
Mobicents SCTP Library User Guide

by Amit Bhayani

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions .. vii

1.3. Notes and Warnings .. vii

2. Provide feedback to the authors! .. viii

1. Introduction to Mobicents SCTP Library ... 1

2. Setup ... 3

2.1. Mobicents SCTP Library Source Code ... 3

2.1.1. Release Source Code Building ... 3

2.1.2. Development Trunk Source Building .. 4

3. Design Overview ... 5

4. Management .. 7

4.1. API .. 7

4.1.1. API's to manage resources ... 14

4.1.2. Configuration .. 16

5. Association .. 19

6. Example ... 25

6.1. Before Getting Started .. 25

6.2. Initiating Management ... 25

6.3. Adding Server and server Association .. 26

6.4. Adding Association ... 28

A. Revision History .. 29

Index ... 31

iv

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System > Preferences > Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >

Accessories > Character Map from the main menu bar. Next, choose Search >

Find… from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu

of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version

and release. Each word is a placeholder, either for text you enter when issuing a command or

for text displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

Pull-quote Conventions

vii

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Preface

viii

Note

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make this

manual better, we would love to hear from you! Please submit a report in the the Issue Tracker

[http://code.google.com/p/mobicents/issues/list], against the product Mobicents SCTP Library ,

or contact the authors.

When submitting a bug report, be sure to mention the manual's identifier:

SCTPLibrary_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list

Chapter 1.

1

Introduction to Mobicents SCTP

Library
In computer networking, the Stream Control Transmission Protocol (SCTP) [http://

en.wikipedia.org/wiki/SCTP] is a Transport Layer protocol, serving in a similar role to the popular

protocols Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). It provides

some of the same service features of both: it is message-oriented like UDP and ensures reliable,

in-sequence transport of messages with congestion control like TCP.

The protocol was defined by the IETF Signaling Transport (SIGTRAN) working group in 2000 and

is maintained by the IETF Transport Area (TSVWG) working group. RFC 4960 [http://tools.ietf.org/

html/rfc4960] defines the protocol. RFC 3286 [http://tools.ietf.org/html/rfc3286] provides an

introduction.

Mobicents SCTP Library is providing the convenient API's over Java SCTP, hence can be used

only with version JDK 1.7 or above.

Mobicents SCTP Library can also create the TCP sockets exposing same high level API's hence

application using Mobicents SCTP Library can work seamless with TCP or SCTP.

Note

The TCP facility is only for test to support the OS which doesn't have SCTP

available out-of-box. For example Windows OS.

In addition to exposing the SCTP protocol, Mobicents SCTP Library contains number of features

which other wise the application depending on SCTP will have to take care of. For example

Mobicents SCTP Library provides

• Management interface to manage the underlying SCTP Associations

• Persistence mechanism capable of initiating the SCTP Association if the system is restarted

after crash or gracefull shutdown

• Tries re-initiate the connection if for some reason the connection is lost between the peers

• Configuration to make the module behave as single thread or multi-threaded depending on

requirement's of application

Below diagram shows various layers involved

http://en.wikipedia.org/wiki/SCTP
http://en.wikipedia.org/wiki/SCTP
http://en.wikipedia.org/wiki/SCTP
http://tools.ietf.org/html/rfc4960
http://tools.ietf.org/html/rfc4960
http://tools.ietf.org/html/rfc4960
http://tools.ietf.org/html/rfc3286
http://tools.ietf.org/html/rfc3286

Chapter 1. Introduction to ...

2

Figure 1.1. Layers involved

Chapter 2.

3

Setup

2.1. Mobicents SCTP Library Source Code

2.1.1. Release Source Code Building

1. Downloading the source code

Important

Subversion is used to manage its source code. Instructions for using

Subversion, including install, can be found at http://svnbook.red-bean.com

Use SVN to checkout a specific release source, the base URL is http://

mobicents.googlecode.com/svn/tags/protocols/sctp, then add the specific release version,

lets consider 1.0.0.CR2.

[usr]$ svn co http://mobicents.googlecode.com/svn/tags/protocols/sctp/1.0.0.CR2

 sctp-1.0.0.CR2

2. Building the source code

Important

Maven 2.0.9 (or higher) is used to build the release. Instructions for using

Maven2, including install, can be found at http://maven.apache.org

Use Maven to build the binaries.

 [usr]$ cd sctp-1.0.0.CR2

 [usr]$ mvn install

Once the process finishes you should have the binary jar files in the target directory of

module.

http://svnbook.red-bean.com
http://maven.apache.org

Chapter 2. Setup

4

2.1.2. Development Trunk Source Building

Similar process as for Section 2.1.1, “Release Source Code Building”, the only change is the SVN

source code URL, which is http://mobicents.googlecode.com/svn/trunk/protocols/sctp.

Chapter 3.

5

Design Overview
The internal structure of Mobicents SCTP Library looks like

Figure 3.1. Architecture

The prime responsibility of Mobicents SCTP Library is abstract Application from underlying SCTP

sockets and expose same API (Association.java) irrespective if the underlying SCTP is acting

as server side waiting for client to connect or client side initiating connection.

The management (Management.java) controls the associations and servers. The Application can

execute commands to create/delete associations/servers.

6

Chapter 4.

7

Management
In addition to managing the associations and servers, management also persists the state of each

in XXX_sctp.xml file, where XXX is unique name given to management instance.

If there is system crash, management is responsible to bring the associations and servers back to

same state it was before the crash. For example if client side association was connected to peer

server before crash, management will try to connect back to peer server after restoration

4.1. API

The Management.java API looks like

package org.mobicents.protocols.api;

import java.util.List;

import java.util.Map;

/**

 * <p>

 * {@link Management} class manages the underlying {@link Association} and

 * {@link Server}.

 * </p>

 * <p>

 * Management should persist the state of {@link Server} and {@link Association}

 * </p>

 * <p>

 * Management when {@link #start() started} looks for file <tt>XXX_sctp.xml</

tt> containing serialized state of underlying

 * {@link Association} and {@link Server}. Set the directory path by calling {@link #setPersistDir(String)} to direct Management to look at specified

 * directory for underlying serialized file.

 * </p>

 * <p>

 * If directory path is not set, Management searches for system property

 * <tt>sctp.persist.dir</tt> to get the path for directory

 * </p>

 * <p>

 * Even if <tt>sctp.persist.dir</tt> system property is not set,

 * Management will look at System set property <tt>user.dir</tt>

 * </p>

 *

 * @author amit bhayani

Chapter 4. Management

8

 *

 */

public interface Management {

 /**

 * Returns the name of this {@link Management} instance

 *

 * @return

 */

 public String getName();

 /**

 * Get persist dir

 * @return

 */

 public String getPersistDir();

 /**

 * Directory where the XXX.xml will be searched

 * @param persistDir

 */

 public void setPersistDir(String persistDir);

 /**

 * Start the management. No management operation can be executed unless

 * {@link Management} is started. If {@link Server} and {@link Association}

 * were defined previously, Management should recreate those {@link Server}

 * and {@link Association}.

 *

 * @throws Exception

 */

 public void start() throws Exception;

 /**

 * Stop the management. It should persist the state of {@link Server} and

 * {@link Associtaion}.

 *

 * @throws Exception

 */

 public void stop() throws Exception;

 /**

 * This method stops and removes all registered servers and associations

 * Management should be started

API

9

 * Use this method only for test purposes or after total crashes

 *

 * @throws Exception

 */

 public void removeAllResourses() throws Exception;

 /**

 * Add new {@link Server}.

 *

 * @param serverName

 * name of the Server. Should be unique name

 * @param hostAddress

 * IP address that this server will bind to

 * @param port

 * port that this server will bind to

 * @param ipChannelType

 * IP channel type: SCTP or TCP

 * @param extraHostAddresses

 * When SCTP multi-homing configuration extra IP addresses can be put here

 * If multi-homing absence this parameter can be null

 * @return new Server instance

 * @throws Exception

 * Exception if management not started or server name already

 * taken or some other server already has same ip:port

 */

 public Server addServer(String serverName, String hostAddress, int port, IpChannelType ipChannelType, String[] extraHostAddresses) throws Exception;

 /**

 * Add new {@link Server}. IP channel type is SCTP.

 *

 * @param serverName

 * name of the Server. Should be unique name

 * @param hostAddress

 * IP address that this server will bind to

 * @param port

 * port that this server will bind to

 * @return new Server instance

 * @throws Exception

 * Exception if management not started or server name already

 * taken or some other server already has same ip:port

 */

 public Server addServer(String serverName, String hostAddress, int port) throws Exception;

 /**

Chapter 4. Management

10

 * Remove existing {@link Server}

 *

 * @param serverName

 * @throws Exception

 * Exception if no Server with the passed name exist or Server

 * is started. Before removing server, it should be stopped

 */

 public void removeServer(String serverName) throws Exception;

 /**

 * Start the existing Server

 *

 * @param serverName

 * name of the Server to be started

 * @throws Exception

 * Exception if no Server found for given name or Server already

 * started

 */

 public void startServer(String serverName) throws Exception;

 /**

 * Stop the Server.

 *

 * @param serverName

 * name of the Server to be stopped

 * @throws Exception

 * Exception if no Server found for given name or any of the

 * {@link Association} within Server still started. All the

 * Association's must be stopped before stopping Server

 */

 public void stopServer(String serverName) throws Exception;

 /**

 * Get the list of Servers configured

 *

 * @return

 */

 public List<Server> getServers();

 /**

 * Add server Association.

 *

 * @param peerAddress

 * the peer IP address that this association will accept

API

11

 * connection from

 * @param peerPort

 * the peer port that this association will accept connection

 * from

 * @param serverName

 * the Server that this association belongs to

 * @param assocName

 * unique name of Association

 * @return

 * @throws Exception

 */

 public Association addServerAssociation(String peerAddress, int peerPort, String serverName, String assocName) throws Exception;

 /**

 * Add server Association. IP channel type is SCTP.

 *

 * @param peerAddress

 * the peer IP address that this association will accept

 * connection from

 * @param peerPort

 * the peer port that this association will accept connection

 * from

 * @param serverName

 * the Server that this association belongs to

 * @param assocName

 * unique name of Association

 * @param ipChannelType

 * IP channel type: SCTP or TCP

 * @return

 * @throws Exception

 */

 public Association addServerAssociation(String peerAddress, int peerPort, String serverName, String assocName, IpChannelType ipChannelType)

 throws Exception;

 /**

 * Add Association. IP channel type is SCTP.

 *

 * @param hostAddress

 * @param hostPort

 * @param peerAddress

 * @param peerPort

 * @param assocName

 * @return

 * @throws Exception

Chapter 4. Management

12

 */

 public Association addAssociation(String hostAddress, int hostPort, String peerAddress, int peerPort, String assocName)

 throws Exception;

 /**

 * Add Association

 *

 * @param hostAddress

 * @param hostPort

 * @param peerAddress

 * @param peerPort

 * @param assocName

 * @param ipChannelType

 * IP channel type: SCTP or TCP

 * @param extraHostAddresses

 * When SCTP multi-homing configuration extra IP addresses can be put here

 * If multi-homing absence this parameter can be null

 * @return

 * @throws Exception

 */

 public Association addAssociation(String hostAddress, int hostPort, String peerAddress, int peerPort, String assocName, IpChannelType ipChannelType,

 String[] extraHostAddresses) throws Exception;

 /**

 * Remove existing Association. Association should be stopped before

 * removing

 *

 * @param assocName

 * @throws Exception

 */

 public void removeAssociation(String assocName) throws Exception;

 /**

 * Get existing Association for passed name

 *

 * @param assocName

 * @return

 * @throws Exception

 */

 public Association getAssociation(String assocName) throws Exception;

 /**

 * Get configured Association map with name as key and Association instance

 * as value

API

13

 *

 * @return

 */

 public Map<String, Association> getAssociations();

 /**

 * Start the existing Association

 *

 * @param assocName

 * @throws Exception

 */

 public void startAssociation(String assocName) throws Exception;

 /**

 * Stop the existing Association

 *

 * @param assocName

 * @throws Exception

 */

 public void stopAssociation(String assocName) throws Exception;

 /**

 * Get connection delay. If the client side {@link Association} dies due to

 * network failure or any other reason, it should attempt to reconnect after

 * connectDelay interval

 *

 * @return

 */

 public int getConnectDelay();

 /**

 * Set the connection delay for client side {@link Association}

 *

 * @param connectDelay

 */

 public void setConnectDelay(int connectDelay);

 /**

 * Number of threads configured to callback {@link AssociationListener}

 * methods.

 *

 * @return

 */

 public int getWorkerThreads();

Chapter 4. Management

14

 /**

 * Number of threads configured for callback {@link AssociationListener}

 *

 * @param workerThreads

 */

 public void setWorkerThreads(int workerThreads);

 /**

 * If set as single thread, number of workers thread set has no effect and

 * entire protocol stack runs on single thread

 *

 * @return

 */

 public boolean isSingleThread();

 /**

 * Set protocol stack as single thread

 *

 * @param singleThread

 */

 public void setSingleThread(boolean singleThread);

}

Management API is divided into two sections 1) managing the resources and 2) configuring

management

4.1.1. API's to manage resources

public Association addAssociation(String hostAddress, int hostPort, String

peerAddress, int peerPort, String assocName, IpChannelType ipChannelType,

String[] extraHostAddresses)

Add's a new client side association to the management. The underlying protocol (SCTP

or TCP) depends on IpChannelType passed. Association when started will create

underlying SCTP/TCP socket that will bind to hostAddress:hostPort and tries to connect to

peerAddress:peerPort. Each association is identified by unique name. The connection attempt

be will made after every connectDelay milliseconds till the connection is successfully created.

If SCTP socket is being created, extraHostAddresses can be passed for multi-home

machines. SCTP Socket will bind to "hostAddress" as primary address and use

"extraHostAddresses" as fall-back in case if primary network goes down.

API's to manage resources

15

Appropriate Exception's are thrown if other association with same name already exist or

if other association is already bound to same hostAddress:hostPort or other association is

already configured to connect to same peerAddress:peerPort.

public Association addServerAssociation(String peerAddress, int peerPort, String

serverName, String assocName, IpChannelType ipChannelType)

Add's a new server side association to the management. A server by name serverName

should already have been added to the management before adding server side association.

Only Association from peerAddress:peerPort will be accepted by underlying server socket.

If connection request is coming from any other ip:port combination it's gracefully closed and

error message is logged. If connect request comes for configured peerAddress:peerPort, but

underlying association is not started, it's gracefully closed and error message is logged. The

IpChannelType should match with that configured for server.

Appropriate Exception's are thrown if other association with same name already exist

or if other association is already configured to receive connection request from same

peerAddress:peerPort.

public Server addServer(String serverName, String hostAddress, int port,

IpChannelType ipChannelType, String[] extraHostAddresses)

Add's a new server to the management. Server will be bound to hostAddress:port when

started. Type of underlying protocol (SCTP/TCP) depends on IpChannelType passed

If SCTP server socket is being created, extraHostAddresses can be passed for multi-

home machines. SCTP Socket will bind to "hostAddress" as primary address and use

"extraHostAddresses" as fall-back in case if primary network goes down.

Each server is identified by unique name.

Appropriate Exception's are thrown if other server with same name already exist or if other

server is already configured to bind to same hostAddress:port

public void startAssociation(String assocName)

Start's the association with name assocName. AssociationListener should be set before

starting this association

Appropriate Exception's are thrown if there is no association with given name or if association

with given name is found but is already started.

public void startServer(String serverName)

Start's the server with name serverName.

Appropriate Exception is thrown if there is no server with given name or if server with given

name is found but is already started.

public void stopAssociation(String assocName)

stop's the association with name assocName. The underlying socket is closed.

Appropriate Exception is thrown if there is no association with given name.

Chapter 4. Management

16

public void stopServer(String serverName)

stop's the server with name serverName.

Appropriate Exception is thrown if there is no server with given name. Throws exception if

the server is found for given name but there are association's for this server which are still

in "started" state.

public void removeAssociation(String assocName)

Removes the association with name assocName.

Appropriate Exception is thrown if there is no association with given name. Throws exception

if association is found with given name but is started.

public void removeServer(String serverName)

Removes the server with name serverName.

Appropriate Exception is thrown if there is no server with given name. Throws exception if

server is found with given name but is started.

public Association getAssociation(String assocName)

Returns the association with name assocName.

Appropriate Exception is thrown if there is no Association with given name.

public Map<String, Association> getAssociations()

Returns the unmodifiable Map of association. Key is association name and value is

association instance

public List<Server> getServers()

Returns the unmodifiable lis of servers.

public void removeAllResourses()

This method stops and removes all registered servers and associations. Management should

be started before this operation can be called. Use this method only for test purposes or after

total crashes.

4.1.2. Configuration

setPersistDir

Management when started looks for file XXX_sctp.xml containing serialized state of

underlying association and server. Set the directory path to direct Management to look at

specified directory for underlying serialized file.

If directory path is not set, Management searches for system property sctp.persist.dir to

get the path for directory. Even if sctp.persist.dir system property is not set, Management

will look at System set property user.dir

setConnectDelay

Time in milli seconds that underlying SCTP socket will wait before attempting to connect to

peer. This is only applivable for clien side sockets.

Configuration

17

setWorkerThreads

Number of threads to callback the AssociationListener. Its assured that packets with same

SLS will always be queued in same Thread for callback to make sure order is maintained.

setSingleThread

Only single thread will be used to callback the AssociationListener. If this is set to true, setting

number of threads by calling setWorkerThreads has no effect.

18

Chapter 5.

19

Association
Association is a protocol relationship between endpoints. Its wrapper over actual socket exposing

the same API's irrespective if its client side socket initiating connection or server side socket

accepting connection. Also the underlying scoket can be of type TCP or SCTP.

The Application using Mobicents SCTP Library calls management interface to create new instance

of association and keeps reference to this instance for lifetime of association for seding the

PayloadData.

The Association.java API looks like

package org.mobicents.protocols.api;

/**

 * <p>

 * A protocol relationship between endpoints

 * </p>

 * <p>

 * The implementation of this interface is actual wrapper over Socket that

 * know's how to communicate with peer. The user of Association shouldn't care

 * if the underlying Socket is client or server side

 * </p>

 * <p>

 *

 * </p>

 *

 * @author amit bhayani

 *

 */

public interface Association {

 /**

 * Return the Association channel type TCP or SCTP

 *

 * @return

 */

 public IpChannelType getIpChannelType();

 /**

 * Return the type of Association CLIENT or SERVER

Chapter 5. Association

20

 *

 * @return

 */

 public AssociationType getAssociationType();

 /**

 * Each association has unique name

 *

 * @return name of association

 */

 public String getName();

 /**

 * If this association is started by management

 *

 * @return

 */

 public boolean isStarted();

 /**

 * The AssociationListener set for this Association

 *

 * @return

 */

 public AssociationListener getAssociationListener();

 /**

 * The {@link AssociationListener} to be registered for this Association

 *

 * @param associationListener

 */

 public void setAssociationListener(AssociationListener associationListener);

 /**

 * The host address that underlying socket is bound to

 *

 * @return

 */

 public String getHostAddress();

 /**

 * The host port that underlying socket is bound to

 *

 * @return

21

 */

 public int getHostPort();

 /**

 * The peer address that the underlying socket connects to

 *

 * @return

 */

 public String getPeerAddress();

 /**

 * The peer port that the underlying socket is connected to

 *

 * @return

 */

 public int getPeerPort();

 /**

 * Server name if the association is for {@link Server}

 *

 * @return

 */

 public String getServerName();

 /**

 * When SCTP multi-homing configuration extra IP addresses are here

 *

 * @return

 */

 public String[] getExtraHostAddresses();

 /**

 * Send the {@link PayloadData} to the peer

 *

 * @param payloadData

 * @throws Exception

 */

 public void send(PayloadData payloadData) throws Exception;

}

Chapter 5. Association

22

Application interested in receiving payload from underlying socket registers the instance of class

implementing AssociationListener with this Association.

The AssociationListener.java API looks like

package org.mobicents.protocols.api;

/**

 * <p>

 * The listener interface for receiving the underlying socket status and

 * received payload from peer. The class that is interested in receiving data

 * must implement this interface, and the object created with that class is

 * registered with {@link Association}

 * </p>

 *

 * @author amit bhayani

 *

 */

public interface AssociationListener {

 /**

 * Invoked when underlying socket is open and connection is established with

 * peer. This is expected behavior when management start's the

 * {@link Association}

 *

 * @param association

 */

 public void onCommunicationUp(Association association);

 /**

 * Invoked when underlying socket is shutdown and connection is ended with

 * peer. This is expected behavior when management stop's the

 * {@link Association}

 *

 * @param association

 */

 public void onCommunicationShutdown(Association association);

 /**

 * Invoked when underlying socket lost the connection with peer due to any

 * reason like network between peer's died etc. This is unexpected behavior

 * and the underlying {@link Association} should try to re-establish the

 * connection

23

 *

 * @param association

 */

 public void onCommunicationLost(Association association);

 /**

 * Invoked when the connection with the peer re-started. This is specific to

 * SCTP protocol

 *

 * @param association

 */

 public void onCommunicationRestart(Association association);

 /**

 * Invoked when the {@link PayloadData} is received from peer

 *

 * @param association

 * @param payloadData

 */

 public void onPayload(Association association, PayloadData payloadData);

}

24

Chapter 6.

25

Example
This chapter tours around the core constructs of Mobicents SCTP Library with simple examples

to let you get started quickly. You will be able to write a client and a server on top of Mobicents

SCTP Library right away when you are at the end of this chapter.

6.1. Before Getting Started

The minimum requirements to run the examples which are introduced in this chapter are only two;

the latest version of Mobicents SCTP Library and JDK 1.7 or above with SCTP support. At time of

writing this guide linux kernel has native support for SCTP (lksctp) and also Solaris includes SCTP.

6.2. Initiating Management

The primitive step in uisng Mobicents SCTP Library is to create instance of Management class and

set appropriate parameters.

 private static final String SERVER_NAME = "testserver";

 private static final String SERVER_HOST = "127.0.0.1";

 private static final int SERVER_PORT = 2345;

 private static final String SERVER_ASSOCIATION_NAME = "serverAsscoiation";

 private static final String CLIENT_ASSOCIATION_NAME = "clientAsscoiation";

 private static final String CLIENT_HOST = "127.0.0.1";

 private static final int CLIENT_PORT = 2346;

 ...

 Management management = new ManagementImpl("SCTPTest");

 management.setConnectDelay(10000);// Try connecting every 10 secs

 management.setSingleThread(true);

 management.start();

Crate new instance of ManagementImpl and setting the management name. The

management will search for SCTPTest_SCTP.xml file to load the previously configured

Serever's or Association's. If file is not found it will create one.

Chapter 6. Example

26

connectDelay is only useful for Associations acting as client side trying to connect to peer.

The value specified is time in milliseconds the unedrlying socket will try to connect to peer if

the existing connection is broken or even if its fresh connection attempt.

Setting management to single thread. All the callback's (irrespective of streamNumber of

packet) to the listener will be via single thread. However there is one dedicated thread only

for I/O.

6.3. Adding Server and server Association

Once the Managment is setup, application can create Server and add server Association

 Server server = this.management.addServer(SERVER_NAME, SERVER_HOST,

 SERVER_PORT);

 Association serverAssociation = this.management.addServerAssociation(CLIENT_HOST,

 CLIENT_PORT, SERVER_NAME, SERVER_ASSOCIATION_NAME);

 serverAssociation.setAssociationListener(new ServerAssociationListener());

 this.management.startAssociation(SERVER_ASSOCIATION_NAME);

 this.management.startServer(SERVER_NAME);

Add the server and server association. Multiple server's can be added to each management

and each server can have multiple server association's

The instance of AssociationListener should be registered with newly created Associaton

before starting it. There is no dependency on order of starting server and server association.

Below is example of class implementing AssociationListener

 class ServerAssociationListener implements AssociationListener {

 private final byte[] SERVER_MESSAGE = "Server says Hi".getBytes();

 /*

 * (non-Javadoc)

 *

 * @see

 * org.mobicents.protocols.sctp.AssociationListener#onCommunicationUp

 * (org.mobicents.protocols.sctp.Association)

 */

Adding Server and server Association

27

 @Override

 public void onCommunicationUp(Association association) {

 System.out.println(this + " onCommunicationUp");

 serverAssocUp = true;

 PayloadData payloadData = new PayloadData(SERVER_MESSAGE.length,

 SERVER_MESSAGE, true, false, 3, 1);

 try {

 association.send(payloadData);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 /*

 * (non-Javadoc)

 *

 * @see

 * org.mobicents.protocols.sctp.AssociationListener#onCommunicationShutdown

 * (org.mobicents.protocols.sctp.Association)

 */

 @Override

 public void onCommunicationShutdown(Association association) {

 System.out.println(this + " onCommunicationShutdown");

 serverAssocDown = true;

 }

 /*

 * (non-Javadoc)

 *

 * @see

 * org.mobicents.protocols.sctp.AssociationListener#onCommunicationLost

 * (org.mobicents.protocols.sctp.Association)

 */

 @Override

 public void onCommunicationLost(Association association) {

 System.out.println(this + " onCommunicationLost");

 }

 /*

 * (non-Javadoc)

 *

Chapter 6. Example

28

 * @see

 * org.mobicents.protocols.sctp.AssociationListener#onCommunicationRestart

 * (org.mobicents.protocols.sctp.Association)

 */

 @Override

 public void onCommunicationRestart(Association association) {

 System.out.println(this + " onCommunicationRestart");

 }

 /*

 * (non-Javadoc)

 *

 * @see

 * org.mobicents.protocols.sctp.AssociationListener#onPayload(org.mobicents

 * .protocols.sctp.Association,

 * org.mobicents.protocols.sctp.PayloadData)

 */

 @Override

 public void onPayload(Association association, PayloadData payloadData) {

 System.out.println(this + " onPayload");

 serverMessage = new byte[payloadData.getDataLength()];

 System.arraycopy(payloadData.getData(), 0, serverMessage, 0, payloadData.getDataLength());

 System.out.println(this + "received " + new String(serverMessage));

 }

 }

6.4. Adding Association

Once the Managment is setup, application can create client side Association.

 Association clientAssociation = this.management.addAssociation(CLIENT_HOST,

 CLIENT_PORT, SERVER_HOST, SERVER_PORT, CLIENT_ASSOCIATION_NAME);

 clientAssociation.setAssociationListener(new ClientAssociationListenerImpl());

 this.management.startAssociation(CLIENT_ASSOCIATION_NAME);

29

Appendix A. Revision History
Revision History

Revision 1.0 Fri Nov 25 2011 AmitBhayani

Creation of the Mobicents SCTP Library User Guide.

30

31

Index
F
feedback, viii

32

	Mobicents SCTP Library User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Provide feedback to the authors!

	Chapter 1. Introduction to Mobicents SCTP Library
	Chapter 2. Setup
	2.1. Mobicents SCTP Library Source Code
	2.1.1. Release Source Code Building
	2.1.2. Development Trunk Source Building

	Chapter 3. Design Overview
	Chapter 4. Management
	4.1. API
	4.1.1. API's to manage resources
	4.1.2. Configuration

	Chapter 5. Association
	Chapter 6. Example
	6.1. Before Getting Started
	6.2. Initiating Management
	6.3. Adding Server and server Association
	6.4. Adding Association

	Appendix A. Revision History
	Index

