
SIP Servlets Server User Guide

The Guide to the

SIP Servlets v1.1-

Certified Server

by Douglas Silas, Jean Deruelle, Vladimir Ralev, Ivelin Ivanov, and Jared Morgan

iii

Preface .. vii

1. Document Conventions ... vii

1.1. Typographic Conventions ... vii

1.2. Pull-quote Conventions ... ix

1.3. Notes and Warnings ... x

1. Introduction to the SIP Servlets Server ... 1

1.1. High-Availability: SIP Servlets Server Load Balancing, Clustering and Failover 1

1.2. Working with the SIP Servlets Management Console .. 5

2. SIP Servlets Server-Installing, Configuring and Running .. 9

2.1. SIP Servlet-Enabled JBoss Application Server: Installing, Configuring and Running

.. 9

2.1.1. Java Development Kit (JDK): Installing, Configuring and Running 10

2.1.2. Pre-install Requirements and Prerequisites .. 14

2.1.3. Downloading .. 14

2.1.4. Installing .. 14

2.1.5. Setting the JBOSS_HOME Environment Variable 16

2.1.6. Configuring .. 19

2.1.7. Running ... 19

2.1.8. Using ... 21

2.1.9. Testing .. 21

2.1.10. Stopping .. 22

2.1.11. Uninstalling .. 23

2.2. SIP Servlet-Enabled Tomcat Servlet Container: Installing, Configuring and

Running .. 23

2.2.1. Java Development Kit (JDK): Installing, Configuring and Running 24

2.2.2. Pre-Install Requirements and Prerequisites .. 27

2.2.3. Downloading .. 28

2.2.4. Installing .. 28

2.2.5. Setting the CATALINA_HOME Environment Variable 30

2.2.6. Configuring .. 32

2.2.7. Running ... 32

2.2.8. Stopping .. 34

2.2.9. Using ... 35

2.2.10. Testing .. 35

2.2.11. Uninstalling .. 35

2.3. Configuring ... 35

2.3.1. Configuring SIP Connectors .. 35

2.3.2. Application Routing and Service Configuration ... 37

2.3.3. SIP Servlets Server Logging ... 40

3. Application Router ... 43

3.1. Default Application Router ... 43

3.1.1. Role of the Application Router .. 43

3.1.2. JBoss Communications Default Application Router 43

3.1.3. Limitations of the Default Application Router .. 49

SIP Servlets Server User Guide

iv

3.2. DFC Application Router ... 49

3.2.1. Description of DFC Application Router ... 49

3.2.2. Installing the DFC Application Router .. 49

4. SIP Servlet Example Applications ... 51

4.1. Operating the Example Applications ... 54

4.1.1. The Location Service .. 54

4.1.2. The Diameter Event-Changing Service .. 57

4.1.3. The Call-Blocking Service ... 63

4.1.4. The Call-Forwarding Service ... 66

4.1.5. The Call-Controller Service ... 69

4.1.6. Media IPBX ... 73

5. Clustering and High Availability .. 75

5.1. JBoss Communications SIP Servlets for JBoss: Clustering Support 75

5.1.1. SIP Servlets Server Cluster: Installing, Configuring and Running 75

5.2. JBoss Communications SIP Servlets for JBoss: Transparent Failover 78

5.2.1. JBCP SIP Servlets for JBoss Cluster: Installing, Configuring and Running ... 79

5.3. Load Balancer .. 80

5.3.1. SIP Load Balancing Basics ... 81

5.3.2. HTTP Load Balancing Basics .. 81

5.3.3. Pluggable balancer algorithms .. 82

5.3.4. Distributed load balancing ... 83

5.3.5. Implementation of the JBoss Communications Load Balancer 83

5.3.6. SIP Message Flow ... 84

5.3.7. SIP Load Balancer: Installing, Configuring and Running 85

5.3.8. IP Load Balancing .. 97

6. Enterprise Monitoring and Management .. 99

6.1. JBoss Communications SIP Servlets Monitoring and Management 99

6.1.1. Installation of the Enterprise Monitoring and Management Console 99

6.1.2. Usage Instructions .. 100

6.2. SIP Load Balancer Monitoring and Management ... 117

6.2.1. Installation of the Enterprise Monitoring and Management Console 118

6.2.2. Usage Instructions .. 118

7. Advanced Features of the SIP Servlets Server .. 129

7.1. Media Support .. 129

7.1.1. JSR 309 : Media Server Control API ... 129

7.2. Concurrency and Congestion Control ... 129

7.3. SIP Servlets Application Security ... 135

7.4. STUN Support .. 139

7.5. Seam Telco Framework .. 140

7.6. Diameter Support .. 141

7.7. SIP and IMS Extensions .. 141

7.8. JRuby/Rails Integration with Torquebox Telco Framework 145

7.9. SIP Servlets - JAIN SLEE Interoperability ... 146

7.10. Eclipse IDE Tools .. 147

v

7.10.1. Pre-Install requirements .. 148

7.10.2. Installation .. 148

7.10.3. SIP Servlets Core Plug-in ... 148

7.10.4. SIP Phone Plug-in .. 148

8. Best Practices .. 149

8.1. JBoss Communications SIP Servlets Performance Tips 149

8.1.1. Tuning JBoss ... 149

8.1.2. Tuning JBoss Communications SIP Servlets .. 149

8.1.3. Tuning The JAIN SIP Stack .. 149

8.1.4. Tuning The JVM .. 151

8.1.5. Tuning The Operating System ... 152

8.2. NAT Traversal .. 153

8.2.1. STUN .. 153

8.2.2. TURN .. 153

8.2.3. ICE .. 154

8.2.4. Other Approaches .. 154

A. Revision History .. 155

vi

vii

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

viii

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

Choose System > Preferences > Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >

Accessories > Character Map from the main menu bar. Next, choose Search

> Find from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu

of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above username, domain.name, file-system, package, version and

release. Each word is a placeholder, either for text you enter when issuing a command or for text

displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

Pull-quote Conventions

ix

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

Preface

x

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Note

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

Chapter 1.

1

Introduction to the SIP Servlets

Server
JBoss Communications SIP (Session Initiation Protocol) Servlets deliver a consistent, open

platform on which to develop and deploy portable and distributed SIP and Java Enterprise Edition

services. The JBoss Communications SIP Servlets Server is a certified implementation of the SIP

Servlet v1.1 (JSR 289) specification that can run on top of either the JBoss Application Server or

the Tomcat Servlet Container.

JBoss Communications SIP Servlets for JBoss (JBCP SIP Servlets for JBoss) strives to

develop interoperability standards between SIP Servlets and the Java Service Logic Execution

Environment (JSLEE) so that applications can exploit the strengths of both. The JAIN-SIP

Reference Implementation is leveraged as the SIP stack, and the JBoss Communications JAIN

SLEE Server is used as the SLEE implementation.

Features of the JBoss Communications SIP Servlets Server

• the first certified SIP Servlet v1.1 (JSR 289) implementation

• a current call rate of 100 calls per second over a 24-hour duration: 8,640,000 total calls

• load balancing, cluster and failover support

• merged SIP and HTTP session management

• a browser-based Management Console

• a bundled JSLEE/SIP interoperability demonstration application for JBCP SIP Servlets for

JBoss

• JBoss Communications Media Server

• extensions such as SUBSCRIBE/NOTIFY, among others

1.1. High-Availability: SIP Servlets Server Load

Balancing, Clustering and Failover

Telecommunications applications demand High-Availability (HA), fault tolerance, scalability and

performance. Providing highly-available end-user applications that are tolerant of faults is

commonly achieved through the use of clustering technologies.

Clustering is a complex subject that is often used to collectively address a variety of techniques

aimed at improving the high-availability and scalability of services and applications. Such

Chapter 1. Introduction to th...

2

techniques include distributed state replication, load balancing, and failover capabilities. The

usage of any one of these techniques improves either reliability or performance, but for the sake

of the other. It requires careful analysis of real-world scenarios to arrive at an architecture which

represents the optimal balance of performance and reliability.

Based on experience with production deployments and extensive feedback from the Open

Source community, JBoss Communications HA has undergone several iterations of refinement.

In its current incarnation, the architecture can be described as a "star topology" with symmetric

application servers and a smart, lightweight load-balancing element with built-in failover logic. The

amount of state replication is kept to a minimum for maximum scalability with sufficiently-high

reliability.

High-Availability: SIP Servlets Server Load Balancing, Clustering and Failover

3

Clustering Terms and Definitions for JBoss Communications SIP Servlets. For purposes

of clarity, the SIP Servlets High-Availability sections use terms—such as cluster—with meanings

specific to the context of JBoss Communications SIP Servlets. Therefore, the following definitions

are provided to clarify more precisely what is meant by the terms cluster, node, SIP Servlets

Server and so on, in the subsequent sections, and in the context of JBoss Communications High-

Availability.

Chapter 1. Introduction to th...

4

Distinguishing Between a Cluster and Clustering

Capabilities

The crux of possible confusion is this: any heterogeneous group of SIP Servlets

Servers behind a SIP load balancer is, by definition, a cluster. Those SIP Servlets

Servers can be either JBCP SIP Servlets for JBoss servers or JBCP SIP Servlets

for Tomcat servers. However, a homogeneous group of JBCP SIP Servlets for

JBoss servers served by a SIP load balancer, in addition to being a cluster,

also possesses JBoss-specific clustering capabilities. Those clustering capabilities

include, principally, state replication and the ability to fail over. Therefore, when

specific clustering capabilities are spoken of, they are always referring to the

context of a homogeneous cluster of JBCP SIP Servlets for JBoss server nodes

served by a load balancer.

Glossary of Cluster-Related Terms

SIP Servlets Server

A JBoss Communications SIP Servlets Server refers to either a SIP Servlets-enabled JBoss

Application Server (JBCP SIP Servlets for JBoss) or a SIP Servlets-enabled Tomcat Servlet

Container (JBCP SIP Servlets for Tomcat). Anywhere the term SIP Servlets Server is used,

you are free to substitute the JBoss or the Tomcat variety depending on the one you are

interested in.

node

A node is simply a SIP Servlets Server in a cluster. In this document, a node can be either an

JBCP SIP Servlets for JBoss server or an JBCP SIP Servlets for Tomcat server.

cluster

A cluster, as used in this document, refers simply to a group of one or more nodes, i.e. SIP

Servlets Servers, behind a SIP load balancer. The minimum number of nodes in a cluster is

one. The case of a cluster with one node almost always occurs in a degraded cluster: one in

which other nodes, for some reason, have become unavailable.

SIP load balancer

The JBoss Communications SIP load balancer is not a full-fledged SIP Servlets Server

itself. Rather, it is a simple proxy server whose primary purpose is to intelligently route SIP

requests and replies between healthy and available SIP Servlets Servers residing in a cluster

on a Local Area Network (LAN), and User Agents (UAs) accessing a SIP service or application

from a Wide Area Network (WAN). The SIP load balancer therefore acts as a kind of gateway

between a Wide Area Network with User Agents, and a Local Area Network wherein the SIP

Servlets Server cluster nodes reside.

Working with the SIP Servlets Management Console

5

1.2. Working with the SIP Servlets Management

Console

Once installed, the JBCP SIP Servlets for JBoss or JBCP SIP Servlets for Tomcat instance can be

accessed and configured using the SIP Servlets Management Console. The management console

is available at http://localhost:8080/sip-servlets-management/.

The SIP Servlets Management Console

Information on how to use the SIP Servlets Management Console is available from the Help link

on the top main menu bar. Clicking Help displays a Default Application Router Help pop-up

which can be repositioned and resized by dragging.

http://localhost:8080/sip-servlets-management/

Chapter 1. Introduction to th...

6

SIP Servlets Management Console: Default Application Router Help

Recent versions of the SIP Servlets Management Console feature a Server Settings tab, in which

concurrency and congestion control settings can be tuned.

Working with the SIP Servlets Management Console

7

Tunable SIP Servlets Server Settings

For more information on concurrency and congestion control tuning, refer to Configuring the

Concurrency and Congestion Control Settings.

8

Chapter 2.

9

SIP Servlets Server-Installing,

Configuring and Running

2.1. SIP Servlet-Enabled JBoss Application Server:

Installing, Configuring and Running

The JBoss Communications SIP Servlets Server can run on either the JBoss Application Server

or the Tomcat Servlet Container. This section details how to install the SIP Servlets Server on

top of the JBoss Application Server. For installation instructions for the Tomcat Servlet Container,

refer to Section 2.2, “SIP Servlet-Enabled Tomcat Servlet Container: Installing, Configuring and

Running”

Note

It is recommended that the SIP Servlets Server is run on the JBoss platform. Some

functionality, including the ability to execute some SIP Extension examples, is not

available in the Tomcat version.

Differences Between a Standard JBoss Installation and the JBoss Communications SIP

Servlets Version. Provided here is a list of differences between a standard JBoss Application

Server installation one customized for SIP Servlets. The differences include:

• The server/default/deploy directory contains both HTTP and SIP Servlet applications.

• The server/default/deploy/jbossweb.sar units have been modified to provide extended

classes to the standard JBoss container classes, in order to allow SIP applications to be loaded

and the SIP stack to be started.

• The server/default/deploy/jbossweb.sar context.xml files have been modified to allow

the extended manager to manage SIP sessions and SIP application sessions in addition to

HTTP sessions.

• The server/default/deploy/jbossweb.sar/ server.xml file has been modified to provide

extended classes to common JBoss Web containers. The classes allow SIP applications to be

loaded, and the SIP stack to be started.

• The server/default/deploy/jbossweb.sar/ jboss-beans.xml file has been modified to

allow the JBoss container to process SIP messages.

• The server/default/deployers/ metadata-deployer-jboss-beans.xml file has been

modified to allow JBoss to parse sip.xml deployment descriptors and SIP metadata annotations.

Chapter 2. SIP Servlets Serve...

10

• The server/default/deployers/jbossweb.deployer/META-INF/war-deployers-jboss-

beans.xml file have been modified so that it is now possible for JBoss containers to correctly

deploy SIP servlets and converged applications.

• A dars directory containing all of the Default Application Router (DAR) properties files for using

the various SIP Servlets applications (which come bundled with the release) has been added

to the server/default/conf directory.

• Additional JAR files have been added to enable SIP Servlet functionality; these are

located in the server/default/deploy/jbossweb.sar/, server/default/deployers/

jbossweb.deployer/ and common/libdirectories.

2.1.1. Java Development Kit (JDK): Installing, Configuring and

Running

The JBoss Communications Platform is written in Java; therefore, before running any JBoss

Communications server, you must have a working Java Runtime Environment (JRE) or Java

Development Kit (JDK) installed on your system. In addition, the JRE or JDK you are using to run

JBoss Communications must be version 5 or higher1.

Should I Install the JRE or JDK? Although you can run JBoss Communications servers

using the Java Runtime Environment, we assume that most users are developers interested in

developing Java-based, JBoss Communications-driven solutions. Therefore, in this guide we

take the tact of showing how to install the full Java Development Kit.

Should I Install the 32-Bit or the 64-Bit JDK, and Does It Matter? Briefly stated: if you are

running on a 64-Bit Linux or Windows platform, you should consider installing and running the 64-

bit JDK over the 32-bit one. Here are some heuristics for determining whether you would rather

run the 64-bit Java Virtual Machine (JVM) over its 32-bit cousin for your application:

• Wider datapath: the pipe between RAM and CPU is doubled, which improves the performance

of memory-bound applications when using a 64-bit JVM.

• 64-bit memory addressing gives virtually unlimited (1 exabyte) heap allocation. However large

heaps affect garbage collection.

• Applications that run with more than 1.5 GB of RAM (including free space for garbage collection

optimization) should utilize the 64-bit JVM.

• Applications that run on a 32-bit JVM and do not require more than minimal heap sizes will gain

nothing from a 64-bit JVM. Barring memory issues, 64-bit hardware with the same relative clock

speed and architecture is not likely to run Java applications faster than their 32-bit cousin.

1 At this point in time, it is possible to run most JBoss Communications servers, such as the JAIN SLEE Server, using a

Java 6 JRE or JDK. Be aware, however, that presently the XML Document Management Server does not run on Java 6.

We suggest checking the JBoss Communications web site, forums or discussion pages if you need to inquire about the

status of running the XML Document Management Server with Java 6.

Java Development Kit (JDK): Installing, Configuring and Running

11

Note that the following instructions detail how to download and install the 32-bit JDK, although the

steps are nearly identical for installing the 64-bit version.

Downloading. You can download the Sun JDK 5.0 (Java 2 Development Kit) from Sun's

website: http://java.sun.com/javase/downloads/index_jdk5.jsp. Click on the Download link next

to "JDK 5.0 Update <x>" (where <x> is the latest minor version release number). On the next

page, select your language and platform (both architecture—whether 32- or 64-bit—and operating

system), read and agree to the Java Development Kit 5.0 License Agreement, and proceed

to the download page.

The Sun website will present two download alternatives to you: one is an RPM inside a self-

extracting file (for example, jdk-1_5_0_16-linux-i586-rpm.bin), and the other is merely a self-

extracting file (e.g. jdk-1_5_0_16-linux-i586.bin). If you are installing the JDK on Red Hat

Enterprise Linux, Fedora, or another RPM-based Linux system, we suggest that you download

the self-extracting file containing the RPM package, which will set up and use the SysV service

scripts in addition to installing the JDK. We also suggest installing the self-extracting RPM file if

you will be running JBoss Communications in a production environment.

Installing. The following procedures detail how to install the Java Development Kit on both

Linux and Windows.

Procedure 2.1. Installing the JDK on Linux

• Regardless of which file you downloaded, you can install it on Linux by simply making sure

the file is executable and then running it:

~]$ chmod +x "jdk-1_5_0_<minor_version>-linux-<architecture>-rpm.bin"

~]$./"jdk-1_5_0_<minor_version>-linux-<architecture>-rpm.bin"

You Installed Using the Non-RPM Installer, but Want the

SysV Service Scripts

If you download the non-RPM self-extracting file (and installed it), and you

are running on an RPM-based system, you can still set up the SysV service

scripts by downloading and installing one of the -compat packages from

the JPackage project. Remember to download the -compat package which

corresponds correctly to the minor release number of the JDK you installed.

The compat packages are available from ftp://jpackage.hmdc.harvard.edu/

JPackage/1.7/generic/RPMS.non-free/.

http://java.sun.com/javase/downloads/index_jdk5.jsp
ftp://jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/
ftp://jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/

Chapter 2. SIP Servlets Serve...

12

Important

You do not need to install a -compat package in addition to the JDK if you installed

the self-extracting RPM file! The -compat package merely performs the same SysV

service script set up that the RPM version of the JDK installer does.

Procedure 2.2. Installing the JDK on Windows

• Using Explorer, simply double-click the downloaded self-extracting installer and follow the

instructions to install the JDK.

Configuring. Configuring your system for the JDK consists in two tasks: setting the JAVA_HOME

environment variable, and ensuring that the system is using the proper JDK (or JRE) using the

alternatives command. Setting JAVA_HOME usually overrides the values for java, javac and

java_sdk_1.5.0 in alternatives, but we will set them all just to be safe and consistent.

Setting the JAVA_HOME Environment Variable on Generic Linux

After installing the JDK, you must ensure that the JAVA_HOME environment variable exists and

points to the location of your JDK installation.

Setting the JAVA_HOME Environment Variable on Linux. You can determine whether

JAVA_HOME is set on your system by echoing it on the command line:

~]$ echo $JAVA_HOME

If JAVA_HOME is not set already, then you must set its value to the location of the JDK installation

on your system. You can do this by adding two lines to your personal ~/.bashrc configuration

file. Open ~/.bashrc (or create it if it doesn't exist) and add a line similar to the following one

anywhere inside the file:

export JAVA_HOME="/usr/lib/jvm/jdk1.5.0_<version>"

You should also set this environment variable for any other users who will be running JBoss

Communications (any environment variables exported from ~/.bashrc files are local to

that user).

Setting java, javac and java_sdk_1.5.0 Using the alternatives command

Selecting the Correct System JVM on Linux using alternatives . On systems with

the alternatives command, including Red Hat Enterprise Linux and Fedora, you can easily

choose which JDK (or JRE) installation you wish to use, as well as which java and javac

executables should be run when called.

As the root user, call /usr/sbin/alternatives with the --config java option to select

between JDKs and JREs installed on your system:

Java Development Kit (JDK): Installing, Configuring and Running

13

root@localhost ~]$ /usr/sbin/alternatives --config java

There are 3 programs which provide 'java'.

 Selection Command

 1 /usr/lib/jvm/jre-1.5.0-gcj/bin/java

 2 /usr/lib/jvm/jre-1.6.0-sun/bin/java

*+ 3 /usr/lib/jvm/jre-1.5.0-sun/bin/java

Enter to keep the current selection[+], or type selection number:

In our case, we want to use the Sun JDK, version 5, that we downloaded and installed, to

run the java executable. In the alternatives information printout above, a plus (+) next to a

number indicates the one currently being used. As per alternatives' instructions, pressing

Enter will simply keep the current JVM, or you can enter the number corresponding to the

JVM you would prefer to use.

Repeat the procedure above for the javac command and the java_sdk_1.5.0 environment

variable, as the root user:

~]$ /usr/sbin/alternatives --config javac

~]$ /usr/sbin/alternatives --config java_sdk_1.5.0

Setting the JAVA_HOME Environment Variable on Windows

For information on how to set environment variables in Windows, refer to http://

support.microsoft.com/kb/931715.

Testing. Finally, to make sure that you are using the correct JDK or Java version (5 or higher),

and that the java executable is in your PATH, run the java -version command in the terminal

from your home directory:

~]$ java -version

java version "1.5.0_16"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_16-b03)

Java HotSpot(TM) Client VM (build 1.5.0_16-b03, mixed mode, sharing)

Uninstalling. There is usually no reason (other than space concerns) to remove a particular

JDK from your system, given that you can switch between JDKs and JREs easily using

alternatives, and/or by setting JAVA_HOME.

Uninstalling the JDK on Linux. On RPM-based systems, you can uninstall the JDK using the

yum remove <jdk_rpm_name> command.

http://support.microsoft.com/kb/931715
http://support.microsoft.com/kb/931715

Chapter 2. SIP Servlets Serve...

14

Uninstalling the JDK on Windows. On Windows systems, check the JDK entry in the Start

menu for an uninstall command, or use Add/Remove Programs.

2.1.2. Pre-install Requirements and Prerequisites

Hardware Requirements

Sufficient Disk Space

Once unzipped, version 2.0.0.ALPHA2 of the JBCP SIP Servlets for JBoss binary release

requires a minimum of 21.1MB free disk space.

Anything Java Itself Will Run On

JBCP SIP Servlets for JBoss is 100% Java and will run on the same hardware that the JBoss

Application Server runs on.

Software Prerequisites

JDK 5 or Higher

A working installation of the Java Development Kit (<acronym>JDK</acronym>) version 5 or

higher is currently required in order to run JBCP SIP Servlets for JBoss binary distribution.

For instructions on how to install the JDK, refer to Section 2.1.4, “Installing”

2.1.3. Downloading

The latest version of JBoss Communications SIP Servlets for JBoss is available from http://

www.mobicents.org/mss-downloads.html. The top row of the table contains the latest version.

Each version of the SIP Servlets Server is comprised of two separate binary distribution files: one

which is JBCP SIP Servlets for JBoss, and the other which is JBCP SIP Servlets for Tomcat.

Download SIP Servlets Server for JBoss and continue with the following instructions.

2.1.4. Installing

Once the requirements and prerequisites have been met and you have downloaded the binary

distribution zip file, you are ready to install the JBCP SIP Servlets for JBoss binary distribution.

Follow the instructions below for the selected platform, whether Linux or Windows.

Version Numbers

For clarity, the command line instructions presented in this chapter use specific

version numbers and directory names. Ensure this information is substituted with

the binary distribution's version numbers and file names.

http://www.mobicents.org/mss-downloads.html
http://www.mobicents.org/mss-downloads.html

Installing

15

Procedure 2.3. Installing the JBCP SIP Servlets for JBoss Binary

Distribution on Linux

It is assumed that the downloaded archive is saved in the home directory, and that a terminal

window is open displaying the home directory

1. Create a subdirectory to extract the JBCP SIP Servlets for JBoss files into. For ease of

identification, it is recommended that the version number of the binary is included in this

directory name.

~]$ mkdir "jbcp-ss-jboss-<version>"

2. Move the downloaded zip file into the directory.

~]$ mv "jbcp-ss-1.0.GA-apache-tomcat-6.0.14-0904221257.zip" "jbcp-ss-

jboss-<version>"

3. Move into the directory.

~]$ cd "jbcp-ss-jboss-<version>"

4. Extract the files into the current directory by executing one of the following commands.

• Java:

jbcp-ss-jboss-<version>]$ jar -xvf "jbcp-ss-1.0.GA-apache-

tomcat-6.0.14-0904221257.zip"

• Linux:

jbcp-ss-jboss-<version>]$ unzip "jbcp-ss-1.0.GA-apache-

tomcat-6.0.14-0904221257.zip"

Note

You can also use unzip'-d <unzip_to_location> to extract the zip file's contents

to a location other than the current directory.

5. To free disk space, you may want to delete the zip file once you've extracted its contents:

jbcp-ss-jboss-<version>]$ rm "jbcp-ss-1.0.GA-apache-

tomcat-6.0.14-0904221257.zip"

Chapter 2. SIP Servlets Serve...

16

Procedure 2.4. Installing the JBCP SIP Servlets for JBoss Binary

Distribution on Windows

For this procedure, it is assumed that the downloaded archive is saved in the My Downloads folder.

1. Create a directory in My Downloads to extract the zip file's contents into. For ease of

identification, it is recommended that the version number of the binary is included in the folder

name. For example, JBCP SIP Servlets-jboss-<version>.

2. Extract the contents of the archive, specifying the destination folder as the one created in

the previous step.

3. Alternatively, execute the jar -xvf command to extract the binary distribution files from the

zip archive.

1. Move the downloaded zip file from My Downloads to the folder created in the previous step.

2. Open the Windows Command Prompt and navigate to the folder that contains the archive

using the cd command

3. Execute the jar -xvf command to extract the archive contents into the current folder.

C:\Users\<user>\My Downloads\jbcp-ss-jboss-<version>>jar -xvf "jbcp-

ss-1.0.GA-apache-tomcat-6.0.14-0904221257.zip"

4. It is recommended that the folder holding the JBCP SIP Servlets for JBoss files (in this

example, the folder named jbcp-ss-jboss-<version>) is moved to a user-defined location

for storing executable programs. For example, the Program Files folder.

5. Consider deleting the archive, if free disk space is an issue.

C:\Users\<user>\My Downloads\jbcp-ss-jboss-<version>>delete "jbcp-

ss-1.0.GA-apache-tomcat-6.0.14-0904221257.zip"

2.1.5. Setting the JBOSS_HOME Environment Variable

Configuring JBCP SIP Servlets for JBoss consists of setting the JBOSS_HOME environment variable

and optionally customizing the JBCP SIP Servlets for JBoss server by adding SIP Connectors,

configuring the application router, and logging.

After setting JBOSS_HOME according to the instructions in the following section, refer to Section 2.3,

“Configuring” to learn how to configure JBCP SIP Servlets for JBoss.

Alternatively, after having set JBOSS_HOME, the JBCP SIP Servlets for JBoss server can be run.

Return to this section to configure it later.

Setting the JBOSS_HOME Environment Variable

17

2.1.5.1. Setting the JBOSS_HOME Environment Variable

The JBoss Communications Platform (JBoss Communications) is built on top of the JBoss

Application Server (JBoss AS). You do not need to set the JBOSS_HOME environment variable

to run any of the JBoss Communications Platform servers unless JBOSS_HOME is already set.

The best way to know for sure whether JBOSS_HOME was set previously or not is to perform a

simple check which may save you time and frustration.

Checking to See If JBOSS_HOME is Set on Unix. At the command line, echo $JBOSS_HOME

to see if it is currently defined in your environment:

~]$ echo $JBOSS_HOME

The JBoss Communications Platform and most JBoss Communications servers are built on

top of the JBoss Application Server (JBoss AS). When the JBoss Communications Platform

or JBoss Communications servers are built from source, then JBOSS_HOME must be set, because

the JBoss Communications files are installed into (or “over top of” if you prefer) a clean JBoss

AS installation, and the build process assumes that the location pointed to by the JBOSS_HOME

environment variable at the time of building is the JBoss AS installation into which you want it to

install the JBoss Communications files.

This guide does not detail building the JBoss Communications Platform or any JBoss

Communications servers from source. It is nevertheless useful to understand the role played by

JBoss AS and JBOSS_HOME in the JBoss Communications ecosystem.

The immediately-following section considers whether you need to set JBOSS_HOME at all and, if

so, when. The subsequent sections detail how to set JBOSS_HOME on Unix and Windows

Important

Even if you fall into the category below of not needing to set JBOSS_HOME, you may

want to for various reasons anyway. Also, even if you are instructed that you do

not need to set JBOSS_HOME, it is good practice nonetheless to check and make

sure that JBOSS_HOME actually isn't set or defined on your system for some reason.

This can save you both time and frustration.

You DO NOT NEED to set JBOSS_HOME if...

• ...you have installed the JBoss Communications Platform binary distribution.

• ...you have installed a JBoss Communications server binary distribution which bundles JBoss

AS.

Chapter 2. SIP Servlets Serve...

18

You MUST set JBOSS_HOME if...

• ...you are installing the JBoss Communications Platform or any of the JBoss Communications

servers from source.

• ...you are installing the JBoss Communications Platform binary distribution, or one of the

JBoss Communications server binary distributions, which do not bundle JBoss AS.

Naturally, if you installed the JBoss Communications Platform or one of the

JBoss Communications server binary releases which do not bundle JBoss AS, yet

requires it to run, then you should install JBoss AS [http://docs.jboss.org/jbossas/docs/

Installation_And_Getting_Started_Guide/5/html_single/index.html] before setting JBOSS_HOME or

proceeding with anything else.

Setting the JBOSS_HOME Environment Variable on Unix. The JBOSS_HOME environment

variable must point to the directory which contains all of the files for the JBoss Communications

Platform or individual JBoss Communications server that you installed. As another hint, this

topmost directory contains a bin subdirectory.

Setting JBOSS_HOME in your personal ~/.bashrc startup script carries the advantage of retaining

effect over reboots. Each time you log in, the environment variable is sure to be set for you, as a

user. On Unix, it is possible to set JBOSS_HOME as a system-wide environment variable, by defining

it in /etc/bashrc, but this method is neither recommended nor detailed in these instructions.

Procedure 2.5. To Set JBOSS_HOME on Unix...

1. Open the ~/.bashrc startup script, which is a hidden file in your home directory, in a text

editor, and insert the following line on its own line while substituting for the actual install

location on your system:

export JBOSS_HOME="/home/<username>/<path>/<to>/<install_directory>"

2. Save and close the .bashrc startup script.

3. You should source the .bashrc script to force your change to take effect, so that JBOSS_HOME

becomes set for the current session2.

~]$ source ~/.bashrc

4. Finally, ensure that JBOSS_HOME is set in the current session, and actually points to the correct

location:

2 Note that any other terminals which were opened prior to your having altered .bashrc will need to source

~/.bashrc as well should they require access to JBOSS_HOME.

http://docs.jboss.org/jbossas/docs/Installation_And_Getting_Started_Guide/5/html_single/index.html
http://docs.jboss.org/jbossas/docs/Installation_And_Getting_Started_Guide/5/html_single/index.html
http://docs.jboss.org/jbossas/docs/Installation_And_Getting_Started_Guide/5/html_single/index.html

Configuring

19

Note

The command line usage below is based upon a binary installation of the

JBoss Communications Platform. In this sample output, JBOSS_HOME has

been set correctly to the topmost_directory of the JBoss Communications

installation. Note that if you are installing one of the standalone JBoss

Communications servers (with JBoss AS bundled!), then JBOSS_HOME would

point to the topmost_directory of your server installation.

~]$ echo $JBOSS_HOME

/home/silas/jbcp-1.2.1/jboss-eap-4.3/jboss-as/

Setting the JBOSS_HOME Environment Variable on Windows. The JBOSS_HOME

environment variable must point to the directory which contains all of the files for the JBoss

Communications Platform or individual JBoss Communications server that you installed. As

another hint, this topmost directory contains a bin subdirectory.

For information on how to set environment variables in recent versions of Windows, refer to http://

support.microsoft.com/kb/931715.

2.1.6. Configuring

To configure JBCP SIP Servlets for JBoss, refer to Section 2.3, “Configuring”.

2.1.7. Running

To start the server, execute one of the startup scripts in the bin directory (on Linux or Windows),

or by double-clicking the run.bat executable batch file in that same directory (on Windows only).

It is recommended that the JBoss Application Server is started using the terminal or Command

Prompt because the messages displayed during startup can be used to debug, and subsequently

correct, any problems. In the Linux terminal or Command Prompt, a successfully started server

will return the following information :

22:39:07,598 INFO [SipApplicationDispatcherImpl] Mobicents Sip Servlets <version> - revision

 <rev number> started.

Detailed instructions are given below, arranged by platform.

Procedure 2.6. Running JBCP SIP Servlets for JBoss on Linux

1. Change the working directory to JBCP SIP Servlets for JBoss's installation directory (the one

in which the zip file's contents was extracted to)

http://support.microsoft.com/kb/931715
http://support.microsoft.com/kb/931715

Chapter 2. SIP Servlets Serve...

20

downloads]$ cd "jbcp-ss-jboss-<version>"

2. (Optional) Ensure that the bin/run.sh start script is executable.

jbcp-ss-jboss-<version>]$ chmod +x bin/run.sh

3. Execute the run.sh Bourne shell script.

jbcp-ss-jboss-<version>]$./bin/run.sh

Note

Instead of executing the Bourne shell script to start the server, the run.jar

executable Java archive can be executed from the bin directory:

jbcp-ss-jboss-<version>]$ java -jar bin/run.jar

Procedure 2.7. Running JBCP SIP Servlets for JBoss on Windows

There are several ways to start JBCP SIP Servlets for JBoss on Windows. All of the following

methods accomplish the same task.

1. Using Windows Explorer, navigate to the bin subdirectory in the installation directory.

2. The preferred way to start JBCP SIP Servlets for JBoss from the Command Prompt. The

command line interface displays details of the startup process, including any problems

encountered during the startup process.

Open the Command Prompt via the Start menu and navigate to the correct folder:

C:\Users\<user>My Downloads> cd "jbcp-ss-jboss-<version>"

3. Start the JBoss Application Server by executing one of the following files:

• run.bat batch file:

C:\Users\<user>My Downloads\jbcp-ss-jboss-<version>>bin\run.bat

• run.jar executable Java archive:

C:\Users\<user>My Downloads\jbcp-ss-jboss-<version>>java -jar bin

\run.jar

Using

21

2.1.8. Using

Once the server is running, access the SIP Servlets Management Console by opening http://

localhost:8080/sip-servlets-management/.

2.1.9. Testing

After installation, there should be one pre-configured sample application deployed in the default

server onfiguration. You can use it to verify that the server is installed and running correctly. The

application name is “org.mobicents.servlet.sip.example.SimpleApplication”. From the Sip Servlets

Management Console you can make sure it is subscribed to receive INVITE and REGISTER SIP

requests. It is a simple Click2Call application allowing SIP registration and calling phones from

the Web user interface.

The scenario for this example consists of the following steps:

1. Alice and Bob each register a SIP Softphone

2. Alice clicks on the "Call" link to place a call to Bob

3. Alice's phone rings

4. When Alice picks up her phone, Bob's phone rings

5. When Bob answers his phone, the call is connected

6. When one of them hangs up, the other one is also disconnected

Procedure 2.8. Testing the Click2Call sample application

1. Open up a browser to http://localhost:8080/click2call/. If you have no registered SIP clients

you will be asked to register at least two.

2. Configure your SIP clients to use the sip servlets server as a register and proxy. (IP address :

127.0.0.1, port: 5080) By default it will accept any password

3. After the registration you will see a table where each cell will initiate a call between the

corresponding clients.

4. Close the calls.

5. Navigate to http://localhost:8080/click2call/simplecall.html, which is a simplified version that

doesn't require registered clients.

6. Enter the URIs of the two SIP phones you just started and click "Submit"

http://localhost:8080/sip-servlets-management/
http://localhost:8080/sip-servlets-management/
http://localhost:8080/click2call/
http://localhost:8080/click2call/simplecall.html

Chapter 2. SIP Servlets Serve...

22

7. The phones should be ringing again. You can pick them up and you will know that the SIP

and the HTTP containers are working properly.

2.1.10. Stopping

Detailed instructions for stopping the JBoss Application Server are given below, arranged by

platform. If the server is correctly stopped, the following three lines are displayed as the last output

in the Linux terminal or Command Prompt:

[Server] Shutdown complete

Shutdown complete

Halting VM

Procedure 2.9. Stopping JBCP SIP Servlets for JBoss on Linux

1. Change the working directory to the binary distribution's install directory.

~]$ cd "jbcp-ss-jboss-<version>"

2. (Optional) Ensure that the bin/shutdown.sh start script is executable:

jbcp-ss-jboss-<version>]$ chmod +x bin/shutdown.sh

3. Run the shutdown.sh executable Bourne shell script with the -S option (the short option for

--shutdown) as a command line argument:

jbcp-ss-jboss-<version>]$./bin/shutdown.sh -S

Note

The shutdown.jar executable Java archive with the -S option can also be used

to shut down the server:

jbcp-ss-jboss-<version>]$ java -jar bin/shutdown.jar -S

Procedure 2.10. Stopping jbcp-ss for JBoss on Windows

• Stopping the JBoss Application Server on Windows consists in executing either the

shutdown.bat or the shutdown.jar executable file in the bin subdirectory of the JBCP SIP

Uninstalling

23

Servlets for JBoss binary distribution. Ensure the -S option (the short option for --shutdown)

is included in the command line argument.

C:\Users\<user>\My Downloads\jbcp-ss-jboss-<version>>bin\shutdown.bat -S

• The shutdown.jar executable Java archive with the -S option can also be used to shut

down the server:

C:\Users\<user>\My Downloads\jbcp-ss-jboss-<version>>java -jar bin

\shutdown.jar -S

2.1.11. Uninstalling

To uninstall JBCP SIP Servlets for JBoss, delete the directory containing the binary distribution.

2.2. SIP Servlet-Enabled Tomcat Servlet Container:

Installing, Configuring and Running

You can also run JBoss Communications SIP Servlets on top of the Apache Tomcat Servlet

Container. This section provides information on the requirements and prerequisites for running

JBCP SIP Servlets for Tomcat, as well as instructions on how to download, install, configure, run,

use, stop, test and uninstall it.

Keep in mind that not all capabilities provided by running JBoss Communications SIP Servlets

Server on top of the JBoss Application Server are available with JBCP SIP Servlets for Tomcat.

In particular, JBCP SIP Servlets for Tomcat lacks support for both clustering and failover; JBCP

SIP Servlets for Tomcat nodes can utilize the SIP load balancer, however.

If you are interested in clustering and failover support, or would rather run the JBoss

Communications SIP Servlets Server on top of the JBoss Application Server, go to Section 2.1,

“SIP Servlet-Enabled JBoss Application Server: Installing, Configuring and Running”.

Differences Between the Standard Tomcat Installation and One Customized for the SIP

Servlets Server. Provided here is a list of differences between a standard Tomcat Servlet

Container installation and the SIP Servlets Server for Tomcat installation. The differences include:

• The server.xml configuration file has been modified to provide extended classes to the

standard Tomcat container classes, in order to allow SIP applications to be loaded and the SIP

stack started.

• A dars directory containing the default applications' router properties files for using the SIP

Servlet Click-to-Call application (which comes bundled with the release) has been added to the

conf directory.

• Additional JAR files which can be found in the lib directory have been added to enable SIP

Servlet functionality.

Chapter 2. SIP Servlets Serve...

24

Installing the Java Development Kit

2.2.1. Java Development Kit (JDK): Installing, Configuring and

Running

The JBoss Communications Platform is written in Java; therefore, before running any JBoss

Communications server, you must have a working Java Runtime Environment (JRE) or Java

Development Kit (JDK) installed on your system. In addition, the JRE or JDK you are using to run

JBoss Communications must be version 5 or higher3.

Should I Install the JRE or JDK? Although you can run JBoss Communications servers

using the Java Runtime Environment, we assume that most users are developers interested in

developing Java-based, JBoss Communications-driven solutions. Therefore, in this guide we

take the tact of showing how to install the full Java Development Kit.

Should I Install the 32-Bit or the 64-Bit JDK, and Does It Matter? Briefly stated: if you are

running on a 64-Bit Linux or Windows platform, you should consider installing and running the 64-

bit JDK over the 32-bit one. Here are some heuristics for determining whether you would rather

run the 64-bit Java Virtual Machine (JVM) over its 32-bit cousin for your application:

• Wider datapath: the pipe between RAM and CPU is doubled, which improves the performance

of memory-bound applications when using a 64-bit JVM.

• 64-bit memory addressing gives virtually unlimited (1 exabyte) heap allocation. However large

heaps affect garbage collection.

• Applications that run with more than 1.5 GB of RAM (including free space for garbage collection

optimization) should utilize the 64-bit JVM.

• Applications that run on a 32-bit JVM and do not require more than minimal heap sizes will gain

nothing from a 64-bit JVM. Barring memory issues, 64-bit hardware with the same relative clock

speed and architecture is not likely to run Java applications faster than their 32-bit cousin.

Note that the following instructions detail how to download and install the 32-bit JDK, although the

steps are nearly identical for installing the 64-bit version.

Downloading. You can download the Sun JDK 5.0 (Java 2 Development Kit) from Sun's

website: http://java.sun.com/javase/downloads/index_jdk5.jsp. Click on the Download link next

to "JDK 5.0 Update <x>" (where <x> is the latest minor version release number). On the next

page, select your language and platform (both architecture—whether 32- or 64-bit—and operating

system), read and agree to the Java Development Kit 5.0 License Agreement, and proceed

to the download page.

3 At this point in time, it is possible to run most JBoss Communications servers, such as the JAIN SLEE Server, using a

Java 6 JRE or JDK. Be aware, however, that presently the XML Document Management Server does not run on Java 6.

We suggest checking the JBoss Communications web site, forums or discussion pages if you need to inquire about the

status of running the XML Document Management Server with Java 6.

http://java.sun.com/javase/downloads/index_jdk5.jsp

Java Development Kit (JDK): Installing, Configuring and Running

25

The Sun website will present two download alternatives to you: one is an RPM inside a self-

extracting file (for example, jdk-1_5_0_16-linux-i586-rpm.bin), and the other is merely a self-

extracting file (e.g. jdk-1_5_0_16-linux-i586.bin). If you are installing the JDK on Red Hat

Enterprise Linux, Fedora, or another RPM-based Linux system, we suggest that you download

the self-extracting file containing the RPM package, which will set up and use the SysV service

scripts in addition to installing the JDK. We also suggest installing the self-extracting RPM file if

you will be running JBoss Communications in a production environment.

Installing. The following procedures detail how to install the Java Development Kit on both

Linux and Windows.

Procedure 2.11. Installing the JDK on Linux

• Regardless of which file you downloaded, you can install it on Linux by simply making sure

the file is executable and then running it:

~]$ chmod +x "jdk-1_5_0_<minor_version>-linux-<architecture>-rpm.bin"

~]$./"jdk-1_5_0_<minor_version>-linux-<architecture>-rpm.bin"

You Installed Using the Non-RPM Installer, but Want the

SysV Service Scripts

If you download the non-RPM self-extracting file (and installed it), and you

are running on an RPM-based system, you can still set up the SysV service

scripts by downloading and installing one of the -compat packages from

the JPackage project. Remember to download the -compat package which

corresponds correctly to the minor release number of the JDK you installed.

The compat packages are available from ftp://jpackage.hmdc.harvard.edu/

JPackage/1.7/generic/RPMS.non-free/.

Important

You do not need to install a -compat package in addition to the JDK if you installed

the self-extracting RPM file! The -compat package merely performs the same SysV

service script set up that the RPM version of the JDK installer does.

Procedure 2.12. Installing the JDK on Windows

• Using Explorer, simply double-click the downloaded self-extracting installer and follow the

instructions to install the JDK.

Configuring. Configuring your system for the JDK consists in two tasks: setting the JAVA_HOME

environment variable, and ensuring that the system is using the proper JDK (or JRE) using the

ftp://jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/
ftp://jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/

Chapter 2. SIP Servlets Serve...

26

alternatives command. Setting JAVA_HOME usually overrides the values for java, javac and

java_sdk_1.5.0 in alternatives, but we will set them all just to be safe and consistent.

Setting the JAVA_HOME Environment Variable on Generic Linux

After installing the JDK, you must ensure that the JAVA_HOME environment variable exists and

points to the location of your JDK installation.

Setting the JAVA_HOME Environment Variable on Linux. You can determine whether

JAVA_HOME is set on your system by echoing it on the command line:

~]$ echo $JAVA_HOME

If JAVA_HOME is not set already, then you must set its value to the location of the JDK installation

on your system. You can do this by adding two lines to your personal ~/.bashrc configuration

file. Open ~/.bashrc (or create it if it doesn't exist) and add a line similar to the following one

anywhere inside the file:

export JAVA_HOME="/usr/lib/jvm/jdk1.5.0_<version>"

You should also set this environment variable for any other users who will be running JBoss

Communications (any environment variables exported from ~/.bashrc files are local to

that user).

Setting java, javac and java_sdk_1.5.0 Using the alternatives command

Selecting the Correct System JVM on Linux using alternatives . On systems with

the alternatives command, including Red Hat Enterprise Linux and Fedora, you can easily

choose which JDK (or JRE) installation you wish to use, as well as which java and javac

executables should be run when called.

As the root user, call /usr/sbin/alternatives with the --config java option to select

between JDKs and JREs installed on your system:

root@localhost ~]$ /usr/sbin/alternatives --config java

There are 3 programs which provide 'java'.

 Selection Command

 1 /usr/lib/jvm/jre-1.5.0-gcj/bin/java

 2 /usr/lib/jvm/jre-1.6.0-sun/bin/java

*+ 3 /usr/lib/jvm/jre-1.5.0-sun/bin/java

Pre-Install Requirements and Prerequisites

27

Enter to keep the current selection[+], or type selection number:

In our case, we want to use the Sun JDK, version 5, that we downloaded and installed, to

run the java executable. In the alternatives information printout above, a plus (+) next to a

number indicates the one currently being used. As per alternatives' instructions, pressing

Enter will simply keep the current JVM, or you can enter the number corresponding to the

JVM you would prefer to use.

Repeat the procedure above for the javac command and the java_sdk_1.5.0 environment

variable, as the root user:

~]$ /usr/sbin/alternatives --config javac

~]$ /usr/sbin/alternatives --config java_sdk_1.5.0

Setting the JAVA_HOME Environment Variable on Windows

For information on how to set environment variables in Windows, refer to http://

support.microsoft.com/kb/931715.

Testing. Finally, to make sure that you are using the correct JDK or Java version (5 or higher),

and that the java executable is in your PATH, run the java -version command in the terminal

from your home directory:

~]$ java -version

java version "1.5.0_16"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_16-b03)

Java HotSpot(TM) Client VM (build 1.5.0_16-b03, mixed mode, sharing)

Uninstalling. There is usually no reason (other than space concerns) to remove a particular

JDK from your system, given that you can switch between JDKs and JREs easily using

alternatives, and/or by setting JAVA_HOME.

Uninstalling the JDK on Linux. On RPM-based systems, you can uninstall the JDK using the

yum remove <jdk_rpm_name> command.

Uninstalling the JDK on Windows. On Windows systems, check the JDK entry in the Start

menu for an uninstall command, or use Add/Remove Programs.

2.2.2. Pre-Install Requirements and Prerequisites

Hardware Requirements

Sufficient Disk Space

You must have sufficient disk space in order to install the JBCP SIP Servlets for Tomcat binary

release. Once unzipped, version 2.0.0.ALPHA2 of the JBCP SIP Servlets for Tomcat binary

release requires at least 21.1MB of free disk space. Keep in mind that disk space requirements

may change from release to release.

http://support.microsoft.com/kb/931715
http://support.microsoft.com/kb/931715

Chapter 2. SIP Servlets Serve...

28

Anything Java Itself Will Run On

JBCP SIP Servlets for Tomcat is 100% Java. It will run on the same hardware that the Tomcat

Servlet Container runs on.

Software Prerequisites

JDK 5 or Higher

A working installation of the Java Development Kit (JDK) version 5 or higher is required in

order to run JBCP SIP Servlets for Tomcat.

2.2.3. Downloading

You can download the latest version of JBCP SIP Servlets for Tomcat from http://

www.mobicents.org/mss-downloads.html. The top row of the table holds the latest version. Note

that each release of the JBoss Communications SIP Servlets Server is comprised of two separate

binary distribution files: one which is JBCP SIP Servlets for JBoss, and the other which is JBCP

SIP Servlets for Tomcat. Download JBoss Communications SIP Servlets Server for Tomcat and

continue with the following instructions.

2.2.4. Installing

Once the requirements and prerequisites have been met and you have downloaded the binary

distribution zip file, you are ready to install JBCP SIP Servlets for Tomcat. Follow the instructions

below for your platform, whether Linux or Windows.

Use Version Numbers Relevant to Your Installation!

For clarity, the command line instructions presented in this chapter use specific

version numbers and directory names. Remember to replace them with version

numbers and file names relevant to those you are actually working with.

Procedure 2.13. Installing the JBCP SIP Servlets for Tomcat Binary

Distribution on Linux

1. For this example, we'll assume you're currently in your home directory, which is where you

downloaded the zip file to. First, create a subdirectory to hold the unzipped JBCP SIP Servlets

for Tomcat files. It is good practice to include the version number in this directory name; if you

do so, remember to correctly match it with the version of the JBCP SIP Servlets for Tomcat

distribution you downloaded.

~]$ cd downloads

2. In downloads, create a subdirectory to hold the unzipped JBCP SIP Servlets for Tomcat files.

It is good practice to include the version number in this directory name; if you do so, remember

http://www.mobicents.org/mss-downloads.html
http://www.mobicents.org/mss-downloads.html

Installing

29

to correctly match it with the version of the JBCP SIP Servlets for Tomcat binary distribution

you downloaded.

~]$ mkdir "jbcp-ss-tomcat-<version>"

3. Move the downloaded zip file into the directory you have just created:

~]$ mv "jbcp-ss-1.0.GA-apache-tomcat-6.0.14-0904221257.zip" "jbcp-ss-

tomcat-<version>"

4. Move into that directory:

~]$ cd "jbcp-ss-tomcat-<version>"

5. Finally, use Java's jar -xvf command to extract the contents of the zip file into the current

directory, thus completing the install:

jbcp-ss-tomcat-<version>]$ jar -xvf "jbcp-ss-1.0.GA-apache-

tomcat-6.0.14-0904221257.zip"

• Alternatively, if Linux's unzip utility is present on your system or is installable, you can

use it in lieu of Java's jar -xvf command:

jbcp-ss-tomcat-<version>]$ unzip "jbcp-ss-1.0.GA-apache-

tomcat-6.0.14-0904221257.zip"

Note

You can also use unzip's -d <unzip_to_location> option to extract

the zip file's contents to a location other than the current directory.

6. To free disk space, you may want to delete the zip file once you've extracted its contents:

jbcp-ss-tomcat-<version>]$ rm "jbcp-ss-1.0.GA-apache-

tomcat-6.0.14-0904221257.zip"

Procedure 2.14. Installing the JBCP SIP Servlets for Tomcat Binary

Distribution on Windows

1. For this example, we'll assume that you downloaded the binary distribution zip file to the My

Downloads folder. First, using Windows Explorer, create a subdirectory in My Downloads to

extract the zip file's contents into. When you name this folder, it is good practice to include the

version number; if you do so, remember to correctly match it with the version of the MSS for

Chapter 2. SIP Servlets Serve...

30

Tomcat binary distribution you downloaded. In these instructions, we will refer to this folder

as jbcp-ss-tomcat-<version>.

2. Double-click the downloaded zip file, selecting as the destination folder the one you just

created to hold the zip file's contents.

• Alternatively, it is also possible to use Java's jar -xvf command to extract the

binary distribution files from the zip archive. To use this method instead, first move the

downloaded zip file from My Downloads to the folder that you just created to hold the

SIP Servlets Server files.

• Then, open the Windows Command Prompt and navigate to the folder holding the archive

using the cd command.

Opening the Command Prompt from Windows

Explorer

If you are using Windows Vista®, you can open the Command Prompt

directly from Explorer. Hold down the Shift key and right-click on either a

folder, the desktop, or inside a folder. This will cause an Open Command

Window Here context menu item to appear, which can be used to open

the Command Prompt with the current working directory set to either the

folder you opened, or opened it from.

• Finally, use the jar -xvf command to extract the archive contents into the current folder.

C:\Users\Me\My Downloads\jbcp-ss-tomcat-<version>>jar -xvf "jbcp-

ss-1.0.GA-apache-tomcat-6.0.14-0904221257.zip"

3. At this point, you may want to move the folder holding the JBCP SIP Servlets for Tomcat binary

files (in this example, the folder named jbcp-ss-tomcat-<version>) to another location.

This step is not strictly necessary, but it is probably a good idea to move the installation folder

from My Downloads to a user-defined location for storing runnable programs. Any location

will suffice, however.

4. You may want to delete the zip file after extracting its contents in order to free disk space:

C:\Users\Me\My Downloads\jbcp-ss-tomcat-<version>>delete "jbcp-

ss-1.0.GA-apache-tomcat-6.0.14-0904221257.zip"

2.2.5. Setting the CATALINA_HOME Environment Variable

Before running the JBoss Communications server you are installing, you should consider if you

need to set the CATALINA_HOME environment variable. Setting it (or re-setting it) will always work.

Whether or not you need to set CATALINA_HOME depends on the following factors:

Setting the CATALINA_HOME Environment Variable

31

• If you are installing a binary JBoss Communications server and CATALINA_HOME is not set on

your system, then you do not need to set it, but doing so will do no harm.

• If you are installing a binary JBoss Communications server and CATALINA_HOME is (already)

set on your system, then you need to make sure it points to the location of the new JBoss

Communications server.

• If you are installing a JBoss Communications server from source which uses the Tomcat servlet

container, then you must set CATALINA_HOME.

The following instructions detail how to set CATALINA_HOME on both Linux and Windows.

Procedure 2.15. Setting the CATALINA_HOME Environment Variable on Linux

1. The CATALINA_HOME environment variable must point to the location of your Tomcat

installation. Any JBoss Communications server which runs on top of the Tomcat servlet

container has a topmost directory, i.e. the directory in which you unzipped the zip file to install

the server, and underneath that directory, a bin directory. CATALINA_HOME must be set to the

topmost directory of your JBoss Communications server installation.

Setting this variable in your personal ~/.bashrc file has the advantage that it will always be

set (for you, as a user) each time you log in or reboot the system. To do so, open ~/.bashrc in

a text editor (or create the file if it doesn't already exist) and insert the following line anywhere

in the file, taking care to substitute <mobicents_server> for the topmost directory of the

JBoss Communications server you installed:

export CATALINA_HOME="/home/<username>/<path>/<to>/<mobicents_server>"

Save and close .bashrc.

2. You can—and should—source your .bashrc file to make your change take effect (so that

CATALINA_HOME is set) for the current session:

~]$ source ~/.bashrc

3. Finally, make sure that CATALINA_HOME has been set correctly (that it leads to the right

directory), and has taken effect in the current session.

The following command will show the path to the directory pointed to by CATALINA_HOME:

~]$ echo $CATALINA_HOME

To be absolutely sure, change your directory to the one pointed to by CATALINA_HOME:

~]$ cd $CATALINA_HOME && pwd

Chapter 2. SIP Servlets Serve...

32

Procedure 2.16. Setting the CATALINA_HOME Environment Variable on Windows

• The CATALINA_HOME environment variable must point to the location of your Tomcat

installation. Any JBoss Communications server which runs on top of the Tomcat servlet

container has a topmost directory, i.e. the directory in which you unzipped the zip file to install

the server, and underneath that directory, a bin directory. CATALINA_HOME must be set to the

topmost directory of your JBoss Communications server installation.

If you are planning on running the Tomcat container as the Administrator, then you should, of

course, set the CATALINA_HOME environment variable as the administrator, and if you planning

to run Tomcat as a normal user, then set CATALINA_HOME as a user environment variable.

For information on how to set environment variables in Windows, refer to http://

support.microsoft.com/kb/931715.

2.2.6. Configuring

Configuring JBCP SIP Servlets for Tomcat consists in setting the CATALINA_HOME environment

variable and then, optionally, customizing your JBCP SIP Servlets for Tomcat container by adding

SIP Connectors, configuring the application router, and configuring logging. See Section 2.3,

“Configuring” to learn what and how to configure JBCP SIP Servlets for Tomcat.

Alternatively, you can simply run your JBCP SIP Servlets for Tomcat container now and return

to this section to configure it later.

Important

Tomcat 7 have simplified the XML validation. The xmlValidation and

xmlNamespaceAware attributes have been removed from the <Host> element.

These attributes, along with tldValidation and tldNamespaceAware, are now set

per <Context> element. The defaults (false for each attribute) have not been

changed. Refer to http://tomcat.apache.org/migration.html#XML_validation.

Check CATALINA_HOME/conf/tomcat-context-namespaceaware.xml.bak in order

to see how to enable xmlValidation and xmlNamespaceAware for the server.

2.2.7. Running

Once installed, you can run the Tomcat Servlet Container by executing the one of the startup

scripts in the bin directory (on Linux or Windows), or by double-clicking the run.bat executable

batch file in that same directory (on Windows only). However, we suggest always starting Tomcat

using the terminal or Command Prompt because you are then able to read—and act upon—

any startup messages, and possibly debug any problems that may arise. In the Linux terminal or

Command Prompt, you will be able to tell that the container started successfully if the last line of

output is similar to the following:

http://support.microsoft.com/kb/931715
http://support.microsoft.com/kb/931715
http://tomcat.apache.org/migration.html#XML_validation

Running

33

Using CATALINA_BASE: /home/silas/temp/apps/mobicents/sip_servlets_server/mss-

tomcat-1.0

Using CATALINA_HOME: /home/silas/temp/apps/mobicents/sip_servlets_server/mss-

tomcat-1.0

Using CATALINA_TMPDIR: /home/silas/temp/apps/mobicents/sip_servlets_server/mss-

tomcat-1.0/temp

Using JRE_HOME: /etc/java-config-2/current-system-vm

Detailed instructions are given below, arranged by platform.

Procedure 2.17. Running JBCP SIP Servlets for Tomcat on Linux

1. Change your working directory to the SIP Servlets-customized Tomcat's topmost directory

(the one in which you extracted the zip file's contents to):

~]$ cd "jbcp-ss-tomcat-<version>"

2. (Optional) Ensure that the bin/startup.sh start script is executable:

jbcp-ss-tomcat-<version>]$ chmod +x bin/startup.sh

3. Finally, execute the startup.sh Bourne shell script:

jbcp-ss-tomcat-<version>]$./bin/startup.sh

Procedure 2.18. Running JBCP SIP Servlets for Tomcat on Windows

1. There are several different ways to start the Tomcat Servlet Container on Windows. All of the

following methods accomplish the same task.

Using Windows Explorer, change your folder to the one in which you unzipped the

downloaded zip file, and then to the bin subdirectory.

2. Although not the preferred way (see below), it is possible to start the Tomcat Servlet Container

by double-clicking on the startup.bat executable batch file.

• As mentioned above, the best way to start the Tomcat Servlet Container is by using the

Command Prompt. Doing it this way will allow you to view all of the server startup details,

which will enable you to easily determine whether any problems were encountered

during the startup process. You can open the Command Prompt directly from the

<topmost_directory>\bin folder in Windows Explorer, or you can open the Command

Prompt via the Start menu and navigate to the correct folder:

Chapter 2. SIP Servlets Serve...

34

C:\Users\Me\My Downloads> cd "jbcp-ss-tomcat-<version>"

• Start the Tomcat Servlet Container by running the executable startup.bat batch file:

C:\Users\Me\My Downloads\jbcp-ss-tomcat-<version>>bin\startup.bat

2.2.8. Stopping

Detailed instructions for stopping the Tomcat Servlet Container are given below, arranged by

platform. Note that if you properly stop the server, you will see the following three lines as the last

output in the Linux terminal or Command Prompt (both running and stopping the Tomcat Servlet

Container produces the same output):

Using CATALINA_BASE: /home/silas/temp/apps/mobicents/sip_servlets_server/

mss-tomcat-1.0

Using CATALINA_HOME: /home/silas/temp/apps/mobicents/sip_servlets_server/

mss-tomcat-1.0

Using CATALINA_TMPDIR: /home/silas/temp/apps/mobicents/sip_servlets_server/

mss-tomcat-1.0/temp

Using JRE_HOME: /etc/java-config-2/current-system-vm

Procedure 2.19. Stopping JBCP SIP Servlets for Tomcat on Linux by

Executing shutdown.sh

1. You can shut down the Tomcat Servlet Container by executing the shutdown.sh Bourne

shell script in the <topmost_directory>/bin directory. To do so, first change your working

directory to the binary distribution's topmost directory (the one to which you extracted the

downloaded zip file's contents):

downloads]$ cd "jbcp-ss-tomcat-<version>"

2. (Optional) Ensure that the bin/shutdown.sh start script is executable:

jbcp-ss-tomcat-<version>]$ chmod +x bin/shutdown.sh

3. Finally, run the shutdown.sh executable Bourne shell script

jbcp-ss-tomcat-<version>]$./bin/shutdown.sh

Procedure 2.20. Stopping JBCP SIP Servlets for Tomcat on Windows

• Stopping the Tomcat Servlet Container on Windows consists in executing the shutdown.bat

executable batch script in the bin subdirectory of the SIP Servlets-customized Tomcat binary

distribution:

Using

35

C:\Users\Me\My Downloads\jbcp-ss-tomcat-<version>>bin\shutdown.bat

2.2.9. Using

After starting the server successfully, you can access the default web applications included with

JBCP SIP Servlets for Tomcat by opening the following URL in your browser: http://localhost:8080/

.

You can also access the SIP Servlets Management Console by opening http://localhost:8080/sip-

servlets-management/ in your browser.

2.2.10. Testing

2.2.11. Uninstalling

To uninstall JBCP SIP Servlets for Tomcat, simply delete the directory you decompressed the

binary distribution archive into.

2.3. Configuring

2.3.1. Configuring SIP Connectors

SIP Connectors are added in the same way as HTTP Connectors: by adding a <Connector>

element under the <Service> element in the container's server.xml configuration file.

JBoss Communications SIP Servlets has three SIP Connectors configured by default : UDP And

TCP are running on the binding IP Address of the container and port 5080 and TLS is running on

the binding IP Address of the container and port 5081

For example, to add a SIP Connector on the IP address 127.0.0.1, on port 5080, using the UDP

transport protocol, you should insert the following XML element:

Example 2.1. Adding a SIP Connector to server.xml

 <Connector port="5080"

ipAddress="127.0.0.1"

 protocol="org.mobicents.servlet.sip.startup.SipProtocolHandler"

 signalingTransport="udp"

 useStun="false"

 stunServerAddress="stun01.sipphone.com"

 stunServerPort="3478"

 staticServerAddress="122.122.122.122"

 staticServerPort="44"

http://localhost:8080/
http://localhost:8080/sip-servlets-management/
http://localhost:8080/sip-servlets-management/

Chapter 2. SIP Servlets Serve...

36

 useStaticAddress="true"

 httpFollowsSip="false"/>

SIP <connector> Attributes

port

The port number on which the container will be able to receive SIP messages.

ipAddress

The IP address at which the container will be able to receive SIP messages. The container

can be configured to listen to all available IP addresses by setting ipAddress to 0.0.0.0

<sipPathName>.

protocol

Specifies the connector is a SIP Connector and not an HTTP Connector. There is no need

to change this property.

signalingTransport

Specifies the transport on which the container will be able to receive SIP messages. For

example, "udp".

useStun

Enables Session Traversal Utilities for NAT (STUN) support for this Connector. The attribute

defaults to "false". If set to "true", ensure that the ipAddress attribute is not set to 127.0.0.1.

Refer to Section 7.4, “STUN Support” for more information about STUN.

stunServerAddress

Specifies the STUN server address used to discover the public IP address of the SIP

Connector. This attribute is only required if the useStun attribute is set to "true". Refer to

Section 7.4, “STUN Support” for more information about STUN and public STUN servers.

stunServerPort

Specifies the STUN server port of the STUN server used in the stunServerAddress attribute.

You should rarely need to change this attribute; also, it is only needed if the useStun attribute

is set to "true". Refer to Section 7.4, “STUN Support” for more information about STUN.

addressResolverClass

Specifies the gov.nist.core.net.AddressResolver implementation class that will be

used by the container to perform DNS lookups. The default class used by the container

is org.mobicents.servlet.sip.core.DNSAddressResolver but any class implementing

gov.nist.core.net.AddressResolver NIST SIP Stack interface and having a Constructor

with a org.mobicents.servlet.sip.core.SipApplicationDispatcher param can be

used. To disable DNS lookups, this attribute should be left empty..

useStaticAddress

Specifies whether the settings in staticServerAddress and staticServerPort are activated. The

default value is "false" (deactivated).

Application Routing and Service Configuration

37

staticServerAddress

Specifies what load-balancer server address is inserted in Contact/Via headers for server-

created requests. This parameter is useful for cluster configurations where requests should

be bound to a load-balancer address, rather than a specific node address.

staticServerPort

Specifies the port of the load-balancer specified in staticServerAddress . This parameter is

useful in cluster configurations where requests should be bound to a load-balancer address

rather than a specific node address.

httpFollowsSip

This flag makes the application server aware of how the SIP load balancers assign request

affinity and stores this information in the application session. When HTTP load balancer sends

HTTP request not associated with this application session the application server will force this

HTTP request to be repeated to land on the correct node.

Note

A comprehensive list of implementing classes for the SIP Stack is available from

the Class SipStackImpl page on nist.gov [http://hudson.jboss.org/hudson/job/jain-

sip/lastSuccessfulBuild/artifact/javadoc/javax/sip/SipStack.html].

2.3.2. Application Routing and Service Configuration

The application router is called by the container—whether JBoss or Tomcat—to select a SIP

Servlet application to service an initial request. It embodies the logic used to choose which

applications to invoke. An application router is required for a container to function, but it is

a separate logical entity from the container. The application router is solely responsible for

application selection and must not implement application logic. For example, the application router

cannot modify a request or send a response.

For more information about the application router, refer to the following sections of the JSR 289

specification: Application Router Packaging and Deployment, Application Selection Process, and

Appendix C.

In order to configure the application router, you should edit the Service element in the container's

server.xml configuration file:

Example 2.2. Configuring the Service Element in the Container's server.xml

 <Service name="Sip-Servlets"

 className="org.mobicents.servlet.sip.startup.SipStandardService"

 sipApplicationDispatcherClassName="org.mobicents.servlet.sip.core.SipApplicationDispatcherImpl"

 usePrettyEncoding="false"

http://hudson.jboss.org/hudson/job/jain-sip/lastSuccessfulBuild/artifact/javadoc/javax/sip/SipStack.html
http://hudson.jboss.org/hudson/job/jain-sip/lastSuccessfulBuild/artifact/javadoc/javax/sip/SipStack.html
http://hudson.jboss.org/hudson/job/jain-sip/lastSuccessfulBuild/artifact/javadoc/javax/sip/SipStack.html

Chapter 2. SIP Servlets Serve...

38

 additionalParameterableHeaders="Header1,Header2"

 bypassResponseExecutor="false"

 bypassRequestExecutor="false"

 baseTimerInterval="500"

 t2Interval="4000"

 t4Interval="5000"

 timerDInterval="32000"

 dispatcherThreadPoolSize="4"

 darConfigurationFileLocation="file:///home/silas/workspaces/mobicents-sip-servlets/

 sip-servlets-examples/reinvite-demo/reinvite-dar.properties"

 sipStackPropertiesFile="conf/mss-sip-stack.properties"

 dialogPendingRequestChecking="false">

Provided here is a description of the SIP Service element's attributes:

className

This attribute specifies that the servlet container is a converged (i.e. SIP + HTTP) servlet

container.

sipApplicationDispatcherClassName

This attribute specifies the class name of the

org.mobicents.servlet.sip.core.SipApplicationDispatcher implementation to use.

The routing algorithm and application selection process is performed in that class.

darConfigurationFileLocation

The default application router file location. This is used by the default application router to

determine the application selection logic. Refer to Appendix C of the JSR 289 specification

for more details.

sipStackPropertiesFile

Specifies the location of the file containing key-value pairs corresponding to the SIP stack

configuration properties. This attribute is used to further tune the JAIN SIP Stack. If this

property is omitted, the following default values are assumed:

• gov.nist.javax.sip.LOG_MESSAGE_CONTENT=true

• gov.nist.javax.sip.TRACE_LEVEL=32

• gov.nist.javax.sip.DEBUG_LOG=logs/mss-jsip-debuglog.txt

• gov.nist.javax.sip.SERVER_LOG=logs/mss-jsip-messages.xml

• javax.sip.STACK_NAME=Mobicents-SIP-Servlets

• javax.sip.AUTOMATIC_DIALOG_SUPPORT=off

• gov.nist.javax.sip.DELIVER_UNSOLICITED_NOTIFY=true

Application Routing and Service Configuration

39

• gov.nist.javax.sip.THREAD_POOL_SIZE=64

• gov.nist.javax.sip.REENTRANT_LISTENER=true

• gov.nist.javax.sip.MAX_FORK_TIME_SECONDS=0. Dialog forking is not enabled by

default as it has an impact on memory. If set to a value greater than 0, Dialog Forking will

be enabled on Mobicents Sip Servlets.

• gov.nist.javax.sip.AUTOMATIC_DIALOG_ERROR_HANDLING=false. Merged requests

Loop Detection is turned off by default

JBoss Communications SIP Servlets also adds its own properties to allow for even more

configuration and flexibility :

• If the property org.mobicents.servlet.sip.SERVER_HEADER is set, A Server header will

be added to all SIP Responses leaving the container.

• If the property org.mobicents.servlet.sip.USER_AGENT_HEADER is set, A Server header

will be added to all SIP Requests leaving the container.

usePrettyEncoding

Allows Via, Route, and RecordRoute header field information to be split into multiple lines,

rather than each header field being separating with a comma. The attribute defaults to "true".

Leaving this attribute at the default setting may assist in debugging non-RFC3261 compliant

SIP servers.

additionalParameterableHeaders

Comma-separated list of header names that are treated as Parameterable by the container.

The specified headers are classed as valid, in addition to the standard Parameterable headers

defined in the Sip Servlets 1.1 Specification.

Setting and getting parameters is allowed for the standard, and additional parameters.

Parameters that are not specified in additionalParameterableHeaders will result in a

ServletParseException error.

bypassRequestExecutor/bypassResponseExecutor

If set to false, the SIP Servlets server uses a ThreadPoolExecutor linked to a

LinkedBlockingQueue to dispatch the request/response threads. The container can thus

handles two different responses (for example a 180 Ringing and a 200 OK) concurrently,

but a race condition can occur where the second response overtakes the first one (200 OK

dispatched to the application before the 180 Ringing) on UDP.

So those flags are true by default thus using jain sip serializing per transaction to ensure such

race conditions don't occur in Mobicents Sip Servlets even though they can still happen on

UDP at jain sip level.

baseTimerInterval

Specifies the T1 Base Timer Interval, which allows the SIP Servlets Container to adjust its

timers depending on network conditions. The default interval is 500 (milliseconds).

Chapter 2. SIP Servlets Serve...

40

For more information about available timers, refer to RFC326 "Table of Timer Values"1 [http://

tools.ietf.org/html/rfc3261#appendix-A], and the document contained in the 3GPP-IMS TS

24.229 v9.1.0 specification ZIP archive [http://www.3gpp.org/ftp/Specs/html-info/24229.htm].

All of the timers present in the tables depend on T1, T2, T4, and Timer D

t2Interval

Specifies the T2 Interval, which allows the SIP Servlets Container to adjust its timers

depending on network conditions. The default interval is 4000 (milliseconds).

For more information about available timers, refer to RFC326 "Table of Timer Values"1 [http://

tools.ietf.org/html/rfc3261#appendix-A], and the document contained in the 3GPP-IMS TS

24.229 v9.1.0 specification ZIP archive [http://www.3gpp.org/ftp/Specs/html-info/24229.htm].

All of the timers present in the tables depend on T1, T2, T4, and Timer D

t4Interval

Specifies the T4 Interval, which allows the SIP Servlets Container to adjust its timers

depending on network conditions. The default interval is 5000 (milliseconds).

For more information about available timers, refer to RFC326 "Table of Timer Values"1 [http://

tools.ietf.org/html/rfc3261#appendix-A], and the document contained in the 3GPP-IMS TS

24.229 v9.1.0 specification ZIP archive [http://www.3gpp.org/ftp/Specs/html-info/24229.htm].

All of the timers present in the tables depend on T1, T2, T4, and Timer D

timerDInterval

Specifies the Timer D Interval, which allows the SIP Servlets Container to adjust its timers

depending on network conditions. The default interval is 32000 (milliseconds).

For more information about available timers, refer to RFC326 "Table of Timer Values"1 [http://

tools.ietf.org/html/rfc3261#appendix-A], and the document contained in the 3GPP-IMS TS

24.229 v9.1.0 specification ZIP archive [http://www.3gpp.org/ftp/Specs/html-info/24229.htm].

All of the timers present in the tables depend on T1, T2, T4, and Timer D

dispatcherThreadPoolSize

The number of threads used for processing SIP messages inside the Sip Servlets container

by the dispatcher. The default value is 4.

dialogPendingRequestChecking

This property enables and disables error checking when SIP transactions overlap. If within

a single dialog an INVITE request arrives while there is antoher transaction proceeding, the

container will send a 491 error response. The default value is false.

2.3.3. SIP Servlets Server Logging

There are two separate levels of logging:

http://tools.ietf.org/html/rfc3261#appendix-A
http://tools.ietf.org/html/rfc3261#appendix-A
http://tools.ietf.org/html/rfc3261#appendix-A
http://www.3gpp.org/ftp/Specs/html-info/24229.htm
http://www.3gpp.org/ftp/Specs/html-info/24229.htm
http://www.3gpp.org/ftp/Specs/html-info/24229.htm
http://tools.ietf.org/html/rfc3261#appendix-A
http://tools.ietf.org/html/rfc3261#appendix-A
http://tools.ietf.org/html/rfc3261#appendix-A
http://www.3gpp.org/ftp/Specs/html-info/24229.htm
http://www.3gpp.org/ftp/Specs/html-info/24229.htm
http://www.3gpp.org/ftp/Specs/html-info/24229.htm
http://tools.ietf.org/html/rfc3261#appendix-A
http://tools.ietf.org/html/rfc3261#appendix-A
http://tools.ietf.org/html/rfc3261#appendix-A
http://www.3gpp.org/ftp/Specs/html-info/24229.htm
http://www.3gpp.org/ftp/Specs/html-info/24229.htm
http://www.3gpp.org/ftp/Specs/html-info/24229.htm
http://tools.ietf.org/html/rfc3261#appendix-A
http://tools.ietf.org/html/rfc3261#appendix-A
http://tools.ietf.org/html/rfc3261#appendix-A
http://www.3gpp.org/ftp/Specs/html-info/24229.htm
http://www.3gpp.org/ftp/Specs/html-info/24229.htm
http://www.3gpp.org/ftp/Specs/html-info/24229.htm

SIP Servlets Server Logging

41

• Logging at the container level, which can be configured using the log4j.xml configuration file,

which is usually located in the container's lib directory.

• Logging of the NIST SIP stack, which is configured in the Connector element of the container's

server.xml configuration file.

You can setup the logging so that the NIST SIP Stack will log into the container logs

To use LOG4J in NIST SIP Stack use the following, You need to define a category in JBOSS_HOME/

server/default/conf/jboss-log4j.xml and set it to off

Example 2.3. Configuring the NIST SIP Stack to log into the Container's logs

 <category name="gov.nist">

 <priority value="OFF"/>

 </category>

So that this category is used in MSS you need to specify it in

JBOSS_HOME/server/default/conf/mss-sip-stack.properties as well by adding this

property gov.nist.javax.sip.LOG4J_LOGGER_NAME=gov.nist and setting this property

gov.nist.javax.sip.TRACE_LEVEL=LOG4J

42

Chapter 3.

43

Application Router
Application Routing is performed within the JBoss Communications Sip Servlets container by the

Default Application Router. The following sections describe the Default Application Router, and

how other Application Router implementations compliant with the JSR 289 specification can be

installed.

3.1. Default Application Router

The Application Router is called by the container to select a SIP Servlet application to service an

initial request. It embodies the logic used to choose which applications to invoke.

3.1.1. Role of the Application Router

An Application Router is required for a container to function, but it is a separate logical entity from

the container. The Application Router is solely responsible for application selection and does not

implement application logic. For example, the Application Router cannot modify a request or send

a response.

There is no direct interaction between the Application Router and applications, only between the

SIP Servlets Container and the Application Router.

The SIP Servlets container is responsible for passing the required information to the Application

Router within the initial request so the Application Router can make informed routing decisions.

Except for the information passed by the container, the Application Router is free to make use of

any other information or data stores. It is up to the individual implementation how the Application

Router makes use of the information or data stores.

The deployer in a SIP Servlet environment controls application composition by defining and

deploying the Application Router implementation. Giving the deployer control over application

composition is desirable because the deployer is solely responsible for the services available to

subscribers.

Furthermore, the SIP Servlets specification intentionally allows the Application Router

implementation to consult arbitrary information or data stores. This is because the deployer

maintains subscriber information and this information is often private and valuable.

3.1.2. JBoss Communications Default Application Router

JBoss Communications SIP Servlets provides an implementation of the Default Application Router

(DAR) as defined in the SIP Servlets 1.1 specification, Appendix C.

3.1.2.1. The DAR Configuration File

The Default Application Router (DAR) obtains its operational parameters from a configuration text

file that is modeled as a Java properties file. The configuration file contains the information needed

Chapter 3. Application Router

44

by the Application Router to select which SIP Servlet application will handle an incoming initial

request.

In the case of JBoss Communications SIP Servlets, it is also possible to configure the DAR through

the server.xml configuration file (see Example 2.2, “Configuring the Service Element in the

Container's server.xml” and Section 1.2, “Working with the SIP Servlets Management Console”).

The properties file has the following characteristics and requirements:

• It must be made available to the DAR.

• It must allow the contents and file structure to be accessible from a hierarchical URI supplied

as a system property javax.servlet.sip.ar.dar.configuration.

• It is first read by the container when it loads up and is refreshed each time an application is

deployed and undeployed.

• It has a simple format in which the name of the property is the SIP method and the value is a

comma-separated string value for the SipApplicationRouterInfo object.

INVITE: (sip-router-info-1), (sip-router-info-2)..

SUBSCRIBE: (sip-router-info-3), (sip-router-info-4)..

ALL: (sip-router-info-5), (sip-router-info-6)..

JBoss Communications SIP Servlets defines a new keyword called ALL. The keyword allows

mapping between the sip-router-info data, and all methods supported by the container (for

example, INVITE, REGISTER, SUBSCRIBE). This maping can save time when configuring an

application that listens to all incoming methods.

Note

If ALL, and a specific method are defined in the DAR file, the specific method takes

precedence over ALL. When the specific method no longer has applications to

serve, ALL is enabled again.

The sip-router-info data specified in the properties file is a string value version of the

SipApplicationRouterInfo object. It consists of the following information:

• The name of the application as known to the container. The application name can be obtained

from the <app-name> element of the sip.xml deployment descriptor of the application, or the

@SipApplication annotation.

• The identity of the subscriber that the DAR returns. The DAR can return any header in the SIP

request using the DAR directive DAR:SIP_HEADER. For example, DAR:From would return the SIP

URI in the From header. The DAR can alternatively return any string from the SIP request.

• The routing region, which consists of one of the following strings: ORIGINATING, TERMINATING

or NEUTRAL. This information is not currently used by the DAR to make routing decisions.

JBoss Communications Default Application Router

45

• A SIP URI indicating the route as returned by the Application Router, which can be used to route

the request externally. The value may be an empty string.

• A route modifier, which consists of one of the following strings: ROUTE, ROUTE_BACK or NO_ROUTE.

The route modifier is used in conjunction with the route information to route a request externally.

• A string representing the order in which applications must be invoked (starts at 0). The string is

removed later on in the routing process, and substituted with the order positions of sip-router-

info data.

• An optional string that contains JBoss Communications-specific parameters. Currently, only the

DIRECTION and REGEX parameters are supported.

.

Note

The field can contain unsupported key=value properties that may be supported

in future releases. The unsupported properties will be ignored during parsing,

until support for the attributes is provided.

The syntax is demonstrated in Example 3.1, “DIRECTION Example”.

• The DIRECTION parameter specifies whether an application serves external(INBOUND)

requests or initiates (OUTBOUND) requests.

If an application is marked DIRECTION=INBOUND, it will not be called for requests initiated by

applications behaving as UAC. To mark an application as UAC, specify DIRECTION=INBOUND

in the optinal parameters in the DAR.

Applications that do not exist in the DAR list for the container are assumed to be OUTBOUND.

Because undefined applications are incapable of serving external requests, they must have

self-initiated the request. The Sip Servlets Management Console can be used to specify the

DIRECTION parameter.

• The REGEX parameter specifies a regular expression to be matched against the initial request

passed to the Application Router.

If the regular expression matches a part of the initial request, the application is called

otherwise it is skipped.

By example in the following sip-router-info data :

INVITE: ("org.mobicents.servlet.sip.testsuite.SimpleApplication",

 "DAR:From", "ORIGINATING", "", "NO_ROUTE", "0",

 "REGEX=From:.*sip:.*@sip-servlets\.com")

Chapter 3. Application Router

46

, only incoming initial requests having a From Header whose the SIP URI belongs to the sip-

servlets.com domain will be passed to the SimpleApplication.

Example 3.1. DIRECTION Example

In this example, two applications are declared for the INVITE request. The

LocationServiceApplication is called for requests coming from outside the container, but it

will not be called for the requests initiated by the UAC application Click2DialApplication.

INVITE: ("org.mobicents.servlet.sip.testsuite.Click2DialApplication",

 "DAR:From",

"ORIGINATING", "", "NO_ROUTE", "0", "DIRECTION=OUTBOUND"), \

("org.mobicents.servlet.sip.testsuite.LocationServiceApplication", "DAR

\:From",

"ORIGINATING", "", "NO_ROUTE", "0", "DIRECTION=INBOUND")

This type of configuration is useful in cases where different application must be responsible for

both requests initited by the container, and external requests received by the container.

Example 3.2. ORIGINATING/TERMINATING DAR Example

In this example, the DAR is configured to invoke two applications on receipt of an INVITE request;

one each in the originating and the terminating halves. The applications are identified by their

application deployment descriptor names.

INVITE: ("OriginatingCallWaiting", "DAR:From", "ORIGINATING", "",

 "NO_ROUTE", "0"), ("CallForwarding", "DAR:To", "TERMINATING",

 "","NO_ROUTE", "1")

For this example, the returned subscriber identity is the URI from each application's From and

To headers respectively. The DAR does not return any route to the container, and maintains the

invocation state in the stateInfo as the index of the last application in the list.

3.1.2.2. Routing of SIP Messages to Applications

3.1.2.2.1. Initial Requests and Application Selection Process

Initial Requests are those that can essentially be dialog creating (such as, INVITE, SUBSCRIBE

and NOTIFY), and not part of an already existing dialog.

Initial requests are routed to applications deployed in the container according to the SIP Servlets

1.1 specification, Section 15.4.1 Procedure for Routing an Initial Request.

JBoss Communications Default Application Router

47

Note

There are some other corner cases that apply to initial requests. Refer to Appendix

B Definition of an Initial Request in the SIP Servlets 1.1 specification.

Example 3.3. INVITE Routing

The following example describes how the DAR routes an INVITE to two applications deployed in a

container. The applications in this example are a Location Service and a Call Blocking application.

In the example, the assumption of a request coming to the server is described. However,

applications can act as a UAC, and generate initial requests on their own. For routing purposes, it

is not necessary for the specified application initiating the request to have an entry in the DAR file.

The DAR file contains the required information for the two applications to be invoked in the correct

order.

INVITE: ("LocationService", "DAR:From", "ORIGINATING", "", "NO_ROUTE", "0"),

 ("CallBlocking", "DAR:To", "TERMINATING", "","NO_ROUTE", "1")

Processing occurs in the following order:

1. A new INVITE (not a re-INVITE) arrives at the container.

The INVITE is a dialog creating request, and is not part of any dialog.

2. The Application Router is called.

From the INVITE information, the first application to invoke is the Location Service.

3. The Application Router returns the application invocation order information to the container

(along with the rest of the sip-router-info data) so the container knows which application to

invoke.

4. The container invokes the LocationService that proxies the INVITE.

The proxied INVITE is considered as a new INVITE to the known IP Address of the registered

user for the Request URI

For further information regarding INVITE handling, refer to "Section 15.2.2 Sending an Initial

Request" in the SIP Servlets 1.1 Specification.

5. Because the INVITE has been proxied, the container invokes the Application Router for the

proxied INVITE to see if any more applications are interested in the event.

6. From the proxied invite, the Application Router determines that the second application to invoke

is the Call Blocking application.

Chapter 3. Application Router

48

7. The Application Router returns information regarding the Call Blocking application to the

container (along with the rest of the sip-router-info data) so the container knows which

application to invoke.

8. The container routes the INVITE for the Call Blocking application to the next application in the

chain.

9. The Call Blocking application determines that the user that initiated the call is black listed. The

application rejects the call with a "Forbidden" response.

10.Because the Call Blocking application acts as a UAS, the Application Selection Process is

stopped for the original INVITE.

The path the INVITE has taken (that is, LocationService to CallBlocking) is called the application

path. The Routing of the responses will now occur as explained in the next section.

3.1.2.2.2. Response Routing

Responses always follow the reverse of the path taken by the corresponding request. In our case

the Forbidden response will first go back to LocationService then back to the caller. This is true

for responses to both initial and subsequent requests. The application path is a logical concept

and as such may or may not be explicitly represented within containers.

Another possible outcome could have been that the Call Blocking application instead of sending

a Forbidden response, allowed the call and proxied the INVITE to the same Request URI chosen

by the Location Service. Then when the callee sends back the 200 OK Response, this response

goes back the same way through the application path (so in the present case Call Blocking, then

Location Service, then back to the caller).

Note

An important note here with regard to that second scenario that according to the

SIP Servlets 1.1 specification, Sections 15.1.2 The Role of Applications and 15.1.4

Application Independence, the Call Blocking application cannot just do nothing with

the request and expect the container to route the request in its place (either to a

next application in chain if another one is present or to the outside world if none

is present). The Application has to do something with request (either proxy it or

act as a UAS).

3.1.2.2.3. Subsequent Requests

Subsequent requests are all requests that are not Initial.

The second scenario where the Call Blocking application allowed the call will be used in this

section to showcase subsequent requests. So the caller has received the 200 OK response back.

Now according to the SIP specification (RFC 3261), it sends an ACK. The ACK arrives at the

container and is not a dialog creating request and is already part of an ongoing dialog (early

Limitations of the Default Application Router

49

dialog) so the request is detected as a Subsequent request and will follow the application path

created by the initial request. The ACK will go through Location Service, Call Blocking, and finally

to the callee.

3.1.3. Limitations of the Default Application Router

The DAR is a minimalist Application Router implementation that is part of the reference

implementation. While it could be used instead of a production Application Router, it offers no

processing logic except for the declaration of the application order.

In real world deployments, the Application Router plays an extremely important role in application

orchestration and composition. It is likely that the Application Router would make use of complex

rules and diverse data repositories in future implementations.

3.2. DFC Application Router

3.2.1. Description of DFC Application Router

Instead of using the JBoss Communications Default Application Router, any SIP Servlets 1.1

compliant Application Router can be used, such as the eCharts DFC Application Router [http://

echarts.org/EChartsSipServletManual/sip-echartsse4.html#x6-140004.1]

3.2.2. Installing the DFC Application Router

Detailed instructions are available from the eCharts website [http://echarts.org/Blog/Running-

E4SS-apps-on-Mobicents-SIP-Servlets.html] or the following procedures describe how to install

the eCharts DFC Application Router (DFCAR) on a variety of SIP Servlet Server platforms.

Procedure 3.1. Installing DFCAR on Tomcat

1. Deploy the DFCAR

Drop the dfcar.jar from the ECharts distribution package in TOMCAT_HOME/lib directory

2. Remove the DAR

Remove the JBoss Communications Default Application Router located in TOMCAT_HOME/

lib/sip-servlets-application-router-*.jar

Procedure 3.2. Installing DFCAR on JBoss 5.1.x

1. Deploy the DFCAR

Drop the dfcar.jar from the ECharts distribution package in JBOSS_HOME/server/

default/deploy/jbossweb.sar/ directory.

http://echarts.org/EChartsSipServletManual/sip-echartsse4.html#x6-140004.1
http://echarts.org/EChartsSipServletManual/sip-echartsse4.html#x6-140004.1
http://echarts.org/EChartsSipServletManual/sip-echartsse4.html#x6-140004.1
http://echarts.org/Blog/Running-E4SS-apps-on-Mobicents-SIP-Servlets.html
http://echarts.org/Blog/Running-E4SS-apps-on-Mobicents-SIP-Servlets.html
http://echarts.org/Blog/Running-E4SS-apps-on-Mobicents-SIP-Servlets.html

Chapter 3. Application Router

50

2. Remove the DAR

Remove the JBoss Communications Default Application Router located in JBOSS_HOME/

server/default/deploy/jbossweb.sar/sip-servlets-application-router-*.jar

Chapter 4.

51

SIP Servlet Example Applications
The SIP Servlet server has a selection of examples which demonstrate particular capabilities of

the server. Table 4.1, “Available Examples” lists the available examples, their location, and a brief

description about the functionality each example demonstrates. The examples can also provide

a useful starting point for developing SIP Applications, therefore it is encouraged to experiment

and adapt the base examples. Each example is available in both binary and source formats.

Table 4.1. Available Examples

Example Description

Section 4.1.3, “The Call-Blocking Service” Demonstrates how to block calls by specifying

that the INVITE SIP Extension checks the

From address to see if it is specified in

the block list. If the blocked SIP address

matches, the Call Blocking application send a

FORBIDDEN response.

Section 4.1.4, “The Call-Forwarding Service” Demonstrates how to forward calls by

specifying that the INVITE SIP Extension

checks the To address to see if it is specified

in the forward list. If the SIP address matches,

the application acts as a back-to-back user

agent (B2BUA).

Section 4.1.5, “The Call-Controller Service” Call Blocking and Call Forwarding are merged

to create a new service.

Speed Dial [http://www.mobicents.org/

speed_dial.html]

Demonstrates how to implement speed

dialing for SIP addresses. The demonstration

uses a static list of speed dial numbers.

The numbers are translated into a complete

address based on prior configuration. The SIP

addresses are proxied without record-routing,

or supervised mode.

Section 4.1.1, “The Location Service” Demonstrates a location service that performs

a lookup based on the request URI, into a

hard-coded list of addresses. The request is

proxied to the set of destination addresses

associated with that URI.

Composed Speed Dial and

Location [http://www.mobicents.org/

speeddial_locationservice.html]

Speed Dial and Location are merged to

create a new service. Speed Dial proxies the

speed dial number to a SIP address, then

Location Service proxies the call to the actual

location of the call recipient.

http://www.mobicents.org/speed_dial.html
http://www.mobicents.org/speed_dial.html
http://www.mobicents.org/speed_dial.html
http://www.mobicents.org/speeddial_locationservice.html
http://www.mobicents.org/speeddial_locationservice.html
http://www.mobicents.org/speeddial_locationservice.html
http://www.mobicents.org/speeddial_locationservice.html

Chapter 4. SIP Servlet Exampl...

52

Example Description

Click to Call [http://www.mobicents.org/

click2call.html]

Demonstrates how SIP Servlets can be used

along with HTTP servlets as a converged

application to place calls from a web portal.

The example is a modified version of the click

to dial example from the Sailfin project, but

has been reworked to comply with JSR 289.

Chat Server [http://www.mobicents.org/

chatserver.html]

Demonstrates MESSAGE SIP Extension

support. This example is based on the

chatroom server demonstration from the BEA

dev2dev project, and has been modified to

meet JSR 289 requirements.

Media JSR 309 Example [http://

www.mobicents.org/mss-jsr309-demo.html]

Demonstrates how the Sip Servlets

Application Developers can leverage JSR-309

API which provides to application developers,

multimedia capabilities with a generic media

server (MS) abstraction interface This

example is only compatible with JBoss AS 5.

The solution is know to work with Twinkle and

linphone SIP soft-phones.

Shopping [http://www.mobicents.org/

shopping-demo-jsr309.html]

Demonstrates integration with Seam and

Java Enterprise Edition (JEE), and JSR 309

Media integration with text to speech (TTS)

and dual-tone multi-frequency (DTMF) tones.

The demonstration builds on the Converged

Demo example, and adds support for the SIP

Servlets v1.1 specification.

JSLEE/SIP Servlets Interoperability [http://

www.mobicents.org/jslee-sips-interop-

demo.html]

Demonstrates how the JBoss

Communications platform components can

work in concert with each other to provide a

integrated solution. All major components of

the platform are used in this example, which

was created to demonstrate to JavaOne 2008

delegates a possible use case scenario for

the platform.

Facebook Click to Call [http://

www.mobicents.org/facebook-c2c.html]

Demonstrates how SIP Servlets and HTTP

Servlets can be used can be used to create

a Facebook plug-in that allows user to call

POTS phones through a SIP-PSTN gateway

provider. This demonstration is only available

from the source repository; no binary is

available.

http://www.mobicents.org/click2call.html
http://www.mobicents.org/click2call.html
http://www.mobicents.org/click2call.html
http://www.mobicents.org/chatserver.html
http://www.mobicents.org/chatserver.html
http://www.mobicents.org/chatserver.html
http://www.mobicents.org/mss-jsr309-demo.html
http://www.mobicents.org/mss-jsr309-demo.html
http://www.mobicents.org/mss-jsr309-demo.html
http://www.mobicents.org/shopping-demo-jsr309.html
http://www.mobicents.org/shopping-demo-jsr309.html
http://www.mobicents.org/shopping-demo-jsr309.html
http://www.mobicents.org/jslee-sips-interop-demo.html
http://www.mobicents.org/jslee-sips-interop-demo.html
http://www.mobicents.org/jslee-sips-interop-demo.html
http://www.mobicents.org/jslee-sips-interop-demo.html
http://www.mobicents.org/facebook-c2c.html
http://www.mobicents.org/facebook-c2c.html
http://www.mobicents.org/facebook-c2c.html

53

Example Description

Section 4.1.2, “The Diameter Event-Changing

Service”

Demonstrates how the Diameter Event

Charging, and the Location service, can be

used to perform fixed-rated charging of calls

(event charging). When a call is initiated, a

debit of ten euros is applied to the A Party

account. If the call is rejected by the B Party,

or A Party hangs up before B Party can

answer the call, the ten euro charge is

credited to the A Party account.

Diameter Sh OpenIMS Integration [http://

www.mobicents.org/mss-diameter_sh.html]

Demonstrates the integration between JBoss

Communications and OpenIMS, using the

Diameter Sh interface to receive profile

updates and SIP.

Diameter Ro/Rf IIntegration [http://

www.mobicents.org/mss-diameter_rorf.html]

a Diameter Ro/Rf service that performs online

call charging

Conference [http://www.mobicents.org/

conference-demo-jsr309.html]

Demonstrates the capabilities of the Media

Server, such as endpoint composition and

conferencing, as well as proving that SIP

Servlets are capable of working seamlessly

with any third-party web framework, without

repackaging or modifying the deployment

descriptors. The demonstration uses Google's

GWT Ajax framework with server-push

updates to provide a desktop-like user

interface experience and JSR 309 for Media

Control.

Media IPBX [http://www.mobicents.org/mss-

ipbx.html]

Demonstrates how a SIP PBX solution can be

deployed using the JBoss Communications

platform. For more information, refer to

Section 4.1.6, “Media IPBX”.

JRuby on Rails SIP Servlets [http://

www.mobicents.org/mss-jruby-example.html]

Demonstrates how JRuby on Rails can be

used by the JBoss Communications platform

to provide a multi-language application that

can initiate phone calls to customers after

they log a complaint through a web portal.

Pure JRuby on Rails Telco [http://

www.mobicents.org/mss-pure-jruby-

telco.html]

Builds on the JRuby on Rails SIP Servlets

demonstration, but adds the ability to call the

application rather that initially interact through

the web portal. The application has the ability

to set up and tear down the call.

http://www.mobicents.org/mss-diameter_sh.html
http://www.mobicents.org/mss-diameter_sh.html
http://www.mobicents.org/mss-diameter_sh.html
http://www.mobicents.org/mss-diameter_rorf.html
http://www.mobicents.org/mss-diameter_rorf.html
http://www.mobicents.org/mss-diameter_rorf.html
http://www.mobicents.org/conference-demo-jsr309.html
http://www.mobicents.org/conference-demo-jsr309.html
http://www.mobicents.org/conference-demo-jsr309.html
http://www.mobicents.org/mss-ipbx.html
http://www.mobicents.org/mss-ipbx.html
http://www.mobicents.org/mss-ipbx.html
http://www.mobicents.org/mss-jruby-example.html
http://www.mobicents.org/mss-jruby-example.html
http://www.mobicents.org/mss-jruby-example.html
http://www.mobicents.org/mss-pure-jruby-telco.html
http://www.mobicents.org/mss-pure-jruby-telco.html
http://www.mobicents.org/mss-pure-jruby-telco.html
http://www.mobicents.org/mss-pure-jruby-telco.html

Chapter 4. SIP Servlet Exampl...

54

Example Description

Alerting Application [http://

www.mobicents.org/alerting-app.html]

This application was developped so that the

JBoss RHQ/Jopr Enterprise Management

Solution would be able to notify system

administrators when a monitoring alert is fired

by Jopr/RHQ.

Alerting Application [http://

www.mobicents.org/mss-presence-client-

example.html]

A Call Blocking application interoperating with

the Mobicents SIP Presence Service to fetch

the blocked contacts through XCAP.

4.1. Operating the Example Applications

4.1.1. The Location Service

The JBoss Communications Location Service contains a list of mappings of request URIs to

destination addresses. When the Location Service receives a request, it performs a lookup on

that mapping and proxies the request simultaneously to the destination address (or addresses)

associated with that URI.

The Location Service Mappings Cannot Currently Be

Configured

The Location Service currently performs a lookup on a hard-coded list of

addresses. This model is evolving toward the eventual use of a database.

Regardless of whether you are using the JBoss Application Server or the Tomcat Servlet Container

as the Servlets Server, the application, container and Location Service perform the following steps:

• A user—let us call her Alice—makes a call to sip:receiver@sip-servlets.com. The INVITE

is received by the servlet container, which then starts the Location Service.

• The Location Service, using non-SIP means, determines that the callee (i.e. the receiver) is

registered at two locations, identified by the two SIP URIs, sip:receiver@127.0.0.1:5090

and sip:receiver@127.0.0.1:6090.

• The Location Service proxies to those two destinations in parallel, without record-routing, and

without making use of supervised mode.

• One of the destinations returns a 200 OK status code; the second proxy is then canceled.

• The 200 OK is forwarded to Alice, and call setup is completed as usual.

Here is the current list of hard-coded contacts and their location URIs:

http://www.mobicents.org/alerting-app.html
http://www.mobicents.org/alerting-app.html
http://www.mobicents.org/alerting-app.html
http://www.mobicents.org/mss-presence-client-example.html
http://www.mobicents.org/mss-presence-client-example.html
http://www.mobicents.org/mss-presence-client-example.html
http://www.mobicents.org/mss-presence-client-example.html

The Location Service

55

sip:receiver@sip-servlets.com

• sip:receiver@127.0.0.1:5090

• sip:receiver@127.0.0.1:6090

4.1.1.1. The Location Service: Installing, Configuring and Running

Pre-Install Requirements and Prerequisites. The following requirements must be met before

installation can begin.

Software Prerequisites

Either an JBCP SIP Servlets for JBoss or an JBCP SIP Servlets for Tomcat Installation

The Location Service requires either an JBCP SIP Servlets for JBoss or an JBCP SIP Servlets

for Tomcat binary installation.

You can find detailed instructions on installing JBCP SIP Servlets for JBoss here: Section 2.1,

“SIP Servlet-Enabled JBoss Application Server: Installing, Configuring and Running”.

You can find detailed instructions on installing JBCP SIP Servlets for Tomcat here:

Section 2.2, “SIP Servlet-Enabled Tomcat Servlet Container: Installing, Configuring and

Running”.

Downloading. The Location Service is comprised of two archive files, a Web

Archive (WAR) and a Default Application Router (DAR) configuration file, which

you need to add to your installed SIP Servlets Server. For more information

about WAR files, refer to the JBoss Application Server Administration and

Development Guide [http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/

Server_Configuration_Guide/beta422/html/index.html]. For more information about DAR files,

refer to the JSR 289 spec, Appendix C [http://jcp.org/en/jsr/detail?id=289].

Download the Location Service's WAR file from here: http://repository.jboss.org/maven2/org/

mobicents/servlet/sip/example/location-service/1.4/location-service-1.4.war.

Download the Location Service's DAR file from here: http://www.mobicents.org/locationservice-

dar.properties.

Installing. Both the location-service-1.4.war WAR file and the locationservice-

dar.properties DAR file that you downloaded should be placed into different directories in your

SIP Servlet Server installation hierarchy. Which directory depends on whether you are using the

Location Service with JBCP SIP Servlets for JBoss or with JBCP SIP Servlets for Tomcat:

JBCP SIP Servlets for JBoss

Place location-service-1.4.war into the JBOSS_HOME/server/default/deploy/

directory, and locationservice-dar.properties into the JBOSS_HOME/server/default/

conf/dars/ directory.

http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta422/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta422/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta422/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta422/html/index.html
http://jcp.org/en/jsr/detail?id=289
http://jcp.org/en/jsr/detail?id=289
http://repository.jboss.org/maven2/org/mobicents/servlet/sip/example/location-service/1.4/location-service-1.4.war
http://repository.jboss.org/maven2/org/mobicents/servlet/sip/example/location-service/1.4/location-service-1.4.war
http://www.mobicents.org/locationservice-dar.properties
http://www.mobicents.org/locationservice-dar.properties

Chapter 4. SIP Servlet Exampl...

56

JBCP SIP Servlets for Tomcat

Place location-service-1.4.war into the CATALINA_HOME/webapps/ directory, and

locationservice-dar.properties into the CATALINA_HOME/conf/dars/ directory.

Configuring. The darConfigurationFileLocation attribute of the Service element must

be set to the value conf/dars/locationservice-dar.properties. The instructions are given

below by SIP Servlets Server type:

JBCP SIP Servlets for JBoss

Open the JBOSS_HOME/server/default/deploy/jboss-web.deployer/server.xml

configuration file and find the Service element. Add an attribute to it

called darConfigurationFileLocation, and set it to conf/dars/locationservice-

dar.properties:

Example 4.1. Editing JBCP SIP Servlets for JBoss's server.xml for the

Location Service

<Service

 name="jboss.web"

 className="org.mobicents.servlet.sip.startup.SipStandardService"

 sipApplicationDispatcherClassName="org.mobicents.servlet.sip.core.SipApplicationDispatcherImpl"

 darConfigurationFileLocation="conf/dars/locationservice-dar.properties"

 sipStackPropertiesFile="conf/mss-sip-stack.properties">

Make sure that the configuration file only contains one darConfigurationFileLocation

attribute: your new one.

JBCP SIP Servlets for Tomcat

Open the CATALINA_HOME/conf/server.xml configuration file and find the Service element.

Add an attribute to it called darConfigurationFileLocation, and set it to conf/dars/

locationservice-dar.properties:

Example 4.2. Editing JBCP SIP Servlets for Tomcat's server.xml for the

Location Service

<Service

 name="Sip-Servlets"

 className="org.mobicents.servlet.sip.startup.SipStandardService"

 sipApplicationDispatcherClassName="org.mobicents.servlet.sip.core.SipApplicationDispatcherImpl"

 darConfigurationFileLocation="conf/dars/locationservice-dar.properties"

 sipStackPropertiesFile="conf/mss-sip-stack.properties">

The Diameter Event-Changing Service

57

Make sure that the configuration file only contains one darConfigurationFileLocation

attribute: your new one.

Running. Once the WAR and DAR files have been placed in the right directories, and the JBoss

Application Server or Tomcat Servlet Container knows where to find them (which you specified in

a server.xml file), then you should go ahead and run SIP Servlets Server.

To learn how to run the SIP Servlets-enabled JBoss Application Server, refer to Section 2.1.7,

“Running”.

To learn how to run the SIP Servlets-enabled Tomcat Container, refer to Section 2.2.7, “Running”.

Testing. The following procedure shows how to test the Location Service.

Procedure 4.1.

1. Start two SIP soft-phones. The first phone should be set up as sip:receiver@sip-

servlets.com at IP address 127.0.0.1 on port 5090. The second phone can be set up in

any way you like. Note that the SIP phones do not have to be registered.

2. Using the second phone, make a call to sip:receiver@sip-servlets.com. If the Location

Service has been set up correctly and is running, the first phone—as the receiver or callee

—should now be ringing.

Stopping. To learn how to stop the SIP Servlets-enabled JBoss Application Server, refer to

Section 2.1.10, “Stopping”.

To learn how to stop the SIP Servlets-enabled Tomcat Container, refer to Section 2.2.8,

“Stopping”.

Uninstalling. Unless disk space is at a premium, there is usually no need to uninstall the

Location Service. However, if you will not be using it again, you may want to unset or reset

the darConfigurationFileLocation attribute of the Service element, which you set in the

server.xml configuration file in Configuring.

You may also wish to delete the WAR and DAR files for the Location Service, which you installed

in Installing.

4.1.2. The Diameter Event-Changing Service

The Diameter Event-Changing Service is based on the Location Service, which performs call-

charging at a fixed rate. Upon the initiation of a call, a debit of €10.00 occurs. In the cases of

a call being rejected or the caller disconnecting (hanging up) before an answer is received, the

caller's account is refunded.

Note that an JBCP SIP Servlets for JBoss installation is required to run this example; it will not

work with JBCP SIP Servlets for Tomcat.

Provided here is a step-by-step description of the procedure as performed by the application and

container:

Chapter 4. SIP Servlet Exampl...

58

Procedure 4.2. Diameter Event-Changing Service Step-By-Step

1. A user, Alice, makes a call to sip:receiver@sip-servlets.com. The INVITE is received by

the servlet container, which sends a request to debit Alice's account to the Charging Server.

The servlet container then invokes the location service.

2. the Location Service determines, without using the SIP protocol itself, where the callee—or

receiver—is registered. The callee may be registered at two locations identified by two SIP

URIs: sip:receiver@127.0.0.1:5090 and sip:receiver@127.0.0.1:6090.

3. The Location Service proxies to those two destinations simultaneously, without record-routing

and without using supervised mode.

4. One of the destinations returns 200 (OK), and so the container cancels the other.

5. The 200 (OK) is forwarded upstream to Alice and the call setup is carried out as usual.

6. If neither or none of the registered destinations accepts the call, a Diameter Accounting-

Request for refund is sent to the Diameter Charging Server in order to debit the already-

credited €10.00

4.1.2.1. Diameter Event-Changing Service: Installing, Configuring

and Running

Preparing your JBCP SIP Servlets for JBoss server to run the Diameter Event-Changing example

requires downloading a WAR archive, a DAR archive, the Ericsson Charging Emulator, setting

an attribute in JBoss's server.xml configuration file, and then running JBoss AS. Detailed

instructions follow.

Pre-Install Requirements and Prerequisites. The following requirements must be met before

installation can begin.

Software Prerequisites

One JBCP SIP Servlets for JBoss Installation

Before proceeding, you should follow the instructions for installing, configuring, running and

testing JBCP SIP Servlets for JBoss from the binary distribution.

Downloading. The following procedure describes how to download the required files.

1. First, download the Web Application Archive (WAR) file corresponding to this

example, the current version of which is named diameter-event-charging-1.0.war,

from http://repository.jboss.org/maven2/org/mobicents/servlet/sip/example/diameter-event-

charging/1.0/.

2. Secondly, download the corresponding Disk Archive (DAR) configuration file here: http://

www.mobicents.org/diametereventcharging-dar.properties.

http://repository.jboss.org/maven2/org/mobicents/servlet/sip/example/diameter-event-charging/1.0/
http://repository.jboss.org/maven2/org/mobicents/servlet/sip/example/diameter-event-charging/1.0/
http://www.mobicents.org/diametereventcharging-dar.properties
http://www.mobicents.org/diametereventcharging-dar.properties

The Diameter Event-Changing Service

59

3. Finally, you will need to download the Ericsson Charging Emulator, version

1.0, from http://www.ericsson.com/mobilityworld/developerszonedown/downloads/tools/

charging_solutions/ChargingSDK-1_0_D31E.zip.

Installing. The following procedure describes how to install the downloaded files.

1. Place the diameter-event-charging-1.0.war WAR archive into the jboss_home/server/

<profile>/deploy directory, where <deploy> is your Configuration Profile, whether "default"

or "all" (the latter if you are using JBCP SIP Servlets for JBoss's clustering capabilities).

2. Place the diametereventcharging-dar.properties DAR file in your $JBOSS_HOME/

server/<profile>/conf/dars directory.

3. Finally, open the terminal, move into the directory to which you downloaded the Ericsson

Charging SDK (for the sake of this example, we will call this directory charging_sdk), and

then unzip the downloaded zip file (you can use Java's jar -xvf command for this:

~]$ cd charging_sdk

charging_sdk]$ jar -xvf ChargingSDK-1_0_D31E.zip

Alternatively, you can use Linux's unzip command to do the dirty work:

charging_sdk]$ unzip ChargingSDK-1_0_D31E.zip

Configuring. To configure the server for the Event-Changing example, simply open the

server.xml configuration file in your server's $JBOSS_HOME/server/<profile>/deploy/jboss-

web.deployer/ directory, and edit the value of the darConfigurationFileLocation attribute of

the Service element so that it is conf/dars/mobicents-dar.properties.

Example 4.3. Editing the darConfigurationFileLocation Attribute of the

Service Tag

...

<Service name="jboss.web"

 className="org.mobicents.servlet.sip.startup.SipStandardService"

 sipApplicationDispatcherClassName="org.mobicents.servlet.sip.core.SipApplicationDispatcherImpl"

 sipApplicationRouterClassName="org.mobicents.servlet.sip.router.DefaultApplicationRouter"

 darConfigurationFileLocation="conf/dars/mobicents-dar.properties"

 sipStackPropertiesFile="conf/mss-sip-stack.properties">

...

Running. The following procedure describes how to run the Diameter Event-Changing Service.

http://www.ericsson.com/mobilityworld/developerszonedown/downloads/tools/charging_solutions/ChargingSDK-1_0_D31E.zip
http://www.ericsson.com/mobilityworld/developerszonedown/downloads/tools/charging_solutions/ChargingSDK-1_0_D31E.zip

Chapter 4. SIP Servlet Exampl...

60

Procedure 4.3. Diameter Event-Changing Service

1. First, you should run your JBCP SIP Servlets for JBoss server. For instructions on doing so,

refer to Section 2.1.7, “Running”.

2. Then, run the Ericsson Charging Emulator. Open a terminal, change the working directory to

the location of the unzipped Charging Emulator files (in ChargingSDK-1_0_D31E or a similarly-

named directory), and run it with the java -jar PPSDiamEmul.jar command:

~]$ java -jar PPSDiamEmul.jar

Using. Using the Event-Changing service means, firstly, inserting some parameters into the

Charging Emulator, and then, by using two SIP (soft)phones, calling one with the other. The

following sequential instructions show you how.

SIP (Soft)Phone? Which?

The JBoss Communications team recommends one of the following SIP phones,

and has found that they work well: the 3CX Phone, the SJ Phone or the

WengoPhone.

Procedure 4.4. Using the Diameter Event-Changing Service

1. Configure the Ericsson SDK Charging Emulator

Once you have started the Charging Emulator, you should configure it exactly as portrayed

in Figure 4.1, “Configuring the Charging Emulator”.

The Diameter Event-Changing Service

61

Configuring the Charging Emulator

Figure 4.1. Configuring the Charging Emulator

1. Set the Peer Id to: aaa://127.0.0.1:21812

Chapter 4. SIP Servlet Exampl...

62

2. Set the Realm to: mobicents.org

3. Set the Host IP to: 127.0.0.1

2. Start two SIP (soft)phones. You should set the first phone up with the following parameters:

sip:receiver@sip-servlets on IP address 127.0.0.1 on port 5090. The other phone can

be set up any way you like.

3. Before making a call, open the Config → Options dialog window, as shown in the image.

Configuring Accounts in the Charging Emulator

In the Account Configuration window of the Charging Emulator, you can see the user's

balances. Select a user to watch the balance. You can also stretch the window lengthwise

to view the user's transaction history.

4. Time to call! From the second, “any-configuration” phone, make a call to sip:receiver@sip-

servlets.com. Upon doing so, the other phone should ring or signal that it is being contacted .

5. You should be able to see a request—immediately following the invite and before the other

party (i.e. you) accepts or rejects the call—sent to the Charging Emulator. That is when the

debit of the user's account is made. In the case that the call is rejected, or the caller gives

up, a second, new Diameter request is sent to refund the initial amount charged by the call.

The Call-Blocking Service

63

On the other hand, if the call is accepted, nothing else related to Diameter happens, and no

second request takes place.

Please not that this is not the truly-correct way to do charging, as Diameter provides other

means, such as unit reservation. However, for the purpose of a demonstration it is sufficient

to show the debit and follow-up credit working. Also, this is a fixed-price call, regardless of

the duration. Charging can, of course, be configured so that it is time-based.

4.1.3. The Call-Blocking Service

The JBoss Communications Call-Blocking Service, upon receiving an INVITE request, checks

to see whether the sender's address is a blocked contact. If so, it returns a FORBIDDEN reply;

otherwise, call setup proceeds as normal.

Blocked Contacts Cannot Currently Be Configured

Blocked contacts are currently hard-coded addresses. This model is evolving

towards the eventual use of a database.

Here is the current hard-coded list of blocked contacts:

• sip:blocked-sender@sip-servlets.com

• sip:blocked-sender@127.0.0.1

4.1.3.1. The Call-Blocking Service: Installing, Configuring and

Running

Pre-Install Requirements and Prerequisites. The following requirements must be met before

installation can begin.

Software Prerequisites

Either an JBCP SIP Servlets for JBoss or an JBCP SIP Servlets for Tomcat Installation

The Call-Blocking Service requires either an JBCP SIP Servlets for JBoss or an JBCP SIP

Servlets for Tomcat binary installation.

You can find detailed instructions on installing JBCP SIP Servlets for JBoss here: Section 2.1,

“SIP Servlet-Enabled JBoss Application Server: Installing, Configuring and Running”.

You can find detailed instructions on installing JBCP SIP Servlets for Tomcat here:

Section 2.2, “SIP Servlet-Enabled Tomcat Servlet Container: Installing, Configuring and

Running”.

Downloading. The Call-Blocking Service is comprised of two archive files, a

Web Archive (WAR) and a Default Application Router (DAR) configuration file,

Chapter 4. SIP Servlet Exampl...

64

which you need to add to your installed SIP Servlets Server. For more

information about WAR files, refer to the JBoss Application Server Administration and

Development Guide [http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/

Server_Configuration_Guide/beta422/html/index.html]. For more information about DAR files,

refer to the JSR 289 spec, Appendix C [http://jcp.org/en/jsr/detail?id=289].

Download the Call-Blocking Service's WAR file from here: http://repository.jboss.org/maven2/org/

mobicents/servlet/sip/example/call-blocking/1.4/call-blocking-1.4.war.

Download the Call-Blocking Service's DAR file from here: http://www.mobicents.org/call-blocking-

servlet-dar.properties.

Installing. Both the call-blocking-1.4.war WAR file and the call-blocking-servlet-

dar.properties DAR file that you downloaded should be placed into different directories in your

SIP Servlet Server installation hierarchy. Which directory depends on whether you are using the

Call-Blocking Service with JBCP SIP Servlets for JBoss or with JBCP SIP Servlets for Tomcat:

JBCP SIP Servlets for JBoss

Place call-blocking-1.4.war into the JBOSS_HOME/server/default/deploy/ directory,

and call-blocking-servlet-dar.properties into the JBOSS_HOME/server/default/

conf/dars/ directory.

JBCP SIP Servlets for Tomcat

Place call-blocking-servlet-dar.properties into the CATALINA_HOME/webapps/

directory, and call-blocking-servlet-dar.properties into the CATALINA_HOME/conf/

dars/ directory.

Configuring. The darConfigurationFileLocation attribute of the Service element must

be set to the value conf/dars/call-blocking-servlet-dar.properties. The instructions for

doing so are given below by SIP Servlets Server type:

JBCP SIP Servlets for JBoss

Open the JBOSS_HOME/server/default/deploy/jboss-web.deployer/server.xml

configuration file and find the Service element. Add an attribute to it called

darConfigurationFileLocation, and set it to conf/dars/call-blocking-servlet-

dar.properties:

Example 4.4. Editing JBCP SIP Servlets for JBoss's server.xml for the

Call-Blocking Service

<Service

 name="jboss.web"

 className="org.mobicents.servlet.sip.startup.SipStandardService"

 sipApplicationDispatcherClassName="org.mobicents.servlet.sip.core.SipApplicationDispatcherImpl"

 darConfigurationFileLocation="conf/dars/call-blocking-servlet-dar.properties"

 sipStackPropertiesFile="conf/mss-sip-stack.properties">

http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta422/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta422/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta422/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta422/html/index.html
http://jcp.org/en/jsr/detail?id=289
http://jcp.org/en/jsr/detail?id=289
http://repository.jboss.org/maven2/org/mobicents/servlet/sip/example/call-blocking/1.4/call-blocking-1.4.war
http://repository.jboss.org/maven2/org/mobicents/servlet/sip/example/call-blocking/1.4/call-blocking-1.4.war
http://www.mobicents.org/call-blocking-servlet-dar.properties
http://www.mobicents.org/call-blocking-servlet-dar.properties

The Call-Blocking Service

65

Make sure that the configuration file only contains one darConfigurationFileLocation

attribute: your new one.

JBCP SIP Servlets for Tomcat

Open the CATALINA_HOME/conf/server.xml configuration file and find the Service element.

Add an attribute to it called darConfigurationFileLocation, and set it to conf/dars/call-

blocking-servlet-dar.properties:

Example 4.5. Editing JBCP SIP Servlets for Tomcat's server.xml for the

Call-Blocking Service

<Service

 name="Sip-Servlets"

 className="org.mobicents.servlet.sip.startup.SipStandardService"

 sipApplicationDispatcherClassName="org.mobicents.servlet.sip.core.SipApplicationDispatcherImpl"

 darConfigurationFileLocation="conf/dars/call-blocking-servlet-dar.properties"

 sipStackPropertiesFile="conf/mss-sip-stack.properties">

Make sure that the configuration file only contains one darConfigurationFileLocation

attribute: your new one.

Running. Once the WAR and DAR files have been placed in the right directories, and the JBoss

Application Server or Tomcat Servlet Container knows where to find them (which you specified in

a server.xml file), then you should go ahead and run SIP Servlets Server.

To learn how to run the SIP Servlets-enabled JBoss Application Server, refer to Section 2.1.7,

“Running”.

To learn how to run the SIP Servlets-enabled Tomcat Container, refer to Section 2.2.7, “Running”.

Testing. The following procedure shows how to test the Call-Blocking Service.

Procedure 4.5. Testing the Call Blocking Service

1. Start a SIP softphone of your choice. The account name should be blocked-sender.

The From Header should list one of the following addresses: sip:blocked-sender@sip-

servlets.com or sip:blocked-sender@127.0.0.1. The SIP softphone does not need to be

registered.

2. Make a call to any address, and you should receive a FORBIDDEN response.

Stopping. To learn how to stop the SIP Servlets-enabled JBoss Application Server, refer to

Section 2.1.10, “Stopping”.

To learn how to stop the SIP Servlets-enabled Tomcat Container, refer to Section 2.2.8,

“Stopping”.

Chapter 4. SIP Servlet Exampl...

66

Uninstalling. Unless disk space is at a premium, there is usually no need to uninstall the

Call-Blocking Service. However, if you will not be using it again, you may want to unset or reset

the darConfigurationFileLocation attribute of the Service element, which you set in the

server.xml configuration file in Configuring.

You may also wish to delete the WAR and DAR files for the Call-Blocking Service, which you

installed in Installing.

4.1.4. The Call-Forwarding Service

The JBoss Communications Call-Forwarding Service, upon receiving an INVITE request, checks

to see whether the sender's address is among those in a list of addresses which need to be

forwarded. If so, then the Call-Forwarding Service acts as a Back-to-Back User Agent (B2BUA),

and creates a new call leg to the destination. When the response is received from the new call

leg, it sends it an acknowledgment (ACK) and then responds to the original caller. If, on the other

hand, the server does not receive an ACK, then it tears down the new call leg with a BYE. Once the

BYE is received, then it answers OK directly and sends the BYE to the new call leg.

Contacts to Forward Cannot Currently Be Configured

Contacts to forward are currently hard-coded addresses. This model is evolving

toward the eventual use of a database.

Here is the current hard-coded list of contacts to forward:

• sip:receiver@sip-servlets.com

• sip:receiver@127.0.0.1

4.1.4.1. The Call-Forwarding Service: Installing, Configuring and

Running

Pre-Install Requirements and Prerequisites. The following requirements must be met before

installation can begin.

Software Prerequisites

Either an JBCP SIP Servlets for JBoss or an JBCP SIP Servlets for Tomcat Installation

The Call-Forwarding Service requires either an JBCP SIP Servlets for JBoss or an JBCP SIP

Servlets for Tomcat binary installation.

You can find detailed instructions on installing JBCP SIP Servlets for JBoss here: Section 2.1,

“SIP Servlet-Enabled JBoss Application Server: Installing, Configuring and Running”.

The Call-Forwarding Service

67

You can find detailed instructions on installing JBCP SIP Servlets for Tomcat here:

Section 2.2, “SIP Servlet-Enabled Tomcat Servlet Container: Installing, Configuring and

Running”.

Downloading. The Call-Forwarding Service is comprised of two archive files, a Web Archive

(WAR) and a Data Archive (DAR), which you need to add to your installed SIP Servlets Server. For

more information about WAR and DAR files, refer to the JBoss Application Server Administration

and Development Guide [http://www.jboss.org/file-access/default/members/jbossas/freezone/

docs/Server_Configuration_Guide/beta422/html/index.html].

Download the Call-Forwarding Service's WAR file from here: http://repository.jboss.org/maven2/

org/mobicents/servlet/sip/example/call-forwarding/1.4/call-forwarding-1.4.war.

Download the Call-Forwarding Service's DAR file from here: http://www.mobicents.org/call-

forwarding-servlet-dar.properties.

Installing. Both the call-forwarding-1.4.war WAR file and the call-forwarding-

servlet-dar.properties DAR file that you downloaded should be placed into different

directories in your SIP Servlet Server installation hierarchy. Which directory depends on whether

you are using the Call-Forwarding Service with JBCP SIP Servlets for JBoss or with JBCP SIP

Servlets for Tomcat:

JBCP SIP Servlets for JBoss

Place call-forwarding-1.4.war into the JBOSS_HOME/server/default/deploy/

directory, and call-forwarding-servlet-dar.properties into the JBOSS_HOME/server/

default/conf/dars/ directory.

JBCP SIP Servlets for Tomcat

Place call-forwarding-1.4.war into the CATALINA_HOME/webapps/ directory, and call-

forwarding-servlet-dar.properties into the CATALINA_HOME/conf/dars/ directory.

Configuring. The darConfigurationFileLocation attribute of the Service element must

be set to the value conf/dars/call-forwarding-b2bua-servlet-dar.properties. The

instructions for doing so are given below by SIP Servlets Server type:

JBCP SIP Servlets for JBoss

Open the JBOSS_HOME/server/default/deploy/jboss-web.deployer/server.xml

configuration file and find the Service element. Add an attribute to it called

darConfigurationFileLocation, and set it to conf/dars/call-forwarding-b2bua-

servlet-dar.properties:

Example 4.6. Editing JBCP SIP Servlets for JBoss's server.xml for the

Call-Forwarding Service

<Service

 name="jboss.web"

http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta422/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta422/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta422/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta422/html/index.html
http://repository.jboss.org/maven2/org/mobicents/servlet/sip/example/call-forwarding/1.4/call-forwarding-1.4.war
http://repository.jboss.org/maven2/org/mobicents/servlet/sip/example/call-forwarding/1.4/call-forwarding-1.4.war
http://www.mobicents.org/call-forwarding-servlet-dar.properties
http://www.mobicents.org/call-forwarding-servlet-dar.properties

Chapter 4. SIP Servlet Exampl...

68

 className="org.mobicents.servlet.sip.startup.SipStandardService"

 sipApplicationDispatcherClassName="org.mobicents.servlet.sip.core.SipApplicationDispatcherImpl"

 darConfigurationFileLocation="conf/dars/call-forwarding-b2bua-servlet-dar.properties"

 sipStackPropertiesFile="conf/mss-sip-stack.properties">

Make sure that the configuration file only contains one darConfigurationFileLocation

attribute: your new one.

JBCP SIP Servlets for Tomcat

Open the CATALINA_HOME/conf/server.xml configuration file and find the Service element.

Add an attribute to it called darConfigurationFileLocation, and set it to conf/dars/call-

forwarding-b2bua-servlet-dar.properties:

Example 4.7. Editing JBCP SIP Servlets for Tomcat's server.xml for the

Call-Forwarding Service

<Service

 name="Sip-Servlets"

 className="org.mobicents.servlet.sip.startup.SipStandardService"

 sipApplicationDispatcherClassName="org.mobicents.servlet.sip.core.SipApplicationDispatcherImpl"

 darConfigurationFileLocation="conf/dars/call-forwarding-b2bua-servlet-dar.properties"

 sipStackPropertiesFile="conf/mss-sip-stack.properties">

Make sure that the configuration file only contains one darConfigurationFileLocation

attribute: your new one.

Running. Once the WAR and DAR files have been placed in the right directories, and the JBoss

Application Server or Tomcat Servlet Container knows where to find them (which you specified in

a server.xml file), then you should go ahead and run SIP Servlets Server.

To learn how to run the SIP Servlets-enabled JBoss Application Server, refer to Section 2.1.7,

“Running”.

To learn how to run the SIP Servlets-enabled Tomcat Container, refer to bbssswticar-binary-

SIP_Servlets_Server_with_Tomcat-Running.

Testing. The following procedure shows how to test the Call-Forwarding Service.

Procedure 4.6.

1. Start two SIP soft-phones of your choice. Set the account settings of the first SIP softphone to:

• Account name: forward-receiver

• IP address: 127.0.0.1

bbssswticar-binary-SIP_Servlets_Server_with_Tomcat-Running
bbssswticar-binary-SIP_Servlets_Server_with_Tomcat-Running

The Call-Controller Service

69

• Port: 5090

Neither of the SIP soft-phones needs to be registered.

2. From the second phone, make a call to sip:receiver@sip-servlets.com. The first phone,

"forward-receiver", should now be ringing.

Stopping. To learn how to stop the SIP Servlets-enabled JBoss Application Server, refer to

Section 2.1.10, “Stopping”.

To learn how to stop the SIP Servlets-enabled Tomcat Container, refer to Section 2.2.8,

“Stopping”.

Uninstalling. Unless disk space is at a premium, there is usually no need to uninstall the

Call-Forwarding Service. However, if you will not be using it again, you may want to unset or

reset the darConfigurationFileLocation attribute of the Service element, which you set in the

server.xml configuration file in Configuring.

You may also wish to delete the WAR and DAR files for the Call-Forwarding Service, which you

installed in Installing.

4.1.5. The Call-Controller Service

The Call-Controller service is a composition of two other services: Call-Blocking and Call-

Forwarding. Essentially, it performs the services of both call-forwarding and call-blocking.

• To learn about how the Call-Blocking service works, refer to Section 4.1.3, “The Call-Blocking

Service”.

• To learn about how the Call-Forwarding service works, refer to Section 4.1.4, “The Call-

Forwarding Service”.

Blocked Contacts and Contacts to Forward Cannot

Currently Be Configured

Both the list of blocked contacts and the list of contacts to forward are currently

both hard-coded. However, both of those models are evolving toward the eventual

use of databases.

4.1.5.1. The Call-Controller Service: Installing, Configuring and

Running

The Call-Controller service requires the two WAR files for the Call-Blocking and Call-

Forwarding services to be placed in the correct directory inside your JBoss Communications SIP

Servlets Server binary installation. However, the Call-Controller service does not require their

Chapter 4. SIP Servlet Exampl...

70

corresponding DAR files: you need only to download and install a DAR file customized for the Call-

Controller service. The instructions below show you how to do precisely this; there is no need,

therefore, to first install either the Call-Blocking or the Call-Forwarding services, though it is helpful

to at least be familiar with them.

Pre-Install Requirements and Prerequisites. The following requirements must be met before

installation can begin.

Software Prerequisites

Either an JBCP SIP Servlets for JBoss or an JBCP SIP Servlets for Tomcat Installation

The Call-Controller Service requires either an JBCP SIP Servlets for JBoss or an JBCP SIP

Servlets for Tomcat binary installation.

You can find detailed instructions on installing JBCP SIP Servlets for JBoss here: Section 2.1,

“SIP Servlet-Enabled JBoss Application Server: Installing, Configuring and Running”.

You can find detailed instructions on installing JBCP SIP Servlets for Tomcat here:

Section 2.2, “SIP Servlet-Enabled Tomcat Servlet Container: Installing, Configuring and

Running”.

Downloading. The Call-Controller Service is comprised of two WAR files, one for the Call-

Forwarding service and one for Call-Blocking, and a customized Call-Controller DAR file. You

do not need to install the DAR files for the Call-Forwarding or the Call-Blocking services. For

more information about WAR files, refer to the JBoss Application Server Administration and

Development Guide [http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/

Server_Configuration_Guide/beta422/html/index.html]. For more information about DAR files,

refer to the JSR 289 spec, Appendix C [http://jcp.org/en/jsr/detail?id=289]

Download the Call-Blocking Service's WAR file from here: http://repository.jboss.org/maven2/org/

mobicents/servlet/sip/example/call-blocking/1.4/call-blocking-1.4.war.

Download the Call-Forwarding Service's WAR file from here: http://repository.jboss.org/maven2/

org/mobicents/servlet/sip/example/call-forwarding/1.4/call-forwarding-1.4.war.

Download the Call-Controller Service's DAR file from here: http://www.mobicents.org/call-

controller-servlet-dar.properties.

Installing. The call-blocking-1.4.war, call-forwarding-1.4.war and call-

controller-servlet-dar.properties archive files that you downloaded should be placed into

different directories in your SIP Servlet Server installation hierarchy. Which directory depends on

whether you are using the Call-Controller Service with JBCP SIP Servlets for JBoss or with JBCP

SIP Servlets for Tomcat:

JBCP SIP Servlets for JBoss

Place call-blocking-1.4.war and call-forwarding-1.4.war into the JBOSS_HOME/

server/default/deploy/ directory, and call-controller-servlet-dar.properties into

the JBOSS_HOME/server/default/conf/dars/ directory.

http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta422/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta422/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta422/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta422/html/index.html
http://jcp.org/en/jsr/detail?id=289
http://jcp.org/en/jsr/detail?id=289
http://repository.jboss.org/maven2/org/mobicents/servlet/sip/example/call-blocking/1.4/call-blocking-1.4.war
http://repository.jboss.org/maven2/org/mobicents/servlet/sip/example/call-blocking/1.4/call-blocking-1.4.war
http://repository.jboss.org/maven2/org/mobicents/servlet/sip/example/call-forwarding/1.4/call-forwarding-1.4.war
http://repository.jboss.org/maven2/org/mobicents/servlet/sip/example/call-forwarding/1.4/call-forwarding-1.4.war
http://www.mobicents.org/call-controller-servlet-dar.properties
http://www.mobicents.org/call-controller-servlet-dar.properties

The Call-Controller Service

71

JBCP SIP Servlets for Tomcat

Place call-blocking-1.4.war and call-forwarding-1.4.war into the CATALINA_HOME/

webapps/ directory, and call-controller-servlet-dar.properties into the

CATALINA_HOME/conf/dars/ directory.

Configuring. The darConfigurationFileLocation attribute of the Service element must be

set to the value conf/dars/call-controller-servlet-dar.properties. Instructions for doing

so are given below by SIP Servlets Server type:

JBCP SIP Servlets for JBoss

Open the JBOSS_HOME/server/default/deploy/jboss-web.deployer/server.xml

configuration file and find the Service element. Add an attribute to it called

darConfigurationFileLocation, and set it to conf/dars/call-controller-servlet-

dar.properties :

Example 4.8. Editing JBCP SIP Servlets for JBoss's server.xml for the

Call-Controller Service

<Service

 name="jboss.web"

 className="org.mobicents.servlet.sip.startup.SipStandardService"

 sipApplicationDispatcherClassName="org.mobicents.servlet.sip.core.SipApplicationDispatcherImpl"

 darConfigurationFileLocation="conf/dars/call-controller-servlet-dar.properties "

 sipStackPropertiesFile="conf/mss-sip-stack.properties">

Make sure that the configuration file only contains one darConfigurationFileLocation

attribute: your new one.

JBCP SIP Servlets for Tomcat

Open the CATALINA_HOME/conf/server.xml configuration file and find the Service element.

Add an attribute to it called darConfigurationFileLocation, and set it to conf/dars/call-

controller-servlet-dar.properties :

Example 4.9. Editing JBCP SIP Servlets for Tomcat's server.xml for the

Call-Controller Service

<Service

 name="Sip-Servlets"

 className="org.mobicents.servlet.sip.startup.SipStandardService"

 sipApplicationDispatcherClassName="org.mobicents.servlet.sip.core.SipApplicationDispatcherImpl"

 darConfigurationFileLocation="conf/dars/call-controller-servlet-dar.properties "

 sipStackPropertiesFile="conf/mss-sip-stack.properties">

Chapter 4. SIP Servlet Exampl...

72

Make sure that the configuration file only contains one darConfigurationFileLocation

attribute: your new one.

Running. Once the WAR and DAR files have been placed in the right directories, and the JBoss

Application Server or Tomcat Servlet Container knows where to find them (which you specified in

a server.xml file), then you should go ahead and run SIP Servlets Server.

To learn how to run the SIP Servlets-enabled JBoss Application Server, refer to Section 2.1.7,

“Running”.

To learn how to run the SIP Servlets-enabled Tomcat Container, refer to Section 2.2.7, “Running”.

Testing. Two use-cases can be distinguished for the Call-Controller service: one in which a call

is blocked, and another in which a call is forwarded. Therefore, we have two cases for which we

can test the Call-Controller.

Procedure 4.7. Blocking a Call with Call-Controller

1. Start two SIP soft-phones of your choice. Set the account settings of the SIP soft-phones to:

Relevant First Softphone Settings

• Account name: forward-receiver

• IP address: 127.0.0.1

• Port: 5090

Relevant Second Softphone Settings

• Account name: blocked-sender

Neither of the SIP soft-phones needs to be registered.

2. From the second phone, blocked-sender, make a call to sip:receiver@sip-

servlets.com. You should receive a FORBIDDEN response.

Procedure 4.8. Forwarding a Call with Call-Controller

1. Start two SIP soft-phones of your choice. Set the account settings of the SIP soft-phones to:

Relevant First Softphone Settings

• Account name: forward-receiver

• IP address: 127.0.0.1

Media IPBX

73

• Port: 5090

Relevant Second Softphone Settings

• Account name: forward-sender

Neither of the SIP soft-phones needs to be registered.

2. From the second softphone, forward-sender, make a call to sip:receiver@sip-

servlets.com. The first phone, forward-receiver, should now be ringing.

Stopping. To learn how to stop the SIP Servlets-enabled JBoss Application Server, refer to

Section 2.1.10, “Stopping”.

To learn how to stop the SIP Servlets-enabled Tomcat Container, refer to Section 2.2.8,

“Stopping”.

Uninstalling. Unless disk space is at a premium, there is usually no need to uninstall the Call-

Controller Service. However, if you will not be using it again, you may want to unset or reset

the darConfigurationFileLocation attribute of the Service element, which you set in the

server.xml configuration file in Configuring.

You may also wish to delete the WAR and DAR files for the Call-Controller Service, which you

installed in Installing.

Note

Chapter 4, SIP Servlet Example Applications provides more information about

other service examples available.

4.1.6. Media IPBX

The Media IPBX provides an extensible and customizable SIP PBX solution, based on the Seam

Telco Framework (STF). While the PBX is currently provided as a capability demonstration, the

ultimate goal is to transition Media IPBX into a fully-fledged SIP PBX solution.

Media IPBX terminates all calls to JBoss Communications Media Server conference endpoints,

which provides flexibility in manipulating established calls including server-side conferencing and

ring-back tones. The PBX can also be implemented as a Session Border Controller.

Note

Media IPBX is compatible with JBoss Communications SIP Servlets with JBoss

AS 4.2.3; versions prior to this release do not support Media IPBX.

Chapter 4. SIP Servlet Exampl...

74

Media IPBX provides the following major features:

• User authentication.

• SIP phone registration.

• System configuration.

• Individual user views.

• Call monitoring and management.

• Multiple SIP phone instances per user.

• Status-based SIP phone assignment for incoming calls.

• Public Switched Telephone Network (PSTN) support including administrative functions.

• Support for SIP REGISTER requests to automatically add phones by matching the username,

or username and hostname (in 'strict mode' only).

• Optionally specify local or online sources for announcements and ringback tones.

• Session Border Controller capability.

• Full conferencing support, including:

• Privacy functions, such as mute and closed-calls.

• Call status announcement.

• Ringback tones when waiting for other participants to join the conference.

• Joining incoming calls to a conference.

• Parking calls and isolating a single speaker using dual-tone multi-frequency (DTMF) tones.

This feature is currently experimental.

Many of the features in Media IPBX are presented to the user as hints on the GUI portal pages.

It is recommended to install Media IPBX and experiment with the demonstration to gain an

understanding of how the solution works.

For information about installing and running Media IPBX, including binary and source code

locations, visit the Media IPBX homepage [http://www.mobicents.org/mss-ipbx.html].

http://www.mobicents.org/mss-ipbx.html
http://www.mobicents.org/mss-ipbx.html

Chapter 5.

75

Clustering and High Availability

5.1. JBoss Communications SIP Servlets for JBoss:

Clustering Support

JBoss Communications supports the clustering of SIP Servlets-enabled JBoss Application

Servers for performance, reliability and failover purposes. Note that only JBCP SIP Servlets for

JBoss Servers can be used as cluster nodes; JBCP SIP Servlets for Tomcat Containers are not

supported.

The SIP Servlets Server uses the JBoss Application Server as its servlet container,

and takes advantage of its capabilities, including clustering and failover. For detailed

background information about JBoss Application Server clustering refer to the JBoss Application

Server Clustering Guide [http://www.jboss.org/file-access/default/members/jbossas/freezone/

docs/Clustering_Guide/beta422/html/index.html].

5.1.1. SIP Servlets Server Cluster: Installing, Configuring and

Running

5.1.1.1. Pre-Install Requirements and Prerequisites

Software Prerequisites

A SIP Servlets-enabled JBoss Application Server

Before proceeding, ensure you have correctly configured your JBoss Application Server,

according to SIP Servlet Server requirements:

• Section 2.1, “SIP Servlet-Enabled JBoss Application Server: Installing, Configuring and

Running”

The easiest way to set up a cluster of SIP Servlets-enabled JBoss Application Servers is to

install, configure and test the binary distribution on one machine, and then copy the entire

installation (directory) to the other machines in the cluster. This is the approach taken in this

chapter.

Install a SIP Servlets Server with JBoss by following the instructions detailed in Section 2.1,

“SIP Servlet-Enabled JBoss Application Server: Installing, Configuring and Running”.

Afer meeting the requirement you can begin to configure the server Section 5.1.1.2,

“Configuring” below.

5.1.1.2. Configuring

Once installed, the JBCP SIP Servlets for JBoss binary distribution requires only minor

configuration in order to enable clustering.

http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Clustering_Guide/beta422/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Clustering_Guide/beta422/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Clustering_Guide/beta422/html/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Clustering_Guide/beta422/html/index.html

Chapter 5. Clustering and Hig...

76

SIP, and HTTP session state clustering is pre-configured straight out of the binary distribution.

However, to enable session replication in a node, you must tag it as <distributable/> both in

the web.xml and sip.xml descriptors. This can be done only individually (per application).

5.1.1.3. Running

Clustering with JBCP SIP Servlets for JBoss nodes requires running all of the nodes using the

"all" Server Configuration Profile, which is specified when you invoke run.sh or run.bat.

Running JBCP SIP Servlets for JBoss with the "all" Configuration Profile, on Linux. To

run the server on Linux using the "all" Configuration Profile, start the server with the following

command:

JBCP SIP Servlets-jboss-<version>]$./bin/run.sh -c all

Running JBCP SIP Servlets for JBoss with the "all" Configuration Profile, on

Windows. To run the server on Windows using the "all" Configuration Profile, open the

Command Prompt, change your folder to the topmost folder of your JBCP SIP Servlets for JBoss

installation, and issue the following command:

C:Usersuser\<username>My DownloadsJBCP SIP Servlets-jboss-

<version>>binrun.bat -c all

Distributing requests between nodes. Together with the application server nodes, it is

advised to run a SIP load-balancer or an IP load-balancer. The IP load balancer will distribute

the traffic evenly between the nodes. A load-balancer is a single entry-point to all nodes. All calls

should be made through the load balancer if High Availability is required. For more information

about load balancing, refer to Section 5.3.5, “Implementation of the JBoss Communications Load

Balancer”.

By default, the servers are configured with one SIP load-balancer set to the IP address 127.0.0.1.

This is specified in the balancers attribute in the server.xml configuration file as follows:

<Service name="jboss.web"

 className="org.mobicents.servlet.sip.startup.failover.SipStandardBalancerNodeService"

 balancers="127.0.0.1"

 sipPathName="org.mobicents.ha"

 sipApplicationDispatcherClassName="org.mobicents.servlet.sip.core.SipApplicationDispatcherImpl"

concurrencyControlMode="None"

 darConfigurationFileLocation="conf/dars/mobicents-dar.properties"

 sipStackPropertiesFile="conf/mss-sip-stack.properties">

Multiple load balancers can be specified and all of them will be updated on the health status of

the node. The complete syntax for the balancers string is the following:

SIP Servlets Server Cluster: Installing, Configuring and Running

77

<Service name="jboss.web"

 ...

 balancers="ipAddress1:sipPort1:rmiPort1;ipAddress2:sipPort2:rmiPort2;..3...4.."

 ...>

If the RMI port is omitted port 2000 is assumed, and if the SIP port is omitted 5065 is assumed.

Warning

The SIP port specified in the balancers string for each balancer refers to the internal

SIP port of the SIP balancer. That is because the internal port faces the cluster

nodes directly. Requests coming through the internal port will go to the external

port and vice versa. If you put the external port in the balancers string, then the

SIP LB will assume that the requests comes from outside the cluster and it will route

it back to some cluster node instead of routing it outside the cluster as expected.

Always use the SIP internal port in the balancers string. Exception to this rule is

when a single port is used for internal and external ports in the SIP load balancer.

In that case the direction analysis is done based on Via headers and the requests

are routed correctly without extra settings.

When multiple SIP load balancers are specified, the outgoing requests will always go through the

first one, or an IP load balancer can be used and the requests will be distributed based on the IP

balancer policy. To route the outgoing requests to a particular IP address (the IP load balancer

address for example) the outboundProxy property can be used:

<Service name="jboss.web"

 ...

 balancers="127.0.0.1:5060:2000;127.0.0.1:5160:2100"

outboundProxy="127.0.0.1:5500"

 ...>

In this example configuration all outbound requests will go through 127.0.0.1:5500, while the node

will perform the health checks against two SIP load balancers. If the 127.0.0.1:5500 machine is

an IP load balancer it should be configured to spray the SIP load balancers and they will route

the requests outside the cluster reliably.

The outboundProxy attribute overrides the default effect of specifying a SIP port for SIP load

balancers in the balancers string.

Chapter 5. Clustering and Hig...

78

5.1.1.4. Stopping

Individual nodes in the cluster should be stopped one-by-one, followed by the SIP load balancer.

Refer to:

• Stopping the SIP load balancer: Section 5.3.7.7, “Stopping”

• Stopping JBCP SIP Servlets for JBoss: Section 2.1.10, “Stopping”

• Stopping JBCP SIP Servlets for Tomcat: Section 2.2.8, “Stopping”

5.1.1.5. Testing

To test your JBoss cluster setup for mid-call failover (Established SIP Dialog), refer to:

• Section 5.2, “JBoss Communications SIP Servlets for JBoss: Transparent Failover”

5.1.1.6. Uninstalling

Uninstalling a SIP Servlets Cluster would entail deleting the Mobicents SIP Servlets Servers

directories, the SIP Load Balancer directory, and possibly removing the unused JBOSS_HOME

environment variable.

5.2. JBoss Communications SIP Servlets for JBoss:

Transparent Failover

A JBoss Communications SIP Servlets Server for JBoss cluster does not employ any standby

nodes. Typically, therefore, proxies and registrars must share the user location table by using a

database cluster.

The JBoss Communications SIP load balancer, which is a SIP Call ID-aware load balancer, is

used as the intermediary. The SIP load balancer forwards stateful transaction requests to cluster

nodes based on its provisioning algorithm. The SIP load balancer acts as an entry-point to the

cluster and distributes the incoming requests between nodes. It is always advised to use a SIP

load balancer or an IP load balancer in a cluster configuration.

The SIP Stack used by the JBoss Communications SIP Servlets for JBoss supports ESTABLISHED

SIP DIALOG failover. This means that failover will occur only on established calls (SIP Dialogs

which are in the CONFIRMED state as per RFC 3261) and calls that are in the process of being

setup will not be failed over (SIP Dialogs which are in the EARLY state as per RFC 3261).

Testing a cluster. This choice of implementation has many benefits:

• There is no need for standby nodes, because the remaining nodes in a degraded cluster

automatically and transparently (to the user) take on the load of the failed node. This can be

JBCP SIP Servlets for JBoss Cluster: Installing, Configuring and Running

79

done because both the SIP load balancer and SIP Servlet-enabled JBoss Application Servers

support mid-call failover (Established SIP Dialog).

• There is no need to ensure that requests are directed to the correct node, because in a SIP

Servlets-enabled JBoss Application Server (or JBoss Communications JAIN SLEE server)

cluster, any node can serve any request to any User Agent (UA).

• All hardware is in use, reducing costs.

• Maintenance is easier, due to all nodes having nearly-identical configurations.

5.2.1. JBCP SIP Servlets for JBoss Cluster: Installing,

Configuring and Running

There are a number of options you can specify for JBCP SIP Servlets clustering. By default most

of them are configured in the "all" server configuration, which is ready to use. In this chapter we

will cover the most common configuration options you might need.

5.2.1.1. Downloading

5.2.1.2. Installing

5.2.1.3. Configuring

5.2.1.4. Running

5.2.1.5. Using

5.2.1.6. Testing

5.2.1.7. Uninstalling

Chapter 5. Clustering and Hig...

80

5.3. Load Balancer

Figure 5.1. Star Cluster Topology.

The JBoss Communications SIP load balancer is used to balance the load of SIP service requests

and responses between nodes in a SIP Servlets Server cluster. Both JBCP SIP Servlets for JBoss

and JBCP SIP Servlets for Tomcat servers can be used in conjunction with the SIP load balancer

to increase the performance and availability of SIP services and applications.

In terms of functionality, the JBoss Communications SIP load balancer is a simple stateless proxy

server that intelligently forwards SIP session requests and responses between User Agents (UAs)

on a Wide Area Network (WAN), and SIP Servlets Server nodes, which are almost always located

on a Local Area Network (LAN). All SIP requests and responses pass through the SIP load

balancer.

SIP Load Balancing Basics

81

5.3.1. SIP Load Balancing Basics

All User Agents send SIP messages, such as INVITE and MESSAGE, to the same SIP URI (the IP

address and port number of the SIP load balancer on the WAN). The load balancer then parses,

alters, and forwards those messages to an available node in the cluster. If the message was sent

as a part of an existing SIP session, it will be forwarded to the cluster node which processed that

User Agent's original transaction request.

The SIP Servlets Server that receives the message acts upon it and sends a response back to

the SIP load balancer. The SIP load balancer reparses, alters and forwards the message back to

the original User Agent. This entire proxying and provisioning process is carried out independent

of the User Agent, which is only concerned with the SIP service or application it is using.

By using the load balancer, SIP traffic is balanced across a pool of available SIP Servlets Servers,

increasing the overall throughput of the SIP service or application running on either individual

nodes of the cluster. In the case of JBCP SIP Servlets for JBoss's </distributed> capabilities,

load balancing advantages are applied across the entire cluster.

The SIP load balancer is also able to fail over requests mid-call from unavailable nodes to available

ones, thus increasing the reliability of the SIP service or application. The load balancer increases

throughput and reliability by dynamically provisioning SIP service requests and responses across

responsive nodes in a cluster. This enables SIP applications to meet the real-time demand for

SIP services.

5.3.2. HTTP Load Balancing Basics

In addition to the SIP load balancing, there are several options for coordinated or cooperative

load balancing with other protocols such as HTTP. Typically, a JBoss Application Server will use

apache HTTP server with mod_jk, mod_proxy, mod_cluster or similar extension installed as an

HTTP load balancer. This apache-based load balancer will parse incoming HTTP requests and it

will look for the session ID of those requests in order to ensure all requests from the same session

arrive at the same application server. By default, this is done by examining the jsessionid HTTP

cookie or GET parameter and looking for the jvmRoute assigned to the session. The typical

jsessionid value is of the form <sessionId>.<jvmRoute> (e.g. mysessionid323424.node1

where node1 is the jvmRoute component). The very first request for each new HTTP session

do not have any session ID assigned, thus apache routes the request to a random application

server node. When the node responds it assigns a session ID and jvmRoute to the response of

the request in a HTTP cookie and this response goes back to the client through apache, which

keeps track of which node owns which jvmRoute. Once, the very first request is served this way,

the subsequent requests from this session will carry the assigned cookie and the apache load

balancer will always route the requests to the node, which advertised itself as the jvmRoute owner.

Instead of using apache, an integrated HTTP load balancing is also available. The SIP load

balancer has an HTTP port where you could direct all incoming HTTP requests. The integrated

HTTP load balancer behaves exactly like apache by default, but this behaviour is extensible and

can be overridden completely with the pluggable balancer algorithms. The integrated HTTP load

Chapter 5. Clustering and Hig...

82

balancer is much easier to configure and generally requires no effort, because it reuses most SIP

settings ans assumes reasonable default values.

Unlike the native apache, the integrated HTTP load balancer is written completely in Java, thus a

performance penalty should be expected when using it. However, the integrated HTTP balancer

has an advantage when related SIP and HTTP requests must stick to the same node.

5.3.3. Pluggable balancer algorithms

The SIP/HTTP load balancer exposes an interface to allow users to customize the routing decision

making for special purposes. By default there are three built-in algorithms. Only one algorithm is

active at any time and it is specified with the algorithmClass property in the configuration file.

It is completely up to the algorithm how and whether to support distributed architecture or how to

store the information needed for session affinity. The algorithms will be called for every SIP and

HTTP request and other significant events to make more informed decisions.

Note

Users must be aware that, bydefault requests explicitly addressed to a live server

node passing through the load balancer will be forwarded directly to the server

node. This allows for pre-specified routing use-cases, where the target node is

known by the SIP client through other means. If the target node is dead, then the

node selection algorithm is used to route the request to an available node.

The following is a list o the built-in algorithms:

org.mobicents.tools.sip.balancer.CallIDAffinityBalancerAlgorithm

This algorithm is not distributable. It selects nodes randomly to serve a give Call-ID extracted

from the requests and responses. It keeps a map with Call-ID -> nodeId associations

and this map is not shared with other load balancers which will cause them to make different

decisions. For HTTP it behaves like apache.

org.mobicents.tools.sip.balancer.HeaderConsistentHashBalancerAlgorithm

This algorithm is distributable and can be used in distributed load balancer configurations. It

extracts the hash value of specific headers from SIP and HTTP messages to decide which

application server node will handle the request. Information about the options in this algorithms

is available in the balancer configuration file comments.

org.mobicents.tools.sip.balancer.PersistentConsistentHashBalancerAlgorithm

This algorithm is distributable and is similar to the previous algorithm, but it attempts to keep

session affinity even when the cluster nodes are removed or added, which would normally

cause hash values to point to different nodes.

Distributed load balancing

83

5.3.4. Distributed load balancing

When the capacity of a single load balancer is exceeded, multiple load balancers can be used.

With the help of an IP load balancer the traffic can be distributed between all SIP/HTTP load

balancers based on some IP rules or round-robin. With consistent hash and jvmRoute-based

balancer algorithms it doesn't matter which SIP/HTTP load balancer will process the request,

because they would all make the same decisions based on information in the requests (headers,

parameters or cookies) and the list of available nodes. With consistent hash algorithms there is

no state to be preserved in the SIP/HTTP balancers.

Figure 5.2. Example deployment scenario with IP load balancers serving

both directions for incoming and outgoing requests in a cluster

5.3.5. Implementation of the JBoss Communications Load

Balancer

Each individual JBoss Communications SIP Servlets Server in the cluster is responsible for

contacting the SIP load balancer and relaying its health status and regular "heartbeats".

From these health status reports and heartbeats, the SIP load balancer creates and maintains

a list of all available and healthy nodes in the cluster. The load balancer forwards SIP requests

between these cluster nodes, providing that the provisioning algorithm reports that each node is

healthy and is still sending heartbeats.

Chapter 5. Clustering and Hig...

84

If an abnormality is detected, the SIP load balancer removes the unhealthy or unresponsive node

from the list of available nodes. In addition, mid-session and mid-call messages are failed over

to a healthy node.

For more information about this aspect of the load balancer, refer to Section 5.2, “JBoss

Communications SIP Servlets for JBoss: Transparent Failover”.

The SIP load balancer first receives SIP requests from endpoints on a port that is specified in its

Configuration Properties configuration file. The SIP load balancer, using a round-robin algorithm,

then selects a node to which it forwards the SIP requests. The load balancer forwards all same-

session requests to the first node selected to initiate the session, providing that the node is healthy

and available.

5.3.6. SIP Message Flow

The JBoss Communications SIP load balancer appends itself to the Via header of each request,

so that returned responses are sent to the SIP Balancer before they are sent to the originating

endpoint.

The load balancer also adds itself to the path of subsequent requests by adding Record-Route

headers. It can subsequently handle mid-call failover by forwarding requests to a different node

in the cluster if the node that originally handled the request fails or becomes unavailable. The SIP

load balancer immediately fails over if it receives and unhealthy status, or irregular heartbeats

from a node.

The SIP Servlets Server extends the SipStandardService class, which extends the Tomcat

StandardService class. The StandardService class is responsible for implementing the Tomcat

Service interface.

In Tomcat architecture, a service is an intermediate component which resides inside a server,

and binds one or more Connectors to exactly one Engine. When the service is started, the new

SipStandardBalancerNodeService looks up its configuration information and obtains the SIP

load balancer address. The heartbeat and health status is sent to the SIP load balancer address

to identify the service as an available node of the cluster.

The node parameters are configurable through their MBean interfaces; information on their

configuration is provided in the following sections.

In advanced configurations, it is possible to run more than one SIP load balancer.

Figure 5.3, “Basic IP and Port Cluster Configuration” describes a basic IP and Port Cluster

Configuration. In the diagram, the SIP load balancer is the server with the IP address of

192.168.1.1.

SIP Load Balancer: Installing, Configuring and Running

85

Figure 5.3. Basic IP and Port Cluster Configuration

5.3.7. SIP Load Balancer: Installing, Configuring and Running

5.3.7.1. Pre-Install Requirements and Prerequisites

Software Prerequisites

A SIP Servlet-Enabled JBoss Application Server or Tomcat Servlet Container

Running the SIP load balancer requires at least two SIP Servlets Servers as client nodes.

Therefore, before configuring the SIP load balancer, we should make sure we've installed a

SIP Servlets Server first. The JBoss Communications SIP load balancer will work with a SIP

Servlets-enabled JBoss Application Server or a SIP Servlets-enabled Tomcat Container.

Chapter 5. Clustering and Hig...

86

However, if you intend to cluster multiple nodes for performance, reliability and failover

purposes, then you will want to install and set up SIP Servlets-enabled JBoss AS nodes,

because only they can be clustered, and not SIP-Servlet Tomcat Containers.

• To install a SIP Servlet-enabled JBoss Application Server, follow the instructions here:

Section 2.1, “SIP Servlet-Enabled JBoss Application Server: Installing, Configuring and

Running”.

• To install a SIP Servlet-enabled Tomcat Servlet Container, follow these instructions:

Section 2.2, “SIP Servlet-Enabled Tomcat Servlet Container: Installing, Configuring and

Running”.

5.3.7.2. Downloading

The load balancer is located in the sip-balancer top-level directory of the JBCP SIP Servlets

distribution. You will find the following files in the directory:

SIP load balancer executable JAR file

This is the binary file with all dependencies

SIP load balancer Configuration Properties file

This is the properties files with various settings

5.3.7.3. Installing

The SIP load balancer executable JAR file can be placed anywhere in the file system. It is

recommended that the file is placed in the directory containing other JAR executables, so it can

be easily located in the future.

5.3.7.4. Configuring

5.3.7.4. Configuring

Configuring the SIP load balancer and the two SIP Servlets-enabled Server nodes is described

in Configuring the JBoss Communications SIP Load Balancer and Servlet Server Nodes.

Procedure 5.1. Configuring the JBoss Communications SIP Load Balancer

and Servlet Server Nodes

1. Configure lb.properties Configuration Properties File

Configure the SIP load balancer's Configuration Properties file by substituting valid values

for your personal setup. Example 5.1, “Complete Sample lb.properties File” shows a sample

lb.properties file, with key element descriptions provided after the example. The lines

beginning with the pound sign are comments.

SIP Load Balancer: Installing, Configuring and Running

87

Example 5.1. Complete Sample lb.properties File

Mobicents Load Balancer Settings

For an overview of the Mobicents Load Balancer visit http://docs.google.com/present/view?

id=dc5jp5vx_89cxdvtxcm

The binding address of the load balancer

host=127.0.0.1

The RMI port used for heartbeat signals

rmiRegistryPort=2000

The SIP port used where client should connect

externalPort=5060

The SIP port from where servers will receive messages

delete if you want to use only one port for both inbound and outbound)

if you like to activate the integrated HTTP load balancer, this is the entry point

internalPort=5065

The HTTP port for HTTP forwarding

httpPort=2080

#Specify UDP or TCP (for now both must be the same)

internalTransport=UDP

externalTransport=UDP

If you are using IP load balancer, put the IP address and port here

#externalIpLoadBalancerAddress=127.0.0.1

#externalIpLoadBalancerPort=111

Requests initited from the App Servers can route to this address (if you are using 2 IP load

 balancers for bidirectional SIP LB)

#internalIpLoadBalancerAddress=127.0.0.1

#internalIpLoadBalancerPort=111

Designate extra IP addresses as serer nodes

#extraServerNodes=222.221.21.12:21,45.6.6.7:9003,33.5.6.7,33.9.9.2

Call-ID affinity algortihm settings. This algorithm is the default. No need to uncomment it.

#algorithmClass=org.mobicents.tools.sip.balancer.CallIDAffinityBalancerAlgorithm

This property specifies how much time to keep an association before being evitcted.

Chapter 5. Clustering and Hig...

88

It is needed to avoid memory leaks on dead calls. The time is in seconds.

#callIdAffinityMaxTimeInCache=500

Uncomment to enable the consistent hash based on Call-ID algorithm.

#algorithmClass=org.mobicents.tools.sip.balancer.HeaderConsistentHashBalancerAlgorithm

This property is not required, it defaults to Call-ID if not set, cna be "from.user" or "to.user"

 when you want the SIP URI username

#sipHeaderAffinityKey=Call-ID

#specify the GET HTTP parameter to be used as hash key

#httpAffinityKey=appsession

Uncomment to enable the persistent consistent hash based on Call-ID algorithm.

#algorithmClass=org.mobicents.tools.sip.balancer.PersistentConsistentHashBalancerAlgorithm

This property is not required, it defaults to Call-ID if not set

#sipHeaderAffinityKey=Call-ID

#specify the GET HTTP parameter to be used as hash key

#httpAffinityKey=appsession

#This is the JBoss Cache 3.1 configuration file (with jgroups), if not specified it will use default

#persistentConsistentHashCacheConfiguration=/home/config.xml

Call-ID affinity algortihm settings. This algorithm is the default. No need to uncomment it.

#algorithmClass=org.mobicents.tools.sip.balancer.CallIDAffinityBalancerAlgorithm

This property specifies how much time to keep an association before being evitcted.

It is needed to avoid memory leaks on dead calls. The time is in seconds.

#callIdAffinityMaxTimeInCache=500

Uncomment to enable the consistent hash based on Call-ID algorithm.

#algorithmClass=org.mobicents.tools.sip.balancer.HeaderConsistentHashBalancerAlgorithm

This property is not required, it defaults to Call-ID if not set, cna be "from.user" or "to.user"

 when you want the SIP URI username

#sipHeaderAffinityKey=Call-ID

#specify the GET HTTP parameter to be used as hash key

#httpAffinityKey=appsession

Uncomment to enable the persistent consistent hash based on Call-ID algorithm.

#algorithmClass=org.mobicents.tools.sip.balancer.PersistentConsistentHashBalancerAlgorithm

This property is not required, it defaults to Call-ID if not set

#sipHeaderAffinityKey=Call-ID

#specify the GET HTTP parameter to be used as hash key

#httpAffinityKey=appsession

#This is the JBoss Cache 3.1 configuration file (with jgroups), if not specified it will use default

#persistentConsistentHashCacheConfiguration=/home/config.xml

SIP Load Balancer: Installing, Configuring and Running

89

#Adjusting the heatbeat. The hearbeat must be specified together with the individual server

 JAIN SIP property org.mobicents.ha.javax.sip.HEARTBEAT_INTERVAL

#If a node doesnt check in within that time (in ms), it is considered dead

nodeTimeout=5100

#The consistency of the above condition is checked every heartbeatInterval milliseconds

heartbeatInterval=150

#JSIP stack configuration.....

javax.sip.STACK_NAME = SipBalancerForwarder

javax.sip.AUTOMATIC_DIALOG_SUPPORT = off

// You need 16 for logging traces. 32 for debug + traces.

// Your code will limp at 32 but it is best for debugging.

gov.nist.javax.sip.TRACE_LEVEL = 32

gov.nist.javax.sip.DEBUG_LOG = logs/sipbalancerforwarderdebug.txt

gov.nist.javax.sip.SERVER_LOG = logs/sipbalancerforwarder.xml

gov.nist.javax.sip.THREAD_POOL_SIZE = 64

gov.nist.javax.sip.REENTRANT_LISTENER = true

host

Local IP address, or interface, on which the SIP load balancer will listen for incoming

requests.

externalPort

Port on which the SIP load balancer listens for incoming requests from SIP User Agents.

internalPort

Port on which the SIP load balancer forwards incoming requests to available, and healthy,

SIP Servlets Server cluster nodes.

rmiRegistryPort

Port on which the SIP load balancer will establish the RMI heartbeat connection to the

application servers. When this connection fails or a disconnection instruction is received,

an application server node is removed and handling of requests continues without it by

redirecting the load to the lie nodes.

httpPort

Port on which the SIP load balancer will accept HTTP requests to be distributed across

the nodes.

Chapter 5. Clustering and Hig...

90

internalTransport

Transport protocol for the internal SIP connections associated with the internal SIP port

of the load balancer. Possible choices are UDP, TCP and TLS.

externalTransport

Transport protocol for the external SIP connections associated with the external SIP port

of the load balancer. Possible choices are UDP, TCP and TLS. It must match the transport

of the internal port.

externalIpLoadBalancerAddress

Address of the IP load balancer (if any) used for incoming requests to be distributed in

the direction of the application server nodes. This address may be used by the SIP load

balancer to be put in SIP headers where the external address of the SIP load balancer

is needed.

externalIpLoadBalancerPort

The port of the external IP load balancer. Any messages arriving at this port should be

distributed across the external SIP ports of a set of SIP load balancers.

internalIpLoadBalancerAddresst

Address of the IP load balancer (if any) used for outgoing requests (requests initiated

from the servers) to be distributed in the direction of the clients. This address may be

used by the SIP load balancer to be put in SIP headers where the internal address of

the SIP load balancer is needed.

internalIpLoadBalancerPort

The port of the internal IP load balancer. Any messages arriving at this port should be

distributed across the internal SIP ports of a set of SIP load balancers.

extraServerNodes

Comma-separated list of hosts that are server nodes. You can put here alternative

names of the application servers here and they will be recognized. Names are important,

because they might be used for direction-analysis. Requests coming from these server

will go in the direction of the clients and will not be routed back to the cluster.

algorithmClass

The fully-qualified Java class name of the balancing algorithm to be used. There are

three algorithms to choose from and you can write your own to implement more complex

routing behaviour. Refer to the sample configuration file for details about the available

options for each algorithm. Each algorithm can have algorithm-specific properties for fine-

grained configuration.

nodeTimeout

In milliseonds. Default value is 5100. If a server node doesnt check in within this time (in

ms), it is considered dead.

SIP Load Balancer: Installing, Configuring and Running

91

heartbeatInterval

In milliseconds. Default value is 150 milliseonds. The hearbeat interval must be much

smaller than the interval specified in the JAIN SIP property on the server machines -

org.mobicents.ha.javax.sip.HEARTBEAT_INTERVAL

Note

The remaining keys and properties in the configuration properties file

can be used to tune the JAIN SIP stack, but are not specifically

required for load balancing. To assist with tuning, a comprehensive list

of implementing classes for the SIP Stack is available from the Interface

SIP Stack page on nist.gov [http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/

javadoc/javax/sip/SipStack.html]. For a comprehensive list of properties

associated with the SIP Stack implementation, refer to Class SipStackImpl

page on nist.gov [http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/gov/

nist/javax/sip/SipStackImpl.html].

2. Configure the server.xml configuration file

Ensure the following attributes are configured for the <service> element in server.xml.

• The className attribute must have the value

org.mobicents.servlet.sip.startup.failover.SipStandardBalancerNodeService

instead of org.mobicents.servlet.sip.startup.SipStandardService.

• The balancers attribute must contain a IP address (or list of addresses) of the SIP load

balancer(s) to which heartbeat information will be sent.

• The sipPathName attribute must contain the following value org.mobicents.ha to indicate

that the server will be using the Mobicents JAIN SIP HA SIP Stack which is an extension

of the JAIN SIP Stack offering transparent replication.

the SIP load balancer uses Java Logging as a logging mechanism [http://java.sun.com/

j2se/1.4.2/docs/guide/util/logging/overview.html]. As such you cna configure it through a

property file and specify the property file to be used by using the following command -

Djava.util.logging.config.file=./lb-logging.properties. Please refer to JDK logging

for more informationon how to configure the Java logging.

Configuration File Locations

On JBCP SIP Servlets for Tomcat server installations, server.xml is located in

<install_directory>/conf.

http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/javax/sip/SipStack.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/javax/sip/SipStack.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/javax/sip/SipStack.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/javax/sip/SipStack.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/gov/nist/javax/sip/SipStackImpl.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/gov/nist/javax/sip/SipStackImpl.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/gov/nist/javax/sip/SipStackImpl.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/gov/nist/javax/sip/SipStackImpl.html
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html

Chapter 5. Clustering and Hig...

92

On JBCP SIP Servlets for JBoss server installations, the default server.xml

configuration file is located in server/default/deploy/jboss-web.sar (or

server/default/deploy/jboss-web.deployer for JBoss Application Server 4.x

and EAP 4.x).

On JBCP SIP Servlets for JBoss installations, with JBoss clustering support

enabled, the "all" server.xml file must be configured. It is located in server/all/

deploy/jboss-web.deployer.

To determine what profile should be altered for each JBCP SIP Servlets for JBoss

installation, refer to Section 5.1, “JBoss Communications SIP Servlets for JBoss:

Clustering Support”.

Easy Node Configuration with JMX. Both SIP Servlet-enabled JBoss and Tomcat have JMX

(Java Management Extensions) interfaces that allow for easy server configuration. The JMX

Console is available once the server has been started by navigating to http://localhost:8080/jmx-

console/.

Both the balancers and heartBeatInterval attribute values are available under

serviceName=jboss.web,type=Service in the JMX Console.

balancers

Host names of the SIP load balancer(s) with corresponding addBalancerAddress and

removeBalancerAddress methods.

heartBeatInterval

Interval at which each heartbeat is sent to the SIP load balancer(s).

5.3.7.4.1. Converged Load Balancing

5.3.7.4.1.1. Apache HTTP load balancer

The JBCP SIP Servlets SIP load balancer can work in concert with HTTP load balancers such as

mod_jk and mod_proxy in two different ways. By default whenever an HTTP session is bound to

a particular node, an instruction is sent to the SIP load balancer to direct the SIP calls from the

same application session to the same node.

It is sufficient to configure mod_jk to work for HTTP in JBoss in order to enable cooperative

load balancing. JBCP SIP Servlets will read the configuration and will use it without any extra

configuration. You can read more about configuring mod_jk with JBoss in your JBoss Application

Server documentation.

Alternatively you may disable this behaviour and make the HTTP load balancer follow the

decisions made by the SIP load balancer with the httpFollowsSip flag. This is achieved by

changing the jvmRoute part of the session ID cookie used internally by mod_jk.

http://localhost:8080/jmx-console/
http://localhost:8080/jmx-console/

SIP Load Balancer: Installing, Configuring and Running

93

5.3.7.4.1.1.1. The httpFollowsSip flag

The httpFollowsSip flag in the service configuration makes the application server aware of

how different mod_jk and SIP load balancers have assigned request affinity for each application

session. The application servers assign exactly one node to each Sip Servlets application session

and this node is the node where the last SIP request associated with the application session has

landed (decised by the SIP load balancer). Then the application server will actively update the

session ID cookie (the jvmRoute part) of any HTTP request that arrives at the wrong node. The

application server will do so with a specially composed HTTP redirect response or with a HTML

refresh hint. As a backup strategy, if the request is bound to seek non-existing node forever and

it will let the request be served by a new node. This avoids having a client stuck reloading the

same page over and over.

One problem with this flag is that if you have two or more SIP sessions associated with the

same application session and the load balancer has decided to send SIP requests to different

nodes, which might happend if you use Call-ID based affinity, then the application server will have

to change the jvmRoute very often for every SIP request resulting in significant overhead. It is

generally not adviced to enable this flag if you have more than 1 SIP session per application

session and the means to guarantee all SIP sessions from the application session will land on

the same node.

This is an example how to enable the option. It is disabled by default.

<Connector port="5080"

 ipAddress = "${jboss.bind.address}"

 ...

 httpFollowsSip="true" />

5.3.7.4.1.2. Integrated HTTP load balancer

To use the integrated HTTP load balancer, no extra configuration is needed. If a unique jvmRoute

is specified and enabled in each application server, it will behave exactly as the apache balancer.

If jvmRoute is not present it will use session ID as a hash value and attempt to create sticky

session. The integrated balancer can be used together with the apache balancer at the same time.

In addition to the apache behaviour, there is a consistent hash balancer algorithm that can

be enabled for both HTTP and SIP messages. For both HTTP and SIP messages, there is a

configurable affinity key, which is evaluated and hashed against each unassigned request. All

requests with the same hash value will always be routed to the same application server node. For

example, the SIP affinity key could be the callee user name and the HTTP affinity key could the

“appsession” HTTP GET parameter of the request. If the desired behaviour group these requests,

we can just make sure the affinity values (user name and GET parameter) are the same.

Chapter 5. Clustering and Hig...

94

Figure 5.4. Ensuring SIP and HTTP requests are being grouped by common

affinity value.

5.3.7.5. Running

Procedure 5.2. Running the SIP Load Balancer and Servlet Server Nodes

1. Start the SIP Load Balancer

Start the SIP load balancer, ensuring the Configuration Properties file (lb.properties in this

example) is specified. In the Linux terminal, or using the Windows Command Prompt, the SIP

Load Balancer is started by issuing a command similar to this one:

java -jar sip-balancer-1.0-20080829.103906-21-jar-with-dependencies.jar

 lb-configuration.properties

Executing the SIP load balancer produces output similar to the following example:

home]$ java -jar sip-balancer-1.0-20080829.103906-21-jar-with-

dependencies.jar lb-configuration.properties

Oct 21, 2008 1:10:58 AM

 org.mobicents.tools.sip.balancer.SIPBalancerForwarder start

INFO: Sip Balancer started on address 127.0.0.1, external port : 5060,

 port : 5065

SIP Load Balancer: Installing, Configuring and Running

95

Oct 21, 2008 1:10:59 AM

 org.mobicents.tools.sip.balancer.NodeRegisterImpl startServer

INFO: Node registry starting...

Oct 21, 2008 1:10:59 AM

 org.mobicents.tools.sip.balancer.NodeRegisterImpl startServer

INFO: Node expiration task created

Oct 21, 2008 1:10:59 AM

 org.mobicents.tools.sip.balancer.NodeRegisterImpl startServer

INFO: Node registry started

The output shows the IP address on which the SIP load balancer is listening, as well as the

external and internal listener ports.

2. Configure SIP Servlet Server Nodes

SIP Servlets Server nodes can run on the JBoss Application Server, or the Tomcat Servlet

Container. The SIP Servlets Server binary distributions define the type of SIP Servlets Server

nodes used, and should already be installed from Software Prerequisites.

The server.xml file specifies the nodes used. Because there is more then one client node

specified, unique listener ports must be specified for each node to monitor HTTP and/or SIP

connections. Example 5.2, “Changing the SIP Connector Port for Servlet Server Nodes in

server.xml” describes the affected element in the server.xml file.

Configuration File Location

For the JBoss SIP Servlets Server binary distribution, server.xml is located

in the <install_directory>/server/all/deploy/jboss-web.deployer/

directory (for JBoss Application Server 4.x or EAP 4.x <install_directory>/

server/all/deploy/jboss-web.deployer/). For the Tomcat binary

distribution, server.xml is located in the <install_directory>/conf/

directory.

Example 5.2. Changing the SIP Connector Port for Servlet Server Nodes

in server.xml

<!-- Define a SIP Connector -->

<Connector port="5080"

3. Start Load Balancer Client Nodes

Start all SIP load balancer client nodes.

Chapter 5. Clustering and Hig...

96

5.3.7.6. Testing

To test load balancing, the same application must be deployed manually on each node. Two SIP

Softphones must be installed.

Procedure 5.3. Testing Load Balancing

1. Deploy an Application

Ensure that for each node, the DAR file location is specified in the server.xml file.

Deploy the Location service manually on both nodes.

2. Start the "Sender" SIP softphone

Start a SIP softphone client with the SIP address of sip:sender@sip-servlets-com,

listening on port 5055. The outbound proxy must be specified as the sip-balancer

(http://127.0.0.1:5060)

3. Start the "Receiver" SIP softphone

Start a SIP softphone client with the SIP address of sip:receiver-failover@sip-

servlets-com, listening on port 5090.

4. Initiate two calls from "Sender" SIP softphone

Initiate one call from sip:sender@sip-servlets-com to sip:receiver-failover@sip-

servlets-com. Tear down the call once completed.

Initiate a second call using the same SIP address, and tear down the call once completed.

Notice that the call is handled by the second node.

5.3.7.7. Stopping

Assuming that you started the JBoss Application Server as a foreground process in the Linux

terminal, the easiest way to stop it is by pressing the Ctrl+C key combination in the same terminal

in which you started it.

This should produce similar output to the following:

^COct 21, 2008 1:11:57 AM

 org.mobicents.tools.sip.balancer.SipBalancerShutdownHook run

INFO: Stopping the sip forwarder

5.3.7.8. Uninstalling

To uninstall the SIP load balancer, delete the JAR file you installed.

IP Load Balancing

97

5.3.8. IP Load Balancing

5.3.8.1. IP Load Balancers

An IP load-balancer is a network appliance that distributes traffic to an application server (or actual

servers) using a load-balancing algorithm. IP load-balancing is often used when the other load-

balancers' capacity is exceeded and can not scale further without hardware upgrades.

Routing decisions are made based on OSI Layer 2, 3 or 4 data. This type of load balancer

only examines low-level TCP, UDP or ethernet packet structures including MAC addresses, IP

addresses, ports, and protocol types (TCP or UDP or other).

An IP load balancer never reads the payload of the TCP/IP packets and therefore never parses

SIP or HTTP (or any protocol above OSI Layer 4). Because an IP load balancing device is not

SIP or HTTP aware in any way, it is much more performant than mod_jk or the JBCP SIP Servlets

SIP load-balancer.

5.3.8.2. Technical overview

In its simplest form, the IP load-balancer usually "owns" the public-facing IP address (known as a

VIP). The traffic is routed to actual servers in it's private network similar to NAT. It is also possible

to not change the IP address and just work on the MAC address by assuming that all actual

servers are configured to accept packets for the VIP address. The features offered by the IP load

balancer depend largely on the vendor.

Some examples of Linux-based software load balancers include Red Hat Cluster

Suite (RHCS) [http://www.redhat.com/cluster_suite/] and Linux Virtual Server (LVS) [http://

www.linuxvirtualserver.org/]. There are many hardware vendors as well.

One main drawback relating to IP load balancers is that they can not make routing decisions

based on SIP messages and (with some exceptions) they can not work cooperatively with HTTP

or other load balancers.

5.3.8.3. Configuring JBCP SIP Servlets Cluster for pure IP Load

Balancing

Warning

Pure IP load balancing is not a recommented option. It is advised to use a

distributed load balancer instead. Proper operation with pure IP load balancing

depends on the ability of the IP load balancer to establish request affinity based

on IP addresses and ports.

First you need to remove the SIP load balancers from any configuration in JBCP SIP Servlets. In

particular the balancers attribute in server.xml. and edit the jboss.web engine tag. You should

http://www.redhat.com/cluster_suite/
http://www.redhat.com/cluster_suite/
http://www.redhat.com/cluster_suite/
http://www.linuxvirtualserver.org/
http://www.linuxvirtualserver.org/
http://www.linuxvirtualserver.org/

Chapter 5. Clustering and Hig...

98

remove the balancers attribute from the Service tag of jboss.web service. This simply removes the

default load balancer from the system and the traffic bypasses the SIP load-balancer. Next you

must configure JBCP SIP Servlets to put the IP load balancer IP address in the Via, Contact and

other system headers where the IP address of the server machine is required. This will ensure that

any responses or subsequent SIP requests follow the same path, but always hit the load balancer

instead of particular cluster node that may fail. To specify the IP load balancer address in JBCP

SIP Servlets your should edit this file JBOSS_HOME/server/all/deploy/jboss-web.deployer/

server.xml and specify staticServerAddress such as:

<Connector port="5080"

 ipAddress = "${jboss.bind.address}"

 ...

staticServerAddress="122.122.122.122" staticServerPort="44"

useStaticAddress="true"/>

Note

Depending on your reliability requirements you can omit the configuration

described in this section and let the servers use their own IP address in the SIP

messages.

Chapter 6.

99

Enterprise Monitoring and

Management
Jopr is an enterprise management solution for JBoss middleware projects and other application

technologies. This pluggable project provides administration, monitoring, alerting, operational

control and configuration in an enterprise setting with fine-grained security and an advanced

extension model.

It provides support for monitoring base operating system information on six operating systems as

well as management of Apache, JBoss Application Server (JBoss AS) and other related projects.

See the Jopr website [http://www.jboss.org/jopr] for more information or see the Jopr embedded

website [http://www.jboss.org/embjopr]

6.1. JBoss Communications SIP Servlets Monitoring

and Management

This chapter provides information on how to enable the management of JBoss Communications

SIP Servlets Servers through Jopr with our custom Jopr plug in. Two versions of Jopr are available:

an embedded version, which is better suited to development environments; and a full version,

which is better suited to production environments.

The JBoss Communications SIP Servlet Jopr plug in provides a facility to view metrics related

to the deployed applications, metrics related to the SIP Servlets Server. Additionally, the plugin

provides the option to manage the various configuration settings of the SIP Servlets Server such

as Congestion and Concurrency control.

6.1.1. Installation of the Enterprise Monitoring and Management

Console

6.1.1.1. Jopr for Development

The Embedded Jopr (also known as the JBoss Administration Console) is pre-installed as an

application deployed in the JBoss Communications SIP Servlets Server.

6.1.1.2. Jopr for Production

• Follow the Jopr installation instructions [http://jboss.org/community/docs/DOC-12828] to install

the latest version of Jopr.

• Stop the Jopr server and agent if they are running.

• Get the JBoss Communications SIP Servlets Jopr Plug in from

here : http://repository.jboss.com/maven2/org/mobicents/servlet/sip/jopr-mobicents-sip-

servlets-plugin/1.3/jopr-mobicents-sip-servlets-plugin-1.3.jar

http://www.jboss.org/jopr
http://www.jboss.org/jopr
http://www.jboss.org/embjopr
http://www.jboss.org/embjopr
http://www.jboss.org/embjopr
http://jboss.org/community/docs/DOC-12828
http://jboss.org/community/docs/DOC-12828
http://repository.jboss.com/maven2/org/mobicents/servlet/sip/jopr-mobicents-sip-servlets-plugin/1.3/jopr-mobicents-sip-servlets-plugin-1.3.jar
http://repository.jboss.com/maven2/org/mobicents/servlet/sip/jopr-mobicents-sip-servlets-plugin/1.3/jopr-mobicents-sip-servlets-plugin-1.3.jar

Chapter 6. Enterprise Monitor...

100

• Copy the jopr-mobicents-sip-servlets-plugin-1.3.jar just downloaded to the jopr-server/

jbossas/server/default/deploy/rhq.ear/rhq-downloads/rhq-plugins/ directory

• Start the Jopr server then the agent.

• Start the JBoss Communications SIP Servlets Server on JBoss, and ensure the binding address

is specified

sh run.sh -b 192.168.0.10 (the Server will not get recognized on localhost)

6.1.2. Usage Instructions

6.1.2.1. Jopr for Development

• Log in to the Jopr console on http://localhost:8080/admin-console and login as admin

(user=admin, password=admin).

• From the tree on the left side of the screen, under Services , click on MobicentsSipServlets

link, then click on the jboss.web:type=SipApplicationDispatcher link to view the incoming

metrics.

http://localhost:8080/admin-console

Usage Instructions

101

Figure 6.1. Mobicents SIP Servlets Server Metrics

• Click on the Configuration Tab to tune the Congestion Controls parameters as defined in

Section 7.2, “Concurrency and Congestion Control”

Chapter 6. Enterprise Monitor...

102

Figure 6.2. SIP Application Dispatcher Congestion Control Parameters

Configuration

• Click on the Control Tab to set the Concurrency Control Mode and Congestion Control Policy

as defined in Section 7.2, “Concurrency and Congestion Control”

Usage Instructions

103

Figure 6.3. SIP Application Dispatcher Congestion Control Parameters

Configuration

• To begin metrics collection, and see them on the monitoring application, you must use an

example application (such as location service) so that the SIP Servlets Server processes SIP

Messages.

Chapter 6. Enterprise Monitor...

104

Figure 6.4. Selected Application Metrics

• To see metrics for the application, click on the application under the Converged SIP/Web

Application (SAR/WAR) link.

Usage Instructions

105

Figure 6.5. Specific Application Metrics

• Select the Metrics tab to actually see the metrics for the application.

Chapter 6. Enterprise Monitor...

106

Figure 6.6. Specific Application Metrics Detail

6.1.2.2. Jopr For Production

• Log in to the Jopr console on http://localhost:7080 [http://localhost:7080/]

From the Dashboard tab, in the Auto Discovery portlet, import your server (for example,

deruelle-laptop JBossAS 4.2.3.GA default (192.168.0.12:1099)) from under localhost.

http://localhost:7080/
http://localhost:7080/

Usage Instructions

107

Figure 6.7. Server Import for Monitoring

• From the Dashboard, in the Recently Added Resources portlet, click on the server.

Chapter 6. Enterprise Monitor...

108

Figure 6.8. Selecting the Server for Monitoring

• On the new Monitor view click on the JBossWeb Server link.

Usage Instructions

109

Figure 6.9. Servlet Container Monitoring

• Click on the jboss.web:type=SipApplicationDispatcher link to view the incoming metrics.

Chapter 6. Enterprise Monitor...

110

Figure 6.10. Mobicents SIP Servlets Server Metrics

• Click on the Configuration tab to tune the Container configuration parameters such as

Concurrency and Congestion as defined in Section 7.2, “Concurrency and Congestion Control”

Usage Instructions

111

Figure 6.11. SIP Application Dispatcher Configuration

• Click on the Control Tab to be able to set the Concurrency Control Mode and Congestion Control

Policy as defined in Section 7.2, “Concurrency and Congestion Control”

Chapter 6. Enterprise Monitor...

112

Figure 6.12. SIP Application Dispatcher Congestion Control Parameters

Configuration

• To begin metrics collection, and see them on the monitoring application, you must use an

example application (such as location service) so that the SIP Servlets Server processes SIP

Messages.

Usage Instructions

113

Figure 6.13. Selected Application Metrics

• To see Metrics about your application, click on the Converged SIP/Web Application (SAR/WAR)

link.

Chapter 6. Enterprise Monitor...

114

Figure 6.14. Specific Application Metrics

• Click on the application to actually see the metrics for the application.

Usage Instructions

115

Figure 6.15. Specific Application Metrics Detail

• Click on the Configure link for the Monitor tab to select the metric data to view.

Chapter 6. Enterprise Monitor...

116

Figure 6.16. Selecting Application Metrics

• Select the MetaData tab to see the metrics of your application.

SIP Load Balancer Monitoring and Management

117

Figure 6.17. Selected Application Metrics Detail

6.2. SIP Load Balancer Monitoring and Management

This documentation provides information on how to enable the management of JBoss

Communications SIP Load Balancer through Jopr with our custom SIP Load Balancer Jopr plug in.

With the JBoss Communications SIP Load Balancer Jopr plug in, you can currently see metrics,

configure and manage the JBoss Communications SIP Load Balancer.

Chapter 6. Enterprise Monitor...

118

6.2.1. Installation of the Enterprise Monitoring and Management

Console

• Follow the Jopr installation instructions [http://jboss.org/community/docs/DOC-12828] to install

the latest version of Jopr.

• Stop the Jopr server and agent if they are running.

• Get the JBoss Communications SIP Load Balancer Jopr Plug in from JBoss

maven repository at http://repository.jboss.org/maven2/org/mobicents/tools/sip-balancer-jopr-

plugin/1.0/sip-balancer-jopr-plugin-1.0.jar

• Copy the JBoss Communications SIP Load Balancer Jopr Plug in jar to the following directory:

jopr-server/jbossas/server/default/deploy/rhq.ear/rhq-downloads/rhq-plugins/

• Start the Jopr server then the agent.

• Start your JBoss Communications SIP Load Balancer as explained here (and one node that

connect to it to see it appear in the list of nodes).

6.2.2. Usage Instructions

• Log in to the Jopr console from the Dashboard tab, in the Auto Discovery portlet and import

your JBoss Communications SIP Load Balancer (by example JBoss Communications SIP Load

Balancer 1.0-SNAPSHOT) from under localhost.

http://jboss.org/community/docs/DOC-12828
http://jboss.org/community/docs/DOC-12828
http://repository.jboss.org/maven2/org/mobicents/tools/sip-balancer-jopr-plugin/1.0/sip-balancer-jopr-plugin-1.0.jar
http://repository.jboss.org/maven2/org/mobicents/tools/sip-balancer-jopr-plugin/1.0/sip-balancer-jopr-plugin-1.0.jar

Usage Instructions

119

Figure 6.18.

• From the Dashboard, in the Recently Added Resources portlet, click on the Mobicents SIP Load

Balancer.

Chapter 6. Enterprise Monitor...

120

Figure 6.19.

• In the new Monitor view, click on the mobicents:name=LoadBalancer,type=LoadBalancer

link.

Usage Instructions

121

Figure 6.20.

Chapter 6. Enterprise Monitor...

122

• You can now see the metrics coming in.

Usage Instructions

123

Figure 6.21.

Chapter 6. Enterprise Monitor...

124

• To configure the Load Balancer and see the list of nodes in the cluster it is connected to, click

on the Configure tab.

Usage Instructions

125

Figure 6.22.

Chapter 6. Enterprise Monitor...

126

• To start and stop the Load Balancer, click on the Operations tab.

Usage Instructions

127

Figure 6.23.

128

Chapter 7.

129

Advanced Features of the SIP

Servlets Server
The advanced features of JBoss Communications SIP Servlets include Concurrency and

Congestion Control, Load Balancing with the JBoss Communications Load Balancer, and,

exclusively for JBCP SIP Servlets for JBoss, clustering and failover support.

7.1. Media Support

JBoss Communications SIP Servlets by implementing the SIP Servlets 1.1 specification is

providing natively support for applications to setup calls through SIP Support.

But since most Telco services have the need for managing and controlling media, by example

to play announcements, mixing calls, recognize DTMF, ... JBoss Communications SIP Servlets

allows applications to control media through JSR 309.

7.1.1. JSR 309 : Media Server Control API

This Specification is a protocol agnostic API for Media Server Control. It provides a portable

interface to create media rich applications with IVR, Conferencing, Speech Recognition, and

similar features.

JBoss Communications Media Server provides an implementation of the JSR 309 specification

[http://jcp.org/en/jsr/detail?id=309] using the MGCP protocol to allow controlling any Media Server

(located in the same Virtual Machine or on a remote server) supporting MGCP.

The following examples demonstrate its usage :

• Media Example [http://www.mobicents.org/mss-jsr309-demo.html] : a SIP Servlet application

showing how to use media capabilities (Media playback, Recording, Text to Speech with

FreeTTS and DTMF detection).

• Conference Demo [http://www.mobicents.org/conference-demo-jsr309.html] : a Conference

Media Server demo application built on GWT with server-push updates.

• Shopping Example [http://www.mobicents.org/shopping-demo-jsr309.html] : a Converged JEE

Application showing SEAM integration, JEE, Media integration with TTS and DTMF support.

7.2. Concurrency and Congestion Control

Concurrency and Congestion control refer to settings that define the way in which messages are

processed under heavy load. The way JBoss Communications SIP Servlets Server processes

messages in a production environment is crucial to ensure quality of service for customers.

http://jcp.org/en/jsr/detail?id=309
http://jcp.org/en/jsr/detail?id=309
http://www.mobicents.org/mss-jsr309-demo.html
http://www.mobicents.org/mss-jsr309-demo.html
http://www.mobicents.org/conference-demo-jsr309.html
http://www.mobicents.org/conference-demo-jsr309.html
http://www.mobicents.org/shopping-demo-jsr309.html
http://www.mobicents.org/shopping-demo-jsr309.html

Chapter 7. Advanced Features ...

130

Concurrency control mode tuning affects the way in which the SIP Servlets Server processes

messages, whereas Congestion Control tuning affects the point at which the server begins

rejecting new requests. Both of these parameters can be set using the following methods:

• through the SIP Servlets Management Console.

• editing the server's server.xml configuration file.

• from the dispatcher MBean.

• from the Embedded Jopr integrated management platform.

Concurrency Control. The JSR 289 expert group does not specify how concurrency control

should be implemented.

JBoss Communications SIP Servlets for JBoss and JBoss Communications SIP Servlets for

Tomcat have concurrency control implemented as a configurable mode, which defines the way in

which the SIP Servlets Server processes messages.

It has to be noted that this concurrency control mechanism is not cluster aware and will work per

node only, it is not a cluster wide lock.

The following modes are provided, and cater for the particular setup required in an implementation:

None

All SIP messages are processed as soon as possible in a thread from the global thread pool.

When two messages belong to the same SipSession, they can be concurrently processed.

Ensure that SIP Messages that access shared resources (such as the session attribute)

concurrently are synchronized in a thread-safe manner.

Transaction

Bypass the SIP Servlets request/response executors, and utilize the JAIN SIP built-in

Transaction serialization to manage race conditions on the same transaction.

By default, the SIP Servlets server uses a ThreadPoolExecutor linked to a

LinkedBlockingQueue to dispatch the request/response threads. The container can thus

handles two different response (for example a 180 Ringing and a 200 OK) concurrently, a race

condition can occur where the second response overtakes the first one (200 OK dispatched

to the application before the 180 Ringing).

SipSession

SIP messages are processed as soon as possible except for messages originating from the

same SipSession. These messages are excluded from any simultaneous processing.

Messages from the same SipSession are processed sequentially, in the order they originally

arrived.

Two (or more) messages from different SipSession instances in the same

SipApplicationSession may be processed simultaneously. For this reason, ensure that SIP

Concurrency and Congestion Control

131

Messages which access shared resources (such as the session attribute) concurrently are

synchronized in a thread-safe manner.

Thread-safety is particularly important in Back-to-Back User Agent (B2BUA) cases, where

each communication leg of the B2BUA consists of a different SipSession in the same

SipApplicationSession.

SipApplicationSession

SIP messages are processed as soon as possible, with the guarantee that no two messages

from the same SipSession or from the same SipApplicationSession will ever be processed

simultaneously. Of all the available methods, this mode is the best choice for guaranteed

thread-safety.

If applications access shared resources in an unmanaged way (for example, by accessing a

SipSession attribute from an unmanaged thread, or from an Enterprise JavaBean) access

will not be synchronized.

Congestion Control. JBoss Communications Sip Servlets currently provides the following

congestion control mechanisms :

• All SIP messages which cannot be processed immediately are put into a queue, and wait for

either a free thread or for the lock on their session to be released. The size of the SIP message

queue is a tunable parameter, which defaults to 1500.

• If the SIP Message queue becomes full, the container immediately begins rejecting new SIP

requests until the queue clears. This is achieved by using one of the following methods:

• Sending a 503 SIP error code to the originating application.

• Dropping incoming messages (according to the specified congestion control policy).

• If the container exceeds the configurable memory threshold (90% by default), new SIP requests

are rejected until the memory usage falls below the specified memory threshold. This is achieved

by using one of the following methods:

• Sending a 503 SIP error code to the originating application.

• Dropping incoming messages (according to the specified congestion control policy) .

A background task gathers information about the current server congestion. The data collection

interval can be adjusted, and congestion control deactivated, by setting the interval to 0 or a

negative value.

The congestion control policy defines how an incoming message is handled when the server is

overloaded. The following parameters are configurable:

• DropMessage - drop any incoming message

• ErrorResponse - send a 503 - Service Unavailable response to any incoming request (Default).

Chapter 7. Advanced Features ...

132

Configuring the Concurrency and Congestion Control Settings. The concurrency and

congestion control settings can be configured through the SIP Servlets Management Console,

using the following methods:

• through the SIP Servlets Management Console.

• editing the server's server.xml configuration file.

• from the dispatcher MBean.

• from the Embedded Jopr integrated management platform.

Tuning Parameters with the SIP Servlets Management Console

The easiest way to configure the SIP Message Queue Size and Concurrency Control Mode

tunable parameters is to open the SIP Servlets Management Console in your browser

(by going to http://localhost:8080/sip-servlets-management), making your changes, and then

Applying them.

Figure 7.1. SIP Servlets Management Console Concurrency and

Congestion Control Tuning Parameters

Persistent Settings

Concurrency and congestion control settings altered through the SIP Servlets

Management console are not saved to the server.xml configuration file.

To make settings persistent, append the settings to the server.xml file

directly.

Tuning Parameters Permanently by Editing server.xml

Alternatively, you can edit your server's server.xml configuration file, which has the benefit

of making your chosen settings changes permanent. Instructions follow, grouped by the SIP

Servlets Server you are running:

http://localhost:8080/sip-servlets-management

Concurrency and Congestion Control

133

Procedure 7.1. Tuning JBoss Communications SIP Servlets for JBoss

Server Settings for Concurrency and Congestion Control

1. Open server.xml File

Open the $JBOSS_HOME/server/default/deploy/jboss-web.deployer/server.xml

configuration file in a text editor.

2. Add Parameters to <service> Element

Locate the <service> element, and add the concurrencyControlMode and/or

sipMessageQueueSize attributes.

Example 7.1. server.xml Concurrency and Congestion Control

Attributes

<Service

 name="jboss.web"

 className="org.mobicents.servlet.sip.startup.SipStandardService"

 sipApplicationDispatcherClassName="org.mobicents.servlet.sip.core.SipApplicationDispatcherImpl"

 usePrettyEncoding="false"

 sipStackPropertiesFile="conf/mss-sip-stack.properties"

 darConfigurationFileLocation="conf/dars/mobicents-dar.properties"

 concurrencyControlMode="SipApplicationSession"

 sipMessageQueueSize="1600"

 backToNormalSipMessageQueueSize="1300"

 congestionControlCheckingInterval="2000"

 congestionControlPolicy="DropMessage"

 memoryThreshold="95"

 backToNormalMemoryThreshold="90">

Possible values for the concurrencyControlMode attribute include: None, SipSession or

SipApplicationSession. SipSession is the value of this attribute when it is not present

—and overridden—in server.xml.

3. Define the Correct Attribute Values

The following default values for the concurrency and congestion control parameters are

used regardless of whether the attributes are defined in the server.xml file:

• sipMessageQueueSize="1500"

• backToNormalSipMessageQueueSize="1300"

• congestionControlCheckingInterval="30000" (30 seconds, in milliseconds)

Chapter 7. Advanced Features ...

134

• memoryThreshold="95" (in percentage)

• backToNormalMemoryThreshold="90" (in percentage)

• congestionControlPolicy="ErrorResponse"

Experimentation is required for these tuning parameters depending on the operating

system and server.

Procedure 7.2. Tuning JBoss Communications SIP Servlets for Tomcat

Server Settings for Concurrency and Congestion Control

1. Open server.xml File

Open the $CATALINA_HOME/conf/server.xml configuration file in your text editor.

2. Add Parameters to <service> Element

Locate the <service> element, and add the concurrencyControlMode and/or

sipMessageQueueSize attributes.

Possible values for the concurrencyControlMode attribute include: None, SipSession or

SipApplicationSession. SipSession is the value of this attribute when it is not present

—and overridden—in server.xml.

3. Define the Correct Attribute Values

The following default values for the concurrency and congestion control parameters are

used regardless of whether the attributes are defined in the server.xml file:

• sipMessageQueueSize="1500"

• backToNormalSipMessageQueueSize="1300"

• congestionControlCheckingInterval="30000" (30 seconds, in milliseconds)

• memoryThreshold="95" (in percentage)

• backToNormalMemoryThreshold="90" (in percentage)

• congestionControlPolicy="ErrorResponse"

Experimentation is required for these tuning parameters depending on the operating

system and server.

Tuning Parameters from the dispatcher MBean

Navigate to the dispatcher MBean from JBoss Communications SIP Servlets for JBoss's

JMX console.

SIP Servlets Application Security

135

All changes performed at run time are effective immediately, but do not persist across reboots.

As with JBoss and Tomcat, the server.xml must be appended with the settings in order to

make the configuration persistent.

When editing the dispatcher MBean from JBoss Communications SIP Servlets for JBoss's

JMX console, values allowed for the concurrency control mode are None, SipSession or

SipApplicationSession.

Tuning Parameters from Enterprise Monitoring and Managent Console

If the Enterprise Monitoring and Managenemt console is installed as described in Chapter 6,

Enterprise Monitoring and Management, the tunable parameters can be altered by following

the instructions in Section 6.1.2.1, “Jopr for Development” or Section 6.1.2.2, “Jopr For

Production”

7.3. SIP Servlets Application Security

The information present in SIP requests often contains sensitive user information. To protect user

information, SIP Security can be enabled on the server, and within the SIP application to mitigate

the risk of unauthorised access to the information.

Application security varies depending on the server type used. The following procedures describe

how to configure the JBoss Application Server, and the Tomcat server.

Procedure 7.3. Enable SIP Application Security in JBoss Application Server

1. Add Security Policy to Server

1. Open a terminal and navigate to the conf directory:

home]$ cd server/default/conf/

2. Open login-config.xml (using your preferred editor) and append the security policy to

the file:

<application-policy name="sip-servlets">

<authentication>

 <login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"

 flag = "required">

 <module-option name="usersProperties">props/sip-servlets-

 users.properties</module-option>

 <module-option name="rolesProperties">props/sip-servlets-

 roles.properties</module-option>

Chapter 7. Advanced Features ...

136

 <module-option name="hashAlgorithm">MD5</module-option>

 <module-option name="hashEncoding">rfc2617</module-option>

 <module-option name="hashUserPassword">false</module-option>

 <module-option name="hashStorePassword">true</module-option>

 <module-option name="passwordIsA1Hash">true</module-option>

 <module-option name="storeDigestCallback">

 org.jboss.security.auth.spi.RFC2617Digest</module-option>

 </login-module>

</authentication>

</application-policy>

2. Update SIP Server User Properties File

1. Open a terminal and navigate to the /props directory:

home]$ cd server/default/props/

2. Open sip-servlets-users.properties and append the user lines to the file:

 # A sample users.properties file, this line creates user "admin" with

 # password "admin" for "sip-servlets-realm"

 admin=<A1_cryptographic_string>

3. To create <A1_cryptographic_string>, execute the following command in a terminal:

home]$ java -cp ../server/default/lib/jbosssx.jar

4. Copy the A1 hash, and paste it into the admin parameter in the previous step.

5. Save and close sip-servlets-users.properties.

3. Update SIP Server Roles File

1. Open a terminal and navigate to the /props directory:

home]$ cd server/default/props/

SIP Servlets Application Security

137

2. Open sip-servlets-roles.properties (using your preferred editor) and append the

following information to the file:

A sample roles.properties file for use with some roles

Each line in this file assigns roles to the users defined in

sip-servlets-users.properties

admin=caller,role1,role2,..

4. Add the Security Domain to the SIP Application

1. Open the jboss-web.xml file for the SIP application to which security is required.

2. Add the <security-domain> element as a child of the <jboss-web> element:

<jboss-web >

<!--Uncomment the security-domain to enable security. You will need to edit the

 htmladaptor-->

<!--login configuration to setup the login modules used to authentication users.-->

 <security-domain>java:/jaas/sip-servlets</security-domain>

</jboss-web >

5. Add Security Constraints to the SIP Application

1. Open the sip.xml file for the SIP application.

2. Add the <security-domain> element as a child of the <jboss-web> element:

<security-constraint>

 <display-name>REGISTER Method Security Constraint</display-name>

 <resource-collection>

 <resource-name>SimpleSipServlet</resource-name>

 <description>Require authenticated REGISTER requests</description>

 <servlet-name>SimpleSipServlet</servlet-name>

 <sip-method>REGISTER</sip-method>

 </resource-collection>

 <auth-constraint>

Chapter 7. Advanced Features ...

138

 <role-name>caller</role-name>

 </auth-constraint>

</security-constraint>

<login-config>

 <auth-method>DIGEST</auth-method>

 <realm-name>sip-servlets-realm</realm-name>

</login-config>

Procedure 7.4. Enable SIP Application Security in Tomcat Server

1. Activate the Memory Realm in Catalina:

1. Open a terminal and navigate to the /conf directory:

home]$ cd server/default/<tomcat_home>/conf/

2. Open server.xml and uncomment the following line:

<!--<Realm className="org.apache.catalina.realm.MemoryRealm"/>-->

2. Update SIP Server User Properties File

1. In the /conf directory, open tomcat-users.xml (using your preferred editor) and append

the following <user> child element:

<user name="user" password="password" roles="caller"/>

3. Add Security Constraints to the SIP Application

1. Open the sip.xml file for the SIP application to which security is required.

2. Add the <security-domain> child element to the <jboss-web> element:

<security-constraint>

 <display-name>REGISTER Method Security Constraint</display-name>

 <resource-collection>

 <resource-name>SimpleSipServlet</resource-name>

STUN Support

139

 <description>Require authenticated REGISTER requests</description>

 <servlet-name>SimpleSipServlet</servlet-name>

 <sip-method>REGISTER</sip-method>

 </resource-collection>

 <auth-constraint>

 <role-name>caller</role-name>

 </auth-constraint>

</security-constraint>

<login-config>

 <auth-method>DIGEST</auth-method>

 <realm-name>sip-servlets-realm</realm-name>

</login-config>

7.4. STUN Support

The Session Traversal Utilities for NAT (STUN) prococol is used in Network Address Translation

(NAT) traversal for real-time voice, video, messaging, and related interactive IP application

communications. This light-weight, client-server protocol allows applications passing through a

NAT to obtain the public IP address for the UDP connections the application uses to connect to

remote hosts.

STUN support is provided at the SIP connector level, using the STUN for Java [https://

stun4j.dev.java.net/] project. The STUN for Java project provides a Java implementation of the

STUN Protocol (RFC 3489), which allows each SIP connector to select whether it should use

STUN to discover a public IP address, and use this address in the SIP messages sent through

the connector.

To make a SIP connector STUN-enabled, three attributes must be appended to the <connector>

child element in the server.xml file. The properties are:

• useStun="true"

Enables STUN support for this connector. Ensure that the ipAddress attribute is not set to

127.0.0.1

• stunServerAddress="<Public_STUN_Server>"

STUN server address used to discover the public IP address of this SIP Connector. See

Table 7.1, “Public STUN Servers”for a suggested list of public STUN servers.

• stunServerPort="3478"

STUN server port of the STUN server used in the stunServerAddress attribute. Both TCP and

UDP protocols communicate with STUN servers using this port only.

https://stun4j.dev.java.net/
https://stun4j.dev.java.net/
https://stun4j.dev.java.net/

Chapter 7. Advanced Features ...

140

Note

A complete list of available SIP connector attributes and their descriptions is

located in the Section 2.3.1, “Configuring SIP Connectors” section of this guide.

A number of public STUN servers are available, and can be specified in the stunServerAddress.

Depending on the router firmware used, the STUN reply packets' MAPPED_ADDRESS may be

changed to the router's WAN port. To alleviate this problem, certain public STUN servers provide

XOR_MAPPED_ADDRESS support. Table 7.1, “Public STUN Servers” provides a selection of

public STUN servers.

Table 7.1. Public STUN Servers

Server Address XOR Support DNS SRV Record

stun.ekiga.net Yes Yes

stun.fwdnet.net No Yes

stun.ideasip.com No Yes

stun01.sipphone.com Yes No

stun.softjoys.com No No

stun.voipbuster.com No No

stun.voxgratia.org No No

stun.xten.com Yes Yes

stunserver.org Yes Yes

Note

For more information about NAT traversal best practices, refer to Section 8.2, “NAT

Traversal”

7.5. Seam Telco Framework

The Seam Telco Framework (STF) is a telecommunications application framework based on the

JSR-289 specification, and JBoss Seam. The framework plugs the SIP Servlets 1.1 stack into

new or existing JBoss Seam applications. Media is achieved through JSR-309. This allows Seam

components to implement both the Web and telecommunication logic of the applications.

The primary goals of the STF are to:

• Unify Web, SIP, and media telecommunication applications.

• Allow complex enterprise applications to be built using the same programming model.

Diameter Support

141

• Keep logical associations between SIP, Media and Web sessions.

From an integration perspective, JBoss Seam provides access to different frameworks. These

frameworks are made available to the telecommunication-specific applications for a particular role

using the same context. The STF manages SipServletRequests and Media Server events while

utilising existing JBoss Seam framework benefits, including:

• Bijection

• Inversion of Control (IoC)

• Interceptors

• Scoping

• Transaction management

Other advantages associated with the STF include:

• Enterprise Java Beans (EJB) and Plain Old Java Objects (POJO) support.

• Loosely-coupled, asynchronous telecommunicaton component support.

• Web-layer interaction support.

• Synchronous and asynchronous light-weight message passing using @Observer-annotated

methods.

• Integration with existing Seam IDE tools and infrastructure syntax.

More information about the STF can be found on the STF homepage [http://groups.google.com/

group/mobicents-public/web/seam-telco-framework-for-sip-servlets]. For information about JBoss

Seam, refer to the community documentation [http://docs.jboss.com/seam/latest/reference/en-

US/html/index.html].

7.6. Diameter Support

The Diameter Protocol (RFC 3588 [http://www.ietf.org/rfc/rfc3588.txt]) is a computer networking

protocol for Authentication, Authorization, and Accounting (AAA). the Diameter version included

in JBoss Communications SIP Servlets currently support Base, Sh, Ro and Rf.

For more information regarding Diameter support, refer to the Diameter Home Page [http://

groups.google.com/group/mobicents-public/web/mobicents-diameter]. For a list of Diameter

examples, refer to Chapter 4, SIP Servlet Example Applications.

7.7. SIP and IMS Extensions

SIP Extensions in the SIP Servlets Server are based on Internet Engineering Task Force (IETF)

Request for Comments (RFC) protocol recommendatons. Table 7.2, “Supported SIP Extensions”

lists the supported RFCs for the SIP Servlets Server.

http://groups.google.com/group/mobicents-public/web/seam-telco-framework-for-sip-servlets
http://groups.google.com/group/mobicents-public/web/seam-telco-framework-for-sip-servlets
http://groups.google.com/group/mobicents-public/web/seam-telco-framework-for-sip-servlets
http://docs.jboss.com/seam/latest/reference/en-US/html/index.html
http://docs.jboss.com/seam/latest/reference/en-US/html/index.html
http://docs.jboss.com/seam/latest/reference/en-US/html/index.html
http://www.ietf.org/rfc/rfc3588.txt
http://www.ietf.org/rfc/rfc3588.txt
http://groups.google.com/group/mobicents-public/web/mobicents-diameter
http://groups.google.com/group/mobicents-public/web/mobicents-diameter
http://groups.google.com/group/mobicents-public/web/mobicents-diameter

Chapter 7. Advanced Features ...

142

Table 7.2. Supported SIP Extensions

Extension RFC Number Description

DNS RFC 3263 [http://

www.ietf.org/rfc/rfc3263.txt]

SIP: Locating SIP Servers

INFO RFC 2976 [http://

www.ietf.org/rfc/rfc2976.txt]

The SIP INFO Method

IPv6 RFC 2460 [http://

www.ietf.org/rfc/rfc2460.txt]

Internet Protocol, Version 6

(IPv6) Specification

JOIN RFC 3911 [http://

www.ietf.org/rfc/rfc3911.txt]

The SIP "Join" Header

MESSAGE RFC 3428 [http://

www.ietf.org/rfc/rfc3428.txt]

SIP Extension for Instant

Messaging

PATH RFC 3327 [http://

www.ietf.org/rfc/rfc3327.txt]

SIP Extension Header Field

for Registering Non-adjacent

Contacts

PRACK RFC 3262 [http://

www.ietf.org/rfc/rfc3262.txt]

Reliability of Provisional

Responses in the SIP

PUBLISH RFC 3903 [http://

www.ietf.org/rfc/rfc3903.txt]

SIP Extension for Event State

Publication

REASON RFC 3515 [http://

www.ietf.org/rfc/rfc3326.txt]

The Reason Header Field for

the Session Initiation Protocol

(SIP)

REFER RFC 3515 [http://

www.ietf.org/rfc/rfc3515.txt]

The SIP Refer Method

REPLACES RFC 3891 [http://

www.ietf.org/rfc/rfc3891.txt]

The SIP "Replaces" Header

STUN RFC 3489 [http://

www.ietf.org/rfc/rfc3489.txt]

STUN - Simple Traversal

of User Datagram Protocol

(UDP) through Network

Address Translators (NATs)

SUBSCRIBE/NOTIFY RFC 3265 [http://

www.ietf.org/rfc/rfc3265.txt]

SIP-specific Event Notification

Symmetric Response Routing RFC 3581 [http://

www.ietf.org/rfc/rfc3581.txt]

An Extension to the Session

Initiation Protocol (SIP) for

Symmetric Response Routing

Multipart type as mentionned

in

RFC 4662 [http://

www.ietf.org/rfc/rfc4662.txt]

A Session Initiation Protocol

(SIP) Event Notification

IMS Private Header (P-Header) Extensions are provided according to the recommendations of

the 3rd Generation Partnering Project (3GPP) [http://www.3gpp.org/], and the IETF. P-Header

http://www.ietf.org/rfc/rfc3263.txt
http://www.ietf.org/rfc/rfc3263.txt
http://www.ietf.org/rfc/rfc3263.txt
http://www.ietf.org/rfc/rfc2976.txt
http://www.ietf.org/rfc/rfc2976.txt
http://www.ietf.org/rfc/rfc2976.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc3911.txt
http://www.ietf.org/rfc/rfc3911.txt
http://www.ietf.org/rfc/rfc3911.txt
http://www.ietf.org/rfc/rfc3428.txt
http://www.ietf.org/rfc/rfc3428.txt
http://www.ietf.org/rfc/rfc3428.txt
http://www.ietf.org/rfc/rfc3327.txt
http://www.ietf.org/rfc/rfc3327.txt
http://www.ietf.org/rfc/rfc3327.txt
http://www.ietf.org/rfc/rfc3262.txt
http://www.ietf.org/rfc/rfc3262.txt
http://www.ietf.org/rfc/rfc3262.txt
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3326.txt
http://www.ietf.org/rfc/rfc3326.txt
http://www.ietf.org/rfc/rfc3326.txt
http://www.ietf.org/rfc/rfc3515.txt
http://www.ietf.org/rfc/rfc3515.txt
http://www.ietf.org/rfc/rfc3515.txt
http://www.ietf.org/rfc/rfc3891.txt
http://www.ietf.org/rfc/rfc3891.txt
http://www.ietf.org/rfc/rfc3891.txt
http://www.ietf.org/rfc/rfc3489.txt
http://www.ietf.org/rfc/rfc3489.txt
http://www.ietf.org/rfc/rfc3489.txt
http://www.ietf.org/rfc/rfc3265.txt
http://www.ietf.org/rfc/rfc3265.txt
http://www.ietf.org/rfc/rfc3265.txt
http://www.ietf.org/rfc/rfc3581.txt
http://www.ietf.org/rfc/rfc3581.txt
http://www.ietf.org/rfc/rfc3581.txt
http://www.ietf.org/rfc/rfc4662.txt
http://www.ietf.org/rfc/rfc4662.txt
http://www.ietf.org/rfc/rfc4662.txt
http://www.3gpp.org/
http://www.3gpp.org/

SIP and IMS Extensions

143

extensions are primarily used to store information about the networks a call traverses, including

(but not limited to) security or call charging details.

Table 7.3, “IMS P-Header Extensions” describes the list of supported P-Headers, including links

to the relevant ITEF memorandum where available.

Table 7.3. IMS P-Header Extensions

Extension Description

AuthorizationHeaderIMS Defines a new auth-param for the

Authorization header used in REGISTER

requests.

PAccessNetworkInfoHeader Contains information regarding the access

network the User Agent (UA) uses to connect

to the SIP Proxy. The information contained

in this header may be sensitive, such as the

cell ID, so it is important to secure all SIP

application that interface with this header.

PAssertedIdentityHeader [http://www.ietf.org/

rfc/rfc3324.txt]

Contains an identity resulting from an

authentication process, derived from a SIP

network intermediary. The identity may be

based on SIP Digest authentication.

PAssertedServiceHeader Contains information used by "trust domains",

according to Spec(T) specifications detailed in

RFC 3324 [http://www.ietf.org/rfc/rfc3324.txt].

PAssociatedURIHeader [http://www.ietf.org/

rfc/rfc3455.txt]

Contains a list of URIs that are allocated to

the user. The header is defined in the 200 OK

response to a REGISTER request. It allows

the User Agent Client (UAC) to determine the

URIs the service provider has associated to

the user's address-of-record URI.

PathHeader [http://www.ietf.org/rfc/

rfc3327.txt]

SIP Extension header, with syntax similar to

the RecordRoute header. Used in conjunction

with SIP REGISTER requests and 200

class messages in response to REGISTER

responses.

PCalledPartyIDHeader Typically inserted en-route into an INVITE

request by the proxy, the header is populated

with the Request_URI received by the proxy

in the request. The header allows the User

Agent Server (UAS) to identify which address-

of-record the invitation was sent to, and can

http://www.ietf.org/rfc/rfc3324.txt
http://www.ietf.org/rfc/rfc3324.txt
http://www.ietf.org/rfc/rfc3324.txt
http://www.ietf.org/rfc/rfc3324.txt
http://www.ietf.org/rfc/rfc3324.txt
http://www.ietf.org/rfc/rfc3455.txt
http://www.ietf.org/rfc/rfc3455.txt
http://www.ietf.org/rfc/rfc3455.txt
http://www.ietf.org/rfc/rfc3327.txt
http://www.ietf.org/rfc/rfc3327.txt
http://www.ietf.org/rfc/rfc3327.txt

Chapter 7. Advanced Features ...

144

Extension Description

be used to render distinctive audio-visual alert

notes based on the URI.

PChargingFunctionAddressesHeader Contains a list of one or more of the Charging

Collection Function (CCF) and the Event

Charging Function (ECF) addresses. The

CCF and ECF addresses may be passed

during the establishment of a dialog, or in a

standalone transaction.

PChargingVectorHeader Contains a unique charging identifier and

correlation information, which is used by

network operators to correctly charge for

routing events through their networks.

PMediaAuthorizationHeader [http://

www.ietf.org/rfc/rfc3313.txt]

Contains one or more session-specific media

authorization tokens, which are used for QoS

of the media streams.

PPreferredIdentityHeader [http://www.ietf.org/

rfc/rfc3325.txt]

Contains a SIP URI and an optional

display-name. For example, "James May"

<sip:james@domain.com>. This header is

used by trusted proxy servers to identify the

user to other trusted proxies, and can be used

to select the correct SIP URI in the case of

multiple user identities.

PPreferredServiceHeader Used by the PAssertedService Header to

determine the preferred user service. Multiple

PPreferreedService headers may be present

in a single request.

PProfileKeyHeader [http://www.ietf.org/rfc/

rfc5002.txt]

Contains a key used by a proxy to query the

user database for a given profile. The key

may contain wildcards that are used as part of

the query into the database.

PrivacyHeader [http://www.ietf.org/rfc/

rfc3323.txt]

Contains values that determine whether

particular header information is deemed as

private by the UA for requests and responses.

PServedUserHeader [http://www.ietf.org/rfc/

rfc5502.txt]

Contains an identity of the user that

represents the served user. The header is

added to the initial requests for a dialog or

standalone request, which are then routed

between nodes in a trusted domain.

PUserDatabaseHeader [http://www.ietf.org/

rfc/rfc4457.txt]

Contains the address of the HSS handling the

user that generated the request. The header

field is added to request routed from an

http://www.ietf.org/rfc/rfc3313.txt
http://www.ietf.org/rfc/rfc3313.txt
http://www.ietf.org/rfc/rfc3313.txt
http://www.ietf.org/rfc/rfc3325.txt
http://www.ietf.org/rfc/rfc3325.txt
http://www.ietf.org/rfc/rfc3325.txt
http://www.ietf.org/rfc/rfc5002.txt
http://www.ietf.org/rfc/rfc5002.txt
http://www.ietf.org/rfc/rfc5002.txt
http://www.ietf.org/rfc/rfc3323.txt
http://www.ietf.org/rfc/rfc3323.txt
http://www.ietf.org/rfc/rfc3323.txt
http://www.ietf.org/rfc/rfc5502.txt
http://www.ietf.org/rfc/rfc5502.txt
http://www.ietf.org/rfc/rfc5502.txt
http://www.ietf.org/rfc/rfc4457.txt
http://www.ietf.org/rfc/rfc4457.txt
http://www.ietf.org/rfc/rfc4457.txt

JRuby/Rails Integration with Torquebox Telco Framework

145

Extension Description

Interrogating Call Session Control Function

(I-CSCF) to a Serving Call Session Control

Function (S-CSCF)

PVisitedNetworkIDHeader [http://

www.ietf.org/rfc/rfc3455.txt]

Contains the identifier of a visited network.

The identifier is a text string or token than it

known by both the registrar or the home proxy

at the home network, and the proxies in the

visited network.

SecurityClientHeader, SecurityServerHeader,

SecurityVerifyHeader [http://www.ietf.org/rfc/

rfc3329.txt]

Contains information used to negotiate the

security mechanisms between a UAC, and

other SIP entities including UAS, proxy and

registrar.

ServiceRouteHeader [http://www.ietf.org/rfc/

rfc3608.txt]

Contains a route vector that will direct

requests through a specified sequence of

proxies. The header may be included by a

registrar in response to a REGISTER request.

WWWAuthenticateHeaderIms [http://

snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/

javadoc/gov/nist/javax/sip/header/ims/

WWWAuthenticateHeaderIms.html]

Extends the WWWAuthenticateResponse

header functionality by defining an additional

authorization parameter (auth-param).

7.8. JRuby/Rails Integration with Torquebox Telco

Framework

JBoss Communications Sip Servlets is compatible with the Torquebox [http://torquebox.org/]

Telco Framework JRuby on Rails integration. The framework allows you to create powerful, pure

or converged VoIP JRuby on Rails applications.

JRuby features a powerful and well deployed scripting language that allows you to modify your

application at runtime (this is true even for the SIP and Media part that JBoss Communications

SIP Servlets offer) without restarting the server. In addition, TorqueBox is a new kind of Ruby

application platform that integrates popular technologies such as Ruby-on-Rails, while extending

the footprint of Ruby applications to include support for Job Scheduling, Task Queues, SOAP

Handling, and other capabilities.

To obtain more information about building pure JRuby-Rails applications that leverage JBoss

Communications SIP Servlets SIP and mediat capabilities, refer to the Torquebox User

Documentation [http://torquebox.org/documentation/browse/LATEST/telecom.html].

Check this blog post [http://jeanderuelle.blogspot.com/2009/03/my-jruby-rails-app-on-jboss-can-

make.html] to help you create your first pure Torquebox JRuby Telco application and our pure

JRuby on Rails TorqueBox Telco example [http://www.mobicents.org/mss-pure-jruby-telco.html]

showcasing this integration.

http://www.ietf.org/rfc/rfc3455.txt
http://www.ietf.org/rfc/rfc3455.txt
http://www.ietf.org/rfc/rfc3455.txt
http://www.ietf.org/rfc/rfc3329.txt
http://www.ietf.org/rfc/rfc3329.txt
http://www.ietf.org/rfc/rfc3329.txt
http://www.ietf.org/rfc/rfc3329.txt
http://www.ietf.org/rfc/rfc3608.txt
http://www.ietf.org/rfc/rfc3608.txt
http://www.ietf.org/rfc/rfc3608.txt
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/gov/nist/javax/sip/header/ims/WWWAuthenticateHeaderIms.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/gov/nist/javax/sip/header/ims/WWWAuthenticateHeaderIms.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/gov/nist/javax/sip/header/ims/WWWAuthenticateHeaderIms.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/gov/nist/javax/sip/header/ims/WWWAuthenticateHeaderIms.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/gov/nist/javax/sip/header/ims/WWWAuthenticateHeaderIms.html
http://torquebox.org/
http://torquebox.org/
http://torquebox.org/documentation/browse/LATEST/telecom.html
http://torquebox.org/documentation/browse/LATEST/telecom.html
http://torquebox.org/documentation/browse/LATEST/telecom.html
http://jeanderuelle.blogspot.com/2009/03/my-jruby-rails-app-on-jboss-can-make.html
http://jeanderuelle.blogspot.com/2009/03/my-jruby-rails-app-on-jboss-can-make.html
http://jeanderuelle.blogspot.com/2009/03/my-jruby-rails-app-on-jboss-can-make.html
http://www.mobicents.org/mss-pure-jruby-telco.html
http://www.mobicents.org/mss-pure-jruby-telco.html
http://www.mobicents.org/mss-pure-jruby-telco.html

Chapter 7. Advanced Features ...

146

7.9. SIP Servlets - JAIN SLEE Interoperability

JAIN SLEE is a more complex specification than SIP Servlets, and it has been know as

heavyweight and with a steep learning curve. However JAIN SLEE has standardized a high

performing event driven application server, an execution environment with a good concurrency

model and powerful protocol agnostic capabilities thus covering a variety of Telco protocols.

SIP Servlets on the other hand is much simpler and easier to get started with. Its focus is

on extending the HTTP Servlets and Java EE hosting environments with SIP capabilities. SIP

Servlets is more of a SIP programming framework, while JSLEE is a complete, self sufficient

application platform. The fact that SIP Servlets is focused on SIP and Java EE makes it a natural

fit to build JEE converged applications.

Table 7.4. SIP Servlets / JAIN SLEE Comparison Table

SIP Servlets JAIN SLEE

Application Architecture

Based on HTTP Servlets. Unit

of logic is the SIP Servlets

Component based, Object

Orientated architecture. Unit of

logic is the Service Building Block

Composition through Application Router Composition through parent-child relationship

Application State

Servlets are stateless SBBs may be stateful.

Shared state stored in a session and visible

to all Servlets with access to the session

SBB state is transacted and a

property of the SBB itself. Shared

state may be stored in a separate

ActivityContext via a type safe interface

Concurrency Control

Application managed : use of Java monitors System Managed : isolation

of concurrent transactions

Facilities (Utilities for Applications)

Timer, Listeners Timer, Trace, Alarm, Statistics, Profiles.

Protocol Support

SIP and HTTP Protocol agnostic. Consistent event

model, regardless of protocol/resource

Availability Mechanisms

Container managed state (session

object) that can be replicated

Container managed state (SBB CMP, Facility,

ActivityContext) that can be replicated

No transaction context for

SIP message processing

Transaction context for event delivery

Eclipse IDE Tools

147

SIP Servlets JAIN SLEE

Non transacted state operations Container managed state

operations are transacted

Facilities are non transacted Facilities, timers, are transacted

No defined failure model Well defined and understood

failure model via transactions

Management

No standard management

mechanisms defined

JMX Interface for managing

applications, life cycle, upgrades, ...

JSLEE and SIP Servlets target different audiences with different needs but they can be

complementary in a number of real world cases.

SIP Servlets focuses on SIP and its integration with Java EE. It is also more of a SIP framework

within Java EE while JSLEE is an event driven application server with protocol agnostic

architecture, spanning any legacy or potential future protocols. SIP Servlets applications are

generally simpler to implement and accelerate time to market for Web and SIP deployment

scenarios. JSLEE has a steeper learning curve and covers a wider set of target deployment

environments.

As JBoss is the only vendor to implement both specifications through JBoss Communications,

this makes it a natural fit to build converged and interoperable JSLEE/SIP Servlets applications

that are able to comply with standards in a portable manner, we built an application that

could leverage standards all the way without resorting to vendor proprietary extensions by

making SIP Servlets and JSLEE work together. Our "JSLEE and SIP-Servlets Interoperability

with Mobicents Communication Platform" paper [http://mobicents.googlecode.com/files/deruelle-

JSleeSipServletsInteroperability-final.pdf] describes our approach and the possible different

approaches we have identified to achieve the goal of interoperability between SIP Servlets and

JSLEE.

You can also use our JSLEE/SIP Servlets interoperability example [http://www.mobicents.org/

jslee-sips-interop-demo.html] showcasing our approach.

7.10. Eclipse IDE Tools

The JBoss Communications SIP Servlets Eclipse Tools assist developers in creating JSR 289

applications with JBoss Communications. You can use the Dynamic Web Project wizard for

Converged Applications to get started with an empty project and then you can test your application

with a real SIP Phone right from the IDE.

http://mobicents.googlecode.com/files/deruelle-JSleeSipServletsInteroperability-final.pdf
http://mobicents.googlecode.com/files/deruelle-JSleeSipServletsInteroperability-final.pdf
http://mobicents.googlecode.com/files/deruelle-JSleeSipServletsInteroperability-final.pdf
http://mobicents.googlecode.com/files/deruelle-JSleeSipServletsInteroperability-final.pdf
http://www.mobicents.org/jslee-sips-interop-demo.html
http://www.mobicents.org/jslee-sips-interop-demo.html
http://www.mobicents.org/jslee-sips-interop-demo.html

Chapter 7. Advanced Features ...

148

SIP Servlets Eclipse IDE Tools

7.10.1. Pre-Install requirements

Eclipse 3.4 is required.

7.10.2. Installation

The standard Eclipse Update Site installation mechanism is leveraged. The JBoss

Communications Update Site is at the following location: http://mobicents.googlecode.com/svn/

downloads/sip-servlets-eclipse-update-site After adding this update site to Eclipse you can

proceed with regular Eclipse Plug-in Installation. If you need help the process is demonstrated in

this video [http://www.youtube.com/watch?v=LZOmLEC2IeQ].

7.10.3. SIP Servlets Core Plug-in

This Plug-in allows you to create Dynamic Web Projects with SIP Facet. There are a number

of new Dynamic Web Project configurations for Converged applications. It's best to use the

ones marked as "recommended". After you complete the wizards a complete converged project

skeleton will be generated. Working with this type of project is similar to working with normal Web

projects. You can see a demo here [http://people.redhat.com/vralev/mss-eclipse-plugin-demo/

mss-eclipse.htm].

7.10.4. SIP Phone Plug-in

The SIP Phone plug-in integrates a SIP phone inside your Eclipse IDE. You can use the phone to

test your SIP or Media applications. The Phone uses the Microphone and the Speakers on your

computer and allows to simulate real-world scenarios.

http://mobicents.googlecode.com/svn/downloads/sip-servlets-eclipse-update-site
http://mobicents.googlecode.com/svn/downloads/sip-servlets-eclipse-update-site
http://www.youtube.com/watch?v=LZOmLEC2IeQ
http://www.youtube.com/watch?v=LZOmLEC2IeQ
http://people.redhat.com/vralev/mss-eclipse-plugin-demo/mss-eclipse.htm
http://people.redhat.com/vralev/mss-eclipse-plugin-demo/mss-eclipse.htm
http://people.redhat.com/vralev/mss-eclipse-plugin-demo/mss-eclipse.htm

Chapter 8.

149

Best Practices
This chapter discusses Best Practices related to JBoss Communications SIP Servlets usage in

real world deployments.

8.1. JBoss Communications SIP Servlets Performance

Tips

Because the default profile of JBoss Communications SIP Servlets is targeted at a development

environment, some tuning is required to make the server performance suitable for a production

environment.

8.1.1. Tuning JBoss

To ensure the server is finely tuned for a production envirionment, certain configuration

must be changed. Visit the JBoss Application Server Tuning [http://wiki.jboss.org/wiki/Wiki.jsp?

page=JBossASTuningSliming] wiki page to learn about optimization techniques.

While it is preferrable to have a fast Application Server, most of the information doesn't apply

to JBoss Communications. In summary, the most important optimization technique is to remove

logs, leaving only what is required.

Check the log configuration file in the following location and review the information.

$JBOSS_HOME/server/default/conf/jboss-log4j.xml

8.1.2. Tuning JBoss Communications SIP Servlets

• Congestion Control : It is recommended that this feature is enabled to avoid overload of

the server and that the sipMessageQueueSize and memoryThreshold parameters are tuned

according to Section 7.2, “Concurrency and Congestion Control”

• Concurrency : Default Value : None. For better performance, it is recommended to leave this

value set to None.

8.1.3. Tuning The JAIN SIP Stack

The stack can be fine-tuned by altering the SIP stack properties, defined in the external properties

file specified by the sipStackPropertiesFile attribute as described in Section 2.3.1, “Configuring

SIP Connectors”.

• gov.nist.javax.sip.THREAD_POOL_SIZE

Default value: 64

This thread pool is responsible for parsing SIP messages received from socket messages into

objects.

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossASTuningSliming
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossASTuningSliming
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossASTuningSliming

Chapter 8. Best Practices

150

A smaller value will make the stack less responsive, since new messages have to wait in a

queue for free threads. In UDP, this can lead to more retransmissions.

Large thread pool sizes result in allocating resources that are otherwise not required.

• gov.nist.javax.sip.REENTRANT_LISTENER

Default value: true

This flag indicates whether the SIP stack listener is executed by a single thread, or concurrently

by the threads that parse the messages.

JBoss Communications SIP Servlets expects this flag to be set to true, therefore do not change

the value.

• gov.nist.javax.sip.LOG_MESSAGE_CONTENT

Default value: true

Set the parameter to false to disable message logging.

• gov.nist.javax.sip.TRACE_LEVEL=0

Default value: 32.

Set the parameter to 0 to disable JAIN SIP stack logging.

• gov.nist.javax.sip.RECEIVE_UDP_BUFFER_SIZE=65536 and

gov.nist.javax.sip.SEND_UDP_BUFFER_SIZE=65536

Default value: 65536.

Those properties control the size of the UDP buffer used for SIP messages. Under load, if

the buffer capacity is overflown the messages are dropped causing retransmissions, further

increasing the load and causing even more retransmissions

• gov.nist.javax.sip.MAX_MESSAGE_SIZE=65536

Default value: 65536.

This property control the maximum size of content that can be read for a SIP Message on

UDP. Default is 65536. The average UDP message size is quite lower than this so reducing this

property will benefit memory usage since a byte buffer of this size is created for every message

received

It also defines the maximum size of content that a TCP connection can read. Must be at least

4K. Default is "infinity" -- ie. no limit. This is to prevent DOS attacks launched by writing to a

TCP connection until the server chokes.

• gov.nist.javax.sip.TCP_POST_PARSING_THREAD_POOL_SIZE=30

Tuning The JVM

151

Default value: 30.

Use 0 or do not set this option to disable it. When using TCP your phones/clients usually connect

independently creating their own TCP sockets. Sometimes however SIP devices are allowed

to tunnel multiple calls over a single socket. This can also be simulated with SIPP by running

"sipp -t t1". In the stack each TCP socket has it's own thread. When all calls are using the

same socket they all use a single thread, which leads to severe performance penalty, especially

on multi-core machines. This option instructs the SIP stack to use a thread pool and split the

CPU load between many threads. The number of the threads is specified in this parameter. The

processing is split immediately after the parsing of the message. It cannot be split before the

parsing because in TCP the SIP message size is in the Content-Length header of the message

and the access to the TCP network stream has to be synchronized. Additionally in TCP the

message size can be larger. This causes most of the parsing for all calls to occur in a single

thread, which may have impact on the performance in trivial applications using a single socket

for all calls. In most applications it doesn't have performance impact. If the phones/clients use

separate TCP sockets for each call this option doesn't have much impact, except the slightly

increased memory footprint caused by the thread pool. It is recommended to disable this option

in this case by setting it 0 or not setting it at all. You can simulate multi-socket mode with "sipp

-t t0". With this option also we avoid closing the TCP socket when something fails, because

we must keep processing other messages for other calls. Note: This option relies on accurate

Content-Length headers in the SIP messages. It cannot recover once a malformed message is

processed, because the stream iterator will not be aligned any more. Eventually the connection

will be closed.

The full list of JAIN SIP stack properties is available from the SIP Stack Properties Home Page

[http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/javax/sip/SipStack.html] and the full list of

implementation specific properties are available from the SIP Stack Implementation Home Page

[http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/gov/nist/javax/sip/SipStackImpl.html].

8.1.4. Tuning The JVM

The following tuning information applies to Sun JDK 1.6, however the information should also

apply to Sun JDK 1.5.

Note

For more information on performance, refer to the Performance White Paper [http://

java.sun.com/performance/reference/whitepapers/6_performance.html].

To pass arguments to the JVM, change $JBOSS_HOME/bin/run.conf (Linux) or $JBOSS_HOME/

bin/run.bat (Windows).

• Garbage Collection

http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/javax/sip/SipStack.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/javax/sip/SipStack.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/gov/nist/javax/sip/SipStackImpl.html
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/gov/nist/javax/sip/SipStackImpl.html
http://java.sun.com/performance/reference/whitepapers/6_performance.html
http://java.sun.com/performance/reference/whitepapers/6_performance.html
http://java.sun.com/performance/reference/whitepapers/6_performance.html

Chapter 8. Best Practices

152

JVM ergonomics automatically attempt to select the best garbage collector. The default

behaviour is to select the throughput collector, however a disadvantage of the throughput

collector is that it can have long pauses times, which ultimately blocks JVM processing.

For low-load implementations, consider using the incremental, low-pause, garbage collector

(activated by specifying -XX:+UseConcMarkSweepGC -XX:+CMSIncrementalMode). Many SIP

applications can benefit from this garbage collector type because it reduces the retransmission

amount.

For more information please read: Garbage Collector Tuning [http://java.sun.com/javase/

technologies/hotspot/gc/gc_tuning_6.html]

• Heap Size

Heap size is an important consideration for garbage collection. Having an unnecessarily large

heap can stop the JVM for seconds, to perform garbage collection.

Small heap sizes are not recommended either, because they put unnecessary pressure on the

garbage collection system.

8.1.5. Tuning The Operating System

The following tuning information is provided for Red Hat Enterprise Linux (RHEL) servers that

are running high-load configurations. The tuning information should also apply to other Linux

distributions.

After you have configured RHEL with the tuning information, you must restart the operating

system. You should see improvements in I/O response times. With SIP, the performance

improvement can be as high as 20%.

• Large Memory Pages

Setting large memory pages can reduce CPU utilization by up to 5%.

Ensure that the option -XX:+UseLargePages is passed and ensure that the following Java

HotSpot(TM) Server VM warning does not occur:

Failed to reserve shared memory (errno = 22)" when starting JBoss. It means that

the number of pages at OS level is still not enough.

To learn more about large memory pages, and how to configure them, refer to Java Support for

Large Memory Pages [http://java.sun.com/javase/technologies/hotspot/largememory.jsp] and

Andrig's Miller blog post [http://andrigoss.blogspot.com/2008/02/jvm-performance-tuning.html].

• Network buffers

You can increase the network buffers size by adding the following lines to your /etc/

sysctl.conf file:

http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html
http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html
http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html
http://java.sun.com/javase/technologies/hotspot/largememory.jsp
http://java.sun.com/javase/technologies/hotspot/largememory.jsp
http://java.sun.com/javase/technologies/hotspot/largememory.jsp
http://andrigoss.blogspot.com/2008/02/jvm-performance-tuning.html
http://andrigoss.blogspot.com/2008/02/jvm-performance-tuning.html

NAT Traversal

153

• net.core.rmem_max = 16777216

• net.core.wmem_max = 16777216

• net.ipv4.tcp_rmem = 4096 87380 16777216

• net.ipv4.tcp_wmem = 4096 65536 16777216

• net.core.netdev_max_backlog = 300000

• Execute the following command to set the network interface address:

sudo ifconfig [eth0] txqueuelen 1000 #

Replace [eth0] with the correct name of the actual network interface you are setting up.

8.2. NAT Traversal

In a production environment, it is common to see SIP and Media data passing through different

kinds of Network Address Translation (NAT) to reach the required endpoints. Because NAT

Traversal is a complex topic, refer to the following information to help determine the most effective

method to handle NAT issues.

8.2.1. STUN

STUN (Session Traversal Utilities for NAT) is not generally considered a viable solution for

enterprises because STUN cannot be used with symmetric NATs.

Most enterprise-grade firewalls are symmetric, therefore STUN support must be provided in the

SIP Clients themselves.

Most of the proxy and media gateways installed by VoIP providers recognize the public IP address

the packets have originated from. When both SIP end points are behind a NAT, they can act as

gateways to clients behind NAT.

8.2.2. TURN

TURN (Traversal Using Relay NAT) is an IETF standard, which implements media relays for SIP

end-points. The standard overcomes the problems of clients behind symmetric NATs which cannot

rely on STUN to solve NAT traversal.

TURN connects clients behind a NAT to a single peer, providing the same protection offered by

symmetric NATs and firewalls. The TURN server acts as a relay; any data received is forwarded.

This type of implementation is not ideal. It assumes the clients have a trust relationship with a

TURN server, and a request session allocation based on shared credentials.

This can result in scalability issues, and requires changes in the SIP clients. It is also impossible

to determine when a direct, or TURN, connection is appropriate.

Chapter 8. Best Practices

154

8.2.3. ICE

ICE (Interactive Connection Establishment) leverages both STUN and TURN to solve the NAT

traversal issues.

It allows devices to probe for multiple paths of communication, by attempting to use different port

numbers and STUN techniques. If ICE support is present in both devices, it is quite possible that

the devices can initiate and maintain communication end-to-end, without any intermediary media

relay.

Additionally, ICE can detect cases where direct communication is impossible and automatically

initiate fall-back to a media relay.

ICE is not currently in widespread use in SIP devices, because ICE capability must be embedded

within the SIP devices.

Depending on the negotiated connection, a reINVITE may be required during a session, which

adds more load to the SIP network and more latency to the call.

If the initiating ICE client attempts to call a non-ICE client, then the call setup-process will revert

to a conventional SIP call requiring NAT traversal to be solved by other means.

8.2.4. Other Approaches

Other approaches include using proxy and media that can act as gateways, Session Border

Controllers, enhanced Firewall with Application Layer Gateway (ALG) and Tunnelling.

155

Appendix A. Revision History
Revision History

Revision 3.0 Thu Jun 11 2009 JaredMorgan<jmorgan@redhat.com>

Second release of the "parameterized" documentation.

Revision 2.0 Fri Mar 06 2009 DouglasSilas<dhensley@redhat.com>

First release of the "parameterized", and much-improved JBCP documentation.

156

	SIP Servlets Server User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	Chapter 1. Introduction to the SIP Servlets Server
	1.1. High-Availability: SIP Servlets Server Load Balancing, Clustering and Failover
	1.2. Working with the SIP Servlets Management Console

	Chapter 2. SIP Servlets Server-Installing, Configuring and Running
	2.1. SIP Servlet-Enabled JBoss Application Server: Installing, Configuring and Running
	2.1.1. Java Development Kit (JDK): Installing, Configuring and Running
	2.1.2. Pre-install Requirements and Prerequisites
	2.1.3. Downloading
	2.1.4. Installing
	2.1.5. Setting the JBOSS_HOME Environment Variable
	2.1.5.1. Setting the JBOSS_HOME Environment Variable

	2.1.6. Configuring
	2.1.7. Running
	2.1.8. Using
	2.1.9. Testing
	2.1.10. Stopping
	2.1.11. Uninstalling

	2.2. SIP Servlet-Enabled Tomcat Servlet Container: Installing, Configuring and Running
	2.2.1. Java Development Kit (JDK): Installing, Configuring and Running
	2.2.2. Pre-Install Requirements and Prerequisites
	2.2.3. Downloading
	2.2.4. Installing
	2.2.5. Setting the CATALINA_HOME Environment Variable
	2.2.6. Configuring
	2.2.7. Running
	2.2.8. Stopping
	2.2.9. Using
	2.2.10. Testing
	2.2.11. Uninstalling

	2.3. Configuring
	2.3.1. Configuring SIP Connectors
	2.3.2. Application Routing and Service Configuration
	2.3.3. SIP Servlets Server Logging

	Chapter 3. Application Router
	3.1. Default Application Router
	3.1.1. Role of the Application Router
	3.1.2. JBoss Communications Default Application Router
	3.1.2.1. The DAR Configuration File
	3.1.2.2. Routing of SIP Messages to Applications
	3.1.2.2.1. Initial Requests and Application Selection Process
	3.1.2.2.2. Response Routing
	3.1.2.2.3. Subsequent Requests

	3.1.3. Limitations of the Default Application Router

	3.2. DFC Application Router
	3.2.1. Description of DFC Application Router
	3.2.2. Installing the DFC Application Router

	Chapter 4. SIP Servlet Example Applications
	4.1. Operating the Example Applications
	4.1.1. The Location Service
	4.1.1.1. The Location Service: Installing, Configuring and Running

	4.1.2. The Diameter Event-Changing Service
	4.1.2.1. Diameter Event-Changing Service: Installing, Configuring and Running

	4.1.3. The Call-Blocking Service
	4.1.3.1. The Call-Blocking Service: Installing, Configuring and Running

	4.1.4. The Call-Forwarding Service
	4.1.4.1. The Call-Forwarding Service: Installing, Configuring and Running

	4.1.5. The Call-Controller Service
	4.1.5.1. The Call-Controller Service: Installing, Configuring and Running

	4.1.6. Media IPBX

	Chapter 5. Clustering and High Availability
	5.1. JBoss Communications SIP Servlets for JBoss: Clustering Support
	5.1.1. SIP Servlets Server Cluster: Installing, Configuring and Running
	5.1.1.1. Pre-Install Requirements and Prerequisites
	5.1.1.2. Configuring
	5.1.1.3. Running
	5.1.1.4. Stopping
	5.1.1.5. Testing
	5.1.1.6. Uninstalling

	5.2. JBoss Communications SIP Servlets for JBoss: Transparent Failover
	5.2.1. JBCP SIP Servlets for JBoss Cluster: Installing, Configuring and Running
	5.2.1.1. Downloading
	5.2.1.2. Installing
	5.2.1.3. Configuring
	5.2.1.4. Running
	5.2.1.5. Using
	5.2.1.6. Testing
	5.2.1.7. Uninstalling

	5.3. Load Balancer
	5.3.1. SIP Load Balancing Basics
	5.3.2. HTTP Load Balancing Basics
	5.3.3. Pluggable balancer algorithms
	5.3.4. Distributed load balancing
	5.3.5. Implementation of the JBoss Communications Load Balancer
	5.3.6. SIP Message Flow
	5.3.7. SIP Load Balancer: Installing, Configuring and Running
	5.3.7.1. Pre-Install Requirements and Prerequisites
	5.3.7.2. Downloading
	5.3.7.3. Installing
	5.3.7.4. Configuring
	5.3.7.4.1. Converged Load Balancing
	5.3.7.4.1.1. Apache HTTP load balancer
	5.3.7.4.1.1.1. The httpFollowsSip flag

	5.3.7.4.1.2. Integrated HTTP load balancer

	5.3.7.5. Running
	5.3.7.6. Testing
	5.3.7.7. Stopping
	5.3.7.8. Uninstalling

	5.3.8. IP Load Balancing
	5.3.8.1. IP Load Balancers
	5.3.8.2. Technical overview
	5.3.8.3. Configuring JBCP SIP Servlets Cluster for pure IP Load Balancing
	5.3.8.4.

	Chapter 6. Enterprise Monitoring and Management
	6.1. JBoss Communications SIP Servlets Monitoring and Management
	6.1.1. Installation of the Enterprise Monitoring and Management Console
	6.1.1.1. Jopr for Development
	6.1.1.2. Jopr for Production

	6.1.2. Usage Instructions
	6.1.2.1. Jopr for Development
	6.1.2.2. Jopr For Production

	6.2. SIP Load Balancer Monitoring and Management
	6.2.1. Installation of the Enterprise Monitoring and Management Console
	6.2.2. Usage Instructions

	Chapter 7. Advanced Features of the SIP Servlets Server
	7.1. Media Support
	7.1.1. JSR 309 : Media Server Control API

	7.2. Concurrency and Congestion Control
	7.3. SIP Servlets Application Security
	7.4. STUN Support
	7.5. Seam Telco Framework
	7.6. Diameter Support
	7.7. SIP and IMS Extensions
	7.8. JRuby/Rails Integration with Torquebox Telco Framework
	7.9. SIP Servlets - JAIN SLEE Interoperability
	7.10. Eclipse IDE Tools
	7.10.1. Pre-Install requirements
	7.10.2. Installation
	7.10.3. SIP Servlets Core Plug-in
	7.10.4. SIP Phone Plug-in

	Chapter 8. Best Practices
	8.1. JBoss Communications SIP Servlets Performance Tips
	8.1.1. Tuning JBoss
	8.1.2. Tuning JBoss Communications SIP Servlets
	8.1.3. Tuning The JAIN SIP Stack
	8.1.4. Tuning The JVM
	8.1.5. Tuning The Operating System

	8.2. NAT Traversal
	8.2.1. STUN
	8.2.2. TURN
	8.2.3. ICE
	8.2.4. Other Approaches

	Appendix A. Revision History

