.3.5. Configuring State Transfer

To ensure state transfer behaves as expected, it is important that all nodes in the cluster are configured
with the same settings for persistent and transient state. This is because byte array based transfers, when
requested, rely only on the requester's configuration while stream based transfersrely on both the requester
and sender's configuration, and this is expected to be identical.

Release 2.1.0 Alegrias 51

Cache Loaders

JBoss Cache can use a CacheLoader to back up the in-memory cache to a backend datastore. If JBoss
Cacheis configured with a cache |oader, then the following features are provided:

» Whenever a cache element is accessed, and that element is not in the cache (e.g. due to eviction or due
to server restart), then the cache loader transparently loads the element into the cache if found in the
backend store.

* Whenever an element is modified, added or removed, then that modification is persisted in the backend
store via the cache loader. If transactions are used, all modifications created within a transaction
are persisted. To this end, the CacheLoader takes part in the two phase commit protocol run by the
transaction manager, although it does not do so explicitly.

Release 2.1.0 Alegrias 52

Cache Loaders

8.1. The CachelLoader Interface and Lifecycle

[Can:heLn:uader']J

Cacheloader
forg.jbozz.cache. loader)

< <sehterz=4setConfigs config [IndividualCacheloaderConfig d vold
< <getter==4getConfign lndividueslCacheloaderConfig

< <sehterEzmdsetCechelr o) CachelPl) i void

< getterz==4getChildrenMamess fgrn Fgr o et

< getter==4geti hame EFgi ko Map

+existsr hame Fgn i booleak

+ ame L Ege, key D Object walye | Object 0 Olject
+removel fagr D Egiy, key D Object ko Olyject

+removel fgn gl ko vold

+removelatal farn gl ko void

+oommiE tx D Object ¥ ovoid

+rolecks by o Olject y o void

+HoadErtireStatalr o5 | Object QutpLdSiresm 1 void
+storeEntiveStatelis | ObjectinpitSiream » o vold

+Hogditatel subtres EFgn, of D Olyject Dol Siream o vold
+storebtatel sybtres Fgr, is) Qhjectinpldbiveam 3o vold

< < sehterz=4setRegionManagers manager | HegichMarager r vold
+oreatal vwold

+startn vold

+stopl vold

+destrovi D void

+ ame L Fge, attributes D Map)

+es modifications D List

+preparel iy Dlject modifications [List one_phase boolean)

Figure 8.1. The CachelL oader interface

The interaction between JBoss Cache and a CacheLoader implementation is as follows. When
Cacheloader Confi guration (see below) is non-null, an instance of each configured CacheLoader is
created when the cache is created, and started when the cache is started.

Cacheloader . creat e() and CacheLoader . st art () arecalled whenthe cacheisstarted. Correspondingly,
stop() and destroy() are caled when the cache is stopped.

Next, set Confi g() and set Cache() arecalled. Thelatter can be used to store areference to the cache, the
former is used to configure this instance of the CacheLoader . For example, here a database cache loader
could establish a connection to the database.

The cacheLoader interface has a set of methods that are called when no transactions are used: get ()
, put () , renove() and renoveData() : they get/set/remove the value immediately. These methods are
described as javadoc comments in the interface.

Release 2.1.0 Alegrias 53

Cache Loaders

Then there are three methods that are used with transactions: prepare() ,commit() androl | back() . The
prepar e() method is called when a transaction is to be committed. It has a transaction object and a list
of modfications as argument. The transaction object can be used as a key into a hashmap of transactions,
where the values are the lists of modifications. Each modification list has a number of Mdification
elements, which represent the changes made to a cache for a given transaction. When pr epar e() returns
successfully, then the cache loader must be able to commit (or rollback) the transaction successfully.

JBoss Cache takes care of calling prepare(), commit() and rollback() on the cache loaders at the right time.

The conmi t () method tells the cache loader to commit the transaction, and ther ol | back() method tells
the cache loader to discard the changes associated with that transaction.

See the javadocs on this interface for a detailed explanation on each method and the contract
implementations would need to fulfil.

8.2. Configuration

Cache loaders are configured as follows in the JBoss Cache XML file. Note that you can define several
cache loaders, in a chain. The impact is that the cache will look at all of the cache loaders in the order
they've been configured, until it findsavalid, non-null element of data. When performing writes, all cache
loaders are written to (except if the i gnoreMbdi fi cati ons element has been set to t rue for a specific
cache loader. See the configuration section below for details.

<I-- Cache | oader config block -->
<attribute name="CachelLoader Confi gurati on">
<config>

<I-- if passivation is true, only the first cache | oader is used; the rest are ignored -->

<passi vat i on>f al se</ passi vati on>

<l-- comma delimted FQNs to preload -->

<pr el oad>/ </ pr el oad>

<l-- are the cache | oaders shared in a cluster? -->
<shar ed>f al se</ shar ed>

<I-- we can now have nul tiple cache | oaders, which get chained -->
<l-- the 'cachel oader' elenent nmay be repeated -->
<cachel oader >

<cl ass>org. j boss. cache. | oader. JDBCCachelLoader </ cl ass>

<l-- properties to pass in to the cache | oader -->
<properties>
cache. jdbc. dri ver=com nysql . jdbc. Dri ver
cache. jdbc. url =j dbc: mysql : / /1 ocal host : 3306/] bossdb
cache. j dbc. user =r oot
cache. j dbc. passwor d=
cache. j dbc. sql - concat =concat (1, 2)
</ properties>

Release 2.1.0 Alegrias 54

Cache Loaders

<I-- whether the cache | oader wites are asynchronous -->
<async>f al se</async>

<I-- only one cache | oader in the chain nmay set fetchPersistentState to true.
An exception is thrown if nore than one cache | oader sets this to true.| -->
<f et chPer si st ent St at e>t r ue</ f et chPer si st ent St at e>

<l-- determ nes whether this cache | oader ignores wites - defaults to false. -->
<i gnor eModi fi cati ons>f al se</i gnoreModi fi cati ons>

<l-- if set to true, purges the contents of this cache | oader when the cache starts up.
Defaults to false. -->
<pur geOnSt art up>f al se</ purgeOnSt art up>

<I-- defines the cache | oader as a singleton store where only the coordinator of the
cluster will store nodifications. -->
<si ngl et onSt or e>
<I-- if true, singleton store functionality is enabled, defaults to false -->

<enabl ed>f al se</ enabl ed>

<I-- inplenentation class for singleton store functionality which nust extend
org.j boss. cache. | oader. Abst r act Del egati ngCacheLoader. Default inplenentation
is org.jboss.cache. | oader. Si ngl et onSt or eCacheLoader -->

<cl ass>or g. j boss. cache. | oader. Si ngl et onSt or eCachelLoader </ cl ass>

<l-- properties and default values for the default singleton store functionality
i mpl enentation -->

<properties>
pushSt at eWhenCoor di nat or =t r ue
pushsSt at eWhenCoor di nat or Ti meout =20000

</ properties>

</ si ngl et onSt or e>
</ cachel oader >

</ confi g>
</attribute>

The cl ass element defines the class of the cache loader implementation. (Note that, because of abug in
the properties editor in JBBoss AS, backslashesin variablesfor Windows filenames might not get expanded
correctly, so replace="false" may be necessary). Note that an implementation of cache |oader has to have
an empty constructor.

The properties element defines a configuration specific to the given implementation. The
filesystem-based implementation for example defines the root directory to be used, whereas
a database implementation might define the database URL, name and password to establish
a database connection. This configuration is passed to the cache loader implementation via
Cacheloader . set Confi g(Properties) . Notethat backspaces may have to be escaped.

pr el oad alowsusto definealist of nodes, or even entire subtrees, that are visited by the cache on startup,
in order to prel oad the data associated with those nodes. The default (/") loads the entire data availablein
the backend storeinto the cache, which is probably not agood idea given that the datain the backend store
might belarge. Asanexample,/a, /product/cat al ogue loadsthesubtrees/ a and/ product/ cat al ogue

Release 2.1.0 Alegrias 55

Cache Loaders

into the cache, but nothing else. Anything else is loaded lazily when accessed. Preloading makes sense
when one anticipates using elements under a given subtree frequently. .

f et chPer si st ent St at e determines whether or not to fetch the persistent state of a cache when joining a
cluster. Only one configured cache loader may set this property to true; if more than one cache loader does
so, a configuration exception will be thrown when starting your cache service.

async determines whether writes to the cache loader block until completed, or are run
on a separate thread so writes return immediately. If this is set to true, an instance of
org. j boss. cache. | oader. AsyncCacheloader is constructed with an instance of the actual cache loader
to be used. The AsyncCachelLoader then delegates al requests to the underlying cache loader, using a
separate thread if necessary. See the Javadocs on AsyncCacheLoader for more details. If unspecified, the
async element defaultstof al se .

Note on using the async element: there is always the possibility of dirty reads since all writes are
performed asynchronously, and it is thus impossible to guarantee when (and even if) a write succeeds.
This needs to be kept in mind when setting the async element to true.

i gnor eMbdi fi cati ons determines whether write methods are pushed down to the specific cache loader.
Situations may arise where transient application data should only reside in a file based cache loader on
the same server as the in-memory cache, for example, with a further shared JpDBCCacheLoader used by
all servers in the network. This feature allows you to write to the 'local’ file cache loader but not the
shared JDBCCacheLoader . This property defaultsto f al se , SO writes are propagated to all cache loaders
configured.

pur geOnSt at up empties the specified cache loader (if i gnor eModi fi cati ons iSfal se) when the cache
loader starts up.

shar ed indicates that the cache loader is shared among different cache instances, for example where all
instances in a cluster use the same JDBC settings t talk to the same remote, shared database. Setting this
to t rue prevents repeated and unnecessary writes of the same data to the cache loader by different cache
instances. Default valueisf al se .

8.2.1. Singleton Store Configuration

si ngl et onStore element enables modifications to be stored by only one node in the cluster, the
coordinator. Essentially, whenever any datacomesin to some nodeit isaways replicated so asto keep the
caches in-memory states in sync; the coordinator, though, has the sole responsibility of pushing that state
to disk. This functionality can be activated setting the enabl ed subelement to true in all nodes, but again
only the coordinator of the cluster will store the modifications in the underlying cache loader as defined
in cachel oader element. Y ou cannot define a cache loader as shar ed and with si ngl et onSt or e enabled
at the same time. Default value for enabl ed iSf al se .

Optionally, within the singl etonStore element, you can define a class element that specifies
the implementation class that provides the singleton store functionality. This class must
extend org.j boss. cache. | oader. Abstract Del egati ngCacheLoader , and if absent, it defaults to

org.j boss. cache. | oader. Si ngl et onSt or eCacheLoader .

Release 2.1.0 Alegrias 56

Cache Loaders

The properties subelement defines properties that alow changing the behaivour of the
class providing the singleton store functionality. By default, pushsStat ewhenCoor di nator and
pushsSt at eWhenCoor di nat or Ti meout properties have been defined, but more could be added as required
by the user-defined class providing singleton store functionality.

pushSt at eWhenCoor di nat or allows the in-memory state to be pushed to the cache store when a node
becomes the coordinator, as aresult of the new election of coordinator due to a cluster topology change.
This can be very useful in situations where the coordinator crashes and there's agap in time until the new
coordinator is elected. During thistime, if this property was set to f al se and the cache was updated, these
changes would never be persisted. Setting this property to t r ue would ensure that any changes during this
process also get stored in the cache loader. Y ou would also want to set this property tot r ue if each node's
cache loader is configured with a different location. Default valueistrue .

pushSt at eWhenCoor di nat or Ti meout iS only relevant if pushSt at ewhenCoor di nat or iS true in which
case, sets the maximum number of milliseconds that the process of pushing the in-memory state to the
underlying cacheloader should take, reporting aPushst at eExcept i on if exceeded. Default valueis 20000.

Note on using the si ngl et onSt or e element: setting up a cache loader as a singleton and using cache
passivation (via evictions) can lead to undesired effects. If a node is to be passivated as a result of an
eviction, while the cluster is in the process of electing a new coordinator, the data will be lost. Thisis
because no coordinator is active at that time and therefore, none of the nodes in the cluster will store the
passivated node. A new coordinator is elected in the cluster when either, the coordinator leavesthe cluster,
the coordinator crashes or stops responding.

8.3. Shipped Implementations

The currently available implementations shipped with JBoss Cache are as follows.

8.3.1. File system based cache loaders

JBoss Cache ships with several cache loaders that utilise the file system as a data store. They all require
that the <cachel oader ><pr oper t i es> configuration element containsal ocat i on property, which mapsto
adirectory to be used as a persistent store. (e.g., | ocat i on=/t np/ nyDat aSt or e). Used mainly for testing
and not recommended for production use.

* Fil eCacheLoader , which is a simple filesystem-based implementation. By default, this cache
loader checks for any potential character portability issues in the location or tree node names,
for example invalid characters, producing warning messages. These checks can be disabled adding
check. character. portability property to the <properti es> element and setting it to f al se (e.g.,

check. charact er. portability=fal se).

The FileCachel oader has some severe limitations which restrict it's use in a production environment,
or if used in such an environment, it should be used with due care and sufficient understanding of these
limitations.

» Duetotheway the FileCachel oader representsatree structure on disk (directoriesand files) traversal
isinefficient for deep trees.

Release 2.1.0 Alegrias 57

Cache Loaders

« Usage on shared filesystems like NFS, Windows shares, etc. should be avoided as these do not
implement proper file locking and can cause data corruption.

» Usagewith an isolation level of NONE can cause corrupt writes as multiple threads attempt to write
to the samefile.

» File systems areinherently not transactional, so when attempting to use your cache in atransactional
context, failures when writing to the file (which happens during the commit phase) cannot be
recovered.

As arule of thumb, it is recommended that the FileCachel oader not be used in a highly concurrent,

transactional or stressful environment, and it's use is restricted to testing.

* Bdbj eCacheLoader , Which is a cache loader implementation based on the Oracle/Sleepycat's
BerkeleyDB Java Edition [http://www.oracle.com/database/berkel ey-db/index.html] .

» JdbnCacheLoader , which is a cache loader implementation based on the JDBM engine [http://
jdbm.sourceforge.net/] , afast and free aternative to BerkeleyDB.

Note that the BerkeleyDB implementation is much more efficient than the filesystem-based
implementation, and provides transactional guarantees, but requires a commercial license if distributed
with an application (see http://www.oracle.com/database/berkel ey-db/index.html for details).

8.3.2. Cache loaders that delegate to other caches

e Local Del egat i ngCacheLoader , which enables loading from and storing to another local (same JVM)
cache.

e O usteredCacheLoader , which allows querying of other cachesin the same cluster for in-memory data
via the same clustering protocols used to replicate data. Writes are not 'stored' though, as replication
would take care of any updates needed. Y ou need to specify a property called ti neout , along value
telling the cache loader how many milliseconds to wait for responses from the cluster before assuming
anull value. For example, ti mreout = 3000 would use atimeout value of 3 seconds.

8.3.3. JIDBCCacheLoader

JBossCache is distributed with a JDBC-based cache loader implementation that stores/loads nodes' state
into arelational database. The implementing classisor g. j boss. cache. | oader . JDBCCacheLoader .

The current implementation uses just one table. Each row in the table represents one node and contains
three columns:

e column for Fgn (which is also a primary key column)
 column for node contents (attribute/value pairs)
* column for parent Fgn

Fgn 's are stored as strings. Node content is stored as a BLOB. WARNING: JBoss Cache does not impose
any limitations on the types of objects used in Fgn but this implementation of cache loader requires Fgn

Release 2.1.0 Alegrias 58

http://www.oracle.com/database/berkeley-db/index.html
http://www.oracle.com/database/berkeley-db/index.html
http://jdbm.sourceforge.net/
http://jdbm.sourceforge.net/
http://jdbm.sourceforge.net/

Cache Loaders

to contain only objects of typej ava. | ang. Stri ng . Another limitation for Fgn isitslength. Since Fgn isa
primary key, its default column type is VARCHAR which can store text values up to some maximum length
determined by the database in use.

See http://wiki.jboss.org/wiki/Wiki.jsp?page=JDBCCachel oader [http://wiki.jboss.org/wiki/
Wiki.jsp?page=JDBCCachel oader] for configuration tips with specific database systems.

8.3.3.1. JIDBCCacheLoader configuration

8.3.3.1.1.

Table configuration

Table and column names as well as column types are configurable with the following properties.

8.3.3.1.2.

cache.jdbc.table.name - the name of the table. Can be prepended with schemaname for the given table:
<schema_name>.<table name>. The default value is 'jbosscache’.

cachejdbc.table.primarykey - the name of the primary key for the table. The default vaue is
'jbosscache_pk'.

cache.jdbc.table.create - can betrue or false. Indicates whether to create the table during startup. If true,
the tableis created if it doesn't already exist. The default valueistrue.

cache.jdbc.table.drop - can be true or false. Indicates whether to drop the table during shutdown. The
default valueistrue.

cache.jdbc.fgn.column - FQN column name. The default valueis 'fgn'.
cache.jdbc.fgn.type - FQN column type. The default value is 'varchar(255)'.
cache.jdbc.node.column - node contents column name. The default valueis 'node'.

cache.jdbc.node.type - node contents column type. The default value is 'blob’. This type must specify
avalid binary data type for the database being used.

DataSource

If you are using JBossCache in a managed environment (e.g., an application server) you can specify the
JINDI name of the DataSource you want to use.

8.3.3.1.3.

cache.jdbc.datasource - INDI name of the DataSource. The default valueisj ava: / Def aul t DS .

JDBC driver

If you are not using DataSource you have the following properties to configure database access using a
JDBC driver.

cachejdbc.driver - fully qualified JIDBC driver name.

cache.jdbc.url - URL to connect to the database.

Release 2.1.0 Alegrias 59

http://wiki.jboss.org/wiki/Wiki.jsp?page=JDBCCacheLoader
http://wiki.jboss.org/wiki/Wiki.jsp?page=JDBCCacheLoader
http://wiki.jboss.org/wiki/Wiki.jsp?page=JDBCCacheLoader

Cache Loaders

 cache.jdbc.user - user name to connect to the database.

 cache.jdbc.password - password to connect to the database.

8.3.3.1.4. c3p0 connection pooling

JBoss Cache implements JDBC connection pooling when running outside of an application server
standalone using the ¢3p0:JDBC DataSources/Resource Pools library. In order to enable it, just edit the
following property:

« cachejdbc.connection.factory - Connection factory class name. If not set, it defaults to standard non-
pooled implementation. To enable c3p0 pooling, just set the connection factory class for c3p0. See
example below.

Y ou can also set any ¢3p0 parameters in the same cache loader properties section but don't forget to start
the property name with 'c3p0.". To find alist of available properties, please check the c3p0 documentation
for thec3p0 library version distributed in c3p0:JDBC DataSources/Resource Pool s[http://sourceforge.net/
projects/c3p0] . Also, in order to provide quick and easy way to try out different pooling parameters, any
of these properties can be set via a System property overriding any values these properties might have in
the JBoss Cache XML configuration file, for example: - Dc3p0. maxPool Si ze=20 . If a c3p0 property is
not defined in either the configuration file or as a System property, default value, asindicated in the c3p0
documentation, will apply.

8.3.3.1.5. Configuration example

Below is an example of a JIDBCCachel oader using Oracle as database. The Cachel oaderConfiguration
XML element contains an arbitrary set of properties which define the database-related configuration.

<attribute name="CachelLoader Confi gurati on">
<confi g>
<passi vat i on>f al se</ passi vati on>
<pr el oad>/ sone/ st uf f </ pr el oad>
<cachel oader >
<cl ass>org. j boss. cache. | oader. JDBCCachelLoader </ cl ass>

<properties>
cache. j dbc. t abl e. nane=j bosscache
cache. jdbc. tabl e. create=true
cache. j dbc. tabl e. drop=true
cache. jdbc. tabl e. pri mar ykey=j bosscache_pk
cache. j dbc. f gn. col um=f gn
cache. j dbc. fgn. t ype=var char (255)
cache. j dbc. node. col utTm=node
cache. j dbc. node. t ype=bl ob
cache. j dbc. par ent. col um=par ent
cache. jdbc. driver=oracl e.jdbc. Oracl eDriver
cache. jdbc. url =j dbc: oracl e: thi n: @ocal host: 1521: JBOSSDB
cache. j dbc. user =SCOTT
cache. j dbc. passwor d=TI GER

Release 2.1.0 Alegrias 60

http://sourceforge.net/projects/c3p0
http://sourceforge.net/projects/c3p0
http://sourceforge.net/projects/c3p0

Cache Loaders

cache. j dbc. sqgl - concat =concat (1, 2)
</ properties>

<async>f al se</ async>
<f et chPer si st ent St at e>t rue</ f et chPer si st ent St at e>
<i gnor eModi fi cati ons>f al se</i gnoreMdi fi cati ons>
<pur geOnSt art up>f al se</ purgeOnSt art up>
</ cachel oader >
</ confi g>
</attribute>

As an alternative to configuring the entire JDBC connection, the name of an existing data source can be

given:

<attri bute name="CachelLoader Confi gurati on">
<confi g>
<passi vati on>f al se</ passi vati on>
<pr el oad>/ sone/ st uf f </ pr el oad>
<cachel oader >
<cl ass>or g. j boss. cache. | oader. JDBCCachelLoader </ cl ass>

<properties>
cache. j dbc. dat asour ce=j ava: / Def aul t DS
</ properties>

<async>f al se</async>
<f et chPer si st ent St at e>t r ue</ f et chPer si st ent St at e>
<i gnor eModi fi cati ons>f al se</i gnoreMdi fi cati ons>
<pur geOnSt ar t up>f al se</ purgeOnSt art up>
</ cachel oader >
</ confi g>
</attribute>

Cconfiguration example for a cache loader using c3p0 JDBC connection pooling:

<attribute name="CachelLoader Confi gurati on">
<confi g>
<passi vat i on>f al se</ passi vati on>
<pr el oad>/ sone/ st uf f </ pr el oad>
<cachel oader >
<cl ass>org. j boss. cache. | oader. JDBCCachelLoader </ cl ass>

<properties>
cache. j dbc. t abl e. nane=j bosscache
cache. jdbc. tabl e. creat e=true
cache. j dbc. t abl e. drop=true
cache. j dbc. tabl e. pri mar ykey=j bosscache_pk
cache. j dbc. fgn. col um=f gn

Release 2.1.0 Alegrias

61

Cache Loaders

cache. j dbc. fgn. t ype=var char (255)
cache. j dbc. node. col utTm=node
cache. j dbc. node. t ype=bl ob
cache. j dbc. par ent. col um=par ent
cache. jdbc. driver=oracle.jdbc. Oracl eDriver
cache. jdbc. url =j dbc: oracl e: thi n: @ocal host: 1521: JBOSSDB
cache. j dbc. user =SCOTT
cache. j dbc. passwor d=TI GER
cache. j dbc. sql - concat =concat (1, 2)
cache. j dbc. connecti on. f act ory=org. j boss. cache. | oader. C3p0Connecti onFact ory
¢c3p0. naxPool Si ze=20
¢3p0. checkout Ti neout =5000
</ properties>

<async>f al se</ async>
<f et chPer si st ent St at e>t r ue</ f et chPer si st ent St at e>
<i gnor eModi fi cati ons>f al se</i gnoreMdi fi cati ons>
<pur geOnSt art up>f al se</ purgeOnSt art up>
</ cachel oader >
</ confi g>
</attribute>

8.3.4. TcpDelegatingCachelLoader

This cache loader allows to delegate loads and stores to another instance of JBoss Cache, which could
reside (a) in the same address space, (b) in adifferent process on the same host, or (c) in adifferent process
on adifferent host.

A TcpDelegatingCachel oader talksto aremoteor g. j boss. cache. | oader . t cp. TcpCacheSer ver , which
can be a standal one process started on the command line, or embedded as an MBean inside JBossAS. The
TcpCacheSer ver has areference to another JBoss Cache instance, which it can create itself, or which is
giventoit (e.g. by JBoss, using dependency injection).

As of JBoss Cache 2.1.0, the TcpDelegatingCachel oader transparently handles reconnects if the
connection to the TcpCacheServer islost.

The TcpDelegatingCachel oader is configured with the host and port of the remote TcpCacheServer, and
uses this to communicate to it. In addition, 2 new optional parameters are used to control transparent
reconnecting to the TcpCacheServer. Theti neout property (defaultsto 5000) specifiesthe length of time
the cache loader must continue retrying to connect to the TcpCacheServer before giving up and throwing
an exception. Thereconnect Wai t Ti me (defaults to 500) is how long the cache loader should wait before
attempting areconnect if it detects acommunication failure. The last two parameters can be used to add a
level of fault tolerance to the cache loader, do deal with TcpCacheServer restarts.

The configuration looks as follows:

<attribute name="CachelLoader Confi gurati on">
<confi g>

Release 2.1.0 Alegrias 62

Cache Loaders

<cachel oader >
<cl ass>org. j boss. cache. | oader. TcpDel egati ngCacheLoader </ cl ass>
<properties>
host =myRenot eSer ver
port=7500
ti meout =10000
reconnect Wai t Ti me=250
</ properties>
</ cachel oader >
</ confi g>
</attribute>

This means this instance of JBoss Cache will delegate al load and store requests to the remote
TcpCacheServer running on myRenot eSer ver : 7500 .

A typical use case could be multiple replicated instances of JBoss Cache in the same cluster, all delegating
to the same TcpCacheServer instance. The TcpCacheServer might itself delegate to a database via
JDBCCachel oader, but the point here is that - if we have 5 nodes all accessing the same dataset - they
will load the data from the TcpCacheServer, which has do execute one SQL statement per unloaded data
set. If the nodes went directly to the database, then we'd have the same SQL executed multiple times. So
TcpCacheServer serves as a natural cache in front of the DB (assuming that a network round trip is faster
than a DB access (which usually aso include a network round trip)).

To adleviate single point of failure, we could configure severa cache loaders. The first cache loader
is a ClusteredCachel oader, the second a TcpDelegatingCachel oader, and the last a JDBCachel oader,
effectively defining our cost of accessto a cachein increasing order.

8.3.5. Transforming Cache Loaders

Theway cached dataiswrittentoFi | eCacheLoader and JDBCCachelLoader based cache stores has changed
in JBoss Cache 2.0 in such way that these cache loaders now write and read data using the same marhalling
framework used to replicate data accross the network. Such changeistrivial for replication purpouses as
it just requires the rest of the nodes to understand this format. However, changing the format of the data
in cache stores brings up a new problem: how do users, which have their data stored in JBoss Cache 1.x.x
format, migrate their stores to JBoss Cache 2.0 format?

With this in mind, JBoss Cache 2.0 comes with two cache
loader implementations called org.jboss. cache. | oader. Transf or mi ngFi | eCacheLoader and
org. j boss. cache. | oader . Transf or mi ngJDBCCachelLoader located within the optional jbosscache-
cachel oader-migration.jar file. These are one-off cache loadersthat read data from the cache storein JBoss
Cache 1.x.x format and write data to cache stores in JBoss Cache 2.0 format.

The ideais for users to modify their existing cache configuration file(s) momentarily to use these cache
loaders and for them to create a small Java application that creates an instance of this cache, recursively
reads the entire cache and writes the data read back into the cache. Once the dataiis transformed, users can
revert back to their original cache configuration file(s). In order to help the users with this task, a cache
loader migration example has been constructed which can be located under the exanpl es/ cachel oader -

Release 2.1.0 Alegrias 63

Cache Loaders

mi gr at i on directory withinthe JBoss Cachedistribution. Thisexample, called exanpl es. Tr ansf or nSt or e
, isindependent of the actual data stored in the cache as it writes back whatever it was read recursively. It
is highly recommended that anyone interested in porting their data run this example first, which contains
areadne. t xt filewith detailed information about the exampleitself, and also useit as base for their own
application.

8.4. Cache Passivation

A cache loader can be used to enforce node passivation and activation on eviction in a cache.

Cache Passivation isthe process of removing an object from in-memory cache and writing it to asecondary
data store (e.g., file system, database) on eviction. Cache Activation is the process of restoring an object
from the data store into the in-memory cache when it's needed to be used. In both cases, the configured
cache loader will be used to read from the data store and write to the data store.

When an eviction policy in effect evicts a node from the cache, if passivation is enabled, a notification
that the node is being passivated will be emitted to the cache listeners and the node and its children will
be stored in the cache loader store. When a user attempts to retrieve a node that was evicted earlier, the
node is loaded (lazy loaded) from the cache loader store into memory. When the node and its children
have been loaded, they're removed from the cache loader and anotification is emitted to the cachelisteners
that the node has been activated.

To enable cache passivation/activation, you can set passi vat i on to true. The default is fal se . When
passivation is used, only the first cache loader configured is used and all others are ignored.

8.4.1. Cache Loader Behavior with Passivation Disabled vs. Enabled

When passivation is disabled, whenever an element is modified, added or removed, then that modification
is persisted in the backend store via the cache loader. There is no direct relationship between eviction
and cache loading. If you don't use eviction, what's in the persistent store is basically a copy of what'sin
memory. If you do use eviction, what's in the persistent store is basically a superset of what'sin memory
(i.e. it includes nodes that have been evicted from memory).

When passivation is enabled, thereisadirect relationship between eviction and the cache loader. Writesto
the persistent store viathe cache loader only occur as part of the eviction process. Datais deleted from the
persistent store when the application reads it back into memory. In this case, what'sin memory and what's
inthe persistent store are two subsets of the total information set, with no intersection between the subsets.

Following is a simple example, showing what state isin RAM and in the persistent store after each step
of a6 step process:

1. Insert /A
2. Insert /B
3. Eviction thread runs, evicts /A

4. Read /A

Release 2.1.0 Alegrias 64

Cache Loaders

5. Eviction thread runs, evicts/B
6. Remove/B

When passivation is disabled:

1) RAM /A Disk: /A
2) RAM /A /B Disk: /A /B
3) RAM /B Disk: /A IB
4) RAM /A /B Disk: /A /B
5) RAM /A Disk: /A /B
6) RAM /A Di sk: /A

When passivation is enabled:

1) RAM /A Di sk:
2) RAM /A, /B Disk:
3) RAM /B Di sk: /A
4) RAM /A, /B Disk:
5) RAM /A Disk: /B
6) RAM /A Di sk:

8.5. Strategies

This section discusses different patterns of combining different cache loader types and configuration
options to achieve specific outcomes.

8.5.1. Local Cache With Store

This is the simplest case. We have a JBoss Cache instance, whose cache mode is LocAL , therefore no
replication is going on. The cache loader simply loads non-existing elements from the store and stores
modifications back to the store. When the cacheis started, depending on the pr el oad element, certain data
can be preloaded, so that the cache is partly warmed up.

8.5.2. Replicated Caches With All Caches Sharing The Same Store

The following figure shows 2 JBoss Cache instances sharing the same backend store:

Release 2.1.0 Alegrias 65

Cache Loaders

REPLICATION

CACHE CACHE

CACHELOADER CACHELOADER

Figure 8.2. 2 nodes sharing a backend store

Both nodes have a cache loader that accesses a common shared backend store. This could for example
be a shared filesystem (using the FileCachel oader), or a shared database. Because both nodes access

the same store, they don't necessarily need state transfer on startup. 1 Rather, the Fet chi nMenorySt at e
attribute could be set to false, resulting in a'cold' cache, that gradually warms up as elements are accessed
and loaded for the first time. This would mean that individual caches in a cluster might have different
in-memory state at any given time (largely depending on their preloading and eviction strategies).

When storing a value, the writer takes care of storing the change in the backend store. For example, if
nodel made change C1 and node2 C2, then nodel would tell its cache loader to store C1, and node2 would
tell its cache loader to store C2.

1of course they can enable state transfer, if they want to have awarm or hot cache after startup.

Release 2.1.0 Alegrias 66

Cache Loaders

8.5.3. Replicated Caches With Only One Cache Having A Store

REPLICATION

CACHE CACHE

CACHELOADER

-—"---.'

STORE

Figure 8.3. 2 nodes but only one accesses the backend store

Thisisasimilar casetothe previousone, but here only onenodein the cluster interactswith abackend store
viaits cache loader. All other nodes perform in-memory replication. The idea hereis all application state
is kept in memory in each node, with the existence of multiple caches making the data highly available.
(This assumes that a client that needs the data is able to somehow fail over from one cache to another.)
The single persistent backend store then provides abackup copy of the datain caseall cachesin the cluster
fail or need to be restarted.

Note that here it may make sense for the cache loader to store changes asynchronoudly, that is not on
the caller's thread, in order not to slow down the cluster by accessing (for example) a database. Thisisa
non-issue when using asynchronous replication.

A weakness with this architecture is that the cache with access to the cache loader becomes a single point
of failure. Furthermore, if the cluster is restarted, the cache with the cache loader must be started first
(easy to forget). A solution to the first problem is to configure a cache loader on each node, but set the
si ngl et onSt or e configuration to t r ue. With this kind of setup, one but only one node will always be
writing to a persistent store. However, this complicates the restart problem, as before restarting you need
to determine which cache was writing before the shutdown/failure and then start that cache first.

Release 2.1.0 Alegrias 67

Cache Loaders

8.5.4. Replicated Caches With Each Cache Having Its Own Store

REPLICATION

CACHE CACHE

CACHELOADER CACHELOADER

f

STORE STORE

Figure 8.4. 2 nodes each having itsown backend store

Here, each node has its own datastore. Modifications to the cache are (a) replicated across the cluster and
(b) persisted using the cache loader. This means that all datastores have exactly the same state. When
replicating changes synchronously and in atransaction, the two phase commit protocol takes care that all
modifications are replicated and persisted in each datastore, or none is replicated and persisted (atomic
updates).

Note that JBoss Cache is not an XA Resource, that meansit doesn't implement recovery. When used with
atransaction manager that supports recovery, this functionality is not available.

The challenge here is state transfer: when a new node starts it needs to do the following:

1. Tell the coordinator (oldest node in a cluster) to send it the state. This is aways a full state transfer,
overwriting any state that may already be present.

2. The coordinator then needs to wait until al in-flight transactions have completed. During this time, it
will not allow for new transactions to be started.

3. Then the coordinator asks its cache loader for the entire state using | oadEnt i reSt at e() . It then sends
back that state to the new node.

4. The new node then tells its cache loader to store that state in its store, overwriting the old state. This
isthe CacheLoader. st oreEnti reSt at e() method

5. Asan option, the transient (in-memory) state can be transferred as well during the state transfer.

Release 2.1.0 Alegrias 68

Cache Loaders

6. The new node now has the same state in its backend store as everyone else in the cluster, and
modifications received from other nodes will now be persisted using the local cache loader.

8.5.5. Hierarchical Caches

If you need to set up a hierarchy within a single VM, you can use the Local Del egat i ngCacheLoader .
Thistype of hierarchy can currently only be set up programmatically.

Hierarchical caches could also be set up spanning more than one JVM or server, using the
TcpDel egat i ngCachelLoader .

Release 2.1.0 Alegrias 69

Cache Loaders

1 weplication | ™
CACHE CACHE
TCP DELEGATING TCP DELEGATING
CACHELOADER CACHELOADER
v v
TEP TEP
i

TCP CACHE SERVER

CACHE

CACHELOADER

[

STORE

Figure 8.5. TCP delegating cache loader

8.5.6. Multiple Cache Loaders

Y ou can set up more than one cache loader in a chain. Internally, a delegating Chai ni ngCacheLoader is
used, with references to each cache loader you have configured. Use cases vary depending on the type of
cache loaders used in the chain. One example is using a filesystem based cache loader, colocated on the
same host as the VM, used as an overflow for memory. This ensures data is available relatively easily

Release 2.1.0 Alegrias

70

Cache Loaders

and with low cost. An additional remote cache loader, such as a TcpDel egat i ngCacheLoader provides
resilience between server restarts.

Release 2.1.0 Alegrias 71

Cache Loaders

L T R SR ————

SERVER1

SERVER 2

—-—e e . e - — — — — — = .

|
|
|
|
|
I S I L.}
: < wepLication | ™
I I I
I I I
1 | cache I 1 | cache
I I I .
I * FILESYSTEM BASED I I FILESYSTEM BASED k
I] CACHELOADER I I CACHELOADER '|,
|
; [TCP DELEGATING I ; TCP DELEGATING |
: III." CACHELOADER , : CACHELDADER
| rlII k4 | | +«
| 1 | o
' LOCAL FILE | ' LOCAL FILE
| STORE I | STORE
I I I -
| 1 |
L o e e e e e e e e e - ' L o e e e e e e e e e e -
TCP TCP
r======= = 4 & - - |
I TCP CACHE SERVER I
| |
l I
I I
| I
l I
I I
| I
l I
I I
1 | cache :
| |
I CACHELOADER |
I I
| I
l I
I I
| I
l I
I I
I DATABASE I
I STORE :
Figure 8.6. Multiple cache Ioaderlsin in I
-~ T "7 ‘'seRvera
Release 2.1.0 Alegrias 72

Eviction Policies

Eviction policies control JBoss Cache's memory management by managing how many nodes are allowed
to be stored in memory and their life spans. Memory constraints on servers mean cache cannot grow
indefinitely, so policies need to bein placeto restrict the size of the cache. Eviction policies are most often
used alongside cache loaders cache loaders .

9.1. Configuring Eviction Policies

9.1.1. Basic Configuration

The basic eviction policy configuration element looks like:

<attribute name="EvictionConfig">
<confi g>
<attribute name="wakeUpl nt erval Seconds">3</attri bute>

<I-- This defaults to 200000 i f not specified -->
<attribute name="event QueueSi ze">100000</ attri but e>

<I-- Nanme of the DEFAULT eviction policy class. -->
<attribute name="policyC ass">org.jboss. cache. evi ction. LRUPol i cy</attri bute>

<l-- Cache wi de default -->
<regi on nane="/_default ">

<attribute name="maxNodes">100</attri bute>
</regi on>

<l-- override policy used for this region -->
<regi on nanme="/org/jboss/data" policyC ass="org. | boss. cache. evi cti on. LRUPol i cy" >
<attri bute name="naxNodes">250</attri bute>
<attribute name="m nTi neToLi veSeconds" >10</attri but e>
</regi on>

<I-- W expect a |ot of events for this region
so override the default event queue size -->
<regi on nane="/org/jboss/test/data" event QueueSi ze="500000">
<attri bute name="naxNodes">60000</attri bute>
</regi on>

Release 2.1.0 Alegrias 73

Eviction Policies

</ confi g>
</attribute>

* wakeUpl nt er val Seconds - thisrequired parameter defines how often the eviction thread runs

e event QueueSi ze - thisoptional parameter defines the size of the queue which holds eviction events. If
your eviction thread does not run often enough, you may need to increase this. This can be overridden
on aper-region basis.

e policyd ass - thisisrequired, unlessyou set individual policyClass attributes on each and every region.
This defines the eviction policy to useif oneis not defined for aregion.

9.1.2. Eviction Regions

The concept of regions and the Regi on class were visited earlier when talking about marshalling. Regions
also have another use, in that they are used to define the eviction policy used within the region. In addition
to using a region-specific configuration, you can also configure a default, cache-wide eviction policy for
nodesthat do not fall into predefined regions or if you do not wish to define specific regions. It isimportant
to note that when defining regions using the configuration XML file, all elements of the Fgn that defines
theregion arej ava. | ang. Stri ng objects.

Looking at the eviction configuration snippet above, we see that a default region, _default _ , holds
attributes which apply to nodes that do not fall into any of the other regions defined.

For each region, you can define parameterswhich affect how the policy which appliesto theregion chooses
to evict nodes. In the example above, the LRUPol i cy alows a naxNodes parameter which defines how
many nodes can exist in the region before it chooses to start evicting nodes. See the javadocs for each
policy for alist of allowed parameters. It also definesani nTi neToLi veSeconds parameter, which defines
aminimum time a node must exist in memory before being considered for eviction.

9.1.2.1. Overlapping Eviction Regions

It's possible to define regions that overlap. In other words, one region can be defined for /a/b/c , and
another defined for /a/b/c/d (which is just the d subtree of the /a/b/c sub-tree). The algorithm, in order to
handle scenarios like this consistently, will always choose the first region it encounters. In thisway, if the
algorithm needed to decide how to handle /a/b/c/d/e , it would start from there and work its way up the
tree until it hitsthe first defined region - in this case /a/b/c/d .

9.1.3. Resident Nodes

Nodes marked as resident (using Node. set Resi dent () API) will be ignored by the eviction policies both
when checking whether to trigger the eviction and when proceeding with the actual eviction of nodes. E.g.
if aregionis configured to have a maximum of 10 nodes, resident nodes won't be counted when deciding
whether to evict nodes in that region. In addition, resident nodes will not be considered for eviction when
the region's eviction threshold is reached.

Release 2.1.0 Alegrias 74

Eviction Policies

In order to mark a node as resident the Node. set Resi dent () API should be used. By default, the newly
created nodes are not resident. The resi dent attribute of a node is neither replicated, persisted nor
transaction-aware.

A sample use case for resident nodes would be ensuring "path" nodes don't add "noise" to an eviction
policy. E.g.

Map | otsOf Data = generateData();

cache. put("/a/b/c", |otsCfData);

cache. getRoot ().getChild("/a").setResident(true);
cache. get Root ().getChild("/a/b").setResident(true);

Inthisexample, thenodes/ a and/ a/ b are pathswhich exist solely to support the existence of node/ a/ b/ ¢
and don't hold any data themselves. As such, they are good candidates for being marked as resident. This
would lead to better memory management as no eviction events would be generated when accessing / a
and/ al b.

N.B. when adding attributes to aresident node, e.g. cache. put (*/a", "k*, "v") inthe above example,
it would make sense to mark the nodes as non-resident again and let them be considered for eviction..

9.1.4. Programmatic Configuration

Configuring eviction using the Configuration object entails the use
of the org.jboss. cache. config. EvictionConfig bean, which is passed into
Configuration. set EvictionConfig() . See the chapter on Configuration for more on building a
Conf i gurati on programatically.

The use of simple POJO beansto represent al elementsin a cache's configuration also makesit fairly easy
to programatically add eviction regions after the cacheis started . For example, assume we had an existing
cache configured via XML with the EvictionConfig element shown above. Now at runtime we wished to
add a new eviction region named "/org/jboss/fifo", using LRUPol i cy but adifferent number of maxNodes :

Fgn fgn = Fgn.fronBtring("/org/jboss/fifo");

/'l Create a configuration for an LRUPolicy
LRUConfiguration |ruc = new LRUConfi guration();
I ruc. set MaxNodes(10000) ;

/]l Create the region and set the config
Regi on regi on = cache. get Regi on(fqgn, true);
regi on. set Evi cti onPol i cy(lruc);

Release 2.1.0 Alegrias 75

Eviction Policies

9.2. Shipped Eviction Policies

9.2.1. LRUPolicy - Least Recently Used

org.j boss. cache. evi ction. LRUPol i cy controls both the node lifetime and age. This policy guarantees
a constant order (0 (1)) for adds, removals and lookups (visits). It has the following configuration
parameters:

* maxNodes - Thisis the maximum number of nodes allowed in this region. O denotes no limit.

e timeToLi veSeconds - The amount of time anode is not written to or read (in seconds) before the node
is swept away. 0 denotes no limit.

* maxAgeSeconds - Lifespan of anode (in seconds) regardless of idle time before the nodeis swept away.
0 denotes no limit.

* ninTi meToLi veSeconds - the minimum amount of time a node must be allowed to live after being
accessed beforeit is allowed to be considered for eviction. O denotes that this feature is disabled, which
is the default value.

9.2.2. FIFOPolicy - First In, First Out

org. j boss. cache. evi cti on. FI FOPol i cy controls the eviction in a proper first in first out order. This
policy guarantees a constant order (0 (1)) for adds, removals and lookups (visits). It has the following
configuration parameters:

* maxNodes - Thisisthe maximum number of nodes allowed in thisregion. O denotes no limit.

e minTi meTolLi veSeconds - the minimum amount of time a node must be alowed to live after being
accessed beforeit is allowed to be considered for eviction. O denotes that this feature is disabled, which
isthe default value.

9.2.3. MRUPolicy - Most Recently Used

org. j boss. cache. evi cti on. MRUPol i cy controls the eviction in based on most recently used algorithm.
The most recently used nodes will be the first to evict with this policy. This policy guarantees a constant
order (0 (1)) for adds, removals and lookups (visits). It has the following configuration parameters:

* maxNodes - Thisis the maximum number of nodes allowed in this region. O denotes no limit.

e i nTi neToLi veSeconds - the minimum amount of time a node must be allowed to live after being
accessed beforeit is allowed to be considered for eviction. O denotes that this feature is disabled, which
is the default value.

9.2.4. LFUPolicy - Least Frequently Used

org. j boss. cache. evi cti on. LFUPol i cy controlsthe eviction in based on |east frequently used algorithm.
The least frequently used nodes will be the first to evict with this policy. Node usage starts at 1 when a
node isfirst added. Each timeit is visted, the node usage counter increments by 1. This number is used to

Release 2.1.0 Alegrias 76

Eviction Policies

determine which nodes are least frequently used. LFU is also a sorted eviction algorithm. The underlying
EvictionQueue implementation and algorithm is sorted in ascending order of the node visits counter. This
class guarantees a constant order (0 (1)) for adds, remova and searches. However, when any number
of nodes are added/visited to the queue for a given processing pass, a single quasilinear (0 (n * 1og
n)) operation is used to resort the queue in proper LFU order. Similarly if any nodes are removed or
evicted, asingle linear (0 (n)) pruning operation is necessary to clean up the EvictionQueue. LFU has
the following configuration parameters:

* maxNodes - Thisis the maximum number of nodes allowed in this region. O denotes no limit.

* minNodes - Thisis the minimum number of nodes allowed in this region. This value determines what
the eviction queue should prune down to per pass. e.g. If minNodes is 10 and the cache grows to 100
nodes, the cache is pruned down to the 10 most frequently used nodes when the eviction timer makes
a pass through the eviction algorithm.

* nminTi neToLi veSeconds - the minimum amount of time a node must be allowed to live after being
accessed beforeit is allowed to be considered for eviction. 0 denotes that this feature is disabled, which
isthe default value.

9.2.5. ExpirationPolicy

org. j boss. cache. evi ction. ExpirationPol icy iS a policy that evicts nodes based on an absolute
expiration time. The expiration time is indicated using the org. j boss. cache. Node. put () method,
using a String key expiration and the absolute time as a j ava. | ang. Long oObject, with a value
indicated as milliseconds past midnight January 1st, 1970 UTC (the same relative time as provided by

java.lang. System currentTi meM I i s()).

This policy guarantees a constant order (0 (1)) for adds and removals. Internally, a sorted set (TreeSet)
containing the expiration time and Fgn of the nodes is stored, which essentially functions as a heap.

This policy has the following configuration parameters:

* expirationKeyNane - This is the Node key name used in the eviction agorithm. The configuration
default isexpiration .

* maxNodes - Thisisthe maximum number of nodes allowed in thisregion. O denotes no limit.

The following listing shows how the expiration date isindicated and how the policy is applied:

Cache cache = Defaul t CacheFactory. createCache();
Fgn fqnl = Fgn.fronBtring("/node/ 1");
Long future = new Long(SystemcurrentTineMIlis() + 2000);

/Il sets the expiry time for a node
cache. get Root (). addChi | d(fqgnl). put (ExpirationConfi gurati on. EXPl RATI ON_KEY, future)j

assert True(cache. get Root (). hasChi | d(fqgnl));
Thr ead. sl eep(5000) ;

Release 2.1.0 Alegrias 77

Eviction Policies

/1 after 5 seconds, expiration conpletes
assert Fal se(cache. get Root (). hasChi l d(fqgnl));

Note that the expiration time of nodes is only checked when the region manager wakes up every
wakeUpl nt er val Seconds , SO eviction may happen afew seconds later than indicated.

9.2.6. ElementSizePolicy - Eviction based on number of key/value pairs in a
node

org. j boss. cache. evi cti on. El ement Si zePol i cy controls the eviction in based on the number of key/
value pairs in the node. Nodes The most recently used nodes will be the first to evict with this policy. It
has the following configuration parameters:

* maxNodes - Thisis the maximum number of nodes allowed in this region. O denotes no limit.

* naxEl enent sPer Node - Thisisthe trigger number of attributes per node for the node to be selected for
eviction. O denotes no limit.

* minTi meTolLi veSeconds - the minimum amount of time a node must be alowed to live after being
accessed beforeit is allowed to be considered for eviction. O denotes that this feature is disabled, which
is the default value.

9.3. Writing Your Own Eviction Policies

9.3.1. Eviction Policy Plugin Design

The design of the JBoss Cache eviction policy framework is based on an Evi cti onl nterceptor to
handle cache events and relay them back to the eviction policies. During the cache start up, an
Evi cti onl nt er cept or Will be added to the cache interceptor stack if the eviction policy is specified. Then
whenever a node is added, removed, evicted, or visited, the Evi cti onl nt er cept or will maintain state
statistics and information will be relayed to each individual eviction region.

Thereisasingle eviction thread (timer) that will run at a configured interval. This thread will make calls
into each of the policy providers and inform it of any aggregated adds, removes and visits (gets) events
to the cache during the configured interval. The eviction thread is responsible for kicking off the eviction
policy processing (asingle pass) for each configured eviction cache region.

9.3.2. Interfaces to implement
In order to implement an eviction poalicy, the following interfaces must be implemented:
® org.jboss.cache. eviction. EvictionPolicy
* org.jboss. cache. eviction. EvictionAl gorithm
® org.jboss. cache. eviction. Evi cti onQueue

® org.]jboss. cache. config. EvictionPolicyConfig

Release 2.1.0 Alegrias 78

Eviction Policies

When compounded together, each of these interface implementations define al the underlying mechanics
necessary for a complete eviction policy implementation.

Note that:

e The Evi cti onPol i cyConfi g implementation should maintain getter and setter methods for whatever
configuration properties the policy supports (e.g. for LRUConfi guration among others there is a
int get MaxNodes() and a set MaxNodes(int)). When the "EvictionConfig" section of an XML
configuration is parsed, these properties will be set by reflection.

Alternatively, the implementation of a new eviction policy provider can be simplified by extending
BaseEvi cti onPol i cy and BaseEvi cti onAl gorithm. Or for properly sorted EvictionAlgorithms (sorted
in eviction order - see LFUAI gorithm) extending BaseSortedEvi cti onAl gorithm and implementing
Sor t edEvi ct i onQueue takes care of most of the common functionality availablein aset of eviction policy
provider classes

Note that:

e The BaseEvictionAl gorithm class maintains a processing structure. It will process the ADD,
REMOVE, and VISIT events queued by the region first. It also maintains an collection of items that
were not properly evicted during the last go around because of held locks. That list is pruned. Finaly,
the EvictionQueue itself is pruned for entries that should be evicted based upon the configured eviction
rulesfor the region.

e The BaseSort edEvi cti onAl gorit hmclass will maintain a boolean through the algorithm processing
that will determine if any new nodes were added or visited. This allows the Algorithm to determine
whether to resort the eviction queue items (in first to evict order) or to skip the potentially expensive
sorting if there have been no changes to the cache in this region.

e The sort edEvi cti onQueue interface defines the contract used by the BaseSor t edEvi cti onAl gori t hm
abstract class that is used to resort the underlying queue. Again, the queue sorting should be sorted in
first to evict order. Thefirst entry inthelist should evict before the last entry in the queue. Thelast entry
in the queue should be the last entry that will require eviction.

Release 2.1.0 Alegrias 79

Transactions and Concurrency

10.1. Concurrent Access

JBoss Cache is a thread safe caching API, and uses its own efficient mechanisms of controlling
concurrent access. It uses a pessimistic locking scheme by default for this purpose. Optimistic locking
may alternatively be used, and is discussed later.

10.1.1. Locks

Locking is done internally, on a node-level. For example when we want to access "/alb/c", alock will be
acquiredfor nodes"a’, "b" and "c". When the same transaction wantsto access"/a/b/c/d", since we already
hold locksfor "a’, "b" and "c", we only need to acquire alock for "d".

Lock owners are either transactions (call is made within the scope of an existing transaction) or threads
(no transaction associated with the call). Regardless, a transaction or a thread is internally transformed
into an instance of d obal Transacti on , which is used as a globally unique identifier for modifications
acrossacluster. E.g. when we run atwo-phase commit protocol acrossthe cluster, the@ obal Transacti on
uniquely identifies a unit of work across a cluster.

Locks can beread or write locks. Write locks serialize read and write access, whereas read-only locks only
serialize read access. When awrite lock is held, no other write or read locks can be acquired. When aread
lock is held, others can acquire read locks. However, to acquire write locks, one has to wait until al read
locks have been released. When scheduled concurrently, write locks aways have precedence over read
locks. Note that (if enabled) read locks can be upgraded to write locks.

Using read-write locks helpsin the following scenario: consider atree with entries"/a/lb/n1" and "/a/b/n2".
With write-locks, when Tx1 accesses "/a/lb/nl", Tx2 cannot access "/a/lb/n2" until Tx1 has completed and
released its locks. However, with read-write locks this is possible, because Tx1 acquires read-locks for
"lalb" and aread-write lock for "/a/b/n1". Tx2 is then able to acquire read-locks for "/a/lb" aswell, plus a
read-write lock for "/a/lb/n2". This allows for more concurrency in accessing the cache.

10.1.2. Pessimistic locking

By default, JBoss Cache uses pessimistic locking. Locking is not exposed directly to user. Instead, a
transaction isolation level which provides different locking behaviour is configurable.

10.1.2.1. Isolation levels

JBoss Cache supports the following transaction isolation levels, analogous to database ACID isolation
levels. A user can configure an instance-wide isolation level of NONE, READ_UNCOMMITTED,

Release 2.1.0 Alegrias 80

Transactions and Concurrency

READ_COMMITTED, REPEATABLE _READ, or SERIALIZABLE. REPEATABLE _READ is the
default isolation level used.

1. NONE. No transaction support is needed. There is no locking at this level, e.g., users will have to
manage the data integrity. Implementations use no locks.

2. READ_UNCOMMITTED. Data can be read anytime while write operations are exclusive. Note that
this level doesn't prevent the so-called "dirty read" where data modified in Tx1 can be read in Tx2
before Tx1 commits. In other words, if you have the following sequence,

Tx1 Tx2

using this isolation level will not prevent Tx2 read operation. Implementations typically use an
exclusive lock for writes while reads don't need to acquire alock.

3. READ_COMMITTED. Data can be read any time as long as there isno write. Thislevel prevents the
dirty read. But it doesn't prevent the so-called ‘ non-repeatable read” where one thread reads the data
twice can produce different results. For example, if you have the following sequence,

Tx1 Tx2
R
W
R

where the second read in Tx1 thread will produce different result.

Implementations usually use a read-write lock; reads succeed acquiring the lock when there are only
reads, writes have to wait until there are no more readers holding the lock, and readers are blocked
acquiring the lock until there are no more writers holding the lock. Reads typically release the read-
lock when done, so that a subsequent read to the same data has to re-acquire a read-lock; this leads to
nonrepeatabl e reads, where 2 reads of the same data might return different values. Note that, the write
only applies regardless of transaction state (whether it has been committed or not).

4. REPEATABLE_READ. Data can be read while there is no write and vice versa. This level prevents
"non-repeatable read" but it does not completely prevent the so-called "phantom read" where new data
can be inserted into the tree from another transaction. |mplementations typically use a read-write lock.
Thisisthe default isolation level used.

5. SERIALIZABLE. Data access is synchronized with exclusive locks. Only 1 writer or reader can have
the lock at any given time. Locks are released at the end of the transaction. Regarded as very poor for
performance and thread/transaction concurrency.

Release 2.1.0 Alegrias 81

Transactions and Concurrency

10.1.2.2. Insertion and Removal of Nodes

By default, before inserting a new node into the tree or removing an existing node from the tree, JBoss
Cache will only attempt to acquire a read lock on the new node's parent node. This approach does not
treat child nodes as an integral part of a parent node's state. This approach allows greater concurrency if
nodes are frequently added or removed, but at a cost of lesser correctness. For use cases where greater
correctnessisnecessary, JBoss Cache providesaconfiguration option LockPar ent For Chi | dI nser t Renove
. If thisissettotrue , insertions and removals of child nodes require the acquisition of a write lock on
the parent node.

In addition to the above, in version 2.1.0 and above, JBoss Cache offers the ability to override this
configuration on a per-node basis. See Node. set LockFor Chi | dI nsert Remove() and it's corresponding
javadocs for details.

10.1.3. Optimistic Locking

The motivation for optimistic locking is to improve concurrency. When a lot of threads have a lot of
contention for access to the data tree, it can be inefficient to lock portions of the tree - for reading or
writing - for the entire duration of atransaction aswe do in pessimistic locking. Optimistic locking allows
for greater concurrency of threads and transactions by using a technique called data versioning, explained
here. Note that isolation levels (if configured) are ignored if optimistic locking is enabled.

10.1.3.1. Architecture

Optimistic locking treats all method calls as transactional 1 Evenif you do not invoke a call within the
scope of an ongoing transaction, JBoss Cache creates an implicit transaction and commits this transaction
when the invocation completes. Each transaction maintains a transaction workspace, which contains a
copy of the data used within the transaction.

For example, if atransaction calls cache. get Root (). get Chil d(Fgn.fronString("/a/b/c")) , nodes
a, b and c are copied from the main data tree and into the workspace. The datais versioned and all callsin
the transaction work on the copy of the data rather than the actual data. When the transaction commits, its
workspace is merged back into the underlying tree by matching versions. If there is a version mismatch
- such as when the actual data tree has a higher version than the workspace, perhapsif another transaction
were to access the same data, change it and commit before the first transaction can finish - the transaction
throws aRol | backExcept i on when committing and the commit fails.

Optimistic locking uses the same locks we speak of above, but the locks are only held for a very short
duration - at the start of atransaction to build a workspace, and when the transaction commits and hasto
merge data back into the tree.

So while optimistic locking may occasionally fail if version validations fail or may run slightly slower
than pessimistic locking due to the inevitable overhead and extra processing of maintaining workspaces,
versioned data and validating on commit, it does buy you anear-SERIALIZABLE degree of dataintegrity
while maintaining avery high level of concurrency.

'Because of this reguirement, you must always have a transaction manager configured when using optimistic locking.

Release 2.1.0 Alegrias 82

Transactions and Concurrency

10.1.3.2. Data Versioning

[DataWerzions l|

Seria”irahle{:j
fjava.ia)

i

|

DataVersiorn (:j
(org.jbozz . cache. optimiztic)

+rewerThant other DataVersion » bhoolean

i

T

I

Defauk Datavers ion b
(org.jbozz.cache. aptimistich This is the

<= constructor=>+DefaultDataverziond !:lefault, mter’_nal
<< Constructors>+DefaultDataversion(version : long) implementation
+incrementd . Dataverzion — — — — qof Dat_ahfer'smn
+newerThan(other : DataWersion) boolean usedifno
+iostringd ;o string Data‘u‘_ersn:m 1%
+equalzf other : Object) : boolean sup_phed viathe
+hashCodel : int Cption AP
<< getter>>+getRawtersiond : long

Optimistic locking makes use of the Dataversion interface (and an internal and default
Def aul t Dat aVer si on implementation to keep atrack of node versioning. In certain cases, where cached
datais an in-memory representation of data from an external source such as a database, it makes senseto
align the versions used in JBoss Cache with the versions used externally. As such, using the options API
it is possibleto set the Dat aver si on you wish to use on aper-invocation basis, allowing you to implement
the Dat aVer si on interface to hold the versioning information obtained externally before putting your data
into the cache.

10.1.3.3. Configuration
Optimistic locking is enabled by using the NodelockingScheme XML attribute, and setting it to
"OPTIMISTIC":

<l--

Node | ocki ng schene:
OPTI M STI C

PESSI M STI C (defaul t)
-->

Release 2.1.0 Alegrias 83

Transactions and Concurrency

<attribute name="NodelLocki ngSchene">0PTI M STI C</ attri but e>

It is generally advisable that if you have an eviction policy defined along with optimistic locking, you
define the eviction policy's ni nTi meToLi veSeconds parameter to be slightly greater than the transaction
timeout value set in your transaction manager. This ensures that data versionsin the cache are not evicted

while transactions are in progressz.

10.2. Transactional Support

JBoss Cache can be configured to use and participate in JTA compliant transactions. Alternatively, if
transaction support is disabled, it is equivalent to setting AutoCommit to on where modifications are

potentialy 3 replicated after every change (if replication is enabled).
What JBoss Cache does on every incoming cal is:
1. Retrievethecurrentj avax. transacti on. Transacti on associated with the thread

2. If not already done, register aj avax. t ransact i on. Synchr oni zat i on with the transaction manager to
be notified when a transaction commits or is rolled back.

In order to do this, the cache has to be provided with a reference to environment's
j avax. transaction. Transact i onManager . Thisis usually done by configuring the cache with the class
name of an implementation of the Transacti onManager Lookup interface. When the cache starts, it will
create an instance of thisclassand invokeitsget Tr ansact i onManager () method, whichreturnsareference
to the Transact i onManager .

2See JBCACHE-1155 [http://jirajboss.com/jira/lbrowse/IBCACHE-1155]
3Dependi ng on whether interval-based asynchronous replication is used

Release 2.1.0 Alegrias 84

http://jira.jboss.com/jira/browse/JBCACHE-1155
http://jira.jboss.com/jira/browse/JBCACHE-1155

Transactions and Concurrency

[TranzactionLookup l|

TranszcticnWarrager Loogkup G
rorg.jbozz. cache)

< < getter==+getTransactiohManageryy | TransacticnManager
i) i)

T T
I I

JBos s TransactionManager Lo
I {org.jbozs.cache)

I <-=constructor>=>=+|BozzTranzactionMana
| <-<getter>=>=+getTranzactionManagerd : T

I
Generic TransactionManager Lookup
forg.jboss. cache)

<-<getterz=>=+getTranzactionManagerd | TranzactionManager
-dolookups{ void

JBoss Cache ships with JBossTransacti onManager Lookup and Generi cTransact i onManager Lookup
. The JBossTransacti onManager Lookup is able to bind to a running JBoss AS instance and
retrieve a Transact i onManager While the Generi cTransacti onManager Lookup is able to bind to most
popular Java EE application servers and provide the same functionality. A dummy implementation -
Durmy Tr ansact i onManager Lookup - isaso provided, primarily for unit tests. Being a dummy, thisisjust
for demo and testing purposes and is not recommended for production use.

An alternative to configuring aTr ansact i onManager Lookup iSto programatically inject areferenceto the

Transact i onManager into the Confi gur at i on object's Runt i meConf i g element:

Transacti onManager tm = get Transacti onManager(); // magi c met hod
cache. get Confi guration().get Runti neConfi g().setTransacti onManager (tm;

Injecting the Tr ansact i onManager is the recommended approach when the Confi gurati on is built by
some sort of 1OC container that already has a reference to the TM.

When the transaction commits, we initiate either a one- two-phase commit protocol. See replicated caches
and transactions for details.

Release 2.1.0 Alegrias 85

Part lll. JBoss Cache References

This section contains technical references for easy looking up.

Configuration References

11.1. Sample XML Configuration File

This is what a typical XML configuration file looks like. It is recommended that you use one of the
configurations shipped with the JBoss Cache distribution and tweak according to your needs rather than
write one from scratch.

<?xm version="1.0" encodi ng="UTF-8""?>

<l-- >
<I-- -->
<I-- Sanpl e JBoss Cache Service Configuration -->
<l-- >
<I-- -->
<server >
<I-- o
<I-- Defines JBoss Cache configuration ce S
<I-- -->
<I-- Note the value of the 'code' attribute has changed since JBC 1.x -->

<nbean code="org.jboss. cache.jnx. CacheJnxW apper" nane="j boss. cache: servi ce=Cache">

<l-- Ensure JNDI and the TransactionManager are started before the
cache. Only works inside JBoss AS; ignored otherw se -->

<depends>j boss: servi ce=Nam ng</ depends>

<depends>j boss: servi ce=Tr ansact i onManager </ depends>

<I-- Configure the Transacti onManager -->
<attribute name="Transacti onManager LookupC ass" >

org.j boss. cache.transacti on. Generi cTransacti onManager Lookup
</attribute>

<l-- Node | ocking |level : SERIALIZABLE
REPEATABLE_READ (defaul t)
READ_COWM TTED
READ_UNCOWM TTED
NONE -->
<attribute name="1|sol ati onLevel ">REPEATABLE_READ</ attri but e>

<I-- Lock parent before doing node additions/renoves -->
<attribute nanme="LockParent For Chi | dl nsert Renove" >t rue</attri bute>

Release 2.1.0 Alegrias 87

Configuration References

<l-- Valid nodes are LOCAL (default)

REPL_ASYNC

REPL_SYNC

I NVALI DATI ON_ASYNC

| NVALI DATI ON_SYNC -->
<attribute name="CacheMbde" >REPL_ASYNC</ attri but e>

<I-- Name of cluster. Needs to be the sane for all JBoss Cache nodes in a
cluster in order to find each other

--2>

<attribute name="C uster Nane">JBossCache-Cl uster</attri bute>

<l--Uncoment next three statenents to use the JG oups nultipl exer
This configuration is dependent on the JG oups nultipl exer being
registered in an MBean server such as JBossAS. This type of
dependency injection only works in the AS; outside it's up to
your code to inject a Channel Factory if you want to use one.

-->

<l--

<depends optional -attribute-name="Miltipl exer Service"
proxy-type="attribute">j groups. mnux: nane=Muil ti pl exer </ depends>

<attribute name="Mil tipl exer Stack">tcp</attribute>

-->

<l-- JGoups protocol stack properties.

ClusterConfig isn't used if the nultiplexer is enabled above.
-->
<attribute name="d usterConfig">

<confi g>
<I-- UDP: if you have a multihonmed machi ne, set the bind_addr
attribute to the appropriate NIC | P address -->
<l-- UDP: On Wndows machi nes, because of the nmedia sense feature

bei ng broken with nmulticast (even after disabling nmedia sense)
set the | oopback attribute to true -->
<UDP ntast _addr="228.1.2. 3" ntast_port="48866"
ip_ttl="64" ip_ntast="true"
ncast _send_buf _si ze="150000" ntast _recv_buf_si ze="80000"
ucast _send_buf size="150000" ucast _recv_buf size="80000"
| oopback="fal se"/>
<PI NG ti neout ="2000" num. nitial _nenbers="3"/>
<MERGE2 mi n_i nterval ="10000" nax_i nt erval ="20000"/ >
<FD shun="true"/>
<FD_SOCK/ >
<VERI FY_SUSPECT ti neout ="1500"/ >
<pbcast . NAKACK gc_| ag="50" retransmt_ti neout ="600, 1200, 2400, 4800" />
<UNI CAST ti neout =" 600, 1200, 2400", 4800/ >
<pbcast. STABLE desi red_avg_gossi p="400000"/ >
<FC max_credi t s="2000000" ni n_t hreshol d="0.10"/>
<FRAR2 frag_size="8192"/>
<pbcast. GVS joi n_ti neout ="5000" shun="true" print_|ocal addr="true"/>
<pbcast . STATE_TRANSFER/ >
</ confi g>
</attribute>

<! --
The max anount of tinme (in mlliseconds) we wait until the

Release 2.1.0 Alegrias

88

Configuration References

initial state (ie. the contents of the cache) are retrieved from
exi sting nmenbers in a clustered environnent

-->

<attribute name="StateRetrieval Ti neout">20000</attri bute>

<l--
Nurmber of milliseconds to wait until all responses for a
synchronous call have been received.

-->

<attribute name="SyncRepl Ti meout " >20000</attri but e>

<l-- Max nunber of mlliseconds to wait for a |ock acquisition -->
<attribute name="LockAcqui sitionTi meout">15000</attri bute>

<l -- Shut down hook behavior. Valid choices are: DEFAULT, REG STER and DONT_ REG STER
If this elenent is omtted, DEFAULT is used. -->
<attribute nanme="Shut downHookBehavi or" >DEFAULT</ attri but e>

<l-- Enables or disables |lazy unmarshalling. |f omtted, the default is that l|jazy unmar st
<attribute name="UselLazyDeserialization">true</attribute>

<I-- Specific eviction policy configurations. This is LRU -->
<attribute name="EvictionConfig">
<confi g>

<attribute name="wakeUpl nt erval Seconds" >5</attri bute>
<l-- This defaults to 200000 if not specified -->
<attribute name="event QueueSi ze" >200000</attri but e>
<attribute name="policyC ass">org.jboss. cache. eviction. LRUPol i cy</attri bute>

<l-- Cache wide default -->

<regi on name="/_default ">
<attribute name="nmaxNodes">5000</attri bute>
<attribute name="ti neToLi veSeconds">1000</attri bute>

</regi on>

<regi on nane="/org/jboss/data">
<attribute name="maxNodes">5000</attri bute>
<attribute name="ti neToLi veSeconds">1000</attri bute>

</regi on>

<regi on name="/org/jboss/test/data">
<attribute name="maxNodes">5</attri bute>
<attribute name="ti neToLi veSeconds" >4</attri bute>

</ regi on>

<regi on name="/test">
<attribute name="nmaxNodes">10000</attri bute>
<attribute name="ti neToLi veSeconds" >4</attri bute>

</regi on>

<regi on nanme="/nmaxAgeTest">
<attribute name="maxNodes">10000</attri bute>
<attribute name="ti neToLi veSeconds">8</attri bute>
<attri bute name="naxAgeSeconds">10</attri bute>

</ regi on>

</ confi g>
</attribute>
</ mbean>
</ server>

Release 2.1.0 Alegrias 89

Configuration References

11.2. Reference table of XML attributes

A list of definitions of each of the XML attributes used above. If the description of an attribute states that
itisdynamic , that means it can be changed after the cache is created and started.

Name

BuddyReplicationConfig

Description

An XML element that contains detailed buddy
replication configuration. See section on Buddy
Replication for details.

Cachel oaderConfig

An XML element that contains detailed cache loader
configuration. See chapter on Cache Loaders for
details.

CacheloaderConfiguration

Deprecated . Use CachelLoader Config .

CacheMode

ClusterConfig

ClusterName

EvictionPolicyConfig

LOCAL, REPL_SYNC, REPL_ASYNC,
INVALIDATION_SYNC or
INVALIDATION_ASYNC. Defaultsto LOCAL. See
the chapter on Clustering for details.

The configuration of the underlying JGroups
stack. Ignored if MultiplexerService and
Mil tiplexerStack are used. See the various
*-servicexml files in the source distribution
etc/ META-INF folder for examples. See the
JGroups documentation [http://www.jgroups.org] or
the JGroups wiki page [http://wiki.jboss.org/wiki/
Wiki.jsp?page=JGroups] for more information.

Name of cluster. Needs to be the same for al nodesin
acluster in order for them to communicate with each
other.

Configuration parameter for the specified eviction
policy. Seechapter on eviction policiesfor details. This
property is dynamic .

ExposeM anagementStati stics

FetchinMemoryState

Specifies whether interceptors that provide statistics
should have statistics gathering enabled at startup. Also
controls whether a CacheMgnt | nt erceptor (whose
sole purpose is gathering statistics) should be added to
the interceptor chain. Default value is true . See the
JBoss Cache Stati stics section section for more details.

Whether or not to acquire the initial in-memory state
from existing members. Allows for hot caches when
enabled. Also seethef et chPer si st ent St at e element

Release 2.1.0 Alegrias

90

http://www.jgroups.org
http://www.jgroups.org
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

Configuration References

InactiveOnStartup

in CacheLoader Config . Defaults to true . This
property is dynamic .

Whether or not the entire tree is inactive upon
startup, only responding to replication messages after
acti vat eRegi on() is called to activate one or more
partsof thetree. If true, property Fet chl nMenor ySt at e
isignored. This property should only be set to true if
UseRegi onBasedMar shal | i ng isalsotrue .

StateRetrieval Timeout

|solationLevel

L ockAcquisitionTimeout

L ockParentForChildlnsertRemove

MarshallerClass

Time in milliseconds to wait for state retrieval. This
should be longer than LockAcqui sitionTi meout as
the node providing state may need to wait that long
to acquire necessary read locks on the cache. This
property isdynamic .

Node locking isolation level :
SERIALIZABLE, REPEATABLE_READ (default),
READ COMMITTED, READ _UNCOMMITTED,
and NONE. Note that this is ignored if
NodeL ockingScheme is OPTIMISTIC. Case doesn't
matter. See documentation on Transactions and
Concurrency for more details.

Timeinmillisecondstowait for alock to beacquired. If
alock cannot be acquired an exception will be thrown.
This property isdynamic .

Controlswhether inserting or removing anoderequires
a write lock on the node's parent (when pessimistic
locking is used) or whether it results in an update of
the parent node's version (when optimistic locking is
used). The default valueisf al se .

An instance of
org.jboss. cache. marshal | . Marshaller used to
seridize data to byte streams.
Defaults to

org.j boss. cache. marshal | . Ver si onAwar eMar shal | €

if not specified.

MultiplexerService

The IMX object name of the service that defines the
JGroups multiplexer. In JBoss AS 5.0 this service is
normally defined in the jgroups-multiplexer.sar. This
XML attribute can only be handled by the JBoss AS
MBean deployment services; if it is included in a
file passed to a CcacheFactory the factory's creation
of the cache will fail. Inside JBoss AS, the attribute
should be specified using the "depends optional-

Release 2.1.0 Alegrias

91

Configuration References

attribute-name" syntax shown in the example above.
Inside the AS if this attribute is defined, an instance
of org. | groups.jnx. JChannel Fact or yMBean Will be
injected into the CacheJmxW apper which will use
it to obtain a multiplexed JGroups channel. The
configuration of the channel will be that associated
withMul ti pl exer St ack . Thed ust er Conf i g attribute
will be ignored.

MultiplexerStack The name of the JGroups stack to be used
with the cache cluster. Stacks are defined in the
configuration of the external multi pl exer Service
discussed above. InJBossAS 5 thisisnormally donein
the jgroups-multiplexer.sar/META-INF/multiplexer-
stacks.xml file. The default stack isudp . This attribute
isused in conjunction with mul ti pl exer Servi ce .

Nodel ockingScheme May be PESSIMISTIC (default) or OPTIMISTIC.

ReplicationVersion Tells the cache to seriaize cluster traffic in a format
consistent with that used by the given release of JBoss
Cache. Different JBoss Cache versions use different
wire formats; setting this attribute tells a cache from
a later release to serialize data using the format from
an earlier release. This allows caches from different
releases to interoperate. For example, a 2.1.0 cache
could have this value set to "2.0.0", allowing it to
interoperate with a2.0.0 cache. Valid values are a dot-
separated rel ease number, with any final qualifer also
separated by adot, eg. "2.0.0" or "2.0.0.GA". Vaues
that indicate a 1.x release are not supported in the 2.x
series.

Repl Queuel nterval Timein milliseconds for elements from the replication
gueue to be replicated. Only used if UseRepl Queue iS
enabled. This property isdynamic .

Repl QueueM axElements Max number of elementsin the replication queue until
replication kicks in. Only used if UseRepl Queue iS
enabled. This property is dynamic .

SyncCommitPhase This option is used to control the behaviour of the
commit part of a2-phase commit protocol, when using
REPL_SYNC (does not apply to other cache modes).
By default thisisset tof al se . Thereis aperformance
penalty to enabling this, especially when running in a
large cluster, but the upsides are greater cluster-wide

Release 2.1.0 Alegrias 92

Configuration References

SyncRepl Timeout

data integrity. See the chapter on clustered caches for
more information on this. This property is dynamic .

For synchronous replication: time in milliseconds to
wait until replication acks have been received from
al nodes in the cluster. It is usually best that this is
greater than LockAcqui si ti onTi neout . This property
is dynamic .

SyncRollbackPhase

This option is used to control the behaviour of the
rollback part of a2-phase commit protocol, when using
REPL_SYNC (does not apply to other cache modes).
By default thisissettof al se . Thereisaperformance
penalty to enabling this, especialy when running in a
large cluster, but the upsides are greater cluster-wide
data integrity. See the chapter on clustered caches for
more information on this. This property is dynamic .

TransactionM anagerL ookupClass

Usel nterceptorM beans

UseRegionBasedMarshalling

The fully qualified name of a class
implementing TransactionManagerLookup. Default
is JBossTransactionManagerLookup. There is also
an option of GenericTransactionManagerLookup for
example.

Deprecated . Use ExposeManagenent St ati stics .

When unmarshalling replicated data, this option
specifies whether or not to support use of different
classloaders for different cache regions. This defaults
tof al se if unspecified.

UseReplQueue For asynchronous replication: whether or not to use a
replication queue. Defaultstof al se .
ShutdownHookBehavior An optional parameter that controls whether JBoss

Usel azyDeserialization

Cache registers a shutdown hook with the JVM
runtime. Allowed values are DEFAULT, REG STER and
DONT_REG STER. REG STER and DONT_REG STER forces
or suppresses the registration of a shutdown hook,
respectively, and DEFAULT registers one if an MBean
server (other than the JDK default) cannot be found and
it is assumed that the cache is running in a managed
environment. Thedefault if unspecifiedis, asexpected,
DEFAULT.

An optional parameter that can be used to enable
or disable the use of lazy deserialization for cached
objects. Defaultstot r ue.

Release 2.1.0 Alegrias

93

2

JMX References

12.1. JBoss Cache Statistics

The following table describes the statistics currently available and may be collected via IMX.

Release 2.1.0 Alegrias 9

Cachel oaderinterceptor ~ Cachel oaderMisses long Number of unsuccessful attemptsto load
JMX References anode through a cache loader.
1%@%%‘@&%@%% M EH%ement Statistics long Number of successful attribute
retrievals.

CacheM gmtlnterceptor Misses long Number of unsuccessful attribute
retrievals.

CacheM gmitl nterceptor Stores long Number of attribute store operations.

CacheM gmtlnterceptor Evictions long Number of node evictions.

CacheM gmtl nterceptor NumberOfAttributes int Number of attributes currently cached.

CacheM gmtlnterceptor NumberOfNodes int Number of nodes currently cached.

CacheM gmtlnterceptor ElapsedTime long Number of seconds that the cache has
been running.

CacheM gmtlnterceptor TimeSinceReset long Number of seconds since the cache
statistics have been reset.

CacheM gmtlnterceptor AverageReadTime long Average timein millisecondsto retrieve
a cache attribute, including unsuccessful
attribute retrievals.

CacheM gmitl nterceptor AverageWriteTime long Average time in milliseconds to write a
cache attribute.

CacheM gmitl nterceptor HitMissRatio double Ratio of hits to hits and misses. A hit is
aget attribute operation that resultsin an
object being returned to the client. The
retrieval may be from a cache loader if
the entry isn't in thelocal cache.

CacheM gmtlnterceptor ReadWriteRatio double Ratio of read operations to write
operations. Thisistheratio of cache hits
and misses to cache stores.

CacheStorel nterceptor Cachel oaderStores long Number of nodes written to the cache
loader.

Invalidationlnterceptor Invalidations long Number of cached nodes that have been
invalidated.

Passi vationl nterceptor Passivations long Number of cached nodes that have been
passivated.

TxInterceptor Prepares long Number of transaction prepare
operations performed by thisinterceptor.

TxInterceptor Commits long Number of transaction commit
operations performed by thisinterceptor.

TxInterceptor Rollbacks long Number of transaction rollbacks

operations performed by thisinterceptor.

Release 2.1.0 Alegrias

95

JMX References

12.2. IMX MBean Notifications

The following table depicts the IMX notifications available for JBoss Cache as well as the cache events
to which they correspond. These are the notifications that can be received through the CacheJmxW apper
MBean. Each notification represents a single event published by JBoss Cache and provides user data

corresponding to the parameters of the event.

Table 12.2. JBoss Cache M Bean Notifications

Notification Type Notification Data CachelL istener Event
org.jboss.cache.CacheStarted String : cache service name cacheStarted
org.jboss.cache.CacheStopped String : cache service name cacheStopped
org.jboss.cache.NodeCreated String : fgn NodeCreated
org.jboss.cache.NodeEvicted String : fgn NodeEvicted
org.jboss.cache.Nodel oaded String : fgn Nodel oaded
org.jboss.cache.NodeM odifed String : fgn NodeModifed
org.jboss.cache.NodeRemoved String : fgn NodeRemoved
org.jboss.cache.NodeVisited String : fgn NodeVisited
org.jboss.cache.ViewChange String : view ViewChange
org.jboss.cache.NodeActivate Object[0]=String: fgn NodeActivate

Object[1]=Boolean: pre
org.jboss.cache.NodeEvict Object[0]=String: fgn NodeEvict

Object[1]=Boolean: pre
org.jboss.cache.NodeM odify Object[0]=String: fgn NodeModify

Object[1]=Boolean: pre

Object[2]=Boolean: isLocal
org.jboss.cache.NodePassivate Object[0]=String: fgn NodePassivate

Object[1]=Boolean: pre

NodeRemove

org.jboss.cache.NodeRemove Object[0]=String: fgn

Object[1]=Boolean: pre

Object[2]=Boolean: isLocal

Release 2.1.0 Alegrias

96

	JBoss Cache User Guide
	Table of Contents
	Preface
	Part I. Introduction to JBoss Cache
	Chapter 1. Overview
	1.1. What is JBoss Cache?
	1.1.1. And what is Pojo Cache?

	1.2. Summary of Features
	1.3. Requirements
	1.4. License

	Chapter 2. User API
	2.1. API Classes
	2.2. Instantiating and Starting the Cache
	2.3. Caching and Retrieving Data
	2.4. The Fqn Class
	2.5. Stopping and Destroying the Cache
	2.6. Cache Modes
	2.7. Adding a CacheListener
	2.8. Using Cache Loaders
	2.9. Using Eviction Policies

	Chapter 3. Configuration
	3.1. Configuration Overview
	3.2. Creating a Configuration
	3.2.1. Parsing an XML-based Configuration File
	3.2.2. Programmatic Configuration
	3.2.3. Using an IOC Framework

	3.3. Composition of a Configuration Object
	3.4. Dynamic Reconfiguration
	3.5. Overriding the Configuration Via the Option API

	Chapter 4. Deploying JBoss Cache
	4.1. Standalone Use / Programatic Deployment
	4.2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.x)
	4.3. Via JBoss Microcontainer (JBoss AS 5.x)
	4.4. Binding to JNDI in JBoss AS
	4.5. Runtime Management Information
	4.5.1. JBoss Cache MBeans
	4.5.2. Registering the CacheJmxWrapper with the MBeanServer
	4.5.2.1. Programatic Registration
	4.5.2.2. JMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.x)
	4.5.2.3. Via JBoss Microcontainer (JBoss AS 5.x)

	4.5.3. JBoss Cache Statistics
	4.5.4. Receiving JMX Notifications
	4.5.5. Accessing Cache MBeans in a Standalone Environment

	Chapter 5. Version Compatibility and Interoperability
	5.1. Compatibility Matrix

	Part II. JBoss Cache Architecture
	Chapter 6. Architecture
	6.1. Data Structures Within The Cache
	6.2. SPI Interfaces
	6.3. Method Invocations On Nodes
	6.3.1. Interceptors
	6.3.1.1. Writing Custom Interceptors

	6.3.2. MethodCalls
	6.3.3. InvocationContexts

	6.4. Managers For Subsystems
	6.4.1. RpcManager
	6.4.2. BuddyManager
	6.4.3. CacheLoaderManager

	6.5. Marshalling And Wire Formats
	6.5.1. The Marshaller Interface
	6.5.2. VersionAwareMarshaller
	6.5.2.1. CacheLoaders

	6.5.3. CacheMarshaller200

	6.6. Class Loading and Regions

	Chapter 7. Clustering
	7.1. Cache Replication Modes
	7.1.1. Local Mode
	7.1.2. Replicated Caches
	7.1.2.1. Replicated Caches and Transactions
	7.1.2.1.1. One Phase Commits
	7.1.2.1.2. Two Phase Commits

	7.1.2.2. Buddy Replication
	7.1.2.2.1. Selecting Buddies
	7.1.2.2.2. BuddyPools
	7.1.2.2.3. Failover
	7.1.2.2.4. Configuration

	7.2. Invalidation
	7.3. State Transfer
	7.3.1. State Transfer Types
	7.3.2. Byte array and streaming based state transfer
	7.3.3. Full and partial state transfer
	7.3.4. Transient ("in-memory") and persistent state transfer
	7.3.5. Configuring State Transfer

	Chapter 8. Cache Loaders
	8.1. The CacheLoader Interface and Lifecycle
	8.2. Configuration
	8.2.1. Singleton Store Configuration

	8.3. Shipped Implementations
	8.3.1. File system based cache loaders
	8.3.2. Cache loaders that delegate to other caches
	8.3.3. JDBCCacheLoader
	8.3.3.1. JDBCCacheLoader configuration
	8.3.3.1.1. Table configuration
	8.3.3.1.2. DataSource
	8.3.3.1.3. JDBC driver
	8.3.3.1.4. c3p0 connection pooling
	8.3.3.1.5. Configuration example

	8.3.4. TcpDelegatingCacheLoader
	8.3.5. Transforming Cache Loaders

	8.4. Cache Passivation
	8.4.1. Cache Loader Behavior with Passivation Disabled vs. Enabled

	8.5. Strategies
	8.5.1. Local Cache With Store
	8.5.2. Replicated Caches With All Caches Sharing The Same Store
	8.5.3. Replicated Caches With Only One Cache Having A Store
	8.5.4. Replicated Caches With Each Cache Having Its Own Store
	8.5.5. Hierarchical Caches
	8.5.6. Multiple Cache Loaders

	Chapter 9. Eviction Policies
	9.1. Configuring Eviction Policies
	9.1.1. Basic Configuration
	9.1.2. Eviction Regions
	9.1.2.1. Overlapping Eviction Regions

	9.1.3. Resident Nodes
	9.1.4. Programmatic Configuration

	9.2. Shipped Eviction Policies
	9.2.1. LRUPolicy - Least Recently Used
	9.2.2. FIFOPolicy - First In, First Out
	9.2.3. MRUPolicy - Most Recently Used
	9.2.4. LFUPolicy - Least Frequently Used
	9.2.5. ExpirationPolicy
	9.2.6. ElementSizePolicy - Eviction based on number of key/value pairs in a node

	9.3. Writing Your Own Eviction Policies
	9.3.1. Eviction Policy Plugin Design
	9.3.2. Interfaces to implement

	Chapter 10. Transactions and Concurrency
	10.1. Concurrent Access
	10.1.1. Locks
	10.1.2. Pessimistic locking
	10.1.2.1. Isolation levels
	10.1.2.2. Insertion and Removal of Nodes

	10.1.3. Optimistic Locking
	10.1.3.1. Architecture
	10.1.3.2. Data Versioning
	10.1.3.3. Configuration

	10.2. Transactional Support

	Part III. JBoss Cache References
	Chapter 11. Configuration References
	11.1. Sample XML Configuration File
	11.2. Reference table of XML attributes

	Chapter 12. JMX References
	12.1. JBoss Cache Statistics
	12.2. JMX MBean Notifications

