
Using the Infinispan Hot Rod Server

Table of Contents

1. Using Hot Rod Server. 1

1.1. Hot Rod Java clients . 1

1.1.1. Programmatically Configuring Hot Rod Java Clients . 1

1.1.2. Configuring Hot Rod Java Client Property Files. 1

1.1.3. Authentication . 3

1.1.4. Encryption . 7

1.1.5. Basic API . 9

1.1.6. RemoteCache(.keySet|.entrySet|.values) . 10

1.1.7. Remote Iterator . 10

1.1.8. Versioned API . 12

1.1.9. Streaming API . 13

1.1.10. Creating Event Listeners. 14

1.1.11. Removing Event Listeners . 16

1.1.12. Filtering Events . 16

1.1.13. Customizing Events . 19

1.1.14. Filter and Custom Events . 22

1.1.15. Event Marshalling . 24

1.1.16. Listener State Handling. 25

1.1.17. Listener Failure Handling . 25

1.1.18. Near Caching . 25

1.1.19. Unsupported methods . 27

1.1.20. Return values. 27

2. Hot Rod Transactions . 29

2.1. Configuring the Server . 29

2.2. Configuring Hot Rod Clients. 29

2.2.1. TransactionManagerLookup Interface . 30

2.2.2. Transaction Modes . 30

2.3. Overriding Configuration for Cache Instances . 31

2.4. Detecting Conflicts with Transactions . 31

2.5. Using the Configured Transaction Manager and Transaction Mode . 33

2.6. Overriding the Transaction Manager . 34

2.7. Overriding the Transaction Mode . 35

2.7.1. Client Intelligence . 35

2.7.2. Request Balancing. 36

2.7.3. Persistent connections. 36

2.7.4. Marshalling data . 37

2.7.5. Reading data in different data formats . 38

2.7.6. Statistics. 39

2.7.7. Multi-Get Operations . 39

2.7.8. Failover capabilities . 39

2.7.9. Site Cluster Failover . 40

2.7.10. Manual Site Cluster Switch. 40

2.7.11. Monitoring the Hot Rod client . 40

2.7.12. Concurrent Updates . 41

Chapter 1. Using Hot Rod Server

The Infinispan Server distribution contains a server module that implements Infinispan’s custom

binary protocol called Hot Rod. The protocol was designed to enable faster client/server

interactions compared to other existing text based protocols and to allow clients to make more

intelligent decisions with regards to load balancing, failover and even data location operations.

To connect to Infinispan over this highly efficient Hot Rod protocol you can either use one of the

clients described in this chapter, or use higher level tools such as Hibernate OGM.

1.1. Hot Rod Java clients

Use Java clients to access data through a Infinispan Hot Rod server.

Infinispan provides a reference Hot Rod Java client implementation.

Visit the Hot Rod clients page on infinispan.org to download the Java client and

find client implementations in other languages.

1.1.1. Programmatically Configuring Hot Rod Java Clients

Use the ConfigurationBuilder class to generate immutable configuration objects that you can pass to

RemoteCacheManager.

For example, create a client instance with the Java fluent API as follows:

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb

 = new org.infinispan.client.hotrod.configuration.ConfigurationBuilder();

cb.marshaller(new org.infinispan.commons.marshall.ProtoStreamMarshaller())

 .statistics()

 .enable()

 .jmxDomain("org.infinispan")

 .addServer()

 .host("127.0.0.1")

 .port(11222);

RemoteCacheManager rmc = new RemoteCacheManager(cb.build());

Reference

org.infinispan.client.hotrod.configuration.ConfigurationBuilder

1.1.2. Configuring Hot Rod Java Client Property Files

Add hotrod-client.properties to your classpath so that the client passes configuration to

RemoteCacheManager.

To use hotrod-client.properties somewhere other than your classpath, do:

1

ConfigurationBuilder b = new ConfigurationBuilder();

Properties p = new Properties();

try(Reader r = new FileReader("/path/to/hotrod-client.properties")) {

 p.load(r);

 b.withProperties(p);

}

RemoteCacheManager rcm = new RemoteCacheManager(b.build());

Example hotrod-client.properties

Hot Rod client configuration

infinispan.client.hotrod.server_list = 127.0.0.1:11222

infinispan.client.hotrod.marshaller =

org.infinispan.commons.marshall.ProtoStreamMarshaller

infinispan.client.hotrod.async_executor_factory =

org.infinispan.client.hotrod.impl.async.DefaultAsyncExecutorFactory

infinispan.client.hotrod.default_executor_factory.pool_size = 1

infinispan.client.hotrod.hash_function_impl.2 =

org.infinispan.client.hotrod.impl.consistenthash.ConsistentHashV2

infinispan.client.hotrod.tcp_no_delay = true

infinispan.client.hotrod.tcp_keep_alive = false

infinispan.client.hotrod.request_balancing_strategy =

org.infinispan.client.hotrod.impl.transport.tcp.RoundRobinBalancingStrategy

infinispan.client.hotrod.key_size_estimate = 64

infinispan.client.hotrod.value_size_estimate = 512

infinispan.client.hotrod.force_return_values = false

Connection pooling configuration

maxActive = -1

maxIdle = -1

whenExhaustedAction = 1

minEvictableIdleTimeMillis=300000

minIdle = 1

Substitute Java system properties to replace values at runtime, for example:

infinispan.client.hotrod.server_list = ${server_list}

The preceding example expands the value of the

infinispan.client.hotrod.server_list property to the value of the server_list Java

system property, which comes from system property named

jboss.bind.address.management or defaults to 127.0.0.1.

Reference

• org.infinispan.client.hotrod.configuration lists and describes Hot Rod client properties.

• org.infinispan.client.hotrod.RemoteCacheManager

2

• Java system properties

1.1.3. Authentication

If the server has set up authentication, you need to configure your client accordingly. Depending on

the mechs enabled on the server, the client must provide the required information.

DIGEST-MD5

DIGEST-MD5 is the recommended approach for simple username/password authentication

scenarios. If you are using the default realm on the server ("ApplicationRealm"), all you need to do is

provide your credentials as follows:

Hot Rod client configuration with DIGEST-MD5 authentication

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();

clientBuilder

 .addServer()

 .host("127.0.0.1")

 .port(11222)

 .security()

 .ssl()

 .username("myuser")

 .password("qwer1234!");

remoteCacheManager = new RemoteCacheManager(clientBuilder.build());

RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

PLAIN

The PLAIN mechanism is not really recommended unless the connection is also encrypted, as

anyone can sniff the clear-text password being sent along the wire.

Hot Rod client configuration with DIGEST-MD5 authentication

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();

clientBuilder

 .addServer()

 .host("127.0.0.1")

 .port(11222)

 .security()

 .authentication()

 .saslMechanism("PLAIN")

 .username("myuser")

 .password("qwer1234!");

remoteCacheManager = new RemoteCacheManager(clientBuilder.build());

RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

3

EXTERNAL

The EXTERNAL mechanism is special in that it doesn’t explicitly provide credentials but uses the

client certificate as identity. In order for this to work, in addition to the TrustStore (to validate the

server certificate) you need to provide a KeyStore (to supply the client certificate).

Hot Rod client configuration with EXTERNAL authentication (client cert)

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();

clientBuilder

 .addServer()

 .host("127.0.0.1")

 .port(11222)

 .security()

 .ssl()

 // TrustStore is a KeyStore which contains part of the server certificate

chain (e.g. the CA Root public cert)

 .trustStoreFileName("/path/to/truststore")

 .trustStorePassword("truststorepassword".toCharArray())

 // KeyStore containing this client's own certificate

 .keyStoreFileName("/path/to/keystore")

 .keyStorePassword("keystorepassword".toCharArray())

 .authentication()

 .saslMechanism("EXTERNAL");

remoteCacheManager = new RemoteCacheManager(clientBuilder.build());

RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

For more details, read the Encryption section below.

GSSAPI (Kerberos)

GSSAPI/Kerberos requires a much more complex setup, but it is used heavily in enterprises with

centralized authentication servers. To successfully authenticate with Kerberos, you need to create a

LoginContext. This will obtain a Ticket Granting Ticket (TGT) which will be used as a token to

authenticate with the service.

You will need to define a login module in a login configuration file:

gss.conf

GssExample {

 com.sun.security.auth.module.Krb5LoginModule required client=TRUE;

};

If you are using the IBM JDK, the above becomes:

4

gss-ibm.conf

GssExample {

 com.ibm.security.auth.module.Krb5LoginModule required client=TRUE;

};

You will also need to set the following system properties:

java.security.auth.login.config=gss.conf

java.security.krb5.conf=/etc/krb5.conf

The krb5.conf file is dependent on your environment and needs to point to your KDC. Ensure that

you can authenticate via Kerberos using kinit.

Next up, configure your client as follows:

Hot Rod client GSSAPI configuration

LoginContext lc = new LoginContext("GssExample", new BasicCallbackHandler("krb_user",

"krb_password".toCharArray()));

lc.login();

Subject clientSubject = lc.getSubject();

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();

clientBuilder

 .addServer()

 .host("127.0.0.1")

 .port(11222)

 .security()

 .authentication()

 .enable()

 .serverName("infinispan-server")

 .saslMechanism("GSSAPI")

 .clientSubject(clientSubject)

 .callbackHandler(new BasicCallbackHandler());

remoteCacheManager = new RemoteCacheManager(clientBuilder.build());

RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

For brevity we used the same callback handler both for obtaining the client subject and for

handling authentication in the SASL GSSAPI mech, however different callbacks will actually be

invoked: NameCallback and PasswordCallback are needed to construct the client subject, while the

AuthorizeCallback will be called during the SASL authentication.

Custom CallbackHandlers

In all of the above examples, the Hot Rod client is setting up a default CallbackHandler for you that

supplies the provided credentials to the SASL mechanism. For advanced scenarios it may be

necessary to provide your own custom CallbackHandler:

5

Hot Rod client configuration with authentication via callback

public class MyCallbackHandler implements CallbackHandler {

 final private String username;

 final private char[] password;

 final private String realm;

 public MyCallbackHandler(String username, String realm, char[] password) {

 this.username = username;

 this.password = password;

 this.realm = realm;

 }

 @Override

 public void handle(Callback[] callbacks) throws IOException,

UnsupportedCallbackException {

 for (Callback callback : callbacks) {

 if (callback instanceof NameCallback) {

 NameCallback nameCallback = (NameCallback) callback;

 nameCallback.setName(username);

 } else if (callback instanceof PasswordCallback) {

 PasswordCallback passwordCallback = (PasswordCallback) callback;

 passwordCallback.setPassword(password);

 } else if (callback instanceof AuthorizeCallback) {

 AuthorizeCallback authorizeCallback = (AuthorizeCallback) callback;

 authorizeCallback.setAuthorized(authorizeCallback.getAuthenticationID()

.equals(

 authorizeCallback.getAuthorizationID()));

 } else if (callback instanceof RealmCallback) {

 RealmCallback realmCallback = (RealmCallback) callback;

 realmCallback.setText(realm);

 } else {

 throw new UnsupportedCallbackException(callback);

 }

 }

 }

}

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();

clientBuilder

 .addServer()

 .host("127.0.0.1")

 .port(11222)

 .security()

 .authentication()

 .enable()

 .serverName("myhotrodserver")

 .saslMechanism("DIGEST-MD5")

 .callbackHandler(new MyCallbackHandler("myuser", "ApplicationRealm",

"qwer1234!".toCharArray()));

remoteCacheManager = new RemoteCacheManager(clientBuilder.build());

6

RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

The actual type of callbacks that your CallbackHandler will need to be able to handle are mech-

specific, so the above is just a simple example.

1.1.4. Encryption

Encryption uses TLS/SSL, so it requires setting up an appropriate server certificate chain. Generally,

a certificate chain looks like the following:

Figure 1. Certificate chain

In the above example there is one certificate authority "CA" which has issued a certificate for

"HotRodServer". In order for a client to trust the server, it needs at least a portion of the above

chain (usually, just the public certificate for "CA"). This certificate needs to placed in a keystore and

used as a TrustStore on the client and used as shown below:

7

Hot Rod client configuration with TLS (server cert)

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();

clientBuilder

 .addServer()

 .host("127.0.0.1")

 .port(11222)

 .security()

 .ssl()

 // TrustStore is a KeyStore which contains part of the server certificate

chain (e.g. the CA Root public cert)

 .trustStoreFileName("/path/to/truststore")

 .trustStorePassword("truststorepassword".toCharArray());

RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

SNI

The server may have been configured with TLS/SNI support (Server Name Indication). This means

that the server is presenting multiple identities (probably bound to separate cache containers). The

client can specify which identity to connect to by specifying its name:

Hot Rod client configuration with SNI (server cert)

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();

clientBuilder

 .addServer()

 .host("127.0.0.1")

 .port(11222)

 .security()

 .ssl()

 .sniHostName("myservername")

 // TrustStore is a KeyStore which contains part of the server certificate

chain (e.g. the CA Root public cert)

 .trustStoreFileName("/path/to/truststore")

 .trustStorePassword("truststorepassword".toCharArray());

RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

Client certificates

With the above configurations the client trusts the server. For increased security, a server

administrator may have set up the server to require the client to offer a valid certificate for mutual

trust. This kind of configuration requires the client to present its own certificate, usually issued by

the same certificate authority as the server. This certificate must be stored in a keystore and used as

follows:

8

Hot Rod client configuration with TLS (server and client cert)

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();

clientBuilder

 .addServer()

 .host("127.0.0.1")

 .port(11222)

 .security()

 .ssl()

 // TrustStore is a KeyStore which contains part of the server certificate

chain (e.g. the CA Root public cert)

 .trustStoreFileName("/path/to/truststore")

 .trustStorePassword("truststorepassword".toCharArray())

 // KeyStore containing this client's own certificate

 .keyStoreFileName("/path/to/keystore")

 .keyStorePassword("keystorepassword".toCharArray())

RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

Please read the KeyTool documentation for more details on KeyStores. Additionally, the KeyStore

Explorer is a great GUI tool for easily managing KeyStores.

1.1.5. Basic API

Below is a sample code snippet on how the client API can be used to store or retrieve information

from a Hot Rod server using the Java Hot Rod client. It assumes that a Hot Rod server has been

started bound to the default location (localhost:11222)

//API entry point, by default it connects to localhost:11222

CacheContainer cacheContainer = new RemoteCacheManager();

//obtain a handle to the remote default cache

Cache<String, String> cache = cacheContainer.getCache();

//now add something to the cache and make sure it is there

cache.put("car", "ferrari");

assert cache.get("car").equals("ferrari");

//remove the data

cache.remove("car");

assert !cache.containsKey("car") : "Value must have been removed!";

The client API maps the local API: RemoteCacheManager corresponds to DefaultCacheManager

(both implement CacheContainer). This common API facilitates an easy migration from local calls

to remote calls through Hot Rod: all one needs to do is switch between DefaultCacheManager and

RemoteCacheManager - which is further simplified by the common CacheContainer interface that

both inherit.

9

1.1.6. RemoteCache(.keySet|.entrySet|.values)

The collection methods keySet, entrySet and values are backed by the remote cache. That is that

every method is called back into the RemoteCache. This is useful as it allows for the various keys,

entries or values to be retrieved lazily, and not requiring them all be stored in the client memory at

once if the user does not want. These collections adhere to the Map specification being that add and

addAll are not supported but all other methods are supported.

One thing to note is the Iterator.remove and Set.remove or Collection.remove methods require more

than 1 round trip to the server to operate. You can check out the RemoteCache Javadoc to see more

details about these and the other methods.

Iterator Usage

The iterator method of these collections uses retrieveEntries internally, which is described below.

If you notice retrieveEntries takes an argument for the batch size. There is no way to provide this

to the iterator. As such the batch size can be configured via system property

infinispan.client.hotrod.batch_size or through the ConfigurationBuilder when configuring the

RemoteCacheManager.

Also the retrieveEntries iterator returned is Closeable as such the iterators from keySet, entrySet

and values return an AutoCloseable variant. Therefore you should always close these `Iterator`s

when you are done with them.

try (CloseableIterator<Entry<K, V>> iterator = remoteCache.entrySet().iterator) {

 ...

}

What if I want a deep copy and not a backing collection?

Previous version of RemoteCache allowed for the retrieval of a deep copy of the keySet. This is still

possible with the new backing map, you just have to copy the contents yourself. Also you can do

this with entrySet and values, which we didn’t support before.

Set<K> keysCopy = remoteCache.keySet().stream().collect(Collectors.toSet());

Please use extreme cautiong with this as a large number of keys can and will cause

OutOfMemoryError in the client.

Set keys = remoteCache.keySet();

1.1.7. Remote Iterator

Alternatively, if memory is a concern (different batch size) or you wish to do server side filtering or

conversion), use the remote iterator api to retrieve entries from the server. With this method you

can limit the entries that are retrieved or even returned a converted value if you dont' need all

10

properties of your entry.

// Retrieve all entries in batches of 1000

int batchSize = 1000;

try (CloseableIterator<Entry<Object, Object>> iterator = remoteCache.retrieveEntries

(null, batchSize)) {

 while(iterator.hasNext()) {

 // Do something

 }

}

// Filter by segment

Set<Integer> segments = ...

try (CloseableIterator<Entry<Object, Object>> iterator = remoteCache.retrieveEntries

(null, segments, batchSize)) {

 while(iterator.hasNext()) {

 // Do something

 }

}

// Filter by custom filter

try (CloseableIterator<Entry<Object, Object>> iterator = remoteCache.retrieveEntries(

"myFilterConverterFactory", segments, batchSize)) {

 while(iterator.hasNext()) {

 // Do something

 }

}

In order to use custom filters, it’s necessary to deploy them first in the server. Follow the steps:

• Create a factory for the filter extending KeyValueFilterConverterFactory, annotated with

@NamedFactory containing the name of the factory, example:

11

import java.io.Serializable;

import org.infinispan.filter.AbstractKeyValueFilterConverter;

import org.infinispan.filter.KeyValueFilterConverter;

import org.infinispan.filter.KeyValueFilterConverterFactory;

import org.infinispan.filter.NamedFactory;

import org.infinispan.metadata.Metadata;

@NamedFactory(name = "myFilterConverterFactory")

public class MyKeyValueFilterConverterFactory implements

KeyValueFilterConverterFactory {

 @Override

 public KeyValueFilterConverter<String, SampleEntity1, SampleEntity2>

getFilterConverter() {

 return new MyKeyValueFilterConverter();

 }

 // Filter implementation. Should be serializable or externalizable for DIST caches

 static class MyKeyValueFilterConverter extends AbstractKeyValueFilterConverter

<String, SampleEntity1, SampleEntity2> implements Serializable {

 @Override

 public SampleEntity2 filterAndConvert(String key, SampleEntity1 entity, Metadata

metadata) {

 // returning null will case the entry to be filtered out

 // return SampleEntity2 will convert from the cache type SampleEntity1

 }

 @Override

 public MediaType format() {

 // returns the MediaType that data should be presented to this converter.

 // When ommitted, the server will use "application/x-java-object".

 // Returning null will cause the filter/converter to be done in the storage

format.

 }

 }

}

• Create a jar with a META-INF/services/org.infinispan.filter.KeyValueFilterConverterFactory file

and within it, write the fully qualified class name of the filter factory class implementation.

• Optional: If the filter uses custom key/value classes, these must be included in the JAR so that

the filter can correctly unmarshall key and/or value instances.

• Deploy the JAR file in the Infinispan Server.

1.1.8. Versioned API

A RemoteCacheManager provides instances of RemoteCache interface that represents a handle to

the named or default cache on the remote cluster. API wise, it extends the Cache interface to which

it also adds some new methods, including the so called versioned API. Please find below some

12

examples of this API link:#server_hotrod_failover[but to understand the motivation behind it, make

sure you read this section.

The code snippet bellow depicts the usage of these versioned methods:

// To use the versioned API, remote classes are specifically needed

RemoteCacheManager remoteCacheManager = new RemoteCacheManager();

RemoteCache<String, String> cache = remoteCacheManager.getCache();

remoteCache.put("car", "ferrari");

RemoteCache.VersionedValue valueBinary = remoteCache.getVersioned("car");

// removal only takes place only if the version has not been changed

// in between. (a new version is associated with 'car' key on each change)

assert remoteCache.remove("car", valueBinary.getVersion());

assert !cache.containsKey("car");

In a similar way, for replace:

remoteCache.put("car", "ferrari");

RemoteCache.VersionedValue valueBinary = remoteCache.getVersioned("car");

assert remoteCache.replace("car", "lamborghini", valueBinary.getVersion());

For more details on versioned operations refer to RemoteCache 's javadoc.

1.1.9. Streaming API

When sending / receiving large objects, it might make sense to stream them between the client and

the server. The Streaming API implements methods similar to the Hot Rod Basic API and Hot Rod

Versioned API described above but, instead of taking the value as a parameter, they return

instances of InputStream and OutputStream. The following example shows how one would write a

potentially large object:

RemoteStreamingCache<String> streamingCache = remoteCache.streaming();

OutputStream os = streamingCache.put("a_large_object");

os.write(...);

os.close();

Reading such an object through streaming:

RemoteStreamingCache<String> streamingCache = remoteCache.streaming();

InputStream is = streamingCache.get("a_large_object");

for(int b = is.read(); b >= 0; b = is.read()) {

 ...

}

is.close();

13

The streaming API does not apply marshalling/unmarshalling to the values. For

this reason you cannot access the same entries using both the streaming and non-

streaming API at the same time, unless you provide your own marshaller to detect

this situation.

The InputStream returned by the RemoteStreamingCache.get(K key) method implements the

VersionedMetadata interface, so you can retrieve version and expiration information:

RemoteStreamingCache<String> streamingCache = remoteCache.streaming();

InputStream is = streamingCache.get("a_large_object");

int version = ((VersionedMetadata) is).getVersion();

for(int b = is.read(); b >= 0; b = is.read()) {

 ...

}

is.close();

Conditional write methods (putIfAbsent, replace) only perform the actual condition

check once the value has been completely sent to the server (i.e. when the close()

method has been invoked on the OutputStream.

1.1.10. Creating Event Listeners

Java Hot Rod clients can register listeners to receive cache-entry level events. Cache entry created,

modified and removed events are supported.

Creating a client listener is very similar to embedded listeners, except that different annotations

and event classes are used. Here’s an example of a client listener that prints out each event

received:

14

import org.infinispan.client.hotrod.annotation.*;

import org.infinispan.client.hotrod.event.*;

@ClientListener

public class EventPrintListener {

 @ClientCacheEntryCreated

 public void handleCreatedEvent(ClientCacheEntryCreatedEvent e) {

 System.out.println(e);

 }

 @ClientCacheEntryModified

 public void handleModifiedEvent(ClientCacheEntryModifiedEvent e) {

 System.out.println(e);

 }

 @ClientCacheEntryRemoved

 public void handleRemovedEvent(ClientCacheEntryRemovedEvent e) {

 System.out.println(e);

 }

}

ClientCacheEntryCreatedEvent and ClientCacheEntryModifiedEvent instances provide information on

the affected key, and the version of the entry. This version can be used to invoke conditional

operations on the server, such as replaceWithVersion or removeWithVersion.

ClientCacheEntryRemovedEvent events are only sent when the remove operation succeeds. In other

words, if a remove operation is invoked but no entry is found or no entry should be removed, no

event is generated. Users interested in removed events, even when no entry was removed, can

develop event customization logic to generate such events. More information can be found in the

customizing client events section.

All ClientCacheEntryCreatedEvent, ClientCacheEntryModifiedEvent and ClientCacheEntryRemovedEvent

event instances also provide a boolean isCommandRetried() method that will return true if the write

command that caused this had to be retried again due to a topology change. This could be a sign

that this event has been duplicated or another event was dropped and replaced (eg:

ClientCacheEntryModifiedEvent replaced ClientCacheEntryCreatedEvent).

Once the client listener implementation has been created, it needs to be registered with the server.

To do so, execute:

RemoteCache<?, ?> cache = ...

cache.addClientListener(new EventPrintListener());

15

1.1.11. Removing Event Listeners

When an client event listener is not needed any more, it can be removed:

EventPrintListener listener = ...

cache.removeClientListener(listener);

1.1.12. Filtering Events

In order to avoid inundating clients with events, users can provide filtering functionality to limit

the number of events fired by the server for a particular client listener. To enable filtering, a cache

event filter factory needs to be created that produces filter instances:

import org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory;

import org.infinispan.filter.NamedFactory;

@NamedFactory(name = "static-filter")

class StaticCacheEventFilterFactory implements CacheEventFilterFactory {

 @Override

 public CacheEventFilterFactory<Integer, String> getFilter(Object[] params) {

 return new StaticCacheEventFilter();

 }

}

// Serializable, Externalizable or marshallable with Infinispan Externalizers

// needed when running in a cluster

class StaticCacheEventFilter implements CacheEventFilter<Integer, String>,

Serializable {

 @Override

 public boolean accept(Integer key, String oldValue, Metadata oldMetadata,

 String newValue, Metadata newMetadata, EventType eventType) {

 if (key.equals(1)) // static key

 return true;

 return false;

 }

}

The cache event filter factory instance defined above creates filter instances which statically filter

out all entries except the one whose key is 1.

To be able to register a listener with this cache event filter factory, the factory has to be given a

unique name, and the Hot Rod server needs to be plugged with the name and the cache event filter

factory instance. Plugging the Infinispan Server with a custom filter involves the following steps:

1. Create a JAR file with the filter implementation within it.

2. Optional: If the cache uses custom key/value classes, these must be included in the JAR so that

the callbacks can be executed with the correctly unmarshalled key and/or value instances. If the

16

client listener has useRawData enabled, this is not necessary since the callback key/value

instances will be provided in binary format.

3. Create a META-

INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory file

within the JAR file and within it, write the fully qualified class name of the filter class

implementation.

4. Deploy the JAR file in the Infinispan Server.

On top of that, the client listener needs to be linked with this cache event filter factory by adding

the factory’s name to the @ClientListener annotation:

@ClientListener(filterFactoryName = "static-filter")

public class EventPrintListener { ... }

And, register the listener with the server:

RemoteCache<?, ?> cache = ...

cache.addClientListener(new EventPrintListener());

Dynamic filter instances that filter based on parameters provided when the listener is registered

are also possible. Filters use the parameters received by the filter factories to enable this option. For

example:

17

import org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory;

import org.infinispan.notifications.cachelistener.filter.CacheEventFilter;

class DynamicCacheEventFilterFactory implements CacheEventFilterFactory {

 @Override

 public CacheEventFilter<Integer, String> getFilter(Object[] params) {

 return new DynamicCacheEventFilter(params);

 }

}

// Serializable, Externalizable or marshallable with Infinispan Externalizers

// needed when running in a cluster

class DynamicCacheEventFilter implements CacheEventFilter<Integer, String>,

Serializable {

 final Object[] params;

 DynamicCacheEventFilter(Object[] params) {

 this.params = params;

 }

 @Override

 public boolean accept(Integer key, String oldValue, Metadata oldMetadata,

 String newValue, Metadata newMetadata, EventType eventType) {

 if (key.equals(params[0])) // dynamic key

 return true;

 return false;

 }

}

The dynamic parameters required to do the filtering are provided when the listener is registered:

RemoteCache<?, ?> cache = ...

cache.addClientListener(new EventPrintListener(), new Object[]{1}, null);

Filter instances have to marshallable when they are deployed in a cluster so that

the filtering can happen right where the event is generated, even if the even is

generated in a different node to where the listener is registered. To make them

marshallable, either make them extend Serializable, Externalizable, or provide a

custom Externalizer for them.

Skipping Notifications

Include the SKIP_LISTENER_NOTIFICATION flag when calling remote API methods to perform

operations without getting event notifications from the server. For example, to prevent listener

notifications when creating or modifying values, set the flag as follows:

18

remoteCache.withFlags(Flag.SKIP_LISTENER_NOTIFICATION).put(1, "one");

1.1.13. Customizing Events

The events generated by default contain just enough information to make the event relevant but

they avoid cramming too much information in order to reduce the cost of sending them. Optionally,

the information shipped in the events can be customised in order to contain more information,

such as values, or to contain even less information. This customization is done with

CacheEventConverter instances generated by a CacheEventConverterFactory:

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory;

import org.infinispan.notifications.cachelistener.filter.CacheEventConverter;

import org.infinispan.filter.NamedFactory;

@NamedFactory(name = "static-converter")

class StaticConverterFactory implements CacheEventConverterFactory {

 final CacheEventConverter<Integer, String, CustomEvent> staticConverter = new

StaticCacheEventConverter();

 public CacheEventConverter<Integer, String, CustomEvent> getConverter(final

Object[] params) {

 return staticConverter;

 }

}

// Serializable, Externalizable or marshallable with Infinispan Externalizers

// needed when running in a cluster

class StaticCacheEventConverter implements CacheEventConverter<Integer, String,

CustomEvent>, Serializable {

 public CustomEvent convert(Integer key, String oldValue, Metadata oldMetadata,

String newValue, Metadata newMetadata, EventType eventType) {

 return new CustomEvent(key, newValue);

 }

}

// Needs to be Serializable, Externalizable or marshallable with Infinispan

Externalizers

// regardless of cluster or local caches

static class CustomEvent implements Serializable {

 final Integer key;

 final String value;

 CustomEvent(Integer key, String value) {

 this.key = key;

 this.value = value;

 }

}

In the example above, the converter generates a new custom event which includes the value as well

as the key in the event. This will result in bigger event payloads compared with default events, but

19

if combined with filtering, it can reduce its network bandwidth cost.

The target type of the converter must be either Serializable or Externalizable. In

this particular case of converters, providing an Externalizer will not work by

default since the default Hot Rod client marshaller does not support them.

Handling custom events requires a slightly different client listener implementation to the one

demonstrated previously. To be more precise, it needs to handle ClientCacheEntryCustomEvent

instances:

import org.infinispan.client.hotrod.annotation.*;

import org.infinispan.client.hotrod.event.*;

@ClientListener

public class CustomEventPrintListener {

 @ClientCacheEntryCreated

 @ClientCacheEntryModified

 @ClientCacheEntryRemoved

 public void handleCustomEvent(ClientCacheEntryCustomEvent<CustomEvent> e) {

 System.out.println(e);

 }

}

The ClientCacheEntryCustomEvent received in the callback exposes the custom event via getEventData

method, and the getType method provides information on whether the event generated was as a

result of cache entry creation, modification or removal.

Similar to filtering, to be able to register a listener with this converter factory, the factory has to be

given a unique name, and the Hot Rod server needs to be plugged with the name and the cache

event converter factory instance. Plugging the Infinispan Server with an event converter involves

the following steps:

1. Create a JAR file with the converter implementation within it.

2. Optional: If the cache uses custom key/value classes, these must be included in the JAR so that

the callbacks can be executed with the correctly unmarshalled key and/or value instances. If the

client listener has useRawData enabled, this is not necessary since the callback key/value

instances will be provided in binary format.

3. Create a META-

INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory

file within the JAR file and within it, write the fully qualified class name of the converter class

implementation.

4. Deploy the JAR file in the Infinispan Server.

On top of that, the client listener needs to be linked with this converter factory by adding the

factory’s name to the @ClientListener annotation:

20

@ClientListener(converterFactoryName = "static-converter")

public class CustomEventPrintListener { ... }

And, register the listener with the server:

RemoteCache<?, ?> cache = ...

cache.addClientListener(new CustomEventPrintListener());

Dynamic converter instances that convert based on parameters provided when the listener is

registered are also possible. Converters use the parameters received by the converter factories to

enable this option. For example:

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory;

import org.infinispan.notifications.cachelistener.filter.CacheEventConverter;

@NamedFactory(name = "dynamic-converter")

class DynamicCacheEventConverterFactory implements CacheEventConverterFactory {

 public CacheEventConverter<Integer, String, CustomEvent> getConverter(final

Object[] params) {

 return new DynamicCacheEventConverter(params);

 }

}

// Serializable, Externalizable or marshallable with Infinispan Externalizers needed

when running in a cluster

class DynamicCacheEventConverter implements CacheEventConverter<Integer, String,

CustomEvent>, Serializable {

 final Object[] params;

 DynamicCacheEventConverter(Object[] params) {

 this.params = params;

 }

 public CustomEvent convert(Integer key, String oldValue, Metadata oldMetadata,

 String newValue, Metadata newMetadata, EventType eventType) {

 // If the key matches a key given via parameter, only send the key information

 if (params[0].equals(key))

 return new CustomEvent(key, null);

 return new CustomEvent(key, newValue);

 }

}

The dynamic parameters required to do the conversion are provided when the listener is

registered:

21

RemoteCache<?, ?> cache = ...

cache.addClientListener(new EventPrintListener(), null, new Object[]{1});

Converter instances have to marshallable when they are deployed in a cluster, so

that the conversion can happen right where the event is generated, even if the

even is generated in a different node to where the listener is registered. To make

them marshallable, either make them extend Serializable, Externalizable, or

provide a custom Externalizer for them.

1.1.14. Filter and Custom Events

If you want to do both event filtering and customization, it’s easier to implement

org.infinispan.notifications.cachelistener.filter.CacheEventFilterConverter which allows both

filter and customization to happen in a single step. For convenience, it’s recommended to extend

org.infinispan.notifications.cachelistener.filter.AbstractCacheEventFilterConverter instead of

implementing org.infinispan.notifications.cachelistener.filter.CacheEventFilterConverter

directly. For example:

22

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory;

import org.infinispan.notifications.cachelistener.filter.CacheEventConverter;

@NamedFactory(name = "dynamic-filter-converter")

class DynamicCacheEventFilterConverterFactory implements

CacheEventFilterConverterFactory {

 public CacheEventFilterConverter<Integer, String, CustomEvent> getFilterConverter

(final Object[] params) {

 return new DynamicCacheEventFilterConverter(params);

 }

}

// Serializable, Externalizable or marshallable with Infinispan Externalizers needed

when running in a cluster

//

class DynamicCacheEventFilterConverter extends AbstractCacheEventFilterConverter

<Integer, String, CustomEvent>, Serializable {

 final Object[] params;

 DynamicCacheEventFilterConverter(Object[] params) {

 this.params = params;

 }

 public CustomEvent filterAndConvert(Integer key, String oldValue, Metadata

oldMetadata,

 String newValue, Metadata newMetadata, EventType eventType) {

 // If the key matches a key given via parameter, only send the key information

 if (params[0].equals(key))

 return new CustomEvent(key, null);

 return new CustomEvent(key, newValue);

 }

}

Similar to filters and converters, to be able to register a listener with this combined filter/converter

factory, the factory has to be given a unique name via the @NamedFactory annotation, and the Hot

Rod server needs to be plugged with the name and the cache event converter factory instance.

Plugging the Infinispan Server with an event converter involves the following steps:

1. Create a JAR file with the converter implementation within it.

2. Optional: If the cache uses custom key/value classes, these must be included in the JAR so that

the callbacks can be executed with the correctly unmarshalled key and/or value instances. If the

client listener has useRawData enabled, this is not necessary since the callback key/value

instances will be provided in binary format.

3. Create a META-
INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventFilterConverterFac

tory file within the JAR file and within it, write the fully qualified class name of the converter

class implementation.

23

4. Deploy the JAR file in the Infinispan Server.

From a client perspective, to be able to use the combined filter and converter class, the client

listener must define the same filter factory and converter factory names, e.g.:

@ClientListener(filterFactoryName = "dynamic-filter-converter", converterFactoryName =

"dynamic-filter-converter")

public class CustomEventPrintListener { ... }

The dynamic parameters required in the example above are provided when the listener is

registered via either filter or converter parameters. If filter parameters are non-empty, those are

used, otherwise, the converter parameters:

RemoteCache<?, ?> cache = ...

cache.addClientListener(new CustomEventPrintListener(), new Object[]{1}, null);

1.1.15. Event Marshalling

Hot Rod servers can store data in different formats, but in spite of that, Java Hot Rod client users

can still develop CacheEventConverter or CacheEventFilter instances that work on typed objects. By

default, filters and converter will use data as POJO (application/x-java-object) but it is possible to

override the desired format by overriding the method format() from the filter/converter. If the

format returns null, the filter/converter will receive data as it’s stored.

As indicated in the Marshalling Data section, Hot Rod Java clients can be configured to use a

different org.infinispan.commons.marshall.Marshaller instance. If doing this and deploying

CacheEventConverter or CacheEventFilter instances, to be able to present filters/converter with Java

Objects rather than marshalled content, the server needs to be able to convert between objects and

the binary format produced by the marshaller.

To deploy a Marshaller instance server-side, follow a similar method to the one used to deploy

CacheEventConverter or CacheEventFilter instances:

1. Create a JAR file with the converter implementation within it.

2. Create a META-INF/services/org.infinispan.commons.marshall.Marshaller file within the JAR file

and within it, write the fully qualified class name of the marshaller class implementation.

3. Deploy the JAR file in the Infinispan Server.

Note that the Marshaller could be deployed in either a separate jar, or in the same jar as the

CacheEventConverter and/or CacheEventFilter instances.

Deploying Protostream Marshallers

If a cache stores Protobuf content, as it happens when using ProtoStream marshaller in the Hot Rod

client, it’s not necessary to deploy a custom marshaller since the format is already support by the

server: there are transcoders from Protobuf format to most common formats like JSON and POJO.

24

When using filters/converters with those caches, and it’s desirable to use filter/converters with Java

Objects rather binary Protobuf data, it’s necessary to configure the extra ProtoStream marshallers

so that the server can unmarshall the data before filtering/converting. To do so, you must configure

the required SerializationContextInitializer(s) as part of the server’s configuration.

1.1.16. Listener State Handling

Client listener annotation has an optional includeCurrentState attribute that specifies whether state

will be sent to the client when the listener is added or when there’s a failover of the listener.

By default, includeCurrentState is false, but if set to true and a client listener is added in a cache

already containing data, the server iterates over the cache contents and sends an event for each

entry to the client as a ClientCacheEntryCreated (or custom event if configured). This allows clients

to build some local data structures based on the existing content. Once the content has been

iterated over, events are received as normal, as cache updates are received. If the cache is

clustered, the entire cluster wide contents are iterated over.

includeCurrentState also controls whether state is received when the node where the client event

listener is registered fails and it’s moved to a different node. The next section discusses this topic in

depth.

1.1.17. Listener Failure Handling

When a Hot Rod client registers a client listener, it does so in a single node in a cluster. If that node

fails, the Java Hot Rod client detects that transparently and fails over all listeners registered in the

node that failed to another node.

During this fail over the client might miss some events. To avoid missing these events, the client

listener annotation contains an optional parameter called includeCurrentState which if set to true,

when the failover happens, the cache contents can iterated over and ClientCacheEntryCreated

events (or custom events if configured) are generated. By default, includeCurrentState is set to false.

Java Hot Rod clients can be made aware of such fail over event by adding a callback to handle it:

@ClientCacheFailover

public void handleFailover(ClientCacheFailoverEvent e) {

 ...

}

This is very useful in use cases where the client has cached some data, and as a result of the fail

over, taking in account that some events could be missed, it could decide to clear any locally cached

data when the fail over event is received, with the knowledge that after the fail over event, it will

receive events for the contents of the entire cache.

1.1.18. Near Caching

The Java Hot Rod client can be optionally configured with a near cache, which means that the Hot

Rod client can keep a local cache that stores recently used data. Enabling near caching can

25

significantly improve the performance of read operations get and getVersioned since data can

potentially be located locally within the Hot Rod client instead of having to go remote.

To enable near caching, the user must set the near cache mode to INVALIDATED. By doing that near

cache is populated upon retrievals from the server via calls to get or getVersioned operations. When

near cached entries are updated or removed server-side, the cached near cache entries are

invalidated. If a key is requested after it’s been invalidated, it’ll have to be re-fetched from the

server.

You should not use maxIdle expiration with near caches, as near-cache reads will

not propagate the last access change to the server and to the other clients.

When near cache is enabled, its size must be configured by defining the maximum number of

entries to keep in the near cache. When the maximum is reached, near-cached entries are evicted.

If providing 0 or a negative value, it is assumed that the near cache is unbounded.

Users should be careful when configuring near cache to be unbounded since it

shifts the responsibility to keep the near cache’s size within the boundaries of the

client JVM to the user.

The Hot Rod client’s near cache mode is configured using the NearCacheMode enumeration and

calling:

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;

import org.infinispan.client.hotrod.configuration.NearCacheMode;

...

// Unbounded invalidated near cache

ConfigurationBuilder unbounded = new ConfigurationBuilder();

unbounded.nearCache().mode(NearCacheMode.INVALIDATED).maxEntries(-1);

// Bounded invalidated near cache

ConfigurationBuilder bounded = new ConfigurationBuilder();

bounded.nearCache().mode(NearCacheMode.INVALIDATED).maxEntries(100);

Since the configuration is shared by all caches obtained from a single RemoteCacheManager, you may

not want to enable near-caching for all of them. You can use the cacheNamePattern configuration

attribute to define a regular expression which matches the names of the caches for which you want

near-caching. Caches whose name don’t match the regular expression, will not have near-caching

enabled.

26

// Bounded invalidated near cache with pattern matching

ConfigurationBuilder bounded = new ConfigurationBuilder();

bounded.nearCache()

 .mode(NearCacheMode.INVALIDATED)

 .maxEntries(100)

 .cacheNamePattern("near.*"); // enable near-cache only for caches whose name starts

with 'near'

Near caches work the same way for local caches as they do for clustered caches,

but in a clustered cache scenario, if the server node sending the near cache

notifications to the Hot Rod client goes down, the Hot Rod client transparently fails

over to another node in the cluster, clearing the near cache along the way.

1.1.19. Unsupported methods

Some of the Cache methods are not being supported by the RemoteCache . Calling one of these

methods results in an UnsupportedOperationException being thrown. Most of these methods do not

make sense on the remote cache (e.g. listener management operations), or correspond to methods

that are not supported by local cache as well (e.g. containsValue). Another set of unsupported

operations are some of the atomic operations inherited from ConcurrentMap :

boolean remove(Object key, Object value);

boolean replace(Object key, Object value);

boolean replace(Object key, Object oldValue, Object value);

RemoteCache offers alternative versioned methods for these atomic operations, that are also

network friendly, by not sending the whole value object over the network, but a version identifier.

See the section on versioned API.

Each one of these unsupported operation is documented in the RemoteCache javadoc.

1.1.20. Return values

There is a set of methods that alter a cached entry and return the previous existing value, e.g.:

V remove(Object key);

V put(K key, V value);

By default on RemoteCache, these operations return null even if such a previous value exists. This

approach reduces the amount of data sent over the network. However, if these return values are

needed they can be enforced on a per invocation basis using flags:

27

cache.put("aKey", "initialValue");

assert null == cache.put("aKey", "aValue");

assert "aValue".equals(cache.withFlags(Flag.FORCE_RETURN_VALUE).put("aKey",

 "newValue"));

This default behavior can can be changed through force-return-value=true configuration

parameter (see configuration section bellow).

28

Chapter 2. Hot Rod Transactions

You can configure and use Hot Rod clients in JTA Transactions.

To participate in a transaction, the Hot Rod client requires the TransactionManager with which it

interacts and whether it participates in the transaction through the Synchronization or XAResource

interface.

Transactions are optimistic in that clients acquire write locks on entries during the

prepare phase. To avoid data inconsistency, be sure to read about Detecting

Conflicts with Transactions.

2.1. Configuring the Server

Caches in the server must also be transactional for clients to participate in JTA Transactions.

The following server configuration is required, otherwise transactions rollback only:

• Isolation level must be REPEATABLE_READ.

• Locking mode must be PESSIMISTIC. In a future release, OPTIMISTIC locking mode will be

supported.

• Transaction mode should be NON_XA or NON_DURABLE_XA. Hot Rod transactions cannot use FULL_XA

because it degrades performance.

Hot Rod transactions have their own recovery mechanism.

2.2. Configuring Hot Rod Clients

When you create the RemoteCacheManager, you can set the default TransactionManager and

TransactionMode that the RemoteCache uses.

The RemoteCacheManager lets you create only one configuration for transactional caches, as in the

following example:

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb = new org

.infinispan.client.hotrod.configuration.ConfigurationBuilder();

//other client configuration parameters

cb.transaction().transactionManagerLookup(GenericTransactionManagerLookup.getInstance(

));

cb.transaction().transactionMode(TransactionMode.NON_XA);

cb.transaction().timeout(1, TimeUnit.MINUTES)

RemoteCacheManager rmc = new RemoteCacheManager(cb.build());

The preceding configuration applies to all instances of a remote cache. If you need to apply

different configurations to remote cache instances, you can override the RemoteCache

configuration. See Overriding RemoteCacheManager Configuration.

29

See ConfigurationBuilder Javadoc for documentation on configuration parameters.

You can also configure the Java Hot Rod client with a properties file, as in the following example:

infinispan.client.hotrod.transaction.transaction_manager_lookup =

org.infinispan.client.hotrod.transaction.lookup.GenericTransactionManagerLookup

infinispan.client.hotrod.transaction.transaction_mode = NON_XA

infinispan.client.hotrod.transaction.timeout = 60000

2.2.1. TransactionManagerLookup Interface

TransactionManagerLookup provides an entry point to fetch a TransactionManager.

Available implementations of TransactionManagerLookup:

GenericTransactionManagerLookup

A lookup class that locates TransactionManagers running in Java EE application servers.

Defaults to the RemoteTransactionManager if it cannot find a TransactionManager.

In most cases, GenericTransactionManagerLookup is suitable. However, you can

implement the TransactionManagerLookup interface if you need to integrate a

custom TransactionManager.

RemoteTransactionManagerLookup

A basic, and volatile, TransactionManager if no other implementation is available. Note that this

implementation has significant limitations when handling concurrent transactions and

recovery.

2.2.2. Transaction Modes

TransactionMode controls how a RemoteCache interacts with the TransactionManager.

Configure transaction modes on both the Infinispan server and your client

application. If clients attempt to perform transactional operations on non-

transactional caches, runtime exceptions can occur.

Transaction modes are the same in both the Infinispan configuration and client settings. Use the

following modes with your client, see the Infinispan configuration schema for the server:

NONE

The RemoteCache does not interact with the TransactionManager. This is the default mode and

is non-transactional.

NON_XA

The RemoteCache interacts with the TransactionManager via Synchronization.

NON_DURABLE_XA

The RemoteCache interacts with the TransactionManager via XAResource. Recovery capabilities

30

are disabled.

FULL_XA

The RemoteCache interacts with the TransactionManager via XAResource. Recovery capabilities

are enabled. Invoke the XaResource.recover() method to retrieve transactions to recover.

2.3. Overriding Configuration for Cache Instances

Because RemoteCacheManager does not support different configurations for each cache instance.

However, RemoteCacheManager includes the getCache(String) method that returns the

RemoteCache instances and lets you override some configuration parameters, as follows:

getCache(String cacheName, TransactionMode transactionMode)

Returns a RemoteCache and overrides the configured TransactionMode.

getCache(String cacheName, boolean forceReturnValue, TransactionMode transactionMode)

Same as previous, but can also force return values for write operations.

getCache(String cacheName, TransactionManager transactionManager)

Returns a RemoteCache and overrides the configured TransactionManager.

getCache(String cacheName, boolean forceReturnValue, TransactionManager transactionManager)

Same as previous, but can also force return values for write operations.

getCache(String cacheName, TransactionMode transactionMode, TransactionManager
transactionManager)

Returns a RemoteCache and overrides the configured TransactionManager and

TransactionMode. Uses the configured values, if transactionManager or transactionMode is null.

getCache(String cacheName, boolean forceReturnValue, TransactionMode transactionMode,
TransactionManager transactionManager)

Same as previous, but can also force return values for write operations.

The getCache(String) method returns RemoteCache instances regardless of

whether they are transaction or not. RemoteCache includes a

getTransactionManager() method that returns the TransactionManager that the

cache uses. If the RemoteCache is not transactional, the method returns null.

2.4. Detecting Conflicts with Transactions

Transactions use the initial values of keys to detect conflicts. For example, "k" has a value of "v"

when a transaction begins. During the prepare phase, the transaction fetches "k" from the server to

read the value. If the value has changed, the transaction rolls back to avoid a conflict.

 Transactions use versions to detect changes instead of checking value equality.

The forceReturnValue parameter controls write operations to the RemoteCache and helps avoid

conflicts. It has the following values:

31

• If true, the TransactionManager fetches the most recent value from the server before

performing write operations. However, the forceReturnValue parameter applies only to write

operations that access the key for the first time.

• If false, the TransactionManager does not fetch the most recent value from the server before

performing write operations. Because this setting

This parameter does not affect conditional write operations such as replace or

putIfAbsent because they require the most recent value.

The following transactions provide an example where the forceReturnValue parameter can prevent

conflicting write operations:

Transaction 1 (TX1)

RemoteCache<String, String> cache = ...

TransactionManager tm = ...

tm.begin();

cache.put("k", "v1");

tm.commit();

Transaction 2 (TX2)

RemoteCache<String, String> cache = ...

TransactionManager tm = ...

tm.begin();

cache.put("k", "v2");

tm.commit();

In this example, TX1 and TX2 are executed in parallel. The initial value of "k" is "v".

• If forceReturnValue = true, the cache.put() operation fetches the value for "k" from the server in

both TX1 and TX2. The transaction that acquires the lock for "k" first then commits. The other

transaction rolls back during the commit phase because the transaction can detect that "k" has a

value other than "v".

• If forceReturnValue = false, the cache.put() operation does not fetch the value for "k" from the

server and returns null. Both TX1 and TX2 can successfully commit, which results in a conflict.

This occurs because neither transaction can detect that the initial value of "k" changed.

The following transactions include cache.get() operations to read the value for "k" before doing the

cache.put() operations:

32

Transaction 1 (TX1)

RemoteCache<String, String> cache = ...

TransactionManager tm = ...

tm.begin();

cache.get("k");

cache.put("k", "v1");

tm.commit();

Transaction 2 (TX2)

RemoteCache<String, String> cache = ...

TransactionManager tm = ...

tm.begin();

cache.get("k");

cache.put("k", "v2");

tm.commit();

In the preceding examples, TX1 and TX2 both read the key so the forceReturnValue parameter does

not take effect. One transaction commits, the other rolls back. However, the cache.get() operation

requires an additional server request. If you do not need the return value for the cache.put()

operation that server request is inefficient.

2.5. Using the Configured Transaction Manager and

Transaction Mode

The following example shows how to use the TransactionManager and TransactionMode that you

configure in the RemoteCacheManager:

33

//Configure the transaction manager and transaction mode.

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb = new org

.infinispan.client.hotrod.configuration.ConfigurationBuilder();

cb.transaction().transactionManagerLookup(RemoteTransactionManagerLookup.getInstance()

);

cb.transaction().transactionMode(TransactionMode.NON_XA);

RemoteCacheManager rcm = new RemoteCacheManager(cb.build());

//The my-cache instance uses the RemoteCacheManager configuration.

RemoteCache<String, String> cache = rcm.getCache("my-cache");

//Return the transaction manager that the cache uses.

TransactionManager tm = cache.getTransactionManager();

//Perform a simple transaction.

tm.begin();

cache.put("k1", "v1");

System.out.println("K1 value is " + cache.get("k1"));

tm.commit();

2.6. Overriding the Transaction Manager

The following example shows how to override TransactionManager with the getCache method:

//Configure the transaction manager and transaction mode.

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb = new org

.infinispan.client.hotrod.configuration.ConfigurationBuilder();

cb.transaction().transactionManagerLookup(RemoteTransactionManagerLookup.getInstance()

);

cb.transaction().transactionMode(TransactionMode.NON_XA);

RemoteCacheManager rcm = new RemoteCacheManager(cb.build());

//Define a custom TransactionManager.

TransactionManager myCustomTM = ...

//Override the TransactionManager for the my-cache instance. Use the default

configuration if null is returned.

RemoteCache<String, String> cache = rcm.getCache("my-cache", null, myCustomTM);

//Perform a simple transaction.

myCustomTM.begin();

cache.put("k1", "v1");

System.out.println("K1 value is " + cache.get("k1"));

myCustomTM.commit();

34

2.7. Overriding the Transaction Mode

The following example shows how to override TransactionMode with the getCache method:

//Configure the transaction manager and transaction mode.

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb = new org

.infinispan.client.hotrod.configuration.ConfigurationBuilder();

cb.transaction().transactionManagerLookup(RemoteTransactionManagerLookup.getInstance()

);

cb.transaction().transactionMode(TransactionMode.NON_XA);

RemoteCacheManager rcm = new RemoteCacheManager(cb.build());

//Override the transaction mode for the my-cache instance.

RemoteCache<String, String> cache = rcm.getCache("my-cache", TransactionMode

.NON_DURABLE_XA, null);

//Return the transaction manager that the cache uses.

TransactionManager tm = cache.getTransactionManager();

//Perform a simple transaction.

tm.begin();

cache.put("k1", "v1");

System.out.println("K1 value is " + cache.get("k1"));

tm.commit();

2.7.1. Client Intelligence

Client intelligence refers to mechanisms the HotRod protocol provides for clients to locate and send

requests to Infinispan servers.

Basic intelligence

Clients do not store any information about Infinispan clusters or key hash values.

Topology-aware

Clients receive and store information about Infinispan clusters. Clients maintain an internal

mapping of the cluster topology that changes whenever servers join or leave clusters.

To receive a cluster topology, clients need the address (IP:HOST) of at least one Hot Rod server at

startup. After the client connects to the server, Infinispan transmits the topology to the client. When

servers join or leave the cluster, Infinispan transmits an updated topology to the client.

Distribution-aware

Clients are topology-aware and store consistent hash values for keys.

For example, take a put(k,v) operation. The client calculates the hash value for the key so it can

locate the exact server on which the data resides. Clients can then connect directly to the owner to

dispatch the operation.

35

The benefit of distribution-aware intelligence is that Infinispan servers do not need to look up

values based on key hashes, which uses less resources on the server side. Another benefit is that

servers respond to client requests more quickly because it skips additional network roundtrips.

2.7.2. Request Balancing

Clients that use topology-aware intelligence use request balancing for all requests. The default

balancing strategy is round-robin, so topology-aware clients always send requests to servers in

round-robin order.

For example, s1, s2, s3 are servers in a Infinispan cluster. Clients perform request balancing as

follows:

CacheContainer cacheContainer = new RemoteCacheManager();

Cache<String, String> cache = cacheContainer.getCache();

//client sends put request to s1

cache.put("key1", "aValue");

//client sends put request to s2

cache.put("key2", "aValue");

//client sends get request to s3

String value = cache.get("key1");

//client dispatches to s1 again

cache.remove("key2");

//and so on...

Clients that use distribution-aware intelligence use request balancing only for failed requests.

When requests fail, distribution-aware clients retry the request on the next available server.

Custom balancing policies

You can implement FailoverRequestBalancingStrategy and specify your class in your hotrod-

client.properties configuration.

2.7.3. Persistent connections

In order to avoid creating a TCP connection on each request (which is a costly operation), the client

keeps a pool of persistent connections to all the available servers and it reuses these connections

whenever it is possible. The validity of the connections is checked using an async thread that

iterates over the connections in the pool and sends a HotRod ping command to the server. By using

this connection validation process the client is being proactive: there’s a hight chance for broken

connections to be found while being idle in the pool and no on actual request from the application.

The number of connections per server, total number of connections, how long should a connection

be kept idle in the pool before being closed - all these (and more) can be configured. Please refer to

the javadoc of RemoteCacheManager for a list of all possible configuration elements.

36

2.7.4. Marshalling data

The Hot Rod client allows one to plug in a custom marshaller for transforming user objects into

byte arrays and the other way around. This transformation is needed because of Hot Rod’s binary

nature - it doesn’t know about objects.

The marshaller can be plugged through the "marshaller" configuration element (see Configuration

section): the value should be the fully qualified name of a class implementing the Marshaller

interface. This is a optional parameter, if not specified it defaults to the ProtoStreamMarshaller

WARNING: If developing your own custom marshaller, take care of potential injection attacks.

To avoid such attacks, make the marshaller verify that any class names read, before instantiating it,

is amongst the expected/allowed class names.

The client configuration can be enhanced with a list of regular expressions for classes that are

allowed to be read.

WARNING: These checks are opt-in, so if not configured, any class can be read.

In the example below, only classes with fully qualified names containing Person or Employee would

be allowed:

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;

...

ConfigurationBuilder configBuilder = ...

configBuilder.addJavaSerialWhiteList(".*Person.*", ".*Employee.*");

ProtoStream

Since version 10.0, the default marshaller for the client is the Protobuf based

ProtoStreamMarshaller. Keeping your objects stored in protobuf format has the benefit of being

able to consume them with compatible clients written in different languages. To aid with the

configuration of the marshaller’s SerializationContext, we have extended the client configuration to

allow for SerializationContextInitializer(s) to be provided by the user and applied on

RemoteCacheManager startup.

SerializationContextInitailizers can be configured as follows:

• Via a comma-separated list of SerializationContextInitializer implementation’s in hotrod-
client.properties

infinispan.client.hotrod.context-initializers=org.infinispan.example

.LibraryInitializerImpl,org.infinispan.example.AnotherExampleSciImpl

• Programmatically:

37

ConfigurationBuilder builder = new ConfigurationBuilder()

 .addServer().host("localhost").port(hotRodServer.getPort())

 .addContextInitializers(new LibraryInitializerImpl(), new AnotherExampleSciImpl

())

 .build();

RemoteCacheManager rcm = new RemoteCacheManager(builder);

2.7.5. Reading data in different data formats

By default, every Hot Rod client operation will use the configured marshaller when reading and

writing from the server for both keys and values. See Marshalling Data. Using the DataFormat API,

it’s possible to decorate remote caches so that all operations can happen with a custom data format.

Using different marshallers for Key and Values

Marshallers for Keys and Values can be overridden at run time. For example, to bypass all

serialization in the Hot Rod client and read the byte[] as they are stored in the server:

// Existing Remote cache instance

RemoteCache<String, Pojo> remoteCache = ...

// IdentityMarshaller is a no-op marshaller

DataFormat rawKeyAndValues = DataFormat.builder().keyMarshaller(IdentityMarshaller

.INSTANCE).valueMarshaller(IdentityMarshaller.INSTANCE).build();

// Will create a new instance of RemoteCache with the supplied DataFormat

RemoteCache<byte[], byte[]> rawResultsCache = remoteCache.withDataFormat

(rawKeyAndValues);

Reading data in different formats

Apart from defining custom key and value marshallers, it’s also possible to request/send data in

different formats specified by a org.infinispan.commons.dataconversion.MediaType:

38

// Existing remote cache using ProtostreamMarshaller

RemoteCache<String, Pojo> protobufCache = ...

// Request values returned as JSON, using the UTF8StringMarshaller that converts

between UTF-8 to String:

DataFormat jsonString = DataFormat.builder().valueType(MediaType.APPLICATION_JSON)

.valueMarshaller(new UTF8StringMarshaller().build();

RemoteCache<String, String> jsonStrCache = remoteCache.withDataFormat(jsonString);

// Alternativelly, it's possible to request JSON values but marshalled/unmarshalled

with a custom value marshaller that returns `org.codehaus.jackson.JsonNode` objects:

DataFormat jsonNode = DataFormat.builder().valueType(MediaType.APPLICATION_JSON)

.valueMarshaller(new CustomJacksonMarshaller().build();

RemoteCache<String, JsonNode> jsonNodeCache = remoteCache.withDataFormat(jsonNode);

The data conversions happen in the server, and if it doesn’t support converting

from the storage format to the request format and vice versa, an error will be

returned.

Using different marshallers and formats for the key, with .keyMarshaller() and

.keyType() may interfere with the client intelligence routing mechanism, causing it

contact the server that is not the owner of the key during Hot Rod operations. This

will not result in errors but can result in extra hops inside the cluster to execute

the operation. If performance is critical, make sure to use the keys in the format

stored by the server.

2.7.6. Statistics

Various server usage statistics can be obtained through the RemoteCache .stats() method. This

returns a ServerStatistics object - please refer to javadoc for details on the available statistics.

2.7.7. Multi-Get Operations

The Java Hot Rod client does not provide multi-get functionality out of the box but clients can build

it themselves with the given APIs.

2.7.8. Failover capabilities

Hot Rod clients' capabilities to keep up with topology changes helps with request balancing and

more importantly, with the ability to failover operations if one or several of the servers fail.

Some of the conditional operations mentioned above, including putIfAbsent, replace with and

without version, and conditional remove have strict method return guarantees, as well as those

operations where returning the previous value is forced.

In spite of failures, these methods return values need to be guaranteed, and in order to do so, it’s

39

necessary that these methods are not applied partially in the cluster in the event of failure. For

example, imagine a replace() operation called in a server for key=k1 with Flag.FORCE_RETURN_VALUE,

whose current value is A and the replace wants to set it to B. If the replace fails, it could happen that

some servers contain B and others contain A, and during the failover, the original replace() could

end up returning B, if the replace failovers to a node where B is set, or could end up returning A.

To avoid this kind of situations, whenever Java Hot Rod client users want to use conditional

operations, or operations whose previous value is required, it’s important that the cache is

configured to be transactional in order to avoid incorrect conditional operations or return values.

2.7.9. Site Cluster Failover

On top of the in-cluster failover, Hot Rod clients are also able to failover to different clusters, which

could be represented as an independent site.

The way site cluster failover works is that if all the main cluster nodes are not available, the client

checks to see if any other clusters have been defined in which cases it tries to failover to the

alternative cluster. If the failover succeeds, the client will remain connected to the alternative

cluster until this becomes unavailable, in which case it’ll try any other clusters defined, and

ultimately, it’ll try the original server settings.

To configure a cluster in the Hot Rod client, one host/port pair details must be provided for each of

the clusters configured. For example:

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb

 = new org.infinispan.client.hotrod.configuration.ConfigurationBuilder();

cb.addCluster().addClusterNode("remote-cluster-host", 11222);

RemoteCacheManager rmc = new RemoteCacheManager(cb.build());

Remember that regardless of the cluster definitions, the initial server(s)

configuration must be provided unless the initial servers can be resolved using the

default server host and port details.

2.7.10. Manual Site Cluster Switch

As well as supporting automatic site cluster failover, Java Hot Rod clients can also switch between

site clusters manually by calling RemoteCacheManager’s switchToCluster(clusterName) and

switchToDefaultCluster().

Using switchToCluster(clusterName), users can force a client to switch to one of the clusters pre-

defined in the Hot Rod client configuration. To switch to the initial servers defined in the client

configuration, call switchToDefaultCluster().

2.7.11. Monitoring the Hot Rod client

The Hot Rod client can be monitored and managed via JMX. By enabling statistics, an MBean will be

registered for the RemoteCacheManager as well as for each RemoteCache obtained through it. Through

these MBeans it is possible to obtain statistics about remote and near-cache hits/misses and

40

connection pool usage.

2.7.12. Concurrent Updates

Data structures, such as Infinispan Cache , that are accessed and modified concurrently can suffer

from data consistency issues unless there’re mechanisms to guarantee data correctness. Infinispan

Cache, since it implements ConcurrentMap , provides operations such as conditional replace ,

putIfAbsent , and conditional remove to its clients in order to guarantee data correctness. It even

allows clients to operate against cache instances within JTA transactions, hence providing the

necessary data consistency guarantees.

However, when it comes to Hot Rod protocol backed servers, clients do not yet have the ability to

start remote transactions but they can call instead versioned operations to mimic the conditional

methods provided by the embedded Infinispan cache instance API. Let’s look at a real example to

understand how it works.

Data Consistency Problem

Imagine you have two ATMs that connect using Hot Rod to a bank where an account’s balance is

stored. Two closely followed operations to retrieve the latest balance could return 500 CHF (swiss

francs) as shown below:

Figure 2. Concurrent readers

Next a customer connects to the first ATM and requests 400 CHF to be retrieved. Based on the last

value read, the ATM could calculate what the new balance is, which is 100 CHF, and request a put

with this new value. Let’s imagine now that around the same time another customer connects to

the ATM and requests 200 CHF to be retrieved. Let’s assume that the ATM thinks it has the latest

balance and based on its calculations it sets the new balance to 300 CHF:

41

Obviously, this would be wrong. Two concurrent updates have resulted in an incorrect account

balance. The second update should not have been allowed since the balance the second ATM had

was incorrect. Even if the ATM would have retrieved the balance before calculating the new

balance, someone could have updated between the new balance being retrieved and the update.

Before finding out how to solve this issue in a client-server scenario with Hot Rod, let’s look at how

this is solved when Infinispan clients run in peer-to-peer mode where clients and Infinispan live

within the same JVM.

Embedded-mode Solution

If the ATM and the Infinispan instance storing the bank account lived in the same JVM, the ATM

could use the conditional replace API referred at the beginning of this article. So, it could send the

previous known value to verify whether it has changed since it was last read. By doing so, the first

operation could double check that the balance is still 500 CHF when it was to update to 100 CHF.

Now, when the second operation comes, the current balance would not be 500 CHF any more and

hence the conditional replace call would fail, hence avoiding data consistency issues:

Figure 3. P2P solution

42

Client-Server Solution

In theory, Hot Rod could use the same p2p solution but sending the previous value would be not

practical. In this example, the previous value is just an integer but the value could be a lot bigger

and hence forcing clients to send it to the server would be rather wasteful. Instead, Hot Rod offers

versioned operations to deal with this situation.

Basically, together with each key/value pair, Hot Rod stores a version number which uniquely

identifies each modification. So, using an operation called getVersioned or getWithVersion, clients

can retrieve not only the value associated with a key, but also the current version. So, if we look at

the previous example once again, the ATMs could call getVersioned and get the balance’s version:

Figure 4. Get versioned

When the ATMs wanted to modify the balance, instead of just calling put, they could call

replaceIfUnmodified operation passing the latest version number of which the clients are aware of.

The operation will only succeed if the version passed matches the version in the server. So, the first

modification by the ATM would be allowed since the client passes 1 as version and the server side

version for the balance is also 1. On the other hand, the second ATM would not be able to make the

modification because after the first ATMs modification the version would have been incremented

to 2, and now the passed version (1) and the server side version (2) would not match:

Figure 5. Replace if versions match

43

	Using the Infinispan Hot Rod Server
	Table of Contents
	Chapter 1. Using Hot Rod Server
	1.1. Hot Rod Java clients
	1.1.1. Programmatically Configuring Hot Rod Java Clients
	1.1.2. Configuring Hot Rod Java Client Property Files
	1.1.3. Authentication
	1.1.4. Encryption
	1.1.5. Basic API
	1.1.6. RemoteCache(.keySet|.entrySet|.values)
	1.1.7. Remote Iterator
	1.1.8. Versioned API
	1.1.9. Streaming API
	1.1.10. Creating Event Listeners
	1.1.11. Removing Event Listeners
	1.1.12. Filtering Events
	1.1.13. Customizing Events
	1.1.14. Filter and Custom Events
	1.1.15. Event Marshalling
	1.1.16. Listener State Handling
	1.1.17. Listener Failure Handling
	1.1.18. Near Caching
	1.1.19. Unsupported methods
	1.1.20. Return values

	Chapter 2. Hot Rod Transactions
	2.1. Configuring the Server
	2.2. Configuring Hot Rod Clients
	2.2.1. TransactionManagerLookup Interface
	2.2.2. Transaction Modes

	2.3. Overriding Configuration for Cache Instances
	2.4. Detecting Conflicts with Transactions
	2.5. Using the Configured Transaction Manager and Transaction Mode
	2.6. Overriding the Transaction Manager
	2.7. Overriding the Transaction Mode
	2.7.1. Client Intelligence
	2.7.2. Request Balancing
	2.7.3. Persistent connections
	2.7.4. Marshalling data
	2.7.5. Reading data in different data formats
	2.7.6. Statistics
	2.7.7. Multi-Get Operations
	2.7.8. Failover capabilities
	2.7.9. Site Cluster Failover
	2.7.10. Manual Site Cluster Switch
	2.7.11. Monitoring the Hot Rod client
	2.7.12. Concurrent Updates

