
Mobicents SS7 Stack User Guide

by Amit Bhayani, Bartosz Baranowski, and Oleg Kulikov

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions .. vii

1.3. Notes and Warnings .. vii

2. Provide feedback to the authors! .. viii

1. Introduction to Mobicents SS7 Stack .. 1

1.1. Time Division Multiplexing ... 1

2. The Basics ... 3

2.1. Linkset ... 3

2.2. Shell Management client ... 3

2.3. SS7 Service ... 4

2.4. Mobicents SS7 Stack Usage ... 5

3. Installation and Running ... 7

3.1. Installing ... 7

3.1.1. Binary Service ... 7

3.1.2. Installing Binary ... 8

3.1.3. Running Mobicents SS7 Stack .. 9

3.2. Configuring Mobicents SS7 Stack .. 10

3.2.1. Configuring LinksetFactory .. 10

3.2.2. Configuring LinksetManager .. 11

3.2.3. Configuring ShellExecutor ... 12

3.2.4. Configuring SS7Service .. 12

3.3. Setup from source .. 13

3.3.1. Release Source Code Building .. 13

3.3.2. Development Trunk Source Building .. 15

4. Hardware Setup ... 17

4.1. Sangoma .. 17

4.2. Diguim .. 17

4.3. Dialogic .. 17

5. Shell Command Line ... 19

5.1. Introduction ... 19

5.2. Starting .. 19

5.3. Linkset Management ... 20

5.3.1. Create Linkset .. 21

5.3.2. Remove Linkset ... 22

5.3.3. Activate Linkset .. 22

5.3.4. Deactivate Linkset .. 23

5.3.5. Create Link .. 23

5.3.6. Remove Link .. 24

5.3.7. Activate Link .. 24

5.3.8. Deactivate Link .. 25

5.3.9. Show status ... 25

5.4. SCCP Management .. 26

Mobicents SS7 Stack User Guide

iv

6. SCCP ... 27

6.1. Routing Management .. 27

6.2. Routing Configuration .. 27

6.3. Mobicents SS7 Stack SCCP Usage ... 29

6.4. Access Point .. 30

6.5. SCCP User Part Example ... 31

7. TCAP .. 35

7.1. Mobicents SS7 Stack TCAP Usage ... 35

7.2. Mobicents SS7 Stack TCAP User Part Example ... 37

8. MAP ... 41

8.1. SS7 Stack MAP Usage ... 41

8.2. SS7 Stack MAP Usage ... 44

A. Java Development Kit (JDK): Installing, Configuring and Running 49

B. Setting the JBOSS_HOME Environment Variable .. 53

C. Revision History .. 57

Index ... 59

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System > Preferences > Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >

Accessories > Character Map from the main menu bar. Next, choose Search

> Find from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu

of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above username, domain.name, file-system, package, version and

release. Each word is a placeholder, either for text you enter when issuing a command or for text

displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

Pull-quote Conventions

vii

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Preface

viii

Note

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make this manual

better, we would love to hear from you! Please submit a report in the the Issue Tracker [http://

code.google.com/p/mobicents/issues/list], against the product Mobicents SS7 Stack , or contact

the authors.

When submitting a bug report, be sure to mention the manual's identifier: SS7Stack_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list

Chapter 1.

1

Introduction to Mobicents SS7 Stack

Important

Spaces where introduced in in some tables and code listings to ensure proper page

render.

Common Channel Signaling System No. 7 (i.e., SS7 or C7) is a global standard

for telecommunications defined by the International Telecommunication Union (ITU)

Telecommunication Standardization Sector (ITU-T) [http://www.voip-info.org/wiki/view/ITU] . The

standard defines the procedures and protocol by which network elements in the public switched

telephone network (PSTN)) exchange information over a digital signaling network to effect

wireless (cellular) and wireline call setup, routing and control. The ITU definition of SS7

allows for national variants such as the American National Standards Institute (ANSI) and Bell

Communications Research (Telcordia Technologies) standards used in North America and the

European Telecommunications Standards Institute (ETSI [http://www.voip-info.org/wiki/view/

ETSI]) standard used in Europe.

The hardware and software functions of the SS7 protocol are divided into functional abstractions

called "levels". These levels map loosely to the Open Systems Interconnect (OSI) 7-layer model

defined by the International Standards Organization (ISO) [http://www.iso.ch/] .

SS7 Stack overview

Mobicents SS7 Stack is software based SS7 protocol implementation providing Level 2 and above.

1.1. Time Division Multiplexing

In circuit switched networks such as the Public Switched Telephone Network (PSTN) there

exists the need to transmit multiple subscribers’ calls along the same transmission medium. To

accomplish this, network designers make use of TDM. TDM allows switches to create channels,

http://www.voip-info.org/wiki/view/ITU
http://www.voip-info.org/wiki/view/ITU
http://www.voip-info.org/wiki/view/ITU
http://www.voip-info.org/wiki/view/ETSI
http://www.voip-info.org/wiki/view/ETSI
http://www.voip-info.org/wiki/view/ETSI
http://www.iso.ch/
http://www.iso.ch/

Chapter 1. Introduction to ...

2

also known as tributaries, within a transmission stream. A standard DS0 voice signal has a data

bit rate of 64 kbit/s, determined using Nyquist’s sampling criterion. TDM takes frames of the voice

signals and multiplexes them into a TDM frame which runs at a higher bandwidth. So if the TDM

frame consists of n voice frames, the bandwidth will be n*64 kbit/s. Each voice sample timeslot

in the TDM frame is called a channel . In European systems, TDM frames contain 30 digital

voice channels, and in American systems, they contain 24 channels. Both standards also contain

extra bits (or bit timeslots) for signalling (SS7) and synchronisation bits. Multiplexing more than

24 or 30 digital voice channels is called higher order multiplexing. Higher order multiplexing is

accomplished by multiplexing the standard TDM frames.For example, a European 120 channel

TDM frame is formed by multiplexing four standard 30 channel TDM frames.At each higher order

multiplex, four TDM frames from the immediate lower order are combined, creating multiplexes

with a bandwidth of n x 64 kbit/s, where n = 120, 480, 1920, etc.

Chapter 2.

3

The Basics
The Mobicents SS7 Stack is logically divided into two sections. The lower section includes SS7

Level 3 and below. The lower section is influenced by type of SS7 hardware (Level 1) used. The

upper section includes SS7 Level 4 and above. This logical division is widely based on flexibility

of Mobicents SS7 Stack to allow usage of any SS7 hardware available in the market and yet

Mobicents SS7 Stack Level 4 and above remains the same.

Important

Be aware, Mobicents SS7 Stack is subject to changes as it is under active

development!

Mobicents SS7 Stack consists of following functional blocks:

2.1. Linkset

Linkset is logical group of links between two Signaling Points. This term hides MTP layer, ie. it

abstracts whether hardware MTP is used , M3UA or Mobicents SS7 Stack one.

Three type of Linkset are defined

• DahdiLinkset : As the name suggests, this linkset is for dahdi based hardware. dahdi boards

only provides SS7 MTP1 layer and usually depends on external software to provide MTP2/

MTP3 support.

Well known dahdi based SS7 cards are Diguim and Sangoma

• DialogicLinkset : Linkset for dialogic based hardware. dialogic boards have MTP2 and

MTP3 support on board.

• M3UALinkset : M3UA stands for MTP Level 3 (MTP3) User Adaptation Layer as defined by the

IETF SIGTRAN working group in RFC 4666. M3UALinkset enables the Mobicents SS7 Stack

Level 4 (e.g. ISUP, SCCP) to run over IP instead of instead of SS7 network

Each type of linkset has coresponding factory. Please refer to Section 3.2.1, “Configuring

LinksetFactory” for list and guidelines how to configure each factory.

Configuration of linkset factories is exaplained in section Section 3.2, “ Configuring Mobicents

SS7 Stack ”

2.2. Shell Management client

Shell is Command Line Interface (CLI) tool which allows to manage different aspects of Mobicents

SS7 Stack in interactive manner. It connects to different instances of Mobicents SS7 Stack which

Chapter 2. The Basics

4

manage Linksets and SCCP routing. For detailed information please refer to: ???. Usually Shell

will be invoked from remote machine(remote to Linksets and application protocols).

2.3. SS7 Service

Service is element which is used to manage LinkSets and protocols like SCCP. SS7 service

creates instance of Mobicents SS7 Stack SCCP and bind's it to JNDI name java:/mobicents/ss7/

sccp

SS7 Service is JMX based service deployed in JBoss Application Server

Diagram below depicts elements which are deployed as part of SS7 Service:

Mobicents SS7 Stack SS7Service elements.

Service serves following purposes:

Mobicents SS7 Stack Usage

5

Expose protocol access points

Access points allows user to access lower layer protocols, like SCCP and interact through such

protocols with SS7 network.

Expose management interface

Shell Executor allows Shell client to connect and issue commands.

Manage Linksets and their lifecycle

Linkset Manager persists linksets information and manages their lifecycle, ie. it creates,

activates them(also after restart).

Configuration of SS7 Service is exaplained in section Section 3.2, “ Configuring Mobicents SS7

Stack ”

2.4. Mobicents SS7 Stack Usage

Diagram below depicts how Mobicents SS7 Stack is used:

Chapter 2. The Basics

6

Mobicents SS7 Stack general design

Chapter 3.

7

Installation and Running

3.1. Installing

Mobicents SS7 stack at its core requires only Java 1.5(Java SE) if you are using only

M3UALinkset. However if you plan to use DahdiLinkset or DialogicLinkset, respective SS7

cards needs to be installed on the server along with native libraries.

A simple way to get started is to download and install binary. This will provide you with all the

dependencies you need to get going. You can obtain binary release from http://sourceforge.net/

projects/mobicents/files

3.1.1. Binary Service

The Mobicents SS7 Stack binary is broken down into a few modules.

The following is a description of the important services and libraries that make up Mobicents SS7

Stack

• asn : Abstract Syntax Notation One (ASN.1) library is used by various Mobicents SS7 Stack

protocols to encode/decode the structured data exchanged between Signaling Point over

networks. To know more about asn library refer to document included with asn. Applications

using any of the Mobicents SS7 Stack User Protocols may never need to call asn API directly,

however it must be in classpath as Mobicents SS7 Stack User Protocols refers this library.

• ss7 : ss7 contains the service that is deployed in JBoss AS and libraries that end applications

refers to. ss7 is further divided into sub-modules

• docs : User guide for Mobicents SS7 Stack

• mobicents-ss7-service : SS7 service is the core engine as explained in section Section 2.3,

“SS7 Service”

• native : native libraries component to interact with SS7 Card installed on server, runtime

component. As of now native libraries are compiled only for linux OS. However if you plan to

use M3UALinkset there is no dependency on OS as everything is 100% java.

• protocols : The Mobicents SS7 Stack User Protocols libraries. Your application would

directly call the API's exposed by these libraries. Depending on application you may be either

interested in TCAP, MAP or both or ISUP libraries

• shell : the Command Line Interface (CLI) module to manage the Mobicents SS7 Stack.

Refer ??? to understand how to use shell

Binary release has following layout:

Chapter 3. Installation and R...

8

Mobicents SS7 Stack binary layout.

3.1.2. Installing Binary

The Mobicents SS7 Stack binary requires that you have JBoss Application Server installed and

JBOSS_HOME system property set. To know further details on setting JBOSS_HOME look

Appendix B, Setting the JBOSS_HOME Environment Variable

Running Mobicents SS7 Stack

9

Once JBOSS_HOME is properly set, use ant to deploy the mobicents-ss7-service, shell scripts

and shell library.

Important

Ant 1.6 (or higher) is used to install the binary. Instructions for using Ant, including

install, can be found at http://ant.apache.org/

[usr]$ cd ss7-1.0.0.BETA6/ss7

[usr]$ ant deploy

To undeploy these services

[usr]$ cd ss7-1.0.0.BETA6/ss7

[usr]$ ant undeploy

While above steps will deploy the necessary ss7 service and shell components, the

java.library.path should be set to point the directory containing native component or should

be copied to JBoss native library path manually. This step is only required if you are using the

SS7 board on server.

3.1.3. Running Mobicents SS7 Stack

Starting or stopping Mobicents SS7 Stack is no different than starting or stopping JBoss

Application Server

3.1.3.1. Starting

Once installed, you can run server by executing the run.sh (Unix) or run.bat (Microsoft Windows)

startup scripts in the <install_directory>/bin directory (on Unix or Windows). If the service

started properly you should see following lines in the Unix terminal or Command Prompt depending

on your environment:

23:22:26,079 INFO [LinksetManager] SS7 configuration file path /

home/abhayani/workarea/mobicents/jboss-5.1.0.GA/server/default/data/

linksetmanager.xml

23:22:26,141 INFO [LinksetManager] Started LinksetManager

http://ant.apache.org/

Chapter 3. Installation and R...

10

23:22:26,199 INFO [SS7Service] Starting SCCP stack...

23:22:26,229 INFO [SccpStackImpl] Starting ...

23:22:26,230 INFO [RouterImpl] SCCP Router configuration file: /home/

abhayani/workarea/mobicents/jboss-5.1.0.GA/server/default/deploy/mobicents-

ss7-service/sccp-routing.txt

23:22:26,261 INFO [SS7Service] SCCP stack Started. SccpProvider bound to

 java:/mobicents/ss7/sccp

23:22:26,261 INFO [ShellExecutor] Starting SS7 management shell environment

23:22:26,270 INFO [ShellExecutor] ShellExecutor listening

 at /127.0.0.1:3435

23:22:26,270 INFO [SS7Service] [[[[[[[[[Mobicents SS7 service

 started]]]]]]]]]

If you have started ss7-1.0.0.BETA6 for the first time, there are no Linkset defined. You need

to use Shell Client to connect to ss7-1.0.0.BETA6 as defined in ??? and create Linkset as per

your need and SS7 card installed

Once the Linkset are defined, the state and configuration of Linkset and Link is persisted by

LinksetManager which stands server re-start.

3.1.3.2. Stopping

You can shut down the server(s) you can run server(s) by executing the shutdown.sh -s (Unix)

or shutdown.bat -s (Microsoft Windows) scripts in the <install_directory>/bin directory (on

Unix or Windows). Note that if you properly stop the server, you will see the following three lines

as the last output in the Unix terminal or Command Prompt:

[Server] Shutdown complete

Shutdown complete

Halting VM

3.2. Configuring Mobicents SS7 Stack

Configuration is done through an XML descriptor named jboss-beans.xml and is located

at $JBOSS_HOME/server/profile_name/deploy/mobicents-ss7-service/META-INF, where

profile_name is the server profile name.

3.2.1. Configuring LinksetFactory

Concrete implementation of LinksetFactory is responsible to create new instances of

corresponding Linkset when instructed by LinksetManager. Mobicents SS7 Stack defined three

linkset factories :

• DahdiLinksetFactory

Configuring LinksetManager

11

 <bean name="DahdiLinksetFactory"

 class="org.mobicents.ss7.hardware.dahdi.oam.DahdiLinksetFactory">

 </bean>

• DialogicLinksetFactory

 <bean name="DialogicLinksetFactory"

 class="org.mobicents.ss7.hardware.dialogic.oam.DialogicLinksetFactory">

 </bean>

• M3UALinksetFactory

 <bean name="M3UALinksetFactory"

 class="org.mobicents.ss7.m3ua.oam.M3UALinksetFactory">

 </bean>

Its highly unlikely that you would require all three factories on same server. If you have dahdi

based SS7 card installed, keep DahdiLinksetFactory and remove other two. If you have

dialogic based SS7 card installed, keep DialogicLinksetFactory and remove other two. If

you don't have any hardware installed and depend on M3UA, keep M3UALinksetFactory and

remove other two. Nevertheless you can still use above factories in any combinations.

LinksetFactoryFactory is just a call-back class listening for new factories deployed and

maintains Map of available factory name vs factory. You should never touch this bean.

3.2.2. Configuring LinksetManager

LinksetManager is responsible for managing Linkset and Link.

 <bean name="LinksetManager" class="org.mobicents.ss7.linkset.oam.LinksetManager">

 <property name="linksetFactoryFactory">

 <inject bean="LinksetFactoryFactory" />

 </property>

 <property name="persistDir">${jboss.server.data.dir}</property>

Chapter 3. Installation and R...

12

 </bean>

LinksetManager when started looks for file linksetmanager.xml containing serialized information

of underlying linksets and links. The directory path is configurable by changing value of

persistDir property.

Warning

linksetmanager.xml should never be edited by hand. Always use Shell Client to

connect to Mobicents SS7 Stack and execute commands.

3.2.3. Configuring ShellExecutor

ShellExecutor is responsible for listening to incoming command. Received commands are

executed on local resources to perform actions like creation of SCCP routing rule.

 <bean name="ShellExecutor" class="org.mobicents.ss7.ShellExecutor">

 <property name="address">${jboss.bind.address}</property>

 <property name="port">3435</property>

 </bean>

By default ShellExecutor listens at jboss.bind.address and port 3435. You may set the address

property to any valid IP address that your host is assigned. The shell commands are exchanged

over TCP/IP.

Note

To understand JBoss bind options look at Installation_And_Getting_Started_Guide

[http://docs.jboss.org/jbossas/docs/Installation_And_Getting_Started_Guide/5/

html_single/index.html]

3.2.4. Configuring SS7Service

SS7Service acts as core engine binding all the components together. To get holistic view of SS7

Service look at Section 2.3, “SS7 Service”

 <bean name="SS7Service" class="org.mobicents.ss7.SS7Service">

 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="org.mobicents.ss7:service=SS7Service",exposedInterface=org.mobicents.ss7.SS7ServiceMBean.class,registerDirectly=true)</

annotation>

http://docs.jboss.org/jbossas/docs/Installation_And_Getting_Started_Guide/5/html_single/index.html
http://docs.jboss.org/jbossas/docs/Installation_And_Getting_Started_Guide/5/html_single/index.html
http://docs.jboss.org/jbossas/docs/Installation_And_Getting_Started_Guide/5/html_single/index.html

 Setup from source

13

 <property name="jndiName">java:/mobicents/ss7/sccp</property>

 <property name="configPath">${catalina.home}/deploy/mobicents-ss7-service/sccp-

routing.txt</property>

 <property name="linksetManager"><inject bean="LinksetManager" /></property>

 <property name="shellExecutor"><inject bean="ShellExecutor" /></property>

 </bean>

SS7 service creates new instance of SCCP stack and binds it to JNDI address java:/mobicents/

ss7/sccp. The JNDI name can be configured to any valid JNDI name specific to your application.

configPath is configuration path for SCCP Stack. To know more about SCCP configuration refer

Chapter 6, SCCP

linksetManager property holds the reference to LinksetManager bean

shellExecutor property holds the reference to ShellExecutor bean. SS7Service creates link

between ShellExecutor and LinksetManager such that all commands for linkset are directed

to LinksetManager.

3.3. Setup from source

Mobicents SS7 Stack is an open source project, instructions for building from source are part of the

manual! Building from source means you can stay on top with the latest features. Whilst aspects

of Mobicents SS7 Stack are quite complicated, you may find ways to become contributors.

Mobicents SS7 Stack works with JDK1.5 and above. you will need also need to have the following

tools installed. Minimum requirement version numbers provided.

• Subversion Client 1.4 : Instructions for using SVN, including install, can be found at http://

subversion.tigris.org

• Maven 2.0.9 : Instructions for using Maven, including install, can be found at http://

maven.apache.org/

• Ant 1.7.0 : Instructions for using Ant, including install, can be found at http://ant.apache.org

3.3.1. Release Source Code Building

1. Downloading the source code

Use SVN to checkout a specific release source, the base URL is http://

mobicents.googlecode.com/svn/tags/protocols/ss7, then add the specific release version,

lets consider 1.0.0.BETA6.

[usr]$ svn co http://mobicents.googlecode.com/svn/tags/protocols/ss7/ss7-1.0.0.BETA6

http://subversion.tigris.org
http://subversion.tigris.org
http://maven.apache.org/
http://maven.apache.org/
http://ant.apache.org

Chapter 3. Installation and R...

14

2. Building the source code

Now that we have the source the next step is to build and install the source. Mobicents SS7

Stack uses Maven 2 to build the system. There are two profiles available "dahdilinux" and

"dialogiclinux" appart from default profile that doesn't try to compile the native modules.

Note

Native modules are supported only for linux OS for now.

Use "dahdilinux" profile if linux server on which this code is built already has dahdi module

installed. Make sure you pass "include.zap" system property pointing to correct directory

where dahdi is installed

[usr]$ cd ss7-1.0.0.BETA6

[usr]$ mvn install -Pdahdilinux -Dinclude.zap=/usr/include/dahdi

Use "dialogiclinux" profile if linux server on which this code is built already has dialogic module

installed. Make sure you pass "include.dialogic" system property pointing to correct directory

where dialogic libraries are installed

[usr]$ cd ss7-1.0.0.BETA6

[usr]$ mvn install -Pdialogclinux -Dinclude.dialogic=/usr/include/dialogic

To build Mobicents SS7 Stack without building any native libraries use

[usr]$ cd ss7-1.0.0.BETA6

[usr]$ mvn install

Development Trunk Source Building

15

Note

If you are using Mobicents SS7 Stack without any native dependencies,

Mobicents SS7 Stack can run on any OS.

Use Ant to build the binary .

[usr]$ cd ss7-1.0.0.BETA6/release

[usr]$ ant

3.3.2. Development Trunk Source Building

Similar process as for Section 3.3.1, “Release Source Code Building”, the only change is the SVN

source code URL, which is http://mobicents.googlecode.com/svn/trunk/protocols/ss7.

16

Chapter 4.

17

Hardware Setup
This chapter contains reference to configure hardware drivers for different types of SS7 cards.

Mobicents SS7 Stack supports dahdi based SS7 cards like diguim and sangoma. Generally dahdi

based SS7 crads doesn't have MTP2/MTP3 support on board and relies on external software to

provide these services.

Mobicents SS7 Stack also supports dialogic based SS7 cards which has on board support for

MTP2/MTP3

4.1. Sangoma

To install Sangoma cards visit the Sangoma wiki at http://wiki.sangoma.com/

4.2. Diguim

To install Diguim cards visit the Diguim site at http://www.digium.com/en/products/digital/

4.3. Dialogic

To install Dialogic cards visit the Dialogic site at http://www.dialogic.com/

http://wiki.sangoma.com/
http://www.digium.com/en/products/digital/
http://www.dialogic.com/

18

Chapter 5.

19

Shell Command Line

5.1. Introduction

Mobicents SS7 Stack provides Shell client to manage configuration of SS7 Stack Services.

This chapter describes how to install and start client. Also it describes available commands and

provides examples. To see examples of specific flow, to perform certain tasks, please refer to

sections in chapter devoted to SCCP or Linksets .

5.2. Starting

Shell client can be started with following command from $JBOSS_HOME/bin :

[$] ./ss7-run.sh

Once console starts, it will print following information:

===

Mobicents SS7: release.version=1.0.0-SNAPSHOT

This is free software, with components licensed under the GNU General Public

 License

version 2 and other licenses. For further details visit http://mobicents.org

===

mobicents>

The ss7-run script supports following options

Usage: SS7 [OPTIONS]

Valid Options

-v Display version number and exit

-h This help screen

Shell needs to connect to managed instance. Command to connect has following structure:

Chapter 5. Shell Command Line

20

ss7 connect <IP> <PORT>

Example 5.1. Connec to remote machine

mobicents>ss7 connect 10.65.208.215 3435

mobicents(10.65.208.215:3435)>

Note

Host IP and port are optional, if not specified, shell will try to connect to

127.0.0.1:3435

Command to disconnect has following structure:

ss7 discconnect

Example 5.2. Disconnect

mobicents(10.65.208.215:3435)>ss7 disconnect

Bye

mobicents>

5.3. Linkset Management

Linksets are managed by linkset command. It allows to perform following:

• create linkset

• delete linkset

• activate linkset

• deactivate linkset

• create link

• delete link

Create Linkset

21

• activate link

• deactivate link

• list state of linksets and present links

5.3.1. Create Linkset

Linkset can be create by issuing command with following structure:

linkset create <linkset-type> opc <point-code> apc <point-code> ni <network-id> <linkset-name>

or in case of dialogic:

linkset create dialogic opc <point-code> apc <point-code> ni <network-id> srcmod <src-mode>

 destmod <dest-mode> <linkset-name>

Where:

linkset-type

refers to type of linkset to be created, ie. dahdi , dialogic or m3ua . Correct values depend

on which linkset factories have been deployed.

point-code

is simply MTP point - either local(opc) or remote(dpc)

ni

is simply network identifier. It can have following values:

0

International network

1

Spare (for international use only)

2

National network

3

Reserved for national use

linkset-name

simple string name, which identifies linkset

Chapter 5. Shell Command Line

22

Example 5.3. Linkset creation

mobicents(10.65.208.215:3435)>linkset create dahdi opc 1 apc 2 ni 0 linkset1

LinkSet successfully added

mobicents(10.65.208.215:3435)>linkset create dialogic opc 3 apc 4 ni 3

 srcmod 1 destmod 2 linkset2

LinkSet successfully added

5.3.2. Remove Linkset

Linkset can be deleted by issuing command with following structure:

linkset delete <linkset-name>

Where:

linkset-name

is name set during link creation

Example 5.4. Linkset Removal

mobicents(10.65.208.215:3435)>linkset delete linkset1

LinkSet successfully deleted

5.3.3. Activate Linkset

Linkset can be activated by issuing command with following structure:

linkset activate <linkset-name>

Where:

linkset-name

is name set during link creation

Example 5.5. Linkset Activation

Deactivate Linkset

23

mobicents(10.65.208.215)>linkset activate linkset1

LinkSet activated successfully

5.3.4. Deactivate Linkset

Linkset can be deactivated by issuing command with following structure:

linkset deactivate <linkset-name>

Where:

linkset-name

is name set during link creation

Example 5.6. Linkset Deactivateion

mobicents(10.65.208.215)>linkset deactivate linkset1

LinkSet deactivated successfully

5.3.5. Create Link

Link can be created in Linkset by issuing command with following structure:

linkset link create span <span-num> code <code-num> channel <channel-num> <linkset-name>

 <link-name>

Where:

span-num

integer number. It represents port number in card(indexed from 0).

code-num

link code(sls assigned to this link).

channel-num

integer number indicating time slot number(TDM time slot).

linkset-name

is name set during link creation.

Chapter 5. Shell Command Line

24

link-name

name which identifies link in linkset.

Example 5.7.

mobicents(10.65.208.215:3435)>linkset link create span 1 code 1 channel 1

 linkset1 link1

Link successfully added

5.3.6. Remove Link

Link can be removed from in Linkset by issuing command with following structure:

linkset link delete <linkset-name> <link-name>

Where:

linkset-name

is name set during link creation

link-name

name which identifies link in linkset

Example 5.8. Link Removal

mobicents(10.65.208.215:3435)>linkset link delete linkset1 link1

Link successfully deleted

5.3.7. Activate Link

Link can be activated by issuing command with following structure:

linkset link activate <linkset-name> <link-name>

Where:

linkset-name

is name set during link creation

Deactivate Link

25

link-name

name which identifies link in linkset

Example 5.9. Link Activation

mobicents(10.65.208.215:3435)>linkset link activate linkset1 link1

Link activated successfully

5.3.8. Deactivate Link

Link can be deactivated by issuing command with following structure:

linkset link deactivate <linkset-name> <link-name>

Where:

linkset-name

is name set during link creation

link-name

name which identifies link in linkset

Example 5.10. Link Deactivateion

mobicents(10.65.208.215:3435)>linkset link deactivate linkset1 link1

Link deactivated successfully

5.3.9. Show status

Linkset and Link's status can be viewed by issuing command with following structure:

linkset show

Example 5.11. Linkset Status

Chapter 5. Shell Command Line

26

mobicents(10.65.208.215:3435)>linkset show

linkset1 dahdi opc=1 apc=2 ni=0

 state=UNAVAILABLE

 link1 span=1 channelId=1 code=1 state=UNAVAILABLE

The possible state of Linkset are

• UNAVAILABLE : Indicates the linkset does not have any “available” links and cannot transport

traffic

• SHUTDOWN : Indicates the linkset has been shutdown in the configuration

• AVAILABLE : Indicates the linkset has at least one available link and can carry traffic

The possible state of Link are

• UNAVAILABLE : Indicates the link is not available to carry traffic. This can occur if the link is

remotely or locally inhibited by a user. It can also be unavailable if MTP2 has not been able to

successfully activate the link connection.

• SHUTDOWN : Indicates the link has been shutdown in the configuration.

• AVAILABLE : Indicates the link is active and able to transport traffic

• FAILED : A link is FAILED when the link is not shutdown but is unavailable at layer2 for some

reason. For example Initial Alignment failed or the link test messages sent by MTP3 are not

being acknowledged.

5.4. SCCP Management

Currently Shell does not support SCCP management.

Chapter 6.

27

SCCP
The Signaling Connection Control Part (SCCP) is defined in ITU-T Recommendations Q.711-

Q.716. SCCP sits on top of Message Transfer Part 3 (MTP3) in the SS7 protocol stack. The

SCCP provides additional network layer functions to provide transfer of noncircuit-related (NCR)

signaling information, application management procedures and alternative and more flexible

methods of routing.

6.1. Routing Management

Currently Shell does not support commands to manage SCCP routes.

6.2. Routing Configuration

Routing rules are persisted within file. By default its sccp-routing.txt. This file is managed by

SCCP stack and SS7 Service , it is not encouraged practice to edit this file by hand. However for

complete rerefence, you can find structure of this file below:

sequence;pattern;translation;mtpinfo

Note

Fields within pattern , translation and mtp , separated by # , empty value is

indicated by single space . Each part of routing entry is separated by ; .

sequence

is simple sequence number, each entry increases it by 1.

pattern

is simply SCCP like regular expresion. Destination address of message is matched against this

to check which rule should be triggered.

Table 6.1. pattern content

Name Type Description

translation type java.lang.Integer Network specific ID which

determines how global title

analysis is performed.

Chapter 6. SCCP

28

Name Type Description

numbering plan enum Determines which numbering

plan is used for global

title. It can have one of

following values: UNKNOWN,

ISDN_TELEPHONY, DATA,

TELEX, MERITIME_MOBILE,

LAND_MOBILE,

ISDN_MOBILE

nature of address enum Determines type of

address. It can have

one of following values:

SPARE, SUBSCRIBER,

UNKNOWN, NATIONAL,

INTERNATIONAL

digits java.lang.String Simply digits of number, ie:

+91 417688345892

sub-system number java.lang.Integer local subsystem number,

used to route between local

services in SS7, ie. between

HLR and VLR.

translation

has the same structure as pattern . If pattern matches, destintion address is changed to

translation .

mtpinfo

mtpinfo indicates which link should be chosen when routing to remote location. In case

routing is performed localy, its not present.

Table 6.2. mtpinfo content

Name Type Description

name java.lang.String

adjacent point code java.lang.Integer point code of remote, mtp link.

origin point code java.lang.Integer polint code of local, mtp link.

signaling link selector java.lang.Integer number indicating TDM

multiplexed link.

Example file entry looks as follows:

Mobicents SS7 Stack SCCP Usage

29

Example 6.1. sccp-routing.txt example entry

0; #ISDN_MOBILE#NATIONAL#9023629581# ; #ISDN_MOBILE#INTERNATIONAL#79023629581# ;linkset#14083#14155#0

sequence

is set to 0, since its only rule in a file(or first).

pattern

matches natioan mobile number with following digits: 9023629581

translation

changes destination to international mobile with following digits: 79023629581. Since no sub-

system number is present, this rule requires mtpinfo to indicate target.

mtpinfo

indicates link through which message will be sent to next hop. Link:

• Belongs to linkset with name equal to linkset.

• Adjacent point code is equal to 14083.

• Origin point code is equal to 14155.

• Signaling link selector is equal to 0. Note that this value may be overriden by transport layer.

6.3. Mobicents SS7 Stack SCCP Usage

The org.mobicents.protocols.ss7.sccp.SccpStack is responsible for taking the config file

and turning it into org.mobicents.protocols.ss7.sccp.Router. All the sccp messages sent bu

SCCP User Part are routed as per the rule configured in Router

The SCCP User Part gets handle to SccpStack by doing JNDI look-up as explained in Section 6.4,

“Access Point”

SccpStack exposes org.mobicents.protocols.ss7.sccp.SccpProvider that interacts directly

with SccpStack. This interface defines the methods that will be used by SCCP User

Part to send org.mobicents.protocols.ss7.sccp.message.SccpMessage and register

org.mobicents.protocols.ss7.sccp.SccpListener's to listen for incoming SCCP messages.

SCCP User Part registers SccpListener for specific local

org.mobicents.protocols.ss7.sccp.parameter.SccpAddress. For every incoming

SccpMessage, if the called party address matches with this local SccpAddress, the corresponding

SccpListner is called.

Chapter 6. SCCP

30

SccpProvider also exposes org.mobicents.protocols.ss7.sccp.message.MessageFactory

and org.mobicents.protocols.ss7.sccp.parameter.ParameterFactory to create new

concrete SccpMessage viz., org.mobicents.protocols.ss7.sccp.message.UnitData

or org.mobicents.protocols.ss7.sccp.message.XUnitData passing the corresponding

parameters created by leveraging ParameterFactory.

The UML class diagram looks like

Mobicents SS7 Stack SCCP Class Diagram

6.4. Access Point

SS7 Service provides user with access point to SCCP protocol/stack.

To get handle to SccpStack do the JNDI look-up passing the JNDI name configured in SS7 service

as explained in Section 3.2.4, “Configuring SS7Service”

 private static SccpProvider getSccpProvider() throws NamingException {

 // no arg is ok, if we run in JBoss

 InitialContext ctx = new InitialContext();

 try {

 String providerJndiName = "/mobicents/ss7/sccp";

 return ((SccpStack) ctx.lookup(providerJndiName)).getSccpProvider();

SCCP User Part Example

31

 } finally {

 ctx.close();

 }

 }

6.5. SCCP User Part Example

Below is SCCP User Part example listening for incoming SCCP message and sending back new

message

public class Test implements SccpListener {

 private SccpProvider sccpProvider;

 private SccpAddress localAddress;

 private static SccpProvider getSccpProvider() throws NamingException {

 // no arg is ok, if we run in JBoss

 InitialContext ctx = new InitialContext();

 try {

 String providerJndiName = "/mobicents/ss7/sccp";

 return ((SccpStack) ctx.lookup(providerJndiName)).getSccpProvider();

 } finally {

 ctx.close();

 }

 }

 public void start() throws Excetpion {

 this.sccpProvider = getSccpProvider();

 int translationType = 0;

 int subSystemNumber = 0;

 GlobalTitle gt = GlobalTitle.getInstance(translationType,

 NumberingPlan.ISDN_MOBILE, NatureOfAddress.NATIONAL, "1234");

 localAddress = new SccpAddress(gt, 0);

Chapter 6. SCCP

32

 this.sccpProvider.registerSccpListener(localAddress, this);

 }

 public void stop() {

 this.sccpProvider.deregisterSccpListener(localAddress);

 }

 public void onMessage(SccpMessage message) {

 if (message.getType() == MessageType.UDT) {

 throw new IlleagalArgumentException("Dont like UDT");

 } else if (message.getType() == MessageType.XUDT) {

 XUnitData xudt = (XUnitData) message;

 localAddress = ((XUnitData) message).getCalledPartyAddress();

 SccpAddress remoteAddress = ((XUnitData) message)

 .getCallingPartyAddress();

 // now decode content

 byte[] data = xudt.getData();

 // some data encoded in

 CallRequest cr = new CallRequest(data);

 byte[] answerData;

 if (cr.getCallee().equals(this.localAddress)) {

 EstablihsCallAnswer eca = new EstablihsCallAnswer(cr);

 answerData = eca.encode();

 } else {

 TearDownCallAnswer tdca = new TearDownCallAnswer(cr);

 answerData = tdca.encode();

 }

 HopCounter hc = this.sccpProvider.getParameterFactory()

 .createHopCounter(5);

 XUnitData sccpAnswer = this.sccpProvider

 .getMessageFactory()

 .createXUnitData(hc, xudt.getProtocolClass(),

 message.getCallingPartyAddress(), this.localAddress);

 this.sccpProvider.send(sccpAnswer);

SCCP User Part Example

33

 }

 }

}

34

Chapter 7.

35

TCAP
The Transaction Capabilities Application Part (TCAP) is defined in ITU-T Recommendations

Q.771-Q.775. TCAP allows services at network nodes to communicate with each other using an

agreed-upon set of data elements. Its primary purpose is to facilitate multiple concurrent dialogs

between the same sub-systems on the same machines, using Transaction IDs to differentiate

these, similar to the way TCP ports facilitate multiplexing connections between the same IP

addresses on the Internet.

7.1. Mobicents SS7 Stack TCAP Usage

org.mobicents.protocols.ss7.tcap.api.TCAPStack interface defines the methods

required to represent TCAP Protocol Stack. TCAPStack exposes

org.mobicents.protocols.ss7.tcap.api.TCAPProvider that interacts directly with

TCAPStack. TCAPProvider defines methods that will be used by TCAP User Part to create

new org.mobicents.protocols.ss7.tcap.api.tc.dialog.Dialog to be sent across network.

TCAP User Part also registers org.mobicents.protocols.ss7.tcap.api.TCListener to listen

TCAP messages.

TCAPProvider also exposes

org.mobicents.protocols.ss7.tcap.api.DialogPrimitiveFactory to create dialog

primitives and org.mobicents.protocols.ss7.tcap.api.ComponentPrimitiveFactory to

create components. Components are a means of invoking an operation at a remote node

The UML Class Diagram looks like

Mobicents SS7 Stack TCAP Class Diagram

Chapter 7. TCAP

36

org.mobicents.protocols.ss7.tcap.TCAPStackImpl is concrete implementation of

TCAPStack. The TCAP User Part creates instance of TCAPStackImpl passing the reference of

SccpProvider and new instance of SccpAddress representing address to which bind listenr. TCAP

stack creates internaly Mobicents MAP Stack implementation. Passed SccpAddress is used to

match against incoming messages destination address.

 SccpProvider sccpProvider = getSccpProvider(); //JNDI lookup of SCCP Stack and get

 Provider

 SccpAddress localAddress createLocalAddress();

 TCAPStack tcapStack = new TCAPStackImpl(sccpPprovider, localAddress);

 ...

 private SccpAddress createLocalAddress()

 {

 int translationType = 0;

 int subSystemNumber = 0;

 GlobalTitle gt = GlobalTitle.getInstance(translationType,

 NumberingPlan.ISDN_MOBILE, NatureOfAddress.NATIONAL, "1234");

 SccpAddress localAddress = new SccpAddress(gt, 0);

 return localAddress;

 }

The reference to SccpProvider is received from SccpStack. To get handle to SccpStack do

the JNDI look-up passing the JNDI name configured in SS7 service as explained in Section 6.4,

“Access Point”

The TCAP User Part should register the concrete implementation of TCListener with

TCAPProvider to listen for incoming TCAP messages.

 public class Client implements TCListener{

Mobicents SS7 Stack TCAP User Part Example

37

 tcapProvider = tcapStack.getProvider();

 tcapProvider.addTCListener(this);

 }

The TCAP User Part leverages TCAPProvider to create new Dialog. The component's between

the nodes are exchanged within this Dialog

 clientDialog = this.tcapProvider.getNewDialog(thisAddress, remoteAddress);

The TCAP User Part leverages ComponentPrimitiveFactory to create new components. These

components are sent usig the dialog

 //create some INVOKE

 Invoke invoke = cpFactory.createTCInvokeRequest();

 invoke.setInvokeId(this.clientDialog.getNewInvokeId());

 invoke.setOperationCode(cpFactory.createOperationCode(true,new Long(12)));

 //no parameter

 this.clientDialog.sendComponent(invoke);

7.2. Mobicents SS7 Stack TCAP User Part Example

Below is TCAP User Part example. This example creates dialog and exchanges messages withing

structured dialog. Refer to source for function calls:

public class Client implements TCListener{

 //encoded Application Context Name

 public static final long[] _ACN_ = new long[] { 0, 4, 0, 0, 1, 0, 19, 2 };

Chapter 7. TCAP

38

 private TCAPStack stack;

 private SccpAddress thisAddress;

 private SccpAddress remoteAddress;

 private TCAPProvider tcapProvider;

 private Dialog clientDialog;

 Client(SccpProvider sccpPprovider, SccpAddress thisAddress,SccpAddress remoteAddress) {

 super();

 this.stack = new TCAPStackImpl(sccpPprovider,thisAddress); //pass address, so stack can

 register in SCCP

 this.runningTestCase = runningTestCase;

 this.thisAddress = thisAddress;

 this.remoteAddress = remoteAddress;

 this.tcapProvider = this.stack.getProvider();

 this.tcapProvider.addTCListener(this);

 }

 private static SccpProvider getSccpProvider() throws NamingException {

 // no arg is ok, if we run in JBoss

 InitialContext ctx = new InitialContext();

 try {

 String providerJndiName = "/mobicents/ss7/sccp";

 return ((SccpStack) ctx.lookup(providerJndiName)).getSccpProvider();

 } finally {

 ctx.close();

 }

 }

 public void start() throws TCAPException, TCAPSendException {

 clientDialog = this.tcapProvider.getNewDialog(thisAddress, remoteAddress);

 ComponentPrimitiveFactory cpFactory = this.tcapProvider.getComponentPrimitiveFactory();

 //create some INVOKE

 Invoke invoke = cpFactory.createTCInvokeRequest();

 invoke.setInvokeId(this.clientDialog.getNewInvokeId());

 invoke.setOperationCode(cpFactory.createOperationCode(true,new Long(12)));

 //no parameter

 this.clientDialog.sendComponent(invoke);

 ApplicationContextName acn = this.tcapProvider.getDialogPrimitiveFactory()

 .createApplicationContextName(_ACN_);

Mobicents SS7 Stack TCAP User Part Example

39

 //UI is optional!

 TCBeginRequest tcbr = this.tcapProvider.getDialogPrimitiveFactory().createBegin(this.clientDialog);

 tcbr.setApplicationContextName(acn);

 this.clientDialog.send(tcbr);

 }

 public void dialogReleased(Dialog d) {

 }

 public void onInvokeTimeout(Invoke tcInvokeRequest) {

 }

 public void onTCBegin(TCBeginIndication ind) {

 }

 public void onTCContinue(TCContinueIndication ind) {

 //send end

 TCEndRequest end = this.tcapProvider.getDialogPrimitiveFactory().createEnd(ind.getDialog());

 end.setTermination(TerminationType.Basic);

 try {

 ind.getDialog().send(end);

 } catch (TCAPSendException e) {

 throw new RuntimeException(e);

 }

 }

 public void onTCEnd(TCEndIndication ind) {

 //should not happen, in this scenario, we send data.

 }

 public void onTCUni(TCUniIndication ind) {

 //not going to happen

 }

 public void onTCPAbort(TCPAbortIndication ind) {

Chapter 7. TCAP

40

 // TODO Auto-generated method stub

 }

 public void onTCUserAbort(TCUserAbortIndication ind) {

 // TODO Auto-generated method stub

 }

 public static void main(String[] args)

 {

 int translationType = 0;

 int subSystemNumber = 0;

 GlobalTitle gt = GlobalTitle.getInstance(translationType,NumberingPlan.ISDN_MOBILE,NatureOfAddress.NATIONAL, "1234");

 SccpAddress localAddress = new SccpAddress(gt,0);

 gt = GlobalTitle.getInstance(translationType,NumberingPlan.ISDN_MOBILE,NatureOfAddress.NATIONAL, "1572582");

 SccpAddress remoteAddress = new SccpAddress(gt,0);

 Client c = new Client(getSccpProvider(),localAddress,remoteAddress);

 }

}

Chapter 8.

41

MAP
Mobile application part (MAP) is the protocol that is used to allow the GSM network nodes within

the Network Switching Subsystem (NSS) to communicate with each other to provide services,

such as roaming capability, text messaging (SMS), Unstructured Supplementary Service Data

(USSD) and subscriber authentication. MAP provides an application layer on which to build

the services that support a GSM network. This application layer provides a standardized set of

services. MAP uses the services of the SS7 network, specifically the Signaling Connection Control

Part (SCCP) and the Transaction Capabilities Application Part (TCAP)

Important

For better understanding of this chapter please read GSM 09.02.

8.1. SS7 Stack MAP Usage

org.mobicents.protocols.ss7.map.api.MAPStack interface defines the methods

required to represent MAP Protocol Stack. MAPStack exposes

org.mobicents.protocols.ss7.map.api.MAPProvider that interacts directly with MAPStack.

This interface defines the methods that will be used by any registered MAP User

application implementing the org.mobicents.protocols.ss7.map.api.MAPDialogListener

and org.mobicents.protocols.ss7.map.api.MAPServiceListener interface to listen MAP

messages and dialogue handling primitives. The class diagram looks like

Mobicents SS7 Stack MAP Class Diagram

Chapter 8. MAP

42

Note

Mobicents SS7 Stack MAP has implementation for USSD Message only. Any

contribution to implement message specific to SMS or other are welcome. We will

provide you all the help that you may need initially.

org.mobicents.protocols.ss7.map.MAPStackImpl is concrete implementation of MAPStack

. The MAP User application creates instance of MAPStackImpl passing the reference of

SccpProvider and new instance of SccpAddress representing address to which bind listener.

This addess will be used to match against destination address in SCCP messages.

 SccpProvider sccpProvider = getSccpProvider(); //JNDI lookup of SCCP Stack and get

 Provider

 SccpAddress localAddress createLocalAddress();

 MAPStackImpl mapStack = new MAPStackImpl(sccpPprovider, localAddress);

 ...

 private SccpAddress createLocalAddress()

 {

 int translationType = 0;

 int subSystemNumber = 0;

 GlobalTitle gt = GlobalTitle.getInstance(translationType,

 NumberingPlan.ISDN_MOBILE, NatureOfAddress.NATIONAL, "1234");

 SccpAddress localAddress = new SccpAddress(gt, 0);

 return localAddress;

 }

The reference to SccpProvider is received from SccpStack . To get handle to SccpStack do

the JNDI look-up passing the JNDI name configured in SS7 service as explained in Section 6.4,

“Access Point”

SS7 Stack MAP Usage

43

The MAP User application should register the concrete implementation of MAPDialogListener

and MAPServiceListener with MAPProvider to listen for incoming MAP Dialog and MAP Primitive

messages.

public class MAPExample implements MAPDialogListener, MAPServiceListener {

 mapProvider = mapStack.getMAPProvider();

 mapProvider.addMAPDialogListener(this);

 mapProvider.addMAPServiceListener(this);

}

The MAP User Application leverages MapServiceFactory to create instance of USSDString and

AddressString

 MapServiceFactory servFact = mapProvider.getMapServiceFactory();

 USSDString ussdString = servFact.createUSSDString("*125*+31628839999#",

 null);

 AddressString msisdn = this.servFact.createAddressString(

 AddressNature.international_number, NumberingPlan.ISDN,

 "31628838002");

The MAP User Application leverages MAPProvider to create new MAPDialog and send USSD

message

 // First create Dialog

 MAPDialog mapDialog = mapProvider.createNewDialog(

 MAPApplicationContext.networkUnstructuredSsContextV2,

 destAddress, destReference, origAddress, origReference);

 byte ussdDataCodingScheme = 0x0f;

 // USSD String: *125*+31628839999#

Chapter 8. MAP

44

 // The Charset is null, here we let system use default Charset (UTF-7 as

 // explained in GSM 03.38. However if MAP User wants, it can set its own

 // impl of Charset

 USSDString ussdString = servFact.createUSSDString("*125*+31628839999#",

 null);

 AddressString msisdn = this.servFact.createAddressString(

 AddressNature.international_number, NumberingPlan.ISDN,

 "31628838002");

 mapDialog.addProcessUnstructuredSSRequest(ussdDataCodingScheme,

 ussdString, msisdn);

 // This will initiate the TC-BEGIN with INVOKE component

 mapDialog.send();

8.2. SS7 Stack MAP Usage

The complete example looks like

public class MAPExample implements MAPDialogListener, MAPServiceListener {

 private MAPStack mapStack;

 private MAPProvider mapProvider;

 MapServiceFactory servFact;

 SccpAddress destAddress = null;

 // The address created by passing the AddressNature, NumberingPlan and

 // actual address

 AddressString destReference = servFact.createAddressString(

 AddressNature.international_number, NumberingPlan.land_mobile,

 "204208300008002");

 SccpAddress origAddress = null;

 AddressString origReference = servFact.createAddressString(

 AddressNature.international_number, NumberingPlan.ISDN,

 "31628968300");

SS7 Stack MAP Usage

45

 MAPExample(SccpProvider sccpPprovider, SccpAddress address,

 SccpAddress remoteAddress) {

 origAddress = address;

 destAddress = remoteAddress;

 mapStack = new MAPStackImpl(sccpPprovider, origAddress);

 mapProvider = mapStack.getMAPProvider();

 servFact = mapProvider.getMapServiceFactory();

 mapProvider.addMAPDialogListener(this);

 mapProvider.addMAPServiceListener(this);

 }

 private static SccpProvider getSccpProvider() throws NamingException {

 // no arg is ok, if we run in JBoss

 InitialContext ctx = new InitialContext();

 try {

 String providerJndiName = "/mobicents/ss7/sccp";

 return ((SccpStack) ctx.lookup(providerJndiName)).getSccpProvider();

 } finally {

 ctx.close();

 }

 }

 private static SccpAddress createLocalAddress() {

 GlobalTitle gt = GlobalTitle

 .getInstance(

 NatureOfAddress.NATIONAL.getValue(),

 org.mobicents.protocols.ss7.indicator.NumberingPlan.ISDN_MOBILE,

 NatureOfAddress.NATIONAL, "1234");

 return new SccpAddress(gt, 0); // 0 is Sub-System number

 }

 private static SccpAddress createRemoteAddress() {

 GlobalTitle gt = GlobalTitle

 .getInstance(

 NatureOfAddress.NATIONAL.getValue(),

 org.mobicents.protocols.ss7.indicator.NumberingPlan.ISDN_MOBILE,

 NatureOfAddress.NATIONAL, "1572582");

Chapter 8. MAP

46

 return new SccpAddress(gt, 0); // 0 is Sub-System number

 }

 public void run() throws Exception {

 // First create Dialog

 MAPDialog mapDialog = mapProvider.createNewDialog(

 MAPApplicationContext.networkUnstructuredSsContextV2,

 destAddress, destReference, origAddress, origReference);

 // The dataCodingScheme is still byte, as I am not exactly getting how

 // to encode/decode this.

 byte ussdDataCodingScheme = 0x0f;

 // USSD String: *125*+31628839999#

 // The Charset is null, here we let system use default Charset (UTF-7 as

 // explained in GSM 03.38. However if MAP User wants, it can set its own

 // impl of Charset

 USSDString ussdString = servFact.createUSSDString("*125*+31628839999#",

 null);

 AddressString msisdn = this.servFact.createAddressString(

 AddressNature.international_number, NumberingPlan.ISDN,

 "31628838002");

 mapDialog.addProcessUnstructuredSSRequest(ussdDataCodingScheme,

 ussdString, msisdn);

 // This will initiate the TC-BEGIN with INVOKE component

 mapDialog.send();

 }

 public void onMAPAcceptInfo(MAPAcceptInfo mapAccptInfo) {

 // TODO Auto-generated method stub

 }

 public void onMAPCloseInfo(MAPCloseInfo mapCloseInfo) {

 // TODO Auto-generated method stub

 }

 public void onMAPOpenInfo(MAPOpenInfo mapOpenInfo) {

 // TODO Auto-generated method stub

SS7 Stack MAP Usage

47

 }

 public void onMAPProviderAbortInfo(MAPProviderAbortInfo mapProviderAbortInfo) {

 // TODO Auto-generated method stub

 }

 public void onMAPRefuseInfo(MAPRefuseInfo mapRefuseInfo) {

 // TODO Auto-generated method stub

 }

 public void onMAPUserAbortInfo(MAPUserAbortInfo mapUserAbortInfo) {

 // TODO Auto-generated method stub

 }

 public void onProcessUnstructuredSSIndication(

 ProcessUnstructuredSSIndication procUnstrInd) {

 // TODO Auto-generated method stub

 }

 public void onUnstructuredSSIndication(UnstructuredSSIndication unstrInd) {

 // TODO Auto-generated method stub

 }

 public static void main(String[] args) throws Exception {

 SccpProvider sccpProvider = getSccpProvider(); // JNDI lookup of SCCP

 SccpAddress localAddress = createLocalAddress();

 SccpAddress remoteAddress = createRemoteAddress();

 MAPExample example = new MAPExample(sccpProvider, localAddress,

 remoteAddress);

 example.run();

 }

}

Chapter 8. MAP

48

49

Appendix A. Java Development Kit

(JDK): Installing, Configuring and

Running
The Mobicents Platform is written in Java; therefore, before running any Mobicents server, you

must have a working Java Runtime Environment (JRE) or Java Development Kit (JDK) installed

on your system. In addition, the JRE or JDK you are using to run Mobicents must be version

5 or higher1.

Should I Install the JRE or JDK? Although you can run Mobicents servers using the Java

Runtime Environment, we assume that most users are developers interested in developing Java-

based, Mobicents-driven solutions. Therefore, in this guide we take the tact of showing how to

install the full Java Development Kit.

Should I Install the 32-Bit or the 64-Bit JDK, and Does It Matter? Briefly stated: if you are

running on a 64-Bit Linux or Windows platform, you should consider installing and running the 64-

bit JDK over the 32-bit one. Here are some heuristics for determining whether you would rather

run the 64-bit Java Virtual Machine (JVM) over its 32-bit cousin for your application:

• Wider datapath: the pipe between RAM and CPU is doubled, which improves the performance

of memory-bound applications when using a 64-bit JVM.

• 64-bit memory addressing gives virtually unlimited (1 exabyte) heap allocation. However large

heaps affect garbage collection.

• Applications that run with more than 1.5 GB of RAM (including free space for garbage collection

optimization) should utilize the 64-bit JVM.

• Applications that run on a 32-bit JVM and do not require more than minimal heap sizes will gain

nothing from a 64-bit JVM. Barring memory issues, 64-bit hardware with the same relative clock

speed and architecture is not likely to run Java applications faster than their 32-bit cousin.

Note that the following instructions detail how to download and install the 32-bit JDK, although the

steps are nearly identical for installing the 64-bit version.

Downloading. You can download the Sun JDK 5.0 (Java 2 Development Kit) from Sun's

website: http://java.sun.com/javase/downloads/index_jdk5.jsp. Click on the Download link next

to "JDK 5.0 Update <x>" (where <x> is the latest minor version release number). On the next

page, select your language and platform (both architecture—whether 32- or 64-bit—and operating

1 At this point in time, it is possible to run most Mobicents servers, such as the JAIN SLEE, using a Java 6 JRE or JDK.

Be aware, however, that presently the XML Document Management Server does not run on Java 6. We suggest checking

the Mobicents web site, forums or discussion pages if you need to inquire about the status of running the XML Document

Management Server with Java 6.

http://java.sun.com/javase/downloads/index_jdk5.jsp

Appendix A. Java Development ...

50

system), read and agree to the Java Development Kit 5.0 License Agreement, and proceed

to the download page.

The Sun website will present two download alternatives to you: one is an RPM inside a self-

extracting file (for example, jdk-1_5_0_16-linux-i586-rpm.bin), and the other is merely a self-

extracting file (e.g. jdk-1_5_0_16-linux-i586.bin). If you are installing the JDK on Red Hat

Enterprise Linux, Fedora, or another RPM-based Linux system, we suggest that you download

the self-extracting file containing the RPM package, which will set up and use the SysV service

scripts in addition to installing the JDK. We also suggest installing the self-extracting RPM file if

you will be running Mobicents in a production environment.

Installing. The following procedures detail how to install the Java Development Kit on both

Linux and Windows.

Procedure A.1. Installing the JDK on Linux

• Regardless of which file you downloaded, you can install it on Linux by simply making sure

the file is executable and then running it:

~]$ chmod +x "jdk-1_5_0_<minor_version>-linux-<architecture>-rpm.bin"

~]$./"jdk-1_5_0_<minor_version>-linux-<architecture>-rpm.bin"

You Installed Using the Non-RPM Installer, but Want the

SysV Service Scripts

If you download the non-RPM self-extracting file (and installed it), and you

are running on an RPM-based system, you can still set up the SysV service

scripts by downloading and installing one of the -compat packages from

the JPackage project. Remember to download the -compat package which

corresponds correctly to the minor release number of the JDK you installed.

The compat packages are available from ftp://jpackage.hmdc.harvard.edu/

JPackage/1.7/generic/RPMS.non-free/.

Important

You do not need to install a -compat package in addition to the JDK if you installed

the self-extracting RPM file! The -compat package merely performs the same SysV

service script set up that the RPM version of the JDK installer does.

Procedure A.2. Installing the JDK on Windows

• Using Explorer, simply double-click the downloaded self-extracting installer and follow the

instructions to install the JDK.

ftp://jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/
ftp://jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/

51

Configuring. Configuring your system for the JDK consists in two tasks: setting the JAVA_HOME

environment variable, and ensuring that the system is using the proper JDK (or JRE) using the

alternatives command. Setting JAVA_HOME usually overrides the values for java, javac and

java_sdk_1.5.0 in alternatives, but we will set them all just to be safe and consistent.

Setting the JAVA_HOME Environment Variable on Generic Linux

After installing the JDK, you must ensure that the JAVA_HOME environment variable exists and

points to the location of your JDK installation.

Setting the JAVA_HOME Environment Variable on Linux. You can determine whether

JAVA_HOME is set on your system by echoing it on the command line:

~]$ echo $JAVA_HOME

If JAVA_HOME is not set already, then you must set its value to the location of the JDK installation

on your system. You can do this by adding two lines to your personal ~/.bashrc configuration

file. Open ~/.bashrc (or create it if it doesn't exist) and add a line similar to the following one

anywhere inside the file:

export JAVA_HOME="/usr/lib/jvm/jdk1.5.0_<version>"

You should also set this environment variable for any other users who will be running

Mobicents (any environment variables exported from ~/.bashrc files are local to that user).

Setting java, javac and java_sdk_1.5.0 Using the alternatives command

Selecting the Correct System JVM on Linux using alternatives . On systems with

the alternatives command, including Red Hat Enterprise Linux and Fedora, you can easily

choose which JDK (or JRE) installation you wish to use, as well as which java and javac

executables should be run when called.

As the root user, call /usr/sbin/alternatives with the --config java option to select

between JDKs and JREs installed on your system:

root@localhost ~]$ /usr/sbin/alternatives --config java

There are 3 programs which provide 'java'.

 Selection Command

 1 /usr/lib/jvm/jre-1.5.0-gcj/bin/java

 2 /usr/lib/jvm/jre-1.6.0-sun/bin/java

*+ 3 /usr/lib/jvm/jre-1.5.0-sun/bin/java

Appendix A. Java Development ...

52

Enter to keep the current selection[+], or type selection number:

In our case, we want to use the Sun JDK, version 5, that we downloaded and installed, to

run the java executable. In the alternatives information printout above, a plus (+) next to a

number indicates the one currently being used. As per alternatives' instructions, pressing

Enter will simply keep the current JVM, or you can enter the number corresponding to the

JVM you would prefer to use.

Repeat the procedure above for the javac command and the java_sdk_1.5.0 environment

variable, as the root user:

~]$ /usr/sbin/alternatives --config javac

~]$ /usr/sbin/alternatives --config java_sdk_1.5.0

Setting the JAVA_HOME Environment Variable on Windows

For information on how to set environment variables in Windows, refer to http://

support.microsoft.com/kb/931715.

Testing. Finally, to make sure that you are using the correct JDK or Java version (5 or higher),

and that the java executable is in your PATH, run the java -version command in the terminal

from your home directory:

~]$ java -version

java version "1.5.0_16"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_16-b03)

Java HotSpot(TM) Client VM (build 1.5.0_16-b03, mixed mode, sharing)

Uninstalling. There is usually no reason (other than space concerns) to remove a particular

JDK from your system, given that you can switch between JDKs and JREs easily using

alternatives, and/or by setting JAVA_HOME.

Uninstalling the JDK on Linux. On RPM-based systems, you can uninstall the JDK using the

yum remove <jdk_rpm_name> command.

Uninstalling the JDK on Windows. On Windows systems, check the JDK entry in the Start

menu for an uninstall command, or use Add/Remove Programs.

http://support.microsoft.com/kb/931715
http://support.microsoft.com/kb/931715

53

Appendix B. Setting the

JBOSS_HOME Environment Variable
The Mobicents Platform (Mobicents) is built on top of the JBoss Application Server. You

do not need to set the JBOSS_HOME environment variable to run any of the Mobicents Platform

servers unless JBOSS_HOME is already set.

The best way to know for sure whether JBOSS_HOME was set previously or not is to perform a

simple check which may save you time and frustration.

Checking to See If JBOSS_HOME is Set on Unix. At the command line, echo $JBOSS_HOME

to see if it is currently defined in your environment:

~]$ echo $JBOSS_HOME

The Mobicents Platform and most Mobicents servers are built on top of the JBoss Application

Server (JBoss Application Server). When the Mobicents Platform or Mobicents servers are

built from source, then JBOSS_HOME must be set, because the Mobicents files are installed into (or

“over top of” if you prefer) a clean JBoss Application Server installation, and the build process

assumes that the location pointed to by the JBOSS_HOME environment variable at the time of

building is the JBoss Application Server installation into which you want it to install the Mobicents

files.

This guide does not detail building the Mobicents Platform or any Mobicents servers from source.

It is nevertheless useful to understand the role played by JBoss AS and JBOSS_HOME in the

Mobicents ecosystem.

The immediately-following section considers whether you need to set JBOSS_HOME at all and, if

so, when. The subsequent sections detail how to set JBOSS_HOME on Unix and Windows

Important

Even if you fall into the category below of not needing to set JBOSS_HOME, you may

want to for various reasons anyway. Also, even if you are instructed that you do

not need to set JBOSS_HOME, it is good practice nonetheless to check and make

sure that JBOSS_HOME actually isn't set or defined on your system for some reason.

This can save you both time and frustration.

You DO NOT NEED to set JBOSS_HOME if...

• ...you have installed the Mobicents Platform binary distribution.

Appendix B. Setting the JBOSS...

54

• ...you have installed a Mobicents server binary distribution which bundles JBoss Application

Server.

You MUST set JBOSS_HOME if...

• ...you are installing the Mobicents Platform or any of the Mobicents servers from source.

• ...you are installing the Mobicents Platform binary distribution, or one of the Mobicents server

binary distributions, which do not bundle JBoss Application Server.

Naturally, if you installed the Mobicents Platform or one of the Mobicents server binary releases

which do not bundle JBoss Application Server, yet requires it to run, then you should install

before setting JBOSS_HOME or proceeding with anything else.

Setting the JBOSS_HOME Environment Variable on Unix. The JBOSS_HOME environment

variable must point to the directory which contains all of the files for the Mobicents Platform or

individual Mobicents server that you installed. As another hint, this topmost directory contains a

bin subdirectory.

Setting JBOSS_HOME in your personal ~/.bashrc startup script carries the advantage of retaining

effect over reboots. Each time you log in, the environment variable is sure to be set for you, as a

user. On Unix, it is possible to set JBOSS_HOME as a system-wide environment variable, by defining

it in /etc/bashrc, but this method is neither recommended nor detailed in these instructions.

Procedure B.1. To Set JBOSS_HOME on Unix...

1. Open the ~/.bashrc startup script, which is a hidden file in your home directory, in a text

editor, and insert the following line on its own line while substituting for the actual install

location on your system:

export JBOSS_HOME="/home/<username>/<path>/<to>/<install_directory>"

2. Save and close the .bashrc startup script.

3. You should source the .bashrc script to force your change to take effect, so that JBOSS_HOME

becomes set for the current session1.

~]$ source ~/.bashrc

4. Finally, ensure that JBOSS_HOME is set in the current session, and actually points to the correct

location:

1 Note that any other terminals which were opened prior to your having altered .bashrc will need to source

~/.bashrc as well should they require access to JBOSS_HOME.

You MUST set JBOSS_HOME if...

55

Note

The command line usage below is based upon a binary installation of

the Mobicents Platform. In this sample output, JBOSS_HOME has been set

correctly to the topmost_directory of the Mobicents installation. Note that

if you are installing one of the standalone Mobicents servers (with JBoss AS

bundled!), then JBOSS_HOME would point to the topmost_directory of your

server installation.

~]$ echo $JBOSS_HOME

/home/silas/

Setting the JBOSS_HOME Environment Variable on Windows. The JBOSS_HOME

environment variable must point to the directory which contains all of the files for the Mobicents

Platform or individual Mobicents server that you installed. As another hint, this topmost directory

contains a bin subdirectory.

For information on how to set environment variables in recent versions of Windows, refer to http://

support.microsoft.com/kb/931715.

http://support.microsoft.com/kb/931715
http://support.microsoft.com/kb/931715

56

57

Appendix C. Revision History
Revision History

Revision 1.0 Wed June 2 2010 BartoszBaranowski

Creation of the Mobicents SS7 Stack User Guide.

Revision 1.1 Tue Dec 21 2010 AmitBhayani

Creation of the Mobicents SS7 Stack User Guide.

58

59

Index
F
feedback, viii

60

	Mobicents SS7 Stack User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Provide feedback to the authors!

	Chapter 1. Introduction to Mobicents SS7 Stack
	1.1. Time Division Multiplexing

	Chapter 2. The Basics
	2.1. Linkset
	2.2. Shell Management client
	2.3. SS7 Service
	2.4. Mobicents SS7 Stack Usage

	Chapter 3. Installation and Running
	3.1. Installing
	3.1.1. Binary Service
	3.1.2. Installing Binary
	3.1.3. Running Mobicents SS7 Stack
	3.1.3.1. Starting
	3.1.3.2. Stopping

	3.2. Configuring Mobicents SS7 Stack
	3.2.1. Configuring LinksetFactory
	3.2.2. Configuring LinksetManager
	3.2.3. Configuring ShellExecutor
	3.2.4. Configuring SS7Service

	3.3. Setup from source
	3.3.1. Release Source Code Building
	3.3.2. Development Trunk Source Building

	Chapter 4. Hardware Setup
	4.1. Sangoma
	4.2. Diguim
	4.3. Dialogic

	Chapter 5. Shell Command Line
	5.1. Introduction
	5.2. Starting
	5.3. Linkset Management
	5.3.1. Create Linkset
	5.3.2. Remove Linkset
	5.3.3. Activate Linkset
	5.3.4. Deactivate Linkset
	5.3.5. Create Link
	5.3.6. Remove Link
	5.3.7. Activate Link
	5.3.8. Deactivate Link
	5.3.9. Show status

	5.4. SCCP Management

	Chapter 6. SCCP
	6.1. Routing Management
	6.2. Routing Configuration
	6.3. Mobicents SS7 Stack SCCP Usage
	6.4. Access Point
	6.5. SCCP User Part Example

	Chapter 7. TCAP
	7.1. Mobicents SS7 Stack TCAP Usage
	7.2. Mobicents SS7 Stack TCAP User Part Example

	Chapter 8. MAP
	8.1. SS7 Stack MAP Usage
	8.2. SS7 Stack MAP Usage

	Appendix A. Java Development Kit (JDK): Installing, Configuring and Running
	Appendix B. Setting the JBOSS_HOME Environment Variable
	Appendix C. Revision History
	Index

