
Hibernate second-level caching (2LC)

Table of Contents

1. Using Infinispan as a second-level cache . 2

1.1. Adding dependencies. 2

1.2. Enabling second-level caches . 3

1.3. Deployment scenarios . 3

1.3.1. Single-node standalone Hibernate application . 4

1.3.2. Single-node standalone Spring application . 4

1.3.3. Single-node WildFly application . 5

1.3.4. Multi-node standalone Hibernate application. 5

1.3.5. Multi-node standalone Spring application . 5

1.3.6. Multi-node WildFly application. 6

1.4. Configuration reference . 6

1.4.1. Default local configuration . 6

1.4.2. Default cluster configuration . 7

1.4.3. Configuration properties. 9

1.5. Cache strategies. 12

1.6. Using minimal puts . 13

You can use Infinispan as a second-level cache (2LC) with Hibernate to store all

sessions from applications using the same session factory.

1

Chapter 1. Using Infinispan as a second-level

cache

Infinispan implements the SPI that Hibernate exposes to allow integration with the second-level

cache (2LC). This means you can use Infinispan to store data from Session or EntityManager (JPA)

operations.

The Caching chapter in the Hibernate ORM User Guide contains complete information about 2LC.

This guide provides details about using Infinispan as second-level cache provider with Hibernate.

1.1. Adding dependencies

Applications running in environments where Infinispan is not default cache provider for Hibernate

will need to depend on the correct cache provider version.

The Infinispan cache provider version suitable for your application depends on the Hibernate

version in use:

Hibernate 5.3

<dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-hibernate-cache-v53</artifactId>

 <version>${version.infinispan}</version>

</dependency>

 Hibernate 5.2 is supported with Infinispan 9.2.x only.

Hibernate 5.2

<dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-hibernate-cache</artifactId>

 <version>${version.infinispan}</version>

</dependency>

Hibernate 5.1

<dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-hibernate-cache-v51</artifactId>

</dependency>

Hibernate version 5.0 and earlier

The Infinispan cache provider is shipped by Hibernate. Documentation and Maven coordinates are

located in the Hibernate documentation.

2

1.2. Enabling second-level caches

Apart from Infinispan specific configuration, it’s worth noting that enabling second cache requires

some changes to the descriptor file (persistence.xml for JPA or application.properties for Spring).

To use second level cache, you first need to enable the second level cache so that entities and/or

collections can be cached:

Table 1. Enable second-level cache

JPA <property name="hibernate.cache.use_second_level_cache" value="true"/>

Spring spring.jpa.properties.hibernate.cache.use_second_level_cache=true

To select which entities/collections to cache, first annotate them with javax.persistence.Cacheable.

Then make sure shared cache mode is set to ENABLE_SELECTIVE:

Table 2. Enable selective shared cached mode

JPA <shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>

Spring spring.jpa.properties.javax.persistence.sharedCache.mode=ENABLE_SELECTIVE

This is the most common way of selecting which entities/collections to cache.

However, there are alternative ways to which are explained in the Hibernate

documentation.

Optionally, queries can also be cached but for that query cache needs to be enabled:

Table 3. Enable query cache

JPA <property name="hibernate.cache.use_query_cache" value="true"/>

Spring spring.jpa.properties.hibernate.cache.use_query_cache=true

As well as enabling query cache, forcing a query to be cached requires the query

to be made cacheable. For example, for JPA queries:

query.setHint("org.hibernate.cacheable", Boolean.TRUE).

The best way to find out whether second level cache is working or not is to inspect the statistics. By

inspecting the statistics you can verify if the cache is being hit, if any new data is stored in cache…

etc. Statistics are disabled by default, so it is recommended that you enable statistics:

Table 4. Enable statistics

JPA <property name="hibernate.generate_statistics" value="true" />

Spring spring.jpa.properties.hibernate.generate_statistics=true

1.3. Deployment scenarios

How to configure Infinispan to be the second level cache provider varies slightly depending on the

deployment scenario:

3

1.3.1. Single-node standalone Hibernate application

In standalone library mode, a JPA/Hibernate application runs inside a Java SE application or inside

containers that don’t offer Infinispan integration.

Enabling Infinispan second level cache provider inside a JPA/Hibernate application that runs in

single node is very straightforward. First, make sure the Hibernate Infinispan cache provider is

available in the classpath. Then, modify the persistence.xml to include these properties:

<!-- Use Infinispan second level cache provider -->

<property name="hibernate.cache.region.factory_class" value="infinispan"/>

<!--

 Force using local configuration when only using a single node.

 Otherwise a clustered configuration is loaded.

-->

<property name="hibernate.cache.infinispan.cfg"

 value="org/infinispan/hibernate/cache/commons/builder/infinispan-configs-

local.xml"/>

By default when running standalone, the Infinispan second-level cache provider uses an Infinispan

configuration that’s designed for clustered environments. However, Infinispan also provides a

configuration designed for local, single node, environments. To enable that configuration, set

hibernate.cache.infinispan.cfg to org/infinispan/hibernate/cache/commons/builder/infinispan-

configs-local.xml value. You can find more about the configuration check the Default Local

Configuration section.

A simple tutorial showing how to use Infinispan as Hibernate cache provider in a standalone

application can be found here.

1.3.2. Single-node standalone Spring application

Using Hibernate within Spring applications is a very common use case. In this section you will

learn what you need to do configure Hibernate within Spring to use Infinispan as second-level

cache provider.

As in the previous case, start by making sure that Hibernate Infinispan Cache provider is available

in the classpath. Then, modify application.properties file to contain:

Use Infinispan second level cache provider

spring.jpa.properties.hibernate.cache.region.factory_class=infinispan

#

Force using local configuration when only using a single node.

Otherwise a clustered configuration is loaded.

spring.jpa.properties.hibernate.cache.infinispan.cfg=org/infinispan/hibernate/cache/co

mmons/builder/infinispan-configs-local.xml

By default when running standalone, the Infinispan second-level cache provider uses an Infinispan

configuration that’s designed for clustered environments. However, Infinispan also provides a

4

configuration designed for local, single node, environments. To enable that configuration, set

spring.jpa.properties.hibernate.cache.infinispan.cfg to

org/infinispan/hibernate/cache/commons/builder/infinispan-configs-local.xml value. You can find

more about the configuration check the Default Local Configuration section.

A simple tutorial showing how to use Infinispan as Hibernate cache provider in a Spring

application can be found here.

1.3.3. Single-node WildFly application

In WildFly, Infinispan is the default second level cache provider for JPA/Hibernate. This means that

when using JPA in WildFly, region factory is already set to infinispan. Infinispan’s configuration is

located in WildFly’s standalone.xml file. It follows the same settings explained in Default Local

Configuration section.

When running in WildFly, do not set hibernate.cache.infinispan.cfg. The

configuration of the caches comes from WildFly’s configuration file.

Several aspects of the Infinispan second level cache provider can be configured directly in

persistence.xml. This means that some of those tweaks do not require changing WildFly’s

standalone.xml file. You can find out more about these changes in the Configuration Properties

section.

So, to enable Hibernate to use Infinispan as second-level cache, all you need to do is enable second-

level cache. This is explained in detail in the introduction of this chapter.

A simple tutorial showing how to use Infinispan as Hibernate cache provider in a WildFly

application can be found here.

1.3.4. Multi-node standalone Hibernate application

When running a JPA/Hibernate in a multi-node environment and enabling Infinispan second-level

cache, it is necessary to cluster the second-level cache so that cache consistency can be guaranteed.

Clustering the Infinispan second-level cache provider is as simple as adding the following property

to the persistence.xml file:

<!-- Use Infinispan second level cache provider -->

<property name="hibernate.cache.region.factory_class" value="infinispan"/>

The default Infinispan configuration used by the second-level cache provider is already configured

to work in a cluster environment, so no need to add any extra properties. You can find more about

the configuration check the Default Cluster Configuration section.

1.3.5. Multi-node standalone Spring application

If interested in running a Spring application that uses Hibernate and Infinispan as second level

cache, the cache needs to be clustered. Clustering the Infinispan second-level cache provider is as

simple as adding the following property to the application.properties file:

5

Use Infinispan second level cache provider

spring.jpa.properties.hibernate.cache.region.factory_class=infinispan

The default Infinispan configuration used by the second-level cache provider is already configured

to work in a cluster environment, so no need to add any extra properties. You can find more about

the configuration check the Default Cluster Configuration section.

1.3.6. Multi-node WildFly application

As mentioned in the single node WildFly case, Infinispan is the default second level cache provider

for JPA/Hibernate when running inside WildFly. This means that when using JPA in WildFly, region

factory is already set to infinispan.

When running WildFly multi-node clusters, it is recommended that you start off by using

clustered.xml configuration file. Within this file you can find Hibernate Infinispan caches

configured with the correct settings to work in a clustered environment. You can find more about

the configuration check the Default Cluster Configuration section.

Several aspects of the Infinispan second level cache provider can be configured directly in

persistence.xml. This means that some of those tweaks do not require changing WildFly’s

standalone-ha.xml file. You can find out more about these changes in the Configuration Properties

section.

So, to enable Hibernate to use Infinispan as second-level cache, all you need to do is enable second-

level cache. Enabling second-level cache is explained in detail in the introduction of this chapter.

1.4. Configuration reference

This section is dedicated at explaining configuration in detail as well as some extra configuration

options.

1.4.1. Default local configuration

Infinispan second-level cache provider comes with a configuration designed for local, single node,

environments. These are the characteristics of such configuration:

Entities, collections, queries and timestamps are stored in non-transactional local caches.

Entities and collections query caches are configured with the following eviction settings:

• Eviction wake up interval is 5 seconds.

• Max number of entries are 10,000.

• Max idle time before expiration is 100 seconds.

• Default eviction algorithm is LRU, least recently used.

You can change these settings on a per entity or collection basis or per individual entity or

collection type. More information in the Configuration Properties section below.

6

No eviction/expiration is configured for timestamp caches, nor it’s allowed.

1.4.2. Default cluster configuration

Infinispan second-level cache provider default configuration is designed for multi-node clustered

environments. The aim of this section is to explain the default settings for each of the different

global data type caches (entity, collection, query and timestamps), why these were chosen and what

are the available alternatives. These are the characteristics of such configuration:

Entities and Collections

By default all entities and collections are configured to use a synchronous invalidation as clustering

mode. Whenever a new entity or collection is read from database and needs to be cached, it’s only

cached locally in order to reduce intra-cluster traffic. This option can be changed so that

entities/collections are cached cluster wide, by switching the entity/collection cache to be replicated

or distributed. How to change this option is explained in the Configuration Properties section.

When data read from the database is put in the cache, with replicated or

distributed caches, the data is propagated to other nodes using asynchronous

communication. In the presence of concurrent database loads, one operation will

succeed while others might fail (silently). This is fine because they’d all be trying to

put the same data loaded from the database. This has the side effect that under

these circumstances, the cache might not be up to date right after making the JPA

call that leads to the database load. However, the cache will eventually contain the

data loaded, even if it happens after a short delay.

All entities and collections are configured to use a synchronous invalidation as clustering mode. This

means that when an entity is updated, the updated cache will send a message to the other members

of the cluster telling them that the entity has been modified. Upon receipt of this message, the other

nodes will remove this data from their local cache, if it was stored there. This option can be

changed so that both local and remote nodes contain the updates by configuring entities or

collections to use a replicated or distributed cache. With replicated caches all nodes would contain

the update, whereas with distributed caches only a subset of the nodes. How to change this option

is explained in the Configuration Properties section.

All entities and collections have initial state transfer disabled since there’s no need for it.

Entities and collections are configured with the following eviction settings. You can change these

settings on a per entity or collection basis or per individual entity or collection type. More

information in the Configuration Properties section below.

• Eviction wake up interval is 5 seconds.

• Max number of entries are 10,000.

• Max idle time before expiration is 100 seconds.

• Default eviction algorithm is LRU, least recently used.

Queries

Assuming that query caching has been enabled for the persistence unit (see chapter introduction),

7

the query cache is configured so that queries are only cached locally. Alternatively, you can

configure query caching to use replication by selecting the replicated-query as query cache name.

However, replication for query cache only makes sense if, and only if, all of this conditions are true:

• Performing the query is quite expensive.

• The same query is very likely to be repeatedly executed on different cluster nodes.

• The query is unlikely to be invalidated out of the cache

Hibernate must aggressively invalidate query results from the cache any time any

instance of one of the entity types targeted by the query. All such query results are

invalidated, even if the change made to the specific entity instance would not have

affected the query result. For example: the cached result of SELECT id FROM cars

where color = 'red' is thrown away when you call INSERT INTO cars VALUES …,

color = 'blue'. Also, the result of an update within a transaction is not visible to

the result obtained from the query cache.

query cache uses the same eviction/expiration settings as for entities/collections.

query cache has initial state transfer disabled. It is not recommended that this is enabled.

Up to Hibernate 5.2 both transactional and non-transactional query caches have been supported,

though non-transactional variant is recommended. Hibernate 5.3 drops support for transactional

caches, only non-transactional variant is supported. If the cache is configured with transactions this

setting is ignored and warning is logged.

Timestamps

The timestamps cache is configured with asynchronous replication as clustering mode. Local or

invalidated cluster modes are not allowed, since all cluster nodes must store all timestamps. As a

result, no eviction/expiration is allowed for timestamp caches either.

Asynchronous replication was selected as default for timestamps cache for

performance reasons. A side effect of this choice is that when an entity/collection

is updated, for a very brief period of time stale queries might be returned. It’s

important to note that due to how Infinispan deals with asynchronous replication,

stale queries might be found even query is done right after an entity/collection

update on same node.

Hibernate must aggressively invalidate query results from the cache any time any

instance of one of the entity types is modified. All cached query results referencing

given entity type are invalidated, even if the change made to the specific entity

instance would not have affected the query result. The timestamps cache plays

here an important role - it contains last modification timestamp for each entity

type. After a cached query results is loaded, its timestamp is compared to all

timestamps of the entity types that are referenced in the query. If any of these is

higher, the cached query result is discarded and the query is executed against DB.

This requires synchronization of the wall clock across the cluster to work as

expected.

8

1.4.3. Configuration properties

As explained above, Infinispan second-level cache provider comes with default configuration in

infinispan-config.xml that is suited for clustered use. If there’s only single JVM accessing the DB,

you can use more performant infinispan-config-local.xml by setting the

hibernate.cache.infinispan.cfg property. If you require further tuning of the cache, you can

provide your own configuration. Caches that are not specified in the provided configuration will

default to infinispan-config.xml (if the provided configuration uses clustering) or infinispan-

config-local.xml.

It is not possible to specify the configuration this way in WildFly. Cache

configuration changes in WildFly should be done either modifying the cache

configurations inside the application server configuration, or creating new caches

with the desired tweaks and plugging them accordingly. See examples below on

how entity/collection specific configurations can be applied.

Use custom Infinispan configuration

<property

 name="hibernate.cache.infinispan.cfg"

 value="my-infinispan-configuration.xml" />

If the cache is configured as transactional, Infinispan cache provider automatically

sets transaction manager so that the TM used by Infinispan is the same as TM used

by Hibernate.

Cache configuration can differ for each type of data stored in the cache. In order to override the

cache configuration template, use property hibernate.cache.infinispan.data-type.cfg where data-

type can be one of:

• entity: Entities indexed by @Id or @EmbeddedId attribute.

• immutable-entity: Entities tagged with @Immutable annotation or set as mutable=false in mapping

file.

• naturalid: Entities indexed by their @NaturalId attribute.

• collection: All collections.

• timestamps: Mapping entity type → last modification timestamp. Used for query caching.

• query: Mapping query → query result.

• pending-puts: Auxiliary caches for regions using invalidation mode caches.

For specifying cache template for specific region, use region name instead of the data-type:

9

Use custom cache template

<property

 name="hibernate.cache.infinispan.entities.cfg"

 value="custom-entities" />

<property

 name="hibernate.cache.infinispan.query.cfg"

 value="custom-query-cache" />

<property

 name="hibernate.cache.infinispan.com.example.MyEntity.cfg"

 value="my-entities" />

<property

 name="hibernate.cache.infinispan.com.example.MyEntity.someCollection.cfg"

 value="my-entities-some-collection" />

Use custom cache template in WildFly

When applying entity/collection level changes inside JPA applications deployed in WildFly, it is

necessary to specify deployment name and persistence unit name (separated by # character):

<property

 name=

"hibernate.cache.infinispan._war_or_ear_name_#_unit_name_.com.example.MyEntity.cfg"

 value="my-entities" />

<property

 name=

"hibernate.cache.infinispan._war_or_ear_name_#_unit_name_.com.example.MyEntity.someCol

lection.cfg"

 value="my-entities-some-collection" />

Cache configurations are used only as a template for the cache created for given

region. Usually each entity hierarchy or collection has its own region

Except for eviction/expiration settings, it is highly recommended not to deviate

from the template configuration settings.

Some options in the cache configuration can also be overridden directly through properties. These

are:

• hibernate.cache.infinispan.something.eviction.strategy: Available options are NONE, LRU and

LIRS.

• hibernate.cache.infinispan.something.eviction.max_entries: Maximum number of entries in

the cache.

• hibernate.cache.infinispan.something.expiration.lifespan: Lifespan of entry from insert into

cache (in milliseconds).

• hibernate.cache.infinispan.something.expiration.max_idle: Lifespan of entry from last

read/modification (in milliseconds).

10

• hibernate.cache.infinispan.something.expiration.wake_up_interval: Period of thread checking

expired entries.

• hibernate.cache.infinispan.statistics: Globally enables/disable Infinispan statistics collection,

and their exposure via JMX.

Example:

<property name="hibernate.cache.infinispan.entity.eviction.strategy"

 value= "LRU"/>

<property name="hibernate.cache.infinispan.entity.eviction.wake_up_interval"

 value= "2000"/>

<property name="hibernate.cache.infinispan.entity.eviction.max_entries"

 value= "5000"/>

<property name="hibernate.cache.infinispan.entity.expiration.lifespan"

 value= "60000"/>

<property name="hibernate.cache.infinispan.entity.expiration.max_idle"

 value= "30000"/>

With the above configuration, you’re overriding whatever eviction/expiration settings were defined

for the default entity cache name in the Infinispan cache configuration used. This happens

regardless of whether it’s the default one or user defined. More specifically, we’re defining the

following:

• All entities to use LRU eviction strategy

• The eviction thread to wake up every 2 seconds (2000 milliseconds)

• The maximum number of entities for each entity type to be 5000 entries

• The lifespan of each entity instance to be 1 minute (60000 milliseconds).

• The maximum idle time for each entity instance to be 30 seconds (30000 milliseconds).

You can also override eviction/expiration settings on a per entity/collection type basis. This allows

overrides that only affects a particular entity (i.e. com.acme.Person) or collection type (i.e.

com.acme.Person.addresses). Example:

<property name="hibernate.cache.infinispan.com.acme.Person.eviction.strategy"

 value= "LIRS"/>

Inside of WildFly, same as with the entity/collection configuration override, eviction/expiration

settings would also require deployment name and persistence unit information (a working

example can be found here):

11

<property name=

"hibernate.cache.infinispan._war_or_ear_name_#_unit_name_.com.acme.Person.eviction.str

ategy"

 value= "LIRS"/>

<property name=

"hibernate.cache.infinispan._war_or_ear_name_#_unit_name_.com.acme.Person.expiration.l

ifespan"

 value= "65000"/>

1.5. Cache strategies

Infinispan cache provider supports all Hibernate cache strategies: transactional, read-write,

nonstrict-read-write and read-only.

Integrations with Hibernate 4.x required transactional invalidation caches and in

integrations with Hibernate ≤ 5.2 transactional invalidation caches are supported (in

JTA environment). However for all 5.x versions non-transactional caches are preferred.

With Hibernate 5.3 the support for transactional caches has been dropped completely, and both

<code>read-write</code> and <code>transactional</code> use the same implementation. Infinispan

provides the same consistency guarantees for both <code>transactional</code> and <code>read-

write</code> strategies, use of transactions is considered an implementation detail.

In integrations with Hibernate 5.2 or lower the actual setting of cache concurrency mode (read-

write vs. transactional) is not honored on invalidation caches, the appropriate strategy is selected

based on the cache configuration (non-transactional vs. transactional).

Support for replicated/distributed caches for read-write and read-only strategies has been added

during 5.x development and this requires exclusively non-transactional configuration. Also eviction

should not be used in this configuration as it can lead to consistency issues. Expiration (with

reasonably long max-idle times) can be used.

Nonstrict-read-write strategy is supported on non-transactional distributed/replicated caches, but

the eviction should be turned off as well. In addition to that, the entities must use versioning. This

means that this strategy cannot be used for caching natural IDs (which are never versioned). This

mode mildly relaxes the consistency - between DB commit and end of transaction commit a stale

read may occur in another transaction. However this strategy uses less RPCs and can be more

performant than the other ones.

Read-only mode is supported in all configurations mentioned above but use of this mode currently

does not bring any performance gains.

The available combinations are summarized in table below:

Table 5. Cache concurrency strategy/cache mode compatibility table

Concurrency strategy Cache transactions Cache mode Eviction

transactional ≤ 5.2 transactional invalidation yes

12

Concurrency strategy Cache transactions Cache mode Eviction

transactional ≥ 5.3 non-

transactional

invalidation yes

read-write non-transactional invalidation yes

read-write non-transactional distributed/replicated no

nonstrict-read-write non-transactional distributed/replicated no

Changing caches to behave different to the default behaviour explained in previous section is

explained in the Configuration Properties section.

Use of transactional caches is possible only in JTA environment. Hibernate

supports JDBC-only transactions but Infinispan transactional caches do not

integrate with these. Therefore, in non-JTA environment the only option is to use

read-write, nonstrict-read-write or read-only on non-transactional cache.

Configuring the cache as transactional in non-JTA can lead to undefined

behaviour.

Stale read with nonstrict-read-write strategy

A=0 (non-cached), B=0 (cached in 2LC)

TX1: write A = 1, write B = 1

TX1: start commit

TX1: commit A, B in DB

TX2: read A = 1 (from DB), read B = 0 (from 2LC) // breaks transactional atomicity

TX1: update A, B in 2LC

TX1: end commit

Tx3: read A = 1, B = 1 // reads after TX1 commit completes are consistent again

1.6. Using minimal puts

Hibernate offers a configuration option hibernate.cache.use_minimal_puts which is off by default in

Infinispan implementation. This option checks if the cache contains given key before updating the

value from database (put-from-load) and omits the update if the cached value is already present.

When using invalidation caches it makes sense to keep this off as the put-from-load is local node-

only and silently fails if the entry is locked. With replicated/distributed caches the update is applied

to remote nodes, even if the local node already contains the entry, and this has higher performance

impact, so it might make sense to turn this option on and avoid updating the cache.

13

	Hibernate second-level caching (2LC)
	Table of Contents
	Chapter 1. Using Infinispan as a second-level cache
	1.1. Adding dependencies
	1.2. Enabling second-level caches
	1.3. Deployment scenarios
	1.3.1. Single-node standalone Hibernate application
	1.3.2. Single-node standalone Spring application
	1.3.3. Single-node WildFly application
	1.3.4. Multi-node standalone Hibernate application
	1.3.5. Multi-node standalone Spring application
	1.3.6. Multi-node WildFly application

	1.4. Configuration reference
	1.4.1. Default local configuration
	1.4.2. Default cluster configuration
	1.4.3. Configuration properties

	1.5. Cache strategies
	1.6. Using minimal puts

