
Infinispan Cross-Site Replication

Table of Contents

1. Cross-site replication . 2

1.1. Cross-site replication . 2

1.2. Relay nodes . 2

1.3. Infinispan cache backups . 3

1.4. Backup strategies . 3

1.5. Factors that take backup locations offline automatically . 4

1.6. State transfer . 8

1.7. Client connections across sites . 9

1.7.1. Concurrent writes and conflicting entries . 11

1.8. Expiration with cross-site replication . 12

2. Configuring Infinispan cross-site replication . 13

2.1. Configuring cluster transport for cross-site replication . 13

2.1.1. Custom JGroups RELAY2 stacks. 14

2.2. Adding backup locations to caches . 15

2.3. Backing up to caches with different names . 17

2.4. Configuring cross-site state transfer . 18

2.5. Configuring conflict resolution algorithms . 20

2.6. Verifying cross-site views . 22

2.7. Configuring Hot Rod clients for cross-site replication. 23

3. Performing cross-site operations with the CLI . 24

3.1. Bringing backup locations offline and online . 24

3.2. Configuring cross-site state transfer modes. 24

3.3. Pushing state to backup locations . 25

4. Performing cross-site operations with the REST API. 26

4.1. Getting status of all backup locations . 26

4.2. Getting status of specific backup locations. 27

4.3. Taking backup locations offline . 27

4.4. Bringing backup locations online. 27

4.5. Pushing state to backup locations . 27

4.6. Canceling state transfer . 28

4.7. Getting state transfer status . 28

4.8. Clearing state transfer status . 28

4.9. Modifying take offline conditions. 28

4.10. Canceling state transfer from receiving sites . 29

4.11. Getting status of backup locations . 29

4.12. Taking backup locations offline . 30

4.13. Bringing backup locations online. 30

4.14. Retrieving the state transfer mode . 31

4.15. Setting the state transfer mode . 31

4.16. Starting state transfer . 31

4.17. Canceling state transfer . 31

5. Performing cross-site operations via JMX . 32

5.1. Registering JMX MBeans . 32

5.2. Performing cross-site operations with JMX clients . 33

5.3. JMX MBeans for cross-site replication. 33

6. Cross-site replication log messages . 35

6.1. Infinispan log messages for cross-site replication . 35

Find out how Infinispan performs cross-site replication so you can get optimal

performance and avoid issues. Learn how to configure Infinispan to back up

data to remote clusters. Follow procedures to transfer state from one cluster to

another, take sites offline, and so on.

1

Chapter 1. Cross-site replication

Replicate data across Infinispan clusters in multiple geographic regions to:

• Ensure service continuity in the event of data center outages.

• Present a single, unified caching service to client applications that consists of different clusters

across multiple host platforms.

1.1. Cross-site replication

Infinispan clusters running in different locations can discover and communicate with each other.

Sites are typically data centers in various geographic locations. Cross-site replication bridges

Infinispan clusters in sites to form global clusters, as in the following diagram:

cross-site replication

cluster replication

LON is a datacenter in London, England.

NYC is a datacenter in New York City, USA.

Infinispan can form global clusters across two or more sites.

For example, configure a third Infinispan cluster running in San Francisco, SFO, as

backup location for LON and NYC.

1.2. Relay nodes

Relay nodes are the nodes in Infinispan clusters that are responsible for sending and receiving

requests from backup locations.

If a node is not a relay node, it must forward backup requests to a local relay node. Only relay

nodes can send requests to backup locations.

For optimal performance, you should configure all nodes as relay nodes. This increases the speed of

2

backup requests because each node in the cluster can backup to remote sites directly without

having to forward backup requests to local relay nodes.

Diagrams in this document illustrate Infinispan clusters with one relay node

because this is the default for the JGroups RELAY2 protocol. Likewise, a single

relay node is easier to illustrate because each relay node in a cluster

communicates with each relay node in the remote cluster.

JGroups configuration refers to relay nodes as "site master" nodes. Infinispan uses

relay node instead because it is more descriptive and presents a more intuitive

choice for our users.

1.3. Infinispan cache backups

Infinispan caches include a backups configuration that let you name remote sites as backup

locations.

For example, the following diagram shows three caches, "customers", "eu-orders", and "us-orders":

relay

node

relay

node

• In LON, "customers" names NYC as a backup location.

• In NYC, "customers" names LON as a backup location.

• "eu-orders" and "us-orders" do not have backups and are local to the respective cluster.

1.4. Backup strategies

Infinispan replicates data between clusters at the same time that writes to caches occur. For

example, if a client writes "k1" to LON, Infinispan backs up "k1" to NYC at the same time.

To back up data to a different cluster, Infinispan can use either a synchronous or asynchronous

strategy.

Synchronous strategy

When Infinispan replicates data to backup locations, it writes to the cache on the local cluster and

the cache on the remote cluster concurrently. With the synchronous strategy, Infinispan waits for

3

both write operations to complete before returning.

You can control how Infinispan handles writes to the cache on the local cluster if backup operations

fail. Infinispan can do the following:

• Ignore the failed backup and silently continue the write to the local cluster.

• Log a warning message or throw an exception and continue the write to the local cluster.

• Handle failed backup operations with custom logic.

Synchronous backups also support two-phase commits with caches that participate in optimistic

transactions. The first phase of the backup acquires a lock. The second phase commits the

modification.

Two-phase commit with cross-site replication has a significant performance

impact because it requires two round-trips across the network.

Asynchronous strategy

When Infinispan replicates data to backup locations, it does not wait until the operation completes

before writing to the local cache.

Asynchronous backup operations and writes to the local cache are independent of each other. If

backup operations fail, write operations to the local cache continue and no exceptions occur. When

this happens Infinispan also retries the write operation until the remote cluster disconnects from

the cross-site view.

Synchronous vs asynchronous backups

Synchronous backups offer the strongest guarantee of data consistency across sites. If

strategy=sync, when cache.put() calls return you know the value is up to date in the local cache and

in the backup locations.

The trade-off for this consistency is performance. Synchronous backups have much greater latency

in comparison to asynchronous backups.

Asynchronous backups, on the other hand, do not add latency to client requests so they have no

performance impact. However, if strategy=async, when cache.put() calls return you cannot be sure

of that the value in the backup location is the same as in the local cache.

1.5. Factors that take backup locations offline

automatically

Infinispan can take backup locations offline when remote sites become unavailable. This prevents

Infinispan nodes from continuously attempting to replicate data to offline backup locations, which

results in error messages and consumes resources. There are different factors you can configure

for Infinispan to take backup locations offline.

4

Timeout values

Backup configurations include timeout values for operations to replicate data. If operations do not

complete before the timeout occurs, Infinispan records them as failures.

In the following example, operations to replicate data to NYC are recorded as failures if they do not

complete after 10 seconds:

XML

<distributed-cache>

 <backups>

 <backup site="NYC"

 strategy="ASYNC"

 timeout="10000" />

 </backups>

</distributed-cache>

JSON

{

 "distributed-cache": {

 "backups": {

 "NYC" : {

 "backup" : {

 "strategy" : "ASYNC",

 "timeout" : "10000"

 }

 }

 }

 }

}

YAML

distributedCache:

 backups:

 NYC:

 backup:

 strategy: "ASYNC"

 timeout: "10000"

Number of failures

You can specify the number of consecutive failures that can occur before backup locations go

offline.

In the following example, if a cluster attempts to replicate data to NYC and five consecutive

operations fail, NYC automatically goes offline:

5

XML

<distributed-cache>

 <backups>

 <backup site="NYC"

 strategy="ASYNC"

 timeout="10000">

 <take-offline after-failures="5"/>

 </backup>

 </backups>

</distributed-cache>

JSON

{

 "distributed-cache": {

 "backups": {

 "NYC" : {

 "backup" : {

 "strategy" : "ASYNC",

 "timeout" : "10000",

 "take-offline" : {

 "after-failures" : "5"

 }

 }

 }

 }

 }

}

YAML

distributedCache:

 backups:

 NYC:

 backup:

 strategy: "ASYNC"

 timeout: "10000"

 takeOffline:

 afterFailures: "5"

Time to wait

You can also specify how long to wait before taking sites offline when backup operations fail. If a

backup request succeeds before the wait time runs out, Infinispan does not take the site offline.

6

Set a negative or zero value for number of failures to use only a minimum time to

wait to take backup locations offline.

<take-offline after-failures="-1" min-wait="10000"/>

In the following example, if a cluster attempts to replicate data to NYC and there are more than five

consecutive failures and 15 seconds elapse after the first failed operation, NYC automatically goes

offline:

XML

<distributed-cache>

 <backups>

 <backup site="NYC"

 strategy="ASYNC"

 timeout="10000">

 <take-offline after-failures="5" min-wait="15000"/>

 </backup>

 </backups>

</distributed-cache>

JSON

{

 "distributed-cache": {

 "backups": {

 "NYC" : {

 "backup" : {

 "strategy" : "ASYNC",

 "timeout" : "10000",

 "take-offline" : {

 "after-failures" : "5",

 "min-wait" : "15000"

 }

 }

 }

 }

 }

}

7

YAML

distributedCache:

 backups:

 NYC:

 backup:

 strategy: "ASYNC"

 timeout: "10000"

 takeOffline:

 afterFailures: "5"

 minWait: "15000"

1.6. State transfer

State transfer is an administrative operation that synchronizes data between sites.

For example, LON goes offline and NYC starts handling client requests. When you bring LON back

online, the Infinispan cluster in LON does not have the same data as the cluster in NYC.

To ensure the data is consistent between LON and NYC, you can push state from NYC to LON.

• State transfer is bidirectional. For example, you can push state from NYC to LON or from LON

to NYC.

• Pushing state to offline sites brings them back online.

• State transfer overwrites only data that exists on both sites, the originating site and the

receiving site. Infinispan does not delete data.

For example, "k2" exists on LON and NYC. "k2" is removed from NYC while LON is offline.

When you bring LON back online, "k2" still exists at that location. If you push state from NYC to

LON, the transfer does not affect "k2" on LON.

To ensure contents of the cache are identical after state transfer, remove all data

from the cache on the receiving site before pushing state.

Use the clear() method or the clearcache command from the CLI.

• State transfer does not overwrite updates to data that occur after you initiate the push.

For example, "k1,v1" exists on LON and NYC. LON goes offline so you push state transfer to

LON from NYC, which brings LON back online. Before state transfer completes, a client puts

"k1,v2" on LON.

In this case the state transfer from NYC does not overwrite "k1,v2" because that modification

happened after you initiated the push.

Automatic state transfer

By default you must manually perform cross-site state transfer operations with the CLI or via JMX

8

or REST.

However, when using the asynchronous backup strategy, Infinispan can automatically perform

cross-site state transfer operations. When it detects that a backup location has come back online,

and the network connection is stable, Infinispan initiates bi-directional state transfer between

backup locations. For example, Infinispan simultaneously transfers state from LON to NYC and

NYC to LON.

To avoid temporary network disconnects triggering state transfer operations, there

are two conditions that backup locations must meet to go offline. The status of a

backup location must be offline and it must not be included in the cross-site view

with JGroups RELAY2.

Additional resources

• org.infinispan.Cache.clear()

• Using the Infinispan Command Line Interface

• Infinispan REST API

1.7. Client connections across sites

Clients can write to Infinispan clusters in either an Active/Passive or Active/Active configuration.

Active/Passive

The following diagram illustrates Active/Passive where Infinispan handles client requests from one

site only:

In the preceding image:

1. Client connects to the Infinispan cluster at LON.

2. Client writes "k1" to the cache.

9

3. The relay node at LON, "n1", sends the request to replicate "k1" to the relay node at NYC, "nA".

With Active/Passive, NYC provides data redundancy. If the Infinispan cluster at LON goes offline for

any reason, clients can start sending requests to NYC. When you bring LON back online you can

synchronize data with NYC and then switch clients back to LON.

Active/Active

The following diagram illustrates Active/Active where Infinispan handles client requests at two

sites:

In the preceding image:

1. Client A connects to the Infinispan cluster at LON.

2. Client A writes "k1" to the cache.

3. Client B connects to the Infinispan cluster at NYC.

4. Client B writes "k2" to the cache.

5. Relay nodes at LON and NYC send requests so that "k1" is replicated to NYC and "k2" is

replicated to LON.

With Active/Active both NYC and LON replicate data to remote caches while handling client

requests. If either NYC or LON go offline, clients can start sending requests to the online site. You

can then bring offline sites back online, push state to synchronize data, and switch clients as

required.

Backup strategies and client connections

An asynchronous backup strategy (strategy=async) is recommended with

Active/Active configurations.

If multiple clients attempt to write to the same entry concurrently, and the backup strategy is

synchronous (strategy=sync), then deadlocks occur. However you can use the synchronous backup

10

strategy with an Active/Passive configuration if both sites access different data sets, in which case

there is no risk of deadlocks from concurrent writes.

1.7.1. Concurrent writes and conflicting entries

Conflicting entries can occur with Active/Active site configurations if clients write to the same

entries at the same time but at different sites.

For example, client A writes to "k1" in LON at the same time that client B writes to "k1" in NYC. In

this case, "k1" has a different value in LON than in NYC. After replication occurs, there is no

guarantee which value for "k1" exists at which site.

To ensure data consistency, Infinispan uses a vector clock algorithm to detect conflicting entries

during backup operations, as in the following illustration:

 LON NYC

k1=(n/a) 0,0 0,0

k1=2 1,0 --> 1,0 k1=2

k1=3 1,1 <-- 1,1 k1=3

k1=5 2,1 1,2 k1=8

 --> 2,1 (conflict)

(conflict) 1,2 <--

Vector clocks are timestamp metadata that increment with each write to an entry. In the preceding

example, 0,0 represents the initial value for the vector clock on "k1".

A client puts "k1=2" in LON and the vector clock is 1,0, which Infinispan replicates to NYC. A client

then puts "k1=3" in NYC and the vector clock updates to 1,1, which Infinispan replicates to LON.

However if a client puts "k1=5" in LON at the same time that a client puts "k1=8" in NYC, Infinispan

detects a conflicting entry because the vector value for "k1" is not strictly greater or less between

LON and NYC.

When it finds conflicting entries, Infinispan uses the Java compareTo(String anotherString) method

to compare site names. To determine which key takes priority, Infinispan selects the site name that

is lexicographically less than the other. Keys from a site named AAA take priority over keys from a

site named AAB and so on.

Following the same example, to resolve the conflict for "k1", Infinispan uses the value for "k1" that

originates from LON. This results in "k1=5" in both LON and NYC after Infinispan resolves the

conflict and replicates the value.

Prepend site names with numbers as a simple way to represent the order of

priority for resolving conflicting entries; for example, 1LON and 2NYC.

11

Infinispan performs conflict resolution with the asynchronous backup strategy

(strategy=async) only. However, you should not use the synchronous backup

strategy with an Active/Active configuration because concurrent writes result in

deadlocks.

Conflict resolution algorithms

Infinispan provides different algorithms for resolving conflicts in addition to an

XSiteEntryMergePolicy SPI that lets you implement custom conflict resolution strategies.

Apart from the default conflict resolution strategy, which uses lexicographical comparison, you can

use Infinispan conflict resolution algorithms to:

• Always remove conflicting entries.

• Keep write operations when write/remove conflicts occur.

• Remove entries when write/remove conflicts occur.

Find all available algorithms and their descriptions in the

org.infinispan.xsite.spi.XSiteMergePolicy enum.

Additional resources

• java.lang.String#compareTo()

• org.infinispan.xsite.spi.XSiteMergePolicy

• org.infinispan.xsite.spi.XSiteEntryMergePolicy

• Customizing the conflict resolution algorithm

1.8. Expiration with cross-site replication

Expiration removes cache entries based on time. Infinispan provides two ways to configure

expiration for entries:

Lifespan

The lifespan attribute sets the maximum amount of time that entries can exist. When you set

lifespan with cross-site replication, Infinispan clusters expire entries independently of remote sites.

Maximum idle

The max-idle attribute specifies how long entries can exist based on read or write operations in a

given time period. When you set a max-idle with cross-site replication, Infinispan clusters send

touch commands to coordinate idle timeout values with remote sites.

Using maximum idle expiration in cross-site deployments can impact performance

because the additional processing to keep max-idle values synchronized means

some operations take longer to complete.

12

Chapter 2. Configuring Infinispan cross-site

replication

Set up cluster transport so Infinispan clusters can discover each other and relay nodes can send

messages for cross-site replication. You can then add backup locations to Infinispan caches.

2.1. Configuring cluster transport for cross-site

replication

Add JGroups RELAY2 to your transport layer so that Infinispan can replicate caches to backup

locations.

Procedure

1. Open your Infinispan configuration for editing.

2. Add the RELAY2 protocol to a JGroups stack.

3. Specify the stack name with the stack attribute for the transport configuration so the Infinispan

cluster uses it.

4. Save and close your Infinispan configuration.

JGroups RELAY2 stacks

The following configuration shows a JGroups RELAY2 stack that:

• Uses the default JGroups UDP stack for inter-cluster transport, which refers to communication

between nodes at the local site.

• Uses the default JGroups TCP stack for cross-site replication traffic.

• Names the local site as LON.

• Specifies a maximum of 1000 nodes in the cluster that can send cross-site replication requests.

• Specifies the names of all backup locations that participate in cross-site replication.

13

<infinispan>

 <jgroups>

 <stack name="xsite" extends="udp">

 <relay.RELAY2 xmlns="urn:org:jgroups"

 site="LON"

 max_site_masters="1000"/>

 <remote-sites default-stack="tcp">

 <remote-site name="LON"/>

 <remote-site name="NYC"/>

 </remote-sites>

 </stack>

 </jgroups>

 <cache-container>

 <transport cluster="${cluster.name}" stack="xsite"/>

 </cache-container>

</infinispan>

Additional resources

• JGroups RELAY2 Stacks

• Infinispan configuration schema reference

2.1.1. Custom JGroups RELAY2 stacks

You can add custom JGroups RELAY2 stacks to Infinispan clusters to use different transport

properties for cross-site replication. For example, the following configuration uses TCPPING instead

of MPING for discovery and extends the default TCP stack:

<infinispan>

 <jgroups>

 <stack name="relay-global" extends="tcp">

 <TCPPING initial_hosts="192.0.2.0[7800]"

 stack.combine="REPLACE"

 stack.position="MPING"/>

 </stack>

 <stack name="xsite" extends="udp">

 <relay.RELAY2 site="LON" xmlns="urn:org:jgroups"

 max_site_masters="10"

 can_become_site_master="true"/>

 <remote-sites default-stack="relay-global">

 <remote-site name="LON"/>

 <remote-site name="NYC"/>

 </remote-sites>

 </stack>

 </jgroups>

</infinispan>

Additional resources

14

• JGroups RELAY2

• Relaying between multiple sites (RELAY2)

2.2. Adding backup locations to caches

Specify the names of remote sites so Infinispan can replicate data to caches on those clusters.

Procedure

1. Open your Infinispan configuration for editing.

2. Add the backups element to your cache configuration.

3. Specify the name of the remote site as the backup location.

For example, in the LON configuration, specify NYC as the backup.

4. Repeat the preceding steps on each cluster so that each site is a backup for other sites.

For example, if you add LON as a backup for NYC you should also add NYC as a backup for

LON.

5. Save and close your Infinispan configuration.

Backup configuration

The following example shows the "customers" cache configuration for the LON cluster:

XML

<replicated-cache name="customers">

 <backups>

 <backup site="NYC"

 strategy="ASYNC" />

 </backups>

</replicated-cache>

JSON

{

 "replicated-cache": {

 "name": "customers",

 "backups": {

 "NYC": {

 "backup" : {

 "strategy" : "ASYNC"

 }

 }

 }

 }

}

15

YAML

replicatedCache:

 name: "customers"

 backups:

 NYC:

 backup:

 strategy: "ASYNC"

The following example shows the "customers" cache configuration for the NYC cluster:

XML

<distributed-cache name="customers">

 <backups>

 <backup site="LON"

 strategy="ASYNC" />

 </backups>

</distributed-cache>

JSON

{

 "distributed-cache": {

 "name": "customers",

 "backups": {

 "LON": {

 "backup": {

 "strategy": "ASYNC"

 }

 }

 }

 }

}

YAML

distributedCache:

 name: "customers"

 backups:

 LON:

 backup:

 strategy: "ASYNC"

Additional resources

• Infinispan configuration schema reference

16

2.3. Backing up to caches with different names

Infinispan replicates data between caches that have the same name by default. If you want

Infinispan to replicate between caches with different names, you can explicitly declare the backup

for each cache.

Procedure

1. Open your Infinispan configuration for editing.

2. Use backup-for or backupFor to replicate data from a remote site into a cache with a different

name on the local site.

3. Save and close your Infinispan configuration.

Backup for configuration

The following example configures the "eu-customers" cache to receive updates from the

"customers" cache on the LON cluster:

XML

<distributed-cache name="eu-customers">

 <backups>

 <backup site="LON"

 strategy="ASYNC" />

 </backups>

 <backup-for remote-cache="customers"

 remote-site="LON" />

</distributed-cache>

JSON

{

 "distributed-cache": {

 "name": "eu-customers",

 "backups": {

 "LON": {

 "backup": {

 "strategy": "ASYNC"

 }

 }

 },

 "backup-for" : {

 "remote-cache" : "customers",

 "remote-site" : "LON"

 }

 }

}

17

YAML

distributedCache:

 name: "eu-customers"

 backups:

 LON:

 backup:

 strategy: "ASYNC"

 backupFor:

 remoteCache: "customers"

 remoteSite: "LON"

2.4. Configuring cross-site state transfer

Change cross-site state transfer settings to optimize performance and specify whether operations

happen manually or automatically.

Procedure

1. Open your Infinispan configuration for editing.

2. Configure state transfer operations as appropriate.

a. Specify the number of entries to include in each state transfer operation with chunk-size or

chunkSize.

b. Specify the time to wait, in milliseconds, for state transfer operations to complete with

timeout.

c. Set the maximum number of attempts for Infinispan to retry failed state transfers with max-

retries or maxRetries.

d. Specify the time to wait, in milliseconds, between retry attempts with wait-time or waitTime.

e. Specify if state transfer operations happen automatically or manually with mode.

3. Open your Infinispan configuration for editing.

State transfer configuration

18

XML

<distributed-cache name="eu-customers">

 <backups>

 <backup site="LON"

 strategy="ASYNC">

 <state-transfer chunk-size="600"

 timeout="2400000"

 max-retries="30"

 wait-time="2000"

 mode="AUTO"/>

 </backup>

 </backups>

</distributed-cache>

JSON

{

 "distributed-cache": {

 "name": "eu-customers",

 "backups": {

 "LON": {

 "backup": {

 "strategy": "ASYNC",

 "state-transfer": {

 "chunk-size": "600",

 "timeout": "2400000",

 "max-retries": "30",

 "wait-time": "2000",

 "mode": "AUTO"

 }

 }

 }

 }

 }

}

19

YAML

distributedCache:

 name: "eu-customers"

 backups:

 LON:

 backup:

 strategy: "ASYNC"

 stateTransfer:

 chunkSize: "600"

 timeout: "2400000"

 maxRetries: "30"

 waitTime: "2000"

 mode: "AUTO"

2.5. Configuring conflict resolution algorithms

Configure Infinispan to use a different algorithm to resolve conflicting entries between backup

locations.

Procedure

1. Open your Infinispan configuration for editing.

2. Specify one of the Infinispan algorithms or a custom implementation as the merge policy to

resolve conflicting entries.

3. Save and close your Infinispan configuration for editing.

Infinispan algorithms

Find all Infinispan algorithms and their descriptions in the

org.infinispan.xsite.spi.XSiteMergePolicy enum.

The following example configuration uses the ALWAYS_REMOVE algorithm that deletes conflicting

entries from both sites:

XML

<distributed-cache>

 <backups merge-policy="ALWAYS_REMOVE">

 <backup site="LON" strategy="ASYNC"/>

 </backups>

</distributed-cache>

20

JSON

{

 "distributed-cache": {

 "backups": {

 "merge-policy": "ALWAYS_REMOVE",

 "LON": {

 "backup": {

 "strategy": "ASYNC"

 }

 }

 }

 }

}

YAML

distributed-cache:

 backups:

 mergePolicy: "ALWAYS_REMOVE"

 LON:

 backup:

 strategy: "ASYNC"

Custom conflict resolution algorithms

If you create a custom XSiteEntryMergePolicy implementation, you can specify the fully qualified

class name as the merge policy.

XML

<distributed-cache>

 <backups merge-policy="org.mycompany.MyCustomXSiteEntryMergePolicy">

 <backup site="LON" strategy="ASYNC"/>

 </backups>

</distributed-cache>

21

JSON

{

 "distributed-cache": {

 "backups": {

 "merge-policy": "org.mycompany.MyCustomXSiteEntryMergePolicy",

 "LON": {

 "backup": {

 "strategy": "ASYNC"

 }

 }

 }

 }

}

YAML

distributed-cache:

 backups:

 mergePolicy: "org.mycompany.MyCustomXSiteEntryMergePolicy"

 LON:

 backup:

 strategy: "ASYNC"

Additional resources

• org.infinispan.xsite.spi.XSiteEntryMergePolicy

• org.infinispan.xsite.spi.XSiteMergePolicy

• org.infinispan.xsite.spi.SiteEntry

• Infinispan configuration schema reference

2.6. Verifying cross-site views

When you set up Infinispan to perform cross-site replication, you should check log files to ensure

that Infinispan clusters have successfully formed cross-site views.

Procedure

1. Open Infinispan log files with any appropriate editor.

2. Check for ISPN000439: Received new x-site view messages.

For example, if a Infinispan cluster in LON has formed a cross-site view with a Infinispan cluster in

NYC, logs include the following messages:

22

INFO [org.infinispan.XSITE] (jgroups-5,<server-hostname>) ISPN000439: Received new x-

site view: [NYC]

INFO [org.infinispan.XSITE] (jgroups-7,<server-hostname>) ISPN000439: Received new x-

site view: [LON, NYC]

2.7. Configuring Hot Rod clients for cross-site

replication

Configure Hot Rod clients to use Infinispan clusters at different sites.

hotrod-client.properties

Servers at the active site

infinispan.client.hotrod.server_list = LON_host1:11222,LON_host2:11222,LON_host3:11222

Servers at the backup site

infinispan.client.hotrod.cluster.NYC =

NYC_hostA:11222,NYC_hostB:11222,NYC_hostC:11222,NYC_hostD:11222

ConfigurationBuilder

ConfigurationBuilder builder = new ConfigurationBuilder();

builder.addServers("LON_host1:11222;LON_host2:11222;LON_host3:11222")

 .addCluster("NYC")

 .addClusterNodes(

"NYC_hostA:11222;NYC_hostB:11222;NYC_hostC:11222;NYC_hostD:11222")

Use the following methods to switch Hot Rod clients to the default cluster or to a

cluster at a different site:

• RemoteCacheManager.switchToDefaultCluster()

• RemoteCacheManager.switchToCluster(${site.name})

Additional resources

• org.infinispan.client.hotrod.configuration package description

• org.infinispan.client.hotrod.configuration.ConfigurationBuilder

• org.infinispan.client.hotrod.RemoteCacheManager

23

Chapter 3. Performing cross-site operations

with the CLI

Use the Infinispan command line interface (CLI) to connect to Infinispan Server clusters, manage

sites, and push state transfer to backup locations.

3.1. Bringing backup locations offline and online

Take backup locations offline manually and bring them back online.

Prerequisites

• Create a CLI connection to Infinispan.

Procedure

1. Check if backup locations are online or offline with the site status command:

[//containers/default]> site status --cache=cacheName --site=NYC

 --site is an optional argument. If not set, the CLI returns all backup locations.

2. Manage backup locations as follows:

◦ Bring backup locations online with the bring-online command:

[//containers/default]> site bring-online --cache=customers --site=NYC

◦ Take backup locations offline with the take-offline command:

[//containers/default]> site take-offline --cache=customers --site=NYC

For more information and examples, run the help site command.

3.2. Configuring cross-site state transfer modes

You can configure cross-site state transfer operations to happen automatically when Infinispan

detects that backup locations come online. Alternatively you can use the default mode, which is to

manually perform state transfer.

Prerequisites

• Create a CLI connection to Infinispan.

Procedure

1. Use the site command to configure state transfer modes, as in the following examples:

24

◦ Retrieve the current state transfer mode.

[//containers/default]> site state-transfer-mode get --cache=cacheName

--site=NYC

"MANUAL"

◦ Configure automatic state transfer operations for a cache and backup location.

[//containers/default]> site state-transfer-mode set --cache=cacheName --site=NYC

--mode=AUTO

 Run the help site command for more information and examples.

3.3. Pushing state to backup locations

Transfer cache state to backup locations.

Prerequisites

• Create a CLI connection to Infinispan.

Procedure

• Use the site push-site-state command to push state transfer, as in the following example:

[//containers/default]> site push-site-state --cache=cacheName --site=NYC

For more information and examples, run the help site command.

25

Chapter 4. Performing cross-site operations

with the REST API

Infinispan Server provides a REST endpoint that exposes methods for performing cross-site

operations.

4.1. Getting status of all backup locations

Retrieve the status of all backup locations with GET requests.

GET /v2/caches/{cacheName}/x-site/backups/

Infinispan responds with the status of each backup location in JSON format, as in the following

example:

{

 "NYC": {

 "status": "online"

 },

 "LON": {

 "status": "mixed",

 "online": [

 "NodeA"

],

 "offline": [

 "NodeB"

]

 }

}

Table 1. Returned Status

Value Description

online All nodes in the local cluster have a cross-site

view with the backup location.

offline No nodes in the local cluster have a cross-site

view with the backup location.

mixed Some nodes in the local cluster have a cross-site

view with the backup location, other nodes in

the local cluster do not have a cross-site view.

The response indicates status for each node.

26

4.2. Getting status of specific backup locations

Retrieve the status of a backup location with GET requests.

GET /v2/caches/{cacheName}/x-site/backups/{siteName}

Infinispan responds with the status of each node in the site in JSON format, as in the following

example:

{

 "NodeA":"offline",

 "NodeB":"online"

}

Table 2. Returned Status

Value Description

online The node is online.

offline The node is offline.

failed Not possible to retrieve status. The remote cache

could be shutting down or a network error

occurred during the request.

4.3. Taking backup locations offline

Take backup locations offline with POST requests and the ?action=take-offline parameter.

POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=take-offline

4.4. Bringing backup locations online

Bring backup locations online with the ?action=bring-online parameter.

POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=bring-online

4.5. Pushing state to backup locations

Push cache state to a backup location with the ?action=start-push-state parameter.

POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=start-push-state

27

4.6. Canceling state transfer

Cancel state transfer operations with the ?action=cancel-push-state parameter.

POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=cancel-push-state

4.7. Getting state transfer status

Retrieve status of state transfer operations with the ?action=push-state-status parameter.

GET /v2/caches/{cacheName}/x-site/backups?action=push-state-status

Infinispan responds with the status of state transfer for each backup location in JSON format, as in

the following example:

{

 "NYC":"CANCELED",

 "LON":"OK"

}

Table 3. Returned status

Value Description

SENDING State transfer to the backup location is in

progress.

OK State transfer completed successfully.

ERROR An error occurred with state transfer. Check log

files.

CANCELLING State transfer cancellation is in progress.

4.8. Clearing state transfer status

Clear state transfer status for sending sites with the ?action=clear-push-state-status parameter.

POST /v2/caches/{cacheName}/x-site/local?action=clear-push-state-status

4.9. Modifying take offline conditions

Sites go offline if certain conditions are met. Modify the take offline parameters to control when

backup locations automatically go offline.

Procedure

28

1. Check configured take offline parameters with GET requests and the take-offline-config

parameter.

GET /v2/caches/{cacheName}/x-site/backups/{siteName}/take-offline-config

The Infinispan response includes after_failures and min_wait fields as follows:

{

 "after_failures": 2,

 "min_wait": 1000

}

2. Modify take offline parameters in the body of PUT requests.

PUT /v2/caches/{cacheName}/x-site/backups/{siteName}/take-offline-config

If the operation successfully completes, the service returns 204 (No Content).

4.10. Canceling state transfer from receiving sites

If the connection between two backup locations breaks, you can cancel state transfer on the site

that is receiving the push.

Cancel state transfer from a remote site and keep the current state of the local cache with the

?action=cancel-receive-state parameter.

POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=cancel-receive-state

4.11. Getting status of backup locations

Retrieve the status of all backup locations from Cache Managers with GET requests.

GET /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/

Infinispan responds with status in JSON format, as in the following example:

29

{

 "SFO-3":{

 "status":"online"

 },

 "NYC-2":{

 "status":"mixed",

 "online":[

 "CACHE_1"

],

 "offline":[

 "CACHE_2"

],

 "mixed": [

 "CACHE_3"

]

 }

}

Table 4. Returned status

Value Description

online All nodes in the local cluster have a cross-site

view with the backup location.

offline No nodes in the local cluster have a cross-site

view with the backup location.

mixed Some nodes in the local cluster have a cross-site

view with the backup location, other nodes in

the local cluster do not have a cross-site view.

The response indicates status for each node.

4.12. Taking backup locations offline

Take backup locations offline with the ?action=take-offline parameter.

POST /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/{siteName}?action=take-

offline

4.13. Bringing backup locations online

Bring backup locations online with the ?action=bring-online parameter.

POST /rest/v2/cache-managers/{cacheManagerName}/x-

site/backups/{siteName}?action=bring-online

30

4.14. Retrieving the state transfer mode

Check the state transfer mode with GET requests.

GET /rest/v2/caches/{cacheName}/x-site/backups/{site}/state-transfer-mode

4.15. Setting the state transfer mode

Configure the state transfer mode with the ?action=set parameter.

POST /rest/v2/caches/{cacheName}/x-site/backups/{site}/state-transfer-

mode?action=set&mode={mode}

4.16. Starting state transfer

Push state of all caches to remote sites with the ?action=start-push-state parameter.

POST /rest/v2/cache-managers/{cacheManagerName}/x-

site/backups/{siteName}?action=start-push-state

4.17. Canceling state transfer

Cancel ongoing state transfer operations with the ?action=cancel-push-state parameter.

POST /rest/v2/cache-managers/{cacheManagerName}/x-

site/backups/{siteName}?action=cancel-push-state

31

Chapter 5. Performing cross-site operations

via JMX

Perform cross-site operations such as pushing state transfer and bringing sites online via JMX.

5.1. Registering JMX MBeans

Infinispan can register JMX MBeans that you can use to collect statistics and perform

administrative operations. You must also enable statistics otherwise Infinispan provides 0 values

for all statistic attributes in JMX MBeans.

Procedure

1. Open your Infinispan configuration for editing.

2. Add the jmx element or object to the cache container and specify true as the value for the

enabled attribute or field.

3. Add the domain attribute or field and specify the domain where JMX MBeans are exposed, if

required.

4. Save and close your client configuration.

JMX configuration

XML

<infinispan>

 <cache-container statistics="true">

 <jmx enabled="true"

 domain="example.com"/>

 </cache-container>

</infinispan>

JSON

{

 "infinispan" : {

 "cache-container" : {

 "statistics" : "true",

 "jmx" : {

 "enabled" : "true",

 "domain" : "example.com"

 }

 }

 }

}

32

YAML

infinispan:

 cacheContainer:

 statistics: "true"

 jmx:

 enabled: "true"

 domain: "example.com"

5.2. Performing cross-site operations with JMX clients

Perform cross-site operations with JMX clients.

Prerequisites

• Configure Infinispan to register JMX MBeans

Procedure

1. Connect to Infinispan with any JMX client.

2. Invoke operations from the following MBeans:

◦ XSiteAdmin provides cross-site operations for caches.

◦ GlobalXSiteAdminOperations provides cross-site operations for Cache Managers.

For example, to bring sites back online, invoke bringSiteOnline(siteName).

Additional resources

• XSiteAdmin MBean

• GlobalXSiteAdminOperations MBean

5.3. JMX MBeans for cross-site replication

Infinispan provides JMX MBeans for cross-site replication that let you gather statistics and perform

remote operations.

The org.infinispan:type=Cache component provides the following JMX MBeans:

• XSiteAdmin exposes cross-site operations that apply to specific cache instances.

• RpcManager provides statistics about network requests for cross-site replication.

• AsyncXSiteStatistics provides statistics for asynchronous cross-site replication, including queue

size and number of conflicts.

The org.infinispan:type=CacheManager component includes the following JMX MBean:

• GlobalXSiteAdminOperations exposes cross-site operations that apply to all caches in a cache

container.

For details about JMX MBeans along with descriptions of available operations and statistics, see the

33

Infinispan JMX Components documentation.

Additional resources

• Infinispan JMX Components

34

Chapter 6. Cross-site replication log

messages

Infinispan includes an org.infinispan.XSITE log category to help you troubleshoot cross-site

replication operations.

6.1. Infinispan log messages for cross-site replication

Find user actions for log messages related to cross-site replication.

Log level Identifier Message Description

DEBUG ISPN000400 Node <site-name> was

suspected

Infinispan prints this message

when it cannot reach backup

locations. Ensure that sites are

online and check network

status.

INFO ISPN000439 Received new x-site view: <site-

name>

Infinispan prints this message

when sites join and leave the

global cluster.

INFO ISPN100005 Site <site-name> is online. Infinispan prints this message

when a site comes online.

INFO ISPN100006 Site <site-name> is offline. Infinispan prints this message

when a site goes offline. If you

did not take the site offline

manually, this message could

indicate a failure has occurred.

Check network status and try to

bring the site back online.

WARN ISPN000202 Problems backing up data for

cache <cache-name> to site

<site-name>:

Infinispan prints this message

when issues occur with state

transfer operations along with

the exception. If necessary

adjust Infinispan logging to get

more fine-grained logging

messages.

WARN ISPN000289 Unable to send X-Site state

chunk to <site-name>.

Indicates that Infinispan cannot

transfer a batch of cache entries

during a state transfer

operation. Ensure that sites are

online and check network

status.

35

Log level Identifier Message Description

WARN ISPN000291 Unable to apply X-Site state

chunk.

Indicates that Infinispan cannot

apply a batch of cache entries

during a state transfer

operation. Ensure that sites are

online and check network

status.

WARN ISPN000322 Unable to re-start x-site state

transfer to site <site-name>

Indicates that Infinispan cannot

resume a state transfer

operation to a backup location.

Ensure that sites are online and

check network status.

ERROR ISPN000477 Unable to perform operation

<operation-name> for site <site-

name>

Indicates that Infinispan cannot

successfully complete an

operation on a backup location.

If necessary adjust Infinispan

logging to get more fine-grained

logging messages.

FATAL ISPN000449 XSite state transfer timeout

must be higher or equals than 1

(one).

Results when the value of the

timeout attribute is 0 or a

negative number. Specify a

value of at least 1 for the

timeout attribute in the state

transfer configuration for your

cache definition.

FATAL ISPN000450 XSite state transfer waiting time

between retries must be higher

or equals than 1 (one).

Results when the value of the

wait-time attribute is 0 or a

negative number. Specify a

value of at least 1 for the wait-

time attribute in the state

transfer configuration for your

cache definition.

FATAL ISPN000576 Cross-site Replication not

available for local cache.

Cross-site replication does not

work with the local cache

mode. Either remove the

backup configuration from the

local cache definition or use a

distributed or replicated cache

mode.

36

	Infinispan Cross-Site Replication
	Table of Contents
	Chapter 1. Cross-site replication
	1.1. Cross-site replication
	1.2. Relay nodes
	1.3. Infinispan cache backups
	1.4. Backup strategies
	1.5. Factors that take backup locations offline automatically
	1.6. State transfer
	1.7. Client connections across sites
	1.7.1. Concurrent writes and conflicting entries

	1.8. Expiration with cross-site replication

	Chapter 2. Configuring Infinispan cross-site replication
	2.1. Configuring cluster transport for cross-site replication
	2.1.1. Custom JGroups RELAY2 stacks

	2.2. Adding backup locations to caches
	2.3. Backing up to caches with different names
	2.4. Configuring cross-site state transfer
	2.5. Configuring conflict resolution algorithms
	2.6. Verifying cross-site views
	2.7. Configuring Hot Rod clients for cross-site replication

	Chapter 3. Performing cross-site operations with the CLI
	3.1. Bringing backup locations offline and online
	3.2. Configuring cross-site state transfer modes
	3.3. Pushing state to backup locations

	Chapter 4. Performing cross-site operations with the REST API
	4.1. Getting status of all backup locations
	4.2. Getting status of specific backup locations
	4.3. Taking backup locations offline
	4.4. Bringing backup locations online
	4.5. Pushing state to backup locations
	4.6. Canceling state transfer
	4.7. Getting state transfer status
	4.8. Clearing state transfer status
	4.9. Modifying take offline conditions
	4.10. Canceling state transfer from receiving sites
	4.11. Getting status of backup locations
	4.12. Taking backup locations offline
	4.13. Bringing backup locations online
	4.14. Retrieving the state transfer mode
	4.15. Setting the state transfer mode
	4.16. Starting state transfer
	4.17. Canceling state transfer

	Chapter 5. Performing cross-site operations via JMX
	5.1. Registering JMX MBeans
	5.2. Performing cross-site operations with JMX clients
	5.3. JMX MBeans for cross-site replication

	Chapter 6. Cross-site replication log messages
	6.1. Infinispan log messages for cross-site replication

