
Mobicents Media Server User Guide

by Oleg Kulikov, Amit Bhayani, Bartosz Baranowski, Jared Morgan,

Douglas Silas, Ivelin Ivanov, Vladimir Ralev, Eduardo Martins, Jean

Deruelle, Luis Barreiro, Alexandre Mendonça, and Pavel Šlégr

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions .. vii

1.3. Notes and Warnings ... viii

2. Provide feedback to the authors! .. viii

1. Introduction to the Mobicents Media Server .. 1

1.1. Introduction .. 1

1.2. The Justification for S/w Media Server ... 1

1.3. What is Mobicents Media Server ... 2

1.4. Media Server Use Case .. 2

2. Technical Specification and Capacity of Mobicents Media Server 5

2.1. Technical Specification of Mobicents Media Server ... 5

2.2. Capacity of Mobicents Media Server .. 5

3. Installing the Mobicents Media Server .. 7

3.1. Java Development Kit: Installing, Configuring and Running 7

3.2. JBoss Application Server 5.x.y embedded Media Server Binary Distribution:

Installing, Configuring and Running .. 11

3.2.1. Pre-Install Requirements and Prerequisites .. 11

3.2.2. Downloading .. 12

3.2.3. Installing .. 12

3.2.4. Setting the JBOSS_HOME Environment Variable 14

3.2.5. Running ... 16

3.2.6. Stopping .. 17

3.2.7. Server Structure ... 18

3.2.8. Testing .. 20

3.2.9. Uninstalling .. 20

3.3. Standalone Media Server Binary Distribution: Installing, Configuring and Running ... 20

3.3.1. Pre-Install Requirements and Prerequisites .. 20

3.3.2. Downloading .. 21

3.3.3. Installing .. 21

3.3.4. Running ... 23

3.3.5. Stopping .. 24

3.3.6. Server Structure ... 25

3.3.7. Testing .. 27

3.3.8. Uninstalling .. 27

3.4. Writing and Running Tests Against the Media Server .. 27

4. Media Server Architecture ... 29

4.1. High level components .. 29

4.1.1. Endpoints .. 30

4.1.2. Controller Modules ... 32

4.2. Design Overview ... 32

5. Configuring the Mobicents Media Server .. 37

5.1. Timer ... 37

Mobicents Media Server User Guide

iv

5.2. MainDeployer .. 37

5.3. RTPFactory .. 38

5.4. Digital Signal Processor (DSP) .. 39

5.5. Audio Player ... 39

5.6. Audio Recorder ... 39

5.7. DTMF ... 39

5.7.1. Rfc2833 Detector ... 40

5.7.2. Inband Detector ... 40

5.7.3. Rfc2833 Generator ... 40

5.7.4. Inband Generator ... 40

5.8. Announcement Server Access Points ... 40

5.9. Interactive Voice Response ... 44

5.10. Packet Relay Endpoint .. 49

5.11. Conference Bridge Endpoint .. 52

5.12. MMS STUN Support ... 56

A. Revision History .. 59

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

Choose System > Preferences > Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >

Accessories > Character Map from the main menu bar. Next, choose Search

> Find from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu

of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above username, domain.name, file-system, package, version and

release. Each word is a placeholder, either for text you enter when issuing a command or for text

displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

Pull-quote Conventions

vii

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

Preface

viii

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Note

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make

this manual better, we would love to hear from you! Please submit a report in Bugzilla: http://

bugzilla.redhat.com/bugzilla/ against the product ${product.name}, or contact the authors.

When submitting a bug report, be sure to mention the manual's identifier:

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

Chapter 1.

1

Introduction to the Mobicents Media

Server

1.1. Introduction

In the world of telephony, a media server is the name given to the computing component

that processes the audio and/or video streams associated with telephone calls or connections.

Conference services are a particular example of how media servers can be used, as a special

'engine' is needed to mix audio streams together so that conference participants can hear all

of the other participants. Conferencing servers may also need other specialized functions like

"loudest talker" detection, or transcoding of audio streams, and also interpreting DTMF tones used

to navigate menus also known as Interactive Voice Response (IVR). For video processing, it may

be needed to change video streams, for example transcode from one video codec to another or

rescale (transrate) a picture from one size to another. This media processing functions are the

core responsibility of a media server. Few of the real Media Server Use Cases are defined here.

Media Server can be Hardware Media Server or Software Based. The Hardware Media Server

uses the hardware components for processing the audio/video. Depending on which hardware

media server, there would be individual hardware dedicated to do specific job for example

reduction of echo etc. In case of Software Media Server all the audio/video processing is done

by a software, no specifc hardware is used.

1.2. The Justification for S/w Media Server

Today, all communications can be routed through computers. Widespread access to broadband

Internet and the ubiquity of Internet Protocol (IP) enable the convergence of voice, data and

video. Media Servers provide the ability to switch voice media between a network and its access

point. Using Digital Subscriber Line (DSL) and fast-Internet cable technology, a software media

server converts, compresses and packetizes voice data for transmission back-and-forth across

the Internet backbone for landline and wireless phones. Media gateways sit at the intersection of

Public Switched Telephone Networks (PSTNs) and wireless or IP-based networks.

Multiple market demands are pushing companies to converge all of their media services using

media gateways with Voice-over-IP (VoIP) capabilities. Companies have expectations for such

architectures, which include:

Lowering initial costs

Capital investment is decreased because low-cost commodity hardware can be used for

multiple functions.

Lowering development costs

Open system hardware and software standards with well-defined applications reduce costs,

and Application Programming Interfaces (API s) accelerate development.

Chapter 1. Introduction to th...

2

Handling multiple media types

Companies want VoIP solutions today, but also need to choose extensible solutions that will

handle video in the near future.

Lowering the costs of deployment and maintenance

Standardized, modular systems reduce training costs and maintenance while simultaneously

improving uptime.

Enabling rapid time-to-market

Early market entry hits the window of opportunity and maximizes revenue.

1.3. What is Mobicents Media Server

With telephony networks moving more towards VoIP technology, and using Session Initiation

Protocol (SIP), the idea of media servers has started to gain some traction. Typically, an

application (the 'application server') has the controlling logic, and controls a remote media server

(or multiple servers) over an IP connection using various industry recognized standard protocols

like MGCP, MEGACO (H.248), MSML, VoiceXML etc. The Mobicents Media Server is first and

only open source media server available as of today that has support for MGCP. The Mobicents

also has JSR-309 Standard Api implementation to control media servers irrespective of underlying

protocol used. Hence Application's developed on any platform can control Mobicents Media Server

using JSR-309 API.

The Mobicents Media Server core is based on software components only. This property allows

to easy scale from development environment on a single server to production deployment in

a distributed network environment. Mobicents Media Server binary is distributed in two forms:

standalone server which is recommended for production deployments and integrated with JBoss

5 Application server which is more preferred for development purposes.

Because Mobicents Media Server is Java based, it is cross platform, easy to install and run on

any operating system that supports Java. The available source code is a powerful tool to debug

the server and understand processing logic. It also gives you the flexibility to create customized

components and configurations for your personal or business use.

1.4. Media Server Use Case

Media Server's are heavily used in conventional applications across various market segments for

example the Mobile / PSTN service provider have media server's to play announcements like "The

user is busy, please call after some time" or to record the voice message when the called party

is busy and to re-play the same message when asked for.

The IVR Applications used by various segments of industry, for example IVR system used in

banks to let their customers know their balance by calling a Toll-Free-Number or do other banking

transactions.

Developing a converged application has now become very easy with availability of Open Source

Mobicents Media Server. Appart from conventional Applications like IVR, Conferencing, various

Media Server Use Case

3

Tone (like busy, congestion etc) generation/detection below are few Use Cases that can be

developed using Mobicents Media Server and Mobicents Platform.

Developing Converged Applications

A Converged Application delivers data, voice, video to end user on any device like Public

Switch Telephone Network (land line/mobile) or VoIP Phones or any other device on any

network like SS7, IP etc. There is no limitation on what kind of Converged Application can be

developed by using the Mobicents Media Server.

• Imagine a 'Click-to-Call' application on your business portal where customer can reach your

Customer Executive by clicking a link on your site.

• A virtual class room where every student is logged to a session using their personal SIP/

Mobile phones and tutor is taking class using his/her own phone.

• Imagine a call routing to your mobile phone as soon as you swipe the Credit Card and IVR

system asking for your password (DTMF) to authorize the transaction. Now somebody who

wants to make illicit use of your Credit Card needs to have not only your mobile but your

password too.

• A online Furniture (or any goods that has high cost of delivering to door step) Shopping

Portal makes a call to customer a day before delivery intimating delivery date and time and

gives an option to Customer to change it either via Sopping Portal or directly through IVR

(DTMF) such that there is almost zero probability to find the door locked once your truck

reaches Customer door step.

Innovation in Traditional Telco Value Added Service

As explained in above paragraphs, traditional telco value added service's like Ring Back

Tone (RBT), Voice Message, Call Forwarding, Call Blocking are quite common terms now.

But to subscribe/unsbscribe for each of these service, to manage these service is hassle

as each of them are different service in it-self. How about a Portal where customer can log

in and manage all its service that he/she is subscribed to? The Portal also gives an Rule

based call routing option to let user decide where the call gets routed (his/her mobile,land

phone,business phone,home phone etc) depending on which time of day the call arrives. How

about letting the user record the converstaion by press of a button and latter through Portal

user can listen, download, forward mail as attachment. Let user upload his/her favorite mp3

songs on portal which then can be used as personalized RBT for individual callers calling

the user. Let user record the message like "This Phone is out of service for next 6 months.

Please call after 6 months" and play it when any unwanted caller calls ;). Basically its a call-

blocking service but with much more flexibility! Even Presence service can be leveraged to

develop more interesting apps.

Capitalize on next Generation Netwrok - IMS

In order to create innovative, cost effective and felxible applications and to reduce time to

market and meet customer demands, the transition should happen from legacy SS7 network

to IP based Multimedia Subsystem (IMS). Mobicents Media Server can act as IMS - Media

Resource Function (MRF) that caters to media needs within IP based home netwroks.

Chapter 1. Introduction to th...

4

Mobicents Media Server can also be deployed as PSTN gateway that converst the SIP

signalling to SS7 signals (ISUP etc). On one side the Media Server is able to send and receive

IMS media over the Real-Time Protocol (RTP). On the other side the Media Server uses one

or more PCM (Pulse Code Modulation) time slots to connect to the SS7 network

Chapter 2.

5

Technical Specification and Capacity

of Mobicents Media Server

2.1. Technical Specification of Mobicents Media Server

• Media and Coders :

• G711 (a-Law, u-Law)

• GSM

• SPEEX

• G729

• DTMF(RFC 2833, INBAND)

• Media Files :

• WAV

• SPX

• GSM

• MP3

• Signaling and control :

• MGCP

• Java Media Control API(JSR-309)

• Audio processing :

• Audio transcoding, bridging and conference

• DTMF detection and generation.Both Inband as well as RFC2833

• Inband generation/detection of other Tones like busy, congestion etc possible

• Text-To-Speech Support

• Capability to generate silence/comfort noise

2.2. Capacity of Mobicents Media Server

• Capacity : Typical media sessions per server

Chapter 2. Technical Specific...

6

• G.711 @ 20 ms - upto 500 with dual-core 2.33GHz CPU 4GB RAM

Chapter 3.

7

Installing the Mobicents Media

Server
The Mobicents Media Server distribution is available in two forms: Standalone and Embedded

in JBoss Application Server 5. The standalone version is more preferred for carrier production

deployment while JBoss Application Server 5 version is most useful for development

The Mobicents Media Server is available in both binary and source code distributions. The simplest

way to get started with the Media Server is to download the ready-to-run binary distribution.

Alternatively, the source code for the Mobicents Media Server can be obtained by checking it out

from its repository using the Subversion version control system (SVN), and then built using the

Maven build system. Whereas installing the binary distribution is recommended for most users,

obtaining and building the source code is recommended for those who want access to the latest

revisions and Media Server capabilities.

Installing the Java Development Kit

3.1. Java Development Kit: Installing, Configuring and

Running

The MobicentsJBCP platform is written in Java. A working Java Runtime Environment (JRE) or

Java Development Kit (JDK) must be installed prior to running the server. The required versiom

must be version 5 or higher.

It is possible to run most MobicentsJBCP servers, such as the JAIN SLEE Server, using a Java

6 JRE or JDK.

JRE or JDK? Although MobicentsJBCP servers are capable of running on the Java Runtime

Environment, this guide assumes the audience is mainly developers interested in developing

Java-based, MobicentsJBCP-driven solutions. Therefore, installing the Java Development Kit is

covered due to the anticipated audience requirements.

32-Bit or 64-Bit JDK. If the system uses 64-Bit Linux or Windows architecure, the 64-bit JDK

is strongly recommended over the 32-bit version. The following heuristics should be considered

in determining whether the 64-bit Java Virtual Machine (JVM) is suitable:

• Wider datapath: the pipe between RAM and CPU is doubled, which improves the performance

of memory-bound applications when using a 64-bit JVM.

• 64-bit memory addressing provides a virtually unlimited (1 exabyte) heap allocation. Note that

large heaps can affect garbage collection.

• Applications that run with more than 1.5 GB of RAM (including free space for garbage collection

optimization) should utilize the 64-bit JVM.

Chapter 3. Installing the Mob...

8

• Applications that run on a 32-bit JVM and do not require more than minimal heap sizes will gain

nothing from a 64-bit JVM. Excluding memory issues, 64-bit hardware with the same relative

clock speed and architecture is not likely to run Java applications faster than the 32-bit version.

Note

The following instructions describe how to download and install the 32-bit JDK,

however the steps are nearly identical for installing the 64-bit version.

Downloading. Download the Sun JDK 5.0 (Java 2 Development Kit) from Sun's website: http://

java.sun.com/javase/downloads/index_jdk5.jsp. Click the Download link next to "JDK 5.0 Update

<x>" (where <x> is the latest minor version release number).

The Sun website offers two download options:

• A self-extracting RPM (for example, jdk-1_5_0_16-linux-i586-rpm.bin)

• A self-extracting file (e.g. jdk-1_5_0_16-linux-i586.bin)

If installing the JDK on Red Hat Enterprise Linux, Fedora, or another RPM-based Linux system, it

is recommended that the self-extracting file containing the RPM package is selected. This option

will set up and use the SysV service scripts in addition to installing the JDK. The RPM option is

also recommended if the MobicentsJBCP platform is being set up in a production environment.

Installing. The following procedures detail how to install the Java Development Kit on both

Linux and Windows.

Procedure 3.1. Installing the JDK on Linux

• Ensure the file is executable, then run it:

~]$ chmod +x "jdk-1_5_0_<minor_version>-linux-<architecture>-rpm.bin"

~]$./"jdk-1_5_0_<minor_version>-linux-<architecture>-rpm.bin"

Setting up SysV Service Scripts for Non-RPM Files

If the non-RPM self-extracting file is selected for an RPM-based system, the

SysV service scripts can be configured by downloading and installing one

of the -compat packages from the JPackage project. Download the -compat

package that corresponds correctly to the minor release number of the installed

JDK. The compat packages are available from ftp://jpackage.hmdc.harvard.edu/

JPackage/1.7/generic/RPMS.non-free/.

http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/index_jdk5.jsp
ftp://jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/
ftp://jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/

Java Development Kit: Installing, Configuring and Running

9

Important

A -compat package is not required for RPM installations. The -compat package

performs the same SysV service script set up that the RPM version of the JDK

installer does.

Procedure 3.2. Installing the JDK on Windows

• Using Explorer, double-click the downloaded self-extracting installer and follow the

instructions to install the JDK.

Configuring. Configuring the system for the JDK consists of two tasks: setting the JAVA_HOME

environment variable, and ensuring the system is using the proper JDK (or JRE) using the

alternatives command. Setting JAVA_HOME generally overrides the values for java, javac

and java_sdk_1.5.0 in alternatives, however it is recommended to specify the value for

consistency.

Setting the JAVA_HOME Environment Variable on Generic Linux

After installing the JDK, ensure the JAVA_HOME environment variable exists and points to the

location of the JDK installation.

Setting the JAVA_HOME Environment Variable on Linux. Determine whether JAVA_HOME

is set by executing the following command:

~]$ echo $JAVA_HOME

If JAVA_HOME is not set, the value must be set to the location of the JDK installation on the

system. This can be achieved by adding two lines to the ~/.bashrc configuration file. Open

~/.bashrc (or create it if it does not exist) and add a line similar to the following one anywhere

inside the file:

export JAVA_HOME="/usr/lib/jvm/jdk1.5.0_<version>"

The changes should also be applied for other users who will be running the MobicentsJBCP

on the machine (any environment variables exported from ~/.bashrc files are local to that

user).

Setting java, javac and java_sdk_1.5.0 using the alternatives command

Selecting the Correct System JVM on Linux using alternatives. On systems with the

alternatives command, including Red Hat Enterprise Linux and Fedora, it is possible to

Chapter 3. Installing the Mob...

10

choose which JDK (or JRE) installation to use, as well as which java and javac executables

should be run when called.

As the superuser, call /usr/sbin/alternatives with the --config java option to select

between JDKs and JREs installed on your system:

home]$ sudo /usr/sbin/alternatives --config java

There are 3 programs which provide 'java'.

 Selection Command

 1 /usr/lib/jvm/jre-1.5.0-gcj/bin/java

 2 /usr/lib/jvm/jre-1.6.0-sun/bin/java

*+ 3 /usr/lib/jvm/jre-1.5.0-sun/bin/java

Enter to keep the current selection[+], or type selection number:

The Sun JDK, version 5, is required to run the java executable. In the alternatives

information printout above, a plus (+) next to a number indicates the option currently being

used. Press Enter to keep the current JVM, or enter the number corresponding to the JVM

to select that option.

As the superuser, repeat the procedure above for the javac command and the

java_sdk_1.5.0 environment variable:

home]$ sudo /usr/sbin/alternatives --config javac

home]$ sudo /usr/sbin/alternatives --config java_sdk_1.5.0

Setting the JAVA_HOME Environment Variable on Windows

For information on how to set environment variables in Windows, refer to http://

support.microsoft.com/kb/931715.

Testing. To ensure the correct JDK or Java version (5 or higher), and that the java executable

is in the PATH environment variable, run the java -version command in the terminal from the

home directory:

home]$ java -version

java version "1.5.0_16"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_16-b03)

http://support.microsoft.com/kb/931715
http://support.microsoft.com/kb/931715

 JBoss Application Server 5.x.y embedded Media Server Binary Distribution: Installing, Configuring and Running

11

Java HotSpot(TM) Client VM (build 1.5.0_16-b03, mixed mode, sharing)

Uninstalling. It is not necessary to remove a particular JDK from a system, because the JDK

and JRE version can be switched as required using the alternatives command, and/or by setting

JAVA_HOME.

Uninstalling the JDK on Linux. On RPM-based systems, uninstall the JDK using the yum

remove <jdk_rpm_name> command.

Uninstalling the JDK on Windows. On Windows systems, check the JDK entry in the Start

menu for an uninstall option, or use Add/Remove Programs.

3.2. JBoss Application Server 5.x.y embedded Media

Server Binary Distribution: Installing, Configuring and

Running

The Mobicents Media Server either comes bundled with the JBoss Application Server or

Standalone. This section details how to install the Mobicents Media Server that comes bundled

with JBoss Application Server 5. For installation of Standalone Mobicents Media Server, refer to

Section 3.3, “ Standalone Media Server Binary Distribution: Installing, Configuring and Running ”

3.2.1. Pre-Install Requirements and Prerequisites

Ensure that the following requirements have been met before continuing with the install.

Hardware Requirements

Sufficient Disk Space

Once unzipped, the JBoss AS embedded Media Server binary release requires at least 110

Mb of free disk space. Keep in mind that disk space requirements may change from release

to release.

Anything Java Itself Will Run On

The JBoss embedded Media Server and its bundled servers, JBoss, are 100% Java. The

Media Server will run on the same hardware that the JBoss Application Server runs on.

Software Prerequisites

JDK 5 or Higher

A working installation of the Java Development Kit (JDK) version 5 or higher is required in

order to run the JBoss embedded Media Server. Note that the JBoss Application Server is a

runtime dependency of the Media Server and, as mentioned, comes bundled with the binary

distribution.

Chapter 3. Installing the Mob...

12

3.2.2. Downloading

The latest version of the JBoss embedded Media Server is available from http://

www.mobicents.org/mms/mms-downloads.html . The top row of the table holds the latest version.

Click the Download link to start the download.

3.2.3. Installing

Once the requirements and prerequisites have been met, the JBoss embedded Media Server can

be installed onto the system. Follow the instructions below for the operating system on which the

server will reside.

Version Numbers

For clarity, the command line instructions presented in this chapter use specific

version numbers and directory names. Ensure this information is substituted with

the binary distribution's version numbers and file names.

Procedure 3.3. Installing the JBoss embedded Media Server Binary

Distribution on Linux

It is assumed that the downloaded archive is saved in the home directory, and that a terminal

window is open displaying the home directory.

1. Create a subdirectory to extract the files into. For ease of identification, it is recommended

that the version number of the binary is included in this directory name.

~]$ mkdir “ms-<version>”

2. Move the downloaded zip file into the directory:

~]$ mv “mms-jboss-5.1.0.GA-2.0.0.CR2.zip” “ms-<version>”

3. Move into the directory:

~]$ cd “ms-<version>”

4. Extract the files into the current directory by executing one of the following commands.

• Java:

ms-<version>]$ jar -xvf “mms-jboss-5.1.0.GA-2.0.0.CR2.zip”

http://www.mobicents.org/mms/mms-downloads.html
http://www.mobicents.org/mms/mms-downloads.html

Installing

13

• Linux:

ms-<version>]$ unzip "mms-jboss-5.1.0.GA-2.0.0.CR2.zip"

Note

Alternatively, use unzip -d <unzip_to_location> to extract the zip file's

contents to a location other than the current directory.

5. Consider deleting the archive, if free disk space is an issue.

ms-<version>]$ rm “mms-jboss-5.1.0.GA-2.0.0.CR2.zip”

Procedure 3.4. Installing the JBoss embedded Media Server Binary

Distribution on Windows

1. For this procedure, it is assumed that the downloaded archive is saved in the My Downloads

folder.

2. Create a subfolder in My Downloads to extract the zip file's contents into. For ease of

identification, it is recommended that the version number of the binary is included in the folder

name. For example, ms-<version> .

3. Extract the contents of the archive, specifying the destination folder as the one created in

the previous step.

4. Alternatively, execute the jar -xvf command to extract the binary distribution files from the

zip archive.

1. Move the downloaded zip file from My Downloads to the folder created in the previous step.

2. Open the Windows Command Prompt and navigate to the folder that contains the archive

using the cd command

3. Execute the jar -xvf command to extract the archive contents into the current folder.

C:Users<user>My Downloadsms-<version>jar -xvf "mms-

jboss-5.1.0.GA-2.0.0.CR2.zip"

5. It is recommended that the folder holding the JBoss embedded Media Server files (in this

example, the folder named ms- <version>) is moved to a user-defined location for storing

executable programs. For example, the Program Files folder.

Chapter 3. Installing the Mob...

14

6. Consider deleting the archive, if free disk space is an issue.

C:Users<user>My Downloadsms-<version>delete "mms-

jboss-5.1.0.GA-2.0.0.CR2.zip"

3.2.4. Setting the JBOSS_HOME Environment Variable

The Mobicents Platform (Mobicents) is built on top of the JBoss Application Server (JBoss

AS). You do not need to set the JBOSS_HOME environment variable to run any of the Mobicents

Platform servers unless JBOSS_HOME is already set.

The best way to know for sure whether JBOSS_HOME was set previously or not is to perform a

simple check which may save you time and frustration.

Checking to See If JBOSS_HOME is Set on Linux. At the command line, echo $JBOSS_HOME

to see if it is currently defined in your environment:

~]$ echo $JBOSS_HOME

The Mobicents Platform and most Mobicents servers are built on top of the JBoss Application

Server (JBoss AS). When the Mobicents Platform or Mobicents servers are built from source,

then JBOSS_HOME must be set, because the Mobicents files are installed into (or “over top of” if you

prefer) a clean JBoss AS installation, and the build process assumes that the location pointed to

by the JBOSS_HOME environment variable at the time of building is the JBoss AS installation into

which you want it to install the Mobicents files.

This guide does not detail building the Mobicents Platform or any Mobicents servers from source.

It is nevertheless useful to understand the role played by JBoss AS and JBOSS_HOME in the

Mobicents ecosystem.

The immediately-following section considers whether you need to set JBOSS_HOME at all and, if

so, when. The subsequent sections detail how to set JBOSS_HOME on Linux and Windows

Important

Even if you fall into the category below of not needing to set JBOSS_HOME, you may

want to for various reasons anyway. Also, even if you are instructed that you do

not need to set JBOSS_HOME, it is good practice nonetheless to check and make

sure that JBOSS_HOME actually isn't set or defined on your system for some reason.

This can save you both time and frustration.

You DO NOT NEED to set JBOSS_HOME if...

• ...you have installed the Mobicents Platform binary distribution.

Setting the JBOSS_HOME Environment Variable

15

• ...you have installed a Mobicents server binary distribution which bundles JBoss AS.

You MUST set JBOSS_HOME if you are:

• installing the Mobicents Platform or any of the Mobicents servers from source.

• installing the Mobicents Platform binary distribution, or one of the Mobicents server binary

distributions, which do not bundle JBoss AS.

Naturally, if you installed the Mobicents Platform or one of the Mobicents server

binary releases which do not bundle JBoss AS, yet requires it to run, then you

should install JBoss AS [http://www.jboss.org/file-access/default/members/jbossas/freezone/

docs/Installation_Guide/4/html/index.html] before setting JBOSS_HOME or proceeding with anything

else.

Setting the JBOSS_HOME Environment Variable on Linux. The JBOSS_HOME environment

variable must point to the directory which contains all of the files for the Mobicents Platform or

individual Mobicents server that you installed. As another hint, this topmost directory contains a

bin subdirectory.

Setting JBOSS_HOME in your personal ~/.bashrc startup script carries the advantage of retaining

effect over reboots. Each time you log in, the environment variable is sure to be set for you, as a

user. On Linux, it is possible to set JBOSS_HOME as a system-wide environment variable, by defining

it in /etc/bashrc, but this method is neither recommended nor detailed in these instructions.

Procedure 3.5. To Set JBOSS_HOME on Linux

1. Open the ~/.bashrc startup script, which is a hidden file in your home directory, in a text

editor, and insert the following line on its own line while substituting for the actual install

location on your system:

export JBOSS_HOME="/home/<username>/<path>/<to>/<install_directory>"

2. Save and close the .bashrc startup script.

3. You should source the .bashrc script to force your change to take effect, so that JBOSS_HOME

becomes set for the current session. Note that any other terminals which were opened prior

to altering .bashrc will need to source~/.bashrc as well should they require access to

JBOSS_HOME.

~]$ source ~/.bashrc

4. Finally, ensure that JBOSS_HOME is set in the current session, and actually points to the correct

location:

http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Installation_Guide/4/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Installation_Guide/4/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Installation_Guide/4/html/index.html

Chapter 3. Installing the Mob...

16

Note

The command line usage below is based upon a binary installation of

the Mobicents Platform. In this sample output, JBOSS_HOME has been set

correctly to the topmost_directory of the Mobicents installation. Note that

if you are installing one of the standalone Mobicents servers (with JBoss AS

bundled!), then JBOSS_HOME would point to the topmost_directory of your

server installation.

~]$ echo $JBOSS_HOME

/home/user/

Setting the JBOSS_HOME Environment Variable on Windows. The JBOSS_HOME

environment variable must point to the directory which contains all of the files for the Mobicents

Platform or individual Mobicents server that you installed. As another hint, this topmost directory

contains a bin subdirectory.

For information on how to set environment variables in recent versions of Windows, refer to http://

support.microsoft.com/kb/931715.

3.2.5. Running

In the Linux terminal or Windows command prompt, the JBoss embedded Media Server has

started successfully if the last line of output is similar to the following (ending with “Started in

23s:648ms”):

11:27:34,663 INFO [ServerImpl] JBoss (Microcontainer) [5.1.0.GA (build:

 SVNTag=JBoss_5_1_0_GA date=200905221053)] Started in 37s:637ms

Procedure 3.6. Running the Media Server on Linux

1. Change the working directory to installation directory (the one in which the zip file's contents

was extracted to)

downloads]$ cd "ms-<version>"

2. (Optional) Ensure that the bin/run.sh start script is executable.

ms-<version>]$ chmod +x bin/run.sh

http://support.microsoft.com/kb/931715
http://support.microsoft.com/kb/931715

Stopping

17

3. Execute the run.sh Bourne shell script.

ms-<version>]$./bin/run.sh

Note

Instead of executing the Bourne shell script to start the server, the run.jar

executable Java archive can be executed from the bin directory:

ms-<version>]$ java -jar bin/run.jar

Procedure 3.7. Running the JBoss embedded Media Server on Windows

1. Using Windows Explorer, navigate to the bin subfolder in the installation directory.

2. The preferred way to start the JBoss embedded Media Server is from the Command Prompt.

The command line interface displays details of the startup process, including any problems

encountered during the startup process.

Open the Command Prompt via the Start menu and navigate to the correct folder:

C:Users<user>My Downloads> cd "ms-<version>"

3. Start the JBoss Application Server by executing one of the following files:

• run.bat batch file:

C:Users<user>My Downloadsms-<version>>binrun.bat

• run.jar executable Java archive:

C:Users<user>My Downloadsms-<version>>java -jar binrun.jar

3.2.6. Stopping

Detailed instructions for stopping the JBoss Application Server are given below, arranged by

platform. If the server is correctly stopped, the following three lines are displayed as the last output

in the Linux terminal or Command Prompt:

[Server] Shutdown complete Shutdown complete Halting VM

Chapter 3. Installing the Mob...

18

Procedure 3.8. Stopping the Media Server on Linux

1. Change the working directory to the binary distribution's install directory.

~]$ cd "ms-<version>"

2. (Optional) Ensure that the bin/shutdown.sh start script is executable:

ms-<version>]$ chmod +x bin/shutdown.sh

3. Run the shutdown.sh executable Bourne shell script with the -S option (the short option for

--shutdown) as a command line argument:

ms-<version>]$./bin/shutdown.sh -S

Note

The shutdown.jar executable Java archive with the -S option can also be used

to shut down the server:

ms-<version>]$ java -jar bin/shutdown.jar -S

Procedure 3.9. Stopping JBoss embedded Media Server on Windows

• Stopping the JBoss Application Server on Windows consists of executing either the

shutdown.bat or the shutdown.jar executable file in the bin subfolder of the MMS for JBoss

binary distribution. Ensure the -S option (the short option for --shutdown) is included in the

command line argument.

C:Users<user>My Downloadsms-<version>>binshutdown.bat -S

• The shutdown.jar executable Java archive with the -S option can also be used to shut

down the server:

C:Users<user>My Downloadsms-<version>>java -jar binshutdown.jar -S

3.2.7. Server Structure

Now the server is installed, it is important to understand the layout of the server directories.

An understanding of the server structure is useful when deploying examples, and making

configuration changes. It is also useful to understand what components can be removed to reduce

the server boot time.

Server Structure

19

The directory structure in the JBoss embedded Media Server installation directory is named using

a standard structure. Table 3.1, “Directory Structure” describes each directory, and the type of

information contained within each location.

Table 3.1. Directory Structure

Directory Name Description

bin Contains the entry point JARs and start-

up scripts included with the Media Server

distribution.

conf Contains the core services that are required

for the server. This includes the bootstrap

descriptor, log files, and the default bootstrap-

beans.xml configuration file.

deploy Contains the dynamic deployment content

required by the hot deployment service.

The deploy location can be overridden by

specifying a location in the URL attribute of

the URLDeploymentScanner configuration

item.

lib Contains the startup JAR files used by the

server.

log Contains the logs from the bootstrap logging

service. The log directory is the default

directory into which the bootstrap logging

service places its logs, however, the location

can be overridden by altering the log4j.xml

configuration file. This file is located in the /

conf directory.

The Media Server uses a number of XML configuration files that control various aspects of

the server. In case of embedded Media Server all the files related Media Server are placed

in mms-jboss-5.1.0.GA-<version>/jboss-5.1.0.GA/server/default/deploy/mobicents-media-server

Table 3.2, “Core Configuration File Set” describes the location of the key configuration files, and

provides a description of the

Table 3.2. Core Configuration File Set

File Name and Location Description

mobicents-media-server.sar/META-INF/jboss-

beans.xml

Specifies which additional microcontainer

deployments are loaded as part of the

bootstrap phase. bootstrap-beans.xml

references other configuration files contained

in the /conf/bootstrap/ directory. For

Chapter 3. Installing the Mob...

20

File Name and Location Description

a standard configuration, the bootstrap

configuration files require no alteration.

mobicents-media-server/ann-beans.xml Specifies the configuration for announcement

access points.

mobicents-media-server/ivr-beans.xml Specifies the configuration for Interactive

Voice Response (IVR) endpoints.

mobicents-media-server/prelay-beans.xml Specifies the configuration for Packet Relay

endpoints.

mobicents-media-server/cnf-beans.xml Specifies the configuration for Conference

endpoints.

mobicents-media-server/test-beans.xml Specifies the endpoint for test capabilities.

mgcp-controller-service.sar/META-INF/jboss-

beans.xml

Specifies the configuration for the MGCP

controller.

3.2.8. Testing

For information on testing the Media Server, refer to Section 3.4, “ Writing and Running Tests

Against the Media Server ” .

3.2.9. Uninstalling

To uninstall the Media Server, delete the directory containing the extracted binary distribution.

3.3. Standalone Media Server Binary Distribution:

Installing, Configuring and Running

The Mobicents Media Server either comes bundled with the JBoss Application Server or

Standalone. This section details how to install the Standalone Mobicents Media Server. For

installation of JBoss embedded Mobicents Media Server, refer to Section 3.2, “ JBoss Application

Server 5.x.y embedded Media Server Binary Distribution: Installing, Configuring and Running ”

3.3.1. Pre-Install Requirements and Prerequisites

Ensure that the following requirements have been met before continuing with the install.

Hardware Requirements

Sufficient Disk Space

Once unzipped, the Standalone Media Server binary release requires at least 5 Mb of free

disk space. Keep in mind that disk space requirements may change from release to release.

Anything Java Itself Will Run On

The Standalone Media Server is 100% Java.

Downloading

21

Software Prerequisites

JDK 5 or Higher

A working installation of the Java Development Kit (JDK) version 5 or higher is required in

order to run the Standalone Media Server.

3.3.2. Downloading

The latest version of the Standalone Media Server is available from http://www.mobicents.org/

mms-downloads.html . The top row of the table holds the latest version. Click the Download link

to start the download.

3.3.3. Installing

Once the requirements and prerequisites have been met, the Standalone Media Server can be

installed onto the system. Follow the instructions below for the operating system on which the

server will reside.

Version Numbers

For clarity, the command line instructions presented in this chapter use specific

version numbers and directory names. Ensure this information is substituted with

the binary distribution's version numbers and file names.

Procedure 3.10. Installing the Standalone Media Server Binary Distribution

on Linux

It is assumed that the downloaded archive is saved in the home directory, and that a terminal

window is open displaying the home directory.

1. Create a subdirectory to extract the files into. For ease of identification, it is recommended

that the version number of the binary is included in this directory name.

 ~]$ mkdir “ms-<version>”

2. Move the downloaded zip file into the directory:

~]$ mv “mms-standalone-2.0.0.CR2.zip” “ms-<version>”

3. Move into the directory:

http://www.mobicents.org/mms-downloads.html
http://www.mobicents.org/mms-downloads.html

Chapter 3. Installing the Mob...

22

~]$ cd “ms-<version>”

4. Extract the files into the current directory by executing one of the following commands.

• Java:

ms-<version>]$ jar -xvf “mms-standalone-2.0.0.CR2.zip”

• Linux:

ms-<version>]$unzip "mms-standalone-2.0.0.CR2.zip"

Note

Alternatively, use unzip -d <unzip_to_location> to extract the zip file's

contents to a location other than the current directory.

5. Consider deleting the archive, if free disk space is an issue.

ms-<version>]$ rm “mms-standalone-2.0.0.CR2.zip”

Procedure 3.11. Installing the Standalone Media Server Binary Distribution

on Windows

1. For this procedure, it is assumed that the downloaded archive is saved in the My Downloads

folder.

2. Create a subfolder in My Downloads to extract the zip file's contents into. For ease of

identification, it is recommended that the version number of the binary is included in the folder

name. For example, ms-<version> .

3. Extract the contents of the archive, specifying the destination folder as the one created in

the previous step.

4. Alternatively, execute the jar -xvf command to extract the binary distribution files from the

zip archive.

1. Move the downloaded zip file from My Downloads to the folder created in the previous step.

2. Open the Windows Command Prompt and navigate to the folder that contains the archive

using the cd command

Running

23

3. Execute the jar -xvf command to extract the archive contents into the current folder.

C:Users<user>My Downloadsms-<version>jar -xvf "mms-

standalone-2.0.0.CR2.zip"

5. It is recommended that the folder holding the Standalone Media Server files (in this example,

the folder named mms-standalone- <version>) is moved to a user-defined location for

storing executable programs. For example, the Program Files folder.

6. Consider deleting the archive, if free disk space is an issue.

C:Users<user>My Downloadsms-<version>delete "mms-

standalone-2.0.0.CR2.zip"

3.3.4. Running

In the Linux terminal or Windows command prompt, the Standalone Media Server has started

successfully if the last line of output is similar to the following

2100 [main] INFO org.mobicents.media.server.bootstrap.MainDeployer - [[[[[[[[[Mobicents Media

 Server: release.version=2.0.0.CR2 Started]]]]]]]]]

Procedure 3.12. Running the Standalone Media Server on Linux

1. Change the working directory to installation directory (the one in which the zip file's contents

was extracted to)

downloads]$ cd "mms-standalone-<version>"

2. (Optional) Ensure that the bin/run.sh start script is executable.

ms-<version>]$ chmod +x bin/run.sh

3. Execute the run.sh Bourne shell script.

ms-<version>]$./bin/run.sh

Note

Instead of executing the Bourne shell script to start the server, the run.jar

executable Java archive can be executed from the bin directory:

Chapter 3. Installing the Mob...

24

mms-standalone-<version>]$ java -jar bin/run.jar

Procedure 3.13. Running the Standalone Media Server on Windows

1. Using Windows Explorer, navigate to the bin subfolder in the installation directory.

2. The preferred way to start the Standalone Media Server is from the Command Prompt.

The command line interface displays details of the startup process, including any problems

encountered during the startup process.

Open the Command Prompt via the Start menu and navigate to the correct folder:

 C:Users<user>My Downloads>cd "mms-standalone-<version>"

3. Start the Standalone Server by executing one of the following files:

• run.bat batch file:

C:Users<user>My Downloadsmms-standalone<version>>binrun.bat

• run.jar executable Java archive:

C:Users<user>My Downloadsmms-standalone-<version>>java -jar binrun.jar

3.3.5. Stopping

Detailed instructions for stopping the Standalone Media Server are given below, arranged by

platform. If the server is correctly stopped, the following three lines are displayed as the last output

in the Linux terminal or Command Prompt:

 [Server] Shutdown complete Shutdown complete Halting VM

Procedure 3.14. Stopping the Standalone Media Server on Linux

1. Change the working directory to the binary distribution's install directory.

Server Structure

25

 ~]$ cd "mms-standalone-<version>"

2. (Optional) Ensure that the bin/shutdown.sh start script is executable:

 mms-standalone-<version>]$ chmod +x

 bin/shutdown.sh

3. Run the shutdown.sh executable Bourne shell script with the -S option (the short option for

--shutdown) as a command line argument:

mms-standalone-<version>]$./bin/shutdown.sh -S

Note

The shutdown.jar executable Java archive with the -S option can also be used

to shut down the server:

mms-standalone-<version>]$ java -jar bin/shutdown.jar -S

Procedure 3.15. Stopping Standalone Media Server on Windows

• Stopping the Standalone Media Server on Windows consists of executing either the

shutdown.bat or the shutdown.jar executable file in the bin subfolder of the MMS for JBoss

binary distribution. Ensure the -S option (the short option for --shutdown) is included in the

command line argument.

C:Users<user>My Downloadsmms-standalone-<version>>binshutdown.bat -S

• The shutdown.jar executable Java archive with the -S option can also be used to shut

down the server:

C:Users<user>My Downloadsmms-standalone-<version>>java -jar

 binshutdown.jar -S

3.3.6. Server Structure

Now the server is installed, it is important to understand the layout of the server directories.

An understanding of the server structure is useful when deploying examples, and making

configuration changes. It is also useful to understand what components can be removed to reduce

the server boot time.

Chapter 3. Installing the Mob...

26

The directory structure in the Standalone Media Server installation directory is named using a

standard structure. Table 3.3, “Directory Structure” describes each directory, and the type of

information contained within each location.

Table 3.3. Directory Structure

Directory Name Description

bin All the entry point JARs and start scripts

included with the Media Server distribution

are located in the bin directory

conf The conf directory contains the bootstrap

descriptor, bootstrap-beans.xml by default,

file for a given server configuration. This

defines the core services that are fixed for the

lifetime of the server.

deploy The deploy directory is the default location the

hot deployment service looks to for dynamic

deployment content. This may be overridden

through the URLDeploymentScanner URLs

attribute.

lib Contains the startup JAR files used by the

server.

log Contains the logs from the bootstrap logging

service. The log directory is the default

directory into which the bootstrap logging

service places its logs, however, the location

can be overridden by altering the log4j.xml

configuration file. This file is located in the /

conf directory.

The Standalone Media Server uses a number of XML configuration files that control various

aspects of the server. Table 3.4, “Core Configuration File Set” describes the location of the key

configuration files, and provides a description of the

Table 3.4. Core Configuration File Set

File Name and Location Description

conf/bootstrap-beans.xml Specifies which additional microcontainer

deployments are loaded as part of the

bootstrap phase. bootstrap-beans.xml

references other configuration files contained

in the /conf/bootstrap/ directory. For

a standard configuration, the bootstrap

configuration files require no alteration.

Testing

27

File Name and Location Description

conf/log4j.properties Specifies the Apache log4j framework

category priorities and appenders used by the

Media Server.

deploy/ann-beans.xml Specifies the configuration for announcement

access points.

deploy/ivr-beans.xml Specifies the configuration for Interactive

Voice Response (IVR) endpoints.

deploy/prelay-beans.xml Specifies the configuration for Packet Relay

endpoints.

deploy/cnf-beans.xml Specifies the configuration for Conference

endpoints.

deploy/test-beans.xml Specifies the endpoint for test capabilities.

deploy/mgcp-conf.xml Specifies the configuration for the MGCP

controller.

3.3.7. Testing

For information on testing the Media Server, refer to Section 3.4, “ Writing and Running Tests

Against the Media Server ” .

3.3.8. Uninstalling

To uninstall the Media Server, delete the directory containing the extracted binary distribution.

3.4. Writing and Running Tests Against the Media

Server

For information about the different kinds of tests that the Media Server provides, refer to

Writing and Running Tests Against MMS [http://groups.google.com/group/mobicents-public/web/

mobicents-ms-tests] .

http://groups.google.com/group/mobicents-public/web/mobicents-ms-tests
http://groups.google.com/group/mobicents-public/web/mobicents-ms-tests
http://groups.google.com/group/mobicents-public/web/mobicents-ms-tests

28

Chapter 4.

29

Media Server Architecture
Media services have played an important role in the traditional Time Division Multiplexing

(TDM)-based telephone network. As the network migrates to an Internet Protocol (IP)-based

environment, media services are also moving to new environments.

One of the most exciting trends is the emergence and adoption of complementary modular

standards that leverage the Internet to enable media services to be developed, deployed and

updated more rapidly than before in a network architecture that supports the two concepts called

provisioning-on-demand and scaling-on-demand .

4.1. High level components

The Media Server's high degree of modularity benefits the application developer in several

ways. The already-tight code can be further optimized to support applications that require small

footprints. For example, if PSTN interconnection is unnecessary in an application, then the D-

channel feature can be removed from the Media Server. In the future, if the same application

is deployed within a Signaling System 7 (SS7) network, then the appropriate endpoint can be

enabled, and the application is then compatible.

Chapter 4. Media Server Archi...

30

The Media Server architecture assumes that call control intelligence lies outside of the Media

Server, and is handled by an external entity. The Media Server also assumes that call controllers

will use control procedure described by protocols such as MGCP , MEGACO or MSML , among

others. Each specific control module can be plugged in directly to the server as a standard

deployable unit. Utilizing the JBoss Microcontainer for the implementation of control protocol-

specific communication logic allows for simple deployment. It is therefore unnecessary for

developers to configure low-level transaction and state management details, multi-threading,

connection-pooling and other low-level details and API s.

The Mobicents Media Server call control intelligence can be a JSLEE Application deployed on

Mobicents JAIN SLEE Server or any other JAIN SLEE container. In case of Mobicents JSLEE

Server there is already MGCP Resource Adaptor available.

Mobicents Media Server can also be controlled from Mobicents SIP Servlets or any other SIP

Servlets container using any of the above call control procedures or using the Mobicents JSR-309

Implementation. Mobicents JSR-309 Implementation internally leverages MGCP protocol to

controll media server. Mobicents JSR-309 implementation details is out of scope of this document.

It is also possible to control the Mobicents Media Server from any third party Java application

(including standalone Java apps) or other technologies like .NET etc as far as they follow standrad

protocols like MGCP, MEGACO etc. There is no dependency on call controller but the protocol

used between the call controller and Mobicents Media Server.

Many key features of Mobicents Media Server are provided by integrating individual components

operating using generic Service Provider Interface. There are two of types of high level

components: Endpoints and Controllers.

4.1.1. Endpoints

It is convenient to consider a media gateway as a collection of endpoints. An endpoint is a logical

representation of a physical entity such as an analog phone or a channel in a trunk. Endpoints are

sources or sinks of data and can be either physical or virtual. Physical endpoint creation requires

hardware installation, while software is sufficient for creating virtual endpoints. An interface on a

gateway that terminates at a trunk connected to a PTSN switch would be an example of a physical

endpoint. An audio source in an audio content server would be an example of a virtual endpoint.

The type of the endpoint determines its functionality. Our analysis, so far, has led us to isolate

the following basic endpoint types:

• digital signal 0 (DS0)

• analog line

• announcement server access point

• conference bridge access point

• packet relay

Endpoints

31

• Asynchronous Transfer Mode (ATM) "trunk side" interface

This list is not final: other endpoint types may be defined in the future, such as test endpoints which

could be used to check network quality, or frame-relay endpoints that could be used to manage

audio channels multiplexed over a frame-relay virtual circuit.

Descriptions of Various Access Point Types

Announcement Server Access Point

An announcement server endpoint provides access, intuitively, to an announcement server.

Upon receiving requests from the call agent, the announcement server “plays” a specified

announcement. A given announcement endpoint is not expected to support more than one

connection at a time. Connections to an announcement server are typically one-way; they are

“half-duplex” : the announcement server is not expected to listen to audio signals from the

connection. Announcement access points are capable of playing announcements; however,

these endpoints do not have the capability of transcoding. To achieve transcoding, a Packet

Relay must be used. Also note that the announcement server endpoint can generate tones,

such as dual-tone multi-frequency (DTMF).

Interactive Voice Response Access Point

An Interactive Voice Response (IVR) endpoint provides access to an IVR service. Upon

requests from the call agent, the IVR server “plays” announcements and tones, and “listens”

for responses, such as (DTMF) input or voice messages, from the user. A given IVR endpoint

is not expected to support more than one connection at a time. Similarly to announcement

endpoints, IVR endpoints do not possess media-transcoding capabilities. IVR plays and

records in the format in which the media was stored or received.

Conference Bridge Access Point

A conference bridge endpoint is used to provide access to a specific conference. Media

gateways should be able to establish several connections between the endpoint and packet

networks, or between the endpoint and other endpoints in the same gateway. The signals

originating from these connections are mixed according to the connection “mode” (as specified

later in this document). The precise number of connections that an endpoint supports is

characteristic of the gateway, and may, in fact, vary according to the allocation of resources

within the gateway.

Packet Relay Endpoint

A packet relay endpoint is a specific form of conference bridge that typically only supports

two connections. Packet relays can be found in firewalls between a protected and an open

network, or in transcoding servers used to provide interoperation between incompatible

gateways, such as gateways which don't support compatible compression algorithms and

gateways which operate over different transmission networks, such as IP or ATM.

Echo Endpoint

An echo—or loopback—endpoint is a test endpoint that is used for maintenance and/or

continuity testing. The endpoint returns the incoming audio signal from the endpoint back to

that same endpoint, thus creating an echo effect

Chapter 4. Media Server Archi...

32

4.1.2. Controller Modules

Controller Modules allows external interfaces to be implemented for the Media Server. Each

controller module implements an industry standard control protocol, and uses a generic SPI to

control processing components or endpoints.

One such controller module is the Media Gateway Control Protocol (MGCP). MGCP is designed as

an internal protocol within a distributed system that appears to outside as a single VoIP gateway.

The MGCP is composed of a Call Agent, and set of gateways including at least one "media

gateway" which performs the conversion of media signal between circuit and packets, and atleast

one "signalling gateway" when connected to SS7 controlled network. The Call Agent can be

distributed over several computer platforms.

4.2. Design Overview

The Mobicents Media Server is developed on top of existing Java technologies. The Java platform

is ideal for network computing. It offers single, unified-and-unifying programming model that

can connect all elements of a business infrastructure. The modularization effort is supported by

use of the JBoss Microcontainer which allows to deploy services written as Plain Java Objects

into a Standard Java SE runtime environment in controlled manner and achieve great level of

customization. Dependencies are fully managed to ensure that new services cannot be deployed

until services they depend on have first been deployed. Where it makes sense to do so you can

even re-deploy services at runtime providing that you access them via the microcontainer bus.

Undeploying a service causes all dependent services to be undeployed first in order to maintain

the integrity of the system.

Media Source and Media Sink. To achieve the modularization every media component's in

Mobicents Media Server (like AudioPlayer, Recorder, DTMF Detector/Generator) are identified as

either MediaSource or MediaSink. As name suggests MediaSource is the one that has capability

to generate media (AudioPlayer) while MediaSink (Recorder) is the one that consumes media.

Components and Factories. For creating any component Media Server uses suitable Factory.

Each component has its unique identifier and name defined by its factory. Component identifier is

unique within the entire server implementation. The name of component in opposite way is shared

across component produced by same factory.

Endpoint Composition. Each of the Endpoints declared in Mobicents Media Server are

composition of these Media Source/Sink and also depends on how each of these media

components are ordered. For example which media component is first in line to consume/produce

media. The transition of media through this ordered media components is achieved by Channels.

Channel. Channel is not a media component but it is able to join with Media Source and Media

Sink or join with other channel. The role of channel is to construct media flow path by joining

components using pipes.

Design Overview

33

Pipe. Each Pipe has either inlet or outlet or both defined. A Pipe with only inlet defined acts as

exhaust for a channel while Pipe with only outlet acts as intake for a Channel. If a Pipe has both

inlet and outlet defined, it means its an internal pipe joining two components.

For example in diagram above Pipe1 (joining source and Component A) is the one with only outlet

defined and Pipe3 (joinig sink and Component B) is the one with only inlet defined while Pipe2

(joining Component A and Component B) has both inlet and outlet defined and hence acts as

internal pipe joining Component A and Component B.

Endpoints may only decalre Channel to receive media (Rx-Channel) or Channel to send media

(Tx-Channel) or Channel for both receiving as well as sending media.

In addition to Channels, each Endpoints also has either MediaSource or MediaSink or both acting

as primary source/sink of Media. If Endpoint doesn't have primary MediaSource or MediaSink

it needs to declare the ResourceGroup which is a container for MediaSource and MediaSink.

For exampl IVR Endpoint has both MediaSource and MediaSink while Conference Endpoint has

ResourceGroup (ConferenceBridge)

Table 4.1. Component Definition

Component Media Source Media Sink Component

Factory

Description

AudioPlayer yes no org.mobicents.media.server.

impl.resource.

audio.AudioPlayerFactory

AudioPlayer

is capable of

playing pcma,

pcmu, speex,

gsm, linear,

linear 44100

mono, linear

Chapter 4. Media Server Archi...

34

Component Media Source Media Sink Component

Factory

Description

44100 stero

encoded files

Recorder no yes org.mobicents.media.server.

impl.resource.

audio.RecorderFactory

Recorder is

capable of

recording in

pcma, pcmu,

linear formats

Rfc2833Detector no yes org.mobicents.media.server.

impl.resource.

dtmf.Rfc2833DetectorFactory

Rfc2833Detector

is capable

of detecting

RFC2833 RTP

Events. Basically

used for DTMF

detection.

Rfc2833Generator yes no org.mobicents.media.server.

impl.resource.

dtmf.Rfc2833GeneratorFactory

Rfc2833Generator

is capable of

generating

RFC2833 RTP

Events. Basically

used for DTMF

generation.

InbandDetector no yes org.mobicents.media.server.

impl.resource.

dtmf.InbandDetectorFactory

InbandDetector

is capable

of detecting

inband DTMF.

InbandDetector

is mostly used

when detecting

DTMF from

conventional

SS7 line

where as

Rfc2833Detector

is used only for

IP netwrok

InbandGenerator yes no org.mobicents.media.server.

impl.resource.

dtmf.InbandGeneratorFactory

InbandGeneratorFactory

is capable of

generating

inband DTMF.

InbandGenerator

is mostly used

Design Overview

35

Component Media Source Media Sink Component

Factory

Description

when generating

DTMF on

conventional

SS7 line

where as

Rfc2833Generator

is used only for

IP netwrok

Player yes no org.mobicents.media.server.

impl.resource.

audio.soundcard.PlayerFactory

This is special

kind of

component to

play the media

directly on

sound hardware

installed on

Media Server.

The sound

hardware is any

hardware that

can understand

the Format of

media arriving.

For example

to directly play

media on audio

card of computer

where media

server is running

Demultiplexer yes no org.mobicents.media.server.

impl.resource.

DemuxFactory

A Demultiplexer

is one that has

one media

stream as

input but can

produce many

media stream

as output.

For example

Demultiplexer

can be in path

of IVR endpoint

RxChannel and

Chapter 4. Media Server Archi...

36

Component Media Source Media Sink Component

Factory

Description

output's from

Demultiplexer

can be

connected to

InbandDetector

as well as

Rfc2833Detector

using Pipe.

Multiplexer no yes org.mobicents.media.server.

impl.resource.

MuxFactory

A Multiplexer

is one that has

many media

stream's as

input but will

produce only one

media stream

as output.

For example

Multiplexer can

be in path of

IVR endpoint

TxChannel

and input's of

Multiplexer can

be connected to

InbandGenerator

as well as

Rfc2833Generator

using Pipe.

Chapter 5.

37

Configuring the Mobicents Media

Server
All endpoints are plugged as POJO service in JBoss Microcontainers. To create a component for

the Mobicents Media Server, the appropriate component Factory must be used. Each component

within a factory has an identifier and name that is unique across the server implementation.

Because each component is unique in the Media Server, it can be referenced and pulled into

other applications.

5.1. Timer

The Timer provides a time source, and functions similar to a crystal oscillator. This endpoint can

be configured to specify the millisecond interval between two oscillations.

The configurable aspect of the Timer is:

heartBeat

Time interval (in milliseconds) between two subsequent oscillations.

5.2. MainDeployer

The MainDeployer endpoint manages hot deployment of components and enpoints. Hot-

deployable components and endpoints are defined as those that can be added to or removed

from the running server.

MainDeployer scans the /deploy directory, looking for configuration files that have changed since

the last scan. When MainDeployer detects any changes to the directory, any changes resulting

from the removed configuration file are processed. This includes re-deploying changed beans,

adding new beans, or removing beans that are no longer required.

To understand the functionality of the MainDeployer endpoint, experiment by removing the ann-

beans.xml configuration file from the /deploy directory while the server is running. Observe how

the server behaves once the file is removed from the folder.

The configurable aspects of MainDeployer are:

path

Specifies the location of the configuration XML files. Generally, this is the /deploy directory.

scanPeriod

Specifies the time (in milliseconds) that MainDeployer checks the specified path for changes

to the directory.

Chapter 5. Configuring the Mo...

38

fileFilter

Specifies the file extensions that will be deployed or monitored. Supported file extensions are

-beans.xml and -conf.xml

5.3. RTPFactory

RTPFactory is responsible for managing the actual RTP Socket. The reference of RTPFactory

is passed to each endpoint which, in turn, leverage the RTPFactory to create Connections and

decide on supported codecs.

The configurable aspects of the RTPFactory are:

formatMap

Specifies the relationship between the RTP payload type and format. Table 5.1, “Supported

RTP Formats” describes the payload types and their supported formats.

bindAddress

Specifies the IP address to which the RTP socket is bound.

portRange

Specifies the port range within which the RTP socket will be created. The first free port in the

given range is assigned to the socket.

jitter

Specifies the size of the jitter buffer (in milliseconds) for incoming packets.

timer

Specifies the timer instance from which reading process is synchronized.

stunAddress

Specifies the location of the STUN server to use. For more information regarding STUN, refer

to Section 5.12, “MMS STUN Support” .

Supported RTP Formats. The RTPFactory is able to receive the following RTP media types:

Table 5.1. Supported RTP Formats

Payload Type Format Specification Description

0 PCMU RFC 1890 [http://

www.ietf.org/rfc/

rfc1890.txt]

ITU G.711 U-law

audio

3 GSM RFC 1890 [http://

www.ietf.org/rfc/

rfc1890.txt]

GSM full-rate audio

8 PCMA RFC 1890 [http://

www.ietf.org/rfc/

rfc1890.txt]

ITU G.711 A-law

audio

http://www.ietf.org/rfc/rfc1890.txt
http://www.ietf.org/rfc/rfc1890.txt
http://www.ietf.org/rfc/rfc1890.txt
http://www.ietf.org/rfc/rfc1890.txt
http://www.ietf.org/rfc/rfc1890.txt
http://www.ietf.org/rfc/rfc1890.txt
http://www.ietf.org/rfc/rfc1890.txt
http://www.ietf.org/rfc/rfc1890.txt
http://www.ietf.org/rfc/rfc1890.txt
http://www.ietf.org/rfc/rfc1890.txt
http://www.ietf.org/rfc/rfc1890.txt
http://www.ietf.org/rfc/rfc1890.txt

Digital Signal Processor (DSP)

39

Payload Type Format Specification Description

18 G729 N/A G.729 audio

31 H.261 N/A Video

97 SPEEX N/A Speex narrow band

audio

101 DTMF RFC 2893 [http://

www.ietf.org/rfc/

rfc2893.txt]

Dual-tone Multi-

frequency (DTMF)

Events

5.4. Digital Signal Processor (DSP)

The configurable aspect of the DspFactory are:

name

The name of the processor

CodecFactories

The list of codecs

5.5. Audio Player

The configurable aspect of the AudioPlayerFactory are:

name

The name of the Audio Player

5.6. Audio Recorder

The configurable aspect of the RecorderFactory are:

name

The name of the Audio Recorder

recordDir

The location of recrodDir will be considered as parent and all the audio files recorded will

go in this parent directory. The location specified by recordDir should be present in folder

structure else Recorder will fail. It can be relative like '${mms.home.dir}' in which case all

the recorded files will be stored in MMS_HOME or user can specify absolute value like '/

home/user/workarea/myapp/recordedfiles' on linux and 'c:/workarea/myapp/recordedfiles' on

windows

5.7. DTMF

Two different types of components are used to handle inband and rfc2833 mode of detecting and

generating DTMF tones.

http://www.ietf.org/rfc/rfc2893.txt
http://www.ietf.org/rfc/rfc2893.txt
http://www.ietf.org/rfc/rfc2893.txt
http://www.ietf.org/rfc/rfc2893.txt

Chapter 5. Configuring the Mo...

40

5.7.1. Rfc2833 Detector

The configurable aspects of the Rfc2833DetectorFactory are:

name

The name of the detector

5.7.2. Inband Detector

The configurable aspects of the InbandDetectorFactory are:

name

The name of the detector

5.7.3. Rfc2833 Generator

The configurable aspects of the Rfc2833GeneratorFactory are:

name

The name of the generator

5.7.4. Inband Generator

The configurable aspects of the InbandGeneratorFactory are:

name

The name of the generator

5.8. Announcement Server Access Points

An Announcement Server endpoint provides access to an announcement service. Upon receiving

requests from the call agent, an Announcement Server will “play” a specified announcement. A

given announcement endpoint is not expected to support more than one connection at a time.

Connections to an Announcement Server are typically one-way (“half-duplex”), therefore, the

Announcement Server is not expected to listen to audio signals from the connection.

Announcement endpoints do not transcode announced media; in order to achieve this, the

application must use Packet Relay endpoints on the media path. Also note that the announcement

server endpoint can generate a tones such as DTMF, Busy, Congestion etc.

Announcement Server Access Points

41

Example 5.1. The Announcement Endpoint Declaration

 <bean name="Ann-TxChannelFactory"

 class="org.mobicents.media.server.resource.ChannelFactory" />

 <bean name="AnnConnectionFactory" class="org.mobicents.media.server.ConnectionFactory">

 <property name="txChannelFactory"><inject bean="Ann-TxChannelFactory"/></property>

 </bean>

 <!-- ANNOUNCEMENT -->

 <bean name="Announcement-Access-Point"

 class="org.mobicents.media.server.EndpointImpl">

 <property name="localName">

 /mobicents/media/aap/[1..10]

 </property>

 <property name="timer">

 <inject bean="Timer" />

 </property>

 <property name="sourceFactory">

 <inject bean="AudioPlayerFactory" />

 </property>

 <property name="rtpFactory">

Chapter 5. Configuring the Mo...

42

 <map class="java.util.Hashtable" keyClass="java.lang.String"

 valueClass="org.mobicents.media.server.impl.rtp.RtpFactory">

 <entry>

 <key>audio</key>

 <value>

 <inject bean="RTPAudioFactory" />

 </value>

 </entry>

 </map>

 </property>

 <property name="connectionFactory">

 <inject bean="AnnConnectionFactory" />

 </property>

 </bean>

Configuration of an Announcement Server Access Point . The configurable attributes of

the Announcement Server are as follows:

localName

Specifies the name under which the endpoint is to be bound.

This parameter allows a set of enpoints to be specified, which are then created and bound

automatically by the Announcement Server. Consider the scenario where a total of 10

endpoints are required. To specify this in the attribute, the following path is provided: /media/

aap/[1..10] . The [1..10] in the directory path tells the Announcement Server to create a

set of 10 endpoints in the /aap directory, named according to the endpoint number, which start

at one and finish at ten. For example, /media/aap/1, media/aap/2, ... media/aap/10 .

timer

Specifies the timer instance from which reading process is synchronized.

sourceFactory

Specifies the Java bean responsible for generating the source media.

rtpFactory

Specifies the location of the RTP Factory. For more information about the RTP Factory, refer

to Section 5.3, “RTPFactory”

connectionFactory

Specifies the instance of ConnectionFactory that wraps the custom transmission channel

factory.

Customization. The Announcement Endpoint by default is configured to only play audio files.

Its also possible to generate Tones like DTMF using either Rfc2833Generator or InbandDetector

Announcement Server Access Points

43

or both. To use these Generators you also need to declare a Multiplexer that multiplexe's the

media stream from AudioPlayer and DTMF Generatot to one stream. Bellow shown is example

of how Rfc2833Generator can be used.

 <bean name="MuxFactory"

 class="org.mobicents.media.server.impl.resource.MuxFactory">

 <constructor>

 <parameter>Mux</parameter>

 </constructor>

 </bean>

 <bean name="Rfc2833GeneratorFactory"

 class="org.mobicents.media.server.impl.resource.dtmf.Rfc2833GeneratorFactory">

 <property name="name">Rfc2833GeneratorFactory</property>

 </bean>

 <bean name="ann-Pipe-1"

 class="org.mobicents.media.server.resource.PipeFactory">

 <property name="outlet">Mux</property>

 </bean>

 <bean name="ann-Pipe-2"

 class="org.mobicents.media.server.resource.PipeFactory">

 <property name="inlet">Rfc2833GeneratorFactory</property>

 <property name="outlet">Mux</property>

 </bean>

 <bean name="ann-Pipe-3"

 class="org.mobicents.media.server.resource.PipeFactory">

 <property name="inlet">Mux</property>

 <property name="outlet">audio.processor</property>

 </bean>

 <bean name="ann-Pipe-4"

 class="org.mobicents.media.server.resource.PipeFactory">

 <property name="inlet">audio.processor</property>

 </bean>

 <bean name="TxChannelFactory"

 class="org.mobicents.media.server.resource.ChannelFactory">

 <property name="components">

 <list>

 <inject bean="MuxFactory" />

 <inject bean="Rfc2833GeneratorFactory" />

 <inject bean="AudioProcessorFactory" />

 </list>

 </property>

 <property name="pipes">

 <list>

Chapter 5. Configuring the Mo...

44

 <inject bean="ann-Pipe-1" />

 <inject bean="ann-Pipe-2" />

 <inject bean="ann-Pipe-3" />

 <inject bean="ann-Pipe-4" />

 </list>

 </property>

 </bean>

 <bean name="AnnConnectionFactory"

 class="org.mobicents.media.server.ConnectionFactory">

 <property name="txChannelFactory"><inject

 bean="TxChannelFactory"/></property>

 </bean>

5.9. Interactive Voice Response

An Interactive Voice Response (IVR) endpoint provides access to an IVR service. Upon requests

from the Call Agent, the IVR server “plays” announcements and tones, and “listens” to voice

messages from the user. A given IVR endpoint is not expected to support more than one

connection at a time. For example, if several connections were established to the same endpoint,

then the same tones and announcements would be played simultaneously over all connections.

IVR endpoints do not posses the capability of transcoding played or recorded media streams.

IVRs record or play in the format that the data was delivered.

Interactive Voice Response

45

Example 5.2. The IVREndpointManagement MBean

 <bean name="IVR-TxChannelFactory"

 class="org.mobicents.media.server.resource.ChannelFactory" />

 <bean name="IVR-Pipe-1"

 class="org.mobicents.media.server.resource.PipeFactory">

 <property name="outlet">audio.processor</property>

 </bean>

 <bean name="IVR-Pipe-2"

 class="org.mobicents.media.server.resource.PipeFactory">

 <property name="inlet">audio.processor</property>

 <property name="outlet">DeMux</property>

 </bean>

 <bean name="IVR-Pipe-3"

 class="org.mobicents.media.server.resource.PipeFactory">

 <property name="inlet">DeMux</property>

Chapter 5. Configuring the Mo...

46

 <property name="outlet">Rfc2833DetectorFactory</property>

 </bean>

 <bean name="IVR-Pipe-4"

 class="org.mobicents.media.server.resource.PipeFactory">

 <property name="inlet">DeMux</property>

 </bean>

 <bean name="IVR-RxChannelFactory"

 class="org.mobicents.media.server.resource.ChannelFactory">

 <property name="components">

 <list>

 <inject bean="DeMuxFactory" />

 <inject bean="Rfc2833DetectorFactory" />

 <inject bean="AudioProcessorFactory" />

 </list>

 </property>

 <property name="pipes">

 <list>

 <inject bean="IVR-Pipe-1" />

 <inject bean="IVR-Pipe-2" />

 <inject bean="IVR-Pipe-3" />

 <inject bean="IVR-Pipe-4" />

 </list>

 </property>

 </bean>

 <bean name="IVRConnectionFactory" class="org.mobicents.media.server.ConnectionFactory">

 <property name="txChannelFactory"><inject bean="IVR-TxChannelFactory"/></property>

 <property name="rxChannelFactory"><inject bean="IVR-RxChannelFactory"/></property>

 </bean>

 <!-- IVR -->

 <bean name="IVREndpoint"

 class="org.mobicents.media.server.EndpointImpl">

 <property name="localName">

 /mobicents/media/IVR/[1..10]

 </property>

 <property name="timer">

 <inject bean="Timer" />

 </property>

 <property name="sourceFactory">

 <inject bean="AudioPlayerFactory" />

Interactive Voice Response

47

 </property>

 <property name="sinkFactory">

 <inject bean="RecorderFactory" />

 </property>

 <property name="rtpFactory">

 <map class="java.util.Hashtable" keyClass="java.lang.String"

 valueClass="org.mobicents.media.server.impl.rtp.RtpFactory">

 <entry>

 <key>audio</key>

 <value>

 <inject bean="RTPAudioFactory" />

 </value>

 </entry>

 </map>

 </property>

 <property name="connectionFactory">

 <inject bean="IVRConnectionFactory" />

 </property>

 </bean>

Configuration of the Interactive Voice Response Endpoint . The configurable attributes of

the Interactive Voice Response endpoint are as follows:

localName

Specifies the name under which the endpoint is to be bound.

This parameter allows a set of enpoints to be specified, which are then created and bound

automatically by the Media Server. Consider the scenario where a total of 10 endpoints are

required. To specify this in the attribute, the following path is provided: /mobicents/media/

IVR/[1..10] . The [1..10] in the directory path tells the Media Server to create a set of

10 endpoints in the /IVR directory, named according to the endpoint number, which start

at one and finish at ten. For example, /mobicents/media/IVR/1, /mobicents/media/

IVR/2, ... /mobicents/media/IVR/10 .

timer

Specifies the timer instance from which reading process is synchronized.

sourceFactory

Specifies the Java bean responsible for generating the source media.

sinkFactory

Specifies the Java bean responsible for using the source media generated by the

sourceFactory bean.

Chapter 5. Configuring the Mo...

48

rtpFactory

Specifies the location of the RTP Factory. For more information about the RTP Factory, refer

to Section 5.3, “RTPFactory”

connectionFactory

Specifies the instance of ConnectionFactory that wraps the custom transmission and receiving

channel factory.

Customization. The IVR by default detects only RFC 2833 DTMF events. However if

you want to use Inband detector instead of RFC2833, replace Rfc2833DetectorFactory with

InbandDetectorFactory. You will have to declare the InbandDetectorFactory bean as shown

 <bean name="InbandDetectorFactory"

 class="org.mobicents.media.server.impl.resource.dtmf.InbandDetectorFactory">

 <property name="name">InbandDetectorFactory</property>

 </bean>

It is also possible to have RFC2833 and Inband detector both working at same time. All you need

to do is declare InbandDetectorFactory as explained above and have one more pipe that connects

this InbandDetectorFactory with already declared DeMux.

 <bean name="InbandDetectorFactory"

 class="org.mobicents.media.server.impl.resource.dtmf.InbandDetectorFactory">

 <property name="name">InbandDetectorFactory</property>

 </bean>

 <bean name="IVR-TxChannelFactory"

 class="org.mobicents.media.server.resource.ChannelFactory" />

 <bean name="IVR-Pipe-1"

 class="org.mobicents.media.server.resource.PipeFactory">

 <property name="outlet">audio.processor</property>

 </bean>

 <bean name="IVR-Pipe-2"

 class="org.mobicents.media.server.resource.PipeFactory">

 <property name="inlet">audio.processor</property>

 <property name="outlet">DeMux</property>

 </bean>

 <bean name="IVR-Pipe-3"

 class="org.mobicents.media.server.resource.PipeFactory">

 <property name="inlet">DeMux</property>

 <property name="outlet">Rfc2833DetectorFactory</property>

 </bean>

Packet Relay Endpoint

49

 <bean name="IVR-Pipe-4"

 class="org.mobicents.media.server.resource.PipeFactory">

 <property name="inlet">DeMux</property>

 <property name="outlet">InbandDetectorFactory</property>

 </bean>

 <bean name="IVR-Pipe-5"

 class="org.mobicents.media.server.resource.PipeFactory">

 <property name="inlet">DeMux</property>

 </bean>

 <bean name="IVR-RxChannelFactory"

 class="org.mobicents.media.server.resource.ChannelFactory">

 <property name="components">

 <list>

 <inject bean="DeMuxFactory" />

 <inject bean="Rfc2833DetectorFactory" />

 <inject bean="InbandDetectorFactory" />

 <inject bean="AudioProcessorFactory" />

 </list>

 </property>

 <property name="pipes">

 <list>

 <inject bean="IVR-Pipe-1" />

 <inject bean="IVR-Pipe-2" />

 <inject bean="IVR-Pipe-3" />

 <inject bean="IVR-Pipe-4" />

 <inject bean="IVR-Pipe-5" />

 </list>

 </property>

 </bean>

5.10. Packet Relay Endpoint

A packet relay endpoint is a specific form of conference bridge that typically only supports two

connections. Packet relays can be found in firewalls between a protected and an open network,

or in transcoding servers used to provide interoperation between incompatible gateways (for

example, gateways which do not support compatible compression algorithms, or gateways which

operate over different transmission networks such as IP or ATM).

Chapter 5. Configuring the Mo...

50

Example 5.3. The PREndpointManagement MBean

 <bean name="PR-Pipe1"

 class="org.mobicents.media.server.resource.PipeFactory">

 <property name="outlet">audio.processor</property>

 </bean>

 <bean name="PR-Pipe2"

 class="org.mobicents.media.server.resource.PipeFactory">

 <property name="inlet">audio.processor</property>

 </bean>

 <bean name="PR-RxChannelFactory"

 class="org.mobicents.media.server.resource.ChannelFactory">

 <property name="components">

 <list>

 <inject bean="AudioProcessorFactory" />

 </list>

 </property>

 <property name="pipes">

 <list>

 <inject bean="PR-Pipe1" />

 <inject bean="PR-Pipe2" />

 </list>

 </property>

 </bean>

 <bean name="PR-TxChannelFactory"

 class="org.mobicents.media.server.resource.ChannelFactory">

Packet Relay Endpoint

51

 <property name="components">

 <list>

 <inject bean="AudioProcessorFactory" />

 </list>

 </property>

 <property name="pipes">

 <list>

 <inject bean="PR-Pipe1" />

 <inject bean="PR-Pipe2" />

 </list>

 </property>

 </bean>

 <bean name="PacketRelayConnectionFactory" class="org.mobicents.media.server.ConnectionFactory">

 <property name="txChannelFactory"><inject bean="PR-TxChannelFactory"/></property>

 <property name="rxChannelFactory"><inject bean="PR-RxChannelFactory"/></property>

 </bean>

 <bean name="PacketRelayBridgeFactory"

 class="org.mobicents.media.server.impl.resource.prelay.BridgeFactory">

 <property name="name">packet.relay</property>

 </bean>

 <bean name="PacketRelayEndpoint"

 class="org.mobicents.media.server.EndpointImpl">

 <property name="localName">

 /mobicents/media/packetrelay/[1..10]

 </property>

 <property name="timer">

 <inject bean="Timer" />

 </property>

 <property name="rtpFactory">

 <map class="java.util.Hashtable" keyClass="java.lang.String"

 valueClass="org.mobicents.media.server.impl.rtp.RtpFactory">

 <entry>

 <key>audio</key>

 <value>

 <inject bean="RTPAudioFactory" />

 </value>

 </entry>

 </map>

 </property>

Chapter 5. Configuring the Mo...

52

 <property name="connectionFactory">

 <inject bean="PacketRelayConnectionFactory" />

 </property>

 <property name="groupFactory">

 <inject bean="PacketRelayBridgeFactory" />

 </property>

 </bean>

Configuration of the Packet Relay Endpoint. The configurable attributes of the Packet Relay

endpoint are as follows:

localName

Specifies the name under which the endpoint is to be bound.

This parameter allows a set of enpoints to be specified, which are then created and bound

automatically by the Media Server. Consider the scenario where a total of 10 endpoints are

required. To specify this in the attribute, the following path is provided: /mobicents/media/

packetrelay/[1..10] . The [1..10] in the directory path tells the Media Server to create a

set of 10 endpoints in the /packetrelay directory, named according to the endpoint number,

which start at one and finish at ten. For example, /mobicents/media/packetrelay/1, /

mobicents/media/packetrelay/2, ... /mobicents/media/packetrelay/10 .

timer

Specifies the timer instance from which reading process is synchronized.

rtpFactory

Specifies the location of the RTP Factory. For more information about the RTP Factory, refer

to Section 5.3, “RTPFactory”

connectionFactory

Specifies the instance of ConnectionFactory that wraps the custom transmission and receiving

channel factory.

groupFactory

Specifies the instance of BridgeFactory that wraps the source and sink.

5.11. Conference Bridge Endpoint

The Mobicents Media Server should be able to establish several connections between the

endpoint and packet networks, or between the endpoint and other endpoints in the same gateway.

The signals originating from these connections shall be mixed according to the connection “mode” .

The precise number of connections an endpoint supports is a characteristic of the gateway, and

may in fact vary according with the allocation of resources within the gateway. The conf endpoint

Conference Bridge Endpoint

53

can play an announcement directly on connections and hence only for the participant listening to

an announcement, and can even detect DTMF for connection.

Example 5.4. The ConfEndpointManagement MBean

 <bean name="Cnf-DefaultChannelFactory"

 class="org.mobicents.media.server.resource.ChannelFactory" />

 <bean name="Cnf-Pipe-1"

 class="org.mobicents.media.server.resource.PipeFactory">

 <property name="outlet">audio.processor</property>

 </bean>

Chapter 5. Configuring the Mo...

54

 <bean name="Cnf-Pipe-2"

 class="org.mobicents.media.server.resource.PipeFactory">

 <property name="inlet">audio.processor</property>

 </bean>

 <bean name="Cnf-Dsp-ChannelFactory"

 class="org.mobicents.media.server.resource.ChannelFactory">

 <property name="components">

 <list>

 <inject bean="AudioProcessorFactory" />

 </list>

 </property>

 <property name="pipes">

 <list>

 <inject bean="Cnf-Pipe-1" />

 <inject bean="Cnf-Pipe-2" />

 </list>

 </property>

 </bean>

 <bean name="CnfBridgeFactory"

 class="org.mobicents.media.server.impl.resource.cnf.CnfBridgeFactory">

 <property name="name">cnf.bridge</property>

 </bean>

 <bean name="CnfConnectionFactory" class="org.mobicents.media.server.ConnectionFactory">

 <property name="txChannelFactory"><inject bean="Cnf-Dsp-ChannelFactory"/></

property>

 <property name="rxChannelFactory"><inject bean="Cnf-Dsp-ChannelFactory"/></

property>

 </bean>

 <!-- Conference with RTP and DSP -->

 <bean name="CnfEndpoint-1"

 class="org.mobicents.media.server.EndpointImpl">

 <property name="localName">

 /mobicents/media/cnf/[1..10]

 </property>

 <property name="timer">

 <inject bean="Timer" />

 </property>

 <property name="groupFactory">

Conference Bridge Endpoint

55

 <inject bean="CnfBridgeFactory" />

 </property>

 <property name="rtpFactory">

 <map class="java.util.Hashtable" keyClass="java.lang.String"

 valueClass="org.mobicents.media.server.impl.rtp.RtpFactory">

 <entry>

 <key>audio</key>

 <value>

 <inject bean="RTPAudioFactory" />

 </value>

 </entry>

 </map>

 </property>

 <property name="connectionFactory">

 <inject bean="CnfConnectionFactory" />

 </property>

 </bean>

 <bean name="CnfLocalConnectionFactory" class="org.mobicents.media.server.ConnectionFactory">

 <property name="txChannelFactory"><inject bean="Cnf-DefaultChannelFactory"/></

property>

 <property name="rxChannelFactory"><inject bean="Cnf-DefaultChannelFactory"/></

property>

 </bean>

 <!-- Conference local bridge -->

 <bean name="CnfEndpoint-local"

 class="org.mobicents.media.server.EndpointImpl">

 <property name="localName">

 /mobicents/media/cnf/local/[1..10]

 </property>

 <property name="timer">

 <inject bean="Timer" />

 </property>

 <property name="groupFactory">

 <inject bean="CnfBridgeFactory" />

 </property>

 <property name="connectionFactory">

 <inject bean="CnfLocalConnectionFactory" />

 </property>

Chapter 5. Configuring the Mo...

56

 </bean>

Configuration of the Conference Bridge Endpoint . The configurable attributes of the

Conference Bridge endpoint are as follows:

localName

Specifies the name under which the endpoint is to be bound.

This parameter allows a set of enpoints to be specified, which are then created and bound

automatically by the Media Server. Consider the scenario where a total of 10 endpoints are

required. To specify this in the attribute, the following path is provided: /mobicents/media/

cnf/local/[1..10] . The [1..10] in the directory path tells the Media Server to create a set

of 10 endpoints in the /cnf directory, named according to the endpoint number, which start

at one and finish at ten. For example, /mobicents/media/cnf/1, /mobicents/media/

cnf/2, ... /mobicents/media/cnf/10 .

timer

Specifies the timer instance from which reading process is synchronized.

connectionFactory

Specifies the instance of ConnectionFactory that wraps the custom transmission and receiving

channel factory.

groupFactory

Specifies the instance of BridgeFactory that wraps the source and sink.

5.12. MMS STUN Support

When using Mobicents Media Server behind a routing device performing Network Address

Translation, you may need to employ the Simple Traversal of User Datagram Protocol through

Network Address Translators (abbreviated: STUN) protocol in order for the server to operate

correctly. In general, it is recommended to avoid deploying the MMS behind a NAT, since

doing so can incur significant performance penalties and failures. Nevertheless, the current MMS

implementation does work with a static NAT, a.k.a. a one-to-one (1-1) NAT, in which no port-

mapping occurs. Full Cone NAT should also work with Address-Restricted NAT.

For more information STUN NAT classification, refer to chapter 5 of RFC3489 - STUN - Simple

Traversal of User Datagram Protocol (UDP) [http://www.faqs.org/rfcs/rfc3489.html] .

MMS STUN Configuration. Each RTPFactory in the Media Server can have its own

STUN preferences. The STUN options are specified in the configuration file mobicents-media-

server/mobicents-media-server.sar/META-INF/jboss-service.xml for embedded Media

Server and /conf/bootstrap-beans.xml for standalone Media Server Here is an example of an

RTPFactory bean with static NAT configuration:

http://www.faqs.org/rfcs/rfc3489.html
http://www.faqs.org/rfcs/rfc3489.html
http://www.faqs.org/rfcs/rfc3489.html

MMS STUN Support

57

Example 5.5. Static NAT configuration of an RTPFactory

 <bean name="RTPAudioFactory"

 class="org.mobicents.media.server.impl.rtp.RtpFactory">

 <property name="formatMap">

 <map class="java.util.Hashtable"

 keyClass="java.lang.Integer"

 valueClass="org.mobicents.media.Format">

 <entry>

 <key>0</key>

 <value>

 <inject bean="PCMU" />

 </value>

 </entry>

 <entry>

 <key>8</key>

 <value>

 <inject bean="PCMA" />

 </value>

 </entry>

 <entry>

 <key>3</key>

 <value>

 <inject bean="GSM" />

 </value>

 </entry>

 <entry>

 <key>97</key>

 <value>

 <inject bean="SPEEX" />

 </value>

 </entry>

 <entry>

 <key>101</key>

 <value>

 <inject bean="DTMF" />

 </value>

 </entry>

 </map>

 </property>

 <property name="bindAddress">10.65.193.65</property>

 <property name="localPort">9200</property>

Chapter 5. Configuring the Mo...

58

 <property name="jitter">60</property>

 <property name="timer">

 <inject bean="Timer" />

 </property>

 <property name="stunAddress">stun.ekiga.net:3478</property>

 </bean>

In order to use stun configure stunAddress property and point to STUN server : port. If no port is

specified by default it will take 3478.

59

Appendix A. Revision History
Revision History

Revision 3.0 Thu Jun 11 2009 JaredMorgan<jmorgan@redhat.com>

Second release of the "parameterized" documentation.

Revision 2.0 Fri Mar 06 2009 DouglasSilas<dhensley@redhat.com>

First release of the "parameterized", and much-improved JBCP documentation.

60

	Mobicents Media Server User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Provide feedback to the authors!

	Chapter 1. Introduction to the Mobicents Media Server
	1.1. Introduction
	1.2. The Justification for S/w Media Server
	1.3. What is Mobicents Media Server
	1.4. Media Server Use Case

	Chapter 2. Technical Specification and Capacity of Mobicents Media Server
	2.1. Technical Specification of Mobicents Media Server
	2.2. Capacity of Mobicents Media Server

	Chapter 3. Installing the Mobicents Media Server
	3.1. Java Development Kit: Installing, Configuring and Running
	3.2. JBoss Application Server 5.x.y embedded Media Server Binary Distribution: Installing, Configuring and Running
	3.2.1. Pre-Install Requirements and Prerequisites
	3.2.2. Downloading
	3.2.3. Installing
	3.2.4. Setting the JBOSS_HOME Environment Variable
	3.2.5. Running
	3.2.6. Stopping
	3.2.7. Server Structure
	3.2.8. Testing
	3.2.9. Uninstalling

	3.3. Standalone Media Server Binary Distribution: Installing, Configuring and Running
	3.3.1. Pre-Install Requirements and Prerequisites
	3.3.2. Downloading
	3.3.3. Installing
	3.3.4. Running
	3.3.5. Stopping
	3.3.6. Server Structure
	3.3.7. Testing
	3.3.8. Uninstalling

	3.4. Writing and Running Tests Against the Media Server

	Chapter 4. Media Server Architecture
	4.1. High level components
	4.1.1. Endpoints
	4.1.2. Controller Modules

	4.2. Design Overview

	Chapter 5. Configuring the Mobicents Media Server
	5.1. Timer
	5.2. MainDeployer
	5.3. RTPFactory
	5.4. Digital Signal Processor (DSP)
	5.5. Audio Player
	5.6. Audio Recorder
	5.7. DTMF
	5.7.1. Rfc2833 Detector
	5.7.2. Inband Detector
	5.7.3. Rfc2833 Generator
	5.7.4. Inband Generator

	5.8. Announcement Server Access Points
	5.9. Interactive Voice Response
	5.10. Packet Relay Endpoint
	5.11. Conference Bridge Endpoint
	5.12. MMS STUN Support

	Appendix A. Revision History

