
Infinispan 9.0 User Guide

The Infinispan community

Table of Contents

1. Introduction . 1

1.1. What is Infinispan ? . 1

1.2. Why use Infinispan ? . 1

1.2.1. As a local cache . 1

1.2.2. As a clustered cache . 1

1.2.3. As a clustering building block for your applications . 1

1.2.4. As a remote cache . 1

1.2.5. As a data grid . 2

1.2.6. As a geographical backup for your data . 2

2. Configuration . 3

2.1. Configuring caches declaratively . 3

2.1.1. Cache configuration templates . 4

2.1.2. Declarative configuration reference . 6

2.2. Configuring caches programmatically . 6

2.2.1. ConfigurationBuilder Programmatic Configuration API . 7

2.2.2. Advanced programmatic configuration . 9

2.3. Configuration Migration Tools . 10

2.4. Clustered Configuration . 10

2.4.1. Using an external JGroups file . 10

2.4.2. Use one of the pre-configured JGroups files . 11

2.4.3. Further reading . 13

3. The CacheManager API . 14

3.1. Clustering Information . 14

3.1.1. Member Information. 14

3.1.2. Other methods. 14

3.2. Cluster Executor . 14

3.2.1. Example: Dynamically Start and Stop Clustered Cache . 15

4. The Cache API . 16

4.1. The Cache interface . 16

4.1.1. Performance Concerns of Certain Map Methods . 16

4.1.2. Mortal and Immortal Data . 16

4.1.3. Example of Using Expiry and Mortal Data . 16

4.1.4. putForExternalRead operation . 17

4.2. The AdvancedCache interface. 18

4.2.1. Flags . 18

4.2.2. Custom Interceptors . 18

4.3. Listeners and Notifications . 18

4.3.1. Cache-level notifications. 19

4.3.2. Cache manager-level notifications . 21

4.3.3. Synchronicity of events. 21

4.4. Asynchronous API . 22

4.4.1. Why use such an API? . 22

4.4.2. Which processes actually happen asynchronously? . 22

4.4.3. Notifying futures . 23

4.4.4. Further reading . 23

4.5. Invocation Flags . 23

4.5.1. DecoratedCache . 24

4.5.2. Examples . 24

4.6. Tree API Module . 25

4.6.1. What is Tree API about? . 25

4.6.2. Using the Tree API . 25

4.6.3. Creating a Tree Cache . 26

4.6.4. Manipulating data in a Tree Cache . 26

4.6.5. Common Operations . 27

4.6.6. Locking in the Tree API . 28

4.6.7. Listeners for tree cache events . 29

4.7. Functional Map API . 29

4.7.1. Asynchronous and Lazy . 30

4.7.2. Function transparency . 30

4.7.3. Constructing Functional Maps . 30

4.7.4. Read-Only Map API . 31

4.7.5. Write-Only Map API . 32

4.7.6. Read-Write Map API . 33

4.7.7. Metadata Parameter Handling . 34

4.7.8. Invocation Parameter . 36

4.7.9. Functional Listeners . 37

4.7.10. Marshalling of Functions . 40

4.7.11. Use cases for Functional API . 42

5. Eviction and Data Container . 43

5.1. Enabling Eviction . 43

5.1.1. Eviction strategy . 43

5.1.2. Eviction types . 43

5.1.3. Storage type . 44

5.1.4. More defaults. 44

5.2. Expiration . 44

5.2.1. Difference between Eviction and Expiration . 45

5.3. Expiration details . 45

5.3.1. Configuration . 45

5.3.2. Memory Based Eviction Configuration . 46

5.3.3. Default values . 46

5.3.4. Using expiration . 46

5.4. Expiration designs . 47

6. Persistence. 48

6.1. Configuration . 48

6.2. Cache Passivation. 51

6.2.1. Cache Loader Behavior with Passivation Disabled vs Enabled . 51

6.3. Cache Loaders and transactional caches . 52

6.4. Write-Through And Write-Behind Caching . 52

6.4.1. Write-Through (Synchronous) . 53

6.4.2. Write-Behind (Asynchronous). 53

6.5. Filesystem based cache stores. 54

6.5.1. Single File Store . 54

6.5.2. Soft-Index File Store. 55

6.6. JDBC String based Cache Store . 56

6.6.1. Connection management (pooling) . 57

6.6.2. Sample configurations . 57

6.6.3. JDBC Migrator . 59

6.7. Remote store . 62

6.8. Cluster cache loader . 62

6.9. Command-Line Interface cache loader. 63

6.10. RocksDB Cache Store . 63

6.10.1. Introduction. 64

6.10.2. Configuration . 64

6.10.3. Additional References . 65

6.11. LevelDB Cache Store . 65

6.12. REST Cache Store . 65

6.12.1. Introduction. 66

6.12.2. Javadoc . 66

6.12.3. Configuration . 66

6.13. JPA Cache Store . 66

6.13.1. Introduction. 66

6.13.2. Configuration . 68

6.13.3. Additional References . 69

6.13.4. Javadoc . 69

6.14. Custom Cache Stores . 69

6.14.1. HotRod Deployment . 70

6.15. Data Migration . 70

6.16. API . 71

6.17. More implementations . 72

7. Clustering. 73

7.1. Local Mode. 73

7.1.1. Simple Cache . 74

7.2. Invalidation Mode . 75

7.3. Replicated Mode . 77

7.4. Distribution Mode . 77

7.4.1. Read consistency . 78

7.4.2. Key ownership . 79

7.4.3. Initial cluster size . 80

7.4.4. L1 Caching . 81

7.4.5. Server Hinting . 82

7.4.6. Key affinity service . 82

7.4.7. The Grouping API . 84

7.5. Asynchronous Options . 87

7.5.1. Asynchronous Communications . 87

7.5.2. Asynchronous API . 87

7.5.3. Return Values . 87

7.6. Partition handling . 88

7.6.1. Split brain . 89

7.6.2. Successive nodes stopped . 90

7.6.3. Configuring partition handling . 91

7.6.4. Monitoring and administration . 91

8. Marshalling . 93

8.1. The Role Of JBoss Marshalling . 93

8.2. Support For Non-Serializable Objects . 93

8.2.1. Store As Binary . 94

8.3. Advanced Configuration . 95

8.3.1. Troubleshooting . 95

8.4. User Defined Externalizers . 98

8.4.1. Benefits of Externalizers. 99

8.4.2. User Friendly Externalizers . 99

8.4.3. Advanced Externalizers . 100

9. Transactions . 106

9.1. Configuring transactions . 106

9.2. Isolation levels . 108

9.3. Transaction locking . 109

9.3.1. Pessimistic transactional cache . 109

9.3.2. Optimistic transactional cache . 110

9.3.3. What do I need - pessimistic or optimistic transactions? . 110

9.4. Write Skew . 110

9.5. Deadlock detection . 111

9.6. Dealing with exceptions . 112

9.7. Enlisting Synchronizations . 112

9.8. Batching . 112

9.8.1. API . 113

9.8.2. Batching and JTA . 113

9.9. Transaction recovery . 114

9.9.1. When to use recovery . 114

9.9.2. How does it work . 114

9.9.3. Configuring recovery . 114

9.9.4. Recovery cache . 114

9.9.5. Integration with the transaction manager . 115

9.9.6. Reconciliation . 115

9.9.7. Want to know more? . 117

9.10. Total Order based commit protocol . 117

9.10.1. Overview . 118

9.10.2. Configuration . 121

9.10.3. When to use it? . 122

10. Locking and Concurrency . 123

10.1. Locking implementation details . 123

10.1.1. How does it work in clustered caches? . 123

10.1.2. Transactional caches . 124

10.1.3. Isolation levels . 124

10.1.4. The LockManager . 124

10.1.5. Lock striping . 124

10.1.6. Concurrency levels . 124

10.1.7. Lock timeout . 125

10.1.8. Consistency . 125

10.2. Data Versioning . 125

11. Streams . 127

11.1. Common stream operations . 127

11.1.1. Key filtering . 127

11.1.2. Segment based filtering . 127

11.2. Local/Invalidation . 127

11.2.1. Example . 128

11.3. Distribution/Replication . 128

11.3.1. Rehash Aware . 128

11.3.2. Serialization . 128

11.3.3. Parallel Computation . 131

11.3.4. Task timeout . 132

11.3.5. Injection . 132

11.3.6. Distributed Stream execution . 132

11.3.7. Key based rehash aware operators . 133

11.3.8. Intermediate operation exceptions . 134

11.4. Examples . 135

12. Distributed Execution. 138

12.1. DistributedCallable API . 138

12.2. Callable and CDI . 139

12.3. DistributedExecutorService, DistributedTaskBuilder and DistributedTask API 139

12.4. Distributed task failover . 140

12.5. Distributed task execution policy . 142

12.6. Examples . 142

13. Querying . 144

13.1. The infinispan-query module . 144

13.2. Simple example . 144

13.2.1. Notable differences with Hibernate Search . 146

13.2.2. Requirements for the Key: @Transformable . 146

13.3. Configuration . 147

13.3.1. Configuration via XML . 147

13.3.2. Automatic configuration . 148

13.3.3. Lucene Directory . 150

13.3.4. Using programmatic configuration and index mapping . 150

13.4. Cache modes and managing indexes . 151

13.4.1. LOCAL . 151

13.4.2. REPLICATION . 151

13.4.3. DISTRIBUTION . 152

13.4.4. INVALIDATION . 153

13.5. Sharing the Index . 153

13.6. Clustering the Index in Infinispan. 153

13.7. Rebuilding the Index. 153

13.8. Obtaining query statistics . 154

13.9. Infinispan’s Query DSL. 154

13.10. Filtering operators . 155

13.10.1. Filtering based on attributes of embedded entities . 157

13.11. Boolean conditions . 157

13.12. Nested conditions . 158

13.13. Projections. 158

13.14. Sorting . 159

13.15. Pagination . 159

13.16. Grouping and Aggregation . 160

13.16.1. Aggregations . 160

13.16.2. Evaluation of queries with grouping and aggregation . 161

13.17. Using Named Query Parameters . 161

13.18. Continuous Queries. 163

13.18.1. Continuous Query Execution . 163

13.18.2. Running Continuous Queries . 164

13.18.3. Removing Continuous Queries . 165

13.18.4. Notes on performance of Continuous Queries . 165

13.19. More Query DSL samples . 166

14. CDI Support . 167

14.1. Maven Dependencies . 167

14.2. Embedded cache integration . 167

14.2.1. Inject an embedded cache . 167

14.2.2. Override the default embedded cache manager and configuration 169

14.2.3. Configure the transport for clustered use . 170

14.3. Remote cache integration . 170

14.3.1. Inject a remote cache . 170

14.3.2. Override the default remote cache manager . 172

14.4. Use a custom remote/embedded cache manager for one or more cache 172

14.5. Use JCache caching annotations. 173

14.6. Use Cache events and CDI . 174

15. JCache (JSR-107) provider . 176

15.1. Dependencies . 176

15.2. Create a local cache . 176

15.3. Store and retrieve data. 177

15.4. Comparing java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs 177

15.5. Clustering JCache instances. 178

16. Management Tooling . 180

16.1. JMX . 180

16.1.1. Understanding The Exposed MBeans . 180

16.1.2. Enabling JMX Statistics . 181

16.1.3. Monitoring cluster health . 182

16.1.4. Multiple JMX Domains . 182

16.1.5. Registering MBeans In Non-Default MBean Servers . 182

16.1.6. MBeans added in Infinispan 5.0 . 183

16.2. Command-Line Interface (CLI) . 183

16.2.1. Commands . 185

16.2.2. upgrade . 191

16.2.3. version . 191

16.2.4. Data Types . 191

16.2.5. Time Values . 192

16.3. Hawt.io . 192

16.4. Writing plugins for other management tools . 192

17. Custom Interceptors . 193

17.1. Adding custom interceptors declaratively . 193

17.2. Adding custom interceptors programatically . 193

17.3. Custom interceptor design . 194

18. Running on Cloud Services . 195

18.1. Amazon Web Services . 195

18.1.1. TCPPing, GossipRouter, S3_PING . 195

18.1.2. GossipRouter . 196

18.1.3. S3_PING . 196

18.1.4. JDBC_PING . 196

19. Kubernetes and OpenShift . 197

20. Client/Server . 198

20.1. Why Client/Server? . 198

20.2. Why use embedded mode? . 202

20.3. Server Modules . 202

20.4. Using Hot Rod Server . 203

20.5. Hot Rod Protocol . 204

20.5.1. Hot Rod Protocol 1.0 . 204

20.5.2. Hot Rod Protocol 1.1 . 221

20.5.3. Hot Rod Protocol 1.2 . 223

20.5.4. Hot Rod Protocol 1.3 . 225

20.5.5. Hot Rod Protocol 2.0 . 226

20.5.6. Hot Rod Protocol 2.1 . 234

20.5.7. Hot Rod Protocol 2.2 . 235

20.5.8. Hot Rod Protocol 2.3 . 236

20.5.9. Hot Rod Protocol 2.4 . 238

20.5.10. Hot Rod Protocol 2.5 . 241

20.5.11. Hot Rod Protocol 2.6 . 243

20.5.12. Hot Rod Hash Functions . 246

20.6. Java Hot Rod client . 247

20.6.1. Configuration . 247

20.6.2. Basic API . 249

20.6.3. Versioned API . 251

20.6.4. Async API . 252

20.6.5. Streaming API . 252

20.6.6. Creating Event Listeners . 253

20.6.7. Removing Event Listeners . 254

20.6.8. Filtering Events. 254

20.6.9. Customizing Events . 256

20.6.10. Filter and Custom Events . 259

20.6.11. Event Marshalling . 261

20.6.12. Listener State Handling . 261

20.6.13. Listener Failure Handling . 262

20.6.14. Near Caching . 262

20.6.15. Unsupported methods . 263

20.6.16. Return values . 264

20.6.17. Client Intelligence . 264

20.6.18. Request Balancing . 265

20.6.19. Persistent connections . 265

20.6.20. Marshalling data . 265

20.6.21. Statistics . 266

20.6.22. Multi-Get Operations . 266

20.6.23. Failover capabilities . 266

20.6.24. Site Cluster Failover . 266

20.6.25. Manual Site Cluster Switch . 267

20.6.26. Concurrent Updates . 267

20.6.27. Querying . 270

20.6.28. Javadocs . 274

20.7. Scripting . 274

20.7.1. Installing scripts . 275

20.7.2. Script metadata . 275

20.7.3. Script bindings . 276

20.7.4. Script parameters . 276

20.7.5. Running Scripts using the Hot Rod Java client . 276

20.7.6. Distributed execution . 277

20.8. REST Server . 277

20.8.1. REST API . 277

20.8.2. Client side code . 279

20.9. Memcached Server . 283

20.9.1. Command Clarifications . 283

20.9.2. Unsupported Features . 284

20.9.3. Talking To Infinispan Memcached Servers From Non-Java Clients 285

20.10. WebSocket Server . 286

20.10.1. Javascript API . 286

20.10.2. Sample code . 288

20.10.3. Screencast . 288

20.10.4. Status. 288

20.10.5. Source . 288

21. Embedded/Remote Compatibility . 289

21.1. Enable Compatibility Mode . 289

21.1.1. Optional: Configuring Compatibility Marshaller . 290

21.2. Code examples . 290

22. Security . 291

22.1. Embedded Security . 291

22.1.1. Embedded Permissions . 291

22.1.2. Embedded API . 292

22.1.3. Embedded Configuration . 293

22.2. Security Audit . 295

22.3. Cluster security . 296

23. Integrations. 298

23.1. Apache Spark . 298

23.2. Apache Hadoop . 298

23.3. Apache Lucene . 298

23.3.1. Lucene compatibility. 298

23.3.2. Maven dependencies. 298

23.3.3. How to use it . 299

23.3.4. Configuration . 300

23.3.5. Using a CacheLoader . 301

23.3.6. Storing the index in a database . 301

23.3.7. Loading an existing Lucene Index . 302

23.3.8. Architectural limitations . 302

23.3.9. Suggestions for optimal performance. 303

23.3.10. Demo . 304

23.3.11. Additional Links . 304

23.4. Directory Provider for Hibernate Search . 304

23.4.1. Maven dependencies. 304

23.4.2. How to use it . 304

23.4.3. Configuration . 305

23.4.4. Architecture considerations . 305

23.5. JPA/Hibernate 2L Cache . 305

23.6. Using Infinispan with Spring Boot. 305

23.7. Using Infinispan as a Spring Cache provider . 305

23.7.1. Activating Spring Cache support . 306

23.7.2. Telling Spring to use Infinispan as its caching provider . 307

23.7.3. Adding caching to your application code . 308

23.7.4. Externalizing session using Spring Session . 309

23.7.5. Conclusion . 310

23.8. Infinispan modules for WildFly . 310

23.8.1. Installation. 310

23.8.2. Usage . 310

23.8.3. Troubleshooting . 313

24. Grid File System . 314

24.1. WebDAV demo . 315

25. Cross site replication . 316

25.1. Sample deployment. 316

25.1.1. Local cluster’s jgroups .xml configuration. 319

25.1.2. RELAY2 configuration file . 319

25.2. Data replication . 320

25.2.1. Non transactional caches . 320

25.2.2. Transactional caches . 320

25.3. Taking a site offline . 321

25.3.1. Configuration . 321

25.3.2. Taking a site back online . 322

25.4. State Transfer between sites . 322

25.4.1. Handling join/leave nodes . 323

25.4.2. Handling broken link between sites . 323

25.4.3. System Administrator Operations . 323

25.4.4. Configuration . 323

25.5. Reference . 324

26. Rolling upgrades . 325

26.1. Rolling upgrades for Infinispan library/embedded mode . 325

26.1.1. Steps . 325

26.2. Rolling upgrades for Infinispan Servers . 326

26.3. Steps . 326

27. Extending Infinispan . 328

27.1. Custom Commands . 328

27.1.1. An Example . 328

27.1.2. Preassigned Custom Command Id Ranges . 328

27.2. Extending the configuration builders and parsers . 329

27.3. Cache hierarchy . 329

27.4. Commands . 329

27.5. Visitors . 330

27.6. Interceptors . 330

27.7. Putting it all together . 331

27.8. Subsystem Managers . 331

27.8.1. DistributionManager. 331

27.8.2. TransactionManager . 331

27.8.3. RpcManager . 331

27.8.4. LockManager . 331

27.8.5. PersistenceManager . 331

27.8.6. DataContainer . 331

27.8.7. Configuration . 332

27.9. ComponentRegistry . 332

Chapter 1. Introduction

Welcome to the official Infinispan user guide. This comprehensive document will guide you

through every last detail of Infinispan. Because of this, it can be a poor starting point if you are new

to Infinispan.

For newbies, starting with the Getting Started Guide or one of the Quickstarts is

probably a better bet.

The Frequently Asked Questions and Glossary are also useful documents to have alongside this user

guide.

1.1. What is Infinispan ?

Infinispan is a distributed in-memory key/value data store with optional schema, available under

the Apache License 2.0. It can be used both as an embedded Java library and as a language-

independent service accessed remotely over a variety of protocols (Hot Rod, REST, Memcached and

WebSockets). It offers advanced functionality such as transactions, events, querying and distributed

processing as well as numerous integrations with frameworks such as the JCache API standard, CDI,

Hibernate, WildFly, Spring Cache, Spring Session, Lucene, Spark and Hadoop.

1.2. Why use Infinispan ?

1.2.1. As a local cache

The primary use for Infinispan is to provide a fast in-memory cache of frequently accessed data.

Suppose you have a slow data source (database, web service, text file, etc): you could load some or

all of that data in memory so that it’s just a memory access away from your code. Using Infinispan

is better than using a simple ConcurrentHashMap, since it has additional useful features such as

expiration and eviction.

1.2.2. As a clustered cache

If your data doesn’t fit in a single node, or you want to invalidate entries across multiple instances

of your application, Infinispan can scale horizontally to several hundred nodes.

1.2.3. As a clustering building block for your applications

If you need to make your application cluster-aware, integrate Infinispan and get access to features

like topology change notifications, cluster communication and clustered execution.

1.2.4. As a remote cache

If you want to be able to scale your caching layer independently from your application, or you need

to make your data available to different applications, possibly even using different languages /

platforms, use Infinispan Server and its various clients.

1

../getting_started/getting_started.html
http://www.infinispan.org/documentation
../faqs/faqs.html
../glossary/glossary.html

1.2.5. As a data grid

Data you place in Infinispan doesn’t have to be temporary: use Infinispan as your primary store

and use its powerful features such as transactions, notifications, queries, distributed execution,

distributed streams, analytics to process data quickly.

1.2.6. As a geographical backup for your data

Infinispan supports replication between clusters, allowing you to backup your data across

geographically remote sites.

2

Chapter 2. Configuration

Infinispan offers both declarative and programmatic configuration.

Declarative configuration comes in a form of XML document that adheres to a provided Infinispan

configuration XML schema.

Every aspect of Infinispan that can be configured declaratively can also be configured

programmatically In fact, declarative configuration, behind the scenes, invokes programmatic

configuration API as the XML configuration file is being processed. One can even use a combination

of these approaches. For example, you can read static XML configuration files and at runtime

programmatically tune that same configuration. Or you can use a certain static configuration

defined in XML as a starting point or template for defining additional configurations in runtime.

There are two main configuration abstractions in Infinispan: global and cache.

Global configuration

Global configuration defines global settings shared among all cache instances created by a single

EmbeddedCacheManager. Shared resources like thread pools, serialization/marshalling settings,

transport and network settings, JMX domains are all part of global configuration.

Cache configuration

Cache configuration is specific to the actual caching domain itself: it specifies eviction, locking,

transaction, clustering, persistence etc. You can specify as many named cache configurations as you

need. One of these caches can be indicated as the default cache, which is the cache returned by the

CacheManager.getCache() API, whereas other named caches are retrieved via the

CacheManager.getCache(String name) API.

Whenever they are specified, named caches inherit settings from the default cache while additional

behavior can be specified or overridden. Infinispan also provides a very flexible inheritance

mechanism, where you can define a hierarchy of configuration templates, allowing multiple caches

to share the same settings, or overriding specific parameters as necessary.

Embedded and Server configuration use different schemas, but we strive to

maintain them as compatible as possible so that you can easily migrate between

the two.

2.1. Configuring caches declaratively

One of the major goals of Infinispan is to aim for zero configuration. A simple XML configuration

file containing nothing more than a single infinispan element is enough to get you started. The

configuration file listed below provides sensible defaults and is perfectly valid.

infinispan.xml

<infinispan />

3

http://www.infinispan.org/schemas/infinispan-config-9.0.xsd
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html

However, that would only give you the most basic, local mode, non-clustered cache manager with

no caches. Non-basic configurations are very likely to use customized global and default cache

elements.

Declarative configuration is the most common approach to configuring Infinispan cache instances.

In order to read XML configuration files one would typically construct an instance of

DefaultCacheManager by pointing to an XML file containing Infinispan configuration. Once the

configuration file is read you can obtain reference to the default cache instance.

EmbeddedCacheManager manager = new DefaultCacheManager("my-config-file.xml");

Cache defaultCache = manager.getCache();

or any other named instance specified in my-config-file.xml.

Cache someNamedCache = manager.getCache("someNamedCache");

The name of the default cache is defined in the <cache-container> element of the XML configuration

file, and additional caches can be configured using the <local-cache>,<distributed-cache>

,<invalidation-cache> or <replicated-cache> elements.

The following example shows the simplest possible configuration for each of the cache types

supported by Infinispan:

<infinispan>

 <cache-container default-cache="local">

 <transport cluster="mycluster"/>

 <local-cache name="local"/>

 <invalidation-cache name="invalidation" mode="SYNC"/>

 <replicated-cache name="repl-sync" mode="SYNC"/>

 <distributed-cache name="dist-sync" mode="SYNC"/>

 </cache-container>

</infinispan>

2.1.1. Cache configuration templates

As mentioned above, Infinispan supports the notion of configuration templates. These are full or

partial configuration declarations which can be shared among multiple caches or as the basis for

more complex configurations.

The following example shows how a configuration named local-template is used to define a cache

named local.

4

<infinispan>

 <cache-container default-cache="local">

 <!-- template configurations -->

 <local-cache-configuration name="local-template">

 <expiration interval="10000" lifespan="10" max-idle="10"/>

 </local-cache-configuration>

 <!-- cache definitions -->

 <local-cache name="local" configuration="local-template" />

 </cache-container>

</infinispan>

Templates can inherit from previously defined templates, augmenting and/or overriding some or

all of the configuration elements:

<infinispan>

 <cache-container default-cache="local">

 <!-- template configurations -->

 <local-cache-configuration name="base-template">

 <expiration interval="10000" lifespan="10" max-idle="10"/>

 </local-cache-configuration>

 <local-cache-configuration name="extended-template" configuration="base-

template">

 <expiration lifespan="20"/>

 <memory>

 <object size="2000"/>

 </memory>

 </local-cache-configuration>

 <!-- cache definitions -->

 <local-cache name="local" configuration="base-template" />

 <local-cache name="local-bounded" configuration="extended-template" />

 </cache-container>

</infinispan>

In the above example, base-template defines a local cache with a specific expiration configuration.

The extended-template configuration inherits from base-template, overriding just a single parameter

of the expiration element (all other attributes are inherited) and adds a memory element. Finally,

two caches are defined: local which uses the base-template configuration and local-bounded which

uses the extended-template configuration.

Be aware that for multi-valued elements (such as properties) the inheritance is

additive, i.e. the child configuration will be the result of merging the properties

from the parent and its own.

5

2.1.2. Declarative configuration reference

For more details on the declarative configuration schema, refer to the configuration reference. If

you are using XML editing tools for configuration writing you can use the provided Infinispan

schema to assist you.

2.2. Configuring caches programmatically

Programmatic Infinispan configuration is centered around the CacheManager and

ConfigurationBuilder API. Although every single aspect of Infinispan configuration could be set

programmatically, the most usual approach is to create a starting point in a form of XML

configuration file and then in runtime, if needed, programmatically tune a specific configuration to

suit the use case best.

EmbeddedCacheManager manager = new DefaultCacheManager("my-config-file.xml");

Cache defaultCache = manager.getCache();

Let’s assume that a new synchronously replicated cache is to be configured programmatically. First,

a fresh instance of Configuration object is created using ConfigurationBuilder helper object, and the

cache mode is set to synchronous replication. Finally, the configuration is defined/registered with a

manager.

Configuration c = new ConfigurationBuilder().clustering().cacheMode(CacheMode

.REPL_SYNC).build();

String newCacheName = "repl";

manager.defineConfiguration(newCacheName, c);

Cache<String, String> cache = manager.getCache(newCacheName);

The default cache configuration (or any other cache configuration) can be used as a starting point

for creation of a new cache. For example, lets say that infinispan-config-file.xml specifies a

replicated cache as a default and that a distributed cache is desired with a specific L1 lifespan while

at the same time retaining all other aspects of a default cache. Therefore, the starting point would

be to read an instance of a default Configuration object and use ConfigurationBuilder to construct

and modify cache mode and L1 lifespan on a new Configuration object. As a final step the

configuration is defined/registered with a manager.

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan-config-file.xml");

Configuration dcc = manager.getDefaultCacheConfiguration();

Configuration c = new ConfigurationBuilder().read(dcc).clustering().cacheMode

(CacheMode.DIST_SYNC).l1().lifespan(60000L).build();

String newCacheName = "distributedWithL1";

manager.defineConfiguration(newCacheName, c);

Cache<String, String> cache = manager.getCache(newCacheName);

6

http://docs.jboss.org/infinispan/9.0/configdocs
http://infinispan.org/schemas/infinispan-config-9.0.xsd

As long as the base configuration is the default named cache, the previous code works perfectly

fine. However, other times the base configuration might be another named cache. So, how can new

configurations be defined based on other defined caches? Take the previous example and imagine

that instead of taking the default cache as base, a named cache called "replicatedCache" is used as

base. The code would look something like this:

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan-config-file.xml");

Configuration rc = manager.getCacheConfiguration("replicatedCache");

Configuration c = new ConfigurationBuilder().read(rc).clustering().cacheMode(

CacheMode.DIST_SYNC).l1().lifespan(60000L).build();

String newCacheName = "distributedWithL1";

manager.defineConfiguration(newCacheName, c);

Cache<String, String> cache = manager.getCache(newCacheName);

Refer to CacheManager , ConfigurationBuilder , Configuration , and GlobalConfiguration javadocs

for more details.

2.2.1. ConfigurationBuilder Programmatic Configuration API

While the above paragraph shows how to combine declarative and programmatic configuration,

starting from an XML configuration is completely optional. The ConfigurationBuilder fluent

interface style allows for easier to write and more readable programmatic configuration. This

approach can be used for both the global and the cache level configuration. GlobalConfiguration

objects are constructed using GlobalConfigurationBuilder while Configuration objects are built

using ConfigurationBuilder. Let’s look at some examples on configuring both global and cache level

options with this API:

One of the most commonly configured global option is the transport layer, where you indicate how

an Infinispan node will discover the others:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder().transport()

 .defaultTransport()

 .clusterName("qa-cluster")

 .addProperty("configurationFile", "jgroups-tcp.xml")

 .machineId("qa-machine").rackId("qa-rack")

 .build();

Sometimes you might also want to enable collection of global JMX statistics at cache manager level

or get information about the transport. To enable global JMX statistics simply do:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()

 .globalJmxStatistics()

 .enable()

 .build();

7

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/CacheManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/configuration/cache/ConfigurationBuilder.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/configuration/cache/Configuration.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/configuration/global/GlobalConfiguration.html
https://docs.jboss.org/infinispan/9.0/apidocs/jmxComponents.html

Please note that by not enabling (or by explicitly disabling) global JMX statistics your are just

turning off statistics collection. The corresponding MBean is still registered and can be used to

manage the cache manager in general, but the statistics attributes do not return meaningful values.

Further options at the global JMX statistics level allows you to configure the cache manager name

which comes handy when you have multiple cache managers running on the same system, or how

to locate the JMX MBean Server:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()

 .globalJmxStatistics()

 .cacheManagerName("SalesCacheManager")

 .mBeanServerLookup(new JBossMBeanServerLookup())

 .build();

Some of the Infinispan features are powered by a group of the thread pool executors which can

also be tweaked at this global level. For example:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()

 .replicationQueueThreadPool()

 .threadPoolFactory(ScheduledThreadPoolExecutorFactory.create())

 .build();

You can not only configure global, cache manager level, options, but you can also configure cache

level options such as the cluster mode:

Configuration config = new ConfigurationBuilder()

 .clustering()

 .cacheMode(CacheMode.DIST_SYNC)

 .sync()

 .l1().lifespan(25000L)

 .hash().numOwners(3)

 .build();

Or you can configure eviction and expiration settings:

Configuration config = new ConfigurationBuilder()

 .memory()

 .size(20000)

 .expiration()

 .wakeUpInterval(5000L)

 .maxIdle(120000L)

 .build();

An application might also want to interact with an Infinispan cache within the boundaries of JTA

and to do that you need to configure the transaction layer and optionally tweak the locking settings.

When interacting with transactional caches, you might want to enable recovery to deal with

8

transactions that finished with an heuristic outcome and if you do that, you will often want to

enable JMX management and statistics gathering too:

Configuration config = new ConfigurationBuilder()

 .locking()

 .concurrencyLevel(10000).isolationLevel(IsolationLevel.REPEATABLE_READ)

 .lockAcquisitionTimeout(12000L).useLockStriping(false).writeSkewCheck(true)

 .versioning().enable().scheme(VersioningScheme.SIMPLE)

 .transaction()

 .transactionManagerLookup(new GenericTransactionManagerLookup())

 .recovery()

 .jmxStatistics()

 .build();

Configuring Infinispan with chained cache stores is simple too:

Configuration config = new ConfigurationBuilder()

 .persistence().passivation(false)

 .addSingleFileStore().location("/tmp").async().enable()

 .preload(false).shared(false).threadPoolSize(20).build();

2.2.2. Advanced programmatic configuration

The fluent configuration can also be used to configure more advanced or exotic options, such as

advanced externalizers:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()

 .serialization()

 .addAdvancedExternalizer(998, new PersonExternalizer())

 .addAdvancedExternalizer(999, new AddressExternalizer())

 .build();

Or, add custom interceptors:

Configuration config = new ConfigurationBuilder()

 .customInterceptors().addInterceptor()

 .interceptor(new FirstInterceptor()).position(InterceptorConfiguration.Position

.FIRST)

 .interceptor(new LastInterceptor()).position(InterceptorConfiguration.Position

.LAST)

 .interceptor(new FixPositionInterceptor()).index(8)

 .interceptor(new AfterInterceptor()).after(NonTransactionalLockingInterceptor

.class)

 .interceptor(new BeforeInterceptor()).before(CallInterceptor.class)

 .build();

9

For information on the individual configuration options, please check the configuration guide .

2.3. Configuration Migration Tools

The configuration format of Infinispan has changed since version 6.0 in order to align the

embedded schema with the one used by the server. For this reason, when upgrading to Infinispan

7.x or later, you should use the configuration converter included in the all distribution. Simply

invoke it from the command-line passing the old configuration file as the first parameter and the

name of the converted file as the second parameter.

To convert on Unix/Linux/macOS:

bin/config-converter.sh oldconfig.xml newconfig.xml

on Windows:

bin\config-converter.bat oldconfig.xml newconfig.xml

If you wish to help write conversion tools from other caching systems, please

contact infinispan-dev.

2.4. Clustered Configuration

Infinispan uses JGroups for network communications when in clustered mode. Infinispan ships

with pre-configured JGroups stacks that make it easy for you to jump-start a clustered configuration.

2.4.1. Using an external JGroups file

If you are configuring your cache programmatically, all you need to do is:

GlobalConfiguration gc = new GlobalConfigurationBuilder()

 .transport().defaultTransport()

 .addProperty("configurationFile", "jgroups.xml")

 .build();

and if you happen to use an XML file to configure Infinispan, just use:

10

http://docs.jboss.org/infinispan/9.0/configdocs/
https://lists.jboss.org/mailman/listinfo/infinispan-dev
http://www.jgroups.org

<infinispan>

 <jgroups>

 <stack-file name="external-file" path="jgroups.xml"/>

 </jgroups>

 <cache-container default-cache="replicatedCache">

 <transport stack="external-file" />

 <replicated-cache name="replicatedCache"/>

 </cache-container>

 ...

</infinispan>

In both cases above, Infinispan looks for jgroups.xml first in your classpath, and then for an

absolute path name if not found in the classpath.

2.4.2. Use one of the pre-configured JGroups files

Infinispan ships with a few different JGroups files (packaged in infinispan-core.jar) which means

they will already be on your classpath by default. All you need to do is specify the file name, e.g.,

instead of jgroups.xml above, specify /default-configs/default-jgroups-tcp.xml.

The configurations available are:

• default-jgroups-udp.xml - Uses UDP as a transport, and UDP multicast for discovery. Usually

suitable for larger (over 100 nodes) clusters or if you are using replication or invalidation.

Minimises opening too many sockets.

• default-jgroups-tcp.xml - Uses TCP as a transport and UDP multicast for discovery. Better for

smaller clusters (under 100 nodes) only if you are using distribution, as TCP is more efficient as

a point-to-point protocol

• default-jgroups-ec2.xml - Uses TCP as a transport and S3_PING for discovery. Suitable on

Amazon EC2 nodes where UDP multicast isn’t available.

• default-jgroups-kubernetes.xml - Uses TCP as a transport and KUBE_PING for discovery.

Suitable on Kubernetes and OpenShift nodes where UDP multicast is not always available.

Tuning JGroups settings

The settings above can be further tuned without editing the XML files themselves. Passing in

certain system properties to your JVM at startup can affect the behaviour of some of these settings.

The table below shows you which settings can be configured in this way. E.g.,

$ java -cp ... -Djgroups.tcp.port=1234 -Djgroups.tcp.address=10.11.12.13

Table 1. default-jgroups-udp.xml

System Property Description Default Required?

11

#replicated_mode
#invalidation_mode
#distribution_mode
http://jgroups.org/manual/index.html#_s3_ping
http://aws.amazon.com/ec2/
https://github.com/jgroups-extras/jgroups-kubernetes
http://kubernetes.io/
https://www.openshift.org/

jgroups.udp.mcast_add

r

IP address to use for

multicast (both for

communications and

discovery). Must be a

valid Class D IP

address, suitable for IP

multicast.

228.6.7.8 No

jgroups.udp.mcast_port Port to use for

multicast socket

46655 No

jgroups.udp.ip_ttl Specifies the time-to-

live (TTL) for IP

multicast packets. The

value here refers to the

number of network

hops a packet is

allowed to make before

it is dropped

2 No

Table 2. default-jgroups-tcp.xml

System Property Description Default Required?

jgroups.tcp.address IP address to use for

the TCP transport.

127.0.0.1 No

jgroups.tcp.port Port to use for TCP

socket

7800 No

jgroups.udp.mcast_add

r

IP address to use for

multicast (for

discovery). Must be a

valid Class D IP

address, suitable for IP

multicast.

228.6.7.8 No

jgroups.udp.mcast_port Port to use for

multicast socket

46655 No

jgroups.udp.ip_ttl Specifies the time-to-

live (TTL) for IP

multicast packets. The

value here refers to the

number of network

hops a packet is

allowed to make before

it is dropped

2 No

Table 3. default-jgroups-ec2.xml

System Property Description Default Required?

jgroups.tcp.address IP address to use for

the TCP transport.

127.0.0.1 No

12

http://compnetworking.about.com/od/workingwithipaddresses/l/aa042400b.htm
http://compnetworking.about.com/od/workingwithipaddresses/l/aa042400b.htm

jgroups.tcp.port Port to use for TCP

socket

7800 No

jgroups.s3.access_key The Amazon S3 access

key used to access an

S3 bucket

No

jgroups.s3.secret_access

_key

The Amazon S3 secret

key used to access an

S3 bucket

No

jgroups.s3.bucket Name of the Amazon S3

bucket to use. Must be

unique and must

already exist

No

Table 4. default-jgroups-kubernetes.xml

System Property Description Default Required?

jgroups.tcp.address IP address to use for

the TCP transport.

eth0 No

jgroups.tcp.port Port to use for TCP

socket

7800 No

2.4.3. Further reading

JGroups also supports more system property overrides, details of which can be found on this page:

SystemProps

In addition, the JGroups configuration files shipped with Infinispan are intended as a jumping off

point to getting something up and running, and working. More often than not though, you will

want to fine-tune your JGroups stack further to extract every ounce of performance from your

network equipment. For this, your next stop should be the JGroups manual which has a detailed

section on configuring each of the protocols you see in a JGroups configuration file.

13

http://www.jgroups.org/manual4/index.html#SystemProperties
http://jgroups.org/manual/html/protlist.html
http://jgroups.org/manual/html/protlist.html

Chapter 3. The CacheManager API

Infinispan provides the EmbeddedCacheManager, as mentioned in the configuration section, as the API

for exposing various operations related to the Infinispan cache container and its supporting

elements. This section is to go over some of these pieces as well as when you may need to use them.

3.1. Clustering Information

The EmbeddedCacheManager has quite a few methods to provide information as to how the cluster is

operating. The following methods only really make sense when being used in a clustered

environment (that is when a Transport is configured).

3.1.1. Member Information

When you are using a cluster it is very important to be able to find information about membership

in the cluster including who is the owner of the cluster.

getMembers

The getMembers() method returns all of the nodes in the current cluster.

getCoordinator

The getCoordinator() method will tell you which one of the members is the coordinator of the

cluster. For most intents you shouldn’t need to care who the coordinator is. You can use

isCoordinator method directly to see if the local node is the coordinator as well.

3.1.2. Other methods

getTransport

This method provides you access to the underlying Transport that is used to send messages to other

nodes. In most cases a user wouldn’t ever need to go to this level, but if you want to get Transport

specific information (in this case JGroups) you can use this mechanism.

getStats

The stats provided here are coalesced from all of the active caches in this manager. These stats can

be useful to see if there is something wrong going on with your cluster overall.

3.2. Cluster Executor

The cache manager comes with a nice utility that allows you to execute arbitrary code in the

cluster. Note this is unlike the Distributed Execution Service as this requires no Cache to be used.

This cluster executor can be retrieved by calling executor() of the EmbeddedCacheManager.

This manager was built specifically using Java 8 and such has functional APIs in mind, thus all

methods take a functional inteface as an argument. Also since these arguments will be sent to other

nodes they need to be serializable. We even used a nice trick to ensure our lambdas are

immediately Serializable. That is by having the arguments implement both Serializable and the

real argument type (ie. Runnable or Function). The JRE will pick the most specific class when

14

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getMembers--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getCoordinator--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#isCoordinator--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getTransport--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getStats--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/ClusterExecutor.html

determining which method to invoke, so in that case your lambdas will always be serializable.

Below you will see an example of how to use the new executor.

3.2.1. Example: Dynamically Start and Stop Clustered Cache

This example shows how you can use the ClusterExecutor to dynamically start and stop a cache.

Non-Clustered

Start start/stop cache in non-clustered mode is simple. You can use

EmbeddedCacheManager.defineConfiguration(cacheName, configuration) to define a cache, and then

call EmbeddedCacheManager.getCache(cacheName).

If you don’t define a specific configuration for the cache and directly call

EmbeddedCacheManager.getCache(…) , then a new cache would be created with default

configurations.

To stop a cache, call EmbeddedCacheManager.remove(cacheName)

Clustered

To start a clustered cache, you’ll need to do the above on every clustered node, while making sure

the cache mode is clustered, of course.

You can start the cache by calling EmbeddedCacheManager.getCache(…) To do this on every single

node though, you could write your own service to do that, or with JMX, or use the ClusterExecutor.

StartCache.java

 EmbeddedCacheManager manager = null;

 String cacheName = "start-this-cache";

 manager.executor().submitConsumer(localManager -> {

 localManager.getCache(cacheName);

 return null;

 }, (address, value, throwable) -> {

 if (throwable != null) {

 log.fatal("Cache startup encountered exception on node " + address, t);

 }

 }).join();

The first argument is a Function that when invoked will pass the EmbeddedCacheManager local to each

node. Normally this also allows for a return value to be sent back, but unfortunately a Cache

instance is not serializable so we can’t send that back to the calling node. Thus we have to return

null. In this case the second argument TriConsumer would be called back for each node and will

contain who this response is from (address), the return value (if there was one, in our case this is

always null), and a throwable if a problem occurred. The value and throwable variables will never

both be non null. That is if the throwable is non null the value will always be null. Lastly this

returns a CompletableFuture that will be complete after all of the node’s responses have been fully

processed.

15

Chapter 4. The Cache API

4.1. The Cache interface

Infinispan exposes a simple, JSR-107 compliant Cache interface.

The Cache interface exposes simple methods for adding, retrieving and removing entries, including

atomic mechanisms exposed by the JDK’s ConcurrentMap interface. Based on the cache mode used,

invoking these methods will trigger a number of things to happen, potentially even including

replicating an entry to a remote node or looking up an entry from a remote node, or potentially a

cache store.

For simple usage, using the Cache API should be no different from using the JDK

Map API, and hence migrating from simple in-memory caches based on a Map to

Infinispan’s Cache should be trivial.

4.1.1. Performance Concerns of Certain Map Methods

Certain methods exposed in Map have certain performance consequences when used with

Infinispan, such as size() , values() , keySet() and entrySet() . Specific methods on the keySet, values

and entrySet are fine for use please see their Javadoc for further details.

Attempting to perform these operations globally would have large performance impact as well as

become a scalability bottleneck. As such, these methods should only be used for informational or

debugging purposes only.

It should be noted that using certain flags with the withFlags method can mitigate some of these

concerns, please check each method’s documentation for more details.

For more performance tips, have a look at our Performance Guide.

4.1.2. Mortal and Immortal Data

Further to simply storing entries, Infinispan’s cache API allows you to attach mortality information

to data. For example, simply using put(key, value) would create an immortal entry, i.e., an entry

that lives in the cache forever, until it is removed (or evicted from memory to prevent running out

of memory). If, however, you put data in the cache using put(key, value, lifespan, timeunit) , this

creates a mortal entry, i.e., an entry that has a fixed lifespan and expires after that lifespan.

In addition to lifespan , Infinispan also supports maxIdle as an additional metric with which to

determine expiration. Any combination of lifespans or maxIdles can be used.

4.1.3. Example of Using Expiry and Mortal Data

See these examples of using mortal data with Infinispan.

16

http://jcp.org/en/jsr/detail?id=107
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#size--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#values--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#keySet--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#entrySet--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
../performance_guide/performance_guide.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/BasicCache.html#put-K-V-long-java.util.concurrent.TimeUnit-

4.1.4. putForExternalRead operation

Infinispan’s Cache class contains a different 'put' operation called putForExternalRead . This

operation is particularly useful when Infinispan is used as a temporary cache for data that is

persisted elsewhere. Under heavy read scenarios, contention in the cache should not delay the real

transactions at hand, since caching should just be an optimization and not something that gets in

the way.

To achieve this, putForExternalRead acts as a put call that only operates if the key is not present in

the cache, and fails fast and silently if another thread is trying to store the same key at the same

time. In this particular scenario, caching data is a way to optimise the system and it’s not desirable

that a failure in caching affects the on-going transaction, hence why failure is handled differently.

putForExternalRead is consider to be a fast operation because regardless of whether it’s successful

or not, it doesn’t wait for any locks, and so returns to the caller promptly.

To understand how to use this operation, let’s look at basic example. Imagine a cache of Person

instances, each keyed by a PersonId , whose data originates in a separate data store. The following

code shows the most common pattern of using putForExternalRead within the context of this

example:

// Id of the person to look up, provided by the application

PersonId id = ...;

// Get a reference to the cache where person instances will be stored

Cache<PersonId, Person> cache = ...;

// First, check whether the cache contains the person instance

// associated with with the given id

Person cachedPerson = cache.get(id);

if (cachedPerson == null) {

 // The person is not cached yet, so query the data store with the id

 Person person = dataStore.lookup(id);

 // Cache the person along with the id so that future requests can

 // retrieve it from memory rather than going to the data store

 cache.putForExternalRead(id, person);

} else {

 // The person was found in the cache, so return it to the application

 return cachedPerson;

}

Please note that putForExternalRead should never be used as a mechanism to update the cache

with a new Person instance originating from application execution (i.e. from a transaction that

modifies a Person’s address). When updating cached values, please use the standard put operation,

otherwise the possibility of caching corrupt data is likely.

17

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-

4.2. The AdvancedCache interface

In addition to the simple Cache interface, Infinispan offers an AdvancedCache interface, geared

towards extension authors. The AdvancedCache offers the ability to inject custom interceptors,

access certain internal components and to apply flags to alter the default behavior of certain cache

methods. The following code snippet depicts how an AdvancedCache can be obtained:

AdvancedCache advancedCache = cache.getAdvancedCache();

4.2.1. Flags

Flags are applied to regular cache methods to alter the behavior of certain methods. For a list of all

available flags, and their effects, see the Flag enumeration. Flags are applied using

AdvancedCache.withFlags() . This builder method can be used to apply any number of flags to a

cache invocation, for example:

advancedCache.withFlags(Flag.CACHE_MODE_LOCAL, Flag.SKIP_LOCKING)

 .withFlags(Flag.FORCE_SYNCHRONOUS)

 .put("hello", "world");

4.2.2. Custom Interceptors

The AdvancedCache interface also offers advanced developers a mechanism with which to attach

custom interceptors. Custom interceptors allow developers to alter the behavior of the cache API

methods, and the AdvancedCache interface allows developers to attach these interceptors

programmatically, at run-time. See the AdvancedCache Javadocs for more details.

For more information on writing custom interceptors, see this chapter.

4.3. Listeners and Notifications

Infinispan offers a listener API, where clients can register for and get notified when events take

place. This annotation-driven API applies to 2 different levels: cache level events and cache

manager level events.

Events trigger a notification which is dispatched to listeners. Listeners are simple POJO s

annotated with @Listener and registered using the methods defined in the Listenable interface.

Both Cache and CacheManager implement Listenable, which means you can

attach listeners to either a cache or a cache manager, to receive either cache-level

or cache manager-level notifications.

For example, the following class defines a listener to print out some information every time a new

entry is added to the cache:

18

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
http://en.wikipedia.org/wiki/Plain_Old_Java_Object
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/Listener.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/Listenable.html

@Listener

public class PrintWhenAdded {

 @CacheEntryCreated

 public void print(CacheEntryCreatedEvent event) {

 System.out.println("New entry " + event.getKey() + " created in the cache");

 }

}

For more comprehensive examples, please see the Javadocs for @Listener.

4.3.1. Cache-level notifications

Cache-level events occur on a per-cache basis, and by default are only raised on nodes where the

events occur. Note in a distributed cache these events are only raised on the owners of data being

affected. Examples of cache-level events are entries being added, removed, modified, etc. These

events trigger notifications to listeners registered to a specific cache.

Please see the Javadocs on the org.infinispan.notifications.cachelistener.annotation package for a

comprehensive list of all cache-level notifications, and their respective method-level annotations.

Please refer to the Javadocs on the

org.infinispan.notifications.cachelistener.annotation package for the list of cache-

level notifications available in Infinispan.

Cluster Listeners

The cluster listeners should be used when it is desirable to listen to the cache events on a single

node.

To do so all that is required is set to annotate your listener as being clustered.

@Listener (clustered = true)

public class MyClusterListener { }

There are some limitations to cluster listeners from a non clustered listener.

1. A cluster listener can only listen to @CacheEntryModified, @CacheEntryCreated, @CacheEntryRemoved

and @CacheEntryExpired events. Note this means any other type of event will not be listened to

for this listener.

2. Only the post event is sent to a cluster listener, the pre event is ignored.

Event filtering and conversion

All applicable events on the node where the listener is installed will be raised to the listener. It is

possible to dynamically filter what events are raised by using a KeyFilter (only allows filtering on

19

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/Listener.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/filter/KeyFilter.html

keys) or CacheEventFilter (used to filter for keys, old value, old metadata, new value, new metadata,

whether command was retried, if the event is before the event (ie. isPre) and also the command

type).

The example here shows a simple KeyFilter that will only allow events to be raised when an event

modified the entry for the key Only Me.

public class SpecificKeyFilter implements KeyFilter<String> {

 private final String keyToAccept;

 public SpecificKeyFilter(String keyToAccept) {

 if (keyToAccept == null) {

 throw new NullPointerException();

 }

 this.keyToAccept = keyToAccept;

 }

 boolean accept(String key) {

 return keyToAccept.equals(key);

 }

}

...

cache.addListener(listener, new SpecificKeyFilter("Only Me"));

...

This can be useful when you want to limit what events you receive in a more efficient manner.

There is also a CacheEventConverter that can be supplied that allows for converting a value to

another before raising the event. This can be nice to modularize any code that does value

conversions.

The mentioned filters and converters are especially beneficial when used in

conjunction with a Cluster Listener. This is because the filtering and conversion

is done on the node where the event originated and not on the node where event

is listened to. This can provide benefits of not having to replicate events across

the cluster (filter) or even have reduced payloads (converter).

Initial State Events

When a listener is installed it will only be notified of events after it is fully installed.

It may be desirable to get the current state of the cache contents upon first registration of listener

by having an event generated of type @CacheEntryCreated for each element in the cache. Any

additionally generated events during this initial phase will be queued until appropriate events have

been raised.

20

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/filter/CacheEventFilter.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/filter/CacheEventConverter.html

This only works for clustered listeners at this time. ISPN-4608 covers adding this

for non clustered listeners.

Duplicate Events

It is possible in a non transactional cache to receive duplicate events. This is possible when the

primary owner of a key goes down while trying to perform a write operation such as a put.

Infinispan internally will rectify the put operation by sending it to the new primary owner for the

given key automatically, however there are no guarantees in regards to if the write was first

replicated to backups. Thus more than 1 of the following write events (CacheEntryCreatedEvent,

CacheEntryModifiedEvent & CacheEntryRemovedEvent) may be sent on a single operation.

If more than one event is generated Infinispan will mark the event that it was generated by a

retried command to help the user to know when this occurs without having to pay attention to view

changes.

@Listener

public class MyRetryListener {

 @CacheEntryModified

 public void entryModified(CacheEntryModifiedEvent event) {

 if (event.isCommandRetried()) {

 // Do something

 }

 }

}

Also when using a CacheEventFilter or CacheEventConverter the EventType contains a method

isRetry to tell if the event was generated due to retry.

4.3.2. Cache manager-level notifications

Cache manager-level events occur on a cache manager. These too are global and cluster-wide, but

involve events that affect all caches created by a single cache manager. Examples of cache

manager-level events are nodes joining or leaving a cluster, or caches starting or stopping.

Please see the Javadocs on the org.infinispan.notifications.cachemanagerlistener.annotation

package for a comprehensive list of all cache manager-level notifications, and their respective

method-level annotations.

4.3.3. Synchronicity of events

By default, all notifications are dispatched in the same thread that generates the event. This means

that you must write your listener such that it does not block or do anything that takes too long, as it

would prevent the thread from progressing. Alternatively, you could annotate your listener as

asynchronous , in which case a separate thread pool will be used to dispatch the notification and

prevent blocking the event originating thread. To do this, simply annotate your listener such:

21

https://issues.jboss.org/browse/ISPN-4608
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/filter/EventType.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachemanagerlistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachemanagerlistener/annotation/package-summary.html

@Listener (sync = false)

public class MyAsyncListener { }

Asynchronous thread pool

To tune the thread pool used to dispatch such asynchronous notifications, use the <listener-

executor /> XML element in your configuration file.

4.4. Asynchronous API

In addition to synchronous API methods like Cache.put() , Cache.remove() , etc., Infinispan also has

an asynchronous, non-blocking API where you can achieve the same results in a non-blocking

fashion.

These methods are named in a similar fashion to their blocking counterparts, with "Async"

appended. E.g., Cache.putAsync() , Cache.removeAsync() , etc. These asynchronous counterparts

return a Future containing the actual result of the operation.

For example, in a cache parameterized as Cache<String, String>, Cache.put(String key, String

value) returns a String. Cache.putAsync(String key, String value) would return a Future<String>.

4.4.1. Why use such an API?

Non-blocking APIs are powerful in that they provide all of the guarantees of synchronous

communications - with the ability to handle communication failures and exceptions - with the ease

of not having to block until a call completes. This allows you to better harness parallelism in your

system. For example:

Set<Future<?>> futures = new HashSet<Future<?>>();

futures.add(cache.putAsync(key1, value1)); // does not block

futures.add(cache.putAsync(key2, value2)); // does not block

futures.add(cache.putAsync(key3, value3)); // does not block

// the remote calls for the 3 puts will effectively be executed

// in parallel, particularly useful if running in distributed mode

// and the 3 keys would typically be pushed to 3 different nodes

// in the cluster

// check that the puts completed successfully

for (Future<?> f: futures) f.get();

4.4.2. Which processes actually happen asynchronously?

There are 4 things in Infinispan that can be considered to be on the critical path of a typical write

operation. These are, in order of cost:

• network calls

22

http://docs.jboss.org/infinispan/9.0/configdocs/infinispan-config-9.0.html
http://docs.jboss.org/infinispan/9.0/configdocs/infinispan-config-9.0.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#remove-java.lang.Object-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/AsyncCache.html#putAsync-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/AsyncCache.html#removeAsync-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

• marshalling

• writing to a cache store (optional)

• locking

As of Infinispan 4.0, using the async methods will take the network calls and marshalling off the

critical path. For various technical reasons, writing to a cache store and acquiring locks, however,

still happens in the caller’s thread. In future, we plan to take these offline as well. See this

developer mail list thread about this topic.

4.4.3. Notifying futures

Strictly, these methods do not return JDK Futures, but rather a sub-interface known as a

NotifyingFuture . The main difference is that you can attach a listener to a NotifyingFuture such

that you could be notified when the future completes. Here is an example of making use of a

notifying future:

FutureListener futureListener = new FutureListener() {

 public void futureDone(Future future) {

 try {

 future.get();

 } catch (Exception e) {

 // Future did not complete successfully

 System.out.println("Help!");

 }

 }

};

cache.putAsync("key", "value").attachListener(futureListener);

4.4.4. Further reading

The Javadocs on the Cache interface has some examples on using the asynchronous API, as does

this article by Manik Surtani introducing the API.

4.5. Invocation Flags

An important aspect of getting the most of Infinispan is the use of per-invocation flags in order to

provide specific behaviour to each particular cache call. By doing this, some important

optimizations can be implemented potentially saving precious time and network resources. One of

the most popular usages of flags can be found right in Cache API, underneath the

putForExternalRead() method which is used to load an Infinispan cache with data read from an

external resource. In order to make this call efficient, Infinispan basically calls a normal put

operation passing the following flags: FAIL_SILENTLY , FORCE_ASYNCHRONOUS ,

ZERO_LOCK_ACQUISITION_TIMEOUT

What Infinispan is doing here is effectively saying that when putting data read from external read,

23

http://lists.jboss.org/pipermail/infinispan-dev/2010-January/002219.html
http://lists.jboss.org/pipermail/infinispan-dev/2010-January/002219.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/util/concurrent/NotifyingFuture.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html
http://infinispan.blogspot.com/2009/05/whats-so-cool-about-asynchronous-api.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html#FAIL_SILENTLY
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html#FORCE_ASYNCHRONOUS
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html#ZERO_LOCK_ACQUISITION_TIMEOUT

it will use an almost-zero lock acquisition time and that if the locks cannot be acquired, it will fail

silently without throwing any exception related to lock acquisition. It also specifies that regardless

of the cache mode, if the cache is clustered, it will replicate asynchronously and so won’t wait for

responses from other nodes. The combination of all these flags make this kind of operation very

efficient, and the efficiency comes from the fact this type of putForExternalRead calls are used with

the knowledge that client can always head back to a persistent store of some sorts to retrieve the

data that should be stored in memory. So, any attempt to store the data is just a best effort and if not

possible, the client should try again if there’s a cache miss.

4.5.1. DecoratedCache

Another approach would be to use the DecoratedCache wrapper. This allows you to reuse flags. For

example:

AdvancedCache cache = ...

DecoratedCache strictlyLocal = new DecoratedCache(cache, Flag.CACHE_MODE_LOCAL, Flag

.SKIP_CACHE_STORE);

strictlyLocal.put("local_1", "only");

strictlyLocal.put("local_2", "only");

strictlyLocal.put("local_3", "only");

This approach makes your code more readable.

4.5.2. Examples

If you want to use these or any other flags available, which by the way are described in detail the

Flag enumeration , you simply need to get hold of the advanced cache and add the flags you need

via the withFlags() method call. For example:

Cache cache = ...

cache.getAdvancedCache()

 .withFlags(Flag.SKIP_CACHE_STORE, Flag.CACHE_MODE_LOCAL)

 .put("local", "only");

It’s worth noting that these flags are only active for the duration of the cache operation. If the same

flags need to be used in several invocations, even if they’re in the same transaction, withFlags()

needs to be called repeatedly. Clearly, if the cache operation is to be replicated in another node, the

flags are carried over to the remote nodes as well.

Suppressing return values from a put() or remove()

Another very important use case is when you want a write operation such as put() to not return the

previous value. To do that, you need to use two flags to make sure that in a distributed

environment, no remote lookup is done to potentially get previous value, and if the cache is

configured with a cache loader, to avoid loading the previous value from the cache store. You can

see these two flags in action in the following example:

24

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/DecoratedCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-

Cache cache = ...

cache.getAdvancedCache()

 .withFlags(Flag.SKIP_REMOTE_LOOKUP, Flag.SKIP_CACHE_LOAD)

 .put("local", "only")

For more information, please check the Flag enumeration javadoc.

4.6. Tree API Module

Infinispan’s tree API module offers clients the possibility of storing data using a tree-structure like

API. This API is similar to the one provided by JBoss Cache, hence the tree module is perfect for

those users wanting to migrate their applications from JBoss Cache to Infinispan, who want to limit

changes their codebase as part of the migration. Besides, it’s important to understand that

Infinispan provides this tree API much more efficiently than JBoss Cache did, so if you’re a user of

the tree API in JBoss Cache, you should consider migrating to Infinispan.

4.6.1. What is Tree API about?

The aim of this API is to store information in a hierarchical way. The hierarchy is defined using

paths represented as Fqn or fully qualified names , for example: /this/is/a/fqn/path or /another/path .

In the hierarchy, there’s a special path called root which represents the starting point of all paths

and it’s represented as: /

Each FQN path is represented as a node where users can store data using a key/value pair style API

(i.e. a Map). For example, in /persons/john , you could store information belonging to John, for

example: surname=Smith, birthdate=05/02/1980…etc.

Please remember that users should not use root as a place to store data. Instead, users should

define their own paths and store data there. The following sections will delve into the practical

aspects of this API.

4.6.2. Using the Tree API

Dependencies

For your application to use the tree API, you need to import infinispan-tree.jar which can be located

in the Infinispan binary distributions, or you can simply add a dependency to this module in your

pom.xml:

25

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/package-summary.html
http://docs.jboss.org/jbosscache/3.2.1.GA/apidocs/org/jboss/cache/package-summary.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/Fqn.html

pom.xml

<dependencies>

 ...

 <dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-tree</artifactId>

 <version>$put-infinispan-version-here</version>

 </dependency>

 ...

</dependencies>

4.6.3. Creating a Tree Cache

The first step to use the tree API is to actually create a tree cache. To do so, you need to create an

Infinispan Cache as you’d normally do, and using the TreeCacheFactory , create an instance of

TreeCache . A very important note to remember here is that the Cache instance passed to the

factory must be configured with invocation batching. For example:

import org.infinispan.config.Configuration;

import org.infinispan.tree.TreeCacheFactory;

import org.infinispan.tree.TreeCache;

...

Configuration config = new Configuration();

config.setInvocationBatchingEnabled(true);

Cache cache = new DefaultCacheManager(config).getCache();

TreeCache treeCache = TreeCacheFactory.createTreeCache(cache);

4.6.4. Manipulating data in a Tree Cache

The Tree API effectively provides two ways to interact with the data:

Via TreeCache convenience methods: These methods are located within the TreeCache interface

and enable users to store , retrieve , move , remove …etc data with a single call that takes the Fqn ,

in String or Fqn format, and the data involved in the call. For example:

treeCache.put("/persons/john", "surname", "Smith");

Or:

import org.infinispan.tree.Fqn;

...

Fqn johnFqn = Fqn.fromString("persons/john");

Calendar calendar = Calendar.getInstance();

calendar.set(1980, 5, 2);

treeCache.put(johnFqn, "birthdate", calendar.getTime()));

26

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCacheFactory.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html#put-java.lang.String-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html#get-org.infinispan.tree.Fqn-K-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html#move-org.infinispan.tree.Fqn-org.infinispan.tree.Fqn-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html#remove-org.infinispan.tree.Fqn-K-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/Fqn.html

Via Node API: It allows finer control over the individual nodes that form the FQN, allowing

manipulation of nodes relative to a particular node. For example:

import org.infinispan.tree.Node;

...

TreeCache treeCache = ...

Fqn johnFqn = Fqn.fromElements("persons", "john");

Node<String, Object> john = treeCache.getRoot().addChild(johnFqn);

john.put("surname", "Smith");

Or:

Node persons = treeCache.getRoot().addChild(Fqn.fromString("persons"));

Node<String, Object> john = persons.addChild(Fqn.fromString("john"));

john.put("surname", "Smith");

Or even:

Fqn personsFqn = Fqn.fromString("persons");

Fqn johnFqn = Fqn.fromRelative(personsFqn, Fqn.fromString("john"));

Node<String, Object> john = treeCache.getRoot().addChild(johnFqn);

john.put("surname", "Smith");

A node also provides the ability to access its parent or children . For example:

Node<String, Object> john = ...

Node persons = john.getParent();

Or:

Set<Node<String, Object>> personsChildren = persons.getChildren();

4.6.5. Common Operations

In the previous section, some of the most used operations, such as addition and retrieval, have been

shown. However, there are other important operations that are worth mentioning, such as remove:

You can for example remove an entire node, i.e. /persons/john , using:

treeCache.removeNode("/persons/john");

Or remove a child node, i.e. persons that a child of root, via:

27

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/Node.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/Node.html#getParent--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/Node.html#getChildren--

treeCache.getRoot().removeChild(Fqn.fromString("persons"));

You can also remove a particular key/value pair in a node:

Node john = treeCache.getRoot().getChild(Fqn.fromElements("persons", "john"));

john.remove("surname");

Or you can remove all data in a node with:

Node john = treeCache.getRoot().getChild(Fqn.fromElements("persons", "john"));

john.clearData();

Another important operation supported by Tree API is the ability to move nodes around in the tree.

Imagine we have a node called "john" which is located under root node. The following example is

going to show how to we can move "john" node to be under "persons" node:

Current tree structure:

 /persons

 /john

Moving trees from one FQN to another:

Node john = treeCache.getRoot().addChild(Fqn.fromString("john"));

Node persons = treeCache.getRoot().getChild(Fqn.fromString("persons"));

treeCache.move(john.getFqn(), persons.getFqn());

Final tree structure:

 /persons/john

4.6.6. Locking in the Tree API

Understanding when and how locks are acquired when manipulating the tree structure is

important in order to maximise the performance of any client application interacting against the

tree, while at the same time maintaining consistency.

Locking on the tree API happens on a per node basis. So, if you’re putting or updating a key/value

under a particular node, a write lock is acquired for that node. In such case, no write locks are

acquired for parent node of the node being modified, and no locks are acquired for children nodes.

If you’re adding or removing a node, the parent is not locked for writing. In JBoss Cache, this

behaviour was configurable with the default being that parent was not locked for insertion or

28

removal.

Finally, when a node is moved, the node that’s been moved and any of its children are locked, but

also the target node and the new location of the moved node and its children. To understand this

better, let’s look at an example:

Imagine you have a hierarchy like this and we want to move c/ to be underneath b/:

 /

 --|--

 / \

 a c

 | |

 b e

 |

 d

The end result would be something like this:

 /

 |

 a

 |

 b

 --|--

 / \

 d c

 |

 e

To make this move, locks would have been acquired on:

• /a/b - because it’s the parent underneath which the data will be put

• /c and /c/e - because they’re the nodes that are being moved

• /a/b/c and /a/b/c/e - because that’s new target location for the nodes being moved

4.6.7. Listeners for tree cache events

The current Infinispan listeners have been designed with key/value store notifications in mind, and

hence they do not map to tree cache events correctly. Tree cache specific listeners that map directly

to tree cache events (i.e. adding a child…etc) are desirable but these are not yet available. If you’re

interested in this type of listeners, please follow this issue to find out about any progress in this

area.

4.7. Functional Map API

Infinispan 8 introduces a new experimental API for interacting with your data which takes

29

https://issues.jboss.org/browse/ISPN-1935

advantage of the functional programming additions and improved asynchronous programming

capabilities available in Java 8.

Infinispan’s Functional Map API is a distilled map-like asynchronous API which uses functions to

interact with data.

4.7.1. Asynchronous and Lazy

Being an asynchronous API, all methods that return a single result, return a CompletableFuture

which wraps the result, so you can use the resources of your system more efficiently by having the

possibility to receive callbacks when the CompletableFuture has completed, or you can chain or

compose them with other CompletableFuture.

For those operations that return multiple results, the API returns instances of a Traversable

interface which offers a lazy pull-style API for working with multiple results. Traversable , being a

lazy pull-style API, can still be asynchronous underneath since the user can decide to work on the

traversable at a later stage, and the Traversable implementation itself can decide when to compute

those results.

4.7.2. Function transparency

Since the content of the functions is transparent to Infinispan, the API has been split into 3

interfaces for read-only (ReadOnlyMap), read-write (ReadWriteMap) and write-only (WriteOnlyMap)

operations respectively, in order to provide hints to the Infinispan internals on the type of work

needed to support functions.

4.7.3. Constructing Functional Maps

To construct any of the read-only, write-only or read-write map instances, an Infinispan

AdvancedCache is required, which is retrieved from the Cache Manager, and using the AdvancedCache ,

static method factory methods are used to create ReadOnlyMap , ReadWriteMap or WriteOnlyMap :

import org.infinispan.commons.api.functional.FunctionalMap.*;

import org.infinispan.functional.impl.*;

AdvancedCache<String, String> cache = ...

FunctionalMapImpl<String, String> functionalMap = FunctionalMapImpl.create(cache);

ReadOnlyMap<String, String> readOnlyMap = ReadOnlyMapImpl.create(functionalMap);

WriteOnlyMap<String, String> writeOnlyMap = WriteOnlyMapImpl.create(functionalMap);

ReadWriteMap<String, String> readWriteMap = ReadWriteMapImpl.create(functionalMap);

At this stage, the Functional Map API is experimental and hence the way

FunctionalMap, ReadOnlyMap, WriteOnlyMap and ReadWriteMap are

constructed is temporary.

30

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html

4.7.4. Read-Only Map API

Read-only operations have the advantage that no locks are acquired for the duration of the

operation. Here’s an example on how to the equivalent operation for Map.get(K) :

import org.infinispan.commons.api.functional.EntryView.*;

import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<Optional<String>> readFuture = readOnlyMap.eval("key1",

ReadEntryView::find);

readFuture.thenAccept(System.out::println);

Read-only map also exposes operations to retrieve multiple keys in one go:

import org.infinispan.commons.api.functional.EntryView.*;

import org.infinispan.commons.api.functional.FunctionalMap.*;

import org.infinispan.commons.api.functional.Traversable;

ReadOnlyMap<String, String> readOnlyMap = ...

Set<String> keys = new HashSet<>(Arrays.asList("key1", "key2"));

Traversable<String> values = readOnlyMap.evalMany(keys, ReadEntryView::get);

values.forEach(System.out::println);

Finally, read-only map also exposes methods to read all existing keys as well as entries, which

include both key and value information.

Read-Only Entry View

The function parameters for read-only maps provide the user with a read-only entry view to

interact with the data in the cache, which include these operations:

• key() method returns the key for which this function is being executed.

• find() returns a Java 8 Optional wrapping the value if present, otherwise it returns an empty

optional. Unless the value is guaranteed to be associated with the key, it’s recommended to use

find() to verify whether there’s a value associated with the key.

• get() returns the value associated with the key. If the key has no value associated with it, calling

get() throws a NoSuchElementException. get() can be considered as a shortcut of

ReadEntryView.find().get() which should be used only when the caller has guarantees that

there’s definitely a value associated with the key.

• findMetaParam(Class<T> type) allows metadata parameter information associated with the cache

entry to be looked up, for example: entry lifespan, last accessed time…etc. See Metadata

Parameter Handling section to find out more.

31

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#get-java.lang.Object-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#key--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#find--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#get--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html#findMetaParam-java.lang.Class-

4.7.5. Write-Only Map API

Write-only operations include operations that insert or update data in the cache and also removals.

Crucially, a write-only operation does not attempt to read any previous value associated with the

key. This is an important optimization since that means neither the cluster nor any persistence

stores will be looked up to retrieve previous values. In the main Infinispan Cache, this kind of

optimization was achieved using a local-only per-invocation flag, but the use case is so common

that in this new functional API, this optimization is provided as a first-class citizen.

Using write-only map API , an operation equivalent to javax.cache.Cache (JCache) 's void returning

put can be achieved this way, followed by an attempt to read the stored value using the read-only

map API:

import org.infinispan.commons.api.functional.EntryView.*;

import org.infinispan.commons.api.functional.FunctionalMap.*;

WriteOnlyMap<String, String> writeOnlyMap = ...

ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", "value1",

 (v, view) -> view.set(v));

CompletableFuture<String> readFuture = writeFuture.thenCompose(r ->

 readOnlyMap.eval("key1", ReadEntryView::get));

readFuture.thenAccept(System.out::println);

Multiple key/value pairs can be stored in one go using evalMany API:

WriteOnlyMap<String, String> writeOnlyMap = ...

Map<K, String> data = new HashMap<>();

data.put("key1", "value1");

data.put("key2", "value2");

CompletableFuture<Void> writerAllFuture = writeOnlyMap.evalMany(data, (v, view) ->

view.set(v));

writerAllFuture.thenAccept(x -> "Write completed");

To remove all contents of the cache, there are two possibilities with different semantics. If using

evalAll each cached entry is iterated over and the function is called with that entry’s information.

Using this method also results in listeners (see functional listeners section for more information)

being invoked:

WriteOnlyMap<String, String> writeOnlyMap = ...

CompletableFuture<Void> removeAllFuture = writeOnlyMap.evalAll(WriteEntryView::remove

);

removeAllFuture.thenAccept(x -> "All entries removed");

32

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java#L194
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#evalMany-java.util.Map-java.util.function.BiConsumer-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#evalAll-java.util.function.Consumer-

The alternative way to remove all entries is to call truncate operation which clears the entire cache

contents in one go without invoking any listeners and is best-effort:

WriteOnlyMap<String, String> writeOnlyMap = ...

CompletableFuture<Void> truncateFuture = writeOnlyMap.truncate();

truncateFuture.thenAccept(x -> "Cache contents cleared");

Write-Only Entry View

The function parameters for write-only maps provide the user with a write-only entry view to

modify the data in the cache, which include these operations:

• set(V, MetaParam.Writable…) method allows for a new value to be associated with the cache

entry for which this function is executed, and it optionally takes zero or more metadata

parameters to be stored along with the value (see Metadata Parameter Handling section to find

out more).

• remove() method removes the cache entry, including both value and metadata parameters

associated with this key.

4.7.6. Read-Write Map API

The final type of operations we have are readwrite operations, and within this category CAS-like

(CompareAndSwap) operations can be found. This type of operations require previous value

associated with the key to be read and for locks to be acquired before executing the function. The

vast majority of operations within ConcurrentMap and JCache APIs fall within this category, and they

can easily be implemented using the read-write map API . Moreover, with read-write map API , you

can make CASlike comparisons not only based on value equality but based on metadata parameter

equality such as version information, and you can send back previous value or boolean instances to

signal whether the CASlike comparison succeeded.

Implementing a write operation that returns the previous value associated with the cache entry is

easy to achieve with the read-write map API:

import org.infinispan.commons.api.functional.EntryView.*;

import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadWriteMap<String, String> readWriteMap = ...

CompletableFuture<Optional<String>> readWriteFuture = readWriteMap.eval("key1",

"value1",

 (v, view) -> {

 Optional<V> prev = rw.find();

 view.set(v);

 return prev;

 });

readWriteFuture.thenAccept(System.out::println);

33

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#truncate--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#remove--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html

ConcurrentMap.replace(K, V, V) is a replace function that compares the value present in the map

and if it’s equals to the value passed in as first parameter, the second value is stored, returning a

boolean indicating whether the replace was successfully completed. This operation can easily be

implemented using the read-write map API:

ReadWriteMap<String, String> readWriteMap = ...

String oldValue = "old-value";

CompletableFuture<Boolean> replaceFuture = readWriteMap.eval("key1", "value1", (v,

view) -> {

 return view.find().map(prev -> {

 if (prev.equals(oldValue)) {

 rw.set(v);

 return true; // previous value present and equals to the expected one

 }

 return false; // previous value associated with key does not match

 }).orElse(false); // no value associated with this key

});

replaceFuture.thenAccept(replaced -> System.out.printf("Value was replaced? %s%n",

replaced));

The function in the example above captures oldValue which is an external value

to the function which is valid use case.

Read-write map API contains evalMany and evalAll operations which behave similar to the write-

only map offerings, except that they enable previous value and metadata parameters to be read.

Read-Write Entry View

The function parameters for read-write maps provide the user with the possibility to query the

information associated with the key, including value and metadata parameters, and the user can

also use this read-write entry view to modify the data in the cache.

The operations are exposed by read-write entry views are a union of the operations exposed by

read-only entry views and write-only entry views

4.7.7. Metadata Parameter Handling

Metadata parameters provide extra information about the cache entry, such as version

information, lifespan, last accessed/used time…etc. Some of these can be provided by the user, e.g.

version, lifespan…etc, but some others are computed internally and can only be queried, e.g. last

accessed/used time.

The functional map API provides a flexible way to store metadata parameters along with an cache

entry. To be able to store a metadata parameter, it must extend MetaParam.Writable interface, and

implement the methods to allow the internal logic to extra the data. Storing is done via the set(V,

MetaParam.Writable…) method in write-only entry view or read-write entry view function

parameters.

34

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadWriteEntryView.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/MetaParam.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html

Querying metadata parameters is available via the findMetaParam(Class) method available via read-

write entry view or read-only entry view or function parameters.

Here is an example showing how to store metadata parameters and how to query them:

import java.time.Duration;

import org.infinispan.commons.api.functional.EntryView.*;

import org.infinispan.commons.api.functional.FunctionalMap.*;

import org.infinispan.commons.api.functional.MetaParam.*;

WriteOnlyMap<String, String> writeOnlyMap = ...

ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", "value1",

 (v, view) -> view.set(v, new MetaLifespan(Duration.ofHours(1).toMillis())));

CompletableFuture<MetaLifespan> readFuture = writeFuture.thenCompose(r ->

 readOnlyMap.eval("key1", view -> view.findMetaParam(MetaLifespan.class).get()));

readFuture.thenAccept(System.out::println);

If the metadata parameter is generic, for example MetaEntryVersion<T> , retrieving the metadata

parameter along with a specific type can be tricky if using .class static helper in a class because it

does not return a Class<T> but only Class, and hence any generic information in the class is lost:

ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<String> readFuture = readOnlyMap.eval("key1", view -> {

 // If caller depends on the typed information, this is not an ideal way to retrieve

it

 // If the caller does not depend on the specific type, this works just fine.

 Optional<MetaEntryVersion> version = view.findMetaParam(MetaEntryVersion.class);

 return view.get();

});

When generic information is important the user can define a static helper method that coerces the

static class retrieval to the type requested, and then use that helper method in the call to

findMetaParam:

35

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html#findMetaParam-java.lang.Class-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/MetaParam.MetaEntryVersion.html

class MetaEntryVersion<T> implements MetaParam.Writable<EntryVersion<T>> {

 ...

 public static <T> T type() { return (T) MetaEntryVersion.class; }

 ...

}

ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<String> readFuture = readOnlyMap.eval("key1", view -> {

 // The caller wants guarantees that the metadata parameter for version is numeric

 // e.g. to query the actual version information

 Optional<MetaEntryVersion<Long>> version = view.findMetaParam(MetaEntryVersion.

type());

 return view.get();

});

Finally, users are free to create new instances of metadata parameters to suit their needs. They are

stored and retrieved in the very same way as done for the metadata parameters already provided

by the functional map API.

4.7.8. Invocation Parameter

Per-invocation parameters are applied to regular functional map API calls to alter the behaviour of

certain aspects. Adding per invocation parameters is done using the withParams(Param<?>…)

method.

Param.FutureMode tweaks whether a method returning a CompletableFuture will span a thread to

invoke the method, or instead will use the caller thread. By default, whenever a call is made to a

method returning a CompletableFuture , a separate thread will be span to execute the method

asynchronously. However, if the caller will immediately block waiting for the CompletableFuture to

complete, spanning a different thread is wasteful, and hence Param.FutureMode.COMPLETED can be

passed as per-invocation parameter to avoid creating that extra thread. Example:

import org.infinispan.commons.api.functional.EntryView.*;

import org.infinispan.commons.api.functional.FunctionalMap.*;

import org.infinispan.commons.api.functional.Param.*;

ReadOnlyMap<String, String> readOnlyMap = ...

ReadOnlyMap<String, String> readOnlyMapCompleted = readOnlyMap.withParams(FutureMode

.COMPLETED);

Optional<String> readFuture = readOnlyMapCompleted.eval("key1", ReadEntryView::find)

.get();

Param.PersistenceMode controls whether a write operation will be propagated to a persistence

store. The default behaviour is for all write-operations to be propagated to the persistence store if

the cache is configured with a persistence store. By passing PersistenceMode.SKIP as parameter, the

write operation skips the persistence store and its effects are only seen in the in-memory contents

36

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Param.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Param.FutureMode.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Param.FutureMode.html#COMPLETED

of the cache. PersistenceMode.SKIP can be used to implement an Cache.evict() method which

removes data from memory but leaves the persistence store untouched:

import org.infinispan.commons.api.functional.EntryView.*;

import org.infinispan.commons.api.functional.FunctionalMap.*;

import org.infinispan.commons.api.functional.Param.*;

WriteOnlyMap<String, String> writeOnlyMap = ...

WriteOnlyMap<String, String> skiPersistMap = writeOnlyMap.withParams(PersistenceMode

.SKIP);

CompletableFuture<Void> removeFuture = skiPersistMap.eval("key1", WriteEntryView:

:remove);

Note that there’s no need for another PersistenceMode option to skip reading from the persistence

store, because a write operation can skip reading previous value from the store by calling a write-

only operation via the WriteOnlyMap.

Finally, new Param implementations are normally provided by the functional map API since they

tweak how the internal logic works. So, for the most part of users, they should limit themselves to

using the Param instances exposed by the API. The exception to this rule would be advanced users

who decide to add new interceptors to the internal stack. These users have the ability to query

these parameters within the interceptors.

4.7.9. Functional Listeners

The functional map offers a listener API, where clients can register for and get notified when events

take place. These notifications are post-event, so that means the events are received after the event

has happened.

The listeners that can be registered are split into two categories: write listeners and read-write

listeners.

Write Listeners

Write listeners enable user to register listeners for any cache entry write events that happen in

either a read-write or write-only functional map.

Listeners for write events cannot distinguish between cache entry created and cache entry

modify/update events because they don’t have access to the previous value. All they know is that a

new non-null entry has been written.

However, write event listeners can distinguish between entry removals and cache entry

create/modify-update events because they can query what the new entry’s value via

ReadEntryView.find() method.

Adding a write listener is done via the WriteListeners interface which is accessible via both

ReadWriteMap.listeners() and WriteOnlyMap.listeners() method.

A write listener implementation can be defined either passing a function to

37

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#evict-K-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#find--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html#listeners--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#listeners--

onWrite(Consumer<ReadEntryView<K, V>>) method, or passing a WriteListener implementation to

add(WriteListener<K, V>) method. Either way, all these methods return an AutoCloseable instance

that can be used to de-register the function listener:

import org.infinispan.commons.api.functional.EntryView.*;

import org.infinispan.commons.api.functional.FunctionalMap.*;

import org.infinispan.commons.api.functional.Listeners.WriteListeners.WriteListener;

WriteOnlyMap<String, String> woMap = ...

AutoCloseable writeFunctionCloseHandler = woMap.listeners().onWrite(written -> {

 // `written` is a ReadEntryView of the written entry

 System.out.printf("Written: %s%n", written.get());

});

AutoCloseable writeCloseHanlder = woMap.listeners().add(new WriteListener<String,

String>() {

 @Override

 public void onWrite(ReadEntryView<K, V> written) {

 System.out.printf("Written: %s%n", written.get());

 }

});

// Either wrap handler in a try section to have it auto close...

try(writeFunctionCloseHandler) {

 // Write entries using read-write or write-only functional map API

 ...

}

// Or close manually

writeCloseHanlder.close();

Read-Write Listeners

Read-write listeners enable users to register listeners for cache entry created, modified and

removed events, and also register listeners for any cache entry write events.

Entry created, modified and removed events can only be fired when these originate on a read-write

functional map, since this is the only one that guarantees that the previous value has been read,

and hence the differentiation between create, modified and removed can be fully guaranteed.

Adding a read-write listener is done via the ReadWriteListeners interface which is accessible via

ReadWriteMap.listeners() method.

If interested in only one of the event types, the simplest way to add a listener is to pass a function to

either onCreate , onModify or onRemove methods. All these methods return an AutoCloseable instance

that can be used to de-register the function listener:

38

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html#onWrite-java.util.function.Consumer-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html#add-org.infinispan.commons.api.functional.Listeners.WriteListeners.WriteListener-
https://docs.oracle.com/javase/8/docs/api/java/lang/AutoCloseable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html#listeners--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onCreate-org.infinispan.commons.api.functional.EntryView.ReadEntryView-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onModify-org.infinispan.commons.api.functional.EntryView.ReadEntryView-org.infinispan.commons.api.functional.EntryView.ReadEntryView-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onRemove-org.infinispan.commons.api.functional.EntryView.ReadEntryView-

import org.infinispan.commons.api.functional.EntryView.*;

import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadWriteMap<String, String> rwMap = ...

AutoCloseable createClose = rwMap.listeners().onCreate(created -> {

 // `created` is a ReadEntryView of the created entry

 System.out.printf("Created: %s%n", created.get());

});

AutoCloseable modifyClose = rwMap.listeners().onModify((before, after) -> {

 // `before` is a ReadEntryView of the entry before update

 // `after` is a ReadEntryView of the entry after update

 System.out.printf("Before: %s%n", before.get());

 System.out.printf("After: %s%n", after.get());

});

AutoCloseable removeClose = rwMap.listeners().onRemove(removed -> {

 // `removed` is a ReadEntryView of the removed entry

 System.out.printf("Removed: %s%n", removed.get());

});

AutoCloseable writeClose = woMap.listeners().onWrite(written -> {

 // `written` is a ReadEntryView of the written entry

 System.out.printf("Written: %s%n", written.get());

});

...

// Either wrap handler in a try section to have it auto close...

try(createClose) {

 // Create entries using read-write functional map API

 ...

}

// Or close manually

modifyClose.close();

If listening for two or more event types, it’s better to pass in an implementation of

ReadWriteListener interface via the ReadWriteListeners.add() method. ReadWriteListener offers the

same onCreate/onModify/onRemove callbacks with default method implementations that are empty:

39

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.WriteListener.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html#add-org.infinispan.commons.api.functional.Listeners.ReadWriteListeners.ReadWriteListener-

import org.infinispan.commons.api.functional.EntryView.*;

import org.infinispan.commons.api.functional.FunctionalMap.*;

import

org.infinispan.commons.api.functional.Listeners.ReadWriteListeners.ReadWriteListener;

ReadWriteMap<String, String> rwMap = ...

AutoCloseable readWriteClose = rwMap.listeners.add(new ReadWriteListener<String,

String>() {

 @Override

 public void onCreate(ReadEntryView<String, String> created) {

 System.out.printf("Created: %s%n", created.get());

 }

 @Override

 public void onModify(ReadEntryView<String, String> before, ReadEntryView<String,

String> after) {

 System.out.printf("Before: %s%n", before.get());

 System.out.printf("After: %s%n", after.get());

 }

 @Override

 public void onRemove(ReadEntryView<String, String> removed) {

 System.out.printf("Removed: %s%n", removed.get());

 }

);

AutoCloseable writeClose = rwMap.listeners.add(new WriteListener<String, String>() {

 @Override

 public void onWrite(ReadEntryView<K, V> written) {

 System.out.printf("Written: %s%n", written.get());

 }

);

// Either wrap handler in a try section to have it auto close...

try(readWriteClose) {

 // Create/update/remove entries using read-write functional map API

 ...

}

// Or close manually

writeClose.close();

4.7.10. Marshalling of Functions

Running functional map in a cluster of nodes involves marshalling and replication of the operation

parameters under certain circumstances.

To be more precise, when write operations are executed in a cluster, regardless of read-write or

write-only operations, all the parameters to the method and the functions are replicated to other

nodes.

40

There are multiple ways in which a function can be marshalled. The simplest way, which is also the

most costly option in terms of payload size, is to mark the function as Serializable :

import org.infinispan.commons.api.functional.EntryView.*;

import org.infinispan.commons.api.functional.FunctionalMap.*;

WriteOnlyMap<String, String> writeOnlyMap = ...

// Force a function to be Serializable

Consumer<WriteEntryView<String>> function =

 (Consumer<WriteEntryView<String>> & Serializable) wv -> wv.set("one");

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", function);

A more economical way to marshall a function is to provide an Infinispan Externalizer for it:

import org.infinispan.commons.api.functional.EntryView.*;

import org.infinispan.commons.api.functional.FunctionalMap.*;

import org.infinispan.commons.marshall.Externalizer;

import org.infinispan.commons.marshall.SerializeFunctionWith;

WriteOnlyMap<String, String> writeOnlyMap = ...

// Force a function to be Serializable

Consumer<WriteEntryView<String>> function = new SetStringConstant<>();

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", function);

@SerializeFunctionWith(value = SetStringConstant.Externalizer0.class)

class SetStringConstant implements Consumer<WriteEntryView<String>> {

 @Override

 public void accept(WriteEntryView<String> view) {

 view.set("value1");

 }

 public static final class Externalizer0 implements Externalizer<Object> {

 public void writeObject(ObjectOutput oo, Object o) {

 // No-op

 }

 public Object readObject(ObjectInput input) {

 return new SetStringConstant<>();

 }

 }

}

To help users take advantage of the tiny payloads generated by Externalizer-based functions, the

functional API comes with a helper class called

org.infinispan.commons.marshall.MarshallableFunctions which provides marshallable functions for

some of the most commonly user functions.

41

https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/Externalizer.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/MarshallableFunctions.html

In fact, all the functions required to implement ConcurrentMap and JCache using the functional map

API have been defined in MarshallableFunctions. For example, here is an implementation of

JCache’s boolean putIfAbsent(K, V) using functional map API which can be run in a cluster:

import org.infinispan.commons.api.functional.EntryView.*;

import org.infinispan.commons.api.functional.FunctionalMap.*;

import org.infinispan.commons.marshall.MarshallableFunctions;

ReadWriteMap<String, String> readWriteMap = ...

CompletableFuture<Boolean> future = readWriteMap.eval("key1,

 MarshallableFunctions.setValueIfAbsentReturnBoolean());

future.thenAccept(stored -> System.out.printf("Value was put? %s%n", stored));

4.7.11. Use cases for Functional API

This new API is meant to complement existing Key/Value Infinispan API offerings, so you’ll still be

able to use ConcurrentMap or JCache standard APIs if that’s what suits your use case best.

The target audience for this new API is either:

• Distributed or persistent caching/inmemorydatagrid users that want to benefit from

CompletableFuture and/or Traversable for async/lazy data grid or caching data manipulation.

The clear advantage here is that threads do not need to be idle waiting for remote operations to

complete, but instead these can be notified when remote operations complete and then chain

them with other subsequent operations.

• Users wanting to go beyond the standard operations exposed by ConcurrentMap and JCache , for

example, if you want to do a replace operation using metadata parameter equality instead of

value equality, or if you want to retrieve metadata information from values…etc.

42

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/MarshallableFunctions.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java#L283
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java

Chapter 5. Eviction and Data Container

Infinispan supports eviction of entries, such that you do not run out of memory. Eviction is typically

used in conjunction with a cache store, so that entries are not permanently lost when evicted, since

eviction only removes entries from memory and not from cache stores or the rest of the cluster.

Infinispan supports storing data in a few different formats. Data can be stored as the object iself,

binary as a byte[], and off-heap which stores the byte[] in native memory.

Passivation is also a popular option when using eviction, so that only a single

copy of an entry is maintained - either in memory or in a cache store, but not

both. The main benefit of using passivation over a regular cache store is that

updates to entries which exist in memory are cheaper since the update doesn’t

need to be made to the cache store as well.

Eviction occurs on a local basis, and is not cluster-wide. Each node runs an

eviction thread to analyse the contents of its in-memory container and decide

what to evict. Eviction does not take into account the amount of free memory in

the JVM as threshold to starts evicting entries. You have to set size attribute of

the eviction element to be greater than zero in order for eviction to be turned on.

If size is too large you can run out of memory. The size attribute will probably

take some tuning in each use case.

5.1. Enabling Eviction

Eviction is configured by adding the <memory /> element to your <*-cache /> configuration sections

or using MemoryConfigurationBuilder API programmatic approach.

All cache entry are evicted by piggybacking on user threads that are hitting the cache.

5.1.1. Eviction strategy

Eviction is handled by Caffeine utilizing the TinyLFU algorithm with an additional admission

window. This was chosen as provides high hit rate while also requiring low memory overhead.

This provides a better hit ratio than LRU while also requiring less memory than LIRS.

5.1.2. Eviction types

COUNT

This type of eviction will remove entries based on how many there are in the cache. Once the count

of entries has grown larger than the size then an entry will be removed to make room.

MEMORY

This type of eviction will estimate how much each entry will take up in memory and will remove an

entry when the total size of all entries is larger than the configured size. This type only works with

primitive wrapper, String and byte[] types, thus if custom types are desired you must enable

storeAsBinary. Also MEMORY based eviction only works with LRU policy.

43

http://docs.jboss.org/infinispan/9.0/configdocs/infinispan-config-9.0.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/configuration/cache/MemoryConfigurationBuilder.html
https://github.com/ben-manes/caffeine

5.1.3. Storage type

Infinispan allows the user to configure in what form their data is stored. Each form supports the

same features of Infinispan, however eviction can be limited for some forms. There are currently

three storage formats that Infinispan provides, they are:

OBJECT

Stores the keys and values as objects in the Java heap Only COUNT eviction type is supported.

BINARY

Stores the keys and values as a byte[] in the Java heap. This will use the configured marshaller for

the cache if there is one. Both COUNT and MEMORY eviction types are supported.

OFF-HEAP

Stores the keys and values in native memory outside of the Java heap as bytes. The configured

marshaller will be used if the cache has one. Both COUNT and MEMORY eviction types are supported.

5.1.4. More defaults

By default when no <memory /> element is specified, no eviction takes place and OBJECT storage type

is used.

In case there is an memory element, this table describes the behaviour of eviction based on

information provided in the xml configuration ("-" in Supplied size or Supplied strategy column

means that the attribute wasn’t supplied)

Supplied size Example Eviction behaviour

- <memory /> no eviction as an object

> 0 <memory> <object size="100" />
</memory>

eviction takes place and stored

as objects

> 0 <memory> <off-heap size="100"
/> </memory>

eviction takes place and stored

in off-heap

0 <memory> <object size="0" />
</memory>

no eviction

< 0 <memory> <object size="-1" />
</memory>

no eviction

5.2. Expiration

Similar to, but unlike eviction, is expiration. Expiration allows you to attach lifespan and/or

maximum idle times to entries. Entries that exceed these times are treated as invalid and are

removed. When removed expired entries are not passivated like evicted entries (if passivation is

turned on).

Unlike eviction, expired entries are removed globally - from memory, cache

stores, and cluster-wide.

44

By default entries created are immortal and do not have a lifespan or maximum idle time. Using

the cache API, mortal entries can be created with lifespans and/or maximum idle times. Further,

default lifespans and/or maximum idle times can be configured by adding the <expiration />

element to your <*-cache /> configuration sections.

When an entry expires it will reside in the data container or cache store until it is accessed again by

a user request. There is also an optional expiration reaper that can run at a given configurable

interval of milliseconds which will check for expired entries and remove them.

5.2.1. Difference between Eviction and Expiration

Both Eviction and Expiration are means of cleaning the cache of unused entries and thus guarding

the heap against OutOfMemory exceptions, so now a brief explanation of the difference.

With eviction you set maximal number of entries you want to keep in the cache and if this limit is

exceeded, some candidates are found to be removed according to a choosen eviction strategy (LRU,

LIRS, etc…). Eviction can be setup to work with passivation (evicting to a cache store).

With expiration you set time criteria for entries, how long you want to keep them in cache. Either

you set maximum lifespan of the entry - time it is allowed to stay in the cache or maximum idle time

, time it’s allowed to be untouched (no operation performed with given key).

5.3. Expiration details

1. Expiration is a top-level construct, represented in the configuration as well as in the cache API.

2. While eviction is local to each cache instance , expiration is cluster-wide . Expiration lifespans

and maxIdle values are replicated along with the cache entry.

3. While maxIdle is replicated, expiration due to maxIdle is not cluster wide, only lifespan. As

such it is not recommended to use maxIdle in a clustered cache.

4. Expiration lifespan and maxIdle are also persisted in CacheStores, so this information survives

eviction/passivation.

5.3.1. Configuration

Eviction may be configured using the Configuration bean or the XML file. Eviction configuration is

on a per-cache basis. Valid eviction-related configuration elements are:

<memory>

 <object size="2000"/>

</memory>

<expiration lifespan="1000" max-idle="500" interval="1000" />

Programmatically, the same would be defined using:

45

http://docs.jboss.org/infinispan/9.0/configdocs/infinispan-config-9.0.html

Configuration c = new ConfigurationBuilder()

 .memory().size(2000)

 .expiration().wakeUpInterval(5000l).lifespan(1000l).maxIdle(500l)

 .build();

5.3.2. Memory Based Eviction Configuration

Memory based eviction may require some additional configuration options if you are using your

own custom types (as Infinispan is normally used). In this case Infinispan cannot estimate the

memory usage of your classes and as such you are required to use storeAsBinary when memory

based eviction is used.

<!-- Enable memory based eviction with 1 GB/>

<memory>

 <binary size="1000000000" eviction="MEMORY"/>

</memory>

Configuration c = new ConfigurationBuilder()

 .memory()

 .storageType(StorageType.BINARY)

 .evictionType(EvictionType.MEMORY)

 .size(1_000_000_000)

 .build();

5.3.3. Default values

Eviction is disabled by default. Default values are used:

• size: -1 is used if not specified, which means unlimited entries.

• 0 means no entries, and the eviction thread will strive to keep the cache empty.

Expiration lifespan and maxIdle both default to -1.

5.3.4. Using expiration

Expiration allows you to set either a lifespan or a maximum idle time on each key/value pair stored

in the cache. This can either be set cache-wide using the configuration, as described above, or it

can be defined per-key/value pair using the Cache interface. Any values defined per key/value pair

overrides the cache-wide default for the specific entry in question.

For example, assume the following configuration:

<expiration lifespan="1000" />

46

// this entry will expire in 1000 millis

cache.put("pinot noir", pinotNoirPrice);

// this entry will expire in 2000 millis

cache.put("chardonnay", chardonnayPrice, 2, TimeUnit.SECONDS);

// this entry will expire 1000 millis after it is last accessed

cache.put("pinot grigio", pinotGrigioPrice, -1,

 TimeUnit.SECONDS, 1, TimeUnit.SECONDS);

// this entry will expire 1000 millis after it is last accessed, or

// in 5000 millis, which ever triggers first

cache.put("riesling", rieslingPrice, 5,

 TimeUnit.SECONDS, 1, TimeUnit.SECONDS);

5.4. Expiration designs

Central to expiration is an ExpirationManager.

The purpose of the ExpirationManager is to drive the expiration thread which periodically purges

items from the DataContainer. If the expiration thread is disabled (wakeupInterval set to -1)

expiration can be kicked off manually using ExprationManager.processExpiration(), for example

from another maintenance thread that may run periodically in your application.

The expiration manager processes expirations in the following manner:

1. Causes the data container to purge expired entries

2. Causes cache stores (if any) to purge expired entries

47

Chapter 6. Persistence

Persistence allows configuring external (persistent) storage engines complementary to the default

in memory storage offered by Infinispan. An external persistent storage might be useful for several

reasons:

• Increased Durability. Memory is volatile, so a cache store could increase the life-span of the

information store in the cache.

• Write-through. Interpose Infinispan as a caching layer between an application and a (custom)

external storage engine.

• Overflow Data. By using eviction and passivation, one can store only the "hot" data in memory

and overflow the data that is less frequently used to disk.

The integration with the persistent store is done through the following SPI: CacheLoader,

CacheWriter, AdvancedCacheLoader and AdvancedCacheWriter (discussed in the following

sections).

These SPIs allow for the following features:

• Alignment with JSR-107. The CacheWriter and CacheLoader interface are similar to the the

loader and writer in JSR 107. This should considerably help writing portable stores across

JCache compliant vendors.

• Simplified Transaction Integration. All necessary locking is handled by Infinispan automatically

and implementations don’t have to be concerned with coordinating concurrent access to the

store. Even though concurrent writes on the same key are not going to happen (depending

locking mode in use), implementors should expect operations on the store to happen from

multiple/different threads and code the implementation accordingly.

• Parallel Iteration. It is now possible to iterate over entries in the store with multiple threads in

parallel.

• Reduced Serialization. This translates in less CPU usage. The new API exposes the stored entries

in serialized format. If an entry is fetched from persistent storage for the sole purpose of being

sent remotely, we no longer need to deserialize it (when reading from the store) and serialize it

back (when writing to the wire). Now we can write to the wire the serialized format as read

from the storage directly.

6.1. Configuration

Stores (readers and/or writers) can be configured in a chain. Cache read operation looks at all of the

specified CacheLoader s, in the order they are configured, until it finds a valid and non-null element

of data. When performing writes all cache CacheWriter s are written to, except if the

ignoreModifications element has been set to true for a specific cache writer.

48

http://jcp.org/en/jsr/detail?id=107
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/CacheWriter.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/CacheLoader.html

Implementing both a CacheWriter and CacheLoader

it is possible and recommended for a store provider to implement both the

CacheWriter and the CacheLoader interface. The stores that do this are considered

both for reading and writing(assuming read-only=false) data.

This is the configuration of a custom(not shipped with infinispan) store:

 <local-cache name="myCustomStore">

 <persistence passivation="false">

 <store

 class="org.acme.CustomStore"

 fetch-state="false" preload="true" shared="false"

 purge="true" read-only="false" singleton="false">

 <write-behind modification-queue-size="123" thread-pool-size="23" />

 <property name="myProp">${system.property}</property>

 </store>

 </persistence>

 </local-cache>

Explanation of the configuration options:

• passivation (false by default) has a significant impact on how Infinispan interacts with the

loaders, and is discussed in the Cache Passivation section.

• class defines the class of the store and must implement CacheLoader, CacheWriter or both

• fetch-state (false by default) determines whether or not to fetch the persistent state of a cache

when joining a cluster. The aim here is to take the persistent state of a cache and apply it to the

local cache store of the joining node. Fetch persistent state is ignored if a cache store is

configured to be shared, since they access the same data. Only one configured cache loader may

set this property to true; if more than one cache loader does so, a configuration exception will

be thrown when starting your cache service.

• preload (false by default) if true, when the cache starts, data stored in the cache loader will be

pre-loaded into memory. This is particularly useful when data in the cache loader is needed

immediately after startup and you want to avoid cache operations being delayed as a result of

loading this data lazily. Can be used to provide a 'warm-cache' on startup, however there is a

performance penalty as startup time is affected by this process. Note that preloading is done in

a local fashion, so any data loaded is only stored locally in the node. No replication or

distribution of the preloaded data happens. Also, Infinispan only preloads up to the maximum

configured number of entries in eviction.

• shared (false by default) indicates that the cache loader is shared among different cache

instances, for example where all instances in a cluster use the same JDBC settings to talk to the

same remote, shared database. Setting this to true prevents repeated and unnecessary writes of

the same data to the cache loader by different cache instances.

• purge (false by default) empties the specified cache loader (if read-only is false) when the cache

loader starts up.

49

• read-only (false by default) prevents new data to be persisted to the store.

• write-behind (disabled by default) element has to do with a persisting data asynchronously to

the actual store. It is discussed in detail here.

• singleton (disabled by default) attribute enables modifications to be stored by only one node in

the cluster, the coordinator. Essentially, whenever any data comes in to some node it is always

replicated(or distributed) so as to keep the caches in-memory states in sync; the coordinator,

though, has the sole responsibility of pushing that state to disk. This functionality must be

configured by setting the enabled attribute to true in all nodes. Only the coordinator of the

cluster will persist data, but all nodes must have this configured to prevent others from

persisting as well. You cannot configure a store as shared and singleton.

• additional attributes can be configures within the properties section. These attributes configure

aspects specific to each cache loader, e.g. the myProp attribute in the previous example. Other

loaders, with more complex configuration, also introduce additional sub-elements to the basic

configuration. See for example the JDBC cache store configuration examples below

The configuration above is used for a generic store implementation. However the store

implementation provided by default with Infinispan have a more rich configuration schema, in

which the properties section is replaced with XML attributes:

<persistence passivation="false">

 <!-- note that class is missing and is induced by the fileStore element name -->

 <file-store

 shared="false" preload="true"

 fetch-state="true"

 read-only="false"

 purge="false"

 path="${java.io.tmpdir}">

 <write-behind thread-pool-size="5" />

 </file-store>

</persistence>

The same configuration can be achieved programmatically:

50

 ConfigurationBuilder builder = new ConfigurationBuilder();

 builder.persistence()

 .passivation(false)

 .addSingleFileStore()

 .preload(true)

 .shared(false)

 .fetchPersistentState(true)

 .ignoreModifications(false)

 .purgeOnStartup(false)

 .location(System.getProperty("java.io.tmpdir"))

 .async()

 .enabled(true)

 .threadPoolSize(5)

 .singleton()

 .enabled(true)

 .pushStateWhenCoordinator(true)

 .pushStateTimeout(20000);

6.2. Cache Passivation

A CacheWriter can be used to enforce entry passivation and activation on eviction in a cache. Cache

passivation is the process of removing an object from in-memory cache and writing it to a

secondary data store (e.g., file system, database) on eviction. Cache activation is the process of

restoring an object from the data store into the in-memory cache when it’s needed to be used. In

order to fully support passivation, a store needs to be both a CacheWriter and a CacheLoader. In

both cases, the configured cache store is used to read from the loader and write to the data writer.

When an eviction policy in effect evicts an entry from the cache, if passivation is enabled, a

notification that the entry is being passivated will be emitted to the cache listeners and the entry

will be stored. When a user attempts to retrieve a entry that was evicted earlier, the entry is (lazily)

loaded from the cache loader into memory. When the entry and its children have been loaded,

they’re removed from the cache loader and a notification is emitted to the cache listeners that the

entry has been activated. In order to enable passivation just set passivation to true (false by

default). When passivation is used, only the first cache loader configured is used and all others are

ignored.

6.2.1. Cache Loader Behavior with Passivation Disabled vs Enabled

When passivation is disabled, whenever an element is modified, added or removed, then that

modification is persisted in the backend store via the cache loader. There is no direct relationship

between eviction and cache loading. If you don’t use eviction, what’s in the persistent store is

basically a copy of what’s in memory. If you do use eviction, what’s in the persistent store is

basically a superset of what’s in memory (i.e. it includes entries that have been evicted from

memory). When passivation is enabled, there is a direct relationship between eviction and the

cache loader. Writes to the persistent store via the cache loader only occur as part of the eviction

process. Data is deleted from the persistent store when the application reads it back into memory.

In this case, what’s in memory and what’s in the persistent store are two subsets of the total

51

information set, with no intersection between the subsets.

The following is a simple example, showing what state is in RAM and in the persistent store after

each step of a 6 step process:

1. Insert keyOne

2. Insert keyTwo

3. Eviction thread runs, evicts keyOne

4. Read keyOne

5. Eviction thread runs, evicts keyTwo

6. Remove keyTwo

When passivation is disabled

1. Memory: keyOne Disk: keyOne

2. Memory: keyOne, keyTwo Disk: keyOne, keyTwo

3. Memory: keyTwo Disk: keyOne, keyTwo

4. Memory: keyOne, keyTwo Disk: keyOne, keyTwo

5. Memory: keyOne Disk: keyOne, keyTwo

6. Memory: keyOne Disk: keyOne

When passivation is enabled

1. Memory: keyOne Disk: (none)

2. Memory: keyOne, keyTwo Disk: (none)

3. Memory: keyTwo Disk: keyOne

4. Memory: keyOne, keyTwo Disk: (none)

5. Memory: keyOne Disk: keyTwo

6. Memory: keyOne Disk: (none)

6.3. Cache Loaders and transactional caches

When a cache is transactional and a cache loader is present, the cache loader won’t be enlisted in

the transaction in which the cache is part. That means that it is possible to have inconsistencies at

cache loader level: the transaction to succeed applying the in-memory state but (partially) fail

applying the changes to the store. Manual recovery would not work with caches stores.

6.4. Write-Through And Write-Behind Caching

Infinispan can optionally be configured with one or several cache stores allowing it to store data in

a persistent location such as shared JDBC database, a local filesystem, etc. Infinispan can handle

updates to the cache store in two different ways:

• Write-Through (Synchronous)

52

• Write-Behind (Asynchronous)

6.4.1. Write-Through (Synchronous)

In this mode, which is supported in version 4.0, when clients update a cache entry, i.e. via a

Cache.put() invocation, the call will not return until Infinispan has gone to the underlying cache

store and has updated it. Normally, this means that updates to the cache store are done within the

boundaries of the client thread.

The main advantage of this mode is that the cache store is updated at the same time as the cache,

hence the cache store is consistent with the cache contents. On the other hand, using this mode

reduces performance because the latency of having to access and update the cache store directly

impacts the duration of the cache operation.

Configuring a write-through or synchronous cache store does not require any particular

configuration option. By default, unless marked explicitly as write-behind or asynchronous, all

cache stores are write-through or synchronous. Please find below a sample configuration file of a

write-through unshared local file cache store:

<persistence passivation="false">

 <file-store fetch-state="true"

 read-only="false"

 purge="false" path="${java.io.tmpdir}"/>

 </persistence>

6.4.2. Write-Behind (Asynchronous)

In this mode, updates to the cache are asynchronously written to the cache store. Normally, this

means that updates to the cache store are done by a separate thread to the client thread interacting

with the cache.

One of the major advantages of this mode is that the performance of a cache operation does not get

affected by the update of the underlying store. On the other hand, since the update happens

asynchronously, there’s a time window during the which the cache store can contain stale data

compared to the cache. Even within write-behind, there are different strategies that can be used to

store data:

Unscheduled Write-Behind Strategy

In this mode, which is supported in version 4.0, Infinispan tries to store changes as quickly as

possible by taking the pending changes and applying them in parallel. Normally, this means that

there are several threads waiting for modifications to occur and once they’re available, they apply

them to underlying cache store.

This strategy is suited for cache stores with low latency and cheap operation cost. One such

example would a local unshared file based cache store, where the cache store is local to the cache

itself. With this strategy, the window of inconsistency between the contents of the cache and the

cache store are reduced to the lowest possible time. Please find below a sample configuration file of

53

this strategy:

<persistence passivation="false">

 <file-store fetch-state="true"

 read-only="false"

 purge="false" path="${java.io.tmpdir}">

 <!-- write behind configuration starts here -->

 <write-behind />

 <!-- write behind configuration ends here -->

 </file-store>

</persistence>

Scheduled Write-Behind Strategy

First of all, please note that this strategy is not included in version 4.0 but it will be implemented at

a later stage. ISPN-328 has been created to track this feature request. If you want it implemented,

please vote for it on that page, and watch it to be notified of any changes. The following explanation

refers to how we envision it to work.

In this mode, Infinispan would periodically store changes to the underlying cache store. The

periodicity could be defined in seconds, minutes, days, etc.

Since this strategy is oriented at cache stores with high latency or expensive operation cost, it

makes sense to coalesce changes, so that if there are multiple operations queued on the same key,

only the latest value is applied to cache store. With this strategy, the window of inconsistency

between the contents of the cache and the cache store depends on the delay or periodicity

configured. The higher the periodicity, the higher the chance of inconsistency.

6.5. Filesystem based cache stores

A filesystem-based cache store is typically used when you want to have a cache with a cache store

available locally which stores data that has overflowed from memory, having exceeded size and/or

time restrictions.

Usage of filesystem-based cache stores on shared filesystems like NFS, Windows

shares, etc. should be avoided as these do not implement proper file locking and

can cause data corruption. File systems are inherently not transactional, so when

attempting to use your cache in a transactional context, failures when writing to

the file (which happens during the commit phase) cannot be recovered.

6.5.1. Single File Store

Starting with Infinispan 6.0, a new file cache store has been created called single file cache store.

The old pre-6.0 file cache store has been completely removed, and it’s no longer configurable.

Check Data Migration section for information on how to migrate old file based

cache store data to the new single file cache store.

54

https://jira.jboss.org/jira/browse/ISPN-328

The new single file cache store keeps all data in a single file. The way it looks up data is by keeping

an in-memory index of keys and the positions of their values in this file. This results in greater

performance compared to old file cache store. There is one caveat though. Since the single file

based cache store keeps keys in memory, it can lead to increased memory consumption, and hence

it’s not recommended for caches with big keys.

In certain use cases, this cache store suffers from fragmentation: if you store larger and larger

values, the space is not reused and instead the entry is appended at the end of the file. The space

(now empty) is reused only if you write another entry that can fit there. Also, when you remove all

entries from the cache, the file won’t shrink, and neither will be de-fragmented.

These are the available configuration options for the single file cache store:

• path where data will be stored. (e.g., path="/tmp/myDataStore"). By default, the location is

Infinispan-SingleFileStore.

• max-entries specifies the maximum number of entries to keep in this file store. As mentioned

before, in order to speed up lookups, the single file cache store keeps an index of keys and their

corresponding position in the file. To avoid this index resulting in memory consumption

problems, this cache store can bounded by a maximum number of entries that it stores. If this

limit is exceeded, entries are removed permanently using the LRU algorithm both from the in-

memory index and the underlying file based cache store. So, setting a maximum limit only

makes sense when Infinispan is used as a cache, whose contents can be recomputed or they can

be retrieved from the authoritative data store. If this maximum limit is set when the Infinispan

is used as an authoritative data store, it could lead to data loss, and hence it’s not recommended

for this use case. The default value is -1 which means that the file store size is unlimited.

<persistence>

 <file-store path="/tmp/myDataStore" max-entries="5000"/>

</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();

b.persistence()

 .addSingleFileStore()

 .location("/tmp/myDataStore")

 .maxEntries(5000);

6.5.2. Soft-Index File Store

In Infinispan 7.0 we have added a new experimental local file-based cache store - Soft-Index File

Store. It is a pure Java implementation that tries to get around Single File Store’s drawbacks by

implementing a variant of B+ tree that is cached in-memory using Java’s soft references - here’s

where the name Soft-Index File Store comes from. This B+ tree (called Index) is offloaded on

filesystem to single file that does not need to be persisted - it is purged and rebuilt when the cache

store restarts, its purpose is only offloading.

The data that should be persisted are stored in a set of files that are written in append-only way -

55

that means that if you store this on conventional magnetic disk, it does not have to seek when

writing a burst of entries. It is not stored in single file but set of files. When the usage of any of

these files drops below 50% (the entries from the file are overwritten to another file), the file starts

to be collected, moving the live entries into different file and in the end removing that file from

disk.

Most of the structures in Soft Index File Store are bounded, therefore you don’t have to be afraid of

OOMEs. For example, you can configure the limits for concurrently open files as well.

Configuration

Here is an example of Soft-Index File Store configuration via XML:

<persistence>

 <soft-index-file-store xmlns="urn:infinispan:config:store:soft-index:8.0">

 <index path="/tmp/sifs/testCache/index" />

 <data path="/tmp/sifs/testCache/data" />

 </soft-index-file-store>

</persistence>

Programmatic configuration would look as follows:

ConfigurationBuilder b = new ConfigurationBuilder();

b.persistence()

 .addStore(SoftIndexFileStoreConfigurationBuilder.class)

 .indexLocation("/tmp/sifs/testCache/index");

 .dataLocation("/tmp/sifs/testCache/data")

Current limitations

Size of a node in the Index is limited, by default it is 4096 bytes, though it can be configured. This

size also limits the key length (or rather the length of the serialized form): you can’t use keys longer

than size of the node - 15 bytes. Moreover, the key length is stored as 'short', limiting it to 32767

bytes. There’s no way how you can use longer keys - SIFS throws an exception when the key is

longer after serialization.

When entries are stored with expiration, SIFS cannot detect that some of those entries are expired.

Therefore, such old file will not be compacted (method AdvancedStore.purgeExpired() is not

implemented). This can lead to excessive file-system space usage.

6.6. JDBC String based Cache Store

A cache store which relies on the provided JDBC driver to load/store values in the underlying

database.

Each key in the cache is stored in its own row in the database. In order to store each key in its own

56

row, this store relies on a (pluggable) bijection that maps the each key to a String object. The

bijection is defined by the Key2StringMapper interface. Infinispans ships a default implementation

(smartly named DefaultTwoWayKey2StringMapper) that knows how to handle primitive types.

6.6.1. Connection management (pooling)

In order to obtain a connection to the database the JDBC cache store relies on a ConnectionFactory

implementation. The connection factory is specified programmatically using one of the

connectionPool(), dataSource() or simpleConnection() methods on the

JdbcStringBasedStoreConfigurationBuilder class or declaratively using one of the <connectionPool

/>, <dataSource /> or <simpleConnection /> elements.

Infinispan ships with three ConnectionFactory implementations:

• PooledConnectionFactory is a factory based on HikariCP. Additional properties for HikariCP can

be provided by a properties file, either via placing a hikari.properties file on the classpath or

by specifying the path to the file via PooledConnectionFactoryConfiguration.propertyFile or

properties-file in the connection pool’s xml config. N.B. a properties file specified explicitly in

the configuration is loaded instead of the hikari.properties file on the class path and

Connection pool characteristics which are explicitly set in

PooledConnectionFactoryConfiguration always override the values loaded from a properties

file.

Refer to the official documentation for details of all configuration properties.

• ManagedConnectionFactory is a connection factory that can be used within managed

environments, such as application servers. It knows how to look into the JNDI tree at a certain

location (configurable) and delegate connection management to the DataSource. Refer to

javadoc javadoc for details on how this can be configured.

• SimpleConnectionFactory is a factory implementation that will create database connection on a

per invocation basis. Not recommended in production.

The PooledConnectionFactory is generally recommended for stand-alone deployments (i.e. not

running within AS or servlet container). ManagedConnectionFactory can be used when running in a

managed environment where a DataSource is present, so that connection pooling is performed

within the DataSource.

6.6.2. Sample configurations

Below is a sample configuration for the JdbcStringBasedStore. For detailed description of all the

parameters used refer to the JdbcStringBasedStore.

57

http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/jdbc/connectionfactory/ConnectionFactory.html
http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/jdbc/connectionfactory/PooledConnectionFactory.html
https://github.com/brettwooldridge/HikariCP
https://github.com/brettwooldridge/HikariCP
http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/jdbc/connectionfactory/ManagedConnectionFactory.html
http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/jdbc/connectionfactory/ManagedConnectionFactory.html
http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/jdbc/connectionfactory/SimpleConnectionFactory.html
http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/jdbc/stringbased/JdbcStringBasedStore.html
http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/jdbc/stringbased/JdbcStringBasedStore.html

<persistence>

 <string-keyed-jdbc-store fetch-state="false" read-only="false" purge="false">

 <connection-pool connection-url=

"jdbc:h2:mem:infinispan_string_based;DB_CLOSE_DELAY=-1" username="sa" driver=

"org.h2.Driver"/>

 <string-keyed-table drop-on-exit="true" create-on-start="true" prefix=

"ISPN_STRING_TABLE">

 <id-column name="ID_COLUMN" type="VARCHAR(255)" />

 <data-column name="DATA_COLUMN" type="BINARY" />

 <timestamp-column name="TIMESTAMP_COLUMN" type="BIGINT" />

 </string-keyed-table>

 </string-keyed-jdbc-store>

</persistence>

ConfigurationBuilder builder = new ConfigurationBuilder();

builder.persistence().addStore(JdbcStringBasedStoreConfigurationBuilder.class)

 .fetchPersistentState(false)

 .ignoreModifications(false)

 .purgeOnStartup(false)

 .table()

 .dropOnExit(true)

 .createOnStart(true)

 .tableNamePrefix("ISPN_STRING_TABLE")

 .idColumnName("ID_COLUMN").idColumnType("VARCHAR(255)")

 .dataColumnName("DATA_COLUMN").dataColumnType("BINARY")

 .timestampColumnName("TIMESTAMP_COLUMN").timestampColumnType("BIGINT")

 .connectionPool()

 .connectionUrl("jdbc:h2:mem:infinispan_string_based;DB_CLOSE_DELAY=-1")

 .username("sa")

 .driverClass("org.h2.Driver");

Finally, below is an example of a JDBC cache store with a managed connection factory, which is

chosen implicitly by specifying a datasource JNDI location:

<string-keyed-jdbc-store xmlns="urn:infinispan:config:store:jdbc:7.0" fetch-state=

"false" read-only="false" purge="false">

 <data-source jndi-url="java:/StringStoreWithManagedConnectionTest/DS" />

 <string-keyed-table drop-on-exit="true" create-on-start="true" prefix=

"ISPN_STRING_TABLE">

 <id-column name="ID_COLUMN" type="VARCHAR(255)" />

 <data-column name="DATA_COLUMN" type="BINARY" />

 <timestamp-column name="TIMESTAMP_COLUMN" type="BIGINT" />

 </string-keyed-table>

</string-keyed-jdbc-store>

58

ConfigurationBuilder builder = new ConfigurationBuilder();

builder.persistence().addStore(JdbcStringBasedStoreConfigurationBuilder.class)

 .fetchPersistentState(false).ignoreModifications(false).purgeOnStartup(false)

 .table()

 .dropOnExit(true)

 .createOnStart(true)

 .tableNamePrefix("ISPN_STRING_TABLE")

 .idColumnName("ID_COLUMN").idColumnType("VARCHAR(255)")

 .dataColumnName("DATA_COLUMN").dataColumnType("BINARY")

 .timestampColumnName("TIMESTAMP_COLUMN").timestampColumnType("BIGINT")

 .dataSource()

 .jndiUrl("java:/StringStoreWithManagedConnectionTest/DS");

Apache Derby users

If you’re connecting to an Apache Derby database, make sure you set

dataColumnType to BLOB: <data-column name="DATA_COLUMN" type="BLOB"/>

6.6.3. JDBC Migrator

The JDBC Mixed and Binary stores have been removed in Infinispan 9.0.0 due to the poor

performance associated with storing entries in buckets. Storing entries in buckets is non-optimal as

each read/write to the store requires an existing bucket for a given hash to be retrieved,

deserialised, updated, serialised and then re-inserted back into the db. To assist users, we have

created a migration tool JDBCMigrator.java, that reads data from an existing Mixed/Binary store and

then stores it in a string keyed table via the JdbcStringBasedStore.

The migrator can also be used to migrate existing string based tables to new

database tables if you wish to use a new marshaller or

TwoWayKeyToStringMapper for the store’s content.

Usage

The Jdbc migrator org.infinispan.tools.jdbc.migrator.JDBCMigrator takes a single argument, the

path to a .properties file which must contain the configuration properties for both the source and

target stores. An example properties file containing all applicable configuration options can be

found here.

To use the migrator, you need the infinispan-tools-9.0.jar as well as the jdbc drivers required by

your source and target databases on your classpath. An example maven pom, that will execute the

migrator via mvn exec:java is presented below:

59

https://github.com/infinispan/infinispan/blob/master/tools/src/main/resources/migrator.properties

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.infinispan.example</groupId>

 <artifactId>jdbc-migrator-example</artifactId>

 <version>1.0-SNAPSHOT</version>

 <dependencies>

 <dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-tools</artifactId>

 <version>9.0.0-SNAPSHOT</version>

 </dependency>

 <!-- ADD YOUR REQUIRED JDBC DEPENDENCIES HERE -->

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>exec-maven-plugin</artifactId>

 <version>1.2.1</version>

 <executions>

 <execution>

 <goals>

 <goal>java</goal>

 </goals>

 </execution>

 </executions>

 <configuration>

 <mainClass>

org.infinispan.tools.jdbc.migrator.JDBCMigrator</mainClass>

 <arguments>

 <argument><!-- PATH TO YOUR MIGRATOR.PROPERTIES FILE --

></argument>

 </arguments>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

60

Properties

All migrator properties are configured within the context of a source or target store and so each

properties must start with either source. or target.. All of the properties listed below are

applicable to both source and target stores, with the exception of table.binary.* properties as it is

not possible to migrate to a binary table.

Property Description Example value Required

type Store type enum:

[STRING,BINARY,MIXE

D]

MIXED TRUE

cache_name The name of the cache

associated with the

store

persistentMixedCache TRUE

dialect The dialect of the

underlying database

POSTGRES TRUE

connection_pool.conne

ction_url

The JDBC connection

url

jdbc:postgresql:postgre

s

TRUE

connection_pool.driver

_class

The class of the JDBC

driver

org.postrgesql.Driver TRUE

connection_pool.userna

me

Database username TRUE

connection_pool.passw

ord

Database password TRUE

db.major_version Database major version 9

db.minor_version Database minor

version

5

db.disable_upsert Disable db upsert false

db.disable_indexing Prevent table index

being created

false

table.<binary|string>.ta

ble_name_prefix

Additional prefix for

table name

tablePrefix

table.<binary|string>.<i

d|data|timestamp>.nam

e

Name of the column id_column TRUE

table.<binary|string>.<i

d|data|timestamp>.type

Type of the column VARCHAR TRUE

key_to_string_mapper TwoWayKey2StringMa

pper Class

org.infinispan.persist
ence.keymappers.
DefaultTwoWayKey2Strin
gMapper

61

6.7. Remote store

The RemoteStore is a cache loader and writer implementation that stores data in a remote infinispan

cluster. In order to communicate with the remote cluster, the RemoteStore uses the HotRod

client/server architecture. HotRod bering the load balancing and fault tolerance of calls and the

possibility to fine-tune the connection between the RemoteCacheStore and the actual cluster. Please

refer to Hot Rod for more information on the protocol, client and server configuration. For a list of

RemoteStore configuration refer to the javadoc . Example:

<persistence>

 <remote-store xmlns="urn:infinispan:config:store:remote:8.0" cache="mycache" raw-

values="true">

 <remote-server host="one" port="12111" />

 <remote-server host="two" />

 <connection-pool max-active="10" exhausted-action="CREATE_NEW" />

 <write-behind />

 </remote-store>

</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();

b.persistence().addStore(RemoteStoreConfigurationBuilder.class)

 .fetchPersistentState(false)

 .ignoreModifications(false)

 .purgeOnStartup(false)

 .remoteCacheName("mycache")

 .rawValues(true)

.addServer()

 .host("one").port(12111)

 .addServer()

 .host("two")

 .connectionPool()

 .maxActive(10)

 .exhaustedAction(ExhaustedAction.CREATE_NEW)

 .async().enable();

In this sample configuration, the remote cache store is configured to use the remote cache named

"mycache" on servers "one" and "two". It also configures connection pooling and provides a custom

transport executor. Additionally the cache store is asynchronous.

6.8. Cluster cache loader

The ClusterCacheLoader is a cache loader implementation that retrieves data from other cluster

members.

It is a cache loader only as it doesn’t persist anything (it is not a Store), therefore features like

fetchPersistentState (and like) are not applicable.

62

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/remote/configuration/RemoteStoreConfigurationBuilder.html

A cluster cache loader can be used as a non-blocking (partial) alternative to stateTransfer : keys not

already available in the local node are fetched on-demand from other nodes in the cluster. This is a

kind of lazy-loading of the cache content.

<persistence>

 <cluster-loader remote-timeout="500"/>

</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();

b.persistence()

 .addClusterLoader()

 .remoteCallTimeout(500);

For a list of ClusterCacheLoader configuration refer to the javadoc .

The ClusterCacheLoader does not support preloading(preload=true). It also won’t

provide state if fetchPersistentSate=true.

6.9. Command-Line Interface cache loader

The Command-Line Interface (CLI) cache loader is a cache loader implementation that retrieves

data from another Infinispan node using the CLI. The node to which the CLI connects to could be a

standalone node, or could be a node that it’s part of a cluster. This cache loader is read-only, so it

will only be used to retrieve data, and hence, won’t be used when persisting data.

The CLI cache loader is configured with a connection URL pointing to the Infinispan node to which

connect to. Here is an example:

Details on the format of the URL and how to make sure a node can receive

invocations via the CLI can be found in the Command-Line Interface chapter.

<persistence>

 <cli-loader connection="jmx://1.2.3.4:4444/MyCacheManager/myCache" />

</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();

b.persistence()

 .addStore(CLInterfaceLoaderConfigurationBuilder.class)

 .connectionString("jmx://1.2.3.4:4444/MyCacheManager/myCache");

6.10. RocksDB Cache Store

The Infinispan Community

63

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/configuration/cache/ClusterLoaderConfiguration.html

6.10.1. Introduction

RocksDB is a fast key-value filesystem-based storage from Facebook. It started as a fork of Google’s

LevelDB, but provides superior performance and reliability, especially in highly concurrent

scenarios.

Sample Usage

The RocksDB cache store requires 2 filesystem directories to be configured - each directory contains

a RocksDB database: one location is used to store non-expired data, while the second location is

used to store expired keys pending purge.

Configuration cacheConfig = new ConfigurationBuilder().persistence()

 .addStore(RocksDBStoreConfigurationBuilder.class)

 .build();

EmbeddedCacheManager cacheManager = new DefaultCacheManager(cacheConfig);

Cache<String, User> usersCache = cacheManager.getCache("usersCache");

usersCache.put("raytsang", new User(...));

6.10.2. Configuration

Sample Programatic Configuration

Configuration cacheConfig = new ConfigurationBuilder().persistence()

 .addStore(RocksDBStoreConfigurationBuilder.class)

 .location("/tmp/rocksdb/data")

 .expiredLocation("/tmp/rocksdb/expired")

 .build();

Parameter Description

location Directory to use for RocksDB to store primary

cache store data. The directory will be auto-

created if it does not exit.

expiredLocation Directory to use for RocksDB to store expiring

data pending to be purged permanently. The

directory will be auto-created if it does not exit.

expiryQueueSize Size of the in-memory queue to hold expiring

entries before it gets flushed into expired

RocksDB store

64

http://rocksdb.org/

Parameter Description

clearThreshold There are two methods to clear all entries in

RocksDB. One method is to iterate through all

entries and remove each entry individually. The

other method is to delete the database and re-

init. For smaller databases, deleting individual

entries is faster than the latter method. This

configuration sets the max number of entries

allowed before using the latter method

compressionType Configuration for RocksDB for data

compression, see CompressionType enum for

options

blockSize Configuration for RocksDB - see documentation

for performance tuning

cacheSize Configuration for RocksDB - see documentation

for performance tuning

Sample XML Configuration

infinispan.xml

<local-cache name="vehicleCache">

 <persistence>

 <rocksdb-store path="/tmp/rocksdb/data">

 <expiration path="/tmp/rocksdb/expired"/>

 </rocksdb-store>

 </persistence>

</local-cache>

6.10.3. Additional References

Refer to the test case for code samples in action.

Refer to test configurations for configuration samples.

6.11. LevelDB Cache Store

The LevelDB Cache Store has been deprecated in Infinispan 9.0 and has been

replaced with the RocksDB Cache Store. If you have existing data stored in a

LevelDB Cache Store, the RocksDB Cache Store will convert it to the new SST-

based format on the first run.

6.12. REST Cache Store

The Infinispan Community

65

https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/infinispan/infinispan/blob/master/persistence/rocksdb/src/test/java/org/infinispan/persistence/rocksdb/config/ConfigurationTest.java
https://github.com/infinispan/infinispan/tree/master/persistence/rocksdb/src/test/resources/config/

6.12.1. Introduction

TODO

6.12.2. Javadoc

TODO

6.12.3. Configuration

TODO

6.13. JPA Cache Store

The Infinispan Community

6.13.1. Introduction

The implementation depends on JPA 2.0 specification to access entity meta model.

In normal use cases, it’s recommended to leverage Infinispan for JPA second level cache and/or

query cache. However, if you’d like to use only Infinispan API and you want Infinispan to persist

into a cache store using a common format (e.g., a database with well defined schema), then JPA

Cache Store could be right for you.

Things to note

• When using JPA Cache Store, the key should be the ID of the entity, while the value should be

the entity object.

• Only a single @Id or @EmbeddedId annotated property is allowed.

• Auto-generated ID is not supported.

• Lastly, all entries will be stored as immortal entries.

Sample Usage

For example, given a persistence unit "myPersistenceUnit", and a JPA entity User:

persistence.xml

<persistence-unit name="myPersistenceUnit">

 ...

</persistence-unit>

User entity class

66

User.java

@Entity

public class User implements Serializable {

 @Id

 private String username;

 private String firstName;

 private String lastName;

 ...

}

Then you can configure a cache "usersCache" to use JPA Cache Store, so that when you put data into

the cache, the data would be persisted into the database based on JPA configuration.

EmbeddedCacheManager cacheManager = ...;

Configuration cacheConfig = new ConfigurationBuilder().persistence()

 .addStore(JpaStoreConfigurationBuilder.class)

 .persistenceUnitName("org.infinispan.loaders.jpa.configurationTest")

 .entityClass(User.class)

 .build();

cacheManager.defineCache("usersCache", cacheConfig);

Cache<String, User> usersCache = cacheManager.getCache("usersCache");

usersCache.put("raytsang", new User(...));

Normally a single Infinispan cache can store multiple types of key/value pairs, for example:

Cache<String, User> usersCache = cacheManager.getCache("myCache");

usersCache.put("raytsang", new User());

Cache<Integer, Teacher> teachersCache = cacheManager.getCache("myCache");

teachersCache.put(1, new Teacher());

It’s important to note that, when a cache is configured to use a JPA Cache Store, that cache would

only be able to store ONE type of data.

Cache<String, User> usersCache = cacheManager.getCache("myJPACache"); // configured

for User entity class

usersCache.put("raytsang", new User());

Cache<Integer, Teacher> teachersCache = cacheManager.getCache("myJPACache"); // cannot

do this when this cache is configured to use a JPA cache store

teachersCache.put(1, new Teacher());

Use of @EmbeddedId is supported so that you can also use composite keys.

67

@Entity

public class Vehicle implements Serializable {

 @EmbeddedId

 private VehicleId id;

 private String color; ...

}

@Embeddable

public class VehicleId implements Serializable

{

 private String state;

 private String licensePlate;

 ...

}

Lastly, auto-generated IDs (e.g., @GeneratedValue) is not supported. When putting things into the

cache with a JPA cache store, the key should be the ID value!

6.13.2. Configuration

Sample Programatic Configuration

Configuration cacheConfig = new ConfigurationBuilder().persistence()

 .addStore(JpaStoreConfigurationBuilder.class)

 .persistenceUnitName("org.infinispan.loaders.jpa.configurationTest")

 .entityClass(User.class)

 .build();

Parameter Description

persistenceUnitName JPA persistence unit name in JPA configuration

(persistence.xml) that contains the JPA entity

class

entityClass JPA entity class that is expected to be stored in

this cache. Only one class is allowed.

Sample XML Configuration

<local-cache name="vehicleCache">

 <persistence passivation="false">

 <jpa-store xmlns="urn:infinispan:config:store:jpa:7.0"

 persistence-unit="org.infinispan.persistence.jpa.configurationTest"

 entity-class="org.infinispan.persistence.jpa.entity.Vehicle">

 />

 </persistence>

</local-cache>

68

Parameter Description

persistence-unit JPA persistence unit name in JPA configuration

(persistence.xml) that contains the JPA entity

class

entity-class Fully qualified JPA entity class name that is

expected to be stored in this cache. Only one

class is allowed.

6.13.3. Additional References

Refer to the test case for code samples in action.

Refer to test configurations for configuration samples.

6.13.4. Javadoc

TODO

6.14. Custom Cache Stores

If the provided cache stores do not fulfill all of your requirements, it is possible for you to

implement your own store. The steps required to create your own store are as follows:

1. Write your custom store by implementing one of the following interfaces:

• org.infinispan.persistence.spi.AdvancedCacheWriter

• org.infinispan.persistence.spi.AdvancedCacheLoader

• org.infinispan.persistence.spi.CacheLoader

• org.infinispan.persistence.spi.CacheWriter

• org.infinispan.persistence.spi.ExternalStore

• org.infinispan.persistence.spi.AdvancedLoadWriteStore

• org.infinispan.persistence.spi.TransactionalCacheWriter

2. Annotate your store class with the @Store annotation and specify the properties relevant to your

store, e.g. is it possible for the store to be shared in Replicated or Distributed mode:

@Store(shared = true).

3. Create a custom cache store configuration and builder. This requires extending

AbstractStoreConfiguration and AbstractStoreConfigurationBuilder. As an optional step, you

should add the following annotations to your configuration - @ConfigurationFor, @BuiltBy as well

as adding @ConfiguredBy to your store implementation class. These additional annotations will

ensure that your custom configuration builder is used to parse your store configuration from

xml. If these annotations are not added, then the CustomStoreConfigurationBuilder will be used

to parse the common store attributes defined in AbstractStoreConfiguration and any additional

elements will be ignored. If a store and its configuration do not declare the @Store and

@ConfigurationFor annotations respectively, a warning message will be logged upon cache

initialisation.

69

https://github.com/infinispan/infinispan/blob/master/persistence/jpa/src/test/java/org/infinispan/persistence/jpa/JpaConfigurationTest.java
https://github.com/infinispan/infinispan/blob/master/persistence/jpa/src/test/resources/config/jpa-config.xml

4. Add your custom store to your cache’s configuration:

a. Add your custom store to the ConfigurationBuilder, for example:

Configuration config = new ConfigurationBuilder()

 .persistence()

 .addStore(CustomStoreConfigurationBuilder.class)

 .build();

b. Define your custom store via xml:

<local-cache name="customStoreExample">

 <persistence>

 <store class="org.infinispan.persistence.dummy.DummyInMemoryStore" />

 </persistence>

</local-cache>

6.14.1. HotRod Deployment

A Custom Cache Store can be packaged into a separate JAR file and deployed in a HotRod server

using the following steps:

1. Follow steps 1-3 in the previous section and package your implementations in a JAR file (or use

a Custom Cache Store Archetype).

2. In your Jar create a proper file under META-INF/services/, which contains the fully qualified

class name of your store implementation. The name of this service file should reflect the

interface that your store implements. For example, if your store implements the

AdvancedCacheWriter interface than you need to create the following file:

• /META-INF/services/org.infinispan.persistence.spi.AdvancedCacheWriter

3. Deploy the JAR file in the Infinispan Server.

6.15. Data Migration

The format in which data is persisted has changed in Infinispan 6.0, so this means that if you stored

data using Infinispan 4.x or Infinispan 5.x, Infinispan 6.0 won’t be able to read it. The best way to

upgrade persisted data from Infinispan 4.x/5.x to Infinispan 6.0 is to use the mechanisms explained

in the Rolling Upgrades section. In other words, by starting a rolling upgrade, data stored in

Infinispan 4.x/5.x can be migrated to a Infinispan 6.0 installation where persitence is configured

with a different location for the data. The location configuration varies according to the specific

details of each cache store.

Following sections describe the SPI and also discuss the SPI implementations that Infinispan ships

out of the box.

70

6.16. API

The following class diagram presents the main SPI interfaces of the persistence API:

Figure 1. Persistence SPI

Some notes about the classes:

• ByteBuffer - abstracts the serialized form of an object

• MarshalledEntry - abstracts the information held within a persistent store corresponding to a

key-value added to the cache. Provides method for reading this information both in serialized

(ByteBuffer) and deserialized (Object) format. Normally data read from the store is kept in

serialized format and lazily deserialized on demand, within the MarshalledEntry

implementation

• CacheWriter and CacheLoader provide basic methods for reading and writing to a store

• AdvancedCacheLoader and AdvancedCacheWriter provide operations to manipulate the

underlaying storage in bulk: parallel iteration and purging of expired entries, clear and size.

A provider might choose to only implement a subset of these interfaces:

• Not implementing the AdvancedCacheWriter makes the given writer not usable for purging

expired entries or clear

• If a loader does not implement the AdvancedCacheWriter inteface, then it will not participate in

preloading nor in cache iteration (required also for stream operations).

71

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/io/ByteBuffer.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/MarshalledEntry.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/io/ByteBuffer.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/MarshalledEntry.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/CacheWriter.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/CacheLoader.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/AdvancedCacheLoader.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/AdvancedCacheWriter.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/AdvancedCacheWriter.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/AdvancedCacheWriter.html

If you’re looking at migrating your existing store to the new API or to write a new store

implementation, the SingleFileStore might be a good starting point/example.

6.17. More implementations

Many more cache loader and cache store implementations exist. Visit this website for more details.

72

https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/persistence/file/SingleFileStore.java
http://infinispan.org/cache-store-implementations

Chapter 7. Clustering

A cache manager can be configured to be either local (standalone) or clustered. When clustered,

manager instances use JGroups' discovery protocols to automatically discover neighboring

instances on the same local network and form a cluster.

Creating a local-only cache manager is trivial: just use the no-argument DefaultCacheManager

constructor, or supply the following XML configuration file.

<infinispan/>

To start a clustered cache manager, you need to create a clustered configuration.

GlobalConfigurationBuilder gcb = GlobalConfigurationBuilder.defaultClusteredBuilder();

DefaultCacheManager manager = new DefaultCacheManager(gcb.build());

<infinispan>

 <cache-container>

 <transport/>

 </cache-container>

</infinispan>

Individual caches can then be configured in different modes:

• Local: changes and reads are never replicated. This is the only mode available in standalone

cache managers.

• Invalidation: changes are not replicated, instead the key is invalidated on all nodes; reads are

local.

• Replicated: changes are replicated to all nodes, reads are always local.

• Distributed: changes are replicated to a fixed number of nodes, reads request the value from at

least one of the owner nodes.

7.1. Local Mode

While Infinispan is particularly interesting in clustered mode, it also offers a very capable local

mode. In this mode, it acts as a simple, in-memory data cache similar to a ConcurrentHashMap.

But why would one use a local cache rather than a map? Caches offer a lot of features over and

above a simple map, including write-through and write-behind to a persistent store, eviction of

entries to prevent running out of memory, and expiration.

Infinispan’s Cache interface extends JDK’s ConcurrentMap — making migration from a map to

Infinispan trivial.

73

Infinispan caches also support transactions, either integrating with an existing transaction

manager or running a separate one. Local caches transactions have two choices:

1. When to lock? Pessimistic locking locks keys on a write operation or when the user calls

AdvancedCache.lock(keys) explicitly. Optimistic locking only locks keys during the transaction

commit, and instead it throws a WriteSkewCheckException at commit time, if another transaction

modified the same keys after the current transaction read them.

2. Isolation level. We support read-committed and repeatable read.

7.1.1. Simple Cache

Traditional local caches use the same architecture as clustered caches, i.e. they use the interceptor

stack. That way a lot of the implementation can be reused. However, if the advanced features are

not needed and performance is more important, the interceptor stack can be stripped away and

simple cache can be used.

So, which features are stripped away? From the configuration perspective, simple cache does not

support:

• transactions and invocation batching

• persistence (cache stores and loaders)

• custom interceptors (there’s no interceptor stack!)

• indexing

• compatibility (embedded/server mode)

• store as binary (which is hardly useful for local caches)

From the API perspective these features throw an exception:

• adding custom interceptors

• Distributed Executors Framework

So, what’s left?

• basic map-like API

• cache listeners (local ones)

• expiration

• eviction

• security

• JMX access

• statistics (though for max performance it is recommended to switch this off using statistics-

available=false)

Declarative configuration

74

 <local-cache name="mySimpleCache" simple-cache="true">

 <!-- expiration, eviction, security... -->

 </local-cache>

Programmatic configuration

CacheManager cm = getCacheManager();

ConfigurationBuilder builder = new ConfigurationBuilder().simpleCache(true);

cm.defineConfiguration("mySimpleCache", builder.build());

Cache cache = cm.getCache("mySimpleCache");

Simple cache checks against features it does not support, if you configure it to use e.g. transactions,

configuration validation will throw an exception.

7.2. Invalidation Mode

In invalidation, the caches on different nodes do not actually share any data. Instead, when a key is

written to, the cache only aims to remove data that may be stale from other nodes. This cache mode

only makes sense if you have another, permanent store for your data such as a database and are

only using Infinispan as an optimization in a read-heavy system, to prevent hitting the database for

every read. If a cache is configured for invalidation, every time data is changed in a cache, other

caches in the cluster receive a message informing them that their data is now stale and should be

removed from memory and from any local store.

75

Figure 2. Invalidation mode

Sometimes the application reads a value from the external store and wants to write it to the local

cache, without removing it from the other nodes. To do this, it must call

Cache.putForExternalRead(key, value) instead of Cache.put(key, value).

Invalidation mode can be used with a shared cache store. A write operation will both update the

shared store, and it would remove the stale values from the other nodes' memory. The benefit of

this is twofold: network traffic is minimized as invalidation messages are very small compared to

replicating the entire value, and also other caches in the cluster look up modified data in a lazy

manner, only when needed.

Never use invalidation mode with a local store. The invalidation message will not

remove entries in the local store, and some nodes will keep seeing the stale value.

An invalidation cache can also be configured with a special cache loader, ClusterLoader. When

ClusterLoader is enabled, read operations that do not find the key on the local node will request it

from all the other nodes first, and store it in memory locally. In certain situation it will store stale

values, so only use it if you have a high tolerance for stale values.

Invalidation mode can be synchronous or asynchronous. When synchronous, a write blocks until

all nodes in the cluster have evicted the stale value. When asynchronous, the originator broadcasts

invalidation messages but doesn’t wait for responses. That means other nodes still see the stale

value for a while after the write completed on the originator.

76

Transactions can be used to batch the invalidation messages. They won’t behave like regular

transactions though, as locks are only acquired on the local node, and entries can be invalidated by

other transactions at any time.

7.3. Replicated Mode

Entries written to a replicated cache on any node will be replicated to all other nodes in the cluster,

and can be retrieved locally from any node. Replicated mode provides a quick and easy way to

share state across a cluster, however replication practically only performs well in small clusters

(under 10 nodes), due to the number of messages needed for a write scaling linearly with the

cluster size. Infinispan can be configured to use UDP multicast, which mitigates this problem to

some degree.

Each key has a primary owner, which serializes data container updates in order to provide

consistency. To find more about how primary owners are assigned, please read the Key Ownership

section.

Replicated mode can be synchronous or asynchronous.

• Synchronous replication blocks the caller (e.g. on a cache.put(key, value)) until the

modifications have been replicated successfully to all the nodes in the cluster.

• Asynchronous replication performs replication in the background, and write operations return

immediately. Asynchronous replication is not recommended, because communication errors, or

errors that happen on remote nodes are not reported to the caller.

If transactions are enabled, write operations are not replicated through the primary owner.

• With pessimistic locking, each write triggers a lock message, which is broadcast to all the nodes.

During transaction commit, the originator broadcasts a one-phase prepare message and an

unlock message (optional). Either the one-phase prepare or the unlock message is fire-and-

forget.

• With optimistic locking, the originator broadcasts a prepare message, a commit message, and an

unlock message (optional). Again, either the one-phase prepare or the unlock message is fire-

and-forget.

7.4. Distribution Mode

Distribution tries to keep a fixed number of copies of any entry in the cache, configured as

numOwners. This allows the cache to scale linearly, storing more data as nodes are added to the

cluster.

As nodes join and leave the cluster, there will be times when a key has more or less than numOwners

copies. In particular, if numOwners nodes leave in quick succession, some entries will be lost, so we

say that a distributed cache tolerates numOwners - 1 node failures.

The number of copies represents a trade-off between performance and durability of data. The more

copies you maintain, the lower performance will be, but also the lower the risk of losing data due to

77

server or network failures. Regardless of how many copies are maintained, distribution still scales

linearly, and this is key to Infinispan’s scalability.

The owners of a key are split into one primary owner, which coordinates writes to the key, and

zero or more backup owners. To find more about how primary and backup owners are assigned,

please read the Key Ownership section.

A read operation will request the value from the primary owner, but if it doesn’t respond in a

reasonable amount of time, we request the value from the backup owners as well. (The

infinispan.stagger.delay system property, in milliseconds, controls the delay between requests.) A

read operation may require 0 messages if the key is present in the local cache, or up to 2 *

numOwners messages if all the owners are slow.

A write operation will also result in at most 2 * numOwners messages: one message from the

originator to the primary owner, numOwners - 1 messages from the primary to the backups, and the

corresponding ACK messages.

Cache topology changes may cause retries and additional messages, both for

reads and for writes.

Just as replicated mode, distributed mode can also be synchronous or asynchronous. And as in

replicated mode, asynchronous replication is not recommended because it can lose updates. In

addition to losing updates, asynchronous distributed caches can also see a stale value when a

thread writes to a key and then immediately reads the same key.

Transactional distributed caches use the same kinds of messages as transactional replicated caches,

except lock/prepare/commit/unlock messages are sent only to the affected nodes (all the nodes that

own at least one key affected by the transaction) instead of being broadcast to all the nodes in the

cluster. As an optimization, if the transaction writes to a single key and the originator is the

primary owner of the key, lock messages are not replicated.

7.4.1. Read consistency

Even with synchronous replication, distributed caches are not linearizable. (For transactional

caches, we say they do not support serialization/snapshot isolation.) We can have one thread doing

a single put:

cache.get(k) -> v1

cache.put(k, v2)

cache.get(k) -> v2

But another thread might see the values in a different order:

cache.get(k) -> v2

cache.get(k) -> v1

78

The reason is that read can return the value from any owner, depending on how fast the primary

owner replies. The write is not atomic across all the owners — in fact, the primary commits the

update only after it receives a confirmation from the backup. While the primary is waiting for the

confirmation message from the backup, reads from the backup will see the new value, but reads

from the primary will see the old one.

7.4.2. Key ownership

Distributed caches split entries into a fixed number of segments, and assign each segment to a list

of owner nodes. Replicated caches do the same, except every node is an owner.

The first node in the owners list is called the primary owner, and the others are called backup

owners. The segment ownership table is broadcast to every node when the cache topology changes

(i.e. a node joins or leaves the cluster). This way, a node can compute the location of a key itself,

without resorting to multicast requests or maintaining per-key metadata.

The number of segments is configurable (numSegments), but it cannot be changed without restarting

the cluster. The mapping of keys to segments is also fixed — a key must map to the same segment,

regardless of how the topology of the cluster changes. The key-to-segment mapping can be

customized by configuring a KeyPartitioner or by using the Grouping API.

There is no hard rule on how segments must be mapped to owners, but the goal is to balance the

number of segments allocated to each node and at the same time minimize the number of segments

that have to move after a node joins or leaves the cluster. The segment mapping is customizable,

and in fact there are five implementations that ship with Infinispan:

SyncConsistentHashFactory

An algorithm based on consistent hashing. It always assigns a key to the same node in every

cache as long as the cluster is symmetric (i.e. all caches run on all nodes). It does have some

weaknesses: the load distribution is a bit uneven, and it also moves more segments than strictly

necessary on a join or leave. Selected by default when server hinting is disabled.

TopologyAwareSyncConsistentHashFactory

Similar to SyncConsistentHashFactory, but adapted for Server Hinting. Selected by default when

server hinting is enabled.

DefaultConsistentHashFactory

It achieves a more even distribution than SyncConsistentHashFactory, but it has one

disadvantage: the mapping of segments to nodes depends on the order in which caches joined

the cluster, so a key’s owners are not guaranteed to be the same in all the caches running in a

cluster. Used to be the default from version 5.2 to version 8.1 (with server hinting disabled).

TopologyAwareConsistentHashFactory

Similar to DefaultConsistentHashFactory, but adapted for Server Hinting. Used to be the default

with from version 5.2 to version 8.1 (with server hinting enabled).

ReplicatedConsistentHashFactory

This algorithm is used internally to implement replicated caches. Users should never select this

explicitly in a distributed cache.

79

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/distribution/ch/KeyPartitioner.html
http://en.wikipedia.org/wiki/Consistent_hashing

Capacity Factors

Capacity factors are another way to customize the mapping of segments to nodes. The nodes in a

cluster are not always identical. If a node has 2x the memory of a "regular" node, configuring it

with a capacityFactor of 2 tells Infinispan to allocate 2x segments to that node. The capacity factor

can be any non-negative number, and the hashing algorithm will try to assign to each node a load

weighted by its capacity factor (both as a primary owner and as a backup owner).

One interesting use case is nodes with a capacity factor of 0. This could be useful when some nodes

are too short-lived to be useful as data owners, but they can’t use HotRod (or other remote

protocols) because they need transactions. With cross-site replication as well, the "site master"

should only deal with forwarding commands between sites and shouldn’t handle user requests, so

it makes sense to configure it with a capacity factor of 0.

Hashing Configuration

This is how you configure hashing declaratively, via XML:

 <distributed-cache name="distributedCache" owners="2" segments="100" capacity-

factor="2" />

And this is how you can configure it programmatically, in Java:

Configuration c = new ConfigurationBuilder()

 .clustering()

 .cacheMode(CacheMode.DIST_SYNC)

 .hash()

 .numOwners(2)

 .numSegments(100)

 .capacityFactor(2)

 .build();

7.4.3. Initial cluster size

Infinispan’s very dynamic nature in handling topology changes (i.e. nodes being added / removed

at runtime) means that, normally, a node doesn’t wait for the presence of other nodes before

starting. While this is very flexible, it might not be suitable for applications which require a specific

number of nodes to join the cluster before caches are started. For this reason, you can specify how

many nodes should have joined the cluster before proceeding with cache initialization. To do this,

use the initialClusterSize and initialClusterTimeout transport properties. The declarative XML

configuration:

 <transport initial-cluster-size="4" initial-cluster-timeout="30000" />

The programmatic Java configuration:

80

GlobalConfiguration global = new GlobalConfigurationBuilder()

 .transport()

 .initialClusterSize(4)

 .initialClusterTimeout(30000)

 .build();

The above configuration will wait for 4 nodes to join the cluster before initialization. If the initial

nodes do not appear within the specified timeout, the cache manager will fail to start.

7.4.4. L1 Caching

When L1 is enabled, a node will keep the result of remote reads locally for a short period of time

(configurable, 10 minutes by default), and repeated lookups will return the local L1 value instead of

asking the owners again.

Figure 5. L1 caching

L1 caching is not free though. Enabling it comes at a cost, and this cost is that every entry update

must broadcast an invalidation message to all the nodes. L1 entries can be evicted just like any

other entry when the the cache is configured with a maximum size. Enabling L1 will improve

performance for repeated reads of non-local keys, but it will slow down writes and it will increase

memory consumption to some degree.

Is L1 caching right for you? The correct approach is to benchmark your application with and

81

without L1 enabled and see what works best for your access pattern.

7.4.5. Server Hinting

The following topology hints can be specified:

Machine

This is probably the most useful, when multiple JVM instances run on the same node, or even

when multiple virtual machines run on the same physical machine.

Rack

In larger clusters, nodes located on the same rack are more likely to experience a hardware or

network failure at the same time.

Site

Some clusters may have nodes in multiple physical locations for extra resilience. Note that Cross

site replication is another alternative for clusters that need to span two or more data centres.

All of the above are optional. When provided, the distribution algorithm will try to spread the

ownership of each segment across as many sites, racks, and machines (in this order) as possible.

Configuration

The hints are configured at transport level:

<transport

 cluster="MyCluster"

 machine="LinuxServer01"

 rack="Rack01"

 site="US-WestCoast" />

7.4.6. Key affinity service

In a distributed cache, a key is allocated to a list of nodes with an opaque algorithm. There is no

easy way to reverse the computation and generate a key that maps to a particular node. However,

we can generate a sequence of (pseudo-)random keys, see what their primary owner is, and hand

them out to the application when it needs a key mapping to a particular node.

API

Following code snippet depicts how a reference to this service can be obtained and used.

82

// 1. Obtain a reference to a cache

Cache cache = ...

Address address = cache.getCacheManager().getAddress();

// 2. Create the affinity service

KeyAffinityService keyAffinityService = KeyAffinityServiceFactory

.newLocalKeyAffinityService(

 cache,

 new RndKeyGenerator(),

 Executors.newSingleThreadExecutor(),

 100);

// 3. Obtain a key for which the local node is the primary owner

Object localKey = keyAffinityService.getKeyForAddress(address);

// 4. Insert the key in the cache

cache.put(localKey, "yourValue");

The service is started at step 2: after this point it uses the supplied Executor to generate and queue

keys. At step 3, we obtain a key from the service, and at step 4 we use it.

Lifecycle

KeyAffinityService extends Lifecycle, which allows stopping and (re)starting it:

public interface Lifecycle {

 void start();

 void stop();

}

The service is instantiated through KeyAffinityServiceFactory. All the factory methods have an

Executor parameter, that is used for asynchronous key generation (so that it won’t happen in the

caller’s thread). It is the user’s responsibility to handle the shutdown of this Executor.

The KeyAffinityService, once started, needs to be explicitly stopped. This stops the background key

generation and releases other held resources.

The only situation in which KeyAffinityService stops by itself is when the cache manager with

which it was registered is shutdown.

Topology changes

When the cache topology changes (i.e. nodes join or leave the cluster), the ownership of the keys

generated by the KeyAffinityService might change. The key affinity service keep tracks of these

topology changes and doesn’t return keys that would currently map to a different node, but it won’t

do anything about keys generated earlier.

As such, applications should treat KeyAffinityService purely as an optimization, and they should

83

not rely on the location of a generated key for correctness.

In particular, applications should not rely on keys generated by KeyAffinityService for the same

address to always be located together. Collocation of keys is only provided by the Grouping API.

7.4.7. The Grouping API

Complementary to Key affinity service and similar to AtomicMap, the grouping API allows you to

co-locate a group of entries on the same nodes, but without being able to select the actual nodes.

How does it work?

By default, the segment of a key is computed using the key’s hashCode(). If you use the grouping API,

Infinispan will compute the segment of the group and use that as the segment of the key. See the

Key Ownership section for more details on how segments are then mapped to nodes.

When the group API is in use, it is important that every node can still compute the owners of every

key without contacting other nodes. For this reason, the group cannot be specified manually. The

group can either be intrinsic to the entry (generated by the key class) or extrinsic (generated by an

external function).

How do I use the grouping API?

First, you must enable groups. If you are configuring Infinispan programmatically, then call:

Configuration c = new ConfigurationBuilder()

 .clustering().hash().groups().enabled()

 .build();

Or, if you are using XML:

<distributed-cache>

 <groups enabled="true"/>

</distributed-cache>

If you have control of the key class (you can alter the class definition, it’s not part of an

unmodifiable library), then we recommend using an intrinsic group. The intrinsic group is

specified by adding the @Group annotation to a method. Let’s take a look at an example:

84

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/atomic/AtomicMap.html

class User {

 ...

 String office;

 ...

 public int hashCode() {

 // Defines the hash for the key, normally used to determine location

 ...

 }

 // Override the location by specifying a group

 // All keys in the same group end up with the same owners

 @Group

 public String getOffice() {

 return office;

 }

 }

}

 The group method must return a String

If you don’t have control over the key class, or the determination of the group is an orthogonal

concern to the key class, we recommend using an extrinsic group. An extrinsic group is specified by

implementing the Grouper interface.

public interface Grouper<T> {

 String computeGroup(T key, String group);

 Class<T> getKeyType();

}

If multiple Grouper classes are configured for the same key type, all of them will be called, receiving

the value computed by the previous one. If the key class also has a @Group annotation, the first

Grouper will receive the group computed by the annotated method. This allows you even greater

control over the group when using an intrinsic group. Let’s take a look at an example Grouper

implementation:

85

public class KXGrouper implements Grouper<String> {

 // The pattern requires a String key, of length 2, where the first character is

 // "k" and the second character is a digit. We take that digit, and perform

 // modular arithmetic on it to assign it to group "0" or group "1".

 private static Pattern kPattern = Pattern.compile("(^k)(<a>\\d)$");

 public String computeGroup(String key, String group) {

 Matcher matcher = kPattern.matcher(key);

 if (matcher.matches()) {

 String g = Integer.parseInt(matcher.group(2)) % 2 + "";

 return g;

 } else {

 return null;

 }

 }

 public Class<String> getKeyType() {

 return String.class;

 }

}

Grouper implementations must be registered explicitly in the cache configuration. If you are

configuring Infinispan programmatically:

Configuration c = new ConfigurationBuilder()

 .clustering().hash().groups().enabled().addGrouper(new KXGrouper())

 .build();

Or, if you are using XML:

<distributed-cache>

 <groups enabled="true">

 <grouper class="com.acme.KXGrouper" />

 </groups>

</distributed-cache>

Advanced Interface

AdvancedCache has two group-specific methods:

getGroup(groupName)

Retrieves all keys in the cache that belong to a group.

removeGroup(groupName)

Removes all the keys in the cache that belong to a group.

86

http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#getGroup-java.lang.String-
http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#removeGroup-java.lang.String-

Both methods iterate over the entire data container and store (if present), so they can be slow when

a cache contains lots of small groups.

 This interface is available since Infinispan 7.0.0.

7.5. Asynchronous Options

7.5.1. Asynchronous Communications

All clustered cache modes can be configured to use asynchronous communications with the

mode="ASYNC" attribute on the <replicated-cache/>, <distributed-cache>, or <invalidation-cache/>

element.

With asynchronous communications, the originator node does not receive any acknowledgement

from the other nodes about the status of the operation, so there is no way to check if it succeeded

on other nodes.

We do not recommend asynchronous communications in general, as they can cause inconsistencies

in the data, and the results are hard to reason about. Nevertheless, sometimes speed is more

important than consistency, and the option is available for those cases.

7.5.2. Asynchronous API

The Asynchronous API allows you to use synchronous communications, but without blocking the

user thread.

There is one caveat: The asynchronous operations do NOT preserve the program order. If a thread

calls cache.putAsync(k, v1); cache.putAsync(k, v2), the final value of k may be either v1 or v2. The

advantage over using asynchronous communications is that the final value can’t be v1 on one node

and v2 on another.

Prior to version 9.0, the asynchronous API was emulated by borrowing a thread

from an internal thread pool and running a blocking operation on that thread.

7.5.3. Return Values

Because the Cache interface extends java.util.Map, write methods like put(key, value) and

remove(key) return the previous value by default.

In some cases, the return value may not be correct:

1. When using AdvancedCache.withFlags() with Flag.IGNORE_RETURN_VALUE, Flag.SKIP_REMOTE_LOOKUP,

or Flag.SKIP_CACHE_LOAD.

2. When the cache is configured with unreliable-return-values="true".

3. When using asynchronous communications.

4. When there are multiple concurrent writes to the same key, and the cache topology changes.

The topology change will make Infinispan retry the write operations, and a retried operation’s

87

http://docs.jboss.org/infinispan/9.0/configdocs/infinispan-config-9.0.html

return value is not reliable.

Transactional caches return the correct previous value in cases 3 and 4. However, transactional

caches also have a gotcha: in distributed mode, the read-committed isolation level is implemented

as repeatable-read. That means this example of "double-checked locking" won’t work:

Cache cache = ...

TransactionManager tm = ...

tm.begin();

try {

 Integer v1 = cache.get(k);

 // Increment the value

 Integer v2 = cache.put(k, v1 + 1);

 if (Objects.equals(v1, v2) {

 // success

 } else {

 // retry

 }

} finally {

 tm.commit();

}

The correct way to implement this is to use

cache.getAdvancedCache().withFlags(Flag.FORCE_WRITE_LOCK).get(k).

In caches with optimistic locking writes can return a stale previous value as well, and the only way

protect against it is to enable write-skew checks and to catch WriteSkewException.

7.6. Partition handling

An Infinispan cluster is built out of a number of nodes where data is stored. In order not to lose

data in the presence of node failures, Infinispan copies the same data — cache entry in Infinispan

parlance — over multiple nodes. This level of data redundancy is configured through the numOwners

configuration attribute and ensures that as long as fewer than numOwners nodes crash

simultaneously, Infinispan has a copy of the data available.

However, there might be catastrophic situations in which more than numOwners nodes disappear

from the cluster:

Split brain

Caused e.g. by a router crash, this splits the cluster in two or more partitions, or sub-clusters that

operate independently. In these circumstances, multiple clients reading/writing from different

partitions see different versions of the same cache entry, which for many application is

problematic. Note there are ways to alleviate the possibility for the split brain to happen, such as

redundant networks or IP bonding. These only reduce the window of time for the problem to

occur, though.

88

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-networkscripts-interfaces-chan.html

numOwners nodes crash in sequence

When at least numOwners nodes crash in rapid succession and Infinispan does not have the time to

properly rebalance its state between crashes, the result is partial data loss.

The partition handling functionality discussed in this section allows the user to be informed when

data has been lost, temporarily or permanently, and wait for the cluster to heal. The goal is to avoid

situations in which wrong data is returned to the user as a result of either split brain or multiple

nodes crashing in rapid sequence. In terms of Brewer’s CAP theorem , enabling partition handling

in Infinispan preserves data consistency but sacrifices availability in the presence of partitions.

Enabling partition handling is critical for applications that have high consistency requirements:

when the data read from the system must be accurate. On the other hand, if Infinispan is used as a

best-effort cache, partitions are perfectly tolerable.

The following sections describe the way Infinispan handles split brain and successive failures when

partition handling is enabled, followed by a section on configuring the partition handling

functionality.

7.6.1. Split brain

In a split brain situation, each network partition will install its own JGroups view, removing the

nodes from the other partition(s). We don’t have a direct way of determining whether the has been

split into two or more partitions, since the partitions are unaware of each other. Instead, we

assume the cluster has split when one or more nodes disappear from the JGroups cluster without

sending an explicit leave message.

With partition handling disabled, each such partition would continue to function as an

independent cluster. Each partition may only see a part of the data, and each partition could write

conflicting updates in the cache.

With partition handling enabled, if we detect a split, each partition does not start a rebalance

immediately, but first it checks whether it should enter DEGRADED mode instead:

• If at least one segment has lost all its owners (meaning at least numOwners nodes left since the

last rebalance ended), the partition enters DEGRADED mode.

• If the partition does not contain a simple majority of the nodes (floor(numNodes/2) + 1) in the

latest stable topology, the partition also enters DEGRADED mode.

• Otherwise the partition keeps functioning normally, and it starts a rebalance.

The stable topology is updated every time a rebalance operation ends and the coordinator

determines that another rebalance is not necessary.

These rules ensures that at most one partition stays in AVAILABLE mode, and the other partitions

enter DEGRADED mode.

When a partition is in DEGRADED mode, it only allows access to the keys that are wholly owned:

• Requests (reads and writes) for entries that have all the copies on nodes within this partition

are honoured.

89

http://en.wikipedia.org/wiki/CAP_theorem

• Requests for entries that are partially or totally owned by nodes that disappeared are rejected

with an AvailabilityException.

This guarantees that partitions cannot write different values for the same key (cache is consistent),

and also that one partition can not read keys that have been updated in the other partitions (no

stale data).

To exemplify, consider the initial cluster M = {A, B, C, D}, configured in distributed mode with

numOwners = 2. Further on, consider three keys k1, k2 and k3 (that might exist in the cache or not)

such that owners(k1) = {A,B}, owners(k2) = {B,C} and owners(k3) = {C,D}. Then the network splits in

two partitions, N1 = {A, B} and N2 = {C, D}, they enter DEGRADED mode and behave like this:

• on N1, k1 is available for read/write, k2 (partially owned) and k3 (not owned) are not available

and accessing them results in an AvailabilityException

• on N2, k1 and k2 are not available for read/write, k3 is available

A relevant aspect of the partition handling process is the fact that when a split brain happens, the

resulting partitions rely on the original segment mapping (the one that existed before the split

brain) in order to calculate key ownership. So it doesn’t matter if k1, k2, or k3 already existed cache

or not, their availability is the same.

If at a further point in time the network heals and N1 and N2 partitions merge back together into the

initial cluster M, then M exits the degraded mode and becomes fully available again.

As another example, the cluster could split in two partitions O1 = {A, B, C} and O2 = {D}, partition

O1 will stay fully available (rebalancing cache entries on the remaining members). Partition O2,

however, will detect a split and enter the degraded mode. Since it doesn’t have any fully owned

keys, it will reject any read or write operation with an AvailabilityException.

If afterwards partitions O1 and O2 merge back into M, then the cache entries on D will be wiped (since

they could be stale). D will be fully available, but it will not hold any data until the cache is

rebalanced.

Current limitations

Two partitions could start up isolated, and as long as they don’t merge they can read and write

inconsistent data. In the future, we will allow custom availability strategies (e.g. check that a certain

node is part of the cluster, or check that an external machine is accessible) that could handle that

situation as well.

7.6.2. Successive nodes stopped

As mentioned in the previous section, Infinispan can’t detect whether a node left the JGroups view

because of a process/machine crash, or because of a network failure: whenever a node leaves the

JGroups cluster abruptly, it is assumed to be because of a network problem.

If the configured number of copies (numOwners) is greater than 1, the cluster can remain available

and will try to make new replicas of the data on the crashed node. However, other nodes might

crash during the rebalance process. If more than numOwners nodes crash in a short interval of time,

there is a chance that some cache entries have disappeared from the cluster altogether. In this case,

90

with partition handling functionality enabled, Infinispan assumes (incorrectly) that there is a split

brain and enters DEGRADED mode as described in the split-brain section.

The administrator can also shut down more than numOwners nodes in rapid succession, causing the

loss of the data stored only on those nodes. When the administrator shuts down a node gracefully,

Infinispan knows that the node can’t come back. However, the cluster doesn’t keep track of how

each node left, and the cache still enters DEGRADED mode as if those nodes had crashed.

At this stage there is no way for the cluster to recover its state, except stopping it and repopulating

it on restart with the data from an external source. Clusters are expected to be configured with an

appropriate numOwners in order to avoid numOwners successive node failures, so this situation should

be pretty rare. If the application can handle losing some of the data in the cache, the administrator

can force the availability mode back to AVAILABLE via JMX.

7.6.3. Configuring partition handling

At this stage the partition handling is disabled by default. We will revisit this decision in the future,

based on user feedback. In order to enable partition handling within the XML configuration:

<distributed-cache name="the-default-cache">

 <partition-handling enabled="true"/>

</distributed-cache>

Unless the cache is distributed or replicated, the configuration is ignored.

The same can be achieved programmatically:

ConfigurationBuilder dcc = new ConfigurationBuilder();

dcc.clustering().partitionHandling().enabled(true);

7.6.4. Monitoring and administration

The availability mode of a cache is exposed in JMX as an attribute in the Cache MBean. The

attribute is writable, allowing an administrator to forcefully migrate a cache from DEGRADED

mode back to AVAILABLE (at the cost of consistency).

The availability mode is also accessible via the AdvancedCache interface:

91

https://docs.jboss.org/infinispan/9.0/apidocs/jmxComponents.html#Cache
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html

AdvancedCache ac = cache.getAdvancedCache();

// Read the availability

boolean available = ac.getAvailability() == AvailabilityMode.AVAILABLE;

// Change the availability

if (!available) {

 ac.setAvailability(AvailabilityMode.AVAILABLE);

}

92

Chapter 8. Marshalling

Marshalling is the process of converting Java POJOs into something that can be written in a format

that can be transferred over the wire. Unmarshalling is the reverse process whereby data read

from a wire format is transformed back into Java POJOs. Infinispan uses

marshalling/unmarshalling in order to:

• Transform data so that it can be send over to other Infinispan nodes in a cluster.

• Transform data so that it can be stored in underlying cache stores.

• Store data in Infinispan in a wire format to provide lazy deserialization capabilities.

8.1. The Role Of JBoss Marshalling

Since performance is a very important factor in this process, Infinispan uses JBoss Marshalling

framework instead of standard Java Serialization in order to marshall/unmarshall Java POJOs.

Amongst other things, this framework enables Infinispan to provide highly efficient ways to

marshall internal Infinispan Java POJOs that are constantly used. Apart from providing more

efficient ways to marshall Java POJOs, including internal Java classes, JBoss Marshalling uses highly

performant java.io.ObjectOutput and java.io.ObjectInput implementations compared to standard

java.io.ObjectOutputStream and java.io.ObjectInputStream.

8.2. Support For Non-Serializable Objects

From a users perspective, a very common concern is whether Infinispan supports storing non-

Serializable objects. In 4.0, an Infinispan cache instance can only store non-Serializable key or

value objects if, and only if:

• cache is configured to be a local cache and…

• cache is not configured with lazy serialization and…

• cache is not configured with any write-behind cache store

If either of these options is true, key/value pairs in the cache will need to be marshalled and

currently they require to either to extend java.io.Serializable or java.io.Externalizable.

Since Infinispan 5.0, marshalling non-Serializable key/value objects are

supported as long as users can to provide meaningful Externalizer

implementations for these non-Seralizable objects. This section has more details.

If you’re unable to retrofit Serializable or Externalizable into the classes whose instances are stored

in Infinispan, you could alternatively use something like XStream to convert your Non-Serializable

objects into a String that can be stored into Infinispan. The one caveat about using XStream is that it

slows down the process of storing key/value objects due to the XML transformation that it needs to

do.

93

http://x-stream.github.io/

8.2.1. Store As Binary

Store as binary enables data to be stored in its serialized form. This can be useful to achieve lazy

deserialization, which is the mechanism by which Infinispan by which serialization and

deserialization of objects is deferred till the point in time in which they are used and needed. This

typically means that any deserialization happens using the thread context class loader of the

invocation that requires deserialization, and is an effective mechanism to provide classloader

isolation. By default lazy deserialization is disabled but if you want to enable it, you can do it like

this:

• Via XML at the Cache level, either under <*-cache /> element:

<store-as-binary />

• Programmatically:

ConfigurationBuilder builder = ...

builder.storeAsBinary().enable();

Equality Considerations

When using lazy deserialization/storing as binary, keys and values are wrapped as

MarshalledValues. It is this wrapper class that transparently takes care of serialization and

deserialization on demand, and internally may have a reference to the object itself being wrapped,

or the serialized, byte array representation of this object.

This has a particular effect on the behavior of equality. The equals() method of this class will either

compare binary representations (byte arrays) or delegate to the wrapped object instance’s equals()

method, depending on whether both instances being compared are in serialized or deserialized

form at the time of comparison. If one of the instances being compared is in one form and the other

in another form, then one instance is either serialized or deserialized.

This will affect the way keys stored in the cache will work, when storeAsBinary is used, since

comparisons happen on the key which will be wrapped by a MarshalledValue. Implementers of

equals() methods on their keys need to be aware of the behavior of equality comparison, when a

key is wrapped as a MarshalledValue, as detailed above.

Store-by-value via defensive copying

The configuration storeAsBinary offers the possibility to enable defensive copying, which allows for

store-by-value like behaviour.

Infinispan marshalls objects the moment they’re stored, hence changes made to object references

are not stored in the cache, not even for local caches. This provides store-by-value like behaviour.

Enabling storeAsBinary can be achieved:

• Via XML at the Cache level, either under <*-cache /> or <default /> elements:

94

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/marshall/core/MarshalledValue

<store-as-binary keys="true" values="true"/>

• Programmatically:

ConfigurationBuilder builder = ...

builder.storeAsBinary().enable().storeKeysAsBinary(true).storeValuesAsBinary(true);

8.3. Advanced Configuration

Internally, Infinispan uses an implementation of this Marshaller interface in order to

marshall/unmarshall Java objects so that they’re sent other nodes in the grid, or so that they’re

stored in a cache store, or even so to transform them into byte arrays for lazy deserialization.

By default, Infinispan uses the VersionAwareMarshaller which, as the name suggests, adds a

version short to the start of any stream when writing, enabling similar VersionAwareMarshaller

instances to read the version short and know which specific marshaller implementation to delegate

the call to. Using a VersionAwareMarshaller helps achieve wire protocol compatibility between

minor releases but still affords us the flexibility to tweak and improve the wire protocol between

minor or micro releases. Optionally, Infinispan users to optionally provide their own marshaller,

for example:

• Via XML at the CacheManager level, under <cache-manager /> element:

<serialization marshaller="com.acme.MyMarshaller"/>

• Programmatically:

GlobalConfigurationBuilder builder = ...

builder.serialization().marshaller(myMarshaller); // needs an instance of the

marshaller

8.3.1. Troubleshooting

Sometimes it might happen that the Infinispan marshalling layer, and in particular JBoss

Marshalling, might have issues marshalling/unmarshalling some user object. In Infinispan 4.0,

marshalling exceptions will contain further information on the objects that were being marshalled.

Example:

java.io.NotSerializableException: java.lang.Object

at org.jboss.marshalling.river.RiverMarshaller.doWriteObject(RiverMarshaller.java:857)

at org.jboss.marshalling.AbstractMarshaller.writeObject(AbstractMarshaller.java:407)

at

org.infinispan.marshall.exts.ReplicableCommandExternalizer.writeObject(ReplicableComma

ndExternalizer.java:54)

95

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/marshall/Marshaller.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/marshall/VersionAwareMarshaller.html

at

org.infinispan.marshall.jboss.ConstantObjectTable$ExternalizerAdapter.writeObject(Cons

tantObjectTable.java:267)

at org.jboss.marshalling.river.RiverMarshaller.doWriteObject(RiverMarshaller.java:143)

at org.jboss.marshalling.AbstractMarshaller.writeObject(AbstractMarshaller.java:407)

at

org.infinispan.marshall.jboss.JBossMarshaller.objectToObjectStream(JBossMarshaller.jav

a:167)

at

org.infinispan.marshall.VersionAwareMarshaller.objectToBuffer(VersionAwareMarshaller.j

ava:92)

at

org.infinispan.marshall.VersionAwareMarshaller.objectToByteBuffer(VersionAwareMarshall

er.java:170)

at

org.infinispan.marshall.VersionAwareMarshallerTest.testNestedNonSerializable(VersionAw

areMarshallerTest.java:415)

Caused by: an exception which occurred:

in object java.lang.Object@b40ec4

in object org.infinispan.commands.write.PutKeyValueCommand@df661da7

... Removed 22 stack frames

The way the "in object" messages are read is the same in which stacktraces are read. The highest "in

object" being the most inner one and the lowest "in object" message being the most outer one. So,

the above example indicates that a java.lang.Object instance contained in an instance of

org.infinispan.commands.write.PutKeyValueCommand could not be serialized because

java.lang.Object@b40ec4 is not serializable.

This is not all though! If you enable DEBUG or TRACE logging levels, marshalling exceptions will

contain show the toString() representations of objects in the stacktrace. For example:

java.io.NotSerializableException: java.lang.Object

...

Caused by: an exception which occurred:

in object java.lang.Object@b40ec4

-> toString = java.lang.Object@b40ec4

in object org.infinispan.commands.write.PutKeyValueCommand@df661da7

-> toString = PutKeyValueCommand{key=k, value=java.lang.Object@b40ec4,

putIfAbsent=false, lifespanMillis=0, maxIdleTimeMillis=0}

With regards to unmarshalling exceptions, showing such level of information it’s a lot more

complicated but where possible. Infinispan will provide class type information. For example:

java.io.IOException: Injected failure!

at

org.infinispan.marshall.VersionAwareMarshallerTest$1.readExternal(VersionAwareMarshall

erTest.java:426)

at

96

org.jboss.marshalling.river.RiverUnmarshaller.doReadNewObject(RiverUnmarshaller.java:1

172)

at

org.jboss.marshalling.river.RiverUnmarshaller.doReadObject(RiverUnmarshaller.java:273)

at

org.jboss.marshalling.river.RiverUnmarshaller.doReadObject(RiverUnmarshaller.java:210)

at org.jboss.marshalling.AbstractUnmarshaller.readObject(AbstractUnmarshaller.java:85)

at

org.infinispan.marshall.jboss.JBossMarshaller.objectFromObjectStream(JBossMarshaller.j

ava:210)

at

org.infinispan.marshall.VersionAwareMarshaller.objectFromByteBuffer(VersionAwareMarsha

ller.java:104)

at

org.infinispan.marshall.VersionAwareMarshaller.objectFromByteBuffer(VersionAwareMarsha

ller.java:177)

at

org.infinispan.marshall.VersionAwareMarshallerTest.testErrorUnmarshalling(VersionAware

MarshallerTest.java:431)

Caused by: an exception which occurred:

in object of type org.infinispan.marshall.VersionAwareMarshallerTest$1

In this example, an IOException was thrown when trying to unmarshall a instance of the inner

class org.infinispan.marshall.VersionAwareMarshallerTest$1. In similar fashion to marshalling

exceptions, when DEBUG or TRACE logging levels are enabled, classloader information of the class

type is provided. For example:

java.io.IOException: Injected failure!

...

Caused by: an exception which occurred:

in object of type org.infinispan.marshall.VersionAwareMarshallerTest$1

-> classloader hierarchy:

-> type classloader = sun.misc.Launcher$AppClassLoader@198dfaf

->...file:/opt/eclipse/configuration/org.eclipse.osgi/bundles/285/1/.cp/eclipse

-testng.jar

->...file:/opt/eclipse/configuration/org.eclipse.osgi/bundles/285/1/.cp/lib/testng

-jdk15.jar

->...file:/home/galder/jboss/infinispan/code/trunk/core/target/test-classes/

->...file:/home/galder/jboss/infinispan/code/trunk/core/target/classes/

->...file:/home/galder/.m2/repository/org/testng/testng/5.9/testng-5.9-jdk15.jar

->...file:/home/galder/.m2/repository/net/jcip/jcip-annotations/1.0/jcip-annotations

-1.0.jar

->...file:/home/galder/.m2/repository/org/easymock/easymockclassextension/2.4/easymock

classextension-2.4.jar

->...file:/home/galder/.m2/repository/org/easymock/easymock/2.4/easymock-2.4.jar

->...file:/home/galder/.m2/repository/cglib/cglib-nodep/2.1_3/cglib-nodep-2.1_3.jar

->...file:/home/galder/.m2/repository/javax/xml/bind/jaxb-api/2.1/jaxb-api-2.1.jar

->...file:/home/galder/.m2/repository/javax/xml/stream/stax-api/1.0-2/stax-api-1.0

-2.jar

->...file:/home/galder/.m2/repository/javax/activation/activation/1.1/activation

97

-1.1.jar

->...file:/home/galder/.m2/repository/jgroups/jgroups/2.8.0.CR1/jgroups-2.8.0.CR1.jar

->...file:/home/galder/.m2/repository/org/jboss/javaee/jboss-transaction

-api/1.0.1.GA/jboss-transaction-api-1.0.1.GA.jar

->...file:/home/galder/.m2/repository/org/jboss/marshalling/river/1.2.0.CR4

-SNAPSHOT/river-1.2.0.CR4-SNAPSHOT.jar

->...file:/home/galder/.m2/repository/org/jboss/marshalling/marshalling-api/1.2.0.CR4

-SNAPSHOT/marshalling-api-1.2.0.CR4-SNAPSHOT.jar

->...file:/home/galder/.m2/repository/org/jboss/jboss-common-core/2.2.14.GA/jboss

-common-core-2.2.14.GA.jar

->...file:/home/galder/.m2/repository/org/jboss/logging/jboss-logging

-spi/2.0.5.GA/jboss-logging-spi-2.0.5.GA.jar

->...file:/home/galder/.m2/repository/log4j/log4j/1.2.14/log4j-1.2.14.jar

->...file:/home/galder/.m2/repository/com/thoughtworks/xstream/xstream/1.2/xstream

-1.2.jar

->...file:/home/galder/.m2/repository/xpp3/xpp3_min/1.1.3.4.O/xpp3_min-1.1.3.4.O.jar

->...file:/home/galder/.m2/repository/com/sun/xml/bind/jaxb-impl/2.1.3/jaxb-impl

-2.1.3.jar

-> parent classloader = sun.misc.Launcher$ExtClassLoader@1858610

->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/localedata.jar

->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/sunpkcs11.jar

->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/sunjce_provider.jar

->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/dnsns.jar

... Removed 22 stack frames

</code>

Finding the root cause of marshalling/unmarshalling exceptions can sometimes be really daunting

but we hope that the above improvements would help get to the bottom of those in a more quicker

and efficient manner.

8.4. User Defined Externalizers

One of the key aspects of Infinispan is that it often needs to marshall/unmarshall objects in order to

provide some of its functionality. For example, if it needs to store objects in a write-through or

write-behind cache store, the stored objects need marshalling. If a cluster of Infinispan nodes is

formed, objects shipped around need marshalling. Even if you enable lazy deserialization, objects

need to be marshalled so that they can be lazily unmarshalled with the correct classloader.

Using standard JDK serialization is slow and produces payloads that are too big and can affect

bandwidth usage. On top of that, JDK serialization does not work well with objects that are

supposed to be immutable. In order to avoid these issues, Infinispan uses JBoss Marshalling for

marshalling/unmarshalling objects. JBoss Marshalling is fast, produces very space efficient

payloads, and on top of that during unmarshalling, it enables users to have full control over how to

construct objects, hence allowing objects to carry on being immutable.

Starting with 5.0, users of Infinispan can now benefit from this marshalling framework as well, and

they can provide their own externalizer implementations, but before finding out how to provide

externalizers, let’s look at the benefits they bring.

98

http://jboss.org/jbossmarshalling

8.4.1. Benefits of Externalizers

The JDK provides a simple way to serialize objects which, in its simplest form, is just a matter of

extending java.io.Serializable , but as it’s well known, this is known to be slow and it generates

payloads that are far too big. An alternative way to do serialization, still relying on JDK

serialization, is for your objects to extend java.io.Externalizable . This allows for users to provide

their own ways to marshall/unmarshall classes, but has some serious issues because, on top of

relying on slow JDK serialization, it forces the class that you want to serialize to extend this

interface, which has two side effects: The first is that you’re forced to modify the source code of the

class that you want to marshall/unmarshall which you might not be able to do because you either,

don’t own the source, or you don’t even have it. Secondly, since Externalizable implementations do

not control object creation, you’re forced to add set methods in order to restore the state, hence

potentially forcing your immutable objects to become mutable.

Instead of relying on JDK serialization, Infinispan uses JBoss Marshalling to serialize objects and

requires any classes to be serialized to be associated with an Externalizer interface implementation

that knows how to transform an object of a particular class into a serialized form and how to read

an object of that class from a given input. Infinispan does not force the objects to be serialized to

implement Externalizer. In fact, it is recommended that a separate class is used to implement the

Externalizer interface because, contrary to JDK serialization, Externalizer implementations control

how objects of a particular class are created when trying to read an object from a stream. This

means that readObject() implementations are responsible of creating object instances of the target

class, hence giving users a lot of flexibility on how to create these instances (whether direct

instantiation, via factory or reflection), and more importantly, allows target classes to carry on

being immutable. This type of externalizer architecture promotes good OOP designs principles,

such as the principle of single responsibility .

It’s quite common, and in general recommended, that Externalizer implementations are stored as

inner static public classes within classes that they externalize. The advantages of doing this is that

related code stays together, making it easier to maintain. In Infinispan, there are two ways in which

Infinispan can be plugged with user defined externalizers:

8.4.2. User Friendly Externalizers

In the simplest possible form, users just need to provide an Externalizer implementation for the

type that they want to marshall/unmarshall, and then annotate the marshalled type class with

{@link SerializeWith} annotation indicating the externalizer class to use. For example:

import org.infinispan.commons.marshall.Externalizer;

import org.infinispan.commons.marshall.SerializeWith;

@SerializeWith(Person.PersonExternalizer.class)

public class Person {

 final String name;

 final int age;

 public Person(String name, int age) {

 this.name = name;

99

https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://docs.oracle.com/javase/8/docs/api/java/io/Externalizable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/Externalizer.html
http://en.wikipedia.org/wiki/Single_responsibility_principle
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/Externalizer.html

 this.age = age;

 }

 public static class PersonExternalizer implements Externalizer<Person> {

 @Override

 public void writeObject(ObjectOutput output, Person person)

 throws IOException {

 output.writeObject(person.name);

 output.writeInt(person.age);

 }

 @Override

 public Person readObject(ObjectInput input)

 throws IOException, ClassNotFoundException {

 return new Person((String) input.readObject(), input.readInt());

 }

 }

}

At runtime JBoss Marshalling will inspect the object and discover that it’s marshallable (thanks to

the annotation) and so marshall it using the externalizer class passed. To make externalizer

implementations easier to code and more typesafe, make sure you define type <T> as the type of

object that’s being marshalled/unmarshalled.

Even though this way of defining externalizers is very user friendly, it has some disadvantages:

• Due to several constraints of the model, such as support for different versions of the same class

or the need to marshall the Externalizer class, the payload sizes generated via this method are

not the most efficient.

• This model requires that the marshalled class be annotated with {@link SerializeWith} but a

user might need to provide an Externalizer for a class for which source code is not available, or

for any other constraints, it cannot be modified.

• The use of annotations by this model might be limiting for framework developers or service

providers that try to abstract lower level details, such as the marshalling layer, away from the

user.

If you’re affected by any of these disadvantages, an alternative method to provide externalizers is

available via more advanced externalizers:

8.4.3. Advanced Externalizers

AdvancedExternalizer provides an alternative way to provide externalizers for

marshalling/unmarshalling user defined classes that overcome the deficiencies of the more user-

friendly externalizer definition model explained in Externalizer. For example:

import org.infinispan.marshall.AdvancedExternalizer;

public class Person {

100

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/AdvancedExternalizer.html

 final String name;

 final int age;

 public Person(String name, int age) {

 this.name = name;

 this.age = age;

 }

 public static class PersonExternalizer implements AdvancedExternalizer<Person> {

 @Override

 public void writeObject(ObjectOutput output, Person person)

 throws IOException {

 output.writeObject(person.name);

 output.writeInt(person.age);

 }

 @Override

 public Person readObject(ObjectInput input)

 throws IOException, ClassNotFoundException {

 return new Person((String) input.readObject(), input.readInt());

 }

 @Override

 public Set<Class<? extends Person>> getTypeClasses() {

 return Util.<Class<? extends Person>>asSet(Person.class);

 }

 @Override

 public Integer getId() {

 return 2345;

 }

 }

}

The first noticeable difference is that this method does not require user classes to be annotated in

anyway, so it can be used with classes for which source code is not available or that cannot be

modified. The bound between the externalizer and the classes that are marshalled/unmarshalled is

set by providing an implementation for getTypeClasses() which should return the list of classes that

this externalizer can marshall:

Linking Externalizers with Marshaller Classes

Once the Externalizer’s readObject() and writeObject() methods have been implemented, it’s time to

link them up together with the type classes that they externalize. To do so, the Externalizer

implementation must provide a getTypeClasses() implementation. For example:

101

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/AdvancedExternalizer.html#getTypeClasses--

import org.infinispan.commons.util.Util;

...

@Override

public Set<Class<? extends ReplicableCommand>> getTypeClasses() {

 return Util.asSet(LockControlCommand.class, RehashControlCommand.class,

 StateTransferControlCommand.class, GetKeyValueCommand.class,

 ClusteredGetCommand.class,

 SingleRpcCommand.class, CommitCommand.class,

 PrepareCommand.class, RollbackCommand.class,

 ClearCommand.class, EvictCommand.class,

 InvalidateCommand.class, InvalidateL1Command.class,

 PutKeyValueCommand.class, PutMapCommand.class,

 RemoveCommand.class, ReplaceCommand.class);

}

In the code above, ReplicableCommandExternalizer indicates that it can externalize several type of

commands. In fact, it marshalls all commands that extend ReplicableCommand interface, but

currently the framework only supports class equality comparison and so, it’s not possible to

indicate that the classes to marshalled are all children of a particular class/interface.

However there might sometimes when the classes to be externalized are private and hence it’s not

possible to reference the actual class instance. In this situations, users can attempt to look up the

class with the given fully qualified class name and pass that back. For example:

@Override

public Set<Class<? extends List>> getTypeClasses() {

 return Util.<Class<? extends List>>asSet(

 Util.loadClass("java.util.Collections$SingletonList"));

}

Externalizer Identifier

Secondly, in order to save the maximum amount of space possible in the payloads generated,

advanced externalizers require externalizer implementations to provide a positive identified via

getId() implementations or via XML/programmatic configuration that identifies the externalizer

when unmarshalling a payload. In order for this to work however, advanced externalizers require

externalizers to be registered on cache manager creation time via XML or programmatic

configuration which will be explained in next section. On the contrary, externalizers based on

Externalizer and SerializeWith require no pre-registration whatsoever. Internally, Infinispan uses

this advanced externalizer mechanism in order to marshall/unmarshall internal classes.

So, getId() should return a positive integer that allows the externalizer to be identified at read time

to figure out which Externalizer should read the contents of the incoming buffer, or it can return

null. If getId() returns null, it is indicating that the id of this advanced externalizer will be defined

via XML/programmatic configuration, which will be explained in next section.

Regardless of the source of the the id, using a positive integer allows for very efficient variable

length encoding of numbers, and it’s much more efficient than shipping externalizer

102

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/AdvancedExternalizer.html#getId--

implementation class information or class name around. Infinispan users can use any positive

integer as long as it does not clash with any other identifier in the system. It’s important to

understand that a user defined externalizer can even use the same numbers as the externalizers in

the Infinispan Core project because the internal Infinispan Core externalizers are special and they

use a different number space to the user defined externalizers. On the contrary, users should avoid

using numbers that are within the pre-assigned identifier ranges which can be found at the end of

this article. Infinispan checks for id duplicates on startup, and if any are found, startup is halted

with an error.

When it comes to maintaining which ids are in use, it’s highly recommended that this is done in a

centralized way. For example, getId() implementations could reference a set of statically defined

identifiers in a separate class or interface. Such class/interface would give a global view of the

identifiers in use and so can make it easier to assign new ids.

Registering Advanced Externalizers

The following example shows the type of configuration required to register an advanced

externalizer implementation for Person object shown earlier stored as a static inner class within it:

infinispan.xml

<infinispan>

 <cache-container>

 <serialization>

 <advanced-externalizer class="Person$PersonExternalizer"/>

 </serialization>

 </cache-container>

 ...

</infinispan>

Programmatically:

GlobalConfigurationBuilder builder = ...

builder.serialization()

 .addAdvancedExternalizer(new Person.PersonExternalizer());

As mentioned earlier, when listing these externalizer implementations, users can optionally

provide the identifier of the externalizer via XML or programmatically instead of via getId()

implementation. Again, this offers a centralized way to maintain the identifiers but it’s important

that the rules are clear: An AdvancedExternalizer implementation, either via XML/programmatic

configuration or via annotation, needs to be associated with an identifier. If it isn’t, Infinispan will

throw an error and abort startup. If a particular AdvancedExternalizer implementation defines an

id both via XML/programmatic configuration and annotation, the value defined via

XML/programmatically is the one that will be used. Here’s an example of an externalizer whose id

is defined at registration time:

103

infinispan.xml

<infinispan>

 <cache-container>

 <serialization>

 <advanced-externalizer id="123"

 class="Person$PersonExternalizer"/>

 </serialization>

 </cache-container>

 ...

</infinispan>

Programmatically:

GlobalConfigurationBuilder builder = ...

builder.serialization()

 .addAdvancedExternalizer(123, new Person.PersonExternalizer());

Finally, a couple of notes about the programmatic configuration.

GlobalConfiguration.addExternalizer() takes varargs, so it means that it is possible to register

multiple externalizers in just one go, assuming that their ids have already been defined via

@Marshalls annotation. For example:

builder.serialization()

 .addAdvancedExternalizer(new Person.PersonExternalizer(),

 new Address.AddressExternalizer());

Preassigned Externalizer Id Ranges

This is the list of Externalizer identifiers that are used by Infinispan based modules or frameworks.

Infinispan users should avoid using ids within these ranges.

Infinispan Tree Module: 1000 - 1099

Infinispan Server Modules: 1100 - 1199

Hibernate Infinispan Second Level Cache: 1200 - 1299

Infinispan Lucene Directory: 1300 - 1399

Hibernate OGM: 1400 - 1499

Hibernate Search: 1500 - 1599

Infinispan Query Module: 1600 - 1699

Infinispan Remote Query Module: 1700 - 1799

Infinispan Scripting Module: 1800 - 1849

Infinispan Server Event Logger Module: 1850 - 1899

104

Infinispan Remote Store: 1900 - 1999

105

Chapter 9. Transactions

Infinispan can be configured to use and to participate in JTA compliant transactions. Alternatively,

if transaction support is disabled, it is equivalent to using autocommit in JDBC calls, where

modifications are potentially replicated after every change (if replication is enabled).

On every cache operation Infinispan does the following:

1. Retrieves the current Transaction associated with the thread

2. If not already done, registers XAResource with the transaction manager to be notified when a

transaction commits or is rolled back.

In order to do this, the cache has to be provided with a reference to the environment’s

TransactionManager. This is usually done by configuring the cache with the class name of an

implementation of the TransactionManagerLookup interface. When the cache starts, it will create

an instance of this class and invoke its getTransactionManager() method, which returns a reference

to the TransactionManager.

Infinispan ships with several transaction manager lookup classes:

Transaction manager lookup implementations

• DummyTransactionManagerLookup: This provides with a dummy transaction manager which

should only be used for testing. Being a dummy, this is not recommended for production use a it

has some severe limitations to do with concurrent transactions and recovery.

• JBossStandaloneJTAManagerLookup: If you’re running Infinispan in a standalone environment,

this should be your default choice for transaction manager. It’s a fully fledged transaction

manager based on JBoss Transactions which overcomes all the deficiencies of the dummy

transaction manager.

• GenericTransactionManagerLookup: This is a lookup class that locate transaction managers in

the most popular Java EE application servers. If no transaction manager can be found, it

defaults on the dummy transaction manager.

Once initialized, the TransactionManager can also be obtained from the Cache itself:

//the cache must have a transactionManagerLookupClass defined

Cache cache = cacheManager.getCache();

//equivalent with calling TransactionManagerLookup.getTransactionManager();

TransactionManager tm = cache.getAdvancedCache().getTransactionManager();

9.1. Configuring transactions

Transactions are configured at cache level. Below is the configuration that affects a transaction

behaviour and a small description of each configuration attribute.

106

https://docs.oracle.com/javaee/7/api/javax/transaction/Transaction.htmll
https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/transaction/lookup/TransactionManagerLookup.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/transaction/lookup/DummyTransactionManagerLookup.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/transaction/lookup/JBossStandaloneJTAManagerLookup.html
http://narayana.io/
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/transaction/lookup/GenericTransactionManagerLookup.html

<locking

 isolation="READ_COMMITTED"

 write-skew="false"/>

<transaction

 locking="OPTIMISTIC"

 auto-commit="true"

 complete-timeout="60000"

 mode="NONE"

 notifications="true"

 protocol="DEFAULT"

 reaper-interval="30000"

 recovery-cache="__recoveryInfoCacheName__"

 stop-timeout="30000"

 transaction-manager-lookup=

"org.infinispan.transaction.lookup.GenericTransactionManagerLookup"/>

<versioning

 scheme="NONE"/>

or programmatically:

ConfigurationBuilder builder = new ConfigurationBuilder();

builder.locking()

 .isolationLevel(IsolationLevel.READ_COMMITTED)

 .writeSkewCheck(false);

builder.transaction()

 .lockingMode(LockingMode.OPTIMISTIC)

 .autoCommit(true)

 .completedTxTimeout(60000)

 .transactionMode(TransactionMode.NON_TRANSACTIONAL)

 .useSynchronization(false)

 .notifications(true)

 .transactionProtocol(TransactionProtocol.DEFAULT)

 .reaperWakeUpInterval(30000)

 .cacheStopTimeout(30000)

 .transactionManagerLookup(new GenericTransactionManagerLookup())

 .recovery()

 .enabled(false)

 .recoveryInfoCacheName("__recoveryInfoCacheName__");

builder.versioning()

 .enabled(false)

 .scheme(VersioningScheme.NONE);

• isolation - configures the isolation level. Check section Isolation levels for more details. Default

is READ_COMMITTED.

• write-skew - enables the write skew check. Check section Write Skew for more details. Default is

false.

• locking - configures whether the cache uses optimistic or pessimistic locking. Check section

107

Transaction locking for more details. Default is OPTIMISTIC.

• auto-commit - if enable, the user does not need to start a transaction manually for a single

operation. The transaction is automatically started and committed. Default is true.

• complete-timeout - the duration in milliseconds to keep information about completed

transactions. Default is 60000.

• mode - configures whether the cache is transactional or not. Default is NONE. The available options

are:

• NONE - non transactional cache

• FULL_XA - XA transactional cache with recovery enabled. Check section Transaction recovery

for more details about recovery.

• NON_DURABLE_XA - XA transactional cache with recovery disabled.

• NON_XA - transactional cache with integration via Synchronization instead of XA. Check

section Enlisting Synchronizations for details.

• BATCH- transactional cache using batch to group operations. Check section Batching for

details.

• notifications - enables/disables triggering transactional events in cache listeners. Default is

true.

• protocol - configures the protocol uses. Default is DEFAULT. Values available are:

• DEFAULT - uses the traditional Two-Phase-Commit protocol. It is described below.

• TOTAL_ORDER - uses total order ensured by the Transport to commit transactions. Check section

Total Order based commit protocol for details.

• reaper-interval - the time interval in millisecond at which the thread that cleans up transaction

completion information kicks in. Defaults is 30000.

• recovery-cache - configures the cache name to store the recovery information. Check section

Transaction recovery for more details about recovery. Default is recoveryInfoCacheName.

• stop-timeout - the time in millisecond to wait for ongoing transaction when the cache is

stopping. Default is 30000.

• transaction-manager-lookup - configures the fully qualified class name of a class that looks up a

reference to a javax.transaction.TransactionManager. Default is

org.infinispan.transaction.lookup.GenericTransactionManagerLookup.

• Versioning scheme - configure the version scheme to use when write skew is enabled with

optimistic or total order transactions. Check section Write Skew for more details. Default is NONE.

For more details on how Two-Phase-Commit (2PC) is implemented in Infinispan and how locks are

being acquired see the section below. More details about the configuration settings are available in

Configuration reference.

9.2. Isolation levels

Infinispan offers two isolation levels - READ_COMMITTED and REPEATABLE_READ.

108

https://docs.oracle.com/javaee/7/api/javax/transaction/Synchronization.html
http://docs.jboss.org/infinispan/9.0/configdocs/
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Read_committed
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Repeatable_reads

These isolation levels determine when readers see a concurrent write, and are internally

implemented using different subclasses of MVCCEntry, which have different behaviour in how state

is committed back to the data container.

Here’s a more detailed example that should help understand the difference between READ_COMMITTED

and REPEATABLE_READ in the context of Infinispan. With READ_COMMITTED, if between two consecutive

read calls on the same key, the key has been updated by another transaction, the second read may

return the new updated value:

Thread1: tx.begin()

Thread1: cache.get(k) returns v

Thread2: tx.begin()

Thread2: cache.get(k) returns v

Thread2: cache.put(k, v2)

Thread2: tx.commit()

Thread1: cache.get(k) returns v2! //Final get

With REPEATABLE_READ, the final get will still return v. So, if you’re going to retrieve the same key

multiple times within a transaction, you should use REPEATABLE_READ.

9.3. Transaction locking

9.3.1. Pessimistic transactional cache

From a lock acquisition perspective, pessimistic transactions obtain locks on keys at the time the

key is written.

1. A lock request is sent to the primary owner (can be an explicit lock request or an operation)

2. The primary owner tries to acquire the lock:

a. If it succeed, it sends back a positive reply;

b. Otherwise, a negative reply is sent and the transaction is rollback.

As an example:

transactionManager.begin();

cache.put(k1,v1); //k1 is locked.

cache.remove(k2); //k2 is locked when this returns

transactionManager.commit();

When cache.put(k1,v1) returns, k1 is locked and no other transaction running anywhere in the

cluster can write to it. Reading k1 is still possible. The lock on k1 is released when the transaction

completes (commits or rollbacks).

 For conditional operations, the validation is performed in the originator.

109

9.3.2. Optimistic transactional cache

With optimistic transactions locks are being acquired at transaction prepare time and are only

being held up to the point the transaction commits (or rollbacks). This is different from the 5.0

default locking model where local locks are being acquire on writes and cluster locks are being

acquired during prepare time.

1. The prepare is sent to all the owners.

2. The primary owners try to acquire the locks needed:

a. If locking succeeds, it performs the write skew check.

b. If the write skew check succeeds (or is disabled), send a positive reply.

c. Otherwise, a negative reply is sent and the transaction is rolled back.

As an example:

transactionManager.begin();

cache.put(k1,v1);

cache.remove(k2);

transactionManager.commit(); //at prepare time, K1 and K2 is locked until

committed/rolled back.

 For conditional commands, the validation still happens on the originator.

9.3.3. What do I need - pessimistic or optimistic transactions?

From a use case perspective, optimistic transactions should be used when there is not a lot of

contention between multiple transactions running at the same time. That is because the optimistic

transactions rollback if data has changed between the time it was read and the time it was

committed (with write skew check enabled).

On the other hand, pessimistic transactions might be a better fit when there is high contention on

the keys and transaction rollbacks are less desirable. Pessimistic transactions are more costly by

their nature: each write operation potentially involves a RPC for lock acquisition.

9.4. Write Skew

The write skew anomaly occurs when 2 transactions read and update the same key and both of

them can commit successfully without having seen the update performed by the other. To detect

and rollback one of the transaction, write-skew should be enabled.

 The write skew check is only performed for REPEATABLE_READ isolation.

Pessimistic transaction does not perform any write skew check. It can be avoided

by locking the key at read time. Look how at the example below.

110

Locking key before read (Pessimitic Transaction)

if (!cache.getAdvancedCache().lock(key)) {

 //key not locked. abort transaction

}

cache.get(key);

cache.put(key, value);

//this code is equivalent

cache.getAdvancedCache().withFlags(Flag.FORCE_WRITE_LOCK).get(key); //will throw an

exception is not locked.

cache.put(key, value);

When operating in LOCAL mode, write skew checks relies on Java object references to compare

differences and this is adequate to provide a reliable write-skew check. However, this technique is

useless in a cluster and a more reliable form of versioning is necessary to provide reliable write

skew checks.

Data version needs to be configured in order to support write skew check:

<versioning scheme="SIMPLE|NONE" />

Or

new ConfigurationBuilder().versioning().scheme(SIMPLE);

SIMPLE versioning is an implementation of the proposed EntryVersion interface,

backed by a long that is incremented each time the entry is updated.

9.5. Deadlock detection

Deadlocks can significantly (up to one order of magnitude) reduce the throughput of a system,

especially when multiple transactions are operating against the same key set. Deadlock detection is

disabled by default, but can be enabled/configured per cache (i.e. under *-cache config element) by

adding the following:

<local-cache deadlock-detection-spin="1000"/>

or, programmatically

new ConfigurationBuilder().deadlockDetection().enable().spinDuration(1000);

//or

new ConfigurationBuilder().deadlockDetection().enable().spinDuration(1, TimeUnit

.SECONDS);

111

Some clues on when to enable deadlock detection.

• A high number of transaction rolling back due to TimeoutException is an indicator that this

functionality might help.

• TimeoutException might be caused by other causes as well, but deadlocks will always result in

this exception being thrown.

Generally, when you have a high contention on a set of keys, deadlock detection may help. But the

best way is not to guess the performance improvement but to benchmark and monitor it: you can

have access to statistics (e.g. number of deadlocks detected) through JMX, as it is exposed via the

DeadlockDetectingLockManager MBean. For more details on how deadlock detection works,

benchmarks and design details refer to this article.

deadlock detection only runs on an a per cache basis: deadlocks that spread over

two or more caches won’t be detected.

9.6. Dealing with exceptions

If a CacheException (or a subclass of it) is thrown by a cache method within the scope of a JTA

transaction, then the transaction is automatically marked for rollback.

9.7. Enlisting Synchronizations

By default Infinispan registers itself as a first class participant in distributed transactions through

XAResource. There are situations where Infinispan is not required to be a participant in the

transaction, but only to be notified by its lifecycle (prepare, complete): e.g. in the case Infinispan is

used as a 2nd level cache in Hibernate.

Starting with 5.0 release, Infinispan allows transaction enlistment through Synchronisation. To

enable it just use NON_XA transaction mode.

Synchronizations have the advantage that they allow TransactionManager to optimize 2PC with a 1PC

where only one other resource is enlisted with that transaction (last resource commit optimization).

E.g. Hibernate second level cache: if Infinispan registers itself with the TransactionManager as a

XAResource than at commit time, the TransactionManager sees two XAResource (cache and database)

and does not make this optimization. Having to coordinate between two resources it needs to write

the tx log to disk. On the other hand, registering Infinispan as a Synchronisation makes the

TransactionManager skip writing the log to the disk (performance improvement).

9.8. Batching

Batching allows atomicity and some characteristics of a transaction, but not full-blown JTA or XA

capabilities. Batching is often a lot lighter and cheaper than a full-blown transaction.

112

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/util/concurrent/TimeoutException.html
http://infinispan.blogspot.com/2009/07/increase-transactional-throughput-with.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/CacheException.html
https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html
https://docs.oracle.com/javaee/7/api/javax/transaction/Synchronization.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/5/html/Administration_And_Configuration_Guide/lrco-overview.html

Generally speaking, one should use batching API whenever the only participant

in the transaction is an Infinispan cluster. On the other hand, JTA transactions

(involving TransactionManager) should be used whenever the transactions

involves multiple systems. E.g. considering the "Hello world!" of transactions:

transferring money from one bank account to the other. If both accounts are

stored within Infinispan, then batching can be used. If one account is in a

database and the other is Infinispan, then distributed transactions are required.

 You do not have to have a transaction manager defined to use batching.

9.8.1. API

Once you have configured your cache to use batching, you use it by calling startBatch() and

endBatch() on Cache. E.g.,

Cache cache = cacheManager.getCache();

// not using a batch

cache.put("key", "value"); // will replicate immediately

// using a batch

cache.startBatch();

cache.put("k1", "value");

cache.put("k2", "value");

cache.put("k2", "value");

cache.endBatch(true); // This will now replicate the modifications since the batch was

started.

// a new batch

cache.startBatch();

cache.put("k1", "value");

cache.put("k2", "value");

cache.put("k3", "value");

cache.endBatch(false); // This will "discard" changes made in the batch

9.8.2. Batching and JTA

Behind the scenes, the batching functionality starts a JTA transaction, and all the invocations in that

scope are associated with it. For this it uses a very simple (e.g. no recovery) internal

TransactionManager implementation. With batching, you get:

1. Locks you acquire during an invocation are held until the batch completes

2. Changes are all replicated around the cluster in a batch as part of the batch completion process.

Reduces replication chatter for each update in the batch.

3. If synchronous replication or invalidation are used, a failure in replication/invalidation will

cause the batch to roll back.

4. All the transaction related configurations apply for batching as well.

113

9.9. Transaction recovery

Recovery is a feature of XA transactions, which deal with the eventuality of a resource or possibly

even the transaction manager failing, and recovering accordingly from such a situation.

9.9.1. When to use recovery

Consider a distributed transaction in which money is transferred from an account stored in an

external database to an account stored in Infinispan. When TransactionManager.commit() is invoked,

both resources prepare successfully (1st phase). During the commit (2nd) phase, the database

successfully applies the changes whilst Infinispan fails before receiving the commit request from

the transaction manager. At this point the system is in an inconsistent state: money is taken from

the account in the external database but not visible yet in Infinispan (since locks are only released

during 2nd phase of a two-phase commit protocol). Recovery deals with this situation to make sure

data in both the database and Infinispan ends up in a consistent state.

9.9.2. How does it work

Recovery is coordinated by the transaction manager. The transaction manager works with

Infinispan to determine the list of in-doubt transactions that require manual intervention and

informs the system administrator (via email, log alerts, etc). This process is transaction manager

specific, but generally requires some configuration on the transaction manager.

Knowing the in-doubt transaction ids, the system administrator can now connect to the Infinispan

cluster and replay the commit of transactions or force the rollback. Infinispan provides JMX tooling

for this - this is explained extensively in the Reconciliation section.

9.9.3. Configuring recovery

Recovery is not enabled by default in Infinispan. If disabled, the TransactionManager won’t be able to

work with Infinispan to determine the in-doubt transactions. The Configuring transactions section

shows how to enable it.

 recovery-cache attribute is not mandatory and it is configured per-cache.

For recovery to work, mode must be set to FULL_XA, since full-blown XA

transactions are needed.

Enable JMX support

In order to be able to use JMX for managing recovery JMX support must be explicitly enabled. More

about enabling JMX in Management Tooling section.

9.9.4. Recovery cache

In order to track in-doubt transactions and be able to reply them, Infinispan caches all transaction

state for future use. This state is held only for in-doubt transaction, being removed for successfully

completed transactions after when the commit/rollback phase completed.

114

This in-doubt transaction data is held within a local cache: this allows one to configure swapping

this info to disk through cache loader in the case it gets too big. This cache can be specified through

the recovery-cache configuration attribute. If not specified infinispan will configure a local cache

for you.

It is possible (though not mandated) to share same recovery cache between all the Infinispan

caches that have recovery enabled. If the default recovery cache is overridden, then the specified

recovery cache must use a TransactionManagerLookup that returns a different transaction

manager than the one used by the cache itself.

9.9.5. Integration with the transaction manager

Even though this is transaction manager specific, generally a transaction manager would need a

reference to a XAResource implementation in order to invoke XAResource.recover() on it. In order to

obtain a reference to an Infinispan XAResource following API can be used:

XAResource xar = cache.getAdvancedCache().getXAResource();

It is a common practice to run the recovery in a different process from the one running the

transaction. At the moment it is not possible to do this with infinispan: the recovery must be run

from the same process where the infinispan instance exists. This limitation will be dropped once

transactions over Hot Rod are available.

9.9.6. Reconciliation

The transaction manager informs the system administrator on in-doubt transaction in a

proprietary way. At this stage it is assumed that the system administrator knows transaction’s XID

(a byte array).

A normal recovery flow is:

• STEP 1: The system administrator connects to an Infinispan server through JMX, and lists the in

doubt transactions. The image below demonstrates JConsole connecting to an Infinispan node

that has an in doubt transaction.

115

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/transaction/lookup/class-use/TransactionManagerLookup.html
https://issues.jboss.org/browse/ISPN-375

Figure 6. Show in-doubt transactions

The status of each in-doubt transaction is displayed(in this example " PREPARED "). There might be

multiple elements in the status field, e.g. "PREPARED" and "COMMITTED" in the case the transaction

committed on certain nodes but not on all of them.

• STEP 2: The system administrator visually maps the XID received from the transaction manager

to an Infinispan internal id, represented as a number. This step is needed because the XID, a

byte array, cannot conveniently be passed to the JMX tool (e.g. JConsole) and then re-assembled

on infinispan’s side.

• STEP 3: The system administrator forces the transaction’s commit/rollback through the

corresponding jmx operation, based on the internal id. The image below is obtained by forcing

the commit of the transaction based on its internal id.

116

Figure 7. Force commit

All JMX operations described above can be executed on any node, regardless of

where the transaction originated.

Force commit/rollback based on XID

XID-based JMX operations for forcing in-doubt transactions' commit/rollback are available as well:

these methods receive byte[] arrays describing the XID instead of the number associated with the

transactions (as previously described at step 2). These can be useful e.g. if one wants to set up an

automatic completion job for certain in-doubt transactions. This process is plugged into transaction

manager’s recovery and has access to the transaction manager’s XID objects.

9.9.7. Want to know more?

The recovery design document describes in more detail the insides of transaction recovery

implementation.

9.10. Total Order based commit protocol

The Total Order based protocol is a multi-master scheme (in this context, multi-master scheme

means that all nodes can update all the data) as the (optimistic/pessimist) locking mode

implemented in Infinispan. This commit protocol relies on the concept of totally ordered delivery of

117

https://community.jboss.org/wiki/TransactionRecoveryDesign

messages which, informally, implies that each node which delivers a set of messages, delivers them

in the same order.

This protocol comes with this advantages.

1. transactions can be committed in one phase, as they are delivered in the same order by the

nodes that receive them.

2. it mitigates distributed deadlocks.

The weaknesses of this approach are the fact that its implementation relies on a single thread per

node which delivers the transaction and its modification, and the slightly cost of total ordering the

messages in Transport.

Thus, this protocol delivers best performance in scenarios of high contention , in which it can

benefit from the single-phase commit and the deliver thread is not the bottleneck.

Currently, the Total Order based protocol is available only in transactional caches for replicated and

distributed modes.

9.10.1. Overview

The Total Order based commit protocol only affects how transactions are committed by Infinispan

and the isolation level and write skew affects it behaviour.

When write skew is disabled, the transaction can be committed/rolled back in single phase. The

data consistency is guaranteed by the Transport that ensures that all owners of a key will deliver the

same transactions set by the same order.

On other hand, when write skew is enabled, the protocol adapts and uses one phase commit when

it is safe. In XaResource enlistment, we can use one phase if the TransactionManager request a commit

in one phase (last resource commit optimization) and the Infinispan cache is configured in

replicated mode. This optimization is not safe in distributed mode because each node performs the

write skew check validation in different keys subset. When in Synchronization enlistment, the

TransactionManager does not provide any information if Infinispan is the only resource enlisted (last

resource commit optimization), so it is not possible to commit in a single phase.

Commit in one phase

When the transaction ends, Infinispan sends the transaction (and its modification) in total order.

This ensures all the transactions are deliver in the same order in all the involved Infinispan nodes.

As a result, when a transaction is delivered, it performs a deterministic write skew check over the

same state (if enabled), leading to the same outcome (transaction commit or rollback).

118

Figure 8. 1-phase commit

The figure above demonstrates a high level example with 3 nodes. Node1 and Node3 are running one

transaction each and lets assume that both transaction writes on the same key. To make it more

interesting, lets assume that both nodes tries to commit at the same time, represented by the first

colored circle in the figure. The blue circle represents the transaction tx1 and the green the

transaction tx2 . Both nodes do a remote invocation in total order (to-send) with the transaction’s

modifications. At this moment, all the nodes will agree in the same deliver order, for example, tx1

followed by tx2 . Then, each node delivers tx1 , perform the validation and commits the

modifications. The same steps are performed for tx2 but, in this case, the validation will fail and the

transaction is rollback in all the involved nodes.

Commit in two phases

In the first phase, it sends the modification in total order and the write skew check is performed.

The result of the write skew check is sent back to the originator. As soon as it has the confirmation

that all keys are successfully validated, it give a positive response to the TransactionManager. On

other hand, if it receives a negative reply, it returns a negative response to the TransactionManager.

Finally, the transaction is committed or aborted in the second phase depending of the

TransactionManager request.

119

Figure 9. 2-phase commit

The figure above shows the scenario described in the first figure but now committing the

transactions using two phases. When tx1 is deliver, it performs the validation and it replies to the

TransactionManager. Next, lets assume that tx2 is deliver before the TransactionManager request the

second phase for tx1. In this case, tx2 will be enqueued and it will be validated only when tx1 is

completed. Eventually, the TransactionManager for tx1 will request the second phase (the commit)

and all the nodes are free to perform the validation of tx2 .

Transaction Recovery

Transaction recovery is currently not available for Total Order based commit protocol.

State Transfer

For simplicity reasons, the total order based commit protocol uses a blocking version of the current

state transfer. The main differences are:

1. enqueue the transaction deliver while the state transfer is in progress;

2. the state transfer control messages (CacheTopologyControlCommand) are sent in total order.

This way, it provides a synchronization between the state transfer and the transactions deliver that

is the same all the nodes. Although, the transactions caught in the middle of state transfer (i.e. sent

120

before the state transfer start and deliver after it) needs to be re-sent to find a new total order

involving the new joiners.

Figure 10. Node joining during transaction

The figure above describes a node joining. In the scenario, the tx2 is sent in topologyId=1 but when

it is received, it is in topologyId=2 . So, the transaction is re-sent involving the new nodes.

9.10.2. Configuration

To use total order in your cache, you need to add the TOA protocol in your jgroups.xml configuration

file.

jgroups.xml

<tom.TOA />

 Check the JGroups Manual for more details.

If you are interested in detail how JGroups guarantees total order, check the TOA

manual.

121

http://jgroups.org/manual-3.x/html/index.html
:http://jgroups.org/manual/index.html#TOA
:http://jgroups.org/manual/index.html#TOA

Also, you need to set the protocol=TOTAL_ORDER in the <transaction> element, as shown in

Configuration section.

9.10.3. When to use it?

Total order shows benefits when used in write intensive and high contented workloads. It mitigates

the cost associated with deadlock detection and avoids contention in the lock keys.

122

Chapter 10. Locking and Concurrency

Infinispan makes use of multi-versioned concurrency control (MVCC) - a concurrency scheme

popular with relational databases and other data stores. MVCC offers many advantages over coarse-

grained Java synchronization and even JDK Locks for access to shared data, including:

• allowing concurrent readers and writers

• readers and writers do not block one another

• write skews can be detected and handled

• internal locks can be striped

10.1. Locking implementation details

Infinispan’s MVCC implementation makes use of minimal locks and synchronizations, leaning

heavily towards lock-free techniques such as compare-and-swap and lock-free data structures

wherever possible, which helps optimize for multi-CPU and multi-core environments.

In particular, Infinispan’s MVCC implementation is heavily optimized for readers. Reader threads

do not acquire explicit locks for entries, and instead directly read the entry in question.

Writers, on the other hand, need to acquire a write lock. This ensures only one concurrent writer

per entry, causing concurrent writers to queue up to change an entry. To allow concurrent reads,

writers make a copy of the entry they intend to modify, by wrapping the entry in an MVCCEntry. This

copy isolates concurrent readers from seeing partially modified state. Once a write has completed,

MVCCEntry.commit() will flush changes to the data container and subsequent readers will see the

changes written.

10.1.1. How does it work in clustered caches?

In clustered caches, each key has a node responsible to lock the key. This node is called primary

owner.

Non Transactional caches

1. The write operation is sent to the primary owner of the key.

2. The primary owner tries to lock the key.

a. If it succeeds, it forwards the operation to the other owners;

b. Otherwise, an exception is thrown.

If the operation is conditional and it fails on the primary owner, it is not

forwarded to the other owners.

 If the operation is executed locally in the primary owner, the first step is skipped.

123

http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Compare-and-swap

10.1.2. Transactional caches

The transactional cache supports optimistic and pessimistic locking mode. Check section

Transaction locking for more information about it.

10.1.3. Isolation levels

Isolation level affects what transactions can read when running concurrently with other

transaction. Check section Isolation levels for more details about it.

10.1.4. The LockManager

The LockManager is a component that is responsible for locking an entry for writing. The LockManager

makes use of a LockContainer to locate/hold/create locks. LockContainers come in two broad flavours,

with support for lock striping and with support for one lock per entry.

10.1.5. Lock striping

Lock striping entails the use of a fixed-size, shared collection of locks for the entire cache, with

locks being allocated to entries based on the entry’s key’s hash code. Similar to the way the JDK’s

ConcurrentHashMap allocates locks, this allows for a highly scalable, fixed-overhead locking

mechanism in exchange for potentially unrelated entries being blocked by the same lock.

The alternative is to disable lock striping - which would mean a new lock is created per entry. This

approach may give you greater concurrent throughput, but it will be at the cost of additional

memory usage, garbage collection churn, etc.

Default lock striping settings

From Infinispan 5.0, lock striping is disabled by default, due to potential

deadlocks that can happen if locks for different keys end up in the same lock

stripe. Previously, in Infinispan 4.x lock striping used to be enabled by default.

The size of the shared lock collection used by lock striping can be tuned using the concurrencyLevel

attribute of the `<locking /> configuration element.

Configuration example:

<locking striping="false|true"/>

Or

new ConfigurationBuilder().locking().useLockStriping(false|true);

10.1.6. Concurrency levels

In addition to determining the size of the striped lock container, this concurrency level is also used

to tune any JDK ConcurrentHashMap based collections where related, such as internal to

124

DataContainers. Please refer to the JDK ConcurrentHashMap Javadocs for a detailed discussion of

concurrency levels, as this parameter is used in exactly the same way in Infinispan.

Configuration example:

<locking concurrency-level="32"/>

Or

new ConfigurationBuilder().locking().concurrencyLevel(32);

10.1.7. Lock timeout

The lock timeout specifies the amount of time, in milliseconds, to wait for a contented lock.

Configuration example:

<locking acquire-timeout="10000"/>

Or

new ConfigurationBuilder().locking().lockAcquisitionTimeout(10000);

//alternatively

new ConfigurationBuilder().locking().lockAcquisitionTimeout(10, TimeUnit.SECONDS);

10.1.8. Consistency

The fact that a single owner is locked (as opposed to all owners being locked) does not break the

following consistency guarantee: if key K is hashed to nodes {A, B} and transaction TX1 acquires a

lock for K, let’s say on A. If another transaction, TX2, is started on B (or any other node) and TX2 tries

to lock K then it will fail with a timeout as the lock is already held by TX1. The reason for this is the

that the lock for a key K is always, deterministically, acquired on the same node of the cluster,

regardless of where the transaction originates.

10.2. Data Versioning

Infinispan supports two forms of data versioning: simple and external. The simple versioning is

used in transactional caches for write skew check. Check section Write Skew section for detail

about it.

The external versioning is used to encapsulate an external source of data versioning within

Infinispan, such as when using Infinispan with Hibernate which in turn gets its data version

information directly from a database.

In this scheme, a mechanism to pass in the version becomes necessary, and overloaded versions of

125

put() and putForExternalRead() will be provided in AdvancedCache to take in an external data

version. This is then stored on the InvocationContext and applied to the entry at commit time.

Write skew checks cannot and will not be performed in the case of external data

versioning.

126

Chapter 11. Streams

Java 8 introduced the concept of a Stream which allows functional-style operations on collections

rather than having to procedurally iterate over the data yourself. Stream operations can be

implemented in a fashion very similar to MapReduce. Streams, just like MapReduce allow you to

perform processing upon the entirety of your cache, possibly a very large data set, but in an

efficient way.

Also since we can control how the entries are iterated upon we can more efficiently perform the

operations in a cache that is distributed if you want it to perform all of the operations across the

cluster concurrently.

A stream is retrieved from the entrySet, keySet or values collections returned from the Cache by

invoking the stream or parallelStream methods.

11.1. Common stream operations

This section highlights various options that are present irrespective of what type of underlying

cache you are using.

11.1.1. Key filtering

It is possible to filter the stream so that it only operates upon a given subset of keys. This can be

done by invoking the filterKeys method on the CacheStream. This should always be used over a

Predicate filter and will be faster if the predicate was holding all keys.

If you are familiar with the AdvancedCache interface you may be wondering why you even use getAll

over this keyFilter. There are some small benefits (mostly smaller payloads) to using getAll if you

need the entries as is and need them all in memory in the local node. However if you need to do

processing on these elements a stream is recommended since you will get both distributed and

threaded parallelism for free.

11.1.2. Segment based filtering

This is an advanced feature and should only be used with deep knowledge of

Infinispan segment and hashing techniques. These segments based filtering can

be useful if you need to segment data into separate invocations. This can be

useful when integrating with other tools such as Apache Spark.

This option is only supported for replicated and distributed caches. This allows the user to operate

upon a subset of data at a time as determined by the KeyPartitioner. The segments can be filtered

by invoking filterKeySegments method on the CacheStream. This is applied after the key filter but

before any intermediate operations are performed.

11.2. Local/Invalidation

A stream used with a local or invalidation cache can be used just the same way you would use a

127

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#entrySet--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#keySet--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#values--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#stream--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#parallelStream--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#filterKeys-java.util.Set-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html?is-external=true#filter-java.util.function.Predicate-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#getAll-java.util.Set-
http://spark.apache.org/
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/distribution/ch/KeyPartitioner.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#filterKeySegments-java.util.Set-

stream on a regular collection. Infinispan handles all of the translations if necessary behind the

scenes and works with all of the more interesting options (ie. storeAsBinary, compatibility mode,

and a cache loader). Only data local to the node where the stream operation is performed will be

used, for example invalidation only uses local entries.

11.2.1. Example

The code below takes a cache and returns a map with all the cache entries whose values contain the

string "JBoss"

Map<Object, String> jbossValues = cache.entrySet().stream()

 .filter(e -> e.getValue().contains("JBoss"))

 .collect(Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));

11.3. Distribution/Replication

This is where streams come into their stride. When a stream operation is performed it will send the

various intermediate and terminal operations to each node that has pertinent data. This allows

processing the intermediate values on the nodes owning the data, and only sending the final results

back to the originating nodes, improving performance.

11.3.1. Rehash Aware

Internally the data is segmented and each node only performs the operations upon the data it owns

as a primary owner. This allows for data to be processed evenly, assuming segments are granular

enough to provide for equal amounts of data on each node.

When you are utilizing a distributed cache, the data can be reshuffled between nodes when a new

node joins or leaves. Distributed Streams handle this reshuffling of data automatically so you don’t

have to worry about monitoring when nodes leave or join the cluster. Reshuffled entries may be

processed a second time, and we keep track of the processed entries at the key level or at the

segment level (depending on the terminal operation) to limit the amount of duplicate processing.

It is possible but highly discouraged to disable rehash awareness on the stream. This should only

be considered if your request can handle only seeing a subset of data if a rehash occurs. This can

be done by invoking CacheStream.disableRehashAware() The performance gain for most

operations when a rehash doesn’t occur is completely negligible. The only exceptions are for

iterator and forEach, which will use less memory, since they do not have to keep track of processed

keys.

Please rethink disabling rehash awareness unless you really know what you are

doing.

11.3.2. Serialization

Since the operations are sent across to other nodes they must be serializable by Infinispan

marshalling. This allows the operations to be sent to the other nodes.

128

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#disableRehashAware--

The simplest way is to use a CacheStream instance and use a lambda just as you would normally.

Infinispan overrides all of the various Stream intermediate and terminal methods to take

Serializable versions of the arguments (ie. SerializableFunction, SerializablePredicate…) You can

find these methods at CacheStream. This relies on the spec to pick the most specific method as

defined here.

In our previous example we used a Collector to collect all the results into a Map. Unfortunately the

Collectors class doesn’t produce Serializable instances. Thus if you need to use these, you can use

the newly provided CacheCollectors class which allows for a Supplier<Collector> to be provided.

This instance could then use the Collectors to supply a Collector which is not serialized. You can

read more details about how the collector peforms in a distributed fashion at distributed execution.

Map<Object, String> jbossValues = cache.entrySet().stream()

 .filter(e -> e.getValue().contains("Jboss"))

 .collect(CacheCollectors.serializableCollector(() -> Collectors.toMap

(Map.Entry::getKey, Map.Entry::getValue)));

If however you are not able to use the Cache and CacheStream interfaces you cannot utilize

Serializable arguments and you must instead cast the lambdas to be Serializable manually by

casting the lambda to multiple interfaces. It is not a pretty sight but it gets the job done.

Map<Object, String> jbossValues = cache.entrySet().stream()

 .filter((Serializable & Predicate<Map.Entry<Object, String>>) e -> e

.getValue().contains("Jboss"))

 .collect(CacheCollectors.serializableCollector(() -> Collectors.toMap

(Map.Entry::getKey, Map.Entry::getValue)));

The recommended and most performant way is to use an AdvancedExternalizer as this provides

the smallest payload. Unfortunately this means you cannot use lamdbas as advanced externalizers

require defining the class before hand.

You can use an advanced externalizer as shown below:

 Map<Object, String> jbossValues = cache.entrySet().stream()

 .filter(new ContainsFilter("Jboss"))

 .collect(CacheCollectors.serializableCollector(() -> Collectors.toMap

(Map.Entry::getKey, Map.Entry::getValue)));

 class ContainsFilter implements Predicate<Map.Entry<Object, String>> {

 private final String target;

 ContainsFilter(String target) {

 this.target = target;

 }

 @Override

 public boolean test(Map.Entry<Object, String> e) {

129

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/stream/CacheStream.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.12.2.5
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/stream/CacheCollectors.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html
user_guide.html#distributed_stream_execution
user_guide.html#advanced_externalizers

 return e.getValue().contains(target);

 }

 }

 class JbossFilterExternalizer implements AdvancedExternalizer<ContainsFilter> {

 @Override

 public Set<Class<? extends ContainsFilter>> getTypeClasses() {

 return Util.asSet(ContainsFilter.class);

 }

 @Override

 public Integer getId() {

 return CUSTOM_ID;

 }

 @Override

 public void writeObject(ObjectOutput output, ContainsFilter object) throws

IOException {

 output.writeUTF(object.target);

 }

 @Override

 public ContainsFilter readObject(ObjectInput input) throws IOException,

ClassNotFoundException {

 return new ContainsFilter(input.readUTF());

 }

 }

You could also use an advanced externalizer for the CacheCollector supplier to reduce the payload

size even further.

 Map<Object, String> jbossValues = cache.entrySet().stream()

 .filter(new ContainsFilter("Jboss"))

 .collect(CacheCollectors.serializableCollector(ToMapCollectorSupplier

.INSTANCE);

 class ToMapCollectorSupplier<K, U> implements Supplier<Collector<Map.Entry<K, U>, ?,

Map<K, U>>> {

 static final ToMapCollectorSupplier INSTANCE = new ToMapCollectorSupplier();

 private ToMapCollectorSupplier() { }

 @Override

 public Collector<Map.Entry<K, U>, ?, Map<K, U>> get() {

 return Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue);

 }

 }

 class ToMapCollectorSupplierExternalizer implements AdvancedExternalizer

130

<ToMapCollectorSupplier> {

 @Override

 public Set<Class<? extends ToMapCollectorSupplier>> getTypeClasses() {

 return Util.asSet(ToMapCollectorSupplier.class);

 }

 @Override

 public Integer getId() {

 return CUSTOM_ID;

 }

 @Override

 public void writeObject(ObjectOutput output, ToMapCollectorSupplier object)

throws IOException {

 }

 @Override

 public ToMapCollectorSupplier readObject(ObjectInput input) throws IOException,

ClassNotFoundException {

 return ToMapCollectorSupplier.INSTANCE;

 }

 }

11.3.3. Parallel Computation

Distributed streams by default try to parallelize as much as possible. It is possible for the end user

to control this and actually they always have to control one of the options. There are 2 ways these

streams are parallelized.

Local to each node

When a stream is created from the cache collection the end user can choose between invoking

stream or parallelStream method. Depending on if the parallel stream was picked will enable

multiple threading for each node locally. Note that some operations like a rehash aware iterator

and forEach operations will always use a sequential stream locally. This could be enhanced at some

point to allow for parallel streams locally.

Remote requests

When there are multiple nodes it may be desirable to control whether the remote requests are all

processed at the same time concurrently or one at a time. By default all terminal operations except

the iterator perform concurrent requests. The iterator, method to reduce overall memory pressure

on the local node, only performs sequential requests which actually performs slightly better.

If a user wishes to change this default however they can do so by invoking the

sequentialDistribution or parallelDistribution methods on the CacheStream. Note that currently

intermediate operations return a Stream instance so you must make sure to invoke these methods

before calling another intermediate operation.

131

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#stream--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#parallelStream--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#sequentialDistribution--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#parallelDistribution--

11.3.4. Task timeout

It is possible to set a timeout value for the operation requests. This timeout is used only for remote

requests timing out and it is on a per request basis. The former means the local execution will not

timeout and the latter means if you have a failover scenario as described above the subsequent

requests each have a new timeout. If no timeout is specified it uses the replication timeout as a

default timeout. You can set the timeout in your task by doing the following:

CacheStream<Object, String> stream = cache.entrySet().stream();

stream.timeout(1, TimeUnit.MINUTES);

For more information about this, please check the java doc in timeout javadoc.

11.3.5. Injection

The Stream has a terminal operation called forEach which allows for running some sort of side

effect operation on the data. In this case it may be desirable to get a reference to the Cache that is

backing this Stream. If your Consumer implements the CacheAware interface the injectCache

method be invoked before the accept method from the Consumer interface.

11.3.6. Distributed Stream execution

Distributed streams execution works in a fashion very similiar to map reduce. Except in this case

we are sending zero to many intermediate operations (map, filter etc.) and a single terminal

operation to the various nodes. The operation basically comes down to the following:

1. The desired segments are grouped by which node is the primary owner of the given segment

2. A request is generated to send to each remote node that contains the intermediate and terminal

operations including which segments it should process

a. The terminal operation will be performed locally if necessary

b. Each remote node will receive this request and run the operations and subsequently send

the response back

3. The local node will then gather the local response and remote responses together performing

any kind of reduction required by the operations themselves.

4. Final reduced response is then returned to the user

In most cases all operations are fully distributed, as in the operations are all fully applied on each

remote node and usually only the last operation or something related may be reapplied to reduce

the results from multiple nodes. One important note is that intermediate values do not actually

have to be serializable, it is the last value sent back that is the part desired (exceptions for various

operations will be highlighted below).

Terminal operator distributed result reductions

The following paragraphs describe how the distributed reductions work for the various terminal

operators. Some of these are special in that an intermediate value may be required to be

132

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#timeout-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEach-java.util.function.Consumer-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/stream/CacheAware.html

serializable instead of the final result.

allMatch noneMatch anyMatch

The allMatch operation is ran on each node and then all the results are logically anded together

locally to get the appropriate value. The noneMatch and anyMatch operations use a logical or

instead. These methods also have early termination support, stopping remote and local

operations once the final result is known.

collect

The collect method is interesting in that it can do a few extra steps. The remote node performs

everything as normal except it doesn’t perform the final finisher upon the result and instead

sends back the fully combined results. The local thread then combines the remote and local

result into a value which is then finally finished. The key here to remember is that the final

value doesn’t have to be serializable but rather the values produced from the supplier and

combiner methods.

count

The count method just adds the numbers together from each node.

findAny findFirst

The findAny operation returns just the first value they find, whether it was from a remote node

or locally. Note this supports early termination in that once a value is found it will not process

others. Note the findFirst method is special since it requires a sorted intermediate operation,

which is detailed in the exceptions section.

max min

The max and min methods find the respective min or max value on each node then a final

reduction is performed locally to ensure only the min or max across all nodes is returned.

reduce

The various reduce methods 1 , 2 , 3 will end up serializing the result as much as the

accumulator can do. Then it will accumulate the local and remote results together locally, before

combining if you have provided that. Note this means a value coming from the combiner

doesn’t have to be Serializable.

11.3.7. Key based rehash aware operators

The iterator, spliterator and forEach are unlike the other terminal operators in that the rehash

awareness has to keep track of what keys per segment have been processed instead of just

segments. This is to guarantee an exactly once (iterator & spliterator) or at least once behavior

(forEach) even under cluster membership changes.

The iterator and spliterator operators when invoked on a remote node will return back batches of

entries, where the next batch is only sent back after the last has been fully consumed. This

batching is done to limit how many entries are in memory at a given time. The user node will hold

onto which keys it has processed and when a given segment is completed it will release those keys

from memory. This is why sequential processing is preferred for the iterator method, so only a

subset of segment keys are held in memory at once, instead of from all nodes.

133

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#allMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#noneMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#anyMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect-java.util.stream.Collector-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#finisher--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#combiner--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#supplier--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#combiner--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#count--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#findAny--
user_guide.html#intermediate_operation_exceptions
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#max-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#min-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-java.util.function.BinaryOperator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-T-java.util.function.BinaryOperator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-U-java.util.function.BiFunction-java.util.function.BinaryOperator-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#iterator--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#spliterator--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#forEach-java.util.function.Consumer-

The forEach method also returns batches, but it returns a batch of keys after it has finished

processing at least a batch worth of keys. This way the originating node can know what keys have

been processed already to reduce chances of processing the same entry again. Unfortunately this

means it is possible to have an at least once behavior when a node goes down unexpectedly. In this

case that node could have been processing a batch and not yet completed one and those entries that

were processed but not in a completed batch will be ran again when the rehash failure operation

occurs. Note that adding a node will not cause this issue as the rehash failover doesn’t occur until

all responses are received.

These operations batch sizes are both controlled by the same value which can be configured by

invoking distributedBatchSize method on the CacheStream. This value will default to the chunkSize

configured in state transfer. Unfortunately this value is a tradeoff with memory usage vs

performance vs at least once and your mileage may vary.

Using iterator with a replication cache

Currently if you are using a replicated cache the iterator or spliterator terminal operations will

not perform any of the operations remotely and will instead perform everything on the local node.

This is for performance as doing a remote iteration process is very costly.

11.3.8. Intermediate operation exceptions

There are some intermediate operations that have special exceptions, these are skip, peek, sorted 1

2. & distinct. All of these methods have some sort of artificial iterator implanted in the stream

processing to guarantee correctness, they are documented as below. Note this means these

operations may cause possibly severe performance degradation.

Skip

An artificial iterator is implanted up to the intermediate skip operation. Then results are

brought locally so it can skip the appropriate amount of elements.

Peek

An artificial iterator is implanted up to the intermediate peek operation. Only up to the number

of peeked elements is returned a remote node. Then results are brought locally so it can peek at

only the amount desired.

Sorted

WARNING: This operation requires having all entries in memory on the local node. An artificial

iterator is implanted up to the intermediate sorted operation. All results are sorted locally.

There are possible plans to have a distributed sort which returns batches of elements, but this is

not yet implemented.

Distinct

WARNING: This operation requires having all or nearly all entries in memory on the local node.

Distinct is performed on each remote node and then an artificial iterator returns those distinct

values. Then finally all of those results have a distinct operation performed upon them.

The rest of the intermediate operations are fully distributed as one would expect.

134

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#distributedBatchSize-int-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#skip-long-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#peek-java.util.function.Consumer-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#sorted-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#sorted--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#distinct--

11.4. Examples

Word count is a classic, if overused, example of map/reduce paradigm. Assume we have a mapping

of key → sentence stored on Infinispan nodes. Key is a String, each sentence is also a String, and we

have to count occurrence of all words in all sentences available. The implementation of such a

distributed task could be defined as follows:

public class WordCountExample {

 /**

 * In this example replace c1 and c2 with

 * real Cache references

 *

 * @param args

 */

 public static void main(String[] args) {

 Cache<String, String> c1 = ...;

 Cache<String, String> c2 = ...;

 c1.put("1", "Hello world here I am");

 c2.put("2", "Infinispan rules the world");

 c1.put("3", "JUDCon is in Boston");

 c2.put("4", "JBoss World is in Boston as well");

 c1.put("12","JBoss Application Server");

 c2.put("15", "Hello world");

 c1.put("14", "Infinispan community");

 c2.put("15", "Hello world");

 c1.put("111", "Infinispan open source");

 c2.put("112", "Boston is close to Toronto");

 c1.put("113", "Toronto is a capital of Ontario");

 c2.put("114", "JUDCon is cool");

 c1.put("211", "JBoss World is awesome");

 c2.put("212", "JBoss rules");

 c1.put("213", "JBoss division of RedHat ");

 c2.put("214", "RedHat community");

 Map<String, Integer> wordCountMap = c1.entrySet().parallelStream()

 .map(e -> e.getValue().split("\\s"))

 .flatMap(Arrays::stream)

 .collect(CacheCollectors.serializableCollector(() -> Collectors.groupingBy

(Function.identity(), Collectors.counting())));

 }

}

In this case it is pretty simple to do the word count from the previous example.

However what if we want to find the most frequent word in the example? If you take a second to

think about this case you will realize you need to have all words counted and available locally first.

135

Thus we actually have a few options.

We could use a finisher on the collector, which is invoked on the user thread after all the results

have been collected. Some redundant lines have been removed from the previous example.

public class WordCountExample {

 public static void main(String[] args) {

 // Lines removed

 String mostFrequentWord = c1.entrySet().parallelStream()

 .map(e -> e.getValue().split("\\s"))

 .flatMap(Arrays::stream)

 .collect(CacheCollectors.serializableCollector(() -> Collectors

.collectingAndThen(

 Collectors.groupingBy(Function.identity(), Collectors.counting()),

 wordCountMap -> {

 String mostFrequent = null;

 long maxCount = 0;

 for (Map.Entry<String, Long> e : wordCountMap.entrySet()) {

 int count = e.getValue().intValue();

 if (count > maxCount) {

 maxCount = count;

 mostFrequent = e.getKey();

 }

 }

 return mostFrequent;

 })));

}

Unfortunately the last step is only going to be ran in a single thread, which if we have a lot of words

could be quite slow. Maybe there is another way to parallelize this with Streams.

We mentioned before we are in the local node after processing, so we could actually use a stream

on the map results. We can therefore use a parallel stream on the results.

public class WordFrequencyExample {

 public static void main(String[] args) {

 // Lines removed

 Map<String, Long> wordCount = c1.entrySet().parallelStream()

 .map(e -> e.getValue().split("\\s"))

 .flatMap(Arrays::stream)

 .collect(CacheCollectors.serializableCollector(() -> Collectors

.groupingBy(Function.identity(), Collectors.counting())));

 Optional<Map.Entry<String, Long>> mostFrequent = wordCount.entrySet()

.parallelStream().reduce(

 (e1, e2) -> e1.getValue() > e2.getValue() ? e1 : e2);

136

This way you can still utilize all of the cores locally when calculating the most frequent element.

Also remember that Streams are a JRE tool now and there are a multitude of examples that can be

found all over. Just remember that your operations need to be Serializable in some fashion!

137

Chapter 12. Distributed Execution

Infinispan provides distributed execution through a standard JDK ExecutorService interface. Tasks

submitted for execution, instead of being executed in a local JVM, are executed on an entire cluster

of Infinispan nodes. Every DistributedExecutorService is bound to one particular cache. Tasks

submitted will have access to key/value pairs from that particular cache if and only if the task

submitted is an instance of DistributedCallable. Also note that there is nothing preventing users

from submitting a familiar Runnable or Callable just like to any other ExecutorService. However,

DistributedExecutorService, as it name implies, will likely migrate submitted Callable or Runnable

to another JVM in Infinispan cluster, execute it and return a result to task invoker. Due to a

potential task migration to other nodes every Callable, Runnable and/or DistributedCallable

submitted must be either Serializable or Externalizable. Also the value returned from a callable

must be Serializable or Externalizable as well. If the value returned is not serializable a

NotSerializableException will be thrown.

Infinispan’s distributed task executors use data from Infinispan cache nodes as input for execution

tasks. Most other distributed frameworks do not have that leverage and users have to specify input

for distributed tasks from some well known location. Furthermore, users of Infinispan distributed

execution framework do not have to configure store for intermediate and final results thus

removing another layer of complexity and maintenance.

Our distributed execution framework capitalizes on the fact input data in Infinispan data grid is

already load balanced (in case of DIST mode). Since input data is already balanced execution tasks

will be automatically balanced as well; users do not have to explicitly assign work tasks to specific

Infinispan nodes. However, our framework accommodates users to specify arbitrary subset of

cache keys as input for distributed execution tasks.

12.1. DistributedCallable API

In case users needs access to Infinispan cache data for an execution of a task we recommend that

you encapsulate task in DistributedCallable interface. DistributedCallable is a subtype of the

existing Callable from java.util.concurrent package; DistributedCallable can be executed in a

remote JVM and receive input from Infinispan cache. Task’s main algorithm could essentially

remain unchanged, only the input source is changed. Existing Callable implementations most likely

get their input in a form of some Java object/primitive while DistributedCallable gets its input from

an Infinispan cache. Therefore, users who have already implemented Callable interface to describe

their task units would simply extend DistributedCallable and use keys from Infinispan execution

environment as input for the task. Implentation of DistributedCallable can in fact continue to

support implementation of an already existing Callable while simultaneously be ready for

distribited execution by extending DistributedCallable.

138

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/distexec/DistributedCallable.html

public interface DistributedCallable<K, V, T> extends Callable<T> {

 /**

 * Invoked by execution environment after DistributedCallable

 * has been migrated for execution to a specific Infinispan node.

 *

 * @param cache

 * cache whose keys are used as input data for this

 * DistributedCallable task

 * @param inputKeys

 * keys used as input for this DistributedCallable task

 */

 public void setEnvironment(Cache<K, V> cache, Set<K> inputKeys);

}

12.2. Callable and CDI

Users that do not want or can not implement DistributedCallable yet need a reference to input

cache used in DistributedExecutorService have an option of the input cache being injected by CDI

mechanism. Upon arrival of user’s Callable to an Infinispan executing node, Infinispan CDI

mechanism will provide appropriate cache reference and inject it to executing Callable. All one has

to do is to declare a Cache field in Callable and annotate it with org.infinispan.cdi.Input annotation

along with mandatory @Inject annotation.

 public class CallableWithInjectedCache implements Callable<Integer>, Serializable {

 @Inject

 @Input

 private Cache<String, String> cache;

 @Override

 public Integer call() throws Exception {

 //use injected cache reference

 return 1;

 }

}

12.3. DistributedExecutorService,

DistributedTaskBuilder and DistributedTask API

DistributedExecutorService is a simple extension of a familiar ExecutorService from

java.util.concurrent package. However, advantages of DistributedExecutorService are not to be

overlooked. Existing Callable tasks, instead of being executed in JDK’s ExecutorService, are also

eligible for execution on Infinispan cluster. Infinispan execution environment would migrate a task

139

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/distexec/DistributedExecutorService.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

to execution node(s), run the task and return the result(s) to the calling node. Of course, not all

Callable tasks would benefit from parallel distributed execution. Excellent candidates are long

running and computationally intensive tasks that can run concurrently and/or tasks using input

data that can be processed concurrently. For more details about good candidates for parallel

execution and parallel algorithms in general refer to Introduction to Parallel Computing .

The second advantage of the DistributedExecutorService is that it allows a quick and simple

implementation of tasks that take input from Infinispan cache nodes, execute certain computation

and return results to the caller. Users would specify which keys to use as input for specified

DistributedCallable and submit that callable for execution on Infinispan cluster. Infinispan runtime

would locate the appriate keys, migrate DistributedCallable to target execution node(s) and finally

return a list of results for each executed Callable. Of course, users can omit specifying input keys in

which case Infinispan would execute DistributedCallable on all keys for a specified cache.

Lets see how we can use DistributedExecutorService If you already have Callable/Runnable tasks

defined! Well, simply submit them to an instance of DefaultExecutorService for execution!

ExecutorService des = new DefaultExecutorService(cache);

Future<Boolean> future = des.submit(new SomeCallable());

Boolean r = future.get();

In case you need to specify more task parameters like task timeout, custom failover policy or

execution policy use DistributedTaskBuilder and DistributedTask API.

DistributedExecutorService des = new DefaultExecutorService(cache);

DistributedTaskBuilder<Boolean> taskBuilder = des.createDistributedTaskBuilder(new

SomeCallable());

taskBuilder.timeout(10,TimeUnit.SECONDS);

...

...

DistributedTask<Boolean> distributedTask = taskBuilder.build();

Future<Boolean> future = des.submit(distributedTask);

Boolean r = future.get();

12.4. Distributed task failover

Distributed execution framework supports task failover. By default no failover policy is installed

and task’s Runnable/Callable/DistributedCallable will simply fail. Failover mechanism is invoked in

the following cases:

a) Failover due to a node failure where task is executing

b) Failover due to a task failure (e.g. Callable task throws Exception).

Infinispan provides random node failover policy which will attempt execution of a part of

distributed task on another random node, if such node is available. However, users that have a

need to implement a more sophisticated failover policy can implement

140

https://computing.llnl.gov/tutorials/parallel_comp/
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/distexec/DistributedTaskBuilder.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/distexec/DistributedTask.html

DistributedTaskFailoverPolicy interface. For example, users might want to use consistent hashing

(CH) mechanism for failover of uncompleted tasks. CH based failover might for example migrate

failed task T to cluster node(s) having a backup of input data that was executed on a failed node F.

/**

 * DistributedTaskFailoverPolicy allows pluggable fail over target selection for a

failed remotely

 * executed distributed task.

 *

 */

public interface DistributedTaskFailoverPolicy {

 /**

 * As parts of distributively executed task can fail due to the task itself

throwing an exception

 * or it can be an Infinispan system caused failure (e.g node failed or left

cluster during task

 * execution etc).

 *

 * @param failoverContext

 * the FailoverContext of the failed execution

 * @return result the Address of the Infinispan node selected for fail over

execution

 */

 Address failover(FailoverContext context);

 /**

 * Maximum number of fail over attempts permitted by this

DistributedTaskFailoverPolicy

 *

 * @return max number of fail over attempts

 */

 int maxFailoverAttempts();

}

Therefore one could for example specify random failover execution policy simply by:

DistributedExecutorService des = new DefaultExecutorService(cache);

DistributedTaskBuilder<Boolean> taskBuilder = des.createDistributedTaskBuilder(new

SomeCallable());

taskBuilder.failoverPolicy(DefaultExecutorService.RANDOM_NODE_FAILOVER);

DistributedTask<Boolean> distributedTask = taskBuilder.build();

Future<Boolean> future = des.submit(distributedTask);

Boolean r = future.get();

141

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/distexec/DistributedTaskFailoverPolicy.html

12.5. Distributed task execution policy

DistributedTaskExecutionPolicy is an enum that allows tasks to specify its custom task execution

policy across Infinispan cluster. DistributedTaskExecutionPolicy effectively scopes execution of

tasks to a subset of nodes. For example, someone might want to exclusively execute tasks on a local

network site instead of a backup remote network centre as well. Others might, for example, use

only a dedicated subset of a certain Infinispan rack nodes for specific task execution.

DistributedTaskExecutionPolicy is set per instance of DistributedTask.

DistributedExecutorService des = new DefaultExecutorService(cache);

DistributedTaskBuilder<Boolean> taskBuilder = des.createDistributedTaskBuilder(new

SomeCallable());

taskBuilder.executionPolicy(DistributedTaskExecutionPolicy.SAME_RACK);

DistributedTask<Boolean> distributedTask = taskBuilder.build();

Future<Boolean> future = des.submit(distributedTask);

Boolean r = future.get();

12.6. Examples

Pi approximation can greatly benefit from parallel distributed execution in

DistributedExecutorService. Recall that area of the square is Sa = 4r2 and area of the circle is

Ca=pi*r2. Substituting r2 from the second equation into the first one it turns out that pi = 4 * Ca/Sa.

Now, image that we can shoot very large number of darts into a square; if we take ratio of darts

that land inside a circle over a total number of darts shot we will approximate Ca/Sa value. Since

we know that pi = 4 * Ca/Sa we can easily derive approximate value of pi. The more darts we shoot

the better approximation we get. In the example below we shoot 10 million darts but instead of

"shooting" them serially we parallelize work of dart shooting across entire Infinispan cluster.

 public class PiAppx {

 public static void main (String [] arg){

 List<Cache> caches = ...;

 Cache cache = ...;

 int numPoints = 10000000;

 int numServers = caches.size();

 int numberPerWorker = numPoints / numServers;

 DistributedExecutorService des = new DefaultExecutorService(cache);

 long start = System.currentTimeMillis();

 CircleTest ct = new CircleTest(numberPerWorker);

 List<Future<Integer>> results = des.submitEverywhere(ct);

 int countCircle = 0;

 for (Future<Integer> f : results) {

 countCircle += f.get();

 }

 double appxPi = 4.0 * countCircle / numPoints;

142

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/distexec/DistributedTaskExecutionPolicy.html

 System.out.println("Distributed PI appx is " + appxPi +

 " completed in " + (System.currentTimeMillis() - start) + " ms");

 }

 private static class CircleTest implements Callable<Integer>, Serializable {

 /** The serialVersionUID */

 private static final long serialVersionUID = 3496135215525904755L;

 private final int loopCount;

 public CircleTest(int loopCount) {

 this.loopCount = loopCount;

 }

 @Override

 public Integer call() throws Exception {

 int insideCircleCount = 0;

 for (int i = 0; i < loopCount; i++) {

 double x = Math.random();

 double y = Math.random();

 if (insideCircle(x, y))

 insideCircleCount++;

 }

 return insideCircleCount;

 }

 private boolean insideCircle(double x, double y) {

 return (Math.pow(x - 0.5, 2) + Math.pow(y - 0.5, 2))

 <= Math.pow(0.5, 2);

 }

 }

}

143

Chapter 13. Querying

Infinispan supports indexing and searching of Java objects stored in the grid using powerful search

APIs which complement its main Map-like API. Historically, searching was first available in

Infinispan via Apache Lucene's API but since version 6.0 Infinispan provides its own query API

based on a simple and expressive internal DSL. Searching with the new API is available for both

embedded and remote clients while the Lucene based API is only available to embedded clients.

The remote querying capability is further described in the Hot Rod client chapter.

13.1. The infinispan-query module

This module adds indexing and querying capabilities to Infinispan. It uses Hibernate Search and

Apache Lucene to index and search objects in the cache. It allows users to obtain objects within the

cache without needing to know the keys to each object that they want to obtain. You can search

your objects based on some of its properties. For example to retrieve all red cars (exact metadata

match), or all books about a specific topic (full text search and relevance scoring).

The queries can be expressed as Lucene queries, built directly using the Lucene Query API or built

with the help of Hibernate Search Query DSL. Alternatively, you can also use Infinispan’s own

query DSL which most users might find easier to use than the one based on Lucene at the cost of

not being able to access some of the powerful capabilities which are specific to the underlying

Lucene implementation.

Indexing must be enabled in the configuration (as explained in XML Configuration or

Programmatic configuration). This will trigger automatic indexing of objects stored in the cache;

there are several different ways to specify how these objects need to be indexed explained in the

following paragraphs. To run queries you use the SearchManager which exposes all necessary

methods to get started.

13.2. Simple example

We’re going to store Book instances in Infinispan; each Book will be defined as in the following

example; we have to choose which properties are indexed, and for each property we can optionally

choose advanced indexing options using the annotations defined in the Hibernate Search project.

144

http://lucene.apache.org/
#infinispan_s_query_dsl
#querying_via_the_java_hot_rod_client
http://hibernate.org/subprojects/search
http://lucene.apache.org/

// example values stored in the cache and indexed:

import org.hibernate.search.annotations.*;

//Values you want to index need to be annotated with @Indexed, then you pick which

fields and how they are to be indexed:

@Indexed

public class Book {

 @Field String title;

 @Field String description;

 @Field @DateBridge(resolution=Resolution.YEAR) Date publicationYear;

 @IndexedEmbedded Set<Author> authors = new HashSet<Author>();

}

public class Author {

 @Field String name;

 @Field String surname;

 // hashCode() and equals() omitted

}

Now assuming we stored several Book instances in our Infinispan Cache , we can search them for

any matching field as in the following example.

// get the search manager from the cache:

SearchManager searchManager = org.infinispan.query.Search.getSearchManager(cache);

// create any standard Lucene query, via Lucene's QueryParser or any other means:

org.apache.lucene.search.Query fullTextQuery = //any Apache Lucene Query

// convert the Lucene query to a CacheQuery:

CacheQuery cacheQuery = searchManager.getQuery(fullTextQuery);

// get the results:

List<Object> found = cacheQuery.list();

A Lucene Query is often created by parsing a query in text format such as "title:infinispan AND

authors.name:sanne", or by using the query builder provided by Hibernate Search.

// get the search manager from the cache:

SearchManager searchManager = org.infinispan.query.Search.getSearchManager(cache);

// you could make the queries via Lucene APIs, or use some helpers:

QueryBuilder queryBuilder = searchManager.buildQueryBuilderForClass(Book.class).get();

// the queryBuilder has a nice fluent API which guides you through all options.

// this has some knowledge about your object, for example which Analyzers

// need to be applied, but the output is a fairly standard Lucene Query.

org.apache.lucene.search.Query luceneQuery = queryBuilder.phrase()

 .onField("description")

145

 .andField("title")

 .sentence("a book on highly scalable query engines")

 .createQuery();

// the query API itself accepts any Lucene Query, and on top of that

// you can restrict the result to selected class types:

CacheQuery query = searchManager.getQuery(luceneQuery, Book.class);

// and there are your results!

List objectList = query.list();

for (Object book : objectList) {

 System.out.println(book);

}

A part from list() you have the option for streaming results, or use pagination.

This barely scratches the surface of all what is possible to do: see the Hibernate Search reference

documentation to learn about sorting, numeric fields, declarative filters, caching filters, complex

object graph indexing, custom types and the powerful faceting search API.

13.2.1. Notable differences with Hibernate Search

Using @DocumentId to mark a field as identifier does not apply to Infinispan values; in Infinispan

Query the identifier for all @Indexed objects is the key used to store the value. You can still

customize how the key is indexed using a combination of @Transformable , custom types and

custom FieldBridge implementations.

13.2.2. Requirements for the Key: @Transformable

The key for each value needs to be indexed as well, and the key instance must be transformed in a

String. Infinispan includes some default transformation routines to encode common primitives, but

to use a custom key you must provide an implementation of org.infinispan.query.Transformer .

Registering a Transformer via annotations

You can annotate your key type with org.infinispan.query.Transformable :

146

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single

@Transformable(transformer = CustomTransformer.class)

public class CustomKey {

 ...

}

public class CustomTransformer implements Transformer {

 @Override

 public Object fromString(String s) {

 ...

 return new CustomKey(...);

 }

 @Override

 public String toString(Object customType) {

 CustomKey ck = (CustomKey) customType;

 return ...

 }

}

Registering a Transformer programmatically

Using this technique, you don’t have to annotated your custom key type:

org.infinispan.query.SearchManager.registerKeyTransformer(Class<?>, Class<? extends

Transformer>)

13.3. Configuration

13.3.1. Configuration via XML

To enable indexing via XML, you need to add the <indexing /> element to your cache configuration,

and optionally pass additional properties to the embedded Hibernate Search engine:

<infinispan>

 <cache-container default-cache="default">

 <local-cache name="default">

 <indexing index="LOCAL">

 <property name="default.directory_provider">ram</property>

 </indexing>

 </local-cache>

 </cache-container>

</infinispan>

In this example the index is stored in memory, so when this nodes is shutdown the index is lost:

good for a quick demo, but in real world cases you’ll want to use the default (store on filesystem) or

store the index in Infinispan as well. For the complete reference of properties to define, refer to the

147

Hibernate Search documentation .

13.3.2. Automatic configuration

 <local-cache name="default">

 <indexing index="LOCAL" auto-config="true">

 </indexing>

 </local-cache>

Tha attribute auto-config provides a simple way of configuring indexing based on the cache type.

For replicated and local caches, the indexing is configured to be persisted on disk and not shared

with any other processes. Also, it is configured so that minimum delay exists between the moment

an object is indexed and the moment it is available for searches (near real time).

it is possible to redefine any property added via auto-config, and also add new

properties, allowing for advanced tuning.

The auto config adds the following properties for replicated and local caches:

Prop

erty

name

value description

hiber

nate.s

earch

.defa

ult.di

rector

y_pro

vider

filesystem Filesystem based index. More details at Hibernate Search

documentation

hiber

nate.s

earch

.defa

ult.ex

clusiv

e_ind

ex_us

e

true indexing operation in exclusive mode, allowing Hibernate Search to

optimize writes

hiber

nate.s

earch

.defa

ult.in

dexm

anage

r

near-real-time make use of Lucene near real time feature, meaning indexed objects

are promptly available to searches

148

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration-directory
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration-directory

Prop

erty

name

value description

hiber

nate.s

earch

.defa

ult.re

ader.s

trateg

y

shared Reuse index reader across several queries, thus avoiding reopening it

For distributed caches, the auto-config configure indexes in infinispan itself, internally handled as a

master-slave mechanism where indexing operations are sent to a single node which is responsible

to write to the index.

The auto config properties for distributed caches are:

Prop

erty

name

value description

hiber

nate.s

earch

.defa

ult.di

rector

y_pro

vider

infinispan Indexes stored in Infinispan. More details at Hibernate Search

documentation

hiber

nate.s

earch

.defa

ult.ex

clusiv

e_ind

ex_us

e

true indexing operation in exclusive mode, allowing Hibernate Search to

optimize writes

hiber

nate.s

earch

.defa

ult.in

dexm

anage

r

org.infinispan.quer

y.indexmanager.Inf

inispanIndexManag

er

Delegates index writing to a single node in the Infinispan cluster

149

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#infinispan-directories
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#infinispan-directories

Prop

erty

name

value description

hiber

nate.s

earch

.defa

ult.re

ader.s

trateg

y

shared Reuse index reader across several queries, avoiding reopening it

13.3.3. Lucene Directory

Infinispan Query isn’t aware of where you store the indexes, it just passes the configuration of

which Lucene Directory implementation you want to use to the Hibernate Search engine. There are

several Lucene Directory implementations bundled, and you can plug your own or add third party

implementations: the Directory is the IO API for Lucene to store the indexes.

The most common Lucene Directory implementations used with Infinispan Query are:

• Ram - stores the index in a local map to the node. This index can’t be shared.

• Filesystem - stores the index in a locally mounted filesystem. This could be a network shared FS,

but sharing this way is generally not recommended.

• Infinispan - stores the index in a different dedicated Infinispan cache. This cache can be

configured as replicated or distributed, to share the index among nodes. See also the dedicated

chapter on the Lucene Directory in this guide.

Of course having a shared index vs. an independent index on each node directly affects behaviour

of the Query module; some combinations might not make much sense.

13.3.4. Using programmatic configuration and index mapping

In the following example we start Infinispan programmatically, avoiding XML configuration files,

and also map an object Author which is to be stored in the grid and made searchable on two

properties but without annotating the class.

SearchMapping mapping = new SearchMapping();

mapping.entity(Author.class).indexed()

 .property("name", ElementType.METHOD).field()

 .property("surname", ElementType.METHOD).field();

Properties properties = new Properties();

properties.put(org.hibernate.search.Environment.MODEL_MAPPING, mapping);

properties.put("hibernate.search.[other options]", "[...]");

Configuration infinispanConfiguration = new ConfigurationBuilder()

 .indexing()

150

 .enable()

 .indexLocalOnly(true)

 .withProperties(properties)

 .build();

DefaultCacheManager cacheManager = new DefaultCacheManager(infinispanConfiguration);

Cache<Long, Author> cache = cacheManager.getCache();

SearchManager sm = Search.getSearchManager(cache);

Author author = new Author(1, "Manik", "Surtani");

cache.put(author.getId(), author);

QueryBuilder qb = sm.buildQueryBuilderForClass(Author.class).get();

Query q = qb.keyword().onField("name").matching("Manik").createQuery();

CacheQuery cq = sm.getQuery(q, Author.class);

Assert.assertEquals(cq.getResultSize(), 1);

13.4. Cache modes and managing indexes

Index management is currently controlled by the Configuration.setIndexLocalOnly() setter, or the

<indexing index="LOCAL" /> XML element. If you set this to true, only modifications made locally on

each node are considered in indexing. Otherwise, remote changes are considered too.

Regarding actually configuring a Lucene directory, refer to the Hibernate Search documentation on

how to pass in the appropriate Lucene configuration via the Properties object passed to

QueryHelper.

13.4.1. LOCAL

In local mode, you may use any Lucene Directory implementation. Also the option indexLocalOnly

isn’t meaningful.

13.4.2. REPLICATION

In replication mode, each node can have its own local copy of the index. So indexes can either be

stored locally on each node (RAMDirectory, FSDirectory, etc) but you need to set indexLocalOnly to

false , so that each node will apply needed updates it receives from other nodes in addition to the

updates started locally. Any Directory implementation can be used, but you have to make sure that

when a new node is started it receives an up to date copy of the index; typically rsync is well suited

for this task, but being an external operation you might end up with a slightly out-of-sync index,

especially if updates are very frequent.

Alternately, if you use some form of shared storage for indexes (see Sharing the Index), you then

have to set indexLocalOnly to true so that each node will apply only the changes originated locally;

in this case there’s no risk in having an out-of-sync index, but to avoid write contention on the

index you should make sure that a single node is "in charge" of updating the index. Again, the

Hibernate Search reference documentation describes means to use a JMS queue or JGroups to send

indexing tasks to a master node.

151

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#jms-backend
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#jgroups-backend

The diagram below shows a replicated deployment, in which each node has a local index.

Figure 11. Indexes in replicated mode

13.4.3. DISTRIBUTION

For these 2 cache modes, you need to use a shared index and set indexLocalOnly to true.

The diagram below shows a deployment with a shared index. Note that while not mandatory, a

shared index can be used for replicated (vs. distributed) caches as well.

Figure 12. Shared indexes

152

13.4.4. INVALIDATION

Indexing or searching of elements under INVALIDATION mode is not supported.

13.5. Sharing the Index

The most simple way to share an index is to use some form of shared storage for the indexes, like

an FSDirectory on a shared disk; however this form is problematic as the FSDirectory relies on

specific locking semantics which are often incompletely implemented on network filesystems, or

not reliable enough; if you go for this approach make sure to search for potential problems on the

Lucene mailing lists for other experiences and workarounds. Good luck, test well.

There are many alternative Directory implementations you can find, one of the most suited

approaches when working with Infinispan is of course to store the index in an Infinispan cache:

have a look at the InfinispanDirectoryProvider , as all Infinispan based layers it can be combined

with persistent CacheLoaders to keep the index on a shared filesystem without the locking issues,

or alternatively in a database, cloud storage, or any other CacheLoader implementation; you could

backup the index in the same store used to backup your values.

For full documentation on clustering the Lucene engine, refer to the Hibernate Search

documentation to properly configure it clustered.

13.6. Clustering the Index in Infinispan

Again the configuration details are in the Hibernate Search reference, in particular in the

infinispan-directories section. This backend will by default start a secondary Infinispan

CacheManager, and optionally take another Infinispan configuration file: don’t reuse the same

configuration or you will start grids recursively! It is currently not possible to share the same

CacheManager.

13.7. Rebuilding the Index

Occasionally you might need to rebuild the Lucene index by reconstructing it from the data stored

in the Cache. You need to rebuild the index if you change the definition of what is indexed on your

types, or if you change for example some Analyzer parameter, as Analyzers affect how the index is

defined. Also, you might need to rebuild the index if you had it destroyed by some system

administration mistake. To rebuild the index just get a reference to the MassIndexer and start it;

beware if might take some time as it needs to reprocess all data in the grid!

SearchManager searchManager = Search.getSearchManager(cache);

searchManager.getMassIndexer().start();

This is also available as a start JMX operation on the MassIndexer MBean

registered under the name org.infinispan:type=Query,manager="{name-of-cache-

manager}",cache="{name-of-cache}",component=MassIndexer.

153

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#infinispan-directories
https://docs.jboss.org/infinispan/9.0/apidocs/jmxComponents.html#MassIndexer

13.8. Obtaining query statistics

Query Statistics can be obtained from the SearchManager, as demonstrated in the following code

snippet.

SearchManager searchManager = Search.getSearchManager(cache);

org.hibernate.search.stat.Statistics statistics = searchManager.getStatistics();

This data is also available via JMX through the Hibernate Search

StatisticsInfoMBean registered under the name
org.infinispan:type=Query,manager="{name-of-cache-manager}",cache="{name-of-

cache}",component=Statistics. Please note this MBean is always registered by

Infinispan but the statistics are collected only if statistics collection is enabled at

cache level.

Hibernate Search has its own configuration properties

hibernate.search.jmx_enabled and hibernate.search.generate_statistics for JMX

statistics as explained here. Using them with Infinispan Query is forbidden as it

will only lead to duplicated MBeans and unpredictable results.

13.9. Infinispan’s Query DSL

This is a new API undergoing refinements and changes that might break

compatibility in future releases.

Starting with 6.0 Infinispan provides its own query DSL, independent of Lucene and Hibernate

Search. Decoupling the query API from the underlying query and indexing mechanism makes it

possible to introduce new alternative engines in the future, besides Lucene, and still being able to

use the same uniform query API. The current implementation of indexing and searching is still

based on Hibernate Search and Lucene so all indexing related aspects presented in this chapter still

apply.

The new API simplifies the writing of queries by not exposing the user to the low level details of

constructing Lucene query objects and also has the advantage of being available to remote Hot Rod

clients. But before delving into further details, let’s examine first a simple example of writing a

query for the Book entity from previous example.

154

http://docs.jboss.org/hibernate/search/4.4/api/org/hibernate/search/stat/Statistics.html
http://docs.jboss.org/hibernate/search/4.4/reference/en-US/html/search-monitoring.html#d0e7624
http://docs.jboss.org/hibernate/search/4.4/reference/en-US/html/search-monitoring.html#d0e7624
#enabling_jmx_statistics
http://docs.jboss.org/hibernate/search/4.4/reference/en-US/html/search-monitoring.html#d0e7595
#querying_via_the_java_hot_rod_client
#querying_via_the_java_hot_rod_client
#simple_example

Query example using Infinispan’s query DSL

import org.infinispan.query.dsl.*;

// get the DSL query factory from the cache, to be used for constructing the Query

object:

QueryFactory qf = org.infinispan.query.Search.getQueryFactory(cache);

// create a query for all the books that have a title which contains the word

"engine":

org.infinispan.query.dsl.Query query = qf.from(Book.class)

 .having("title").like("%engine%")

 .toBuilder().build();

// get the results:

List<Book> list = query.list();

The API is located in the org.infinispan.query.dsl package. A query is created with the help of the

QueryFactory instance which is obtained from the per-cache SearchManager. Each QueryFactory

instance is bound to the same Cache instance as the SearchManager, but it is otherwise a stateless

and thread-safe object that can be used for creating multiple queries in parallel.

Query creation starts with the invocation of the from(Class entityType) method which returns a

QueryBuilder object that is further responsible for creating queries targeted to the specified entity

class from the given cache.

A query will always target a single entity type and is evaluated over the contents

of a single cache. Running a query over multiple caches or creating queries that

target several entity types (joins) is not supported.

The QueryBuilder accumulates search criteria and configuration specified through the invocation of

its DSL methods and is ultimately used to build a Query object by the invocation of the

QueryBuilder.build() method that completes the construction. Being a stateful object, it cannot be

used for constructing multiple queries at the same time (except for nested queries) but can be

reused afterwards.

This QueryBuilder is different from the one from Hibernate Search but has a

somewhat similar purpose, hence the same name. We are considering renaming

it in near future to prevent ambiguity.

Executing the query and fetching the results is as simple as invoking the list() method of the

Query object. Once executed the Query object is not reusable. If you need to re-execute it in order to

obtain fresh results then a new instance must be obtained by calling QueryBuilder.build().

13.10. Filtering operators

Constructing a query is a hierarchical process of composing multiple criteria and is best explained

following this hierarchy.

155

#nested_conditions

The simplest possible form of a query criteria is a restriction on the values of an entity attribute

according to a filtering operator that accepts zero or more arguments. The entity attribute is

specified by invoking the having(String attributePath) method of the query builder which returns

an intermediate context object (FilterConditionEndContext) that exposes all the available operators.

Each of the methods defined by FilterConditionEndContext is an operator that accepts an argument,

except for between which has two arguments and isNull which has no arguments. The arguments

are statically evaluated at the time the query is constructed, so if you’re looking for a feature

similar to SQL’s correlated sub-queries, that is not currently available.

// a single query criterion

QueryBuilder qb = ...

qb.having("title").eq("Infinispan Data Grid Platform");

Table 5. FilterConditionEndContext exposes the following filtering operators:

Filter Arguments Description

in Collection values Checks that the left operand is equal to one of the elements from the

Collection of values given as argument.

in Object… values Checks that the left operand is equal to one of the (fixed) list of values

given as argument.

conta

ins

Object value Checks that the left argument (which is expected to be an array or a

Collection) contains the given element.

conta

insAll

Collection values Checks that the left argument (which is expected to be an array or a

Collection) contains all the elements of the given collection, in any

order.

conta

insAll

Object… values Checks that the left argument (which is expected to be an array or a

Collection) contains all of the the given elements, in any order.

conta

insAn

y

Collection values Checks that the left argument (which is expected to be an array or a

Collection) contains any of the elements of the given collection.

conta

insAn

y

Object… values Checks that the left argument (which is expected to be an array or a

Collection) contains any of the the given elements.

isNull Checks that the left argument is null.

like String pattern Checks that the left argument (which is expected to be a String)

matches a wildcard pattern that follows the JPA rules.

eq Object value Checks that the left argument is equal to the given value.

equal Object value Alias for eq.

gt Object value Checks that the left argument is greater than the given value.

gte Object value Checks that the left argument is greater than or equal to the given

value.

lt Object value Checks that the left argument is less than the given value.

156

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/query/dsl/FilterConditionEndContext.html

Filter Arguments Description

lte Object value Checks that the left argument is less than or equal to the given value.

betwe

en

Object from,

Object to

Checks that the left argument is between the given range limits.

It’s important to note that query construction requires a multi-step chaining of method invocation

that must be done in the proper sequence, must be properly completed exactly once and must not

be done twice, or it will result in an error. The following examples are invalid, and depending on

each case they lead to criteria being ignored (in benign cases) or an exception being thrown (in

more serious ones).

// Incomplete construction. This query does not have any filter on "title" attribute

yet,

// although the author may have intended to add one.

QueryBuilder qb1 = ...

qb1.having("title");

Query q1 = qb1.build(); // consequently, this query matches all Book instances

regardless of title!

// Duplicated completion. This results in an exception at run-time.

// Maybe the author intended to connect two conditions with a boolean operator,

// but this does NOT actually happen here.

QueryBuilder qb2 = ...

qb2.having("title").like("%Infinispan%");

qb2.having("description").like("%clustering%"); // will throw

java.lang.IllegalStateException: Sentence already started. Cannot use 'having(..)'

again.

Query q2 = qb2.build();

13.10.1. Filtering based on attributes of embedded entities

The having method also accepts dot separated attribute paths for referring to embedded entity

attributes, so the following is a valid query:

// match all books that have an author named "Manik"

Query query = queryFactory.from(Book.class)

 .having("author.name").eq("Manik")

 .toBuilder().build();

Each part of the attribute path must refer to an existing indexed attribute in the corresponding

entity or embedded entity class respectively. It’s possible to have multiple levels of embedding.

13.11. Boolean conditions

Combining multiple attribute conditions with logical conjunction (and) and disjunction (or)

operators in order to create more complex conditions is demonstrated in the following example.

157

The well known operator precedence rule for boolean operators applies here, so the order of DSL

method invocations during construction is irrelevant. Here and operator still has higher priority

than or even though or was invoked first.

// match all books that have the word "Infinispan" in their title

// or have an author named "Manik" and their description contains the word

"clustering"

Query query = queryFactory.from(Book.class)

 .having("title").like("%Infinispan%")

 .or().having("author.name").eq("Manik")

 .and().having("description").like("%clustering%")

 .toBuilder().build();

Boolean negation is achieved with the not operator, which has highest precedence among logical

operators and applies only to the next simple attribute condition.

// match all books that do not have the word "Infinispan" in their title and are

authored by "Manik"

Query query = queryFactory.from(Book.class)

 .not().having("title").like("%Infinispan%")

 .and().having("author.name").eq("Manik")

 .toBuilder().build();

13.12. Nested conditions

Changing the precendece of logical operators is achieved with nested filter conditions. Logical

operators can be used to connect two simple attribute conditions as presented before, but can also

connect a simple attribute condition with the subsequent complex condition created with the same

query factory.

// match all books that have an author named "Manik" and their title contains

// the word "Infinispan" or their description contains the word "clustering"

Query query = queryFactory.from(Book.class)

 .having("author.name").eq("Manik");

 .and(queryFactory.having("title").like("%Infinispan%")

 .or().having("description").like("%clustering%"))

 .toBuilder().build();

13.13. Projections

In some use cases returning the whole domain object is overkill if only a small subset of the

attributes are actually used by the application, especially if the domain entity has embedded

entities. The query language allows you to specify a subset of attributes (or attribute paths) to

return - the projection. If projections are used then the Query.list() will not return the whole

domain entity but will return a List of Object[], each slot in the array corresponding to a projected

158

attribute.

TODO document what needs to be configured for an attribute to be available for projection.

// match all books that have the word "Infinispan" in their title or description

// and return only their title and publication year

Query query = queryFactory.from(Book.class)

 .select("title", "publicationYear")

 .having("title").like("%Infinispan%")

 .or().having("description").like("%Infinispan%"))

 .toBuilder().build();

13.14. Sorting

Ordering the results based on one or more attributes or attribute paths is done with the

QueryBuilder.orderBy() method which accepts an attribute path and a sorting direction. If

multiple sorting criteria are specified, then the order of invocation of orderBy method will dictate

their precedence. But you have to think of the multiple sorting criteria as acting together on the

tuple of specified attributes rather than in a sequence of individual sorting operations on each

attribute.

TODO document what needs to be configured for an attribute to be available for sorting.

// match all books that have the word "Infinispan" in their title or description

// and return them sorted by the publication year and title

Query query = queryFactory.from(Book.class)

 .orderBy("publicationYear", SortOrder.DESC)

 .orderBy("title", SortOrder.ASC)

 .having("title").like("%Infinispan%")

 .or().having("description").like("%Infinispan%"))

 .toBuilder().build();

13.15. Pagination

You can limit the number of returned results by setting the maxResults property of QueryBuilder.

This can be used in conjunction with setting the startOffset in order to achieve pagination of the

result set.

159

// match all books that have the word "clustering" in their title

// sorted by publication year and title

// and return 3'rd page of 10 results

Query query = queryFactory.from(Book.class)

 .orderBy("publicationYear", SortOrder.DESC)

 .orderBy("title", SortOrder.ASC)

 .setStartOffset(20)

 .maxResults(10)

 .having("title").like("%clustering%")

 .toBuilder().build();

Even if the results being fetched are limited to maxResults you can still find the

total number of matching results by calling Query.getResultSize().

TODO Does pagination make sense if no stable sort criteria is defined? Luckily when running on

Lucene and no sort criteria is specified we still have the order of relevance, but this has to be

defined for other search engines.

13.16. Grouping and Aggregation

Infinispan has the ability to group query results according to a set of grouping fields and construct

aggregations of the results from each group by applying an aggregation function to the set of values

that fall into each group. Grouping and aggregation can only be applied to projection queries. The

supported aggregations are: avg, sum, count, max, min. The set of grouping fields is specified with

the groupBy(field) method, which can be invoked multiple times. The order used for defining

grouping fields is not relevant. All fields selected in the projection must either be grouping fields or

else they must be aggregated using one of the grouping functions described below. A projection

field can be aggregated and used for grouping at the same time. A query that selects only grouping

fields but no aggregation fields is legal.

Example: Grouping Books by author and counting them.

Query query = queryFactory.from(Book.class)

 .select(Expression.property("author"), Expression.count("title"))

 .having("title").like("%engine%")

 .toBuilder()

 .groupBy("author")

 .build();

A projection query in which all selected fields have an aggregation function

applied and no fields are used for grouping is allowed. In this case the

aggregations will be computed globally as if there was a single global group.

13.16.1. Aggregations

The following aggregation functions may be applied to a field: avg, sum, count, max, min

160

• avg() - Computes the average of a set of numbers. Accepted values are primitive numbers and

instances of java.lang.Number. The result is represented as java.lang.Double. If there are no non-

null values the result is null instead.

• count() - Counts the number of non-null rows and returns a java.lang.Long. If there are no non-

null values the result is 0 instead.

• max() - Returns the greatest value found. Accepted values must be instances of

java.lang.Comparable. If there are no non-null values the result is null instead.

• min() - Returns the smallest value found. Accepted values must be instances of

java.lang.Comparable. If there are no non-null values the result is null instead.

• sum() - Computes the sum of a set of Numbers. If there are no non-null values the result is null

instead. The following table indicates the return type based on the specified field.

Table 6. Table sum return type

Field Type Return Type

Integral (other than BigInteger) Long

Float or Double Double

BigInteger BigInteger

BigDecimal BigDecimal

13.16.2. Evaluation of queries with grouping and aggregation

Aggregation queries can include filtering conditions, like usual queries. Filtering can be performed

in two stages: before and after the grouping operation. All filter conditions defined before invoking

the groupBy method will be applied before the grouping operation is performed, directly to the

cache entries (not to the final projection). These filter conditions may reference any fields of the

queried entity type, and are meant to restrict the data set that is going to be the input for the

grouping stage. All filter conditions defined after invoking the groupBy method will be applied to

the projection that results from the projection and grouping operation. These filter conditions can

either reference any of the groupBy fields or aggregated fields. Referencing aggregated fields that

are not specified in the select clause is allowed; however, referencing non-aggregated and non-

grouping fields is forbidden. Filtering in this phase will reduce the amount of groups based on their

properties. Sorting may also be specified similar to usual queries. The ordering operation is

performed after the grouping operation and can reference any of the groupBy fields or aggregated

fields.

13.17. Using Named Query Parameters

Instead of building a new Query object for every execution it is possible to include named

parameters in the query which can be substituted with actual values before execution. This allows

a query to be defined once and be efficiently executed many times. Parameters can only be used on

the right-hand side of an operator and are defined when the query is created by supplying an object

produced by the org.infinispan.query.dsl.Expression.param(String paramName) method to the

operator instead of the usual constant value. Once the parameters have been defined they can be

161

set by invoking either Query.setParameter(parameterName, value) or

Query.setParameters(parameterMap) as shown in the examples below.

import org.infinispan.query.Search;

import org.infinispan.query.dsl.*;

[...]

QueryFactory queryFactory = Search.getQueryFactory(cache);

// Defining a query to search for various authors and publication years

Query query = queryFactory.from(Book.class)

 .select("title")

 .having("author").eq(Expression.param("authorName"))

 .and()

 .having("publicationYear").eq(Expression.param("publicationYear"))

 .toBuilder().build();

// Set actual parameter values

query.setParameter("authorName", "Doe");

query.setParameter("publicationYear", 2010);

// Execute the query

List<Book> found = query.list();

Alternatively, multiple parameters may be set at once by supplying a map of actual parameter

values:

Setting multiple named parameters at once

import java.util.Map;

import java.util.HashMap;

[...]

Map<String, Object> parameterMap = new HashMap<>();

parameterMap.put("authorName", "Doe");

parameterMap.put("publicationYear", 2010);

query.setParameters(parameterMap);

A significant portion of the query parsing, validation and execution planning

effort is performed during the first execution of a query with parameters. This

effort is not repeated during subsequent executions leading to better

performance compared to a similar query using constant values instead of query

parameters.

162

13.18. Continuous Queries

Continuous Queries allow an application to register a listener which will receive the entries that

currently match a query filter, and will be continuously notified of any changes to the queried data

set that result from further cache operations. This includes incoming matches, for values that have

joined the set, updated matches, for matching values that were modified and continue to match,

and outgoing matches, for values that have left the set. By using a Continuous Query the application

receives a steady stream of events instead of having to repeatedly execute the same query to

discover changes, resulting in a more efficient use of resources. For instance, all of the following

use cases could utilize Continuous Queries:

• Return all persons with an age between 18 and 25 (assuming the Person entity has an age

property and is updated by the user application).

• Return all transactions higher than $2000.

• Return all times where the lap speed of F1 racers were less than 1:45.00s (assuming the cache

contains Lap entries and that laps are entered live during the race).

13.18.1. Continuous Query Execution

A continuous query uses a listener that is notified when:

• An entry starts matching the specified query, represented by a Join event.

• A matching entry is updated and continues to match the query, represented by an Update event.

• An entry stops matching the query, represented by a Leave event.

When a client registers a continuous query listener it immediately begins to receive the results

currently matching the query, received as Join events as described above. In addition, it will receive

subsequent notifications when other entries begin matching the query, as Join events, or stop

matching the query, as Leave events, as a consequence of any cache operations that would normally

generate creation, modification, removal, or expiration events. Updated cache entries will generate

Update events if the entry matches the query filter before and after the operation. To summarize,

the logic used to determine if the listener receives a Join, Update or Leave event is:

1. If the query on both the old and new values evaluate false, then the event is suppressed.

2. If the query on the old value evaluates false and on the new value evaluates true, then a Join

event is sent.

3. If the query on both the old and new values evaluate true, then an Update event is sent.

4. If the query on the old value evaluates true and on the new value evaluates false, then a Leave

event is sent.

5. If the query on the old value evaluates true and the entry is removed or expired, then a Leave

event is sent.

Continuous Queries can use the full power of the Query DSL except: grouping,

aggregation, and sorting operations.

163

13.18.2. Running Continuous Queries

To create a continuous query you’ll start by creating a Query object first. This is described in the

Query DSL section. Then you’ll need to obtain the ContinuousQuery

(org.infinispan.query.api.continuous.ContinuousQuery) object of your cache and register the query

and a continuous query listener (org.infinispan.query.api.continuous.ContinuousQueryListener) with

it. A ContinuousQuery object associated to a cache can be obtained by calling the static method

org.infinispan.client.hotrod.Search.getContinuousQuery(RemoteCache<K, V> cache) if running in

remote mode or org.infinispan.query.Search.getContinuousQuery(Cache<K, V> cache) when running

in embedded mode. Once the listener has been created it may be registered by using the

addContinuousQueryListener method of ContinuousQuery:

continuousQuery.addContinuousQueryListener(query, listener);

The following example demonstrates a simple continuous query use case in embedded mode:

Registering a Continuous Query

import org.infinispan.query.api.continuous.ContinuousQuery;

import org.infinispan.query.api.continuous.ContinuousQueryListener;

import org.infinispan.query.Search;

import org.infinispan.query.dsl.QueryFactory;

import org.infinispan.query.dsl.Query;

import java.util.Map;

import java.util.concurrent.ConcurrentHashMap;

[...]

// We have a cache of Persons

Cache<Integer, Person> cache = ...

// We begin by creating a ContinuousQuery instance on the cache

ContinuousQuery<Integer, Person> continuousQuery = Search.getContinuousQuery(cache);

// Define our query. In this case we will be looking for any Person instances under 21

years of age.

QueryFactory queryFactory = Search.getQueryFactory(cache);

Query query = queryFactory.from(Person.class)

 .having("age").lt(21)

 .toBuilder().build();

final Map<Integer, Person> matches = new ConcurrentHashMap<Integer, Person>();

// Define the ContinuousQueryListener

ContinuousQueryListener<Integer, Person> listener = new ContinuousQueryListener

<Integer, Person>() {

 @Override

 public void resultJoining(Integer key, Person value) {

164

#infinispan_s_query_dsl
#infinispan_s_query_dsl

 matches.put(key, value);

 }

 @Override

 public void resultUpdated(Integer key, Person value) {

 // just ignore it

 }

 @Override

 public void resultLeaving(Integer key) {

 matches.remove(key);

 }

};

// Add the listener and the query

continuousQuery.addContinuousQueryListener(query, listener);

[...]

// Remove the listener to stop receiving notifications

continuousQuery.removeContinuousQueryListener(listener);

As Person instances having an age less than 21 are added to the cache they will be received by the

listener and will be placed into the matches map, and when these entries are removed from the

cache or their age is modified to be greater or equal than 21 they will be removed from matches.

13.18.3. Removing Continuous Queries

To stop the query from further execution just remove the listener:

continuousQuery.removeContinuousQueryListener(listener);

13.18.4. Notes on performance of Continuous Queries

Continuous queries are designed to provide a constant stream of updates to the application,

potentially resulting in a very large number of events being generated for particularly broad

queries. A new temporary memory allocation is made for each event. This behavior may result in

memory pressure, potentially leading to OutOfMemoryErrors (especially in remote mode) if queries

are not carefully designed. To prevent such issues it is strongly recommended to ensure that each

query captures the minimal information needed both in terms of number of matched entries and

size of each match (projections can be used to capture the interesting properties), and that each

ContinuousQueryListener is designed to quickly process all received events without blocking and to

avoid performing actions that will lead to the generation of new matching events from the cache it

listens to.

165

13.19. More Query DSL samples

Probably the best way to explore using the Query DSL API is to have a look at our tests suite.

QueryDslConditionsTest is a fine example.

166

https://github.com/infinispan/infinispan/blob/master/query/src/test/java/org/infinispan/query/dsl/embedded/QueryDslConditionsTest.java

Chapter 14. CDI Support

Infinispan includes integration with Contexts and Dependency Injection (better known as CDI) via

Infinispan’s infinispan-cdi-embedded or infinispan-cdi-remote module. CDI is part of Java EE

specification and aims for managing beans' lifecycle inside the container. The integration allows to

inject Cache interface and bridge Cache and CacheManager events. JCache annotations (JSR-107)

are supported by infinispan-jcache and infinispan-jcache-remote artifacts. For more information

have a look at Chapter 11 of the JCACHE specification.

14.1. Maven Dependencies

To include CDI support for Infinispan in your project, use one of the following dependencies:

pom.xml for Embedded mode

<dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-cdi-embedded</artifactId>

 <version>${infinispan.version}</version>

</dependency>

pom.xml for Remote mode

<dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-cdi-remote</artifactId>

 <version>${infinispan.version}</version>

</dependency>

Which version of Infinispan should I use?

We recommend using the latest final version Infinispan.

14.2. Embedded cache integration

14.2.1. Inject an embedded cache

By default you can inject the default Infinispan cache. Let’s look at the following example:

167

http://www.cdi-spec.org
http://www.oracle.com/technetwork/java/javaee/tech/index-jsp-142185.html
http://www.oracle.com/technetwork/java/javaee/tech/index-jsp-142185.html
http://download.oracle.com/otndocs/jcp/jcache-1_0-fr-spec/index.html

Default cache injection

...

import javax.inject.Inject;

public class GreetingService {

 @Inject

 private Cache<String, String> cache;

 public String greet(String user) {

 String cachedValue = cache.get(user);

 if (cachedValue == null) {

 cachedValue = "Hello " + user;

 cache.put(user, cachedValue);

 }

 return cachedValue;

 }

}

If you want to use a specific cache rather than the default one, you just have to provide your own

cache configuration and cache qualifier. See example below:

Qualifier example

...

import javax.inject.Qualifier;

@Qualifier

@Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD})

@Retention(RetentionPolicy.RUNTIME)

@Documented

public @interface GreetingCache {

}

Injecting Cache with qualifier

...

import org.infinispan.configuration.cache.Configuration;

import org.infinispan.configuration.cache.ConfigurationBuilder;

import org.infinispan.cdi.ConfigureCache;

import javax.enterprise.inject.Produces;

public class Config {

 @ConfigureCache("greeting-cache") // This is the cache name.

 @GreetingCache // This is the cache qualifier.

 @Produces

 public Configuration greetingCacheConfiguration() {

 return new ConfigurationBuilder()

168

 .memory()

 .size(1000)

 .build();

 }

 // The same example without providing a custom configuration.

 // In this case the default cache configuration will be used.

 @ConfigureCache("greeting-cache")

 @GreetingCache

 @Produces

 public Configuration greetingCacheConfiguration;

}

To use this cache in the GreetingService add the @GeetingCache qualifier on your cache injection

point.

14.2.2. Override the default embedded cache manager and configuration

You can override the default cache configuration used by the default EmbeddedCacheManager. For that,

you just have to create a Configuration producer with default qualifiers as illustrated in the

following snippet:

Overriding Configuration

public class Config {

 // By default CDI adds the @Default qualifier if no other qualifier is provided.

 @Produces

 public Configuration defaultEmbeddedCacheConfiguration() {

 return new ConfigurationBuilder()

 .memory()

 .size(100)

 .build();

 }

}

It’s also possible to override the default EmbeddedCacheManager. The newly created manager must

have default qualifiers and Application scope.

169

Overriding EmbeddedCacheManager

...

import javax.enterprise.context.ApplicationScoped;

public class Config {

 @Produces

 @ApplicationScoped

 public EmbeddedCacheManager defaultEmbeddedCacheManager() {

 return new DefaultCacheManager(new ConfigurationBuilder()

 .memory()

 .size(100)

 .build());

 }

}

14.2.3. Configure the transport for clustered use

To use Infinispan in a clustered mode you have to configure the transport with the

GlobalConfiguration. To achieve that override the default cache manager as explained in the

previous section. Look at the following snippet:

Overriding default EmbeddedCacheManager

...

package org.infinispan.configuration.global.GlobalConfigurationBuilder;

@Produces

@ApplicationScoped

public EmbeddedCacheManager defaultClusteredCacheManager() {

 return new DefaultCacheManager(

 new GlobalConfigurationBuilder().transport().defaultTransport().build(),

 new ConfigurationBuilder().memory().size(7).build()

);

}

14.3. Remote cache integration

14.3.1. Inject a remote cache

With the CDI integration it’s also possible to use a RemoteCache as illustrated in the following snippet:

170

Injecting RemoteCache

public class GreetingService {

 @Inject

 private RemoteCache<String, String> cache;

 public String greet(String user) {

 String cachedValue = cache.get(user);

 if (cachedValue == null) {

 cachedValue = "Hello " + user;

 cache.put(user, cachedValue);

 }

 return cachedValue;

 }

}

If you want to use another cache, for example the greeting-cache, add the @Remote qualifier on the

cache injection point which contains the cache name.

Injecting RemoteCache with qualifier

public class GreetingService {

 @Inject

 @Remote("greeting-cache")

 private RemoteCache<String, String> cache;

 ...

}

Adding the @Remote cache qualifier on each injection point might be error prone. That’s why the

remote cache integration provides another way to achieve the same goal. For that you have to

create your own qualifier annotated with @Remote:

RemoteCache qualifier

@Remote("greeting-cache")

@Qualifier

@Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD})

@Retention(RetentionPolicy.RUNTIME)

@Documented

public @interface RemoteGreetingCache {

}

To use this cache in the GreetingService add the qualifier @RemoteGreetingCache qualifier on your

cache injection.

171

14.3.2. Override the default remote cache manager

Like the embedded cache integration, the remote cache integration comes with a default remote

cache manager producer. This default RemoteCacheManager can be overridden as illustrated in the

following snippet:

Overriding default RemoteCacheManager

public class Config {

 @Produces

 @ApplicationScoped

 public RemoteCacheManager defaultRemoteCacheManager() {

 return new RemoteCacheManager(localhost, 1544);

 }

}

14.4. Use a custom remote/embedded cache manager

for one or more cache

It’s possible to use a custom cache manager for one or more cache. You just need to annotate the

cache manager producer with the cache qualifiers. Look at the following example:

public class Config {

 @GreetingCache

 @Produces

 @ApplicationScoped

 public EmbeddedCacheManager specificEmbeddedCacheManager() {

 return new DefaultCacheManager(new ConfigurationBuilder()

 .expiration()

 .lifespan(60000l)

 .build());

 }

 @RemoteGreetingCache

 @Produces

 @ApplicationScoped

 public RemoteCacheManager specificRemoteCacheManager() {

 return new RemoteCacheManager("localhost", 1544);

 }

}

With the above code the GreetingCache or the RemoteGreetingCache will be associated with the

produced cache manager.

172

Producer method scope

To work properly the producers must have the scope @ApplicationScoped .

Otherwise each injection of cache will be associated to a new instance of cache

manager.

14.5. Use JCache caching annotations

There is now a separate module for JSR 107 (JCACHE) integration, including API.

See this chapter for details.

When CDI integration and JCache artifacts are present on the classpath, it is possible to use JCache

annotations with CDI managed beans. These annotations provide a simple way to handle common

use cases. The following caching annotations are defined in this specification:

• @CacheResult - caches the result of a method call

• @CachePut - caches a method parameter

• @CacheRemoveEntry - removes an entry from a cache

• @CacheRemoveAll - removes all entries from a cache

Annotations target type

These annotations must only be used on methods.

To use these annotations, proper interceptors need to be declared in beans.xml file:

Interceptors for managed environments such as Application Servers

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"

 version="1.2" bean-discovery-mode="annotated">

 <class>org.infinispan.jcache.annotation.InjectedCacheResultInterceptor</class>

 <class>org.infinispan.jcache.annotation.InjectedCachePutInterceptor</class>

 <class>

org.infinispan.jcache.annotation.InjectedCacheRemoveEntryInterceptor</class>

 <class>org.infinispan.jcache.annotation.InjectedCacheRemoveAllInterceptor</class>

</beans>

173

Interceptors for unmanaged environments such as standalone applications

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"

 version="1.2" bean-discovery-mode="annotated">

 <class>org.infinispan.jcache.annotation.CacheResultInterceptor</class>

 <class>org.infinispan.jcache.annotation.CachePutInterceptor</class>

 <class>org.infinispan.jcache.annotation.CacheRemoveEntryInterceptor</class>

 <class>org.infinispan.jcache.annotation.CacheRemoveAllInterceptor</class>

</beans>

The following snippet of code illustrates the use of @CacheResult annotation. As you can see it

simplifies the caching of the Greetingservice#greet method results.

Using JCache annotations

import javax.cache.interceptor.CacheResult;

public class GreetingService {

 @CacheResult

 public String greet(String user) {

 return "Hello" + user;

 }

}

The first version of the GreetingService and the above version have exactly the same behavior. The

only difference is the cache used. By default it’s the fully qualified name of the annotated method

with its parameter types (e.g. org.infinispan.example.GreetingService.greet(java.lang.String)).

Using other cache than default is rather simple. All you need to do is to specify its name with the

cacheName attribute of the cache annotation. For example:

Specifying cache name for JCache

@CacheResult(cacheName = "greeting-cache")

14.6. Use Cache events and CDI

It is possible to receive Cache and Cache Manager level events using CDI Events. You can achieve it

using @Observes annotation as shown in the following snippet:

174

Event listeners based on CDI

import javax.enterprise.event.Observes;

import org.infinispan.notifications.cachemanagerlistener.event.CacheStartedEvent;

import org.infinispan.notifications.cachelistener.event.*;

public class GreetingService {

 // Cache level events

 private void entryRemovedFromCache(@Observes CacheEntryCreatedEvent event) {

 ...

 }

 // Cache Manager level events

 private void cacheStarted(@Observes CacheStartedEvent event) {

 ...

 }

}

Check Listeners and Notifications section for more information about event

types.

175

Chapter 15. JCache (JSR-107) provider

Starting with version 7.0.0, Infinispan provides an implementation of JCache 1.0.0 API (JSR-107).

JCache specifies a standard Java API for caching temporary Java objects in memory. Caching java

objects can help get around bottlenecks arising from using data that is expensive to retrieve (i.e. DB

or web service), or data that is hard to calculate. Caching these type of objects in memory can help

speed up application performance by retrieving the data directly from memory instead of doing an

expensive roundtrip or recalculation. This document specifies how to use JCache with Infinispan’s

implementation of the specification, and explains key aspects of the API.

15.1. Dependencies

In order to start using Infinispan JCache implementation, a single dependency needs to be added to

the Maven pom.xml file:

pom.xml

<dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-jcache</artifactId>

 <version>...</version> <!-- i.e. 7.0.0.Final -->

 <scope>test</scope>

</dependency>

15.2. Create a local cache

Creating a local cache, using default configuration options as defined by the JCache API

specification, is as simple as doing the following:

import javax.cache.*;

import javax.cache.configuration.*;

// Retrieve the system wide cache manager

CacheManager cacheManager = Caching.getCachingProvider().getCacheManager();

// Define a named cache with default JCache configuration

Cache<String, String> cache = cacheManager.createCache("namedCache",

 new MutableConfiguration<String, String>());

By default, the JCache API specifies that data should be stored as storeByValue, so

that object state mutations outside of operations to the cache, won’t have an

impact in the objects stored in the cache. Infinispan has so far implemented this

using serialization/marshalling to make copies to store in the cache, and that way

adhere to the spec. Hence, if using default JCache configuration with Infinispan,

data stored must be marshallable.

Alternatively, JCache can be configured to store data by reference (just like Infinispan or JDK

176

http://www.jcp.org/en/jsr/detail?id=107

Collections work). To do that, simply call:

Cache<String, String> cache = cacheManager.createCache("namedCache",

 new MutableConfiguration<String, String>().setStoreByValue(false));

15.3. Store and retrieve data

Even though JCache API does not extend neither java.util.Map not

java.util.concurrent.ConcurrentMap, it providers a key/value API to store and retrieve data:

import javax.cache.*;

import javax.cache.configuration.*;

CacheManager cacheManager = Caching.getCacheManager();

Cache<String, String> cache = cacheManager.createCache("namedCache",

 new MutableConfiguration<String, String>());

cache.put("hello", "world"); // Notice that javax.cache.Cache.put(K) returns void!

String value = cache.get("hello"); // Returns "world"

Contrary to standard java.util.Map, javax.cache.Cache comes with two basic put methods called put

and getAndPut. The former returns void whereas the latter returns the previous value associated

with the key. So, the equivalent of java.util.Map.put(K) in JCache is javax.cache.Cache.getAndPut(K).

Even though JCache API only covers standalone caching, it can be plugged with a

persistence store, and has been designed with clustering or distribution in mind.

The reason why javax.cache.Cache offers two put methods is because standard

java.util.Map put call forces implementors to calculate the previous value. When

a persistent store is in use, or the cache is distributed, returning the previous

value could be an expensive operation, and often users call standard

java.util.Map.put(K) without using the return value. Hence, JCache users need to

think about whether the return value is relevant to them, in which case they need

to call javax.cache.Cache.getAndPut(K) , otherwise they can call

java.util.Map.put(K, V) which avoids returning the potentially expensive

operation of returning the previous value.

15.4. Comparing java.util.concurrent.ConcurrentMap

and javax.cache.Cache APIs

Here’s a brief comparison of the data manipulation APIs provided by

java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs.

Operation java.util.concurrent.Concurren
tMap<K, V>

javax.cache.Cache<K, V>

store and no return N/A void put(K key)

177

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java#L230
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java#L230
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java

Operation java.util.concurrent.Concurren
tMap<K, V>

javax.cache.Cache<K, V>

store and return previous value V put(K key) V getAndPut(K key)

store if not present V putIfAbsent(K key, V value) boolean putIfAbsent(K key, V
value)

retrieve V get(Object key) V get(K key)

delete if present V remove(Object key) boolean remove(K key)

delete and return previous

value

V remove(Object key) V getAndRemove(K key)

delete conditional boolean remove(Object key,
Object value)

boolean remove(K key, V
oldValue)

replace if present V replace(K key, V value) boolean replace(K key, V
value)

replace and return previous

value

V replace(K key, V value) V getAndReplace(K key, V
value)

replace conditional boolean replace(K key, V
oldValue, V newValue)

boolean replace(K key, V
oldValue, V newValue)

Comparing the two APIs, it’s obvious to see that, where possible, JCache avoids returning the

previous value to avoid operations doing expensive network or IO operations. This is an overriding

principle in the design of JCache API. In fact, there’s a set of operations that are present in

java.util.concurrent.ConcurrentMap , but are not present in the javax.cache.Cache because they

could be expensive to compute in a distributed cache. The only exception is iterating over the

contents of the cache:

Operation java.util.concurrent.Concurren
tMap<K, V>

javax.cache.Cache<K, V>

calculate size of cache int size() N/A

return all keys in the cache Set<K> keySet() N/A

return all values in the cache Collection<V> values() N/A

return all entries in the cache Set<Map.Entry<K, V>>
entrySet()

 N/A

iterate over the cache use iterator() method on

keySet, values or entrySet

Iterator<Cache.Entry<K, V>>
iterator()

15.5. Clustering JCache instances

Infinispan JCache implementation goes beyond the specification in order to provide the possibility

to cluster caches using the standard API. Given a Infinispan configuration file configured to

replicate caches like this:

178

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java

infinispan.xml

<infinispan>

 <cache-container default-cache="namedCache">

 <transport cluster="jcache-cluster" />

 <replicated-cache name="namedCache" />

 </cache-container>

</infinispan>

You can create a cluster of caches using this code:

import javax.cache.*;

import java.net.URI;

// For multiple cache managers to be constructed with the standard JCache API

// and live in the same JVM, either their names, or their classloaders, must

// be different.

// This example shows how to force their classloaders to be different.

// An alternative method would have been to duplicate the XML file and give

// it a different name, but this results in unnecessary file duplication.

ClassLoader tccl = Thread.currentThread().getContextClassLoader();

CacheManager cacheManager1 = Caching.getCachingProvider().getCacheManager(

 URI.create("infinispan-jcache-cluster.xml"), new TestClassLoader(tccl));

CacheManager cacheManager2 = Caching.getCachingProvider().getCacheManager(

 URI.create("infinispan-jcache-cluster.xml"), new TestClassLoader(tccl));

Cache<String, String> cache1 = cacheManager1.getCache("namedCache");

Cache<String, String> cache2 = cacheManager2.getCache("namedCache");

cache1.put("hello", "world");

String value = cache2.get("hello"); // Returns "world" if clustering is working

// --

public static class TestClassLoader extends ClassLoader {

 public TestClassLoader(ClassLoader parent) {

 super(parent);

 }

}

179

Chapter 16. Management Tooling

Management of Infinispan instances is all about exposing as much relevant statistical information

that allows administrators to get a view of the state of each Infinispan instance. Taking in account

that a single installation could be made up of several tens or hundreds Infinispan instances,

providing clear and concise information in an efficient manner is imperative. The following

sections dive into the range of management tooling that Infinispan provides.

16.1. JMX

Over the years, JMX has become the de facto standard for management and administration of

middleware and as a result, the Infinispan team has decided to standardize on this technology for

the exposure of management and statistical information.

16.1.1. Understanding The Exposed MBeans

By connecting to the VM(s) where Infinispan is running with a standard JMX GUI such as JConsole

or VisualVM you should find the following MBeans:

• For CacheManager level JMX statistics, without further configuration, you should see an MBean

called org.infinispan:type=CacheManager,name="DefaultCacheManager" with properties

specified by the CacheManager MBean .

• Using the cacheManagerName attribute in globalJmxStatistics XML element, or using the

corresponding GlobalJmxStatisticsConfigurationBuilder.cacheManagerName(String

cacheManagerName) call, you can name the cache manager in such way that the name is used

as part of the JMX object name. So, if the name had been "Hibernate2LC", the JMX name for the

cache manager would have been: org.infinispan:type=CacheManager,name="Hibernate2LC" .

This offers a nice and clean way to manage environments where multiple cache managers are

deployed, which follows JMX best practices .

• For Cache level JMX statistics, you should see several different MBeans depending on which

configuration options have been enabled. For example, if you have configured a write behind

cache store, you should see an MBean exposing properties belonging to the cache store

component. All Cache level MBeans follow the same format though which is the following:
org.infinispan:type=Cache,name="${name-of-cache}(${cache-mode})",manager="${name-of-cache-

manager}",component=${component-name} where:

• ${name-of-cache} has been substituted by the actual cache name. If this cache represents the

default cache, its name will be ___defaultCache.

• ${cache-mode} has been substituted by the cache mode of the cache. The cache mode is

represented by the lower case version of the possible enumeration values shown here.

• ${name-of-cache-manager} has been substituted by the name of the cache manager to which

this cache belongs. The name is derived from the cacheManagerName attribute value in

globalJmxStatistics element.

• ${component-name} has been substituted by one of the JMX component names in the JMX

reference documentation .

180

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
https://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html
https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/
https://docs.jboss.org/infinispan/9.0/apidocs/jmxComponents.html#CacheManager
https://docs.jboss.org/infinispan/9.0/apidocs/jmxComponents.html#CacheManager
http://www.oracle.com/technetwork/java/javase/tech/best-practices-jsp-136021.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/configuration/cache/CacheMode
https://docs.jboss.org/infinispan/9.0/apidocs/jmxComponents.html
https://docs.jboss.org/infinispan/9.0/apidocs/jmxComponents.html

For example, the cache store JMX component MBean for a default cache configured with

synchronous distribution would have the following name:
org.infinispan:type=Cache,name="___defaultcache(dist_sync)",manager="DefaultCacheManager",compo
nent=CacheStore

Please note that cache and cache manager names are quoted to protect against illegal characters

being used in these user-defined names.

16.1.2. Enabling JMX Statistics

The MBeans mentioned in the previous section are always created and registered in the

MBeanServer allowing you to manage your caches but some of their attributes do not expose

meaningful values unless you take the extra step of enabling collection of statistics. Gathering and

reporting statistics via JMX can be enabled at 2 different levels:

CacheManager level

The CacheManager is the entity that governs all the cache instances that have been created from it.

Enabling CacheManager statistics collections differs depending on the configuration style:

• If configuring the CacheManager via XML, make sure you add the following XML under the

<cache-container /> element:

<cache-container statistics="true"/>

• If configuring the CacheManager programmatically, simply add the following code:

GlobalConfigurationBuilder globalConfigurationBuilder = ...

globalConfigurationBuilder.globalJmxStatistics().enable();

Cache level

At this level, you will receive management information generated by individual cache instances.

Enabling Cache statistics collections differs depending on the configuration style:

• If configuring the Cache via XML, make sure you add the following XML under the one of the

top level cache elements, such as <local-cache />:

<local-cache statistics="true"/>

• If configuring the Cache programmatically, simply add the following code:

ConfigurationBuilder configurationBuilder = ...

configurationBuilder.jmxStatistics().enable();

181

16.1.3. Monitoring cluster health

It is also possible to monitor Infinispan cluster health using JMX. On CacheManager there’s an

additional object called CacheContainerHealth. It contains the following attributes:

• cacheHealth - a list of caches and corresponding statuses (HEALTHY, UNHEALTHY or

REBALANCING)

• clusterHealth - overall cluster health

• clusterName - cluster name

• freeMemoryKb - Free memory obtained from JVM runtime measured in KB

• numberOfCpus - The number of CPUs obtained from JVM runtime

• numberOfNodes - The number of nodes in the cluster

• totalMemoryKb - Total memory obtained from JVM runtime measured in KB

16.1.4. Multiple JMX Domains

There can be situations where several CacheManager instances are created in a single VM, or Cache

names belonging to different CacheManagers under the same VM clash.

Using different JMX domains for multi cache manager environments should be last resort. Instead,

it’s possible to name a cache manager in such way that it can easily be identified and used by

monitoring tools. For example:

• Via XML:

<cache-container statistics="true" name="Hibernate2LC"/>

• Programmatically:

GlobalConfigurationBuilder globalConfigurationBuilder = ...

globalConfigurationBuilder.globalJmxStatistics()

 .enable()

 .cacheManagerName("Hibernate2LC");

Using either of these options should result on the CacheManager MBean name being:
org.infinispan:type=CacheManager,name="Hibernate2LC"

For the time being, you can still set your own jmxDomain if you need to and we also allow duplicate

domains, or rather duplicate JMX names, but these should be limited to very special cases where

different cache managers within the same JVM are named equally.

16.1.5. Registering MBeans In Non-Default MBean Servers

Let’s discuss where Infinispan registers all these MBeans. By default, Infinispan registers them in

the standard JVM MBeanServer platform . However, users might want to register these MBeans in a

182

https://docs.oracle.com/javase/8/docs/api/java/lang/management/ManagementFactory.html#getPlatformMBeanServer--

different MBeanServer instance. For example, an application server might work with a different

MBeanServer instance to the default platform one. In such cases, users should implement the

MBeanServerLookup interface provided by Infinispan so that the getMBeanServer() method

returns the MBeanServer under which Infinispan should register the management MBeans. Once

you have your implementation ready, simply configure Infinispan with the fully qualified name of

this class. For example:

• Via XML:

<cache-container statistics="true">

 <jmx mbean-server-lookup="com.acme.MyMBeanServerLookup" />

</cache-container>

• Programmatically:

GlobalConfigurationBuilder globalConfigurationBuilder = ...

globalConfigurationBuilder.globalJmxStatistics()

 .enable()

 .mBeanServerLookup(new com.acme.MyMBeanServerLookup());

16.1.6. MBeans added in Infinispan 5.0

There has been a couple of noticeable additions in Infinispan 5.0 in terms of exposed MBeans:

1. MBeans related to Infinispan servers are now available that for the moment focus on the

transport layer. A new MBean named

org.infinispan:type=Server,name={Memcached|HotRod},component=Transport offers information

such as: host name, port, bytes read, byte written, number of worker threads, etc.

2. When global JMX statistics are enabled, the JGroups channel MBean is also registered

automatically under the name org.infinispan:type=channel,cluster={name-of-your-cluster}, so

you can get key information of the group communication transport layer that’s used to cluster

Infinispan instances.

16.2. Command-Line Interface (CLI)

Infinispan offers a simple Command-Line Interface (CLI) with which it is possible to interact with

the data within the caches and with most of the internal components (e.g. transactions, cross-site

backups, rolling upgrades).

The CLI is built out of two elements: a server-side module and the client command tool. The server-

side module (infinispan-cli-server-$VERSION.jar) provides the actual interpreter for the

commands and needs to be included alongside your application. Infinispan Server includes CLI

support out of the box.

Currently the server (and the client) use the JMX protocol to communicate, but in a future release

we plan to support other communication protocols (in particular our own Hot Rod).

183

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/jmx/MBeanServerLookup.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/jmx/MBeanServerLookup.html#getMBeanServer--

The CLI offers both an interactive and a batch mode. To invoke the client, just run the provided

bin/ispn-cli.[sh|bat] script. The following is a list of command-line switches which affect how the

CLI can be started:

-c, --connect=URL connects to a running instance of Infinispan.

 JMX over RMI

jmx://[username[:password]]@host:port[/container[/cache]]

 JMX over JBoss remoting

remoting://[username[:password]]@host:port[/container[/cache]]

-f, --file=FILE reads input from the specified file instead of using

 interactive mode. If FILE is '-', then commands will be read

 from stdin

-h, --help shows this help page

-v, --version shows version information

• JMX over RMI is the traditional way in which JMX clients connect to MBeanServers. Please refer

to the JDK Monitoring and Management documentation for details on how to configure the

process to be monitored

• JMX over JBoss Remoting is the protocol of choice when your Infinispan application is running

within JBoss AS7 or EAP6.

The connection to the application can also be initiated from within the CLI using the connect

command.

[disconnected//]> connect jmx://localhost:12000

[jmx://localhost:12000/MyCacheManager/>

The CLI prompt will show the active connection information, including the currently selected

CacheManager. Initially no cache is selected so, before performing any cache operations, one must

be selected. For this the cache command is used. The CLI supports tab-completion for all commands

and options and for most parameters where it makes sense to do so. Therefore typing cache and

pressing TAB will show a list of active caches:

[jmx://localhost:12000/MyCacheManager/> cache

___defaultcache namedCache

[jmx://localhost:12000/MyCacheManager/]> cache ___defaultcache

[jmx://localhost:12000/MyCacheManager/___defaultcache]>

Pressing TAB at an empty prompt will show the list of all available commands:

184

http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html

alias cache container encoding get locate remove

site upgrade

abort clearcache create end help put replace

start version

begin commit disconnect evict info quit rollback

stats

The CLI is based on Æsh and therefore offers many keyboard shortcuts to navigate and search the

history of commands, to manipulate the cursor at the prompt, including both Emacs and VI modes

of operation.

16.2.1. Commands

abort

The abort command is used to abort a running batch initiated by the start command

[jmx://localhost:12000/MyCacheManager/namedCache]> start

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a

[jmx://localhost:12000/MyCacheManager/namedCache]> abort

[jmx://localhost:12000/MyCacheManager/namedCache]> get a

null

begin

The begin command starts a transaction. In order for this command to work, the cache(s) on which

the subsequent operations are invoked must have transactions enabled.

[jmx://localhost:12000/MyCacheManager/namedCache]> begin

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a

[jmx://localhost:12000/MyCacheManager/namedCache]> put b b

[jmx://localhost:12000/MyCacheManager/namedCache]> commit

cache

The cache command selects the cache to use as default for all subsequent operations. If it is invoked

without parameters it shows the currently selected cache.

[jmx://localhost:12000/MyCacheManager/namedCache]> cache ___defaultcache

[jmx://localhost:12000/MyCacheManager/___defaultcache]> cache

___defaultcache

[jmx://localhost:12000/MyCacheManager/___defaultcache]>

185

https://github.com/aeshell/aesh

clearcache

The clearcache command clears a cache from all content.

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a

[jmx://localhost:12000/MyCacheManager/namedCache]> clearcache

[jmx://localhost:12000/MyCacheManager/namedCache]> get a

null

commit

The commit command commits an ongoing transaction

[jmx://localhost:12000/MyCacheManager/namedCache]> begin

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a

[jmx://localhost:12000/MyCacheManager/namedCache]> put b b

[jmx://localhost:12000/MyCacheManager/namedCache]> commit

container

The container command selects the default container (cache manager). Invoked without parameters

it lists all available containers

[jmx://localhost:12000/MyCacheManager/namedCache]> container

MyCacheManager OtherCacheManager

[jmx://localhost:12000/MyCacheManager/namedCache]> container OtherCacheManager

[jmx://localhost:12000/OtherCacheManager/]>

create

The create command creates a new cache based on the configuration of an existing cache definition

[jmx://localhost:12000/MyCacheManager/namedCache]> create newCache like namedCache

[jmx://localhost:12000/MyCacheManager/namedCache]> cache newCache

[jmx://localhost:12000/MyCacheManager/newCache]>

deny

When authorization is enabled and the role mapper has been configured to be the

ClusterRoleMapper, principal to role mappings are stored within the cluster registry (a replicated

cache available to all nodes). The deny command can be used to deny roles previously assigned to a

principal:

[remoting://localhost:9999]> deny supervisor to user1

186

disconnect

The disconnect command disconnects the currently active connection allowing the CLI to connect to

another instance.

[jmx://localhost:12000/MyCacheManager/namedCache]> disconnect

[disconnected//]

encoding

The encoding command is used to set a default codec to use when reading/writing entries from/to a

cache. When invoked without arguments it shows the currently selected codec. This command is

useful since currently remote protocols such as HotRod and Memcached wrap keys and values in

specialized structures.

[jmx://localhost:12000/MyCacheManager/namedCache]> encoding

none

[jmx://localhost:12000/MyCacheManager/namedCache]> encoding --list

memcached

hotrod

none

rest

[jmx://localhost:12000/MyCacheManager/namedCache]> encoding hotrod

end

The end command is used to successfully end a running batch initiated by the start command

[jmx://localhost:12000/MyCacheManager/namedCache]> start

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a

[jmx://localhost:12000/MyCacheManager/namedCache]> end

[jmx://localhost:12000/MyCacheManager/namedCache]> get a

a

evict

The evict command is used to evict from the cache the entry associated with a specific key.

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a

[jmx://localhost:12000/MyCacheManager/namedCache]> evict a

get

The get command is used to show the value associated to a specified key. For primitive types and

Strings, the get command will simply print the default representation. For other objects, a JSON

representation of the object will be printed.

187

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a

[jmx://localhost:12000/MyCacheManager/namedCache]> get a

a

grant

When authorization is enabled and the role mapper has been configured to be the

ClusterRoleMapper, principal to role mappings are stored within the cluster registry (a replicated

cache available to all nodes). The grant command can be used to grant new roles to a principal:

[remoting://localhost:9999]> grant supervisor to user1

info

The info command is used to show the configuration of the currently selected cache or container.

[jmx://localhost:12000/MyCacheManager/namedCache]> info

GlobalConfiguration{asyncListenerExecutor=ExecutorFactoryConfiguration{factory=org.inf

inispan.executors.DefaultExecutorFactory@98add58},

asyncTransportExecutor=ExecutorFactoryConfiguration{factory=org.infinispan.executors.D

efaultExecutorFactory@7bc9c14c},

evictionScheduledExecutor=ScheduledExecutorFactoryConfiguration{factory=org.infinispan

.executors.DefaultScheduledExecutorFactory@7ab1a411},

replicationQueueScheduledExecutor=ScheduledExecutorFactoryConfiguration{factory=org.in

finispan.executors.DefaultScheduledExecutorFactory@248a9705},

globalJmxStatistics=GlobalJmxStatisticsConfiguration{allowDuplicateDomains=true,

enabled=true, jmxDomain='jboss.infinispan',

mBeanServerLookup=org.jboss.as.clustering.infinispan.MBeanServerProvider@6c0dc01,

cacheManagerName='local', properties={}},

transport=TransportConfiguration{clusterName='ISPN', machineId='null', rackId='null',

siteId='null', strictPeerToPeer=false, distributedSyncTimeout=240000, transport=null,

nodeName='null', properties={}},

serialization=SerializationConfiguration{advancedExternalizers={1100=org.infinispan.se

rver.core.CacheValue$Externalizer@5fabc91d,

1101=org.infinispan.server.memcached.MemcachedValue$Externalizer@720bffd,

1104=org.infinispan.server.hotrod.ServerAddress$Externalizer@771c7eb2},

marshaller=org.infinispan.marshall.VersionAwareMarshaller@6fc21535, version=52,

classResolver=org.jboss.marshalling.ModularClassResolver@2efe83e5},

shutdown=ShutdownConfiguration{hookBehavior=DONT_REGISTER}, modules={},

site=SiteConfiguration{localSite='null'}}

locate

The locate command shows the physical location of a specified entry in a distributed cluster.

188

[jmx://localhost:12000/MyCacheManager/namedCache]> locate a

[host/node1,host/node2]

put

The put command inserts an entry in the cache. If the cache previously contained a mapping for the

key, the old value is replaced by the specified value. The user can control the type of data that the

CLI will use to store the key and value. See the Data Types section.

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a

[jmx://localhost:12000/MyCacheManager/namedCache]> put b 100

[jmx://localhost:12000/MyCacheManager/namedCache]> put c 4139l

[jmx://localhost:12000/MyCacheManager/namedCache]> put d true

[jmx://localhost:12000/MyCacheManager/namedCache]> put e { "package.MyClass": {"i": 5,

"x": null, "b": true } }

The put command can optionally specify a lifespan and a maximum idle time.

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a expires 10s

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a expires 10m maxidle 1m

replace

The replace command replaces an existing entry in the cache. If an old value is specified, then the

replacement happens only if the value in the cache coincides.

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a

[jmx://localhost:12000/MyCacheManager/namedCache]> replace a b

[jmx://localhost:12000/MyCacheManager/namedCache]> get a

b

[jmx://localhost:12000/MyCacheManager/namedCache]> replace a b c

[jmx://localhost:12000/MyCacheManager/namedCache]> get a

c

[jmx://localhost:12000/MyCacheManager/namedCache]> replace a b d

[jmx://localhost:12000/MyCacheManager/namedCache]> get a

c

roles

When authorization is enabled and the role mapper has been configured to be the

ClusterRoleMapper, principal to role mappings are stored within the cluster registry (a replicated

cache available to all nodes). The roles command can be used to list the roles associated to a specific

user, or to all users if one is not given:

189

[remoting://localhost:9999]> roles user1

[supervisor, reader]

rollback

The rollback command rolls back an ongoing transaction

[jmx://localhost:12000/MyCacheManager/namedCache]> begin

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a

[jmx://localhost:12000/MyCacheManager/namedCache]> put b b

[jmx://localhost:12000/MyCacheManager/namedCache]> rollback

site

The site command performs operations related to the administration of cross-site replication. It can

be used to obtain information related to the status of a site and to change the status (online/offline)

[jmx://localhost:12000/MyCacheManager/namedCache]> site --status NYC

online

[jmx://localhost:12000/MyCacheManager/namedCache]> site --offline NYC

ok

[jmx://localhost:12000/MyCacheManager/namedCache]> site --status NYC

offline

[jmx://localhost:12000/MyCacheManager/namedCache]> site --online NYC

start

The start command initiates a batch of operations.

[jmx://localhost:12000/MyCacheManager/namedCache]> start

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a

[jmx://localhost:12000/MyCacheManager/namedCache]> put b b

[jmx://localhost:12000/MyCacheManager/namedCache]> end

stats

The stats command displays statistics about a cache

190

[jmx://localhost:12000/MyCacheManager/namedCache]> stats

Statistics: {

 averageWriteTime: 143

 evictions: 10

 misses: 5

 hitRatio: 1.0

 readWriteRatio: 10.0

 removeMisses: 0

 timeSinceReset: 2123

 statisticsEnabled: true

 stores: 100

 elapsedTime: 93

 averageReadTime: 14

 removeHits: 0

 numberOfEntries: 100

 hits: 1000

}

LockManager: {

 concurrencyLevel: 1000

 numberOfLocksAvailable: 0

 numberOfLocksHeld: 0

}

16.2.2. upgrade

The upgrade command performs operations used during the rolling upgrade procedure. For a

detailed description of this procedure please see Rolling Upgrades

[jmx://localhost:12000/MyCacheManager/namedCache]> upgrade --synchronize=hotrod --all

[jmx://localhost:12000/MyCacheManager/namedCache]> upgrade --disconnectsource=hotrod

--all

16.2.3. version

The version command displays version information about both the CLI client and the server

[jmx://localhost:12000/MyCacheManager/namedCache]> version

Client Version 5.2.1.Final

Server Version 5.2.1.Final

16.2.4. Data Types

The CLI understands the following types:

• string strings can either be quoted between single (') or double (") quotes, or left unquoted. In

this case it must not contain spaces, punctuation and cannot begin with a number e.g. 'a string',

191

key001

• int an integer is identified by a sequence of decimal digits, e.g. 256

• long a long is identified by a sequence of decimal digits suffixed by 'l', e.g. 1000l

• double

• a double precision number is identified by a floating point number(with optional exponent

part) and an optional 'd' suffix, e.g.3.14

• float

• a single precision number is identified by a floating point number(with optional exponent

part) and an 'f' suffix, e.g. 10.3f

• boolean a boolean is represented either by the keywords true and false

• UUID a UUID is represented by its canonical form XXXXXXXX-XXXX-XXXX-XXXX-

XXXXXXXXXXXX

• JSON serialized Java classes can be represented using JSON notation, e.g.

{"package.MyClass":{"i":5,"x":null,"b":true}}. Please note that the specified class must be

available to the CacheManager’s class loader.

16.2.5. Time Values

A time value is an integer number followed by time unit suffix: days (d), hours (h), minutes (m),

seconds (s), milliseconds (ms).

16.3. Hawt.io

Hawt.io, a slick, fast, HTML5-based open source management console, also has support for

Infinispan. Refer to Hawt.io’s documentation for information regarding this plugin.

16.4. Writing plugins for other management tools

Any management tool that supports JMX already has basic support for Infinispan. However, custom

plugins could be written to adapt the JMX information for easier consumption.

192

http://hawt.io
http://hawt.io/plugins/infinispan/

Chapter 17. Custom Interceptors

It is possible to add custom interceptors to Infinispan, both declaratively and programatically.

Custom interceptors are a way of extending Infinispan by being able to influence or respond to any

modifications to cache. Example of such modifications are: elements are added/removed/updated

or transactions are committed. For a detailed list refer to CommandInterceptor API.

17.1. Adding custom interceptors declaratively

Custom interceptors can be added on a per named cache basis. This is because each named cache

have its own interceptor stack. Following xml snippet depicts the ways in which a custom

interceptor can be added.

 <local-cache name="cacheWithCustomInterceptors">

 <!--

 Define custom interceptors. All custom interceptors need to extend

org.jboss.cache.interceptors.base.CommandInterceptor

 -->

 <custom-interceptors>

 <interceptor position="FIRST" class="com.mycompany.CustomInterceptor1">

 <property name="attributeOne">value1</property>

 <property name="attributeTwo">value2</property>

 </interceptor>

 <interceptor position="LAST" class="com.mycompany.CustomInterceptor2"/>

 <interceptor index="3" class="com.mycompany.CustomInterceptor1"/>

 <interceptor before="org.infinispanpan.interceptors.CallInterceptor" class=

"com.mycompany.CustomInterceptor2"/>

 <interceptor after="org.infinispanpan.interceptors.CallInterceptor" class=

"com.mycompany.CustomInterceptor1"/>

 </custom-interceptors>

 </local-cache>

17.2. Adding custom interceptors programatically

In order to do that one needs to obtain a reference to the AdvancedCache . This can be done ass

follows:

CacheManager cm = getCacheManager();//magic

Cache aCache = cm.getCache("aName");

AdvancedCache advCache = aCache.getAdvancedCache();

Then one of the addInterceptor() methods should be used to add the actual interceptor. For further

documentation refer to AdvancedCache javadoc.

193

{javadoc.root}/org/infinispan/interceptors/base/CommandInterceptor.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html
{javadocJroot}/org/infinispan/AdvancedCache.html

17.3. Custom interceptor design

When writing a custom interceptor, you need to abide by the following rules.

• Custom interceptors must extend BaseCustomInterceptor

• Custom interceptors must declare a public, empty constructor to enable construction.

• Custom interceptors will have setters for any property defined through property tags used in

the XML configuration.

194

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/interceptors/base/BaseCustomInterceptor.html

Chapter 18. Running on Cloud Services

In order to turn on Cloud support for Infinispan library mode, one needs to add a new dependency

to the classpath:

Cloud support in library mode

<dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-cloud</artifactId>

 <version>${infinispan.version}</version>

</dependency>

The above dependency adds infinispan-core to the classpath as well as some default

configurations.

18.1. Amazon Web Services

Infinispan can be used on the Amazon Web Service (AWS) platform and similar cloud based

environment in several ways. As Infinispan uses JGroups as the underlying communication

technology, the majority of the configuration work is done JGroups. The default auto discovery

won’t work on EC2 as multicast is not allowed, but JGroups provides several other discovery

protocols so we only have to choose one.

18.1.1. TCPPing, GossipRouter, S3_PING

The TCPPing approach contains a static list of the IP address of each member of the cluster in the

JGroups configuration file. While this works it doesn’t really help when cluster nodes are

dynamically added to the cluster.

Sample TCPPing configuration

<config>

 <TCP bind_port="7800" />

 <TCPPING timeout="3000"

 initial_hosts=

"${jgroups.tcpping.initial_hosts:localhost[7800],localhost[7801]}"

 port_range="1"

 num_initial_members="3"/>

...

...

</config>

See http://community.jboss.org/wiki/JGroupsTCPPING for more information about TCPPing.

195

http://community.jboss.org/wiki/JGroupsTCPPING

18.1.2. GossipRouter

Another approach is to have a central server (Gossip, which each node will be configured to

contact. This central server will tell each node in the cluster about each other node.

The address (ip:port) that the Gossip router is listening on can be injected into the JGroups

configuration used by Infinispan. To do this pass the gossip routers address as a system property to

the JVM e.g. -DGossipRouterAddress="10.10.2.4[12001]" and reference this property in the JGroups

configuration that Infinispan is using e.g.

Sample TCPGOSSIP configuration

<config>

 <TCP bind_port="7800" />

 <TCPGOSSIP timeout="3000" initial_hosts="${GossipRouterAddress}"

num_initial_members="3" />

...

...

</config>

More on Gossip Router @ http://www.jboss.org/community/wiki/JGroupsGossipRouter

18.1.3. S3_PING

Finally you can configure your JGroups instances to use a shared storage to exchange the details of

the cluster nodes. S3_PING was added to JGroups in 2.6.12 and 2.8, and allows the Amazon S3 to be

used as the shared storage. It is experimental at the moment but offers another method of

clustering without a central server. Be sure that you have signed up for Amazon S3 as well as EC2 to

use this method.

Sample S3PING configuration

<config>

 <TCP bind_port="7800" />

 <S3_PING

 secret_access_key="replace this with you secret access key"

 access_key="replace this with your access key"

 location="replace this with your S3 bucket location" />

</config>

18.1.4. JDBC_PING

A similar approach to S3_PING, but using a JDBC connection to a shared database. On EC2 that is

quite easy using Amazon RDS. See the JDBC_PING Wiki page for details.

196

http://community.jboss.org/docs/DOC-10890
http://community.jboss.org/wiki/JDBCPING

Chapter 19. Kubernetes and OpenShift

Since OpenShift uses Kubernetes underneath both of them can use the same discovery protocol -

Kube_PING. The configuration is very straightforward:

Sample KUBE_PING configuration

<config>

 <TCP bind_addr="${match-interface:eth.*}" />

 <kubernetes.KUBE_PING />

...

...

</config>

The most important thing is to bind JGroups to eth0 interface, which is used by Docker containers

for network communication.

KUBE_PING protocol is configured by environmental variables (which should be available inside a

container). The most important thing is to set OPENSHIFT_KUBE_PING_NAMESPACE to proper namespace.

It might be either hardcoded or populated via Kubernetes' Downward API.

Since KUBE_PING uses Kubernetes API for obtaining available Pods, OpenShift requires adding

additional privileges. Assuming that oc project -q returns current namespace and default is the

service account name, one needs to run:

Adding additional OpenShift privileges

oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default -n $(oc

project -q)

After performing all above steps, the clustering should be enabled and all Pods should

automatically form a cluster within a single namespace.

197

https://github.com/jgroups-extras/jgroups-kubernetes
https://docs.docker.com/engine/userguide/networking/dockernetworks/
https://docs.docker.com/engine/userguide/networking/dockernetworks/
https://github.com/kubernetes/kubernetes/tree/release-1.0/docs/user-guide/downward-api

Chapter 20. Client/Server

Infinispan offers two alternative access methods: embedded mode and client-server mode.

• In Embedded mode the Infinispan libraries co-exist with the user application in the same JVM

as shown in the following diagram

Figure 13. Peer-to-peer access

• Client-server mode is when applications access the data stored in a remote Infinispan server

using some kind of network protocol

20.1. Why Client/Server?

There are situations when accessing Infinispan in a client-server mode might make more sense

than embedding it within your application, for example, when trying to access Infinispan from a

non-JVM environment. Since Infinispan is written in Java, if someone had a C\\ application that

wanted to access it, it couldn’t just do it in a p2p way. On the other hand, client-server would be

perfectly suited here assuming that a language neutral protocol was used and the corresponding

client and server implementations were available.

198

Figure 14. Non-JVM access

In other situations, Infinispan users want to have an elastic application tier where you start/stop

business processing servers very regularly. Now, if users deployed Infinispan configured with

distribution or state transfer, startup time could be greatly influenced by the shuffling around of

data that happens in these situations. So in the following diagram, assuming Infinispan was

deployed in p2p mode, the app in the second server could not access Infinispan until state transfer

had completed.

199

Figure 15. Elasticity issue with P2P

This effectively means that bringing up new application-tier servers is impacted by things like state

transfer because applications cannot access Infinispan until these processes have finished and if

the state being shifted around is large, this could take some time. This is undesirable in an elastic

environment where you want quick application-tier server turnaround and predictable startup

times. Problems like this can be solved by accessing Infinispan in a client-server mode because

starting a new application-tier server is just a matter of starting a lightweight client that can

connect to the backing data grid server. No need for rehashing or state transfer to occur and as a

result server startup times can be more predictable which is very important for modern cloud-

based deployments where elasticity in your application tier is important.

200

Figure 16. Achieving elasticity

Other times, it’s common to find multiple applications needing access to data storage. In this cases,

you could in theory deploy an Infinispan instance per each of those applications but this could be

wasteful and difficult to maintain. Think about databases here, you don’t deploy a database

alongside each of your applications, do you? So, alternatively you could deploy Infinispan in client-

server mode keeping a pool of Infinispan data grid nodes acting as a shared storage tier for your

applications.

Figure 17. Shared data storage

201

Deploying Infinispan in this way also allows you to manage each tier independently, for example,

you can upgrade you application or app server without bringing down your Infinispan data grid

nodes.

20.2. Why use embedded mode?

Before talking about individual Infinispan server modules, it’s worth mentioning that in spite of all

the benefits, client-server Infinispan still has disadvantages over p2p. Firstly, p2p deployments are

simpler than client-server ones because in p2p, all peers are equals to each other and hence this

simplifies deployment. So, if this is the first time you’re using Infinispan, p2p is likely to be easier

for you to get going compared to client-server.

Client-server Infinispan requests are likely to take longer compared to p2p requests, due to the

serialization and network cost in remote calls. So, this is an important factor to take in account

when designing your application. For example, with replicated Infinispan caches, it might be more

performant to have lightweight HTTP clients connecting to a server side application that accesses

Infinispan in p2p mode, rather than having more heavyweight client side apps talking to Infinispan

in client-server mode, particularly if data size handled is rather large. With distributed caches, the

difference might not be so big because even in p2p deployments, you’re not guaranteed to have all

data available locally.

Environments where application tier elasticity is not so important, or where server side

applications access state-transfer-disabled, replicated Infinispan cache instances are amongst

scenarios where Infinispan p2p deployments can be more suited than client-server ones.

20.3. Server Modules

So, now that it’s clear when it makes sense to deploy Infinispan in client-server mode, what are

available solutions? All Infinispan server modules are based on the same pattern where the server

backend creates an embedded Infinispan instance and if you start multiple backends, they can

form a cluster and share/distribute state if configured to do so. The server types below primarily

differ in the type of listener endpoint used to handle incoming connections.

Here’s a brief summary of the available server endpoints.

• Hot Rod Server Module - This module is an implementation of the Hot Rod binary protocol

backed by Infinispan which allows clients to do dynamic load balancing and failover and smart

routing.

• A variety of clients exist for this protocol.

• If you’re clients are running Java, this should be your defacto server module choice because

it allows for dynamic load balancing and failover. This means that Hot Rod clients can

dynamically detect changes in the topology of Hot Rod servers as long as these are clustered,

so when new nodes join or leave, clients update their Hot Rod server topology view. On top

of that, when Hot Rod servers are configured with distribution, clients can detect where a

particular key resides and so they can route requests smartly.

• Load balancing and failover is dynamically provided by Hot Rod client implementations

using information provided by the server.

202

http://www.infinispan.org/hotrod-clients

• REST Server Module - The REST server, which is distributed as a WAR file, can be deployed in

any servlet container to allow Infinispan to be accessed via a RESTful HTTP interface.

• To connect to it, you can use any HTTP client out there and there’re tons of different client

implementations available out there for pretty much any language or system.

• This module is particularly recommended for those environments where HTTP port is the

only access method allowed between clients and servers.

• Clients wanting to load balance or failover between different Infinispan REST servers can do

so using any standard HTTP load balancer such as mod_cluster . It’s worth noting though

these load balancers maintain a static view of the servers in the backend and if a new one

was to be added, it would require manual update of the load balancer.

• Memcached Server Module - This module is an implementation of the Memcached text

protocol backed by Infinispan.

• To connect to it, you can use any of the existing Memcached clients which are pretty diverse.

• As opposed to Memcached servers, Infinispan based Memcached servers can actually be

clustered and hence they can replicate or distribute data using consistent hash algorithms

around the cluster. So, this module is particularly of interest to those users that want to

provide failover capabilities to the data stored in Memcached servers.

• In terms of load balancing and failover, there’re a few clients that can load balance or

failover given a static list of server addresses (perl’s Cache::Memcached for example) but

any server addition or removal would require manual intervention.

• Websocket Server Module - This module enables Infinispan to be accessed over a Websocket

interface via a Javascript API.

• This module is very specifically designed for Javascript clients and so that is the only client

implementation available.

• This module is particularly suited for developers wanting to enable access to Infinispan

instances from their Javascript codebase.

• Since websockets work on the same HTTP port, any HTTP load balancer would do to load

balance and failover.

• This module is EXPERIMENTAL! Beware!

20.4. Using Hot Rod Server

The Infinispan Server distribution contains a server module that implements Infinispan’s custom

binary protocol called Hot Rod. The protocol was designed to enable faster client/server

interactions compared to other existing text based protocols and to allow clients to make more

intelligent decisions with regards to load balancing, failover and even data location operations.

Please refer to Infinispan Server’s documentation for instructions on how to configure and run a

HotRod server.

203

http://www.jboss.org/mod_cluster
http://github.com/memcached/memcached/blob/master/doc/protocol.txt
http://github.com/memcached/memcached/blob/master/doc/protocol.txt
http://code.google.com/p/memcached/wiki/Clients
http://en.wikipedia.org/wiki/WebSockets
../infinispan_server_guide/infinispan_server_guide.html

20.5. Hot Rod Protocol

The following articles provides detailed information about each version of the custom TCP

client/server Hot Rod protocol.

• Hot Rod Protocol 1.0

• Hot Rod Protocol 1.1

• Hot Rod Protocol 1.2

• Hot Rod Protocol 1.3

• Hot Rod Protocol 2.0

• Hot Rod Protocol 2.1

• Hot Rod Protocol 2.2

• Hot Rod Protocol 2.3

• Hot Rod Protocol 2.4

• Hot Rod Protocol 2.5

• Hot Rod Protocol 2.6

20.5.1. Hot Rod Protocol 1.0

Infinispan versions

This version of the protocol is implemented since Infinispan 4.1.0.Final

All key and values are sent and stored as byte arrays. Hot Rod makes no

assumptions about their types.

Some clarifications about the other types:

• vInt : Variable-length integers are defined defined as compressed, positive integers where the

high-order bit of each byte indicates whether more bytes need to be read. The low-order seven

bits are appended as increasingly more significant bits in the resulting integer value making it

efficient to decode. Hence, values from zero to 127 are stored in a single byte, values from 128

to 16,383 are stored in two bytes, and so on:

Value First byte Second byte Third byte

0 00000000

1 00000001

2 00000010

…

127 01111111

128 10000000 00000001

129 10000001 00000001

204

#hot_rod_protocol_1_0
#hot_rod_protocol_1_1
#hot_rod_protocol_1_2
#hot_rod_protocol_1_3
#hot_rod_protocol_2_0
#hot_rod_protocol_2_1
#hot_rod_protocol_2_2
#hot_rod_protocol_2_3
#hot_rod_protocol_2_4
#hot_rod_protocol_2_5
#hot_rod_protocol_2_6

Value First byte Second byte Third byte

130 10000010 00000001

…

16,383 11111111 01111111

16,384 10000000 10000000 00000001

16,385 10000001 10000000 00000001

…

• signed vInt: The vInt above is also able to encode negative values, but will always use the

maximum size (5 bytes) no matter how small the endoded value is. In order to have a small

payload for negative values too, signed vInts uses ZigZag encoding on top of the vInt encoding.

More details here

• vLong : Refers to unsigned variable length long values similar to vInt but applied to longer

values. They’re between 1 and 9 bytes long.

• String : Strings are always represented using UTF-8 encoding.

Request Header

The header for a request is composed of:

Table 7. Request header

Field Name Size Value

Magic 1 byte 0xA0 = request

Message ID vLong ID of the message that will be copied back in the response. This

allows for hot rod clients to implement the protocol in an

asynchronous way.

Version 1 byte Infinispan hot rod server version. In this particular case, this is

10

205

http://developers.google.com/protocol-buffers/docs/encoding#types

Field Name Size Value

Opcode 1 byte Request operation code:

0x01 = put (since 1.0)

0x03 = get (since 1.0)

0x05 = putIfAbsent (since 1.0)

0x07 = replace (since 1.0)

0x09 = replaceIfUnmodified (since 1.0)

0x0B = remove (since 1.0)

0x0D = removeIfUnmodified (since 1.0)

0x0F = containsKey (since 1.0)

0x11 = getWithVersion (since 1.0)

0x13 = clear (since 1.0)

0x15 = stats (since 1.0)

0x17 = ping (since 1.0)

0x19 = bulkGet (since 1.2)

0x1B = getWithMetadata (since 1.2)

0x1D = bulkGetKeys (since 1.2)

0x1F = query (since 1.3)

0x21 = authMechList (since 2.0)

0x23 = auth (since 2.0)

0x25 = addClientListener (since 2.0)

0x27 = removeClientListener (since 2.0)

0x29 = size (since 2.0)

0x2B = exec (since 2.1)

0x2D = putAll (since 2.1)

0x2F = getAll (since 2.1)

0x31 = iterationStart (since 2.3)

0x33 = iterationNext (since 2.3)

0x35 = iterationEnd (since 2.3)

0x37 = getStream (since 2.6)

0x39 = putStream (since 2.6)

Cache Name

Length

vInt Length of cache name. If the passed length is 0 (followed by no

cache name), the operation will interact with the default cache.

Cache Name string Name of cache on which to operate. This name must match the

name of predefined cache in the Infinispan configuration file.

Flags vInt A variable length number representing flags passed to the

system. Each flags is represented by a bit. Note that since this

field is sent as variable length, the most significant bit in a byte is

used to determine whether more bytes need to be read, hence

this bit does not represent any flag. Using this model allows for

flags to be combined in a short space. Here are the current values

for each flag:

0x0001 = force return previous value

Client Intelligence 1 byte This byte hints the server on the client capabilities:

0x01 = basic client, interested in neither cluster nor hash

information

0x02 = topology-aware client, interested in cluster information

0x03 = hash-distribution-aware client, that is interested in both

cluster and hash information

206

Field Name Size Value

Topology Id vInt This field represents the last known view in the client. Basic

clients will only send 0 in this field. When topology-aware or

hash-distribution-aware clients will send 0 until they have

received a reply from the server with the current view id.

Afterwards, they should send that view id until they receive a

new view id in a response.

Transaction Type 1 byte This is a 1 byte field, containing one of the following well-known

supported transaction types (For this version of the protocol, the

only supported transaction type is 0):

0 = Non-transactional call, or client does not support

transactions. The subsequent TX_ID field will be omitted.

1 = X/Open XA transaction ID (XID). This is a well-known, fixed-

size format.

Transaction Id byte array The byte array uniquely identifying the transaction associated to

this call. Its length is determined by the transaction type. If

transaction type is 0, no transaction id will be present.

Response Header

The header for a response is composed of:

Table 8. Response header

Field Name Size Value

Magic 1 byte 0xA1 = response

Message ID vLong ID of the message, matching the request for which the response

is sent.

207

Field Name Size Value

Opcode 1 byte Response operation code:

0x02 = put (since 1.0)

0x04 = get (since 1.0)

0x06 = putIfAbsent (since 1.0)

0x08 = replace (since 1.0)

0x0A = replaceIfUnmodified (since 1.0)

0x0C = remove (since 1.0)

0x0E = removeIfUnmodified (since 1.0)

0x10 = containsKey (since 1.0)

0x12 = getWithVersion (since 1.0)

0x14 = clear (since 1.0)

0x16 = stats (since 1.0)

0x18 = ping (since 1.0)

0x1A = bulkGet (since 1.0)

0x1C = getWithMetadata (since 1.2)

0x1E = bulkGetKeys (since 1.2)

0x20 = query (since 1.3)

0x22 = authMechList (since 2.0)

0x24 = auth (since 2.0)

0x26 = addClientListener (since 2.0)

0x28 = removeClientListener (since 2.0)

0x2A = size (since 2.0)

0x2C = exec (since 2.1)

0x2E = putAll (since 2.1)

0x30 = getAll (since 2.1)

0x32 = iterationStart (since 2.3)

0x34 = iterationNext (since 2.3)

0x36 = iterationEnd (since 2.3)

0x38 = getStream (since 2.6)

0x40 = putStream (since 2.6)

0x50 = error (since 1.0)

Status 1 byte Status of the response, possible values:

0x00 = No error

0x01 = Not put/removed/replaced

0x02 = Key does not exist

0x81 = Invalid magic or message id

0x82 = Unknown command

0x83 = Unknown version

0x84 = Request parsing error

0x85 = Server Error

0x86 = Command timed out

Topology Change

Marker

string This is a marker byte that indicates whether the response is

prepended with topology change information. When no topology

change follows, the content of this byte is 0. If a topology change

follows, its contents are 1.

Exceptional error status responses, those that start with 0x8 …, are followed by

the length of the error message (as a vInt) and error message itself as String.

208

Topology Change Headers

The following section discusses how the response headers look for topology-aware or hash-

distribution-aware clients when there’s been a cluster or view formation change. Note that it’s the

server that makes the decision on whether it sends back the new topology based on the current

topology id and the one the client sent. If they’re different, it will send back the new topology.

Topology-Aware Client Topology Change Header

This is what topology-aware clients receive as response header when a topology change is sent

back:

Field Name Size Value

Response header

with topology

change marker

variable See previous section.

Topology Id vInt Topology ID

Num servers in

topology

vInt Number of Infinispan Hot Rod servers running within the

cluster. This could be a subset of the entire cluster if only a

fraction of those nodes are running Hot Rod servers.

m1: Host/IP length vInt Length of hostname or IP address of individual cluster member

that Hot Rod client can use to access it. Using variable length here

allows for covering for hostnames, IPv4 and IPv6 addresses.

m1: Host/IP

address

string String containing hostname or IP address of individual cluster

member that Hot Rod client can use to access it.

m1: Port 2 bytes

(Unsigned

Short)

Port that Hot Rod clients can use to communicate with this

cluster member.

m2: Host/IP length vInt

m2: Host/IP

address

string

m2: Port 2 bytes

(Unsigned

Short)

…etc

Distribution-Aware Client Topology Change Header

This is what hash-distribution-aware clients receive as response header when a topology change is

sent back:

209

Field Name Size Value

Response header

with topology

change marker

variable See previous section.

Topology Id vInt Topology ID

Num Key Owners 2 bytes

(Unsigned

Short)

Globally configured number of copies for each Infinispan

distributed key

Hash Function

Version

1 byte Hash function version, pointing to a specific hash function in use.

See Hot Rod hash functions for details.

Hash space size vInt Modulus used by Infinispan for for all module arithmetic related

to hash code generation. Clients will likely require this

information in order to apply the correct hash calculation to the

keys.

Num servers in

topology

vInt Number of Infinispan Hot Rod servers running within the

cluster. This could be a subset of the entire cluster if only a

fraction of those nodes are running Hot Rod servers.

m1: Host/IP length vInt Length of hostname or IP address of individual cluster member

that Hot Rod client can use to access it. Using variable length here

allows for covering for hostnames, IPv4 and IPv6 addresses.

m1: Host/IP

address

string String containing hostname or IP address of individual cluster

member that Hot Rod client can use to access it.

m1: Port 2 bytes

(Unsigned

Short)

Port that Hot Rod clients can use to communicat with this cluster

member.

m1: Hashcode 4 bytes 32 bit integer representing the hashcode of a cluster member

that a Hot Rod client can use indentify in which cluster member

a key is located having applied the CSA to it.

m2: Host/IP length vInt

m2: Host/IP

address

string

m2: Port 2 bytes

(Unsigned

Short)

m2: Hashcode 4 bytes

…etc

It’s important to note that since hash headers rely on the consistent hash algorithm used by the

server and this is a factor of the cache interacted with, hash-distribution-aware headers can only be

returned to operations that target a particular cache. Currently ping command does not target any

cache (this is to change as per ISPN-424) , hence calls to ping command with hash-topology-aware

client settings will return a hash-distribution-aware header with "Num Key Owners", "Hash

210

#hot_rod_hash_functions
https://jira.jboss.org/jira/browse/ISPN-424

Function Version", "Hash space size" and each individual host’s hash code all set to 0. This type of

header will also be returned as response to operations with hash-topology-aware client settings that

are targeting caches that are not configured with distribution.

Operations

Get (0x03)/Remove (0x0B)/ContainsKey (0x0F)/GetWithVersion (0x11)

Common request format:

Field Name Size Value

Header variable Request header

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes

which in theory can produce bigger numbers than

Integer.MAX_VALUE. However, Java cannot create a single array

that’s bigger than Integer.MAX_VALUE, hence the protocol is

limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

Get response (0x04):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if key retrieved

0x02 = if key does not exist

Value Length vInt If success, length of value

Value byte array If success, the requested value

Remove response (0x0C):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if key removed

0x02 = if key does not exist

Previous value

Length

vInt If force return previous value flag was sent in the request and

the key was removed, the length of the previous value will be

returned. If the key does not exist, value length would be 0. If no

flag was sent, no value length would be present.

Previous value byte array If force return previous value flag was sent in the request and

the key was removed, previous value.

ContainsKey response (0x10):

211

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if key exists

0x02 = if key does not exist

GetWithVersion response (0x12):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if key retrieved

0x02 = if key does not exist

Entry Version 8 bytes Unique value of an existing entry’s modification. The protocol

does not mandate that entry_version values are sequential. They

just need to be unique per update at the key level.

Value Length vInt If success, length of value

Value byte array If success, the requested value

BulkGet

Request (0x19):

Field Name Size Value

Header variable Request header

Entry count vInt Maximum number of Infinispan entries to be returned by the

server (entry == key + associated value). Needed to support

CacheLoader.load(int). If 0 then all entries are returned (needed

for CacheLoader.loadAll()).

Response (0x20):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, data follows

More 1 byte One byte representing whether more entries need to be read

from the stream. So, when it’s set to 1, it means that an entry

follows, whereas when it’s set to 0, it’s the end of stream and no

more entries are left to read. For more information on BulkGet

look here

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

Value 1 Length vInt Length of value

212

http://community.jboss.org/docs/DOC-15592

Field Name Size Value

Value 1 byte array Retrieved value

More 1 byte

Key 2 Length vInt

Key 2 byte array

Value 2 Length vInt

Value 2 byte array

… etc

Put (0x01)/PutIfAbsent (0x05)/Replace (0x07)

Common request format:

Field Name Size Value

Header variable Request header

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes

which in theory can produce bigger numbers than

Integer.MAX_VALUE. However, Java cannot create a single array

that’s bigger than Integer.MAX_VALUE, hence the protocol is

limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

Lifespan vInt Number of seconds that a entry during which the entry is

allowed to life. If number of seconds is bigger than 30 days, this

number of seconds is treated as UNIX time and so, represents the

number of seconds since 1/1/1970. If set to 0, lifespan is

unlimited.

Max Idle vInt Number of seconds that a entry can be idle before it’s evicted

from the cache. If 0, no max idle time.

Value Length vInt Length of value

Value byte-array Value to be stored

Put response (0x02):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if stored

Previous value

Length

vInt If force return previous value flag was sent in the request and

the key was put, the length of the previous value will be

returned. If the key does not exist, value length would be 0. If no

flag was sent, no value length would be present.

213

Field Name Size Value

Previous value byte array If force return previous value flag was sent in the request and

the key was put, previous value.

Replace response (0x08):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if stored

0x01 = if store did not happen because key does not exist

Previous value

Length

vInt If force return previous value flag was sent in the request, the

length of the previous value will be returned. If the key does not

exist, value length would be 0. If no flag was sent, no value length

would be present.

Previous value byte array If force return previous value flag was sent in the request and

the key was replaced, previous value.

PutIfAbsent response (0x06):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if stored

0x01 = if store did not happen because key was present

Previous value

Length

vInt If force return previous value flag was sent in the request, the

length of the previous value will be returned. If the key does not

exist, value length would be 0. If no flag was sent, no value length

would be present.

Previous value byte array If force return previous value flag was sent in the request and

the key was replaced, previous value.

ReplaceIfUnmodified

Request (0x09):

Field Name Size Value

Header variable Request header

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes

which in theory can produce bigger numbers than

Integer.MAX_VALUE. However, Java cannot create a single array

that’s bigger than Integer.MAX_VALUE, hence the protocol is

limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

214

Field Name Size Value

Lifespan vInt Number of seconds that a entry during which the entry is

allowed to life. If number of seconds is bigger than 30 days, this

number of seconds is treated as UNIX time and so, represents the

number of seconds since 1/1/1970. If set to 0, lifespan is

unlimited.

Max Idle vInt Number of seconds that a entry can be idle before it’s evicted

from the cache. If 0, no max idle time.

Entry Version 8 bytes Use the value returned by GetWithVersion operation.

Value Length vInt Length of value

Value byte-array Value to be stored

Response (0x0A):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if replaced

0x01 = if replace did not happen because key had been modified

0x02 = if not replaced because if key does not exist

Previous value

Length

vInt If force return previous value flag was sent in the request, the

length of the previous value will be returned. If the key does not

exist, value length would be 0. If no flag was sent, no value length

would be present.

Previous value byte array If force return previous value flag was sent in the request and

the key was replaced, previous value.

RemoveIfUnmodified

Request (0x0D):

Field Name Size Value

Header variable Request header

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes

which in theory can produce bigger numbers than

Integer.MAX_VALUE. However, Java cannot create a single array

that’s bigger than Integer.MAX_VALUE, hence the protocol is

limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

Entry Version 8 bytes Use the value returned by GetWithMetadata operation.

Response (0x0E):

215

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if removed

0x01 = if remove did not happen because key had been modified

0x02 = if not removed because key does not exist

Previous value

Length

vInt If force return previous value flag was sent in the request, the

length of the previous value will be returned. If the key does not

exist, value length would be 0. If no flag was sent, no value length

would be present.

Previous value byte array If force return previous value flag was sent in the request and

the key was removed, previous value.

Clear

Request (0x13):

Field Name Size Value

Header variable Request header

Response (0x14):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if cleared

PutAll

Bulk operation to put all key value entries into the cache at the same time.

Request (0x2D):

Field Name Size Value

Header variable Request header

Lifespan vInt Number of seconds that provided entries are allowed to live. If

number of seconds is bigger than 30 days, this number of

seconds is treated as UNIX time and so, represents the number of

seconds since 1/1/1970. If set to 0, lifespan is unlimited.

Max Idle vInt Number of seconds that each entry can be idle before it’s evicted

from the cache. If 0, no max idle time.

Entry count vInt How many entries are being inserted

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

Value 1 Length vInt Length of value

216

Field Name Size Value

Value 1 byte array Retrieved value

Key 2 Length vInt

Key 2 byte array

Value 2 Length vInt

Value 2 byte array

… continues until

entry count is

reached

Response (0x2E):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if all put

GetAll

Bulk operation to get all entries that map to a given set of keys.

Request (0x2F):

Field Name Size Value

Header variable Request header

Key count vInt How many keys to find entries for

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

Key 2 Length vInt

Key 2 byte array

… continues until

key count is

reached

Response (0x30):

Field Name Size Value

Header variable Response header

Response status 1 byte

Entry count vInt How many entries are being returned

217

Field Name Size Value

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

Value 1 Length vInt Length of value

Value 1 byte array Retrieved value

Key 2 Length vInt

Key 2 byte array

Value 2 Length vInt

Value 2 byte array

… continues until

entry count is

reached

0x00 = success, if the get returned sucessfully

Stats

Returns a summary of all available statistics. For each statistic returned, a name and a value is

returned both in String UTF-8 format. The supported stats are the following:

Name Explanation

timeSinceStart Number of seconds since Hot Rod started.

currentNumberOfEntries Number of entries currently in the Hot Rod

server.

totalNumberOfEntries Number of entries stored in Hot Rod server.

stores Number of put operations.

retrievals Number of get operations.

hits Number of get hits.

misses Number of get misses.

removeHits Number of removal hits.

removeMisses Number of removal misses.

Request (0x15):

Field Name Size Value

Header variable Request header

Response (0x16):

Field Name Size Value

Header variable Response header

218

Field Name Size Value

Response status 1 byte 0x00 = success, if stats retrieved

Number of stats vInt Number of individual stats returned.

Name 1 length vInt Length of named statistic.

Name 1 string String containing statistic name.

Value 1 length vInt Length of value field.

Value 1 string String containing statistic value.

Name 2 length vInt

Name 2 string

Value 2 length vInt

Value 2 String

…etc

Ping

Application level request to see if the server is available.

Request (0x17):

Field Name Size Value

Header variable Request header

Response (0x18):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if no errors

Error Handling

Error response (0x50)

Field Name Size Value

Header variable Response header

Response status 1 byte 0x8x = error response code

Error Message

Length

vInt Length of error message

Error Message string Error message. In the case of 0x84 , this error field contains the

latest version supported by the hot rod server. Length is defined

by total body length.

219

Multi-Get Operations

A multi-get operation is a form of get operation that instead of requesting a single key, requests a

set of keys. The Hot Rod protocol does not include such operation but remote Hot Rod clients could

easily implement this type of operations by either parallelizing/pipelining individual get requests.

Another possibility would be for remote clients to use async or non-blocking get requests. For

example, if a client wants N keys, it could send send N async get requests and then wait for all the

replies. Finally, multi-get is not to be confused with bulk-get operations. In bulk-gets, either all or a

number of keys are retrieved, but the client does not know which keys to retrieve, whereas in

multi-get, the client defines which keys to retrieve.

Example - Put request

• Coded request

Byte 0 1 2 3 4 5 6 7

8 0xA0 0x09 0x41 0x01 0x07 0x4D ('M') 0x79 ('y') 0x43 ('C')

16 0x61 ('a') 0x63 ('c') 0x68 ('h') 0x65 ('e') 0x00 0x03 0x00 0x00

24 0x00 0x05 0x48 ('H') 0x65 ('e') 0x6C ('l') 0x6C ('l') 0x6F ('o') 0x00

32 0x00 0x05 0x57 ('W') 0x6F ('o') 0x72 ('r') 0x6C ('l') 0x64 ('d')

• Field explanation

Field Name Value Field Name Value

Magic (0) 0xA0 Message Id (1) 0x09

Version (2) 0x41 Opcode (3) 0x01

Cache name length (4) 0x07 Cache name(5-11) 'MyCache'

Flag (12) 0x00 Client Intelligence (13) 0x03

Topology Id (14) 0x00 Transaction Type (15) 0x00

Transaction Id (16) 0x00 Key field length (17) 0x05

Key (18 - 22) 'Hello' Lifespan (23) 0x00

Max idle (24) 0x00 Value field length (25) 0x05

Value (26-30) 'World'

• Coded response

Byte 0 1 2 3 4 5 6 7

8 0xA1 0x09 0x01 0x00 0x00

• Field Explanation

220

Field Name Value Field Name Value

Magic (0) 0xA1 Message Id (1) 0x09

Opcode (2) 0x01 Status (3) 0x00

Topology change

marker (4)

0x00

20.5.2. Hot Rod Protocol 1.1

Infinispan versions

This version of the protocol is implemented since Infinispan 5.1.0.FINAL

Request Header

The version field in the header is updated to 11.

Distribution-Aware Client Topology Change Header

Updated for 1.1

This section has been modified to be more efficient when talking to distributed

caches with virtual nodes enabled.

This is what hash-distribution-aware clients receive as response header when a topology change is

sent back:

Field Name Size Value

Response header

with topology

change marker

variable See previous section.

Topology Id vInt Topology ID

Num Key Owners 2 bytes

(Unsigned

Short)

Globally configured number of copies for each Infinispan

distributed key

Hash Function

Version

1 byte Hash function version, pointing to a specific hash function in use.

See Hot Rod hash functions for details.

Hash space size vInt Modulus used by Infinispan for for all module arithmetic related

to hash code generation. Clients will likely require this

information in order to apply the correct hash calculation to the

keys.

Num servers in

topology

vInt Number of Infinispan Hot Rod servers running within the

cluster. This could be a subset of the entire cluster if only a

fraction of those nodes are running Hot Rod servers.

221

#hot_rod_hash_functions

Field Name Size Value

Num Virtual

Nodes Owners

vInt Field added in version 1.1 of the protocol that represents the

number of configured virtual nodes. If no virtual nodes are

configured or the cache is not configured with distribution, this

field will contain 0.

m1: Host/IP length vInt Length of hostname or IP address of individual cluster member

that Hot Rod client can use to access it. Using variable length here

allows for covering for hostnames, IPv4 and IPv6 addresses.

m1: Host/IP

address

string String containing hostname or IP address of individual cluster

member that Hot Rod client can use to access it.

m1: Port 2 bytes

(Unsigned

Short)

Port that Hot Rod clients can use to communicat with this cluster

member.

m1: Hashcode 4 bytes 32 bit integer representing the hashcode of a cluster member

that a Hot Rod client can use indentify in which cluster member

a key is located having applied the CSA to it.

m2: Host/IP length vInt

m2: Host/IP

address

string

m2: Port 2 bytes

(Unsigned

Short)

m2: Hashcode 4 bytes

…etc

Server node hash code calculation

Adding support for virtual nodes has made version 1.0 of the Hot Rod protocol impractical due to

bandwidth it would have taken to return hash codes for all virtual nodes in the clusters (this

number could easily be in the millions). So, as of version 1.1 of the Hot Rod protocol, clients are

given the base hash id or hash code of each server, and then they have to calculate the real hash

position of each server both with and without virtual nodes configured. Here are the rules clients

should follow when trying to calculate a node’s hash code:

1\. With virtual nodes disabled : Once clients have received the base hash code of the server, they

need to normalize it in order to find the exact position of the hash wheel. The process of

normalization involves passing the base hash code to the hash function, and then do a small

calculation to avoid negative values. The resulting number is the node’s position in the hash wheel:

public static int getNormalizedHash(int nodeBaseHashCode, Hash hashFct) {

 return hashFct.hash(nodeBaseHashCode) & Integer.MAX_VALUE; // make sure no negative

numbers are involved.

}

222

2\. With virtual nodes enabled : In this case, each node represents N different virtual nodes, and to

calculate each virtual node’s hash code, we need to take the the range of numbers between 0 and N-

1 and apply the following logic:

• For virtual node with 0 as id, use the technique used to retrieve a node’s hash code, as shown in

the previous section.

• For virtual nodes from 1 to N-1 ids, execute the following logic:

public static int virtualNodeHashCode(int nodeBaseHashCode, int id, Hash hashFct) {

 int virtualNodeBaseHashCode = id;

 virtualNodeBaseHashCode = 31 * virtualNodeBaseHashCode + nodeBaseHashCode;

 return getNormalizedHash(virtualNodeBaseHashCode, hashFct);

}

20.5.3. Hot Rod Protocol 1.2

Infinispan versions

This version of the protocol is implemented since Infinispan 5.2.0.Final. Since

Infinispan 5.3.0, HotRod supports encryption via SSL. However, since this only

affects the transport, the version number of the protocol has not been

incremented.

Request Header

The version field in the header is updated to 12.

Two new request operation codes have been added:

• 0x1B = getWithMetadata request

• 0x1D = bulkKeysGet request

Two new flags have been added too:

• 0x0002	= use cache-level configured default lifespan

• 0x0004	= use cache-level configured default max idle

Response Header

Two new response operation codes have been added:

• 0x1C = getWithMetadata response

• 0x1E = bulkKeysGet response

Operations

GetWithMetadata

Request (0x1B):

223

Field Name Size Value

Header variable Request header

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes

which in theory can produce bigger numbers than

Integer.MAX_VALUE. However, Java cannot create a single array

that’s bigger than Integer.MAX_VALUE, hence the protocol is

limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

Response (0x1C):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if key retrieved

0x02 = if key does not exist

Flag 1 byte A flag indicating whether the response contains expiration

information. The value of the flag is obtained as a bitwise OR

operation between INFINITE_LIFESPAN (0x01) and

INFINITE_MAXIDLE (0x02).

Created Long (optional) a Long representing the timestamp when the entry

was created on the server. This value is returned only if the flag’s

INFINITE_LIFESPAN bit is not set.

Lifespan vInt (optional) a vInt representing the lifespan of the entry in seconds.

This value is returned only if the flag’s INFINITE_LIFESPAN bit is

not set.

LastUsed Long (optional) a Long representing the timestamp when the entry

was last accessed on the server. This value is returned only if the

flag’s INFINITE_MAXIDLE bit is not set.

MaxIdle vInt (optional) a vInt representing the maxIdle of the entry in

seconds. This value is returned only if the flag’s INFINITE_MAXIDLE

bit is not set.

Entry Version 8 bytes Unique value of an existing entry’s modification. The protocol

does not mandate that entry_version values are sequential. They

just need to be unique per update at the key level.

Value Length vInt If success, length of value

Value byte array If success, the requested value

BulkKeysGet

Request (0x1D):

Field Name Size Value

Header variable Request header

224

Field Name Size Value

Scope vInt 0 = Default Scope - This scope is used by RemoteCache.keySet()

method. If the remote cache is a distributed cache, the server

launch a stream operation to retrieve all keys from all of the

nodes. (Remember, a topology-aware Hot Rod Client could be

load balancing the request to any one node in the cluster).

Otherwise, it’ll get keys from the cache instance local to the

server receiving the request (that is because the keys should be

the same across all nodes in a replicated cache).

1 = Global Scope - This scope behaves the same to Default Scope.

2 = Local Scope - In case when remote cache is a distributed

cache, the server will not launch a stream operation to retrieve

keys from all nodes. Instead, it’ll only get keys local from the

cache instance local to the server receiving the request.

Response (0x1E):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, data follows

More 1 byte One byte representing whether more keys need to be read from

the stream. So, when it’s set to 1, it means that an entry follows,

whereas when it’s set to 0, it’s the end of stream and no more

entries are left to read. For more information on BulkGet look

here

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

More 1 byte

Key 2 Length vInt

Key 2 byte array

… etc

20.5.4. Hot Rod Protocol 1.3

Infinispan versions

This version of the protocol is implemented since Infinispan 6.0.0.Final.

Request Header

The version field in the header is updated to 13.

A new request operation code has been added:

• 0x1F = query request

225

http://community.jboss.org/docs/DOC-15592

Response Header

A new response operation code has been added:

• 0x20 = query response

Operations

Query

Request (0x1F):

Field Name Size Value

Header variable Request header

Query Length vInt The length of the protobuf encoded query object

Query byte array Byte array containing the protobuf encoded query object, having

a length specified by previous field.

Response (0x20):

Field Name Size Value

Header variable Response header

Response payload

Length

vInt The length of the protobuf encoded response object

Response payload byte array Byte array containing the protobuf encoded response object,

having a length specified by previous field.

As of Infinispan 6.0, the query and response objects are specified by the protobuf message types

'org.infinispan.client.hotrod.impl.query.QueryRequest' and

'org.infinispan.client.hotrod.impl.query.QueryResponse' defined in remote-query/remote-query-

client/src/main/resources/org/infinispan/query/remote/client/query.proto. These definitions could

change in future Infinispan versions, but as long as these evolutions will be kept backward

compatible (according to the rules defined here) no new Hot Rod protocol version will be

introduced to accommodate this.

20.5.5. Hot Rod Protocol 2.0

Infinispan versions

This version of the protocol is implemented since Infinispan 7.0.0.Final.

Request Header

The request header no longer contains Transaction Type and Transaction ID elements since they’re

not in use, and even if they were in use, there are several operations for which they would not

make sense, such as ping or stats commands. Once transactions are implemented, the protocol

version will be upped, with the necessary changes in the request header.

226

https://github.com/infinispan/infinispan/blob/master/remote-query/remote-query-client/src/main/resources/org/infinispan/query/remote/client/query.proto
https://github.com/infinispan/infinispan/blob/master/remote-query/remote-query-client/src/main/resources/org/infinispan/query/remote/client/query.proto
https://developers.google.com/protocol-buffers/docs/proto#updating

The version field in the header is updated to 20.

Two new flags have been added:

• 0x0008 = operation skips loading from configured cache loader.

• 0x0010 = operation skips indexing. Only relevant when the query module is enabled for the

cache

The following new request operation codes have been added:

• 0x21 = auth mech list request

• 0x23 = auth request

• 0x25 = add client remote event listener request

• 0x27 = remove client remote event listener request

• 0x29 = size request

Response Header

The following new response operation codes have been added:

• 0x22 = auth mech list response

• 0x24 = auth mech response

• 0x26 = add client remote event listener response

• 0x28 = remove client remote event listener response

• 0x2A = size response

Two new error codes have also been added to enable clients more intelligent decisions, particularly

when it comes to fail-over logic:

• 0x87 = Node suspected. When a client receives this error as response, it means that the node

that responded had an issue sending an operation to a third node, which was suspected.

Generally, requests that return this error should be failed-over to other nodes.

• 0x88 = Illegal lifecycle state. When a client receives this error as response, it means that the

server-side cache or cache manager are not available for requests because either stopped,

they’re stopping or similar situation. Generally, requests that return this error should be failed-

over to other nodes.

Some adjustments have been made to the responses for the following commands in order to better

handle response decoding without the need to keep track of the information sent. More precisely,

the way previous values are parsed has changed so that the status of the command response

provides clues on whether the previous value follows or not. More precisely:

• Put response returns 0x03 status code when put was successful and previous value follows.

• PutIfAbsent response returns 0x04 status code only when the putIfAbsent operation failed

because the key was present and its value follows in the response. If the putIfAbsent worked,

there would have not been a previous value, and hence it does not make sense returning

227

anything extra.

• Replace response returns 0x03 status code only when replace happened and the previous or

replaced value follows in the response. If the replace did not happen, it means that the cache

entry was not present, and hence there’s no previous value that can be returned.

• ReplaceIfUnmodified returns 0x03 status code only when replace happened and the previous or

replaced value follows in the response.

• ReplaceIfUnmodified returns 0x04 status code only when replace did not happen as a result of

the key being modified, and the modified value follows in the response.

• Remove returns 0x03 status code when the remove happened and the previous or removed

value follows in the response. If the remove did not occur as a result of the key not being

present, it does not make sense sending any previous value information.

• RemoveIfUnmodified returns 0x03 status code only when remove happened and the previous or

replaced value follows in the response.

• RemoveIfUnmodified returns 0x04 status code only when remove did not happen as a result of

the key being modified, and the modified value follows in the response.

Distribution-Aware Client Topology Change Header

In Infinispan 5.2, virtual nodes based consistent hashing was abandoned and instead segment

based consistent hash was implemented. In order to satisfy the ability for Hot Rod clients to find

data as reliably as possible, Infinispan has been transforming the segment based consistent hash to

fit Hot Rod 1.x protocol. Starting with version 2.0, a brand new distribution-aware topology change

header has been implemented which suppors segment based consistent hashing suitably and

provides 100% data location guarantees.

Field Name Size Value

Response header

with topology

change marker

variable

Topology Id vInt Topology ID

Num servers in

topology

vInt Number of Infinispan Hot Rod servers running within the

cluster. This could be a subset of the entire cluster if only a

fraction of those nodes are running Hot Rod servers.

m1: Host/IP length vInt Length of hostname or IP address of individual cluster member

that Hot Rod client can use to access it. Using variable length here

allows for covering for hostnames, IPv4 and IPv6 addresses.

m1: Host/IP

address

string String containing hostname or IP address of individual cluster

member that Hot Rod client can use to access it.

m1: Port 2 bytes

(Unsigned

Short)

Port that Hot Rod clients can use to communicat with this cluster

member.

m2: Host/IP length vInt

228

Field Name Size Value

m2: Host/IP

address

string

m2: Port 2 bytes

(Unsigned

Short)

… …

Hash Function

Version

1 byte Hash function version, pointing to a specific hash function in use.

See Hot Rod hash functions for details.

Num segments in

topology

vInt Total number of segments in the topology

Number of owners

in segment

1 byte This can be either 0, 1 or 2 owners.

First owner’s

index

vInt Given the list of all nodes, the position of this owner in this list.

This is only present if number of owners for this segment is 1 or

2.

Second owner’s

index

vInt Given the list of all nodes, the position of this owner in this list.

This is only present if number of owners for this segment is 2.

Given this information, Hot Rod clients should be able to recalculate all the hash segments and be

able to find out which nodes are owners for each segment. Even though there could be more than 2

owners per segment, Hot Rod protocol limits the number of owners to send for efficiency reasons.

Operations

Auth Mech List

Request (0x21):

Field Name Size Value

Header variable Request header

Response (0x22):

Field Name Size Value

Header variable Response header

Mech count vInt The number of mechs

Mech 1 string String containing the name of the SASL mech in its IANA-

registered form (e.g. GSSAPI, CRAM-MD5, etc)

Mech 2 string

…etc

The purpose of this operation is to obtain the list of valid SASL authentication mechs supported by

229

#hot_rod_hash_functions

the server. The client will then need to issue an Authenticate request with the preferred mech.

Authenticate

Request (0x23):

Field Name Size Value

Header variable Request header

Mech string String containing the name of the mech chosen by the client for

authentication. Empty on the successive invocations

Response length vInt Length of the SASL client response

Response data byte array The SASL client response

Response (0x24):

Field Name Size Value

Header variable Response header

Completed byte 0 if further processing is needed, 1 if authentication is complete

Challenge length vInt Length of the SASL server challenge

Challenge data byte array The SASL server challenge

The purpose of this operation is to authenticate a client against a server using SASL. The

authentication process, depending on the chosen mech, might be a multi-step operation. Once

complete the connection becomes authenticated

Add client listener for remote events

Request (0x25):

Field Name Size Value

Header variable Request header

Listener ID byte array Listener identifier

Include state byte When this byte is set to 1, cached state is sent back to remote

clients when either adding a cache listener for the first time, or

when the node where a remote listener is registered changes in a

clustered environment. When enabled, state is sent back as cache

entry created events to the clients. If set to 0, no state is sent back

to the client when adding a listener, nor it gets state when the

node where the listener is registered changes.

Key/value filter

factory name

string Optional name of the key/value filter factory to be used with this

listener. The factory is used to create key/value filter instances

which allow events to be filtered directly in the Hot Rod server,

avoiding sending events that the client is not interested in. If no

factory is to be used, the length of the string is 0.

230

Field Name Size Value

Key/value filter

factory parameter

count

byte The key/value filter factory, when creating a filter instance, can

take an arbitrary number of parameters, enabling the factory to

be used to create different filter instances dynamically. This

count field indicates how many parameters will be passed to the

factory. If no factory name was provided, this field is not present

in the request.

Key/value filter

factory parameter

1

byte array First key/value filter factory parameter

Key/value filter

factory parameter

2

byte array Second key/value filter factory parameter

…

Converter factory

name

string Optional name of the converter factory to be used with this

listener. The factory is used to transform the contents of the

events sent to clients. By default, when no converter is in use,

events are well defined, according to the type of event generated.

However, there might be situations where users want to add

extra information to the event, or they want to reduce the size of

the events. In these cases, a converter can be used to transform

the event contents. The given converter factory name produces

converter instances to do this job. If no factory is to be used, the

length of the string is 0.

Converter factory

parameter count

byte The converter factory, when creating a converter instance, can

take an arbitrary number of parameters, enabling the factory to

be used to create different converter instances dynamically. This

count field indicates how many parameters will be passed to the

factory. If no factory name was provided, this field is not present

in the request.

Converter factory

parameter 1

byte array First converter factory parameter

Converter factory

parameter 2

byte array Second converter factory parameter

…

Response (0x26):

Field Name Size Value

Header variable Response header

Remove client listener for remote events

Request (0x27):

231

Field Name Size Value

Header variable Request header

Listener ID byte array Listener identifier

Response (0x28):

Field Name Size Value

Header variable Response header

Size

Request (0x29):

Field Name Size Value

Header variable Request header

Response (0x2A):

Field Name Size Value

Header variable Response header

Size vInt Size of the remote cache, which is calculated globally in the

clustered set ups, and if present, takes cache store contents into

account as well.

Exec

Request (0x2B):

Field Name Size Value

Header variable Request header

Script string Name of the script to execute

Parameter Count vInt The number of parameters

Parameter 1 Name string The name of the first parameter

Parameter 1

Length

vInt The length of the first parameter

Parameter 1 Value byte array The value of the first parameter

Response (0x2C):

Field Name Size Value

Header variable Response header

232

Field Name Size Value

Response status 1 byte 0x00 = success, if execution completed successfully

0x85 = server error

Value Length vInt If success, length of return value

Value byte array If success, the result of the execution

Remote Events

Starting with Hot Rod 2.0, clients can register listeners for remote events happening in the server.

Sending these events commences the moment a client adds a client listener for remote events.

Event Header:

Field Name Size Value

Magic 1 byte 0xA1 = response

Message ID vLong ID of event

Opcode 1 byte Event type:

0x60 = cache entry created event

0x61 = cache entry modified event

0x62 = cache entry removed event

0x50 = error

Status 1 byte Status of the response, possible values:

0x00 = No error

Topology Change

Marker

1 byte Since events are not associated with a particular incoming

topology ID to be able to decide whether a new topology is

required to be sent or not, new topologies will never be sent with

events. Hence, this marker will always have 0 value for events.

Table 9. Cache entry created event

Field Name Size Value

Header variable Event header with 0x60 operation code

Listener ID byte array Listener for which this event is directed

Custom marker byte Custom event marker. For created events, this is 0.

Command retried byte Marker for events that are result of retried commands. If

command is retried, it returns 1, otherwise 0.

Key byte array Created key

Version long Version of the created entry. This version information can be

used to make conditional operations on this cache entry.

Table 10. Cache entry modified event

233

Field Name Size Value

Header variable Event header with 0x61 operation code

Listener ID byte array Listener for which this event is directed

Custom marker byte Custom event marker. For created events, this is 0.

Command retried byte Marker for events that are result of retried commands. If

command is retried, it returns 1, otherwise 0.

Key byte array Modified key

Version long Version of the modified entry. This version information can be

used to make conditional operations on this cache entry.

Table 11. Cache entry removed event

Field Name Size Value

Header variable Event header with 0x62 operation code

Listener ID byte array Listener for which this event is directed

Custom marker byte Custom event marker. For created events, this is 0.

Command retried byte Marker for events that are result of retried commands. If

command is retried, it returns 1, otherwise 0.

Key byte array Removed key

Table 12. Custom event

Field Name Size Value

Header variable Event header with event specific operation code

Listener ID byte array Listener for which this event is directed

Custom marker byte Custom event marker. For custom events, this is 1.

Event data byte array Custom event data, formatted according to the converter

implementation logic.

20.5.6. Hot Rod Protocol 2.1

Infinispan versions

This version of the protocol is implemented since Infinispan 7.1.0.Final.

Request Header

The version field in the header is updated to 21.

Operations

Add client listener for remote events

234

An extra byte parameter is added at the end which indicates whether the client prefers client

listener to work with raw binary data for filter/converter callbacks. If using raw data, its value is 1

otherwise 0.

Request format:

Field Name Size Value

Header variable Request header

Listener ID byte array …

Include state byte …

Key/value filter

factory parameter

count

byte …

…

Converter factory

name

string …

Converter factory

parameter count

byte …

…

Use raw data byte If filter/converter parameters should be raw binary, then 1,

otherwise 0.

Custom event

Starting with Hot Rod 2.1, custom events can return raw data that the Hot Rod client should not try

to unmarshall before passing it on to the user. The way this is transmitted to the Hot Rod client is by

sending 2 as the custom event marker. So, the format of the custom event remains like this:

Field Name Size Value

Header variable Event header with event specific operation code

Listener ID byte array Listener for which this event is directed

Custom marker byte Custom event marker. For custom events whose event data needs

to be unmarshalled before returning to user the value is 1. For

custom events that need to return the event data as-is to the user,

the value is 2.

Event data byte array Custom event data. If the custom marker is 1, the bytes represent

the marshalled version of the instance returned by the converter.

If custom marker is 2, it represents the byte array, as returned by

the converter.

20.5.7. Hot Rod Protocol 2.2

235

Infinispan versions

This version of the protocol is implemented since Infinispan 8.0

Added support for different time units.

Operations

Put/PutAll/PutIfAbsent/Replace/ReplaceIfUnmodified

Common request format:

Field Name Size Value

TimeUnits Byte Time units of lifespan (first 4 bits) and maxIdle (last 4 bits).

Special units DEFAULT and INFINITE can be used for default

server expiration and no expiration respectively. Possible values:

0x00 = SECONDS

0x01 = MILLISECONDS

0x02 = NANOSECONDS

0x03 = MICROSECONDS

0x04 = MINUTES

0x05 = HOURS

0x06 = DAYS

0x07 = DEFAULT

0x08 = INFINITE

Lifespan vLong Duration which the entry is allowed to life. Only sent when time

unit is not DEFAULT or INFINITE

Max Idle vLong Duration that each entry can be idle before it’s evicted from the

cache. Only sent when time unit is not DEFAULT or INFINITE

20.5.8. Hot Rod Protocol 2.3

Infinispan versions

This version of the protocol is implemented since Infinispan 8.0

Operations

Iteration Start

Request (0x31):

Field Name Size Value

Segments size signed vInt Size of the bitset encoding of the segments ids to iterate on. The

size is the maximum segment id rounded to nearest multiple of 8.

A value -1 indicates no segment filtering is to be done

236

Field Name Size Value

Segments byte array (Optional) Contains the segments ids bitset encoded, where each

bit with value 1 represents a segment in the set. Byte order is

little-endian.

Example: segments [1,3,12,13] would result in the following

encoding:

00001010 00110000

size: 16 bits

first byte: represents segments from 0 to 7, from which 1 and 3

are set

second byte: represents segments from 8 to 15, from which 12

and 13 are set

More details in the java.util.BitSet implementation. Segments will

be sent if the previous field is not negative

FilterConverter

size

signed vInt The size of the String representing a KeyValueFilterConverter

factory name deployed on the server, or -1 if no filter will be used

FilterConverter UTF-8 byte

array

(Optional) KeyValueFilterConverter factory name deployed on

the server. Present if previous field is not negative

BatchSize vInt number of entries to transfers from the server at one go

Response (0x32):

Field Name Size Value

IterationId String The unique id of the iteration

Iteration Next

Request (0x33):

Field Name Size Value

IterationId String The unique id of the iteration

Response (0x34):

Field Name Size Value

Finished segments

size

vInt size of the bitset representing segments that were finished

iterating

Finished segments byte array bitset encoding of the segments that were finished iterating

Entry count vInt How many entries are being returned

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

Value 1 Length vInt Length of value

Value 1 byte array Retrieved value

237

Field Name Size Value

Key 2 Length vInt

Key 2 byte array

Value 2 Length vInt

Value 2 byte array

… continues until

entry count is

reached

Iteration End

Request (0x35):

Field Name Size Value

IterationId String The unique id of the iteration

Response (0x36):

Header variable Response header

Response status 1 byte 0x00 = success, if execution completed successfully

0x05 = for non existent IterationId

20.5.9. Hot Rod Protocol 2.4

Infinispan versions

This version of the protocol is implemented since Infinispan 8.1

This Hot Rod protocol version adds three new status code that gives the client hints on whether the

server has compatibility mode enabled or not:

• 0x06: Success status and compatibility mode is enabled.

• 0x07: Success status and return previous value, with compatibility mode is enabled.

• 0x08: Not executed and return previous value, with compatibility mode is enabled.

The Iteration Start operation can optionally send parameters if a custom filter is provided and it’s

parametrised:

Operations

Iteration Start

Request (0x31):

238

Field Name Size Value

Segments size signed vInt same as protocol version 2.3.

Segments byte array same as protocol version 2.3.

FilterConverter

size

signed vInt same as protocol version 2.3.

FilterConverter UTF-8 byte

array

same as protocol version 2.3.

Parameters size byte the number of params of the filter. Only present when

FilterConverter is provided.

Parameters byte[][] an array of parameters, each parameter is a byte array. Only

present if Parameters size is greater than 0.

BatchSize vInt same as protocol version 2.3.

The Iteration Next operation can optionally return projections in the value, meaning more than one

value is contained in the same entry.

Iteration Next

Response (0x34):

Field Name Size Value

Finished segments

size

vInt same as protocol version 2.3.

Finished segments byte array same as protocol version 2.3.

Entry count vInt same as protocol version 2.3.

Number of value

projections

vInt Number of projections for the values. If 1, behaves like version

protocol version 2.3.

Key1 Length vInt same as protocol version 2.3.

Key1 byte array same as protocol version 2.3.

Value1 projection1

length

vInt length of value1 first projection

Value1 projection1 byte array retrieved value1 first projection

Value1 projection2

length

vInt length of value2 second projection

Value1 projection2 byte array retrieved value2 second projection

… continues until

all projections for

the value

retrieved

Key2

Length

vInt

239

Field Name Size Value

same as protocol

version 2.3.

Key2 byte array

same as protocol

version 2.3.

Value2

projection1

length

vInt

length of value 2

first projection

Value2

projection1

byte array

retrieved value 2

first projection

Value2

projection2

length

vInt

length of value 2

second projection

Value2

projection2

byte array

retrieved value 2

second projection

… continues

until entry

count is

reached

1. Stats:

Statistics returned by previous Hot Rod protocol versions were local to the node where the Hot Rod

operation had been called. Starting with 2.4, new statistics have been added which provide global

counts for the statistics returned previously. If the Hot Rod is running in local mode, these statistics

are not returned:

Name Explanation

globalCurrentNumberOfEntries Number of entries currently across the Hot Rod

cluster.

globalStores Total number of put operations across the Hot

Rod cluster.

globalRetrievals Total number of get operations across the Hot

Rod cluster.

globalHits Total number of get hits across the Hot Rod

cluster.

globalMisses Total number of get misses across the Hot Rod

cluster.

globalRemoveHits Total number of removal hits across the Hot Rod

cluster.

globalRemoveMisses Total number of removal misses across the Hot

Rod cluster.

240

20.5.10. Hot Rod Protocol 2.5

Infinispan versions

This version of the protocol is implemented since Infinispan 8.2

This Hot Rod protocol version adds support for metadata retrieval along with entries in the iterator.

It includes two changes:

• Iteration Start request includes an optional flag

• IterationNext operation may include metadata info for each entry if the flag above is set

Iteration Start

Request (0x31):

Field Name Size Value

Segments size signed vInt same as protocol version 2.4.

Segments byte array same as protocol version 2.4.

FilterConverter

size

signed vInt same as protocol version 2.4.

FilterConverter UTF-8 byte

array

same as protocol version 2.4.

Parameters size byte same as protocol version 2.4.

Parameters byte[][] same as protocol version 2.4.

BatchSize vInt same as protocol version 2.4.

Metadata 1 byte 1 if metadata is to be returned for each entry, 0 otherwise

Iteration Next

Response (0x34):

Field Name Size Value

Finished segments

size

vInt same as protocol version 2.4.

Finished segments byte array same as protocol version 2.4.

Entry count vInt same as protocol version 2.4.

Number of value

projections

vInt same as protocol version 2.4.

Metadata (entry

1)

1 byte If set, entry has metadata associated

241

Field Name Size Value

Expiration (entry

1)

1 byte A flag indicating whether the response contains expiration

information. The value of the flag is obtained as a bitwise OR

operation between INFINITE_LIFESPAN (0x01) and

INFINITE_MAXIDLE (0x02). Only present if the metadata flag above

is set

Created (entry 1) Long (optional) a Long representing the timestamp when the entry

was created on the server. This value is returned only if the flag’s

INFINITE_LIFESPAN bit is not set.

Lifespan (entry 1) vInt (optional) a vInt representing the lifespan of the entry in seconds.

This value is returned only if the flag’s INFINITE_LIFESPAN bit is

not set.

LastUsed (entry 1) Long (optional) a Long representing the timestamp when the entry

was last accessed on the server. This value is returned only if the

flag’s INFINITE_MAXIDLE bit is not set.

MaxIdle (entry 1) vInt (optional) a vInt representing the maxIdle of the entry in

seconds. This value is returned only if the flag’s INFINITE_MAXIDLE

bit is not set.

Entry Version

(entry 1)

8 bytes Unique value of an existing entry’s modification. Only present if

Metadata flag is set

Key 1 Length vInt same as protocol version 2.4.

Key 1 byte array same as protocol version 2.4.

Value 1 Length vInt same as protocol version 2.4.

Value 1 byte array same as protocol version 2.4.

Metadata (entry 2) 1 byte Same as for entry 1

Expiration (entry

2)

1 byte Same as for entry 1

Created (entry 2) Long Same as for entry 1

Lifespan (entry 2) vInt Same as for entry 1

LastUsed (entry 2) Long Same as for entry 1

MaxIdle (entry 2) vInt Same as for entry 1

Entry Version

(entry 2)

8 bytes Same as for entry 1

Key 2 Length vInt

Key 2 byte array

Value 2 Length vInt

Value 2 byte array

242

Field Name Size Value

… continues until

entry count is

reached

20.5.11. Hot Rod Protocol 2.6

Infinispan versions

This version of the protocol is implemented since Infinispan 9.0

This Hot Rod protocol version adds support for streaming get and put operations. It includes two

new operations:

• GetStream for retrieving data as a stream, with an optional initial offset

• PutStream for writing data as a stream, optionally by specifying a version

GetStream

Request (0x37):

Field Name Size Value

Header variable Request header

Offset vInt The offset in bytes from which to start retrieving. Set to 0 to

retrieve from the beginning

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes

which in theory can produce bigger numbers than

Integer.MAX_VALUE. However, Java cannot create a single array

that’s bigger than Integer.MAX_VALUE, hence the protocol is

limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

GetStream

Response (0x38):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if key retrieved

0x02 = if key does not exist

Flag 1 byte A flag indicating whether the response contains expiration

information. The value of the flag is obtained as a bitwise OR

operation between INFINITE_LIFESPAN (0x01) and

INFINITE_MAXIDLE (0x02).

243

Field Name Size Value

Created Long (optional) a Long representing the timestamp when the entry

was created on the server. This value is returned only if the flag’s

INFINITE_LIFESPAN bit is not set.

Lifespan vInt (optional) a vInt representing the lifespan of the entry in seconds.

This value is returned only if the flag’s INFINITE_LIFESPAN bit is

not set.

LastUsed Long (optional) a Long representing the timestamp when the entry

was last accessed on the server. This value is returned only if the

flag’s INFINITE_MAXIDLE bit is not set.

MaxIdle vInt (optional) a vInt representing the maxIdle of the entry in

seconds. This value is returned only if the flag’s INFINITE_MAXIDLE

bit is not set.

Entry Version 8 bytes Unique value of an existing entry’s modification. The protocol

does not mandate that entry_version values are sequential. They

just need to be unique per update at the key level.

Value Length vInt If success, length of value

Value byte array If success, the requested value

PutStream

Request (0x39)

Field Name Size Value

Header variable Request header

Entry Version 8 bytes Possible values

0 = Unconditional put

-1 = Put If Absent

Other values = pass a version obtained by GetWithMetadata

operation to perform a conditional replace.

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes

which in theory can produce bigger numbers than

Integer.MAX_VALUE. However, Java cannot create a single array

that’s bigger than Integer.MAX_VALUE, hence the protocol is

limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

Value Chunk 1

Length

vInt The size of the first chunk of data. If this value is 0 it means the

client has completed transferring the value and the operation

should be performed.

Value Chunk 1 byte array Array of bytes forming the fist chunk of data.

…continues until

the value is

complete

244

Response (0x3A):

Field Name Size Value

Header variable Response header

On top of these additions, this Hot Rod protocol version improves remote listener registration by

adding a byte that indicates at a global level, which type of events the client is interested in. For

example, a client can indicate that only created events, or only expiration and removal events…etc.

More fine grained event interests, e.g. per key, can be defined using the key/value filter parameter.

So, the new add listener request looks like this:

Add client listener for remote events

Request (0x25):

Field Name Size Value

Header variable Request header

Listener ID byte array Listener identifier

Include state byte When this byte is set to 1, cached state is sent back to remote

clients when either adding a cache listener for the first time, or

when the node where a remote listener is registered changes in a

clustered environment. When enabled, state is sent back as cache

entry created events to the clients. If set to 0, no state is sent back

to the client when adding a listener, nor it gets state when the

node where the listener is registered changes.

Key/value filter

factory name

string Optional name of the key/value filter factory to be used with this

listener. The factory is used to create key/value filter instances

which allow events to be filtered directly in the Hot Rod server,

avoiding sending events that the client is not interested in. If no

factory is to be used, the length of the string is 0.

Key/value filter

factory parameter

count

byte The key/value filter factory, when creating a filter instance, can

take an arbitrary number of parameters, enabling the factory to

be used to create different filter instances dynamically. This

count field indicates how many parameters will be passed to the

factory. If no factory name was provided, this field is not present

in the request.

Key/value filter

factory parameter

1

byte array First key/value filter factory parameter

Key/value filter

factory parameter

2

byte array Second key/value filter factory parameter

…

245

Field Name Size Value

Converter factory

name

string Optional name of the converter factory to be used with this

listener. The factory is used to transform the contents of the

events sent to clients. By default, when no converter is in use,

events are well defined, according to the type of event generated.

However, there might be situations where users want to add

extra information to the event, or they want to reduce the size of

the events. In these cases, a converter can be used to transform

the event contents. The given converter factory name produces

converter instances to do this job. If no factory is to be used, the

length of the string is 0.

Converter factory

parameter count

byte The converter factory, when creating a converter instance, can

take an arbitrary number of parameters, enabling the factory to

be used to create different converter instances dynamically. This

count field indicates how many parameters will be passed to the

factory. If no factory name was provided, this field is not present

in the request.

Converter factory

parameter 1

byte array First converter factory parameter

Converter factory

parameter 2

byte array Second converter factory parameter

…

Listener even type

interests

vInt A variable length number representing listener event type

interests. Each event type is represented by a bit. Each flags is

represented by a bit. Note that since this field is sent as variable

length, the most significant bit in a byte is used to determine

whether more bytes need to be read, hence this bit does not

represent any flag. Using this model allows for flags to be

combined in a short space. Here are the current values for each

flag:

0x01 = cache entry created events 0x02 = cache entry modified

events 0x04 = cache entry removed events 0x08 = cache entry

expired events

20.5.12. Hot Rod Hash Functions

Infinispan makes use of a consistent hash function to place nodes on a hash wheel, and to place

keys of entries on the same wheel to determine where entries live.

In Infinispan 4.2 and earlier, the hash space was hardcoded to 10240, but since 5.0, the hash space

is Integer.MAX_INT . Please note that since Hot Rod clients should not assume a particular hash

space by default, every time a hash-topology change is detected, this value is sent back to the client

via the Hot Rod protocol.

When interacting with Infinispan via the Hot Rod protocol, it is mandated that keys (and values)

are byte arrays, to ensure platform neutral behavior. As such, smart-clients which are aware of

hash distribution on the backend would need to be able to calculate the hash codes of such byte

246

https://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html#MAX_VALUE

array keys, again in a platform-neutral manner. To this end, the hash functions used by Infinispan

are versioned and documented, so that it can be re-implemented by non-Java clients if needed.

The version of the hash function in use is provided in the Hot Rod protocol, as the hash function

version parameter.

1. Version 1 (single byte, 0x01) The initial version of the hash function in use is based on Austin

Appleby’s MurmurHash 2.0 algorithm , a fast, non-cryptographic hash that exhibits excellent

distribution, collision resistance and avalanche behavior. The specific version of the algorithm

used is the slightly slower, endian-neutral version that allows consistent behavior across both

big- and little-endian CPU architectures. Infinispan’s version also hard-codes the hash seed as

-1. For details of the algorithm, please visit Austin Appleby’s MurmurHash 2.0 page. Other

implementations are detailed on Wikipedia . This hash function was the default one used by the

Hot Rod server until Infinispan 4.2.1. Since Infinispan 5.0, the server never uses hash version 1.

Since Infinispan 9.0, the client ignores hash version 1.

2. Version 2 (single byte, 0x02) Since Infinispan 5.0, a new hash function is used by default which

is based on Austin Appleby’s MurmurHash 3.0 algorithm. Detailed information about the hash

function can be found in this wiki. Compared to 2.0, it provides better performance and spread.

Since Infinispan 7.0, the server only uses version 2 for HotRod 1.x clients.

3. Version 3 (single byte, 0x03) Since Infinispan 7.0, a new hash function is used by default. The

function is still based on wiki, but is also aware of the hash segments used in the server’s

ConsistentHash.

20.6. Java Hot Rod client

Hot Rod is a binary, language neutral protocol. This article explains how a Java client can interact

with a server via the Hot Rod protocol. A reference implementation of the protocol written in Java

can be found in all Infinispan distributions, and this article focuses on the capabilities of this java

client.

Looking for more clients? Visit this website for clients written in a variety of

different languages.

20.6.1. Configuration

The Java Hot Rod client can be configured both programmatically and externally, through a

configuration file.

The code snippet below illustrates the creation of a client instance using the available Java fluent

API:

247

https://github.com/infinispan/infinispan/blob/master/commons/src/main/java/org/infinispan/commons/hash/MurmurHash2.java
https://github.com/infinispan/infinispan/blob/master/commons/src/main/java/org/infinispan/commons/hash/MurmurHash2.java
http://sites.google.com/site/murmurhash/
http://en.wikipedia.org/wiki/MurmurHash
https://github.com/infinispan/infinispan/blob/master/commons/src/main/java/org/infinispan/commons/hash/MurmurHash3.java
http://code.google.com/p/smhasher/wiki/MurmurHash3
http://code.google.com/p/smhasher/wiki/MurmurHash3
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/distribution/ch/ConsistentHash.java
http://infinispan.org/hotrod-clients

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb

 = new org.infinispan.client.hotrod.configuration.ConfigurationBuilder();

cb.tcpNoDelay(true)

 .connectionPool()

 .numTestsPerEvictionRun(3)

 .testOnBorrow(false)

 .testOnReturn(false)

 .testWhileIdle(true)

 .addServer()

 .host("localhost")

 .port(11222);

RemoteCacheManager rmc = new RemoteCacheManager(cb.build());

For a complete reference to the available configuration option please refer to the

ConfigurationBuilder's javadoc.

It is also possible to configure the Java Hot Rod client using an properties file, e.g.:

infinispan.client.hotrod.transport_factory =

org.infinispan.client.hotrod.impl.transport.tcp.TcpTransportFactory

infinispan.client.hotrod.server_list = 127.0.0.1:11222

infinispan.client.hotrod.marshaller =

org.infinispan.commons.marshall.jboss.GenericJBossMarshaller

infinispan.client.hotrod.async_executor_factory =

org.infinispan.client.hotrod.impl.async.DefaultAsyncExecutorFactory

infinispan.client.hotrod.default_executor_factory.pool_size = 1

infinispan.client.hotrod.default_executor_factory.queue_size = 10000

infinispan.client.hotrod.tcp_no_delay = true

infinispan.client.hotrod.request_balancing_strategy =

org.infinispan.client.hotrod.impl.transport.tcp.RoundRobinBalancingStrategy

infinispan.client.hotrod.key_size_estimate = 64

infinispan.client.hotrod.value_size_estimate = 512

infinispan.client.hotrod.force_return_values = false

infinispan.client.hotrod.client_intelligence = HASH_DISTRIBUTION_AWARE

below is connection pooling config

maxActive=-1

maxTotal = -1

maxIdle = -1

whenExhaustedAction = 1

timeBetweenEvictionRunsMillis=120000

minEvictableIdleTimeMillis=300000

testWhileIdle = true

minIdle = 1

The properties file is then passed to one of constructors of RemoteCacheManager. You can use

property substitution to replace values at runtime with Java system properties:

248

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/configuration/ConfigurationBuilder.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html#RemoteCacheManager-java.net.URL-
https://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

infinispan.client.hotrod.server_list = ${server_list}

In the above example the value of the infinispan.client.hotrod.server_list property will be expanded

to the value of the server_list Java system property.

which means that the value should be taken from a system property named

jboss.bind.address.management and if it is not defined use 127.0.0.1.

For a complete reference of the available configuration options for the properties file please refer

to RemoteCacheManager's javadoc.

20.6.2. Basic API

Below is a sample code snippet on how the client API can be used to store or retrieve information

from a Hot Rod server using the Java Hot Rod client. It assumes that a Hot Rod server has been

started bound to the default location (localhost:11222)

//API entry point, by default it connects to localhost:11222

CacheContainer cacheContainer = new RemoteCacheManager();

//obtain a handle to the remote default cache

Cache<String, String> cache = cacheContainer.getCache();

//now add something to the cache and make sure it is there

cache.put("car", "ferrari");

assert cache.get("car").equals("ferrari");

//remove the data

cache.remove("car");

assert !cache.containsKey("car") : "Value must have been removed!";

The client API maps the local API: RemoteCacheManager corresponds to DefaultCacheManager

(both implement CacheContainer). This common API facilitates an easy migration from local calls

to remote calls through Hot Rod: all one needs to do is switch between DefaultCacheManager and

RemoteCacheManager - which is further simplified by the common CacheContainer interface that

both inherit.

All keys can be retrieved from the remote cache (whether it’s local, replicated, or distributed) by

using keySet() method. If the remote cache is a distributed cache, the server will perform a

distributed stream operation to retrieve all keys from clustered nodes, and return all keys to the

client. Please use this method with care if there are large number of keys.

Set keys = remoteCache.keySet();

Alternatively, if memory is a concern, use the remote iterator api to retrieve entries from the

server:

249

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/DefaultCacheManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/CacheContainer.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/DefaultCacheManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/CacheContainer.html

// Retrieve all entries in batches of 1000

int batchSize = 1000;

try (CloseableIterator<Entry<Object, Object>> iterator = remoteCache.retrieveEntries

(null, batchSize)) {

 while(iterator.hasNext()) {

 // Do something

 }

}

// Filter by segment

Set<Integer> segments = ...

try (CloseableIterator<Entry<Object, Object>> iterator = remoteCache.retrieveEntries

(null, segments, batchSize)) {

 while(iterator.hasNext()) {

 // Do something

 }

}

// Filter by custom filter

try (CloseableIterator<Entry<Object, Object>> iterator = remoteCache.retrieveEntries(

"myFilterConverterFactory", segments, batchSize)) {

 while(iterator.hasNext()) {

 // Do something

 }

}

In order to use custom filters, it’s necessary to deploy them first in the server. Follow the steps:

• Create a factory for the filter extending KeyValueFilterConverterFactory, annotated with

@NamedFactory containing the name of the factory, example:

import java.io.Serializable;

import org.infinispan.filter.AbstractKeyValueFilterConverter;

import org.infinispan.filter.KeyValueFilterConverter;

import org.infinispan.filter.KeyValueFilterConverterFactory;

import org.infinispan.filter.NamedFactory;

import org.infinispan.metadata.Metadata;

@NamedFactory(name = "myFilterConverterFactory")

public class MyKeyValueFilterConverterFactory implements

KeyValueFilterConverterFactory {

 @Override

 public KeyValueFilterConverter<String, SampleEntity1, SampleEntity2>

getFilterConverter() {

 return new MyKeyValueFilterConverter();

 }

 // Filter implementation. Should be serializable or externalizable for DIST caches

 static class MyKeyValueFilterConverter extends AbstractKeyValueFilterConverter

250

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/filter/KeyValueFilterConverterFactory.html

<String, SampleEntity1, SampleEntity2> implements Serializable {

 @Override

 public SampleEntity2 filterAndConvert(String key, SampleEntity1 entity, Metadata

metadata) {

 // returning null will case the entry to be filtered out

 // return SampleEntity2 will convert from the cache type SampleEntity1

 }

 }

}

• Create a jar with a META-INF/services/org.infinispan.filter.KeyValueFilterConverterFactory file

and within it, write the fully qualified class name of the filter factory class implementation.

• Optional: If the filter uses custom key/value classes, these must be included in the JAR so that

the filter can correctly unmarshall key and/or value instances.

• Deploy the JAR file in the Infinispan Server.

20.6.3. Versioned API

A RemoteCacheManager provides instances of RemoteCache interface that represents a handle to

the named or default cache on the remote cluster. API wise, it extends the Cache interface to which

it also adds some new methods, including the so called versioned API. Please find below some

examples of this API but to understand the motivation behind it, make sure you read this section.

The code snippet bellow depicts the usage of these versioned methods:

// To use the versioned API, remote classes are specifically needed

RemoteCacheManager remoteCacheManager = new RemoteCacheManager();

RemoteCache<String, String> cache = remoteCacheManager.getCache();

remoteCache.put("car", "ferrari");

RemoteCache.VersionedValue valueBinary = remoteCache.getVersioned("car");

// removal only takes place only if the version has not been changed

// in between. (a new version is associated with 'car' key on each change)

assert remoteCache.remove("car", valueBinary.getVersion());

assert !cache.containsKey("car");

In a similar way, for replace:

remoteCache.put("car", "ferrari");

RemoteCache.VersionedValue valueBinary = remoteCache.getVersioned("car");

assert remoteCache.replace("car", "lamborghini", valueBinary.getVersion());

For more details on versioned operations refer to RemoteCache 's javadoc.

251

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html

20.6.4. Async API

This is "borrowed" from the Infinispan core and it is largely discussed here

20.6.5. Streaming API

When sending / receiving large objects, it might make sense to stream them between the client and

the server. The Streaming API implements methods similar to the Basic API and Versioned API

described above but, instead of taking the value as a parameter, they return instances of

InputStream and OutputStream. The following example shows how one would write a potentially

large object:

RemoteStreamingCache<String> streamingCache = remoteCache.streaming();

OutputStream os = streamingCache.put("a_large_object");

os.write(...);

os.close();

Reading such an object through streaming:

RemoteStreamingCache<String> streamingCache = remoteCache.streaming();

InputStream is = streamingCache.get("a_large_object");

for(int b = is.read(); b >= 0; b = is.read()) {

 ...

}

is.close();

The streaming API does not apply marshalling/unmarshalling to the values. For

this reason you cannot access the same entries using both the streaming and non-

streaming API at the same time, unless you provide your own marshaller to

detect this situation.

The InputStream returned by the RemoteStreamingCache.get(K key) method implements the

VersionedMetadata interface, so you can retrieve version and expiration information:

RemoteStreamingCache<String> streamingCache = remoteCache.streaming();

InputStream is = streamingCache.get("a_large_object");

int version = ((VersionedMetadata) is).getVersion();

for(int b = is.read(); b >= 0; b = is.read()) {

 ...

}

is.close();

Conditional write methods (putIfAbsent, replace) only perform the actual

condition check once the value has been completely sent to the server (i.e. when

the close() method has been invoked on the OutputStream.

252

20.6.6. Creating Event Listeners

Starting with Infinispan 7.0, Java Hot Rod clients can register listeners to receive cache-entry level

events. In 7.0, cache entry created, modified and removed events are supported.

Creating a client listener is very similar to embedded listeners, except that different annotations

and event classes are used. Here’s an example of a client listener that prints out each event

received:

import org.infinispan.client.hotrod.annotation.*;

import org.infinispan.client.hotrod.event.*;

@ClientListener

public class EventPrintListener {

 @ClientCacheEntryCreated

 public void handleCreatedEvent(ClientCacheEntryCreatedEvent e) {

 System.out.println(e);

 }

 @ClientCacheEntryModified

 public void handleModifiedEvent(ClientCacheEntryModifiedEvent e) {

 System.out.println(e);

 }

 @ClientCacheEntryRemoved

 public void handleRemovedEvent(ClientCacheEntryRemovedEvent e) {

 System.out.println(e);

 }

}

ClientCacheEntryCreatedEvent and ClientCacheEntryModifiedEvent instances provide information on

the affected key, and the version of the entry. This version can be used to invoke conditional

operations on the server, such as replaceWithVersion or removeWithVersion.

ClientCacheEntryRemovedEvent events are only sent when the remove operation succeeds. In other

words, if a remove operation is invoked but no entry is found or no entry should be removed, no

event is generated. Users interested in removed events, even when no entry was removed, can

develop event customization logic to generate such events. More information can be found in the

customizing client events section.

All ClientCacheEntryCreatedEvent, ClientCacheEntryModifiedEvent and ClientCacheEntryRemovedEvent

event instances also provide a boolean isCommandRetried() method that will return true if the write

command that caused this had to be retried again due to a topology change. This could be a sign

that this event has been duplicated or another event was dropped and replaced (eg:

ClientCacheEntryModifiedEvent replaced ClientCacheEntryCreatedEvent).

Once the client listener implementation has been created, it needs to be registered with the server.

253

To do so, execute:

RemoteCache<?, ?> cache = ...

cache.addClientListener(new EventPrintListener());

20.6.7. Removing Event Listeners

When an client event listener is not needed any more, it can be removed:

EventPrintListener listener = ...

cache.removeClientListener(listener);

20.6.8. Filtering Events

In order to avoid inundating clients with events, users can provide filtering functionality to limit

the number of events fired by the server for a particular client listener. To enable filtering, a cache

event filter factory needs to be created that produces filter instances:

import org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory;

import org.infinispan.filter.NamedFactory;

@NamedFactory(name = "static-filter")

class StaticCacheEventFilterFactory implements CacheEventFilterFactory {

 @Override

 public CacheEventFilterFactory<Integer, String> getFilter(Object[] params) {

 return new StaticCacheEventFilter();

 }

}

// Serializable, Externalizable or marshallable with Infinispan Externalizers

// needed when running in a cluster

class StaticCacheEventFilter implements CacheEventFilter<Integer, String>,

Serializable {

 @Override

 public boolean accept(Integer key, String oldValue, Metadata oldMetadata,

 String newValue, Metadata newMetadata, EventType eventType) {

 if (key.equals(1)) // static key

 return true;

 return false;

 }

}

The cache event filter factory instance defined above creates filter instances which statically filter

out all entries except the one whose key is 1.

To be able to register a listener with this cache event filter factory, the factory has to be given a

254

unique name, and the Hot Rod server needs to be plugged with the name and the cache event filter

factory instance. Plugging the Infinispan Server with a custom filter involves the following steps:

1. Create a JAR file with the filter implementation within it.

2. Optional: If the cache uses custom key/value classes, these must be included in the JAR so that

the callbacks can be executed with the correctly unmarshalled key and/or value instances. If the

client listener has useRawData enabled, this is not necessary since the callback key/value

instances will be provided in binary format.

3. Create a META-

INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory file

within the JAR file and within it, write the fully qualified class name of the filter class

implementation.

4. Deploy the JAR file in the Infinispan Server.

On top of that, the client listener needs to be linked with this cache event filter factory by adding

the factory’s name to the @ClientListener annotation:

@ClientListener(filterFactoryName = "static-filter")

public class EventPrintListener { ... }

And, register the listener with the server:

RemoteCache<?, ?> cache = ...

cache.addClientListener(new EventPrintListener());

Dynamic filter instances that filter based on parameters provided when the listener is registered

are also possible. Filters use the parameters received by the filter factories to enable this option. For

example:

import org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory;

import org.infinispan.notifications.cachelistener.filter.CacheEventFilter;

class DynamicCacheEventFilterFactory implements CacheEventFilterFactory {

 @Override

 public CacheEventFilter<Integer, String> getFilter(Object[] params) {

 return new DynamicCacheEventFilter(params);

 }

}

// Serializable, Externalizable or marshallable with Infinispan Externalizers

// needed when running in a cluster

class DynamicCacheEventFilter implements CacheEventFilter<Integer, String>,

Serializable {

 final Object[] params;

 DynamicCacheEventFilter(Object[] params) {

255

 this.params = params;

 }

 @Override

 public boolean accept(Integer key, String oldValue, Metadata oldMetadata,

 String newValue, Metadata newMetadata, EventType eventType) {

 if (key.equals(params[0])) // dynamic key

 return true;

 return false;

 }

}

The dynamic parameters required to do the filtering are provided when the listener is registered:

RemoteCache<?, ?> cache = ...

cache.addClientListener(new EventPrintListener(), new Object[]{1}, null);

Filter instances have to marshallable when they are deployed in a cluster so that

the filtering can happen right where the event is generated, even if the even is

generated in a different node to where the listener is registered. To make them

marshallable, either make them extend Serializable, Externalizable, or provide a

custom Externalizer for them.

20.6.9. Customizing Events

The events generated by default contain just enough information to make the event relevant but

they avoid cramming too much information in order to reduce the cost of sending them. Optionally,

the information shipped in the events can be customised in order to contain more information,

such as values, or to contain even less information. This customization is done with

CacheEventConverter instances generated by a CacheEventConverterFactory:

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory;

import org.infinispan.notifications.cachelistener.filter.CacheEventConverter;

import org.infinispan.filter.NamedFactory;

@NamedFactory(name = "static-converter")

class StaticConverterFactory implements CacheEventConverterFactory {

 final CacheEventConverter<Integer, String, CustomEvent> staticConverter = new

StaticCacheEventConverter();

 public CacheEventConverter<Integer, String, CustomEvent> getConverter(final

Object[] params) {

 return staticConverter;

 }

}

// Serializable, Externalizable or marshallable with Infinispan Externalizers

// needed when running in a cluster

256

class StaticCacheEventConverter implements CacheEventConverter<Integer, String,

CustomEvent>, Serializable {

 public CustomEvent convert(Integer key, String oldValue, Metadata oldMetadata,

String newValue, Metadata newMetadata, EventType eventType) {

 return new CustomEvent(key, newValue);

 }

}

// Needs to be Serializable, Externalizable or marshallable with Infinispan

Externalizers

// regardless of cluster or local caches

static class CustomEvent implements Serializable {

 final Integer key;

 final String value;

 CustomEvent(Integer key, String value) {

 this.key = key;

 this.value = value;

 }

}

In the example above, the converter generates a new custom event which includes the value as well

as the key in the event. This will result in bigger event payloads compared with default events, but

if combined with filtering, it can reduce its network bandwidth cost.

The target type of the converter must be either Serializable or Externalizable. In

this particular case of converters, providing an Externalizer will not work by

default since the default Hot Rod client marshaller does not support them.

Handling custom events requires a slightly different client listener implementation to the one

demonstrated previously. To be more precise, it needs to handle ClientCacheEntryCustomEvent

instances:

import org.infinispan.client.hotrod.annotation.*;

import org.infinispan.client.hotrod.event.*;

@ClientListener

public class CustomEventPrintListener {

 @ClientCacheEntryCreated

 @ClientCacheEntryModified

 @ClientCacheEntryRemoved

 public void handleCustomEvent(ClientCacheEntryCustomEvent<CustomEvent> e) {

 System.out.println(e);

 }

}

The ClientCacheEntryCustomEvent received in the callback exposes the custom event via getEventData

257

method, and the getType method provides information on whether the event generated was as a

result of cache entry creation, modification or removal.

Similar to filtering, to be able to register a listener with this converter factory, the factory has to be

given a unique name, and the Hot Rod server needs to be plugged with the name and the cache

event converter factory instance. Plugging the Infinispan Server with an event converter involves

the following steps:

1. Create a JAR file with the converter implementation within it.

2. Optional: If the cache uses custom key/value classes, these must be included in the JAR so that

the callbacks can be executed with the correctly unmarshalled key and/or value instances. If the

client listener has useRawData enabled, this is not necessary since the callback key/value

instances will be provided in binary format.

3. Create a META-

INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory

file within the JAR file and within it, write the fully qualified class name of the converter class

implementation.

4. Deploy the JAR file in the Infinispan Server.

On top of that, the client listener needs to be linked with this converter factory by adding the

factory’s name to the @ClientListener annotation:

@ClientListener(converterFactoryName = "static-converter")

public class CustomEventPrintListener { ... }

And, register the listener with the server:

RemoteCache<?, ?> cache = ...

cache.addClientListener(new CustomEventPrintListener());

Dynamic converter instances that convert based on parameters provided when the listener is

registered are also possible. Converters use the parameters received by the converter factories to

enable this option. For example:

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory;

import org.infinispan.notifications.cachelistener.filter.CacheEventConverter;

@NamedFactory(name = "dynamic-converter")

class DynamicCacheEventConverterFactory implements CacheEventConverterFactory {

 public CacheEventConverter<Integer, String, CustomEvent> getConverter(final

Object[] params) {

 return new DynamicCacheEventConverter(params);

 }

}

// Serializable, Externalizable or marshallable with Infinispan Externalizers needed

258

when running in a cluster

class DynamicCacheEventConverter implements CacheEventConverter<Integer, String,

CustomEvent>, Serializable {

 final Object[] params;

 DynamicCacheEventConverter(Object[] params) {

 this.params = params;

 }

 public CustomEvent convert(Integer key, String oldValue, Metadata oldMetadata,

 String newValue, Metadata newMetadata, EventType eventType) {

 // If the key matches a key given via parameter, only send the key information

 if (params[0].equals(key))

 return new CustomEvent(key, null);

 return new CustomEvent(key, newValue);

 }

}

The dynamic parameters required to do the conversion are provided when the listener is

registered:

RemoteCache<?, ?> cache = ...

cache.addClientListener(new EventPrintListener(), null, new Object[]{1});

Converter instances have to marshallable when they are deployed in a cluster, so

that the conversion can happen right where the event is generated, even if the

even is generated in a different node to where the listener is registered. To make

them marshallable, either make them extend Serializable, Externalizable, or

provide a custom Externalizer for them.

20.6.10. Filter and Custom Events

If you want to do both event filtering and customization, it’s easier to implement

org.infinispan.notifications.cachelistener.filter.CacheEventFilterConverter which allows both

filter and customization to happen in a single step. For convenience, it’s recommended to extend

org.infinispan.notifications.cachelistener.filter.AbstractCacheEventFilterConverter instead of

implementing org.infinispan.notifications.cachelistener.filter.CacheEventFilterConverter

directly. For example:

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory;

import org.infinispan.notifications.cachelistener.filter.CacheEventConverter;

@NamedFactory(name = "dynamic-filter-converter")

class DynamicCacheEventFilterConverterFactory implements

CacheEventFilterConverterFactory {

 public CacheEventFilterConverter<Integer, String, CustomEvent> getFilterConverter

259

(final Object[] params) {

 return new DynamicCacheEventFilterConverter(params);

 }

}

// Serializable, Externalizable or marshallable with Infinispan Externalizers needed

when running in a cluster

//

class DynamicCacheEventFilterConverter extends AbstractCacheEventFilterConverter

<Integer, String, CustomEvent>, Serializable {

 final Object[] params;

 DynamicCacheEventFilterConverter(Object[] params) {

 this.params = params;

 }

 public CustomEvent filterAndConvert(Integer key, String oldValue, Metadata

oldMetadata,

 String newValue, Metadata newMetadata, EventType eventType) {

 // If the key matches a key given via parameter, only send the key information

 if (params[0].equals(key))

 return new CustomEvent(key, null);

 return new CustomEvent(key, newValue);

 }

}

Similar to filters and converters, to be able to register a listener with this combined filter/converter

factory, the factory has to be given a unique name via the @NamedFactory annotation, and the Hot

Rod server needs to be plugged with the name and the cache event converter factory instance.

Plugging the Infinispan Server with an event converter involves the following steps:

1. Create a JAR file with the converter implementation within it.

2. Optional: If the cache uses custom key/value classes, these must be included in the JAR so that

the callbacks can be executed with the correctly unmarshalled key and/or value instances. If the

client listener has useRawData enabled, this is not necessary since the callback key/value

instances will be provided in binary format.

3. Create a META-
INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventFilterConverterFac

tory file within the JAR file and within it, write the fully qualified class name of the converter

class implementation.

4. Deploy the JAR file in the Infinispan Server.

From a client perspective, to be able to use the combined filter and converter class, the client

listener must define the same filter factory and converter factory names, e.g.:

260

@ClientListener(filterFactoryName = "dynamic-filter-converter", converterFactoryName =

"dynamic-filter-converter")

public class CustomEventPrintListener { ... }

The dynamic parameters required in the example above are provided when the listener is

registered via either filter or converter parameters. If filter parameters are non-empty, those are

used, otherwise, the converter parameters:

RemoteCache<?, ?> cache = ...

cache.addClientListener(new CustomEventPrintListener(), new Object[]{1}, null);

20.6.11. Event Marshalling

Hot Rod servers store data as byte arrays, but in spite of that, Java Hot Rod client users can still

develop CacheEventConverter or CacheEventFilter instances that worked on typed objects. The way

this is done is by making the Hot Rod server use the same marshaller as the one used by the Java

Hot Rod client. This is enabled by default.

However, users are free to plug a custom org.infinispan.commons.marshall.Marshaller

implementation in order to marshall objects using alternative techniques to the one used by default

by the Hot Rod Java client. For example, a user might want to marshall objects using Google

Protocol Buffers.

As indicated in the Marshalling data section, Hot Rod Java clients can be configured to use a

different org.infinispan.commons.marshall.Marshaller instance. If doing this and deploying

CacheEventConverter or CacheEventFilter instances, the same marshaller instance needs to be

deployed in the server so that callback parameters of CacheEventConverter or CacheEventFilter

instances can be correctly unmarshalled.

To deploy a Marshaller instance server-side, follow a similar method to the one used to deploy

CacheEventConverter or CacheEventFilter instances:

1. Create a JAR file with the converter implementation within it.

2. Create a META-INF/services/org.infinispan.commons.marshall.Marshaller file within the JAR file

and within it, write the fully qualified class name of the marshaller class implementation.

3. Deploy the JAR file in the Infinispan Server.

Note that the Marshaller could be deployed in either a separate jar, or in the same jar as the

CacheEventConverter and/or CacheEventFilter instances. Also, currently deployment of a single

org.infinispan.commons.marshall.Marshaller instance is supported. If multiple marshaller instances

are deployed, warning messages will be displayed as reminder indicating which marshaller

instance will be used.

20.6.12. Listener State Handling

Client listener annotation has an optional includeCurrentState attribute that specifies whether state

261

will be sent to the client when the listener is added or when there’s a failover of the listener.

By default, includeCurrentState is false, but if set to true and a client listener is added in a cache

already containing data, the server iterates over the cache contents and sends an event for each

entry to the client as a ClientCacheEntryCreated (or custom event if configured). This allows clients

to build some local data structures based on the existing content. Once the content has been

iterated over, events are received as normal, as cache updates are received. If the cache is

clustered, the entire cluster wide contents are iterated over.

includeCurrentState also controls whether state is received when the node where the client event

listener is registered fails and it’s moved to a different node. The next section discusses this topic in

depth.

20.6.13. Listener Failure Handling

When a Hot Rod client registers a client listener, it does so in a single node in a cluster. If that node

fails, the Java Hot Rod client detects that transparently and fails over all listeners registered in the

node that failed to another node.

During this fail over the client might miss some events. To avoid missing these events, the client

listener annotation contains an optional parameter called includeCurrentState which if set to true,

when the failover happens, the cache contents can iterated over and ClientCacheEntryCreated

events (or custom events if configured) are generated. By default, includeCurrentState is set to false.

Java Hot Rod clients can be made aware of such fail over event by adding a callback to handle it:

@ClientCacheFailover

public void handleFailover(ClientCacheFailoverEvent e) {

 ...

}

This is very useful in use cases where the client has cached some data, and as a result of the fail

over, taking in account that some events could be missed, it could decide to clear any locally cached

data when the fail over event is received, with the knowledge that after the fail over event, it will

receive events for the contents of the entire cache.

20.6.14. Near Caching

The Java Hot Rod client can be optionally configured with a near cache, which means that the Hot

Rod client can keep a local cache that stores recently used data. Enabling near caching can

significantly improve the performance of read operations get and getVersioned since data can

potentially be located locally within the Hot Rod client instead of having to go remote.

To enable near caching, the user must set the near cache mode to INVALIDATED. By doing that near

cache is populated upon retrievals from the server via calls to get or getVersioned operations. When

near cached entries are updated or removed server-side, the cached near cache entries are

invalidated. If a key is requested after it’s been invalidated, it’ll have to be re-fetched from the

server.

262

When near cache is enabled, its size must be configured by defining the maximum number of

entries to keep in the near cache. When the maximum is reached, near cached entries are evicted

using a least-recently-used (LRU) algorithm. If providing 0 or a negative value, it is assumed that the

near cache is unbounded.

Users should be careful when configuring near cache to be unbounded since it

shifts the responsibility to keep the near cache’s size within the boundaries of the

client JVM to the user.

The Hot Rod client’s near cache mode is configured using the NearCacheMode enumeration and

calling:

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;

import org.infinispan.client.hotrod.configuration.NearCacheMode;

...

// Unbounded invalidated near cache

ConfigurationBuilder unbounded = new ConfigurationBuilder();

unbounded.nearCache().mode(NearCacheMode.INVALIDATED).maxEntries(-1);

// Bounded invalidated near cache

ConfigurationBuilder bounded = new ConfigurationBuilder();

bounded.nearCache().mode(NearCacheMode.INVALIDATED).maxEntries(100);

Near caches work the same way for local caches as they do for clustered caches,

but in a clustered cache scenario, if the server node sending the near cache

notifications to the Hot Rod client goes down, the Hot Rod client transparently

fails over to another node in the cluster, clearing the near cache along the way.

20.6.15. Unsupported methods

Some of the Cache methods are not being supported by the RemoteCache . Calling one of these

methods results in an UnsupportedOperationException being thrown. Most of these methods do not

make sense on the remote cache (e.g. listener management operations), or correspond to methods

that are not supported by local cache as well (e.g. containsValue). Another set of unsupported

operations are some of the atomic operations inherited from ConcurrentMap :

boolean remove(Object key, Object value);

boolean replace(Object key, Object value);

boolean replace(Object key, Object oldValue, Object value);

RemoteCache offers alternative versioned methods for these atomic operations, that are also

network friendly, by not sending the whole value object over the network, but a version identifier.

See the section on versioned API.

Each one of these unsupported operation is documented in the RemoteCache javadoc.

263

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javase/8/docs/api/java/lang/UnsupportedOperationException.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html

20.6.16. Return values

There is a set of methods that alter a cached entry and return the previous existing value, e.g.:

V remove(Object key);

V put(K key, V value);

By default on RemoteCache, these operations return null even if such a previous value exists. This

approach reduces the amount of data sent over the network. However, if these return values are

needed they can be enforced on a per invocation basis using flags:

cache.put("aKey", "initialValue");

assert null == cache.put("aKey", "aValue");

assert "aValue".equals(cache.withFlags(Flag.FORCE_RETURN_VALUE).put("aKey",

 "newValue"));

This default behavior can can be changed through force-return-value=true configuration

parameter (see configuration section bellow).

20.6.17. Client Intelligence

HotRod defines three level of intelligence for the clients:

1. basic client, interested in neither cluster nor hash information

2. topology-aware client, interested in cluster information

3. hash-distribution-aware client, that is interested in both cluster and hash information

The java client supports all 3 levels of intelligence. It is transparently notified whenever a new

server is added/removed from the HotRod cluster. At startup it only needs to know the address of

one HotRod server (ip:host). On connection to the server the cluster topology is piggybacked to the

client, and all further requests are being dispatched to all available servers. Any further topology

change is also piggybacked.

Distribution-aware client

Another aspect of the 3rd level of intelligence is the fact that it is hash-distribution-aware. This

means that, for each operation, the client chooses the most appropriate remote server to go to: the

data owner. As an example, for a put(k,v) operation, the client calculates k’s hash value and knows

exactly on which server the data resides on. Then it picks up a tcp connection to that particular

server and dispatches the operation to it. This means less burden on the server side which would

otherwise need to lookup the value based on the key’s hash. It also results in a quicker response

from the server, as an additional network roundtrip is skipped. This hash-distribution-aware aspect

is only relevant to the distributed HotRod clusters and makes no difference for replicated server

deployments.

264

20.6.18. Request Balancing

Request balancing is only relevant when the server side is configured with replicated infinispan

cluster (on distributed clusters the hash-distribution-aware client logic is used, as discussed in the

previos paragraph). Because the client is topology-aware, it knows the list of available servers at all

the time. Request balancing has to do with how the client dispatches requests to the available

servers.

The default strategy is round-robin: requests are being dispatched to all existing servers in a

circular manner. E.g. given a cluster of servers {s1, s2, s3} here is how request will be dispatched:

CacheContainer cacheContainer = new RemoteCacheManager();

Cache<String, String> cache = cacheContainer.getCache();

cache.put("key1", "aValue"); //this goes to s1

cache.put("key2", "aValue"); //this goes to s2

String value = cache.get("key1"); //this goes to s3

cache.remove("key2"); //this is dispatched to s1 again, and so on...

Custom types of balancing policies can defined by implementing the

FailoverRequestBalancingStrategy and by specifying it through the infinispan.client.hotrod.request-

balancing-strategy configuration property. Please refer to configuration section for more details on

this.

WARNING: FailoverRequestBalancingStrategy

is a newly added interface in Infinispan 7.0. Previously, users had to provide implementations of

FailoverRequestBalancingStrategy , which it has been deprecated starting with Infinispan 7.0.

20.6.19. Persistent connections

In order to avoid creating a TCP connection on each request (which is a costly operation), the client

keeps a pool of persistent connections to all the available servers and it reuses these connections

whenever it is possible. The validity of the connections is checked using an async thread that

iterates over the connections in the pool and sends a HotRod ping command to the server. By using

this connection validation process the client is being proactive: there’s a hight chance for broken

connections to be found while being idle in the pool and no on actual request from the application.

The number of connections per server, total number of connections, how long should a connection

be kept idle in the pool before being closed - all these (and more) can be configured. Please refer to

the javadoc of RemoteCacheManager for a list of all possible configuration elements.

20.6.20. Marshalling data

The Hot Rod client allows one to plug in a custom marshaller for transforming user objects into

byte arrays and the other way around. This transformation is needed because of Hot Rod’s binary

nature - it doesn’t know about objects.

265

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/impl/transport/tcp/FailoverRequestBalancingStrategy.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/impl/transport/tcp/FailoverRequestBalancingStrategy.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/impl/transport/tcp/FailoverRequestBalancingStrategy.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html

The marshaller can be plugged through the "marshaller" configuration element (see Configuration

section): the value should be the fully qualified name of a class implementing the Marshaller

interface. This is a optional parameter, if not specified it defaults to the GenericJBossMarshaller - a

highly optimized implementation based on the JBoss Marshalling library.

Since version 6.0, there’s a new marshaller available to Java Hot Rod clients based on Protostream

which generates portable payloads. You can find more information about it here

20.6.21. Statistics

Various server usage statistics can be obtained through the RemoteCache .stats() method. This

returns a ServerStatistics object - please refer to javadoc for details on the available statistics.

20.6.22. Multi-Get Operations

The Java Hot Rod client does not provide multi-get functionality out of the box but clients can build

it themselves with the given APIs.

20.6.23. Failover capabilities

Hot Rod clients' capabilities to keep up with topology changes helps with request balancing and

more importantly, with the ability to failover operations if one or several of the servers fail.

Some of the conditional operations mentioned above, including putIfAbsent, replace with and

without version, and conditional remove have strict method return guarantees, as well as those

operations where returning the previous value is forced.

In spite of failures, these methods return values need to be guaranteed, and in order to do so, it’s

necessary that these methods are not applied partially in the cluster in the event of failure. For

example, imagine a replace() operation called in a server for key=k1 with Flag.FORCE_RETURN_VALUE,

whose current value is A and the replace wants to set it to B. If the replace fails, it could happen that

some servers contain B and others contain A, and during the failover, the original replace() could

end up returning B, if the replace failovers to a node where B is set, or could end up returning A.

To avoid this kind of situations, whenever Java Hot Rod client users want to use conditional

operations, or operations whose previous value is required, it’s important that the cache is

configured to be transactional in order to avoid incorrect conditional operations or return values.

20.6.24. Site Cluster Failover

On top of the in-cluster failover, Hot Rod clients are also able to failover to different clusters, which

could be represented as an independent site.

 This feature was introduced in Infinispan 8.1.

The way site cluster failover works is that if all the main cluster nodes are not available, the client

checks to see if any other clusters have been defined in which cases it tries to failover to the

alternative cluster. If the failover succeeds, the client will remain connected to the alternative

cluster until this becomes unavailable, in which case it’ll try any other clusters defined, and

266

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/marshall/Marshaller.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/marshall/jboss/GenericJBossMarshaller.html
http://www.jboss.org/jbossmarshalling
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/ServerStatistics.html

ultimately, it’ll try the original server settings.

To configure a cluster in the Hot Rod client, one host/port pair details must be provided for each of

the clusters configured. For example:

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb

 = new org.infinispan.client.hotrod.configuration.ConfigurationBuilder();

cb.addCluster().addClusterNode("remote-cluster-host", 11222);

RemoteCacheManager rmc = new RemoteCacheManager(cb.build());

Remember that regardless of the cluster definitions, the initial server(s)

configuration must be provided unless the initial servers can be resolved using

the default server host and port details.

20.6.25. Manual Site Cluster Switch

As well as supporting automatic site cluster failover, Java Hot Rod clients can also switch between

site clusters manually by calling RemoteCacheManager’s switchToCluster(clusterName) and

switchToDefaultCluster().

Using switchToCluster(clusterName), users can force a client to switch to one of the clusters pre-

defined in the Hot Rod client configuration. To switch to the initial servers defined in the client

configuration, call switchToDefaultCluster().

20.6.26. Concurrent Updates

Data structures, such as Infinispan Cache , that are accessed and modified concurrently can suffer

from data consistency issues unless there’re mechanisms to guarantee data correctness. Infinispan

Cache, since it implements ConcurrentMap , provides operations such as conditional replace ,

putIfAbsent , and conditional remove to its clients in order to guarantee data correctness. It even

allows clients to operate against cache instances within JTA transactions, hence providing the

necessary data consistency guarantees.

However, when it comes to Hot Rod protocol backed servers, clients do not yet have the ability to

start remote transactions but they can call instead versioned operations to mimic the conditional

methods provided by the embedded Infinispan cache instance API. Let’s look at a real example to

understand how it works.

Data Consistency Problem

Imagine you have two ATMs that connect using Hot Rod to a bank where an account’s balance is

stored. Two closely followed operations to retrieve the latest balance could return 500 CHF (swiss

francs) as shown below:

267

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#putIfAbsent-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#remove-java.lang.Object-java.lang.Object-
http://community.jboss.org/wiki/HotRodProtocol

Figure 18. Concurrent readers

Next a customer connects to the first ATM and requests 400 CHF to be retrieved. Based on the last

value read, the ATM could calculate what the new balance is, which is 100 CHF, and request a put

with this new value. Let’s imagine now that around the same time another customer connects to

the ATM and requests 200 CHF to be retrieved. Let’s assume that the ATM thinks it has the latest

balance and based on its calculations it sets the new balance to 300 CHF:

Obviously, this would be wrong. Two concurrent updates have resulted in an incorrect account

balance. The second update should not have been allowed since the balance the second ATM had

was incorrect. Even if the ATM would have retrieved the balance before calculating the new

balance, someone could have updated between the new balance being retrieved and the update.

Before finding out how to solve this issue in a client-server scenario with Hot Rod, let’s look at how

this is solved when Infinispan clients run in peer-to-peer mode where clients and Infinispan live

within the same JVM.

Embedded-mode Solution

If the ATM and the Infinispan instance storing the bank account lived in the same JVM, the ATM

could use the conditional replace API referred at the beginning of this article. So, it could send the

previous known value to verify whether it has changed since it was last read. By doing so, the first

268

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-

operation could double check that the balance is still 500 CHF when it was to update to 100 CHF.

Now, when the second operation comes, the current balance would not be 500 CHF any more and

hence the conditional replace call would fail, hence avoiding data consistency issues:

Figure 19. P2P solution

Client-Server Solution

In theory, Hot Rod could use the same p2p solution but sending the previous value would be not

practical. In this example, the previous value is just an integer but the value could be a lot bigger

and hence forcing clients to send it to the server would be rather wasteful. Instead, Hot Rod offers

versioned operations to deal with this situation.

Basically, together with each key/value pair, Hot Rod stores a version number which uniquely

identifies each modification. So, using an operation called getVersioned or getWithVersion , clients

can retrieve not only the value associated with a key, but also the current version. So, if we look at

the previous example once again, the ATMs could call getVersioned and get the balance’s version:

Figure 20. Get versioned

When the ATMs wanted to modify the balance, instead of just calling put, they could call

269

http://community.jboss.org/wiki/HotRodProtocol#getWithVersion_response

replaceIfUnmodified operation passing the latest version number of which the clients are aware of.

The operation will only succeed if the version passed matches the version in the server. So, the first

modification by the ATM would be allowed since the client passes 1 as version and the server side

version for the balance is also 1. On the other hand, the second ATM would not be able to make the

modification because after the first ATMs modification the version would have been incremented

to 2, and now the passed version (1) and the server side version (2) would not match:

Figure 21. Replace if versions match

20.6.27. Querying

While previous Infinispan versions were already providing indexing and searching of Java entities

to embedded clients, starting with Infinispan 6.0 and the introduction of the new Hot Rod protocol

version 1.3 we add support for remote, language neutral, querying.

This leap required two major changes:

• Since non-JVM clients cannot benefit from directly using Apache Lucene's Java API, Infinispan

defines its own new query language, based on an internal DSL that is easily implementable in

all languages for which we currently have an implementation of the Hot Rod client.

• In order to enable indexing, the entities put in the cache by clients can no longer be opaque

binary blobs understood solely by the client. Their structure has to be known to both server and

client, so a common way of encoding structured data had to be adopted. Furthermore, allowing

multi-language clients to access the data requires a language and platform-neutral encoding.

Google’s Protocol Buffers was elected as an encoding format for both over-the-wire and storage

due to its efficiency, robustness, good multi-language support and support for schema evolution.

Storing Protobuf encoded entities

Remote clients that want to be able to index and query their stored entities must do so using the

Protobuf encoding format. This is key for the search capability to work. But it’s also possible to store

Protobuf entities just for gaining the benefit of platform independence and not enable indexing if

you do not need it.

Protobuf is all about structured data, so first thing you do to use it is define the structure of your

data. This is accomplished by declaring protocol buffer message types in .proto files, like in the

270

http://community.jboss.org/wiki/HotRodProtocol#removeIfUnmodified_request
http://lucene.apache.org/
#infinispan_s_query_dsl
http://code.google.com/p/protobuf/

following example. Protobuf is a broad subject, we will not detail it here, so please consult the

Protobuf Developer Guide for an in-depth explanation. It suffices to say for now that our example

defines an entity (message type in protobuf speak) named Book, placed in a package named

book_sample. Our entity declares several fields of primitive types and a repeatable field (an array

basically) named authors. The Author message instances are embedded in the Book message

instance.

library.proto

package book_sample;

message Book {

 required string title = 1;

 required string description = 2;

 required int32 publicationYear = 3; // no native Date type available in Protobuf

 repeated Author authors = 4;

}

message Author {

 required string name = 1;

 required string surname = 2;

}

There are a few important notes we need to make about Protobuf messages:

• nesting of messages is possible, but the resulting structure is strictly a tree, never a graph

• there is no concept of type inheritance

• collections are not supported but arrays can be easily emulated using repeated fields

Using Protobuf with the Java Hot Rod client is a two step process. First, the client must be

configured to use a dedicated marshaller, ProtoStreamMarshaller. This marshaller uses the

ProtoStream library to assist you in encoding your objects. The second step is instructing

ProtoStream library on how to marshall your message types. The following example highlights this

process.

271

https://developers.google.com/protocol-buffers/docs/overview
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/marshall/ProtoStreamMarshaller.html
https://github.com/infinispan/protostream

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;

import org.infinispan.client.hotrod.marshall.ProtoStreamMarshaller;

import org.infinispan.protostream.SerializationContext;

...

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();

clientBuilder.addServer()

 .host("127.0.0.1").port(11234)

 .marshaller(new ProtoStreamMarshaller());

RemoteCacheManager remoteCacheManager = new RemoteCacheManager(clientBuilder.build());

SerializationContext serCtx = ProtoStreamMarshaller.getSerializationContext

(remoteCacheManager);

FileDescriptorSource fds = new FileDescriptorSource();

fds.addProtoFiles("/library.proto");

serCtx.registerProtoFiles(fds);

serCtx.registerMarshaller(new BookMarshaller());

serCtx.registerMarshaller(new AuthorMarshaller());

// Book and Author classes omitted for brevity

The interesting part in this sample is obtaining the SerializationContext associated to the

RemoteCacheManager and then instructing ProtoStream about the protobuf types we want to

marshall. The SerializationContext is provided by the library for this purpose. The

SerializationContext.registerProtoFiles method receives the name of one or more classpath

resources that is expected to be a protobuf definition containing our type declarations.

A RemoteCacheManager has no SerializationContext associated with it unless it

was configured to use a ProtoStreamMarshaller.

The next relevant part is the registration of per entity marshallers for our domain model types.

They must be provided by the user for each type or marshalling will fail. Writing marshallers is a

simple process. The BookMarshaller example should get you started. The most important thing you

need to consider is they need to be stateless and threadsafe as a single instance of them is being

used.

BookMarshaller.java

import org.infinispan.protostream.MessageMarshaller;

...

public class BookMarshaller implements MessageMarshaller<Book> {

 @Override

 public String getTypeName() {

 return "book_sample.Book";

 }

272

 @Override

 public Class<? extends Book> getJavaClass() {

 return Book.class;

 }

 @Override

 public void writeTo(ProtoStreamWriter writer, Book book) throws IOException {

 writer.writeString("title", book.getTitle());

 writer.writeString("description", book.getDescription());

 writer.writeInt("publicationYear", book.getPublicationYear());

 writer.writeCollection("authors", book.getAuthors(), Author.class);

 }

 @Override

 public Book readFrom(ProtoStreamReader reader) throws IOException {

 String title = reader.readString("title");

 String description = reader.readString("description");

 int publicationYear = reader.readInt("publicationYear");

 Set<Author> authors = reader.readCollection("authors", new HashSet<Author>(),

Author.class);

 return new Book(title, description, publicationYear, authors);

 }

}

Once you’ve followed these steps to setup your client you can start reading and writing Java objects

to the remote cache and the actual data stored in the cache will be protobuf encoded provided that

marshallers were registered with the remote client for all involved types (Book and Author in our

example). Keeping your objects stored in protobuf format has the benefit of being able to consume

them with compatible clients written in different languages.

TODO Add reference to sample in C++ client user guide

Indexing of Protobuf encoded entries

After configuring the client as described in the previous section you can start configuring indexing

for your caches on the server side. Activating indexing and the various indexing specific

configurations is identical to embedded mode and is detailed in the Querying Infinispan chapter.

There is however an extra configuration step involved. While in embedded mode the indexing

metadata is obtained via Java reflection by analyzing the presence of various Hibernate Search

annotations on the entry’s class, this is obviously not possible if the entry is protobuf encoded. The

server needs to extract the relevant metadata from the same descriptor (.proto file) as the client.

The descriptors are stored in a dedicated cache on the server '___protobuf_metadata'. Registering a

new schema is therefore as simple as performing a put operation on that cache using the schema’s

name as a key and the schema itself as the value. Alternatively you can use the CLI (via the cache-

container=*:register-proto-schemas() operation), the Console or the ProtobufMetadataManager

MBean via JMX. Be aware that, when security is enabled, access to the schema cache via the remote

protocols requires that the user belongs to the '___schema_manager' role. NOTE: Once indexing is

enabled for a cache all fields of Protobuf encoded entries are going to be indexed. Future versions

273

will allow you to select which fields to index (see ISPN-3718).

A remote query example

You’ve managed to configure both client and server to talk protobuf and you’ve enabled indexing.

Let’s put some data in the cache and try to search for it then!

import org.infinispan.client.hotrod.*;

import org.infinispan.query.dsl.*;

...

RemoteCacheManager remoteCacheManager = ...;

RemoteCache<Integer, Book> remoteCache = remoteCacheManager.getCache();

Book book1 = new Book();

book1.setTitle("Hibernate in Action");

remoteCache.put(1, book1);

Book book2 = new Book();

book2.setTile("Infinispan Data Grid Platform");

remoteCache.put(2, book2);

QueryFactory qf = Search.getQueryFactory(remoteCache);

Query query = qf.from(Book.class)

 .having("title").like("%Infinispan%").toBuilder()

 .build();

List<Book> list = query.list(); // Voila! We have our book back from the cache!

The key part of creating a query is obtaining the QueryFactory for the remote cache using the

org.infinispan.client.hotrod.Search.getQueryFactory() method. Once you have this creating the query

is similar to embedded mode which is covered in this section.

20.6.28. Javadocs

It is highly recommended to read the following Javadocs (this is pretty much all the public API of

the client):

• RemoteCacheManager

• RemoteCache

20.7. Scripting

Scripting is a feature of Infinispan Server which allows invoking server-side scripts from remote

clients. Scripting leverages the JDK’s javax.script ScriptEngines, therefore allowing the use of any

JVM languages which offer one. By default, the JDK comes with Nashorn, a ScriptEngine capable of

running JavaScript.

274

https://issues.jboss.org/browse/ISPN-3718
#infinispan_s_query_dsl
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html

20.7.1. Installing scripts

Scripts are stored in a special script cache, named '___script_cache'. Adding a script is therefore as

simple as put+ting it into the cache itself. If the name of the script contains a filename extension,

e.g. +myscript.js, then that extension determines the engine that will be used to execute it.

Alternatively the script engine can be selected using script metadata (see below). Be aware that,

when security is enabled, access to the script cache via the remote protocols requires that the user

belongs to the '___script_manager' role.

20.7.2. Script metadata

Script metadata is additional information about the script that the user can provide to the server to

affect how a script is executed. It is contained in a specially-formatted comment on the first lines of

the script.

Properties are specified as key=value pairs, separated by commas. You can use several different

comment styles: The //, ;;, # depending on the scripting language you use. You can split metadata

over multiple lines if necessary, and you can use single (') or double (") quotes to delimit your

values.

The following are examples of valid metadata comments:

// name=test, language=javascript

// mode=local, parameters=[a,b,c]

Metadata properties

The following metadata property keys are available

• mode: defines the mode of execution of a script. Can be one of the following values:

• local: the script will be executed only by the node handling the request. The script itself

however can invoke clustered operations

• distributed: runs the script using the Distributed Executor Service

• language: defines the script engine that will be used to execute the script, e.g. Javascript

• extension: an alternative method of specifying the script engine that will be used to execute the

script, e.g. js

• role: a specific role which is required to execute the script

• parameters: an array of valid parameter names for this script. Invocations which specify

parameter names not included in this list will cause an exception.

• datatype: optional property providing information, in the form of Media Types (also known as

MIME) about the type of the data stored in the caches, as well as parameter and return values.

Currently it only accepts a single value which is text/plain; charset=utf-8, indicating that data

is String UTF-8 format. This metadata parameter is designed for remote clients that only support

a particular type of data, making it easy for them to retrieve, store and work with parameters.

275

Since the execution mode is a characteristic of the script, nothing special needs to be done on the

client to invoke scripts in different modes.

20.7.3. Script bindings

The script engine within Infinispan exposes several internal objects as bindings in the scope of the

script execution. These are:

• cache: the cache against which the script is being executed

• marshaller: the marshaller to use for marshalling/unmarshalling data to the cache

• cacheManager: the cacheManager for the cache

• scriptingManager: the instance of the script manager which is being used to run the script. This

can be used to run other scripts from a script.

20.7.4. Script parameters

Aside from the standard bindings described above, when a script is executed it can be passed a set

of named parameters which also appear as bindings. Parameters are passed as name,value pairs

where name is a string and value can be any value that is understood by the marshaller in use.

The following is an example of a JavaScript script which takes two parameters, multiplicand and

multiplier and multiplies them. Because the last operation is an expression evaluation, its result is

returned to the invoker.

// mode=local,language=javascript

multiplicand * multiplier

To store the script in the script cache, use the following Hot Rod code:

RemoteCache<String, String> scriptCache = cacheManager.getCache("___script_cache");

scriptCache.put("multiplication.js",

 "// mode=local,language=javascript\n" +

 "multiplicand * multiplier\n");

20.7.5. Running Scripts using the Hot Rod Java client

The following example shows how to invoke the above script by passing two named parameters.

RemoteCache<String, Integer> cache = cacheManager.getCache();

// Create the parameters for script execution

Map<String, Object> params = new HashMap<>();

params.put("multiplicand", 10);

params.put("multiplier", 20);

// Run the script on the server, passing in the parameters

Object result = cache.execute("multiplication.js", params);

276

20.7.6. Distributed execution

The following is a script which runs within a Distributed Executor. Each node will return its

address, and the results from all nodes will be collected in a List and returned to the client.

// mode:distributed,language=javascript

cacheManager.getAddress().toString();

20.8. REST Server

The Infinispan Server distribution contains a server module that implements RESTful HTTP access

to the Infinispan data grid, built on JAX_RS. Please refer to Infinispan Server’s documentation for

instructions on how to configure and run a REST server.

20.8.1. REST API

HTTP PUT and POST methods are used to place data in the cache, with URLs to address the cache

name and key(s) - the data being the body of the request (the data can be anything you like). It is

important that a Content-Type header is set. Other headers are used to control the cache settings

and behaviour (detailed in that link).

Putting data in

PUT /{cacheName}/{cacheKey}

A PUT request of the above URL form will place the payload (body) in the given cache, with the

given key (the named cache must exist on the server). For example http://someserver/hr/payRoll/3

(in which case hr is the cache name, and payRoll/3 is the key). Any existing data will be replaced,

and Time-To-Live and Last-Modified values etc will updated (if applicable).

POST /{cacheName}/{cacheKey}

Exactly the same as PUT, only if a value in a cache/key already exists, it will return a Http CONFLICT

status (and the content will not be updated).

Headers

• Content-Type : MANDATORY (use media/mime-types for example: "application/json"). If you set

the Content-Type to application/x-java-serialized-object, then it will be stored as a Java object

• performAsync : OPTIONAL true/false (if true, this will return immediately, and then replicate

data to the cluster on its own. Can help with bulk data inserts/large clusters.)

• timeToLiveSeconds : OPTIONAL number (the number of seconds before this entry will

automatically be deleted). If no parameter is sent, Infinispan assumes -1 as default value, which

means that the entry will not expire. Passing any negative value will have the same effect.

• maxIdleTimeSeconds : OPTIONAL number (the number of seconds after last usage of this entry

when it will automatically be deleted). If no parameter is sent, Infinispan assumes -1 as default

value, which means that the entry will not expire as a result of idle time. Passing any negative

277

http://en.wikipedia.org/wiki/Representational_State_Transfer
../infinispan_server_guide/infinispan_server_guide.html
http://someserver/hr/payRoll/3
http://www.iana.org/assignments/media-types/

value will have the same effect.

Passing 0 as parameter for timeToLiveSeconds and/or maxIdleTimeSeconds

• If both timeToLiveSeconds and maxIdleTimeSeconds are 0, the cache will use the default lifespan

and maxIdle values configured in XML/programmatically

• If only maxIdleTimeSeconds is 0, it uses the timeToLiveSeconds value passed as parameter (or -1 if

not present), and default maxIdle configured in XML/programmatically

• If only timeToLiveSeconds is 0, it uses default lifespan configured in XML/programmatically, and

maxIdle is set to whatever came as parameter (or -1 if not present)

Getting data back out

HTTP GET and HEAD are used to retrieve data from entries.

GET /{cacheName}/{cacheKey}

This will return the data found in the given cacheName, under the given key - as the body of the

response. A Content-Type header will be supplied which matches what the data was inserted as

(other then if it is a Java object, see below). Browsers can use the cache directly of course (eg as a

CDN). An ETag will be returned unique for each entry, as will the Last-Modified and Expires

headers field indicating the state of the data at the given URL. ETags allow browsers (and other

clients) to ask for data only in the case where it has changed (to save on bandwidth) - this is

standard HTTP and is honoured by Infinispan.

Since Infinispan 5.3 it is possible to obtain additional information by appending the "extended"

parameter on the query string, as follows:

GET /cacheName/cacheKey?extended

This will return the following custom headers:

• Cluster-Primary-Owner: the node name of the primary owner for this key

• Cluster-Node-Name: the JGroups node name of the server that has handled the request

• Cluster-Physical-Address: the physical JGroups address of the server that has handled the

request.

HEAD /{cacheName}/{cacheKey}

The same as GET, only no content is returned (only the header fields). You will receive the same

content that you stored. E.g., if you stored a String, this is what you get back. If you stored some

XML or JSON, this is what you will receive. If you stored a binary (base 64 encoded) blob, perhaps a

serialized; Java; object - you will need to; deserialize this yourself.

Similarly to the GET method, the HEAD method also supports returning extended information via

headers. See above.

278

http://en.wikipedia.org/wiki/HTTP_ETag

Listing keys

GET /{cacheName}

This will return a list of keys present in the given cacheName as the body of the response. The

format of the response can be controlled via the Accept header as follows:

• application/xml - the list of keys will be returned in XML format.

• application/json - the list of keys will be return in JSON format.

• text/html - the list of keys will be returned in HTML format.

• text/plain - the list of keys will be returned in plain text format, one key per line

If the cache identified by cacheName is distributed, only the keys owned by the node handling the

request will be returned. To return all keys, append the "global" parameter to the query, as follows:

GET /cacheName?global

Removing data

Data can be removed at the cache key/element level, or via a whole cache name using the HTTP

delete method.

DELETE /{cacheName}/{cacheKey}

Removes the given key name from the cache.

DELETE /{cacheName}

Removes ALL the entries in the given cache name (i.e., everything from that path down). If the

operation is successful, it returns 200 code.

Make it quicker!

Set the header performAsync to true to return immediately and let the removal

happen in the background.

20.8.2. Client side code

Part of the point of a RESTful service is that you don’t need to have tightly coupled client

libraries/bindings. All you need is a HTTP client library. For Java, Apache HTTP Commons Client

works just fine (and is used in the integration tests), or you can use java.net API.

Ruby example

Shows how to interact with Infinispan REST api from ruby.

No special libraries, just standard net/http

#

Author: Michael Neale

#

279

require 'net/http'

http = Net::HTTP.new('localhost', 8080)

#Create new entry

http.post('/infinispan/rest/MyData/MyKey', 'DATA HERE', {"Content-Type" => "

text/plain"})

#get it back

puts http.get('/infinispan/rest/MyData/MyKey').body

#use PUT to overwrite

http.put('/infinispan/rest/MyData/MyKey', 'MORE DATA', {"Content-Type" => "text/plain

"})

#and remove...

http.delete('/infinispan/rest/MyData/MyKey')

#Create binary data like this... just the same...

http.put('/infinispan/rest/MyImages/Image.png', File.read(

'/Users/michaelneale/logo.png'), {"Content-Type" => "image/png"})

#and if you want to do json...

require 'rubygems'

require 'json'

#now for fun, lets do some JSON !

data = {:name => "michael", :age => 42 }

http.put('/infinispan/rest/Users/data/0', data.to_json, {"Content-Type" =>

"application/json"})

Python example

280

Sample python code using the standard http lib only

#

import httplib

#putting data in

conn = httplib.HTTPConnection("localhost:8080")

data = "SOME DATA HERE \!" #could be string, or a file...

conn.request("POST", "/infinispan/rest/Bucket/0", data, {"Content-Type": "text/plain"

})

response = conn.getresponse()

print response.status

#getting data out

import httplib

conn = httplib.HTTPConnection("localhost:8080")

conn.request("GET", "/infinispan/rest/Bucket/0")

response = conn.getresponse()

print response.status

print response.read()

Java example

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

import java.net.HttpURLConnection;

import java.net.URL;

/**

 * Rest example accessing Infinispan Cache.

 * @author Samuel Tauil (samuel@redhat.com)

 *

 */

public class RestExample {

 /**

 * Method that puts a String value in cache.

 * @param urlServerAddress

 * @param value

 * @throws IOException

 */

 public void putMethod(String urlServerAddress, String value) throws IOException {

 System.out.println("--");

 System.out.println("Executing PUT");

 System.out.println("--");

 URL address = new URL(urlServerAddress);

281

 System.out.println("executing request " + urlServerAddress);

 HttpURLConnection connection = (HttpURLConnection) address.openConnection();

 System.out.println("Executing put method of value: " + value);

 connection.setRequestMethod("PUT");

 connection.setRequestProperty("Content-Type", "text/plain");

 connection.setDoOutput(true);

 OutputStreamWriter outputStreamWriter = new OutputStreamWriter(connection

.getOutputStream());

 outputStreamWriter.write(value);

 connection.connect();

 outputStreamWriter.flush();

 System.out.println("--");

 System.out.println(connection.getResponseCode() + " " + connection

.getResponseMessage());

 System.out.println("--");

 connection.disconnect();

 }

 /**

 * Method that gets a value by a key in url as param value.

 * @param urlServerAddress

 * @return String value

 * @throws IOException

 */

 public String getMethod(String urlServerAddress) throws IOException {

 String line = new String();

 StringBuilder stringBuilder = new StringBuilder();

 System.out.println("--");

 System.out.println("Executing GET");

 System.out.println("--");

 URL address = new URL(urlServerAddress);

 System.out.println("executing request " + urlServerAddress);

 HttpURLConnection connection = (HttpURLConnection) address.openConnection();

 connection.setRequestMethod("GET");

 connection.setRequestProperty("Content-Type", "text/plain");

 connection.setDoOutput(true);

 BufferedReader bufferedReader = new BufferedReader(new InputStreamReader

(connection.getInputStream()));

 connection.connect();

 while ((line = bufferedReader.readLine()) \!= null) {

 stringBuilder.append(line + '\n');

282

 }

 System.out.println("Executing get method of value: " + stringBuilder.toString()

);

 System.out.println("--");

 System.out.println(connection.getResponseCode() + " " + connection

.getResponseMessage());

 System.out.println("--");

 connection.disconnect();

 return stringBuilder.toString();

 }

 /**

 * Main method example.

 * @param args

 * @throws IOException

 */

 public static void main(String\[\] args) throws IOException {

 //Attention to the cache name "cacheX" it was configured in xml file with tag

<*-cache name="cacheX">

 RestExample restExample = new RestExample();

 restExample.putMethod("http://localhost:8080/infinispan/rest/cacheX/1",

"Infinispan REST Test");

 restExample.getMethod("http://localhost:8080/infinispan/rest/cacheX/1");

 }

}

20.9. Memcached Server

The Infinispan Server distribution contains a server module that implements the Memcached text

protocol. This allows Memcached clients to talk to one or several Infinispan backed Memcached

servers. These servers could either be working standalone just like Memcached does where each

server acts independently and does not communicate with the rest, or they could be clustered

where servers replicate or distribute their contents to other Infinispan backed Memcached servers,

thus providing clients with failover capabilities. Please refer to Infinispan Server’s documentation

for instructions on how to configure and run a Memcached server.

20.9.1. Command Clarifications

Flush All

Even in a clustered environment, flush_all command leads to the clearing of the Infinispan

Memcached server where the call lands. There’s no attempt to propagate this flush to other nodes

in the cluster. This is done so that flush_all with delay use case can be reproduced with the

Infinispan Memcached server. The aim of passing a delay to flush_all is so that different

283

http://github.com/memcached/memcached/blob/master/doc/protocol.txt
http://github.com/memcached/memcached/blob/master/doc/protocol.txt
../infinispan_server_guide/infinispan_server_guide.html

Memcached servers in a full can be flushed at different times, and hence avoid overloading the

database with requests as a result of all Memcached servers being empty. For more info, check the

Memcached text protocol section on flush_all .

20.9.2. Unsupported Features

This section explains those parts of the memcached text protocol that for one reason or the other,

are not currently supported by the Infinispan based memcached implementation.

Individual Stats

Due to difference in nature between the original memcached implementation which is C/C\\ based

and the Infinispan implementation which is Java based, there’re some general purpose stats that

are not supported. For these unsupported stats, Infinispan memcached server always returns 0.

Unsupported statistics

• pid

• pointer_size

• rusage_user

• rusage_system

• bytes

• curr_connections

• total_connections

• connection_structures

• auth_cmds

• auth_errors

• limit_maxbytes

• threads

• conn_yields

• reclaimed

Statistic Settings

The settings statistics section of the text protocol has not been implemented due to its volatility.

Settings with Arguments Parameter

Since the arguments that can be send to the Memcached server are not documented, Infinispan

Memcached server does not support passing any arguments to stats command. If any parameters

are passed, the Infinispan Memcached server will respond with a CLIENT_ERROR .

Delete Hold Time Parameter

Memcached does no longer honor the optional hold time parameter to delete command and so the

284

http://github.com/memcached/memcached/blob/master/doc/protocol.txt

Infinispan based memcached server does not implement such feature either.

Verbosity Command

Verbosity command is not supported since Infinispan logging cannot be simplified to defining the

logging level alone.

20.9.3. Talking To Infinispan Memcached Servers From Non-Java Clients

This section shows how to talk to Infinispan memcached server via non-java client, such as a

python script.

Multi Clustered Server Tutorial

The example showcases the distribution capabilities of Infinispan memcached severs that are not

available in the original memcached implementation.

• Start two clustered nodes: This configuration is the same one used for the GUI demo:

$./bin/standalone.sh -c clustered.xml -Djboss.node.name=nodeA

$./bin/standalone.sh -c clustered.xml -Djboss.node.name=nodeB

-Djboss.socket.binding.port-offset=100

Alternatively use

$./bin/domain.sh

Which automatically starts two nodes.

• Execute test_memcached_write.py script which basically executes several write operations

against the Infinispan memcached server bound to port 11211. If the script is executed

successfully, you should see an output similar to this:

Connecting to 127.0.0.1:11211

Testing set ['Simple_Key': Simple value] ... OK

Testing set ['Expiring_Key' : 999 : 3] ... OK

Testing increment 3 times ['Incr_Key' : starting at 1]

Initialise at 1 ... OK

Increment by one ... OK

Increment again ... OK

Increment yet again ... OK

Testing decrement 1 time ['Decr_Key' : starting at 4]

Initialise at 4 ... OK

Decrement by one ... OK

Testing decrement 2 times in one call ['Multi_Decr_Key' : 3]

Initialise at 3 ... OK

Decrement by 2 ... OK

285

https://github.com/infinispan/infinispan/tree/master/server/memcached/src/test/resources/test_memcached_write.py

• Execute test_memcached_read.py script which connects to server bound to 127.0.0.1:11311 and

verifies that it can read the data that was written by the writer script to the first server. If the

script is executed successfully, you should see an output similar to this:

Connecting to 127.0.0.1:11311

Testing get ['Simple_Key'] should return Simple value ... OK

Testing get ['Expiring_Key'] should return nothing... OK

Testing get ['Incr_Key'] should return 4 ... OK

Testing get ['Decr_Key'] should return 3 ... OK

Testing get ['Multi_Decr_Key'] should return 1 ... OK

20.10. WebSocket Server

The Infinispan Server distribution contains a server module that implements the WebSocket

Interface via a very simple Javascript "Cache" API. The WebSocket Interface was introduced as part

of the HTML 5 specification. It defines a full-duplex communication channel to the browser,

operating over a single socket (unlike Comet or Ajax) and is exposed to the browser via a Javascript

interface. Please refer to Infinispan Server’s documentation for instructions on how to configure

and run a WebSocket server.

 This is a highly experimental module.

20.10.1. Javascript API

Writing a web page that uses the Infinispan Cache API is trivial. The page simply needs to include a

<script /> declaration for the infinispan-ws.js Javascript source file. This script is served up by

WebSocket Server.

So, for loading infinispan-ws.js from a WebSocket Server instance running on www.acme.com:8181

(default port):

<script type="text/javascript" src="<a href="http://www.acme.com:61999/infinispan-

ws.js" target="_blank">http://www.acme.com:8181/infinispan-ws.js" />

Creating a Client-Side Cache Object Instance

The client-side interface to a server-side Infinispan cache is the Cache Javascript object. It can be

constructed as follows:

<script type="text/javascript">

 var cache = new Cache();

 // etc...

</script>

286

https://github.com/infinispan/infinispan/tree/master/server/memcached/src/test/resources/test_memcached_read.py
http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/websockets/
../infinispan_server_guide/infinispan_server_guide.html

By default, the Cache instance will interface to the default Infinispan Cache associated with the

WebSocket Server from which the infinispan-ws.js Javascript source file was loaded. So, in the

above case, the Cache object instance will connect to the WebSocket Server running on

www.acme.com:8181 (i.e. ws://www.acme.com:8181).

The Infinispan Cache name and WebSocket Server address can be specified in the Cache object

constructor as follows:

var cache = new Cache("omCache", "ws://ws.acmews.com:8181");

// etc...

Cache Operations

A number of cache operations can be performed via the Cache object instance such as get , put ,

remove , notify and unnotify .

The get and notify operations require a callback function to be registered with the Cache object

instance. This callback function receives all add/update/remove notifications on any cache entries

for which the notify function was invoked. It also asynchronously receives the result of a single

invocation of the get function i.e. get can be thought of as "notify once, immediately".

The callback function is registered with the Cache object instance via the registerCallback function.

The function should have 2 parameters - key and value , relating to the cache key and value.

var cache = new Cache();

// Ask to be notified about some cache entries...

cache.notify("orderStatus");

cache.notify("expectedDeliveryTime");

// Register the callback function for receiving notifcations...

cache.registerCallback(cacheCallback);

// Cache callback function...

function cacheCallback(key, value) {

 // Handle notification...

}

Getting and updating data in the cache is done by simply calling the get , put and remove functions

on the Cache object instance. These operations could be triggered by user interaction with a web

form e.g.

287

<form onsubmit="return false;">

 <!-- Other form components... -->

 <!-- Buttons for making cache updates... -->

 <input type="button" value="Put"

 onclick="cache.put(this.form.key.value, this.form.val.value)" />

 <input type="button" value="Get"

 onclick="cache.get(this.form.key.value)" />

 <input type="button" value="Remove"

 onclick="cache.remove(this.form.key.value)" />

</form>

20.10.2. Sample code

Infinispan’s source tree contains a sample HTML document that makes use of the WebSocket

server. Browse through the source of this HTML document here .

20.10.3. Screencast

See the following demo of the Infinispan WebSocket Server in action.

20.10.4. Status

Prototype/Alpha.

20.10.5. Source

Browse Infinispan’s Git repository .

288

https://github.com/infinispan/infinispan/blob/master/server/websocket/src/main/release/etc/sample-websocket-client.html
http://www.screencast.com/t/ZGEzNDJlY
https://github.com/infinispan/infinispan/tree/master/server/websocket

Chapter 21. Embedded/Remote

Compatibility

Infinispan offers the possibility to store and retrieve data in a local embedded way, and also

remotely thanks to the multiple endpoints offered, but until now if you choose one way to access

the data, you were stuck with it. For example, you could not store data using the embedded

interface and retrieve it via REST.

Starting with Infinispan 5.3, it is now possible to configure Infinispan caches to work in a special,

compatibility mode for those users interested in accessing Infinispan in multiple ways. Achieving

such compatibility requires extra work from Infinispan in order to make sure that contents are

converted back and forth between the different formats of each endpoint and this is the reason

why compatibility mode is disabled by default.

21.1. Enable Compatibility Mode

For compatibility mode to work as expected, all endpoints need to be configured with the same

cache manager, and need to talk to the same cache. If you’re using the brand new Infinispan Server

distribution , this is all done for you. If you’re in the mood to experiment with this in a standalone

unit test, this class shows you how you can start multiple endpoints from a single class.

So, to get started using Infinispan’s compatibility mode, it needs to be enabled, either via XML:

infinispan.xml

<local-cache>

 <compatibility/>

</local-cache>

Or programmatically:

ConfigurationBuilder builder = ...

builder.compatibility().enable();

The key thing to remember about Infinispan’s compatibility mode is that where possible, it tries to

store data unmarshalling or deserializing it. It does so because the most common use case is for it to

store Java objects and having Java objects stored in deserialized form means that they’re very easy

to use from an embedded cache. With this in mind, it makes some assumptions. For example, if

something is stored via Hot Rod, it’s most likely coming from the reference Hot Rod client, which is

written in Java, and which uses a marshaller that keeps binary payloads very compact. So, when

the Hot Rod operation reaches the compatibility layer, it will try to unmarshall it, by default using

the same default marshaller used by the Java Hot Rod client, hence providing good out-of-the-box

support for the majority of cases.

289

http://www.jboss.org/infinispan/downloads
http://www.jboss.org/infinispan/downloads
https://github.com/infinispan/infinispan/blob/master/integrationtests/compatibility-mode-it/src/test/java/org/infinispan/it/compatibility/CompatibilityCacheFactory.java

21.1.1. Optional: Configuring Compatibility Marshaller

It could happen though the client might be using a Hot Rod client written for another language

other than Java, say Ruby or Python . In this case, some kind of custom marshaller needs to be

configured that either translates that serialized payload into a Java object to be stored in the cache,

or keeps it in serialized form. Both options are valid, but of course it will have an impact on what

kind of objects are retrieved from Infinispan if using the embedded cache. The marshaller is

expected to implement this interface . Configuring the compatibility marshaller is optional and can

be done via XML:

infinispan.xml

<local-cache>

 <compatibility marshaller="com.acme.CustomMarshaller"/>

</local-cache>

Or programmatically:

ConfigurationBuilder builder = ...

builder.compatibility().enable().marshaller(new com.acme.CustomMarshaller());

One concrete example of this marshaller logic can be found in the

SpyMemcachedCompatibleMarshaller . Spy Memcached uses their own transcoders in order to

marshall objects, so the compatibility marshaller created is in charge of marshalling/unmarshalling

data stored via Spy Memcached client. If you want to retrieve data stored via Spy Memcached via

say Hot Rod, you can configure the Java Hot Rod client to use this same marshaller, and this is

precisely what the test where the Spy Memcached marshaller is located is demonstrating.

21.2. Code examples

The best code examples available showing compatibility in action can be found in the Infinispan

Compatibility Mode testsuite, but more will be developed in the near future.

290

https://github.com/infinispan/ruby-client
https://github.com/infinispan/python-client
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/Marshaller.html
https://github.com/infinispan/infinispan/blob/master/integrationtests/compatibility-mode-it/src/test/java/org/infinispan/it/compatibility/EmbeddedRestMemcachedHotRodTest.java#L161
https://code.google.com/p/spymemcached/
https://github.com/infinispan/infinispan/tree/master/integrationtests/compatibility-mode-it/src/test/java/org/infinispan/it/compatibility
https://github.com/infinispan/infinispan/tree/master/integrationtests/compatibility-mode-it/src/test/java/org/infinispan/it/compatibility

Chapter 22. Security

Security within Infinispan is implemented at several layers:

• within the core library, to provide coarse-grained access control to CacheManagers, Caches and

data

• over remote protocols, to obtain credentials from remote clients and to secure the transport

using encryption

• between nodes in a cluster, so that only authorized nodes can join and to secure the transport

using encryption

In order to maximize compatibility and integration, Infinispan uses widespread security standards

where possible and appropriate, such as X.509 certificates, SSL/TLS encryption and

Kerberos/GSSAPI. Also, to avoid pulling in any external dependencies and to increase the ease of

integration with third party libraries and containers, the implementation makes use of any facilities

provided by the standard Java security libraries (JAAS, JSSE, JCA, JCE, SASL, etc). For this reason, the

Infinispan core library only provides interfaces and a set of basic implementations.

22.1. Embedded Security

Applications interact with Infinispan using its API within the same JVM. The two main components

which are exposed by the Infinispan API are CacheManagers and Caches. If an application wants to

interact with a secured CacheManager and Cache, it should provide an identity which Infinispan’s

security layer will validate against a set of required roles and permissions. If the identity provided

by the user application has sufficient permissions, then access will be granted, otherwise an

exception indicating a security violation will be thrown. The identity is represented by the

javax.security.auth.Subject class which is a wrapper around multiple Principals, e.g. a user and all

the groups it belongs to. Since the Principal name is dependent on the owning system (e.g. a

Distinguished Name in LDAP), Infinispan needs to be able to map Principal names to roles. Roles, in

turn, represent one or more permissions. The following diagram shows the relationship between

the various elements:

Figure 22. Roles/Permissions mapping

22.1.1. Embedded Permissions

Access to a cache manager or a cache is controlled by using a list of required permissions.

Permissions are concerned with the type of action that is performed on one of the above entities

291

and not with the type of data being manipulated. Some of these permissions can be narrowed to

specifically named entities, where applicable (e.g. a named cache). Depending on the type of entity,

there are different types of permission available:

Cache Manager permissions

• CONFIGURATION (defineConfiguration): whether a new cache configuration can be defined

• LISTEN (addListener): whether listeners can be registered against a cache manager

• LIFECYCLE (stop): whether the cache manager can be stopped

• ALL: a convenience permission which includes all of the above

Cache permissions

• READ (get, contains): whether entries can be retrieved from the cache

• WRITE (put, putIfAbsent, replace, remove, evict): whether data can be

written/replaced/removed/evicted from the cache

• EXEC (distexec, streams): whether code execution can be run against the cache

• LISTEN (addListener): whether listeners can be registered against a cache

• BULK_READ (keySet, values, entrySet, query): whether bulk retrieve operations can be executed

• BULK_WRITE (clear, putAll): whether bulk write operations can be executed

• LIFECYCLE (start, stop): whether a cache can be started / stopped

• ADMIN (getVersion, addInterceptor*, removeInterceptor, getInterceptorChain,

getEvictionManager, getComponentRegistry, getDistributionManager,

getAuthorizationManager, evict, getRpcManager, getCacheConfiguration, getCacheManager,

getInvocationContextContainer, setAvailability, getDataContainer, getStats, getXAResource):

whether access to the underlying components/internal structures is allowed

• ALL: a convenience permission which includes all of the above

• ALL_READ: combines READ and BULK_READ

• ALL_WRITE: combines WRITE and BULK_WRITE

Some permissions might need to be combined with others in order to be useful. For example,

suppose you want to allow only "supervisors" to be able to run stream operations, while "standard"

users can only perform puts and gets, you would define the following mappings:

<role name="standard" permission="READ WRITE" />

<role name="supervisors" permission="READ WRITE EXEC BULK"/>

22.1.2. Embedded API

When a DefaultCacheManager has been constructed with security enabled using either the

programmatic or declarative configuration, it returns a SecureCache which will check the security

context before invoking any operations on the underlying caches. A SecureCache also makes sure

that applications cannot retrieve lower-level insecure objects (such as DataContainer). In Java,

292

executing code with a specific identity usually means wrapping the code to be executed within a

PrivilegedAction:

import org.infinispan.security.Security;

Security.doAs(subject, new PrivilegedExceptionAction<Void>() {

public Void run() throws Exception {

 cache.put("key", "value");

}

});

If you are using Java 8, the above call can be simplified to:

Security.doAs(mySubject, PrivilegedAction<String>() -> cache.put("key", "value"));

Notice the use of Security.doAs() in place of the typical Subject.doAs(). While in Infinispan you can

use either, unless you really need to modify the AccessControlContext for reasons specific to your

application’s security model, using Security.doAs() provides much better performance. If you need

the current Subject, use the following:

Security.getSubject();

which will automatically retrieve the Subject either from the Infinispan’s context or from the

AccessControlContext.

Infinispan also fully supports running under a full-blown SecurityManager. The Infinispan

distribution contains an example security.policy file which you should customize with the

appropriate paths before supplying it to your JVM.

22.1.3. Embedded Configuration

There are two levels of configuration: global and per-cache. The global configuration defines the set

of roles/permissions mappings while each cache can decide whether to enable authorization checks

and the required roles.

293

Programmatic

 GlobalConfigurationBuilder global = new GlobalConfigurationBuilder();

 global

 .security()

 .authorization()

 .principalRoleMapper(new IdentityRoleMapper())

 .role("admin")

 .permission(CachePermission.ALL)

 .role("supervisor")

 .permission(CachePermission.EXEC)

 .permission(CachePermission.READ)

 .permission(CachePermission.WRITE)

 .role("reader")

 .permission(CachePermission.READ);

 ConfigurationBuilder config = new ConfigurationBuilder();

 config

 .security()

 .enable()

 .authorization()

 .role("admin")

 .role("supervisor")

 .role("reader");

Declarative

<infinispan>

 <cache-container default-cache="secured">

 <security>

 <authorization enabled="true">

 <identity-role-mapper />

 <role name="admin" permissions="ALL" />

 <role name="reader" permissions="READ" />

 <role name="writer" permissions="WRITE" />

 <role name="supervisor" permissions="READ WRITE EXEC BULK"/>

 </authorization>

 </security>

 <local-cache name="secured">

 <security>

 <authorization roles="admin reader writer supervisor" />

 </security>

 </local-cache>

 </cache-container>

</infinispan>

Role Mappers

In order to convert the Principals in a Subject into a set of roles to be used when authorizing, a

294

suitable PrincipalRoleMapper must be specified in the global configuration. Infinispan comes with

3 mappers and also allows you to provide a custom one:

• IdentityRoleMapper (Java: org.infinispan.security.impl.IdentityRoleMapper, XML: <identity-role-

mapper />): this mapper just uses the Principal name as the role name

• CommonNameRoleMapper (Java: org.infinispan.security.impl.CommonRoleMapper, XML:

<common-name-role-mapper />): if the Principal name is a Distinguished Name (DN), this

mapper extracts the Common Name (CN) and uses it as a role name. For example the DN

cn=managers,ou=people,dc=example,dc=com will be mapped to the role managers

• ClusterRoleMapper (Java: org.infinispan.security.impl.ClusterRoleMapper XML: <cluster-role-

mapper />): a mapper which uses the ClusterRegistry to store principal to role mappings. This

allows the use of the CLI’s GRANT and DENY commands to add/remove roles to a principal.

• Custom role mappers (XML: <custom-role-mapper class="a.b.c" />): just supply the fully-

qualified class name of an implementation of org.infinispan.security.PrincipalRoleMapper

22.2. Security Audit

Infinispan offers a pluggable audit logger which tracks whether a cache or a cache manager

operation was allowed or denied. The audit logger is configured at the cache container

authorization level:

Programmatic

 GlobalConfigurationBuilder global = new GlobalConfigurationBuilder();

 global

 .authorization()

 .auditLogger(new LoggingAuditLogger());

Declarative

<infinispan>

 <cache-container default-cache="secured">

 <security>

 <authorization audit-logger="org.infinispan.security.impl.LoggingAuditLogger

">

 ...

 </authorization>

 </security>

 ...

 </cache-container>

</infinispan>

In embedded mode the default audit logger is org.infinispan.security.impl.NullAuditLogger which

does nothing. Infinispan also comes with the org.infinispan.security.impl.LoggingAuditLogger

which outputs audit logs through the available logging framework (e.g. Log4J) at level TRACE and

category AUDIT. These logs look like:

295

[ALLOW|DENY] user READ cache[defaultCache]

Using an appropriate logging appender it is possible to send the AUDIT category either to a log file,

a JMS queue, a database, etc. The user which is included in the log above is the name of the first

non-java.security.acl.Group principal in the Subject.

22.3. Cluster security

JGroups can be configured so that nodes need to authenticate each other when joining / merging.

The authentication uses SASL and is setup by adding the SASL protocol to your JGroups XML

configuration above the GMS protocol, as follows:

<SASL mech="DIGEST-MD5"

 client_name="node_user"

 client_password="node_password"

 server_callback_handler_class=

"org.example.infinispan.security.JGroupsSaslServerCallbackHandler"

 client_callback_handler_class=

"org.example.infinispan.security.JGroupsSaslClientCallbackHandler"

 sasl_props="com.sun.security.sasl.digest.realm=test_realm" />

In the above example, the SASL mech will be DIGEST-MD5. Each node will need to declare the user

and password it will use when joining the cluster. The behaviour of a node differs depending on

whether it is the coordinator or any other node. The coordinator acts as the SASL server, whereas

joining/merging nodes act as SASL clients. Therefore two different CallbackHandlers are required,

the server_callback_handler_class will be used by the coordinator, and the

client_callback_handler_class will be used by the other nodes. The SASL protocol in JGroups is only

concerned with the authentication process. If you wish to implement node authorization, you can

do so within the server callback handler, by throwing an Exception. The following example shows

how this can be done:

296

public class AuthorizingServerCallbackHandler implements CallbackHandler {

 @Override

 public void handle(Callback[] callbacks) throws IOException,

UnsupportedCallbackException {

 for (Callback callback : callbacks) {

 ...

 if (callback instanceof AuthorizeCallback) {

 AuthorizeCallback acb = (AuthorizeCallback) callback;

 UserProfile user = UserManager.loadUser(acb.getAuthenticationID());

 if (!user.hasRole("myclusterrole")) {

 throw new SecurityException("Unauthorized node " +user);

 }

 }

 ...

 }

 }

}

297

Chapter 23. Integrations

Infinispan can be integrated with a number of other projects, as detailed below.

23.1. Apache Spark

Infinispan provides an Apache Spark connector capable of exposing caches as an RDD, allowing

batch and stream jobs to be run against data stored in Infinispan. For further details, see the

Infinispan Spark connector documentation. Also check the Docker based Twitter demo.

23.2. Apache Hadoop

The Infinispan Hadoop connector can be used to expose Infinispan as a Hadoop compliant data

source and sink that implements InputFormat/OutputFormat. For further details, refer to the full

documentation.

23.3. Apache Lucene

Infinispan includes a highly scalable distributed Apache Lucene Directory implementation.

This directory closely mimics the same semantics of the traditional filesystem and RAM-based

directories, being able to work as a drop-in replacement for existing applications using Lucene and

providing reliable index sharing and other features of Infinispan like node auto-discovery,

automatic failover and rebalancing, optionally transactions, and can be backed by traditional

storage solutions as filesystem, databases or cloud store engines.

The implementation extends Lucene’s org.apache.lucene.store.Directory so it can be used to store

the index in a cluster-wide shared memory, making it easy to distribute the index. Compared to

rsync-based replication this solution is suited for use cases in which your application makes

frequent changes to the index and you need them to be quickly distributed to all nodes. Consistency

levels, synchronicity and guarantees, total elasticity and auto-discovery are all configurable; also

changes applied to the index can optionally participate in a JTA transaction, optionally supporting

XA transactions with recovery.

Two different LockFactory implementations are provided to guarantee only one IndexWriter at a

time will make changes to the index, again implementing the same semantics as when opening an

index on a local filesystem. As with other Lucene Directories, you can override the LockFactory if

you prefer to use an alternative implementation.

23.3.1. Lucene compatibility

Apache Lucene versions 5.5.x

23.3.2. Maven dependencies

All you need is org.infinispan:infinispan-lucene-directory :

298

http://spark.apache.org
https://github.com/infinispan/infinispan-spark/blob/master/README.md
https://github.com/infinispan/infinispan-spark/tree/master/examples/twitter/README.md
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/InputFormat.html
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/OutputFormat.html
https://github.com/infinispan/infinispan-hadoop/blob/master/README.md
http://lucene.apache.org

pom.xml

<dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-lucene-directory</artifactId>

 <version>9.0</version>

</dependency>

23.3.3. How to use it

See the below example of using the Infinispan Lucene Directory in order to index and query a

single Document:

import java.io.IOException;

import org.apache.lucene.analysis.standard.StandardAnalyzer;

import org.apache.lucene.document.Document;

import org.apache.lucene.document.Field;

import org.apache.lucene.document.StringField;

import org.apache.lucene.index.DirectoryReader;

import org.apache.lucene.index.IndexWriter;

import org.apache.lucene.index.IndexWriterConfig;

import org.apache.lucene.index.Term;

import org.apache.lucene.search.IndexSearcher;

import org.apache.lucene.search.TermQuery;

import org.apache.lucene.search.TopDocs;

import org.apache.lucene.store.Directory;

import org.infinispan.lucene.directory.DirectoryBuilder;

import org.infinispan.manager.DefaultCacheManager;

// Create caches that will store the index. Here the Infinispan programmatic

configuration is used

DefaultCacheManager defaultCacheManager = new DefaultCacheManager();

Cache metadataCache = defaultCacheManager.getCache("metadataCache");

Cache dataCache = defaultCacheManager.getCache("dataCache");

Cache lockCache = defaultCacheManager.getCache("lockCache");

// Create the directory

Directory directory = DirectoryBuilder.newDirectoryInstance(metadataCache, dataCache,

lockCache, indexName).create();

// Use the directory in Lucene

IndexWriterConfig indexWriterConfig = new IndexWriterConfig(new StandardAnalyzer())

.setOpenMode(IndexWriterConfig.OpenMode.CREATE_OR_APPEND);

IndexWriter indexWriter = new IndexWriter(directory, indexWriterConfig);

// Index a single document

Document doc = new Document();

299

doc.add(new StringField("field", "value", Field.Store.NO));

indexWriter.addDocument(doc);

indexWriter.close();

// Querying the inserted document

DirectoryReader directoryReader = DirectoryReader.open(directory);

IndexSearcher searcher = new IndexSearcher(directoryReader);

TermQuery query = new TermQuery(new Term("field", "value"));

TopDocs topDocs = searcher.search(query, 10);

System.out.println(topDocs.totalHits);

The indexName in the DirectoryBuilder is a unique key to identify your index. It takes the same role

as the path did on filesystem based indexes: you can create several different indexes giving them

different names. When you use the same indexName in another instance connected to the same

network (or instantiated on the same machine, useful for testing) they will join, form a cluster and

share all content. Using a different indexName allows you to store different indexes in the same set

of Caches.

The metadataCache, dataCache and lockCache are the caches that will store the indexes. More

details provided below.

New nodes can be added or removed dynamically, making the service administration very easy and

also suited for cloud environments: it’s simple to react to load spikes, as adding more memory and

CPU power to the search system is done by just starting more nodes.

23.3.4. Configuration

Infinispan can be configured as LOCAL clustering mode, in which case it will disable clustering

features and serve as a cache for the index, or any clustering mode. A transaction manager is not

mandatory, but when enabled the changes to the index can participate in transactions.

Batching was required in previous versions, it’s not strictly needed anymore.

As pointed out in the javadocs of DirectoryBuilder, it’s possible for it to use more than a single

cache, using specific configurations for different purposes. Each cache is explained below:

Lock Cache

The lock cache is used to store a single entry per index that will function as the directory lock.

Given the small storage requirement this cache is usually configured as REPL_SYNC. Example of

declarative configuration:

<replicated-cache name="LuceneIndexesLocking" mode="SYNC" remote-timeout="25000">

 <transaction mode="NONE"/>

 <indexing index="NONE" />

 <memory>

 <object size="-1"/>

 </memory>

</replicated-cache>

300

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/lucene/directory/DirectoryBuilder.html

Metadata Cache

The metadata cache is used to store information about the files of the directory, such as buffer sizes

and number of chunks. It uses more space than the Lock Cache, but not as much as the Data Cache,

so using a REPL_SYNC cache should be fine for most cases. Example of configuration:

<replicated-cache name="LuceneIndexesMetadaData" mode="SYNC" remote-timeout="25000">

 <transaction mode="NONE"/>

 <indexing index="NONE" />

 <memory>

 <object size="-1"/>

 </memory>

</replicated-cache>

Data Cache

The Infinispan Lucene directory splits large (bigger than the chunkSize configuration) files into

chunks and stores them in the Data cache. This is the largest of the 3 index caches, and both

DIST_SYNC/REPL_SYNC cache modes can be used. Usage of REPL_SYNC offers lower latencies for

queries since each node holds the whole index locally; DIST_SYNC, on the other hand, will affect

query latency due to remote calls to fetch for chunks, but offers better scalability.

Example of configuration:

<distributed-cache name="LuceneIndexesData" mode="SYNC" remote-timeout="25000">

 <transaction mode="NONE"/>

 <indexing index="NONE" />

 <memory>

 <object size="-1"/>

 </memory>

</distributed-cache>

23.3.5. Using a CacheLoader

Using a CacheLoader you can have the index content backed up to a permanent storage; you can

use a shared store for all nodes or one per node, see cache passivation for more details.

When using a CacheLoader to store a Lucene index, to get best write performance you would need

to configure the CacheLoader with async=true .

23.3.6. Storing the index in a database

It might be useful to store the Lucene index in a relational database; this would be very slow but

Infinispan can act as a cache between the application and the JDBC interface, making this

configuration useful in both clustered and non-clustered configurations. When storing indexes in a

JDBC database, it’s suggested to use the JdbcStringBasedCacheStore , which will need this attribute:

301

<property name="key2StringMapperClass" value=

"org.infinispan.lucene.LuceneKey2StringMapper" />

23.3.7. Loading an existing Lucene Index

The org.infinispan.lucene.cachestore.LuceneCacheLoader is an Infinispan CacheLoader able to have

Infinispan directly load data from an existing Lucene index into the grid. Currently this supports

reading only.

Property Description Default

location The path where the indexes are

stored. Subdirectories (of first

level only) should contain the

indexes to be loaded, each

directory matching the index

name attribute of the

InfinispanDirectory

constructor.

none (mandatory)

autoChunkSize A threshold in bytes: if any

segment is larger than this, it

will be transparently chunked

in smaller cache entries up to

this size.

32MB

It’s worth noting that the IO operations are delegated to Lucene’s standard

org.apache.lucene.store.FSDirectory , which will select an optimal approach for the running

platform.

Implementing write-through should not be hard: you’re welcome to try implementing it.

23.3.8. Architectural limitations

This Directory implementation makes it possible to have almost real-time reads across multiple

nodes. A fundamental limitation of the Lucene design is that only a single IndexWriter is allowed to

make changes on the index: a pessimistic lock is acquired by the writer; this is generally ok as a

single IndexWriter instance is very fast and accepts update requests from multiple threads. When

sharing the Directory across Infinispan nodes the IndexWriter limitation is not lifted: since you can

have only one instance, that reflects in your application as having to apply all changes on the same

node. There are several strategies to write from multiple nodes on the same index:

Index write strategies

• One node writes, the other delegate to it sending messages

• Each node writes on turns

• You application makes sure it will only ever apply index writes on one node

The Infinispan Lucene Directory protects its content by implementing a distributed locking strategy,

302

though this is designed as a last line of defense and is not to be considered an efficient mechanism

to coordinate multiple writes: if you don’t apply one of the above suggestions and get high write

contention from multiple nodes you will likely get timeout exception.

23.3.9. Suggestions for optimal performance

JGroups and networking stack

JGroups manages all network IO and as such it is a critical component to tune for your specific

environment. Make sure to read the JGroups reference documentation, and play with the

performance tests included in JGroups to make sure your network stack is setup appropriately.

Don’t forget to check also operating system level parameters, for example buffer sizes dedicated for

networking. JGroups will log warning when it detects something wrong, but there is much more

you can look into.

Using a CacheStore

Currently all CacheStore implementations provided by Infinispan have a significant slowdown; we

hope to resolve that soon but for the time being if you need high performance on writes with the

Lucene Directory the best option is to disable any CacheStore; the second best option is to configure

the CacheStore as async . If you only need to load a Lucene index from read-only storage, see the

above description for org.infinispan.lucene.cachestore.LuceneCacheLoader .

Apply standard Lucene tuning

All known options of Lucene apply to the Infinispan Lucene Directory as well; of course the effect

might be less significant in some cases, but you should definitely read the Apache Lucene

documentation .

Disable batching and transactions

Early versions required Infinispan to have batching or transactions enabled. This is no longer a

requirement, and in fact disabling them should provide little improvement in performance.

Set the right chunk size

The chunk size can be specified using the DirectoryBuilder fluent API. To correctly set this variable

you need to estimate what the expected size of your segments is; generally this is trivial by looking

at the file size of the index segments generated by your application when it’s using the standard

FSDirectory. You then have to consider:

• The chunk size affects the size of internally created buffers, and large chunk sizes will cause

memory usage to grow. Also consider that during index writing such arrays are frequently

allocated.

• If a segment doesn’t fit in the chunk size, it’s going to be fragmented. When searching on a

fragmented segment performance can’t peak.

Using the org.apache.lucene.index.IndexWriterConfig you can tune your index writing to

approximately keep your segment size to a reasonable level, from there then tune the chunksize,

303

http://jgroups.org/manual-3.x/html/index.html
http://lucene.apache.org/core/index.html
http://lucene.apache.org/core/index.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/lucene/directory/DirectoryBuilder.html

after having defined the chunksize you might want to revisit your network configuration settings.

23.3.10. Demo

There is a simple command-line demo of its capabilities distributed with Infinispan under

demos/lucene-directory; make sure you grab the "Binaries, server and demos" package from

download page, which contains all demos.

Start several instances, then try adding text in one instance and searching for it on the other. The

configuration is not tuned at all, but should work out-of-the box without any changes. If your

network interface has multicast enabled, it will cluster across the local network with other

instances of the demo.

23.3.11. Additional Links

• Issue tracker: https://jira.jboss.org/browse/ISPN/component/12312732

• Source code: https://github.com/infinispan/infinispan/tree/master/lucene/lucene-

directory/src/main/java/org/infinispan/lucene

23.4. Directory Provider for Hibernate Search

Hibernate Search applications can use Infinispan as a directory provider, taking advantage of

Infinispan’s distribution and low latency capabilities to store the Lucene indexes.

23.4.1. Maven dependencies

pom.xml

<dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-directory-provider</artifactId>

 <version>9.0</version>

</dependency>

23.4.2. How to use it

The directory provider alias is "infinispan", and to enable it for an index, the following property

should be in the Hibernate Search configuration:

hibernate.search.MyIndex.directory_provider = infinispan

to enable it by default for all indexes:

hibernate.search.default.directory_provider = infinispan

The Infinispan cluster will start with a default configuration, see below how to override it.

304

https://jira.jboss.org/browse/ISPN/component/12312732
https://github.com/infinispan/infinispan/tree/master/lucene/lucene-directory/src/main/java/org/infinispan/lucene
https://github.com/infinispan/infinispan/tree/master/lucene/lucene-directory/src/main/java/org/infinispan/lucene
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#configuration
https://github.com/infinispan/infinispan/blob/master/lucene/directory-provider/src/main/resources/default-hibernatesearch-infinispan.xml

23.4.3. Configuration

Optional properties allow for a custom Infinispan configuration or to use an existent

EmbeddedCacheManager:

Property Description Example value

hibernate.search.infinispan.con

figuration_resourcename

Custom configuration for

Infinispan

config/infinispan.xml

hibernate.search.infinispan.con

figuration.transport_override_r

esourcename

Overrides the JGroups stack in

the Infinispan configuration file

jgroups-ec2.xml

hibernate.search.infinispan.cac

hemanager_jndiname

Specifies the JNDI name under

which the

EmbeddedCacheManager to use

is bound. Will cause the

properties above to be ignored

when present

java:jboss/infinispan/container/

hibernate-search

23.4.4. Architecture considerations

The same limitations presented in the Lucene Directory apply here, meaning the index will be

shared across several nodes and only one IndexWriter can have the lock.

One common strategy is to use Hibernate Search’s JMS Master/Slave or JGroups backend together

with the Infinispan directory provider: instead of sending updates directly to the index, they are

sent to a JMS queue or JGroups channel and a single node applies all the changes on behalf of all

other nodes.

Refer to the Hibernate Search documentation for instructions on how to setup JMS or JGroups

backends.

23.5. JPA/Hibernate 2L Cache

Documentation on how to use Infinispan as second-level cache with JPA/Hibernate can be found

here.

23.6. Using Infinispan with Spring Boot

Infinispan Spring Boot Starters allow to easily turn on Infinispan and Spring integration. More

information might be found at Infinispan Spring Boot Starters Gihub page.

23.7. Using Infinispan as a Spring Cache provider

Starting with version 3.1, the Spring Framework offers a cache abstraction, enabling users to

declaratively add caching support to applications via two simple annotations, @Cacheable and

@CacheEvict. While out of the box Spring’s caching support is backed by EHCache it has been

designed to easily support different cache providers. To that end Spring defines a simple and

305

https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/
https://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#caching-provider-infinispan
https://github.com/infinispan/infinispan-spring-boot
http://spring.io/
http://docs.spring.io/spring-framework/docs/4.1.1.RELEASE/spring-framework-reference/html/cache.html
http://ehcache.org

straightforward SPI other caching solutions may implement. Infinispan’s very own spring modules

do - amongst other things - exactly this and therefore users invested in Spring’s programming

model may easily have all their caching needs fulfilled through Infinispan.

Here’s how.

23.7.1. Activating Spring Cache support

You activate Spring’s cache support using xml:

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:cache="http://www.springframework.org/schema/cache"

 xmlns:p="http://www.springframework.org/schema/p"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/cache

http://www.springframework.org/schema/cache/spring-cache.xsd">

 <cache:annotation-driven />

</beans>

somewhere in your application context. This enable the cache annotations in Spring. Alternatively,

it can be done programmatically:

@EnableCaching @Configuration

public class Config {

}

Now, you will need to add Infinispan and Spring integration module to your classpath. For Maven

users this might be achieved by adding these dependencies:

306

pom.xml for Spring 4 (embedded mode)

 <dependencies>

 <dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-embedded</artifactId>

 </dependency>

 <dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-spring4-embedded</artifactId>

 <version>${version.spring}</version>

 </dependency>

 <!-- depending on a use case, one should use Spring Context or Spring Boot

jars -->

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-context</artifactId>

 <version>${version.spring}</version>

 </dependency>

 </dependencies>

23.7.2. Telling Spring to use Infinispan as its caching provider

Spring cache provider SPI comprises two interfaces, org.springframework.cache.CacheManager and

org.springframework.cache.Cache where a CacheManager serves as a factory for named Cache

instances. By default Spring will look at runtime for a CacheManager implementation having the bean

name "cacheManager" in an application’s application context. So by putting

<!-- Infinispan cache manager -->

<bean id="cacheManager"

 class="org.infinispan.spring.provider.SpringEmbeddedCacheManagerFactoryBean"

 p:configurationFileLocation=

"classpath:/org/infinispan/spring/provider/sample/books-infinispan-config.xml" />

or using java config:

307

@EnableCaching

@Configuration

public class Config {

 @Bean

 public CacheManager cacheManager() {

 return new SpringEmbeddedCacheManager(infinispanCacheManager());

 }

 private EmbeddedCacheManager infinispanCacheManager() {

 return new DefaultCacheManager();

 }

}

somewhere in your application context you tell Spring to henceforth use Infinispan as its caching

provider.

23.7.3. Adding caching to your application code

As outlined above enabling caching in your application code is as simple as adding @Cacheable and

@CacheEvict to select methods. Suppose you’ve got a DAO for, say, books and you want book

instances to be cached once they’ve been loaded from the underlying database using

BookDao#findBook(Integer bookId). To that end you annotate findBook(Integer bookId) with

@Cacheable, as in

@Transactional

@Cacheable(value = "books", key = "#bookId")

Book findBook(Integer bookId) {...}

This will tell Spring to cache Book instances returned from calls to findBook(Integer bookId) in a

named cache "books", using the parameter’s "bookId" value as a cache key. Here, "#bookId" is an

expression in the Spring Expression Language that evaluates to the bookId argument. If you don’t

specify the key attribute Spring will generate a hash from the supplied method arguments - in this

case only bookId - and use that as a cache key. Essentially, you relinquish control over what cache

key to use to Spring. Which may or may not be fine depending on your application’s needs.Though

the notion of actually deleting a book will undoubtedly seem alien and outright abhorrent to any

sane reader there might come the time when your application needs to do just that. For whatever

reason. In this case you will want for such a book to be removed not only from the underlying

database but from the cache, too. So you annotate deleteBook(Integer bookId) with @CacheEvict as

in

@Transactional

@CacheEvict(value = "books", key = "#bookId")

void deleteBook(Integer bookId) {...}

308

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html

and you may rest assured that no stray books be left in your application once you decide to remove

them.

23.7.4. Externalizing session using Spring Session

Spring Session is a very convenient way to externalize user session into Infinispan cluster.

Spring Session integration allows to use both - embedded and client/server mode. Each mode

requires using proper artifacts (infinispan-spring4-embedded or infinispan-spring4-remote). An

example is shown below:

 <dependencies>

 <dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-embedded</artifactId>

 </dependency>

 <dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-spring4-embedded</artifactId>

 <version>${version.spring}</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-context</artifactId>

 <version>${version.spring}</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-session</artifactId>

 <version>${version.spring}</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-web</artifactId>

 <version>${version.spring}</version>

 </dependency>

 </dependencies>

Spring Session integration has been based on Infinispan Spring Cache support so it requires

creating a SpringEmbeddedCacheManagerFactoryBean or SpringRemoteCacheManagerFactoryBean. The next

step it to use @EnableInfinispanEmbeddedHttpSession or @EnableInfinispanRemoteHttpSession

configuration annotation which turns on Spring Session.

@EnableInfinispanEmbeddedHttpSession or @EnableInfinispanRemoteHttpSession annotations have 2

optional parameters:

• maxInactiveIntervalInSeconds - which sets session expiration time in seconds. The default is set

to 1800.

• cacheName - cache name which is used for storing sessions. The default is set to sessions.

309

http://docs.spring.io/spring-session/docs/current/reference/html5

A complete, annotation based configuration example is shown below:

@EnableInfinispanEmbeddedHttpSession

@Configuration

public class Config {

 @Bean

 public SpringEmbeddedCacheManagerFactoryBean springCacheManager() {

 return new SpringEmbeddedCacheManagerFactoryBean();

 }

 //An optional configuration bean which is responsible for replacing the default

cookie

 //for obtaining configuration.

 //For more information refer to Spring Session documentation.

 @Bean

 public HttpSessionStrategy httpSessionStrategy() {

 return new HeaderHttpSessionStrategy();

 }

}

23.7.5. Conclusion

Hopefully you enjoyed our quick tour of Infinispan’s support for Spring’s cache and session

abstraction and saw how easy it is for all your caching woes to be taken care of by Infinispan. More

information may be found in Spring’s reference documentation. Also see this link - a very nice

posting on the official Spring blog for a somewhat more comprehensive introduction to Spring’s

cache abstraction.

23.8. Infinispan modules for WildFly

As the Infinispan modules shipped with Wildfly application server are tailored to its internal usage,

it is recommend to install separate modules if you want to use Infinispan in your application that is

deployed to Wildfy. By installing these modules, it is possible to deploy user applications without

packaging the Infinispan JARs within the deployments (WARs, EARs, etc), thus minimizing their

size. Also, there will be no conflict with Wildfly’s internal modules since the slot will be different.

23.8.1. Installation

The modules for Wildfly are available in the downloads section of our site. The zip should be

extracted to WILDFLY_HOME/modules, so that for example the infinispan core module would be under

WILDFLY_HOME/modules/org/infinispan/core.

23.8.2. Usage

If you are using Maven to build your application, mark the Infinispan dependencies as provided

and configure your artifact archiver to generate the appropriate MANIFEST.MF file:

310

http://docs.spring.io/spring-framework/docs/4.1.1.RELEASE/spring-framework-reference/html/cache.html
http://spring.io/blog/2011/02/23/spring-3-1-m1-cache-abstraction
http://wildfly.org/
http://infinispan.org/download/

pom.xml

<dependencies>

 <dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-core</artifactId>

 <version>9.0</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>org.infinispan</groupId>

 <artifactId>infinispan-cachestore-jdbc</artifactId>

 <version>9.0</version>

 <scope>provided</scope>

 </dependency>

</dependencies>

<build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-war-plugin</artifactId>

 <configuration>

 <archive>

 <manifestEntries>

 <Dependencies>org.infinispan.core:ispn-9.0 services,

org.infinispan.cachestore.jdbc:ispn-9.0 services</Dependencies>

 </manifestEntries>

 </archive>

 </configuration>

 </plugin>

 </plugins>

</build>

The next section illustrates the manifest entries for different types of Infinispan’s dependencies.

Infinispan core

In order expose only Infinispan core dependencies to your application, add the follow to the

manifest:

MANIFEST.MF

Manifest-Version: 1.0

Dependencies: org.infinispan:ispn-9.0 services

Remote

If you need to connect to remote Infinispan servers via Hot Rod, including execution of remote

queries, use the module org.infinispan.remote that exposes the needed dependencies conveniently:

311

MANIFEST.MF

Manifest-Version: 1.0

Dependencies: org.infinispan.remote:ispn-9.0 services

Embedded Query

For embedded querying, including the Infinispan Query DSL, Lucene and Hibernate Search

Queries, add the following:

MANIFEST.MF

Manifest-Version: 1.0

Dependencies: org.infinispan:ispn-9.0 services, org.infinispan.query:ispn-9.0 services

Lucene Directory

Lucene users who wants to simple use Infinispan as a org.apache.lucene.store.Directory don’t need

to add the query module, the entry below is sufficient:

MANIFEST.MF

Manifest-Version: 1.0

Dependencies: org.infinispan.lucene-directory:ispn-9.0

Hibernate Search directory provider for Infinispan

The Hibernate Search directory provider for Infinispan is also contained within the Infinispan

modules zip. It is not necessary to add an entry to the manifest file since the Hibernate Search

module already has an optional dependency to it. When choosing the Infinispan module zip to use,

start by checking which Hibernate Search is in use, more details below.

Usage with Wildfy’s internal Hibernate Search modules

The Hibernate Search module present in Wildfly 10.x has slot "5.5", which in turn has an optional

dependency to org.infinispan.hibernate-search.directory-provider:for-hibernatesearch-5.5. This

dependency will be available once the Infinispan modules are installed.

Usage with other Hibernate Search modules

The module org.hibernate.search:ispn-9.0 distributed with Infinispan is to be used together with

Infinispan Query only (querying data from caches), and should not be used by Hibernate ORM

applications. To use a Hibernate Search with a different version that is present in Wildfly, please

consult the Hibernate Search documentation.

Make sure that the chosen Hibernate Search optional slot for org.infinispan.hibernate-

search.directory-provider matches the one distributed with Infinispan.

312

https://docs.jboss.org/hibernate/search/5.6/reference/en-US/html_single/#search-configuration-deploy-on-wildfly

23.8.3. Troubleshooting

Enable logging

Enabling trace on org.jboss.modules can be useful to debug issues like LinkageError and

ClassNotFoundException. To enable it at runtime using the Wildfly CLI:

bin/jboss-cli.sh -c '/subsystem=logging/logger=org.jboss.modules:add'

bin/jboss-cli.sh -c '/subsystem=logging/logger=org.jboss.modules:write-

attribute(name=level,value=TRACE)'

Print dependency tree

The following command can be used to print all dependencies for a certain module. For example, to

obtain the tree for the module org.infinispan:ispn-9.0, execute from WILDFLY_HOME:

java -jar jboss-modules.jar -deptree -mp modules/ "org.infinispan:ispn-9.0"

313

Chapter 24. Grid File System

Infinispan’s GridFileSystem is a new, experimental API that exposes an Infinispan-backed data grid

as a file system.

 This is an experimental API. Use at your own risk.

Specifically, the API works as an extension to the JDK’s File , InputStream and OutputStream

classes: specifically, GridFile, GridInputStream and GridOutputStream. A helper class,

GridFilesystem, is also included.

Essentially, the GridFilesystem is backed by 2 Infinispan caches - one for metadata (typically

replicated) and one for the actual data (typically distributed). The former is replicated so that each

node has metadata information locally and would not need to make RPC calls to list files, etc. The

latter is distributed since this is where the bulk of storage space is used up, and a scalable

mechanism is needed here. Files themselves are chunked and each chunk is stored as a cache entry,

as a byte array.

Here is a quick code snippet demonstrating usage:

Cache<String,byte[]> data = cacheManager.getCache("distributed");

Cache<String,GridFile.Metadata> metadata = cacheManager.getCache("replicated");

GridFilesystem fs = new GridFilesystem(data, metadata);

// Create directories

File file=fs.getFile("/tmp/testfile/stuff");

fs.mkdirs(); // creates directories /tmp/testfile/stuff

// List all files and directories under "/usr/local"

file=fs.getFile("/usr/local");

File[] files=file.listFiles();

// Create a new file

file=fs.getFile("/tmp/testfile/stuff/README.txt");

file.createNewFile();

Copying stuff to the grid file system:

InputStream in=new FileInputStream("/tmp/my-movies/dvd-image.iso");

OutputStream out=fs.getOutput("/grid-movies/dvd-image.iso");

byte[] buffer=new byte[20000];

int len;

while((len=in.read(buffer, 0, buffer.length)) != -1) out.write(buffer, 0, len);

in.close();

out.close();

Reading stuff from the grid:

314

https://docs.oracle.com/javase/8/docs/api/java/io/File.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/OutputStream.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/io/GridFile.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/io/GridInputStream.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/io/GridOutputStream.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/io/GridFilesystem.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/io/GridFilesystem.html

InputStream in=in.getInput("/grid-movies/dvd-image.iso");

OutputStream out=new FileOutputStream("/tmp/my-movies/dvd-image.iso");

byte[] buffer=new byte[200000];

int len;

while((len=in.read(buffer, 0, buffer.length)) != -1) out.write(buffer, 0, len);

in.close();

out.close();

24.1. WebDAV demo

Infinispan ships with a demo WebDAV application that makes use of the grid file system APIs. This

demo app is packaged as a WAR file which can be deployed in a servlet container, such as JBoss AS

or Tomcat, and exposes the grid as a file system over WebDAV. This could then be mounted as a

remote drive on your operating system.

315

http://en.wikipedia.org/wiki/WebDAV
http://en.wikipedia.org/wiki/WAR_(Sun_file_format)

Chapter 25. Cross site replication

Cross site (x-site) replication allows backing up the data from one cluster to other clusters,

potentially situated in different geographical location. The cross-site replication is built on top of

JGroups' RELAY2 protocol . This document describes the technical design of cross site replication in

more detail.

Cross site replication needs the backup cache running in the site master node(s)

(i.e. node which receives the backup and applies it). The backup cache starts

automatically when it receives the first backup request.

25.1. Sample deployment

The diagram below depicts a possible setup of replicated sites, followed by a description of

individual elements present in the deployment. Options are then explained at large in future

paragraphs. Comments on the diagram above:

• there are 3 sites: LON, NYC and SFO.

• in each site there is a running Infinispan cluster with a (potentially) different number of

316

http://www.jgroups.org/manual-3.x/html/user-advanced.html#Relay2Advanced
https://community.jboss.org/wiki/DesignForCrossSiteReplication

physical nodes: 3 nodes in LON, 4 nodes in NYC and 3 nodes in SFO

• the "users" cache is active in LON, NYC and SFO. Updates on the "users" cache in any of these

sites gets replicated to the other sites as well

• it is possible to use different replication mechanisms between sites. E.g. One can configure SFO

to backup data synchronously to NYC and asynchronously to LON

• the "users" cache can have a different configuration from one site to the other. E.g. it might be

configured as distributed with numOwners=2 in the LON site, REPL in the NYC site and

distributed with numOwners=1 in the SFO site

• JGroups is used for both inter-site and intra-site communication. RELAY2 is used for inter-site

communication

• "orders" is a site local to LON, i.e. updates to the data in "orders" don’t get replicated to the

remote sites The following sections discuss specific aspects of cross site replication into more

detail. The foundation of the cross-site replication functionality is RELAY2 so it highly

recommended to read JGroups' RELAY2 documentation before moving on into cross-site.

Configuration

The cross-site replication configuration spreads over the following files:

1. the backup policy for each individual cache is defined in infinispan’s .xml configuration file

(infinispan.xml)

2. cluster’s JGroups xml configuration file: RELAY2 protocol needs to be added to the JGroups

protocol stack (jgroups.xml)

3. RELAY2 configuration file: RELAY2 has an own configuration file (relay2.xml)

4. the JGroups channel that is used by RELAY2 has its own configuration file (jgroups-relay2.xml)

Infinispan XML configuration file

The local site is defined in the the global configuration section. The local is the site where the node

using this configuration file resides (in the example above local site is "LON").

infinispan.xml

<transport site="LON" />

The same setup can be achieved programatically:

GlobalConfigurationBuilder lonGc = GlobalConfigurationBuilder.defaultClusteredBuilder

();

lonGc.site().localSite("LON");

The names of the site (case sensitive) should match the name of a site as defined within JGroups'

RELAY2 protocol configuration file. Besides the global configuration, each cache specifies its backup

policy in the "site" element:

317

http://www.jgroups.org/manual-3.x/html/user-advanced.html#Relay2Advanced
http://www.jgroups.org/manual-3.x/html/user-advanced.html#Relay2Advanced
https://gist.github.com/maniksurtani/cdd5420af764c907e342
http://www.jgroups.org/manual-3.x/html/user-advanced.html#Relay2Advanced
https://gist.github.com/maniksurtani/409fe5ece5fe4bcf679f
https://gist.github.com/maniksurtani/8c7238dae7921d2c883e
https://gist.github.com/maniksurtani/cbc1a297a367b1176feb

infinispan.xml

<distributed-cache name="users">

 <backups>

 <backup site="NYC" failure-policy="WARN" strategy="SYNC" timeout="12000"/>

 <backup site="SFO" failure-policy="IGNORE" strategy="ASYNC"/>

 <backup site="LON" strategy="SYNC" enabled="false"/>

 </backups>

</distributed-cache>

The "users" cache backups its data to the "NYC" and "SFO" sites. Even though the "LON" appears as a

backup site, it has the "enabled" attribute set to false so it will be ignored . For each site backup, the

following configuration attributes can be specified:

• strategy - the strategy used for backing up data, either "SYNC" or "ASYNC". Defaults to "ASYNC"

• failure-policy - Decides what the system would do in case of failure during backup. Possible

values are:

• IGNORE - allow the local operation/transaction to succeed

• WARN - same as IGNORE but also logs a warning message. Default.

• FAIL - only in effect if "strategy" is "SYNC" - fails local cluster operation/transaction by

throwing an exception to the user

• CUSTOM - user provided, see "failurePolicyClass" below

• failurePolicyClass - If the 'failure-policy' is set to 'CUSTOM' then this attribute is required and

should contain the fully qualified name of a class implementing

org.infinispan.xsite.CustomFailurePolicy

• timeout - The timeout(milliseconds) to be used when backing up data remotely. Defaults to

10000 (10 seconds)

The same setup can be achieved programatically:

ConfigurationBuilder lon = new ConfigurationBuilder();

lon.sites().addBackup()

 .site("NYC")

 .backupFailurePolicy(BackupFailurePolicy.WARN)

 .strategy(BackupConfiguration.BackupStrategy.SYNC)

 .replicationTimeout(12000)

 .sites().addInUseBackupSite("NYC")

 .sites().addBackup()

 .site("SFO")

 .backupFailurePolicy(BackupFailurePolicy.IGNORE)

 .strategy(BackupConfiguration.BackupStrategy.ASYNC)

 .sites().addInUseBackupSite("SFO")

The "users" cache above doesn’t know on which cache on the remote sites its data is being

replicated. By default the remote site writes the backup data to a cache having the same name as

318

the originator, i.e. "users". This behaviour can be overridden with an "backupFor" element. For

example the following configuration in SFO makes the "usersLONBackup" cache act as the backup

cache for the "users" cache defined above in the LON site:

infinispan.xml

<infinispan>

 <cache-container default-cache="">

 <distributed-cache name="usersLONBackup">

 <backup-for remote-cache="users" remote-site="LON"/>

 </distributed-cache>

 </cache-container>

</infinispan>

The same setup can be achieved programatically:

ConfigurationBuilder cb = new ConfigurationBuilder();

cb.sites().backupFor().remoteCache("users").remoteSite("LON");

25.1.1. Local cluster’s jgroups .xml configuration

This is the configuration file for the local (intra-site) infinispan cluster. It is referred from the

infinispan configuration file, see "configurationFile" below:

infinispan.xml

<infinispan>

 <jgroups>

 <stack-file name="external-file" path="jgroups.xml"/>

 </jgroups>

 <cache-container>

 <transport stack="external-file" />

 </cache-container>

 ...

</infinispan>

In order to allow inter-site calls, the RELAY2 protocol needs to be added to the protocol stack

defined in the jgroups configuration (see attached jgroups.xml for an example).

25.1.2. RELAY2 configuration file

The RELAY2 configuration file is linked from the jgroups.xml (see attached relay2.xml). It defines

the sites seen by this cluster and also the JGroups configuration file that is used by RELAY2 in order

to communicate with the remote sites.

319

https://gist.github.com/maniksurtani/409fe5ece5fe4bcf679f
https://gist.github.com/maniksurtani/8c7238dae7921d2c883e

25.2. Data replication

For both transactional and non-transactional caches, the backup calls are performed in parallel

with local cluster calls, e.g. if we write data to node N1 in LON then replication to the local nodes N2

and N3 and remote backup sites SFO and NYC happen in parallel.

25.2.1. Non transactional caches

In the case of non-transactional caches the replication happens during each operation. Given that

data is sent in parallel to backups and local caches, it is possible for the operations to succeed

locally and fail remotely, or the other way, causing inconsistencies

25.2.2. Transactional caches

For synchronous transactional caches, Infinispan internally uses a two phase commit protocol: lock

acquisition during the 1st phase (prepare) and apply changes during the 2nd phase (commit). For

asynchronous caches the two phases are merged, the "apply changes" message being sent

asynchronously to the owners of data. This 2PC protocol maps to 2PC received from the JTA

transaction manager. For transactional caches, both optimistic and pessimistic, the backup to

remote sites happens during the prepare and commit phase only.

Synchronous local cluster with async backup

In this scenario the backup call happens during local commit phase(2nd phase). That means that if

the local prepare fails, no remote data is being sent to the remote backup.

Synchronous local cluster with sync backup

In this case there are two backup calls:

• during prepare a message is sent across containing all the modifications that happened within

this transaction

• if the remote backup cache is transactional then a transaction is started remotely and all these

modifications are being written within this transaction’s scope. The transaction is not

committed yet (see below)

• if the remote backup cache is not transactional, then the changes are applied remotely

• during the commit/rollback, a commit/rollback message is sent across

• if the remote backups cache is transactional then the transaction started at the previous phase

is committed/rolled back

• if the remote backup is not transactional then this call is ignored

Both the local and the backup call(if the "backupFailurePolicy" is set to "FAIL") can veto

transaction’s prepare outcome

Asynchronous local cluster

In the case of asynchronous local clusters, the backup data is sent during the commit phase. If the

320

backup call fails and the "backupFailurePolicy" is set to "FAIL" then the user is notified through an

exception.

25.3. Taking a site offline

If backing up to a site fails for a certain number of times during a time interval, then it is possible to

automatically mark that site as offline. When a site is marked as offline the local site won’t try to

backup data to it anymore. In order to be taken online a system administrator intervention being

required.

25.3.1. Configuration

The taking offline of a site can be configured as follows:

infinispan.xml

<replicated-cache name="bestEffortBackup">

 ...

 <backups>

 <backup site="NYC" strategy="SYNC" failure-policy="FAIL">

 <take-offline after-failures="500" min-wait="10000"/>

 </backup>

 </backups>

 ...

</replicated-cache>

The take-offline element under the backup configures the taking offline of a site:

• after-failures - the number of failed backup operations after which this site should be taken

offline. Defaults to 0 (never). A negative value would mean that the site will be taken offline

after minTimeToWait

• min-wait - the number of milliseconds in which a site is not marked offline even if it is

unreachable for 'afterFailures' number of times. If smaller or equal to 0, then only afterFailures

is considered.

The equivalent programmatic configuration is:

lon.sites().addBackup()

 .site("NYC")

 .backupFailurePolicy(BackupFailurePolicy.FAIL)

 .strategy(BackupConfiguration.BackupStrategy.SYNC)

 .takeOffline()

 .afterFailures(500)

 .minTimeToWait(10000);

321

25.3.2. Taking a site back online

In order to bring a site back online after being taken offline, one can use the JMX console and

invoke the "bringSiteOnline(siteName)" operation on the XSiteAdmin managed bean. At the moment

this method would need to be invoked on all the nodes within the site(further releases will

overcome this limitation).

25.4. State Transfer between sites

 This feature is available since Infinispan 7.0.0.Alpha2

When a new site is bough back online, it is necessary to re-sync the site with the most recent

updates. This feature allows state to be transferred from one site to another.

The state transfer is triggered manually by a system administrator (or other responsible entity) via

JMX. The operation can be found over the XSiteAdminOperations managed bean and it is named

pushState(String). The system administrator should invoke this operation in the provider site (i.e.

the site that will send the state) and set the name of the consumer site (i.e. the site that will receive

the state). The figure below shows where to find the pushState(String) operation using JConsole:

Figure 23. Pushing state via JConsole

The pushState(siteName) operation will automatically bring the new site online.

The system administrator does not need to bring the site online first.

322

 The receiver site can only receive state from a single site.

The consumer site can be in any state (online or offline) in respect to the provider site and the

system administrator can trigger the push state at any time. The system will ignore multiple

invocations if the provider site is already pushing state to the consumer site.

It is worth to refer that it is not necessary to consumer site to be in an empty state. But be aware,

the existing keys can be overwritten but they are never deleted. In other words, if a key K does not

exists in the provider site but it exists in consumer site, it will not be deleted. In other way, if a key

K exists in both sites, it will be overwritten in the consumer site.

25.4.1. Handling join/leave nodes

The current implementation automatically handles the topology changes in producer or consumer

site. Also, the cross-site state transfer can run in parallel with a local site state transfer.

25.4.2. Handling broken link between sites

A System Administrator action is needed if the link between the producer and consumer site is

broken during the cross-site state transfer (data consistency is not ensured in consumer site). The

producer site retries for a while before giving up. Then, it gets back to normal state. However, the

consumer site is not able to get back to normal state and, here, an action from System

Administrator is need. The System Administrator should use the operation

cancelReceiveState(String siteName) to bring the consumer site to normal state.

25.4.3. System Administrator Operations

A set of operations can be performed to control the cross-site state transfer:

• pushState(String siteName) - It starts the cross-site state transfer to the site name specified;

• cancelPushState(String siteName) - It cancels the cross-site state transfer to the site name

specified;

• getRunningStateTransfer() - It returns a list of site name to which this site is pushing the state;

• getSendingSiteName() - It returns the site name that is pushing state to this site;

• cancelReceiveState(String siteName) - It restores the site to normal state. Should be used when

the link between the sites is broken during the state transfer (as described above);

• getPushStateStatus() - It returns the status of completed cross-site state transfer;

• clearPushStateStatus() - It clears the status of completed cross-site state transfer.

For more technical information, you can check the Cross Site design document (See Reference).

25.4.4. Configuration

State transfer between sites cannot be enabled or disabled but it allows to tune some parameters.

The values shown below are the default values:

323

infinispan.xml

<replicated-cache name="xSiteStateTransfer">

 ...

 <backups>

 <backup site="NYC" strategy="SYNC" failure-policy="FAIL">

 <state-transfer chunk-size="512" timeout="1200000" max-retries="30" wait-

time="2000" />

 </backup>

 </backups>

 ...

</replicated-cache>

The equivalent programmatic configuration is:

lon.sites().addBackup()

 .site("NYC")

 .backupFailurePolicy(BackupFailurePolicy.FAIL)

 .strategy(BackupConfiguration.BackupStrategy.SYNC)

 .stateTransfer()

 .chunkSize(512)

 .timeout(1200000)

 .maxRetries(30)

 .waitingTimeBetweenRetries(2000);

Below, it is the parameters description:

• chunk-size - The number of keys to batch before sending them to the consumer site. A negative

or a zero value is not a valid value. Default value is 512 keys.

• timeout - The time (in milliseconds) to wait for the consumer site acknowledge the reception

and appliance of a state chunk. A negative or zero value is not a valid value. Default value is 20

minutes.

• max-retries - The maximum number of retries when a push state command fails. A negative or a

zero value means that the command will not retry in case of failure. Default value is 30.

• wait-time - The waiting time (in milliseconds) between each retry. A negative or a zero value is

not a valid value. Default value is 2 seconds.

25.5. Reference

This document describes the technical design of cross site replication in more detail.

324

https://community.jboss.org/wiki/DesignForCrossSiteReplication

Chapter 26. Rolling upgrades

Rolling upgrades is the process by which an Infinispan installation is upgraded without a service

shutdown. In the case of Infinispan library/embedded mode, it refers to an installation to the nodes

where Infinispan is running in library/embedded mode. For Infinispan servers, it refers to the

server side components, not the client side. The upgrade could involve hardware change, or

software change, such as upgrading the Infinispan version in use.

Rolling upgrades can be done in Infinispan installations using Infinispan in embedded or library

mode, or in server mode. Here are the instructions for each use case:

26.1. Rolling upgrades for Infinispan

library/embedded mode

Rolling upgrades for Infinispan library/embedded mode are done taking advantage of the

Command-Line Interface (CLI) that Infinispan provides in order to interact with a remote

Infinispan cluster. When a new cluster is started, it will get the data from the existing cluster using

the CLI, so the existing cluster must be ready to receive CLI requests. Please check the Command-

Line Interface (CLI) chapter for information on how to set up a cluster to receive CLI requests.

Rolling upgrades for Infinispan library/embedded mode are only supported for

caches using standard JDK types as keys. Custom keys are not currently

supported. Custom value types are supported, using JSON as the format to ship

them between source and target cluster.

26.1.1. Steps

1. Start a new cluster (Target Cluster) with the new version of Infinispan, using either different

network settings or JGroups cluster name so that the old cluster (Source Cluster) and the new

one don’t overlap.

2. For each cache to be migrated, the Target Cluster is configured with a Command-Line Interface

cache loader which will retrieve data from the source cluster, with these settings:

3. connection: JMX connection string to use to connect to Source Cluster. The connection string

specifies how to connect to one of the source cluster members. Connection to one of the nodes is

enough, there’s no need to specify connection information for all nodes in the Source Cluster.

The connection URL contains cache name information and this name must coincide with the

name of the cache on the Source Cluster. The URL might change depending on the set up, check

the Command-Line Interface chapter for more information. Here is a sample connection value:
jmx://1.1.1.1:4444/MyCacheManager/myCache

4. Configure clients to point to the Target Cluster instead of the Source Cluster , and one by one,

restart each client node. Gradually, all requests will be handled by the Target Cluster rather

than the Source Cluster . The Target Cluster will lazily load data from the Source Cluster on

demand via the Command-Line Interface cache loader.

5. Once all connections have switched to using the Target Cluster the keyset on the Source Cluster

must be dumped. This can be achieved either via a JMX operation or via the CLI:

325

6. JMX: invoke the recordKnownGlobalKeyset operation on the RollingUpgradeManager MBean on

the Source Cluster for all of the caches that need to be migrated

7. CLI: invoke the upgrade --dumpkeys command on the Source Cluster for all of the caches that

need to be migrated (additionally the --all switch can be used to dump all caches in the cluster)

8. At this point the Target Cluster needs to fetch all remaining data from the Source Cluster :

9. JMX: invoke the synchronizeData operation specifying the "cli" parameter on the

RollingUpgradeManager MBean on the Target Cluster for all of the caches that need to be

migrated

10. CLI: invoke the upgrade --synchronize=cli command on the Target Cluster for all of the caches

that need to be migrated (additionally the --all switch can be used to synchronize all caches in

the cluster)

11. Once the above operation is complete, the CLInterfaceLoader on the Target Cluster must be

disabled as follows:

12. JMX: invoke the disconnectSource operation specifying the "cli" parameter on the

RollingUpgradeManager MBean on the Target Cluster for all of the caches that have been

migrated

13. CLI: invoke the upgrade --disconnectsource=cli command on the Target Cluster for all of the

caches that have been migrated (additionally the --all switch can be used to disconnect all

caches in the cluster)

14. The Source Cluster can be decomissioned now.

26.2. Rolling upgrades for Infinispan Servers

This process is used for installations making use of Infinispan as a remote grid, via Hot Rod. This

assumes an upgrade of the Infinispan grid, and not the client application.

In the following description we will refer to the Source and Target clusters, where the Source

cluster is the old cluster which is currently in use and the Target cluster is the new cluster to which

the data will be migrated to.

26.3. Steps

1. Start a new cluster (Target Cluster) with the new version of Infinispan, using either different

network settings or JGroups cluster name so that the old cluster (Source Cluster) and the new

one don’t overlap.

2. For each cache to be migrated, the Target Cluster is configured with a RemoteCacheStore with

the following settings:

a. servers should point to the Source Cluster

b. remoteCacheName must coincide with the name of the cache on the Source Cluster

c. hotRodWrapping must be enabled (true)

d. read-only should be true

326

3.

Configure clients to point to the Target Cluster instead of the Source Cluster , and one by one,

restart each client node. Gradually, all requests will be handled by the Target Cluster rather

than the Source Cluster . The Target Cluster will lazily load data from the Source Cluster on

demand via the RemoteCacheStore.

4. If the Source Cluster version is older than 8.2, its keyset must be dumped. This can be achieved

either via a JMX operation or via the CLI:

a. JMX: invoke the recordKnownGlobalKeyset operation on the RollingUpgradeManager MBean

on the Source Cluster for all of the caches that need to be migrated

b. CLI: invoke the upgrade --dumpkeys command on the Source Cluster for all of the caches that

need to be migrated (additionally the --all switch can be used to dump all caches in the

cluster)

5. At this point the Target Cluster needs to fetch all remaining data from the Source Cluster . This

can be achieved either via a JMX operation or via the CLI:

a. JMX: invoke the synchronizeData operation specifying the "hotrod" parameter on the

RollingUpgradeManager MBean on the Target Cluster for all of the caches that need to be

migrated

b. CLI: invoke the upgrade --synchronize=hotrod command on the Target Cluster for all of the

caches that need to be migrated (additionally the --all switch can be used to synchronize all

caches in the cluster)

6. Once the above operation is complete, the RemoteCacheStore on the Target Cluster must be

disabled either via JMX or CLI:

a. JMX: invoke the disconnectSource operation specifying the "hotrod" parameter on the

RollingUpgradeManager MBean on the Target Cluster for all of the caches that have been

migrated

b. CLI: invoke the upgrade --disconnectsource=hotrod command on the Target Cluster for all of

the caches that have been migrated (additionally the --all switch can be used to disconnect

all caches in the cluster)

7. The Source Cluster can be decomissioned now.

327

Chapter 27. Extending Infinispan

Infinispan can be extended to provide the ability for an end user to add additional configurations,

operations and components outside of the scope of the ones normally provided by Infinispan.

27.1. Custom Commands

Infinispan makes use of a command/visitor pattern to implement the various top-level methods you

see on the public-facing API. This is explained in further detail in the Architectural Overview

section below. While the core commands - and their corresponding visitors - are hard-coded as a

part of Infinispan’s core module, module authors can extend and enhance Infinispan by creating

new custom commands.

As a module author (such as infinispan-query, etc.) you can define your own commands.

You do so by:

1. Create a META-INF/services/org.infinispan.commands.module.ModuleCommandExtensions file and

ensure this is packaged in your jar.

2. Implementing ModuleCommandFactory, ModuleCommandInitializer and ModuleCommandExtensions

3. Specifying the fully-qualified class name of the ModuleCommandExtensions implementation in

META-INF/services/org.infinispan.commands.module.ModuleCommandExtensions.

4. Implement your custom commands and visitors for these commands

27.1.1. An Example

Here is an example of an META-

INF/services/org.infinispan.commands.module.ModuleCommandExtensions file, configured accordingly:

org.infinispan.commands.module.ModuleCommandExtensions

org.infinispan.query.QueryModuleCommandExtensions

For a full, working example of a sample module that makes use of custom commands and visitors,

check out Infinispan Sample Module .

27.1.2. Preassigned Custom Command Id Ranges

This is the list of Command identifiers that are used by Infinispan based modules or frameworks.

Infinispan users should avoid using ids within these ranges. (RANGES to be finalised yet!) Being this

a single byte, ranges can’t be too large.

Infinispan Query: 100 - 119

Hibernate Search: 120 - 139

328

http://en.wikipedia.org/wiki/Command_pattern
https://github.com/infinispan/infinispan/tree/master/query
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/commands/module/ModuleCommandFactory.java
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/commands/module/ModuleCommandInitializer.java
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/commands/module/ModuleCommandExtensions.java
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/commands/module/ModuleCommandExtensions.java
https://github.com/infinispan/infinispan-sample-module

27.2. Extending the configuration builders and parsers

If your custom module requires configuration, it is possible to enhance Infinispan’s configuration

builders and parsers. Look at the custom module tests for a detail example on how to implement

this. == Architectural Overview

This section contains a high level overview of Infinispan’s internal architecture. This document is

geared towards people with an interest in extending or enhancing Infinispan, or just curious about

Infinispan’s internals.

27.3. Cache hierarchy

Infinispan’s Cache interface extends the JRE’s ConcurrentMap interface which provides for a

familiar and easy-to-use API.

public interface Cache<K, V> extends BasicCache<K, V> {

 ...

}

public interface BasicCache<K, V> extends ConcurrentMap<K, V> { … } ---

Caches are created by using a CacheContainer instance - either the EmbeddedCacheManager or a

RemoteCacheManager. In addition to their capabilities as a factory for Caches, CacheContainers

also act as a registry for looking up Caches.

EmbeddedCacheManagers create either clustered or standalone Caches that reside in the same

JVM. RemoteCacheManagers, on the other hand, create RemoteCaches that connect to a remote

cache tier via the Hot Rod protocol.

27.4. Commands

Internally, each and every cache operation is encapsulated by a command. These command objects

represent the type of operation being performed, and also hold references to necessary parameters.

The actual logic of a given command, for example a ReplaceCommand, is encapsulated in the

command’s perform() method. Very object-oriented and easy to test.

All of these commands implement the VisitableCommand inteface which allow a Visitor (described

in next section) to process them accordingly.

public class PutKeyValueCommand extends VisitableCommand {

 ...

}

public class GetKeyValueCommand extends VisitableCommand { … }

329

https://github.com/infinispan/infinispan/blob/master/core/src/test/java/org/infinispan/configuration/module

i. etc … ---

27.5. Visitors

Commands are processed by the various Visitors. The visitor interface, displayed below, exposes

methods to visit each of the different types of commands in the system. This gives us a type-safe

mechanism for adding behaviour to a call.Commands are processed by `Visitor`s. The visitor

interface, displayed below, exposes methods to visit each of the different types of commands in the

system. This gives us a type-safe mechanism for adding behaviour to a call.

public interface Vistor {

 Object visitPutKeyValueCommand(InvocationContext ctx, PutKeyValueCommand command)

throws Throwable;

Object visitRemoveCommand(InvocationContext ctx, RemoveCommand command) throws

Throwable;

Object visitReplaceCommand(InvocationContext ctx, ReplaceCommand command) throws

Throwable;

Object visitClearCommand(InvocationContext ctx, ClearCommand command) throws

Throwable;

Object visitPutMapCommand(InvocationContext ctx, PutMapCommand command) throws

Throwable;

i. etc … } ---

An AbstractVisitor class in the org.infinispan.commands package is provided with no-op

implementations of each of these methods. Real implementations then only need override the

visitor methods for the commands that interest them, allowing for very concise, readable and

testable visitor implementations.

27.6. Interceptors

Interceptors are special types of Visitors, which are capable of visiting commands, but also acts in a

chain. A chain of interceptors all visit the command, one in turn, until all registered interceptors

visit the command.

The class to note is the CommandInterceptor. This abstract class implements the interceptor

pattern, and also implements Visitor. Infinispan’s interceptors extend CommandInterceptor, and

these add specific behaviour to specific commands, such as distribution across a network or writing

330

://https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/interceptors/base/CommandInterceptor.html

through to disk.

There is also an experimental asynchronous interceptor which can be used. The interface used for

asynchronous interceptors is AsyncInterceptor and a base implementation which should be used

when a custom implementation is desired BaseCustomAsyncInterceptor. Note this class also

implements the Visitor interface.

27.7. Putting it all together

So how does this all come together? Invocations on the cache cause the cache to first create an

invocation context for the call. Invocation contexts contain, among other things, transactional

characteristics of the call. The cache then creates a command for the call, making use of a

command factory which initialises the command instance with parameters and references to other

subsystems.

The cache then passes the invocation context and command to the InterceptorChain, which calls

each and every registered interceptor in turn to visit the command, adding behaviour to the call.

Finally, the command’s perform() method is invoked and the return value, if any, is propagated

back to the caller.

27.8. Subsystem Managers

The interceptors act as simple interception points and don’t contain a lot of logic themselves. Most

behavioural logic is encapsulated as managers in various subsystems, a small subset of which are:

27.8.1. DistributionManager

Manager that controls how entries are distributed across the cluster.

27.8.2. TransactionManager

Manager than handles transactions, usually supplied by a third party.

27.8.3. RpcManager

Manager that handles replicating commands between nodes in the cluster.

27.8.4. LockManager

Manager that handles locking keys when operations require them.

27.8.5. PersistenceManager

Manager that handles persisting data to any configured cache stores.

27.8.6. DataContainer

Container that holds the actual in memory entries.

331

://https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/interceptors/AsyncInterceptor.html
://https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/interceptors/BaseCustomAsyncInterceptor.html

27.8.7. Configuration

A component detailing all of the configuration in this cache.

27.9. ComponentRegistry

A registry where the various managers above and components are created and stored for use in the

cache. All of the other managers and crucial componanets are accesible through the registry.

The registry itself is a lightweight dependency injection framework, allowing components and

managers to reference and initialise one another. Here is an example of a component declaring a

dependency on a DataContainer and a Configuration, and a DataContainerFactory declaring its

ability to construct DataContainers on the fly.

 @Inject

 public void injectDependencies(DataContainer container, Configuration

configuration) {

 this.container = container;

 this.configuration = configuration;

 }

 @DefaultFactoryFor

 public class DataContainerFactory extends AbstractNamedCacheComponentFactory {

Components registered with the ComponentRegistry may also have a lifecycle, and methods

annotated with @Start or @Stop will be invoked before and after they are used by the component

registry.

 @Start

 public void init() {

 useWriteSkewCheck = configuration.locking().writeSkewCheck();

 }

 @Stop(priority=20)

 public void stop() {

 notifier.removeListener(listener);

 executor.shutdownNow();

 }

In the example above, the optional priority parameter to @Stop is used to indicate the order in

which the component is stopped, in relation to other components. This follows a Unix Sys-V style

332

ordering, where smaller priority methods are called before higher priority ones. The default

priority, if not specified, is 10.

333

	Infinispan 9.0 User Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. What is Infinispan ?
	1.2. Why use Infinispan ?
	1.2.1. As a local cache
	1.2.2. As a clustered cache
	1.2.3. As a clustering building block for your applications
	1.2.4. As a remote cache
	1.2.5. As a data grid
	1.2.6. As a geographical backup for your data

	Chapter 2. Configuration
	2.1. Configuring caches declaratively
	2.1.1. Cache configuration templates
	2.1.2. Declarative configuration reference

	2.2. Configuring caches programmatically
	2.2.1. ConfigurationBuilder Programmatic Configuration API
	2.2.2. Advanced programmatic configuration

	2.3. Configuration Migration Tools
	2.4. Clustered Configuration
	2.4.1. Using an external JGroups file
	2.4.2. Use one of the pre-configured JGroups files
	2.4.3. Further reading

	Chapter 3. The CacheManager API
	3.1. Clustering Information
	3.1.1. Member Information
	3.1.2. Other methods

	3.2. Cluster Executor
	3.2.1. Example: Dynamically Start and Stop Clustered Cache

	Chapter 4. The Cache API
	4.1. The Cache interface
	4.1.1. Performance Concerns of Certain Map Methods
	4.1.2. Mortal and Immortal Data
	4.1.3. Example of Using Expiry and Mortal Data
	4.1.4. putForExternalRead operation

	4.2. The AdvancedCache interface
	4.2.1. Flags
	4.2.2. Custom Interceptors

	4.3. Listeners and Notifications
	4.3.1. Cache-level notifications
	4.3.2. Cache manager-level notifications
	4.3.3. Synchronicity of events

	4.4. Asynchronous API
	4.4.1. Why use such an API?
	4.4.2. Which processes actually happen asynchronously?
	4.4.3. Notifying futures
	4.4.4. Further reading

	4.5. Invocation Flags
	4.5.1. DecoratedCache
	4.5.2. Examples

	4.6. Tree API Module
	4.6.1. What is Tree API about?
	4.6.2. Using the Tree API
	4.6.3. Creating a Tree Cache
	4.6.4. Manipulating data in a Tree Cache
	4.6.5. Common Operations
	4.6.6. Locking in the Tree API
	4.6.7. Listeners for tree cache events

	4.7. Functional Map API
	4.7.1. Asynchronous and Lazy
	4.7.2. Function transparency
	4.7.3. Constructing Functional Maps
	4.7.4. Read-Only Map API
	4.7.5. Write-Only Map API
	4.7.6. Read-Write Map API
	4.7.7. Metadata Parameter Handling
	4.7.8. Invocation Parameter
	4.7.9. Functional Listeners
	4.7.10. Marshalling of Functions
	4.7.11. Use cases for Functional API

	Chapter 5. Eviction and Data Container
	5.1. Enabling Eviction
	5.1.1. Eviction strategy
	5.1.2. Eviction types
	5.1.3. Storage type
	5.1.4. More defaults

	5.2. Expiration
	5.2.1. Difference between Eviction and Expiration

	5.3. Expiration details
	5.3.1. Configuration
	5.3.2. Memory Based Eviction Configuration
	5.3.3. Default values
	5.3.4. Using expiration

	5.4. Expiration designs

	Chapter 6. Persistence
	6.1. Configuration
	6.2. Cache Passivation
	6.2.1. Cache Loader Behavior with Passivation Disabled vs Enabled

	6.3. Cache Loaders and transactional caches
	6.4. Write-Through And Write-Behind Caching
	6.4.1. Write-Through (Synchronous)
	6.4.2. Write-Behind (Asynchronous)

	6.5. Filesystem based cache stores
	6.5.1. Single File Store
	6.5.2. Soft-Index File Store

	6.6. JDBC String based Cache Store
	6.6.1. Connection management (pooling)
	6.6.2. Sample configurations
	6.6.3. JDBC Migrator

	6.7. Remote store
	6.8. Cluster cache loader
	6.9. Command-Line Interface cache loader
	6.10. RocksDB Cache Store
	6.10.1. Introduction
	6.10.2. Configuration
	6.10.3. Additional References

	6.11. LevelDB Cache Store
	6.12. REST Cache Store
	6.12.1. Introduction
	6.12.2. Javadoc
	6.12.3. Configuration

	6.13. JPA Cache Store
	6.13.1. Introduction
	6.13.2. Configuration
	6.13.3. Additional References
	6.13.4. Javadoc

	6.14. Custom Cache Stores
	6.14.1. HotRod Deployment

	6.15. Data Migration
	6.16. API
	6.17. More implementations

	Chapter 7. Clustering
	7.1. Local Mode
	7.1.1. Simple Cache

	7.2. Invalidation Mode
	7.3. Replicated Mode
	7.4. Distribution Mode
	7.4.1. Read consistency
	7.4.2. Key ownership
	7.4.3. Initial cluster size
	7.4.4. L1 Caching
	7.4.5. Server Hinting
	7.4.6. Key affinity service
	7.4.7. The Grouping API

	7.5. Asynchronous Options
	7.5.1. Asynchronous Communications
	7.5.2. Asynchronous API
	7.5.3. Return Values

	7.6. Partition handling
	7.6.1. Split brain
	7.6.2. Successive nodes stopped
	7.6.3. Configuring partition handling
	7.6.4. Monitoring and administration

	Chapter 8. Marshalling
	8.1. The Role Of JBoss Marshalling
	8.2. Support For Non-Serializable Objects
	8.2.1. Store As Binary

	8.3. Advanced Configuration
	8.3.1. Troubleshooting

	8.4. User Defined Externalizers
	8.4.1. Benefits of Externalizers
	8.4.2. User Friendly Externalizers
	8.4.3. Advanced Externalizers

	Chapter 9. Transactions
	9.1. Configuring transactions
	9.2. Isolation levels
	9.3. Transaction locking
	9.3.1. Pessimistic transactional cache
	9.3.2. Optimistic transactional cache
	9.3.3. What do I need - pessimistic or optimistic transactions?

	9.4. Write Skew
	9.5. Deadlock detection
	9.6. Dealing with exceptions
	9.7. Enlisting Synchronizations
	9.8. Batching
	9.8.1. API
	9.8.2. Batching and JTA

	9.9. Transaction recovery
	9.9.1. When to use recovery
	9.9.2. How does it work
	9.9.3. Configuring recovery
	9.9.4. Recovery cache
	9.9.5. Integration with the transaction manager
	9.9.6. Reconciliation
	9.9.7. Want to know more?

	9.10. Total Order based commit protocol
	9.10.1. Overview
	9.10.2. Configuration
	9.10.3. When to use it?

	Chapter 10. Locking and Concurrency
	10.1. Locking implementation details
	10.1.1. How does it work in clustered caches?
	10.1.2. Transactional caches
	10.1.3. Isolation levels
	10.1.4. The LockManager
	10.1.5. Lock striping
	10.1.6. Concurrency levels
	10.1.7. Lock timeout
	10.1.8. Consistency

	10.2. Data Versioning

	Chapter 11. Streams
	11.1. Common stream operations
	11.1.1. Key filtering
	11.1.2. Segment based filtering

	11.2. Local/Invalidation
	11.2.1. Example

	11.3. Distribution/Replication
	11.3.1. Rehash Aware
	11.3.2. Serialization
	11.3.3. Parallel Computation
	11.3.4. Task timeout
	11.3.5. Injection
	11.3.6. Distributed Stream execution
	11.3.7. Key based rehash aware operators
	11.3.8. Intermediate operation exceptions

	11.4. Examples

	Chapter 12. Distributed Execution
	12.1. DistributedCallable API
	12.2. Callable and CDI
	12.3. DistributedExecutorService, DistributedTaskBuilder and DistributedTask API
	12.4. Distributed task failover
	12.5. Distributed task execution policy
	12.6. Examples

	Chapter 13. Querying
	13.1. The infinispan-query module
	13.2. Simple example
	13.2.1. Notable differences with Hibernate Search
	13.2.2. Requirements for the Key: @Transformable

	13.3. Configuration
	13.3.1. Configuration via XML
	13.3.2. Automatic configuration
	13.3.3. Lucene Directory
	13.3.4. Using programmatic configuration and index mapping

	13.4. Cache modes and managing indexes
	13.4.1. LOCAL
	13.4.2. REPLICATION
	13.4.3. DISTRIBUTION
	13.4.4. INVALIDATION

	13.5. Sharing the Index
	13.6. Clustering the Index in Infinispan
	13.7. Rebuilding the Index
	13.8. Obtaining query statistics
	13.9. Infinispan’s Query DSL
	13.10. Filtering operators
	13.10.1. Filtering based on attributes of embedded entities

	13.11. Boolean conditions
	13.12. Nested conditions
	13.13. Projections
	13.14. Sorting
	13.15. Pagination
	13.16. Grouping and Aggregation
	13.16.1. Aggregations
	13.16.2. Evaluation of queries with grouping and aggregation

	13.17. Using Named Query Parameters
	13.18. Continuous Queries
	13.18.1. Continuous Query Execution
	13.18.2. Running Continuous Queries
	13.18.3. Removing Continuous Queries
	13.18.4. Notes on performance of Continuous Queries

	13.19. More Query DSL samples

	Chapter 14. CDI Support
	14.1. Maven Dependencies
	14.2. Embedded cache integration
	14.2.1. Inject an embedded cache
	14.2.2. Override the default embedded cache manager and configuration
	14.2.3. Configure the transport for clustered use

	14.3. Remote cache integration
	14.3.1. Inject a remote cache
	14.3.2. Override the default remote cache manager

	14.4. Use a custom remote/embedded cache manager for one or more cache
	14.5. Use JCache caching annotations
	14.6. Use Cache events and CDI

	Chapter 15. JCache (JSR-107) provider
	15.1. Dependencies
	15.2. Create a local cache
	15.3. Store and retrieve data
	15.4. Comparing java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs
	15.5. Clustering JCache instances

	Chapter 16. Management Tooling
	16.1. JMX
	16.1.1. Understanding The Exposed MBeans
	16.1.2. Enabling JMX Statistics
	16.1.3. Monitoring cluster health
	16.1.4. Multiple JMX Domains
	16.1.5. Registering MBeans In Non-Default MBean Servers
	16.1.6. MBeans added in Infinispan 5.0

	16.2. Command-Line Interface (CLI)
	16.2.1. Commands
	16.2.2. upgrade
	16.2.3. version
	16.2.4. Data Types
	16.2.5. Time Values

	16.3. Hawt.io
	16.4. Writing plugins for other management tools

	Chapter 17. Custom Interceptors
	17.1. Adding custom interceptors declaratively
	17.2. Adding custom interceptors programatically
	17.3. Custom interceptor design

	Chapter 18. Running on Cloud Services
	18.1. Amazon Web Services
	18.1.1. TCPPing, GossipRouter, S3_PING
	18.1.2. GossipRouter
	18.1.3. S3_PING
	18.1.4. JDBC_PING

	Chapter 19. Kubernetes and OpenShift
	Chapter 20. Client/Server
	20.1. Why Client/Server?
	20.2. Why use embedded mode?
	20.3. Server Modules
	20.4. Using Hot Rod Server
	20.5. Hot Rod Protocol
	20.5.1. Hot Rod Protocol 1.0
	20.5.2. Hot Rod Protocol 1.1
	20.5.3. Hot Rod Protocol 1.2
	20.5.4. Hot Rod Protocol 1.3
	20.5.5. Hot Rod Protocol 2.0
	20.5.6. Hot Rod Protocol 2.1
	20.5.7. Hot Rod Protocol 2.2
	20.5.8. Hot Rod Protocol 2.3
	20.5.9. Hot Rod Protocol 2.4
	20.5.10. Hot Rod Protocol 2.5
	20.5.11. Hot Rod Protocol 2.6
	20.5.12. Hot Rod Hash Functions

	20.6. Java Hot Rod client
	20.6.1. Configuration
	20.6.2. Basic API
	20.6.3. Versioned API
	20.6.4. Async API
	20.6.5. Streaming API
	20.6.6. Creating Event Listeners
	20.6.7. Removing Event Listeners
	20.6.8. Filtering Events
	20.6.9. Customizing Events
	20.6.10. Filter and Custom Events
	20.6.11. Event Marshalling
	20.6.12. Listener State Handling
	20.6.13. Listener Failure Handling
	20.6.14. Near Caching
	20.6.15. Unsupported methods
	20.6.16. Return values
	20.6.17. Client Intelligence
	20.6.18. Request Balancing
	20.6.19. Persistent connections
	20.6.20. Marshalling data
	20.6.21. Statistics
	20.6.22. Multi-Get Operations
	20.6.23. Failover capabilities
	20.6.24. Site Cluster Failover
	20.6.25. Manual Site Cluster Switch
	20.6.26. Concurrent Updates
	20.6.27. Querying
	20.6.28. Javadocs

	20.7. Scripting
	20.7.1. Installing scripts
	20.7.2. Script metadata
	20.7.3. Script bindings
	20.7.4. Script parameters
	20.7.5. Running Scripts using the Hot Rod Java client
	20.7.6. Distributed execution

	20.8. REST Server
	20.8.1. REST API
	20.8.2. Client side code

	20.9. Memcached Server
	20.9.1. Command Clarifications
	20.9.2. Unsupported Features
	20.9.3. Talking To Infinispan Memcached Servers From Non-Java Clients

	20.10. WebSocket Server
	20.10.1. Javascript API
	20.10.2. Sample code
	20.10.3. Screencast
	20.10.4. Status
	20.10.5. Source

	Chapter 21. Embedded/Remote Compatibility
	21.1. Enable Compatibility Mode
	21.1.1. Optional: Configuring Compatibility Marshaller

	21.2. Code examples

	Chapter 22. Security
	22.1. Embedded Security
	22.1.1. Embedded Permissions
	22.1.2. Embedded API
	22.1.3. Embedded Configuration

	22.2. Security Audit
	22.3. Cluster security

	Chapter 23. Integrations
	23.1. Apache Spark
	23.2. Apache Hadoop
	23.3. Apache Lucene
	23.3.1. Lucene compatibility
	23.3.2. Maven dependencies
	23.3.3. How to use it
	23.3.4. Configuration
	23.3.5. Using a CacheLoader
	23.3.6. Storing the index in a database
	23.3.7. Loading an existing Lucene Index
	23.3.8. Architectural limitations
	23.3.9. Suggestions for optimal performance
	23.3.10. Demo
	23.3.11. Additional Links

	23.4. Directory Provider for Hibernate Search
	23.4.1. Maven dependencies
	23.4.2. How to use it
	23.4.3. Configuration
	23.4.4. Architecture considerations

	23.5. JPA/Hibernate 2L Cache
	23.6. Using Infinispan with Spring Boot
	23.7. Using Infinispan as a Spring Cache provider
	23.7.1. Activating Spring Cache support
	23.7.2. Telling Spring to use Infinispan as its caching provider
	23.7.3. Adding caching to your application code
	23.7.4. Externalizing session using Spring Session
	23.7.5. Conclusion

	23.8. Infinispan modules for WildFly
	23.8.1. Installation
	23.8.2. Usage
	23.8.3. Troubleshooting

	Chapter 24. Grid File System
	24.1. WebDAV demo

	Chapter 25. Cross site replication
	25.1. Sample deployment
	25.1.1. Local cluster’s jgroups .xml configuration
	25.1.2. RELAY2 configuration file

	25.2. Data replication
	25.2.1. Non transactional caches
	25.2.2. Transactional caches

	25.3. Taking a site offline
	25.3.1. Configuration
	25.3.2. Taking a site back online

	25.4. State Transfer between sites
	25.4.1. Handling join/leave nodes
	25.4.2. Handling broken link between sites
	25.4.3. System Administrator Operations
	25.4.4. Configuration

	25.5. Reference

	Chapter 26. Rolling upgrades
	26.1. Rolling upgrades for Infinispan library/embedded mode
	26.1.1. Steps

	26.2. Rolling upgrades for Infinispan Servers
	26.3. Steps

	Chapter 27. Extending Infinispan
	27.1. Custom Commands
	27.1.1. An Example
	27.1.2. Preassigned Custom Command Id Ranges

	27.2. Extending the configuration builders and parsers
	27.3. Cache hierarchy
	27.4. Commands
	27.5. Visitors
	27.6. Interceptors
	27.7. Putting it all together
	27.8. Subsystem Managers
	27.8.1. DistributionManager
	27.8.2. TransactionManager
	27.8.3. RpcManager
	27.8.4. LockManager
	27.8.5. PersistenceManager
	27.8.6. DataContainer
	27.8.7. Configuration

	27.9. ComponentRegistry

