
Mobicents JAIN SLEE HTTP Servlet

Resource Adaptor User Guide

by Amit Bhayani and Eduardo Martins

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions .. vii

1.3. Notes and Warnings .. vii

2. Provide feedback to the authors! .. viii

1. Introduction to Mobicents JAIN SLEE HTTP Servlet Resource Adaptor 1

2. Resource Adaptor Type ... 3

2.1. Activities ... 3

2.2. Events .. 4

2.3. Activity Context Interface Factory ... 6

2.4. Resource Adaptor Interface ... 7

2.5. Restrictions .. 8

2.6. Sbb Code Examples ... 8

2.6.1. GET Request Event Handling ... 8

2.6.2. PUT Request Event Handling With Session Creation 9

3. Resource Adaptor Implementation .. 11

3.1. Configuration .. 11

3.2. Default Resource Adaptor Entities ... 11

3.3. Traces and Alarms .. 12

3.3.1. Tracers .. 12

3.3.2. Alarms ... 12

4. Setup ... 13

4.1. Pre-Install Requirements and Prerequisites .. 13

4.1.1. Hardware Requirements ... 13

4.1.2. Software Prerequisites .. 13

4.2. Mobicents JAIN SLEE HTTP Servlet Resource Adaptor Source Code 13

4.2.1. Release Source Code Building .. 13

4.2.2. Development Trunk Source Building .. 14

4.3. Installing Mobicents JAIN SLEE HTTP Servlet Resource Adaptor 14

4.4. Uninstalling Mobicents JAIN SLEE HTTP Servlet Resource Adaptor 14

5. Clustering .. 17

A. Revision History .. 19

Index ... 21

iv

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System > Preferences > Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >

Accessories > Character Map from the main menu bar. Next, choose Search

> Find from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu

of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above username, domain.name, file-system, package, version and

release. Each word is a placeholder, either for text you enter when issuing a command or for text

displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

Pull-quote Conventions

vii

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Preface

viii

Note

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make

this manual better, we would love to hear from you! Please submit a report in the the Issue

Tracker [http://code.google.com/p/mobicents/issues/list], against the product Mobicents JAIN

SLEE HTTP Servlet Resource Adaptor, or contact the authors.

When submitting a bug report, be sure to mention the manual's identifier:

JAIN_SLEE_HttpServlet_RA_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list

Chapter 1.

1

Introduction to Mobicents JAIN

SLEE HTTP Servlet Resource

Adaptor
An HTTP Servlet is used to extend the capabilities of servers that host applications access via

a request-response programming model. Although servlets can respond to any type of request,

they are commonly used to extend the applications hosted by web servers. The aim of the HTTP

Servlet Resource Adaptor is to provide the ease of same request-response programming model

in SLEE environment. HTTP Servlet Resource Adaptor is not an replacement for HTTP Servlets

but is suppose to work in close proximity with Servlet to gain the smooth integration between web

application hosted in Web Server and application developed using Service Building Block hosted

in the SLEE container.

2

Chapter 2.

3

Resource Adaptor Type
The Resource Adaptor Type is the interface which defines the contract between the RA

implementations, the SLEE container, and the Applications running in it.

The name of the RA Type is HttpServletResourceAdaptorType, its vendor is org.mobicents

and its version is 1.0.

2.1. Activities

The Resource Adaptor Type defines two activity objects,

the types net.java.slee.resource.http.HttpServletRequestActivity and

net.java.slee.resource.http.HttpSessionActivity.

The HttpServletRequestActivity represents a specific incoming request. It is created by the

Resource Adaptor when processing the incoming event, unless the request is received with an

HttpSession. The activity ending is done by the Resource Adaptor once the related request event

is unreferenced inside the SLEE Container. The activity object interface is defined as follows:

package net.java.slee.resource.http;

public interface HttpServletRequestActivity {

 /**

 * Method to fetch the Request ID for this request.

 *

 * @return

 */

 public Object getRequestID();

}

The getRequestID() method:

Retrieves the Request's ID.

The HttpSessionActivity represents an HttpSession. It is created on demand by an SBB,

through the RA SBB Interface, and ends on timeout, managed by the underlying HTTP Servlet

framework, or by an SBB, invoking the invalidate() on the related HttpSession Object. The

activity object interface is defined as follows:

Chapter 2. Resource Adaptor Type

4

package net.java.slee.resource.http;

public interface HttpSessionActivity {

 public String getSessionId();

}

The getSessionId() method:

Retrieves the Session's ID.

2.2. Events

The Events fired by HTTP Servlet Resource Adaptor represent an incoming HTTP Request, and

for each HTTP Request a different event type is used for each activity type. The table below lists

the Resource Adaptor Type event types.

Table 2.1. Events fired on the HttpServletRequestActivity:

Name Vendor VersionEvent Class Description

net.java. slee.resource.

http.events.

incoming.request. HEAD

net.java.slee 1.0 net.java. slee.resource.

http.events.

HttpServletRequestEvent

An incoming HEAD

HTTP request.

net.java. slee.resource.

http.events.

incoming.request. GET

net.java.slee 1.0 net.java. slee.resource.

http.events.

HttpServletRequestEvent

An incoming GET

HTTP request.

net.java. slee.resource.

http.events.

incoming.request. POST

net.java.slee 1.0 net.java. slee.resource.

http.events.

HttpServletRequestEvent

An incoming POST

HTTP request.

net.java. slee.resource.

http.events.

incoming.request. PUT

net.java.slee 1.0 net.java. slee.resource.

http.events.

HttpServletRequestEvent

An incoming PUT

HTTP request.

net.java. slee.resource.

http.events.

incoming.request.

DELETE

net.java.slee 1.0 net.java. slee.resource.

http.events.

HttpServletRequestEvent

An incoming

DELETE HTTP

request.

net.java. slee.resource.

http.events.

net.java.slee 1.0 net.java. slee.resource.

http.events.

HttpServletRequestEvent

An incoming

OPTIONS HTTP

request.

Events

5

Name Vendor VersionEvent Class Description

incoming.request.

OPTIONS

net.java. slee.resource.

http.events.

incoming.request.

TRACE

net.java.slee 1.0 net.java. slee.resource.

http.events.

HttpServletRequestEvent

An incoming

TRACE HTTP

request.

Important

Spaces where introduced in Name and Event Class column values, to correctly

render the table. Please remove them when using copy/paste.

Table 2.2. Events fired on the HttpSessionActivity:

Name Vendor VersionEvent Class Description

net.java. slee.resource.

http.events.

incoming.session. HEAD

net.java.slee 1.0 net.java. slee.resource.

http.events.

HttpServletRequestEvent

An incoming HEAD

HTTP request.

net.java. slee.resource.

http.events.

incoming.session. GET

net.java.slee 1.0 net.java. slee.resource.

http.events.

HttpServletRequestEvent

An incoming GET

HTTP request.

net.java. slee.resource.

http.events.

incoming.session. POST

net.java.slee 1.0 net.java. slee.resource.

http.events.

HttpServletRequestEvent

An incoming POST

HTTP request.

net.java. slee.resource.

http.events.

incoming.session. PUT

net.java.

slee

1.0 net.java. slee.resource.

http.events.

HttpServletRequestEvent

An incoming PUT

HTTP request.

net.java. slee.resource.

http.events.

incoming.session.

DELETE

net.java.slee 1.0 net.java. slee.resource.

http.events.

HttpServletRequestEvent

An incoming

DELETE HTTP

request.

net.java. slee.resource.

http.events.

incoming.session.

OPTIONS

net.java.slee 1.0 net.java. slee.resource.

http.events.

HttpServletRequestEvent

An incoming

OPTIONS HTTP

request.

net.java. slee.resource.

http.events.

incoming.session.

TRACE

net.java.slee 1.0 net.java. slee.resource.

http.events.

HttpServletRequestEvent

An incoming

TRACE HTTP

request.

Chapter 2. Resource Adaptor Type

6

Important

Spaces where introduced in Name and Event Class column values, to correctly

render the table. Please remove them when using copy/paste.

All event types use the same type

net.java.slee.resource.http.events.HttpServletRequestEvent. It's interface is as

follows:

package net.java.slee.resource.http.events;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public interface HttpServletRequestEvent {

 public HttpServletRequest getRequest();

 public HttpServletResponse getResponse();

 public String getId();

}

The getRequest() method:

Retrieves the HttpServletRequest which is associated with the event.

The getResponse() method:

Retrieves the HttpServletResponse which is associated with the request, which can be used

to reply to the incoming request.

The getId() method:

Retrieves unique event ID.

2.3. Activity Context Interface Factory

The Resource Adaptor's Activity Context Interface Factory is of

type net.java.slee.resource.http.HttpServletRaActivityContextInterfaceFactory, it

allows the SBB to retrieve the ActivityContextInterface related with an existing Resource

Adaptor activity object. The interface is defined as follows:

Resource Adaptor Interface

7

package net.java.slee.resource.http;

import javax.slee.ActivityContextInterface;

import javax.slee.FactoryException;

import javax.slee.UnrecognizedActivityException;

public interface HttpServletRaActivityContextInterfaceFactory {

 public ActivityContextInterface getActivityContextInterface(

 HttpSessionActivity activity) throws NullPointerException,

 UnrecognizedActivityException, FactoryException;

 public ActivityContextInterface getActivityContextInterface(

 HttpServletRequestActivity activity) throws NullPointerException,

 UnrecognizedActivityException, FactoryException;

}

2.4. Resource Adaptor Interface

The HTTP Servlet Resource Adaptor interface, of type

net.java.slee.resource.http.HttpServletRaSbbInterface , which an SBB uses to create

HtppSessionActivity instances, is defined as follows:

package net.java.slee.resource.http;

import javax.servlet.http.HttpSession;

import javax.slee.SLEEException;

import javax.slee.resource.ActivityAlreadyExistsException;

import javax.slee.resource.StartActivityException;

public interface HttpServletRaSbbInterface {

 public HttpSessionActivity getHttpSessionActivity(HttpSession httpSession)

 throws NullPointerException, IllegalArgumentException, IllegalStateException,

 ActivityAlreadyExistsException, StartActivityException,

 SLEEException;

Chapter 2. Resource Adaptor Type

8

}

The getHttpSessionActivity(HttpSession) method:

Retrieves an HttpSessionActivity for the specified HttpSession. If the activity does not

exist a new one is created.

2.5. Restrictions

The HTTP Servlet does imposes some restrictions on the usage of the HTTP Servlet API java

objects:

The getAttribute(String) method of the HttpSession object, retrieved from a request:

The _ENTRY_POINT attribute is reserved for internal usage, if such parameter value is used

a SecurityException is thrown.

The getValue(String) method of the HttpSession object, retrieved from a request:

The _ENTRY_POINT attribute is reserved for internal usage, if such parameter value is used

a SecurityException is thrown.

The putValue(String,Object) method of the HttpSession object, retrieved from a request:

The _ENTRY_POINT attribute is reserved for internal usage, if such value is used on the first

parameter a SecurityException is thrown.

The removeAttribute(String) method of the HttpSession object, retrieved from a request:

The _ENTRY_POINT attribute is reserved for internal usage, if such parameter value is used

a SecurityException is thrown.

The removeValue(String) method of the HttpSession object, retrieved from a request:

The _ENTRY_POINT attribute is reserved for internal usage, if such parameter value is used

a SecurityException is thrown.

The setAttribute(String,Object) method of the HttpSession object, retrieved from a

request:

The _ENTRY_POINT attribute is reserved for internal usage, if such value is used on the first

parameter a SecurityException is thrown.

2.6. Sbb Code Examples

The following code examples shows how to use the Resource Adaptor Type for common

functionalities

2.6.1. GET Request Event Handling

The following code examples the handling of an HTTP GET request:

PUT Request Event Handling With Session Creation

9

 public void onGet(HttpServletRequestEvent event,

 ActivityContextInterface aci) {

 // detach from HttpServletRequestActivity

 aci.detach(sbbContext.getSbbLocalObject());

 HttpServletResponse response = event.getResponse();

 try {

 PrintWriter w = response.getWriter();

 w.print("onGet OK! Served by SBB = " + getSbbId());

 w.flush();

 response.flushBuffer();

 log

 .info("HttpServletRAExampleSbb: GET Request received and OK! response sent.");

 } catch (Exception e) {

 log.error(e);

 }

 }

2.6.2. PUT Request Event Handling With Session Creation

The following code examples the handling of an HTTP PUT request, and the creation of an

HttpSessionActivity:

 public void onPut(HttpServletRequestEvent event,

 ActivityContextInterface aci) {

 SbbLocalObject sbbLocalObject = sbbContext.getSbbLocalObject();

 // detach from HttpServletRequestActivity

 aci.detach(sbbLocalObject);

 try {

 // here we will setup a session activity before sending the response back

 if (httpServletRaSbbInterface == null) {

 Context myEnv = (Context) new InitialContext().lookup("java:comp/env");

 httpServletRaSbbInterface = (HttpServletRaSbbInterface) myEnv.lookup(

 "slee/resources/mobicents/httpservlet/sbbrainterface");

Chapter 2. Resource Adaptor Type

10

 httpServletRaActivityContextInterfaceFactory =

 (HttpServletRaActivityContextInterfaceFactory) myEnv.lookup(

 "slee/resources/mobicents/httpservlet/acifactory");

 }

 HttpSession httpSession = event.getRequest().getSession();

 HttpSessionActivity httpSessionActivity = httpServletRaSbbInterface

 .getHttpSessionActivity(httpSession);

 ActivityContextInterface httpSessionActivityContextInterface =

 httpServletRaActivityContextInterfaceFactory

 .getActivityContextInterface(httpSessionActivity);

 httpSessionActivityContextInterface.attach(sbbLocalObject);

 HttpServletResponse response = event.getResponse();

 PrintWriter w = response.getWriter();

 w.print("onPut OK! Served by SBB = " + getSbbId());

 w.flush();

 response.flushBuffer();

 log.info("HttpServletRAExampleSbb: PUT Request received and OK! response sent.");

 } catch (Exception e) {

 log.error(e);

 }

 }

Chapter 3.

11

Resource Adaptor Implementation
This chapter documents the HTTP Servlet Resource Adaptor Implementation details, such as the

configuration properties, the default Resource Adaptor entities, and the JAIN SLEE 1.1 Tracers

and Alarms used.

The name of the RA is HttpServletResourceAdaptor, its vendor is org.mobicents and its

version is 1.0.

3.1. Configuration

The Resource Adaptor supports configuration only at Resource Adaptor Entity creation time, the

following table enumerates the configuration properties:

Table 3.1. Resource Adaptor's Configuration Properties

Property Name Description Property Type Default Value

name the servlet name

which the RA entity

should use

java.lang.String mobicents

Important

JAIN SLEE 1.1 Specification requires values set for properties without a default

value, which means the configuration for those properties are mandatory,

otherwise the Resource Adaptor Entity creation will fail!

3.2. Default Resource Adaptor Entities

There is a single Resource Adaptor Entity created when deploying the Resource Adaptor, named

HttpServletRA.

The HttpServletRA entity is also bound to Resource Adaptor Link Name HttpServletRA, to use

it in an Sbb add the following XML to its descriptor:

 <resource-adaptor-type-binding>

 <resource-adaptor-type-ref>

 <resource-adaptor-type-name>

 HttpServletResourceAdaptorType

 </resource-adaptor-type-name>

 <resource-adaptor-type-vendor>

 org.mobicents

Chapter 3. Resource Adaptor I...

12

 </resource-adaptor-type-vendor>

 <resource-adaptor-type-version>

 1.0

 </resource-adaptor-type-version>

 </resource-adaptor-type-ref>

 <activity-context-interface-factory-name>

 slee/resources/mobicents/httpservlet/acifactory

 </activity-context-interface-factory-name>

 <resource-adaptor-entity-binding>

 <resource-adaptor-object-name>

 slee/resources/mobicents/httpservlet/sbbrainterface

 </resource-adaptor-object-name>

 <resource-adaptor-entity-link>

 HttpServletRA

 </resource-adaptor-entity-link>

 </resource-adaptor-entity-binding>

 </resource-adaptor-type-binding>

3.3. Traces and Alarms

3.3.1. Tracers

Each Resource Adaptor Entity uses a single JAIN SLEE 1.1 Tracer,

named HttpServletResourceAdaptor. The related Log4j Logger category, which

can be used to change the Tracer level from Log4j configuration, is

javax.slee.RAEntityNotification[entity=HttpServletRA]

3.3.2. Alarms

No alarms are set by this Resource Adaptor.

Chapter 4.

13

Setup

4.1. Pre-Install Requirements and Prerequisites

Ensure that the following requirements have been met before continuing with the install.

4.1.1. Hardware Requirements

The RA hardware requirements don't differ from the underlying Mobicents JAIN SLEE

requirements, refer to its documentation for further information.

4.1.2. Software Prerequisites

The RA requires Mobicents JAIN SLEE properly set.

4.2. Mobicents JAIN SLEE HTTP Servlet Resource

Adaptor Source Code

4.2.1. Release Source Code Building

1. Downloading the source code

Important

Subversion is used to manage its source code. Instructions for using

Subversion, including install, can be found at http://svnbook.red-bean.com

Use SVN to checkout a specific release source, the base URL is http://

mobicents.googlecode.com/svn/tags/servers/jain-slee/2.x.y/resources/http-servlet, then add

the specific release version, lets consider 2.2.0.FINAL.

[usr]$ svn co http://mobicents.googlecode.com/svn/tags/servers/jain-slee/2.x.y/resources/

http-servlet/2.2.0.FINAL slee-ra-http-servlet-2.2.0.FINAL

2. Building the source code

Important

Maven 2.0.9 (or higher) is used to build the release. Instructions for using

Maven2, including install, can be found at http://maven.apache.org

http://svnbook.red-bean.com
http://maven.apache.org

Chapter 4. Setup

14

Use Maven to build the deployable unit binary.

 [usr]$ cd slee-ra-http-servlet-2.2.0.FINAL

 [usr]$ mvn install

Once the process finishes you should have the deployable-unit jar file in the target

directory, if Mobicents JAIN SLEE is installed and environment variable JBOSS_HOME is

pointing to its underlying JBoss Application Server directory, then the deployable unit jar will

also be deployed in the container.

4.2.2. Development Trunk Source Building

Similar process as for Section 4.2.1, “Release Source Code Building”, the only change is the

SVN source code URL, which is http://mobicents.googlecode.com/svn/trunk/servers/jain-slee/

resources/http-servlet.

4.3. Installing Mobicents JAIN SLEE HTTP Servlet

Resource Adaptor

To install the Resource Adaptor simply execute provided ant script build.xml default target:

 [usr]$ ant

The script will copy the RA deployable unit jar to the default Mobicents JAIN SLEE server profile

deploy directory, to deploy to another server profile use the argument -Dnode=.

4.4. Uninstalling Mobicents JAIN SLEE HTTP Servlet

Resource Adaptor

To uninstall the Resource Adaptor simply execute provided ant script build.xml undeploy target:

 [usr]$ ant undeploy

Uninstalling Mobicents JAIN SLEE HTTP Servlet Resource Adaptor

15

The script will delete the RA deployable unit jar from the default Mobicents JAIN SLEE server

profile deploy directory, to undeploy from another server profile use the argument -Dnode=.

16

Chapter 5.

17

Clustering
The HTTP Servlet Resource Adaptor is not cluster aware, which means there is no failover process

for a cluster node's requests being handled once the node fails.

18

19

Appendix A. Revision History
Revision History

Revision 1.0 Tue Dec 30 2009 EduardoMartins

Creation of the Mobicents JAIN SLEE HTTP Servlet RA User Guide.

20

21

Index
F
feedback, viii

22

	Mobicents JAIN SLEE HTTP Servlet Resource Adaptor User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Provide feedback to the authors!

	Chapter 1. Introduction to Mobicents JAIN SLEE HTTP Servlet Resource Adaptor
	Chapter 2. Resource Adaptor Type
	2.1. Activities
	2.2. Events
	2.3. Activity Context Interface Factory
	2.4. Resource Adaptor Interface
	2.5. Restrictions
	2.6. Sbb Code Examples
	2.6.1. GET Request Event Handling
	2.6.2. PUT Request Event Handling With Session Creation

	Chapter 3. Resource Adaptor Implementation
	3.1. Configuration
	3.2. Default Resource Adaptor Entities
	3.3. Traces and Alarms
	3.3.1. Tracers
	3.3.2. Alarms

	Chapter 4. Setup
	4.1. Pre-Install Requirements and Prerequisites
	4.1.1. Hardware Requirements
	4.1.2. Software Prerequisites

	4.2. Mobicents JAIN SLEE HTTP Servlet Resource Adaptor Source Code
	4.2.1. Release Source Code Building
	4.2.2. Development Trunk Source Building

	4.3. Installing Mobicents JAIN SLEE HTTP Servlet Resource Adaptor
	4.4. Uninstalling Mobicents JAIN SLEE HTTP Servlet Resource Adaptor

	Chapter 5. Clustering
	Appendix A. Revision History
	Index

