Guvnor Manual

For users and
administrators of Guvnor

5.2.2-SNAPSHOT

by The JBoss Drools team [http://www.jboss.org/drools/team.html]

http://www.jboss.org/drools/team.html
http://www.jboss.org/drools/team.html

IO 1 (o Yo U o {1) o I 1

1.1. What is a BUSINESS RUIES MANAGEI?ccovviiiiii i e e 1
I O V.V o T=T o I (o B U 7= I €U 1Y/ T | RN 1
1.1.2. WHO USES GUVINO ..iiviiieiiiiiieee et e et et e et e e et e e e et s e e e et e e e e eran s 2

1.2, FEAtUreS OULIING ... e e e e e e eees 2

T U 7= G 1 T [PP 3

2. QUICK SEAM QUITE oieei ettt 5
2.1. Supported browser platformscooiiiiiiiiii s 7
2.2, Initial coNfIQUIALIONcooeueiiiii e 7
2.3. WIItING SOME TUIES ...ouiiiii i e e e e e e e 8
2.4, FINAING STUTT ..o e 8
AT 1Y o] [0V 1 01=T o P 8

I 1V LY aToT g ofoT s o] =] o) £ TP UPT PPN 11
3.1, RUIES Are GSSELS ...eevuiiiiiiiiii et e et e e et e e 11
3.2, CAtEQOIIZALION .. ieiitn et 12
3.3, The ASSEL EItOr ..uuiiiiiii e 14
3.4, RUIE QUENOTING oeviieeiii et 18

3.4.1. Business rules with the guided editorcccoooviiiiiiiiiiii 18
3.4.2. DSL EAItOF .uuuiiiiii e 26
4.3, DSL TUIES ..o e 27
3.4.4. Spreadsheet decision tablesccooiviiiiiiiiiii 28
3.4.5. Guided decision tables (web based)ccoooeiiiiiiiin e, 28
3.4.6. Templates of aSSetS/TUIESviiiiiiiiiiii e 33
347, RUIE FIOWS .oviiiiiii e 41
3.4.8. Technical rules (DRL)ooeiiiiiiiiiiiiieee e 41
e T U [od 110 o £SO 42
3.4.10. Data enumerations (drop down list configurations)cccccc.eeee. 42
3.4.11. Advanced enumeration CONCEPLSc.uivivrnreirnieriiieeiieeiiieeeieeeaneens 44
3.5, Status MAaNAGEIMENTiiiiiiiii e e e 45
3.6. Package managementcccouiiiiiiiiiii e 46
3.6.1. Importing DRL PACKAGESccuvuiiiiiiieeiiii et 50
3.7. VErsion ManNAQEMENTciuuieiiii et e e e e e e e e e e e e e e e e et e et e e eeeen 50
3.8. Deployment ManagemeNtccuuuieiiiiiiieiiii et 51
3.9. Navigating and finding TUIEScccuiiiiiii i 52

4. Creating @ DUSINESS USEI VIEBWuuuiiiiiiiiiiiiii ettt 55

LT T = Vo Al 1Yo Yo =T PP 57
5.1. Ways to define a Fact Modelcooouiiiiiiiiiii e 57
5.2. Creating @ JAR MOAEIociiiiiii e 58

5.2.1. Create @ JAR Model @SSEtcc.uiiiiiiiiiieiii e 58
5.2.2. Upload a JAR Model into the assetcccoeeviiiiiiiiiciiieccie e, 59
5.3. Declarative MOloovuuiiiiiiii e 60
5.3.1. Creating a Declarative Modelccocoiviiiiiiiiiiiii e, 60

6. WOTKING SEES ..ottt et e e et e e 65

6.1. Activating and Using WOrking Setscociiiiiiiiiiiiieeii e 67

Guvnor Manual

6.1.1. Using Field CONSLraintccceuuiiiiiiiieiii e 68

7. The bUSINESS USEr PEISPECLIVE .uuiiiiiiiiii i e e e s 71
8. Advanced config options in a rule packagecccoovveiiiiiiieiiiii e 73
9. Deployment: Integrating rules with your applicationsccooeeviiiiiiiciieeennnn, 75
9.1. The KNoOWIEdge AGQENTcoeiiieiiiii e e 75

10. WEDDAY and HTTP ..o e e e e e et e eeeat e eeeee 79
10.0. WEDBDAV . 79

0 T2 | PP 79

I [o To D Q=T Yo I oo o 0] 1 =T 1 £ P 81
8 o 1 1 =T | £ TP 81

0 2 [o oo)G 81

12. Eclipse GUVNOT INTEQratioNoiiiiiiiii e e e e e 83
12.1. Source Code and Plug-in DetailScc.uuvieiiiiiiiiiiiiieee e 83
12.2. Functionality OVEIVIEWiiiuiiiiiiieiiie e e e e eae 83
12.3. Guvnor ConNeCction WizZardcooviuiiiiiiiii e 85
12.4. GuVNOr RepOSItOry EXPIOTErcivveiiii i 89
12.5. Local Copies of GUVNOT FIlESccoiiuiiiiiiiiie e 92
12.6. Actions for Local GUVNOTr RESOUICESc.uuieiiiiiiieiiiiiieeeiiiine e et eeeiinens 93
12.7. Importing Guvnor RepPOSItOry RESOUICESuveviiiiiieiiiiieeeeiin e 98
12.8. GuVNOr plugin PreferenCesocvvviiiiiii e 102

1. ADMINISTratioN GUIAEeeeiiitie et e e e e e e et e et e ean e eeen 105
R | 0 1= =11 = LT o PP 107
13.1. Installation Step DY SEP .vvveniiii 107
13.2. Supported and recommended platformscccoeeiiiiiiiiiin e, 107

14. Database CONfigQUIatioNoviiiiiiiiiii e 109
14.1. Changing the location of the data Storeccooevviiiiiiiiiiin e, 109
14.2. Configuring Guvnor to use an external RDBMScccooiviiiiiiniiiiiineees 110
14.3. Searching and indexing, VErsion StOrageccoevviieiiiieeiieeeiiieeeineeninans 112

15. Switch from JackRabbit to ModeShapec.ooiviiiiiiiiiiiiii e 113
16. Security - Authentication and basiC aCCESSc.covvviiiiiiiiiiiii e, 117
16.1. Using your containers security and LDAPccoiiiiiiiiiiiiiiiineecie, 117

17. Fine grained permissions and SECUIILYccoveiiiiiiiiiiiie e e e 121
17.1. Enabling fine grained authorizationccccoooiiiiiiiii 125

18. Data ManagemENT ...t 127
18.1. BACKUDS .eetiiiiiiti ettt ettt ettt ettt e e 127
18.2. Repository Data Migrationccocouiieiiiieiiiieeie e e e e e e 127
18.3. Selectors for package buildingccooveiiiiiiiiiii 128
18.4. Adding your own logos or styles to Guvnor web GUIcccoeeviieennnnn. 128
18.5. IMpPOrt and EXPOITcoouuiiiiiie e 129

N o] oV (= Ton {1 | = PP 131
19.1. BUIldING frOM SOUICEiiiiiiieiiii e 132
19.0.1. MOQUIES ..coviieieii e et e et e aees 132

19.1.2. Working wWith MavEN 2ccoouiiiiiiiiiieiii e 132

19.1.3. Working With GWT ..o 132

19.1.4. Debugging, Editing and running with Eclipse
19.2. Re-usable components

19.3. Versioning and Storage

19.4. Contributing

Vi

Chapter 1.

Chapter 1. Introduction

This section introduces the Guvnor. See the other relevant sections for installation, usage and
administration.

Walcoma: guast [Sign Out]

'~ Browse Find
Create New P [=IName search ...

¥ Assets
(DEnter the name or part of a name. Alteratively, use the categories to browse.

Find items with a name matching:
Include archived assets in results: (]

Search

[ElText search ...

Search for:

‘ Search

[=lAttribute search ...

Source;

Created by:
Description:
Format:

Subject:

Type:

Last modified by:
External link:

Checkin comment:
i Knowledge Bases

Yo Date created After: 7 Befare:

Last modified After: ¥ Before: s

L)
'Package snapshots
- Search

‘ 2 Administration

Figure 1.1. The Guvnor main screen

1.1. What is a Business Rules Manager?

A business rules manager allows people to manage rules in a multi user environment, it is a single
point of truth for your business rules, allowing change in a controlled fashion, with user friendly
interfaces.

Guvnor is the name of the web and network related components for managing rules with drools.
This combined with the core drools engine and other tools forms the business rules manager.

1.1.1. When to use Guvnor

You should consider Guvnor if any of the following apply to you: You need to manage versions/
deployment of rules, you need to let multiple users of different skill levels access and edit rules,
you don't have any existing infrastructure to manage rules, you have lots of "business" rules (as
opposed to technical rules as part of an application).

Chapter 1. Introduction

Guvnor can be used on its own, or with the IDE tooling (often both together).

Guvnor can be "branded" and made part of your application, or it can be a central rule repository.
1.1.1.1. When to not use Guvnor

In some situations applications may exist which have the rules in a database (for instance as part
of an existing application), and no new application is needed to manage the rules.

In this case, the drools-template library is worth a look - you can define templates for rules to be
generated from any tabular data source.

Otherwise, perhaps an existing rule management system and user interface already exists (and
is tailored to your environment already) - in this case migrating to Guvnor may not be necessary.

If you are using rules to solve complex algorithmic problems, and the rules are essentially an
integral part of the application (and don't need to be managed separately to the code).

1.1.2. Who uses Guvnor

The main roles of people who would use Guvnor are: Business Analyst, Rule expert, Developer,
Administrators (rule administrators etc).

Guvnor is designed in such a way as these different roles can be accommodated, it can be
controlled how much is exposed to different users in a safe fashion.

1.2. Features outline

Multiple types of rule editors (GUI, text)
« Version control (historical assets)

» Categorization

Build and deploy

Store multiple rule "assets" together as a package

Part |. User Guide

This part covers Guvnor for end-users.

Chapter 2.

Chapter 2. Quick start guide

If you are reading this, you must be the impatient type who wants to kick the tires (and light the
fires) and have a look around as soon as possible. This section will provide a quick end to end
tour of the steps involved (but does not go through the concepts in detail). This assumes you have
installed the repository correctly, and are able to access the main login screen.

You can also consult the wiki: http://wiki.jboss.org/wiki/Wiki.jsp?page=RulesRepository for some
tutorials and user tips (it IS a wiki, so you can even contribute your own tips and examples and
even upload files if you desire !).

http://wiki.jboss.org/wiki/Wiki.jsp?page=RulesRepository

Chapter 2. Quick start guide

“ Browse Find

Create Mew P EName sa

" Assets
(L)Enter

Find item:

Include a

—IText seal

Search fol

—|Attribute
o

Cre

Figure 2.1. Main feature areas of Guvnor

Supported browser platforms

The above picture shows the main feature areas of Guvnor.

Info: This is the initial screen, with links to resources.

Rules: This is the category and business user perspective.
Package: This is where packages are configured and managed.
Deployment: this is where deployment snapshots are managed.

Admin: Administrative functions (categories, statuses, import and export)

2.1. Supported browser platforms

The supported server side platforms are mentioned in the installation guide. For browsers - the
major ones are supported, this includes Firefox (1.5 and up), IE7 and up, Opera, Safari, Google
Chrome etc. The preferred browser for most platforms is firefox, it is widely available and free, if
you have any choice at all, Firefox is the preferred platform, followed by safari on mac. IE6 users
can experience some poor performance, and as this is a dangerously insecure browser IE7 or a
superior browser (such as Google Chrome, Firefox, Safari) is recommended.

2.2. Initial configuration

Some initial setup is required the first time. The first time the server starts up, it will create an
empty repository, then take the following steps:

Once deployed, go to http://localhost:8080/guvnor-webapp/ This will show the initial info screen
or login screen depending on the configuration.

If it is a brand new repository, you will want to go to "Admin", and choose "Manage Categories"

(Add a few categories of your choosing, categories are only for classification, not for execution
or anything else.)

Rules need a fact model (object model) to work off, so next you will want to go to the Package
management feature. From here you can click on the icon to create a new package (give it a
meaningful name, with no spaces).

To upload a model, use a JAR which has the fact model (API) that you will be using in your
rules and your code (go and make one now if you need to !). When you are in the model editor
screen, you can upload a JAR file, choose the package name from the list that you created in
the previous step.

Now edit your package configuration (you just created) to import the fact types you just uploaded
(add import statements), and save the changes.

At this point, the package is configured and ready to go (you generally won't have to go through
that step very often).

http://localhost:8080/guvnor-webapp/

Chapter 2. Quick start guide

(Note that you can also import an existing DRL package - it will store the rules in the repository
as individual assets).

2.3. Writing some rules

« Once you have at least one category and one package setup, you can author rules.
» There are multiple rule "formats"”, but from the Guvnor point of view, they are all "assets".

« You create a rule by clicking the icon with the rules logo (the head), and from that you enter
a name.

« You will also have to choose one category. Categories provide a way of viewing rules that is
separate to packages (and you can make rules appear in multiple packages) - think of it like

tagging.
* Chose the "Business rule (guided editor)" formats.

 This will open a rule modeler, which is a guided editor. You can add and edit conditions and
actions based on the model that is in use in the current package. Also, any DSL sentence
templates setup for the package will be available.

« When you are done with rule editing, you can check in the changes (save), or you can validate
or "view source" (for the effective source).

e You can also add/remove categories from the rule editor, and other attributes such as
documentation (if you aren't sure what to do, write a document in natural language describing
the rule, and check it in, that can also serve as a template later)

2.4. Finding stuff

In terms of navigating, you can either use the Rules feature, which shows things grouped by
categories, or you can use the Package feature, and view by package (and rule type). If you know
the name or part of the name of an asset, you can also use the "Quick find", start typing a rule
name and it will return a list of matches as you type (so if you have a sensible naming scheme,
it will make it very quick to find stuff).

2.5. Deployment

» After you have edited some rules in a package, you can click on the package feature, open the
package that you wish, and build the whole package.

« If that succeeds, then you will be able to download a binary package file which can be deployed
into a runtime system.

* You can also take a "snapshot" of a package for deployment. This freezes the package at that
point in time, so any concurrent changes to not effect the package. It also makes the package

Deployment

available on a URL of the form: "http://<your server>/guvnor-webapp/org.drools.guvnor.Guvnor/
packages/<packageName>/<snapshotName>" (where you can use that URL and downloads
will be covered in the section on deployment).

10

Chapter 3.

Chapter 3. Guvnor concepts

3.1. Rules are assets

As the Guvnor can manage many different types of rules (and more), they are all classed as
"assets". An asset is anything that can be stored as a version in the repository. This includes
decision tables, models, DSLs and more. Sometimes the word "rule” will be used to really mean
"asset" (i.e. the things you can do also apply to the other asset types). You can think of asset
as a lot like a file in a folder. Assets are grouped together for viewing, or to make a package for
deployment etc.

11

Chapter 3. Guvnor concepts

3.2, Categorization
- =HR
+ Hleave
+ = Training
+ = Sales
+ = Manufacturing

+ = Finance

Figure 3.1. Categories

Categories allow rules (assets) to be labeled (or tagged) with any number of categories that you
define. This means that you can then view a list of rules that match a specific category. Rules can
belong to any number of categories. In the above diagram, you can see this can in effect create

12

Categorization

a folder/explorer like view of assets. The names can be anything you want, and are defined by
the Guvnor administrator (you can also remove/add new categories - you can only remove them
if they are not currently in use).

Generally categories are created with meaningful name that match the area of the business
the rule applies to (if the rule applies to multiple areas, multiple categories can be attached).
Categories can also be used to "tag" rules as part of their life-cycle, for example to mark as "Draft"
or "For Review".

Categories: [
Finance

HRE Awards/QAS

. e

Figure 3.2. Assets can have multiple categories

The view above shows the category editor/viewer that is seen when you open an asset. In this
example you can see the asset belongs to 2 categories, with a "+" button to add additional items
(use the trash can item to remove them). This means that when either category is used to show
a list of assets, you will see that asset.

In the above example, the first Category "Finance" is a "top level" category. The second one: "HR/
Awards/QAS" is a still a single category, but its a nested category: Categories are hierarchical.
This means there is a category called "HR", which contains a category "Awards" (it will in fact have
more sub-categories of course), and "Awards" has a sub-category of QAS. The screen shows this
as "HR/Awards/QAS" - its very much like a folder structure you would have on your hard disk (the
notable exception is of course that rules can appear in multiple places).

When you open an asset to view or edit, it will show a list of categories that it currently belongs to
If you make a change (remove or add a category) you will need to save the asset - this will create
a new item in the version history. Changing the categories of a rule has no effect on its execution.

13

Chapter 3. Guvnor concepts

Create a new top level category.
Category name

ok |

Figure 3.3. Creating categories

The above view shows the administration screen for setting up categories (there) are no categories
in the system by default. As the categories can be hierarchical you chose the "parent" category
that you want to create a sub-category for. From here categories can also be removed (but only
if they are not in use by any current versions of assets).

As a general rule, an asset should only belong to 1 or 2 categories at a time. Categories are critical
in cases where you have large numbers of rules. The hierarchies do not need to be too deep, but
should be able to see how this can help you break down rules/assets into manageable chunks.
Its ok if its not clear at first, you are free to change categories as you go.

3.3. The Asset Editor

The Asset Editor is the principle component of Guvnor's User-Interface. It consists of two tabs:-

+ Attributes
¢ A : Meta data (from the "Dublin Core" standard):-
“"Last modified:" The last modified date.
"By:" Who made the last change.
"Note:" A comment made when the Asset was last updated (i.e. why a change was made)

"Created on:" The date and time the Asset was created.

14

The Asset Editor

"Created by:" Who initially authored the Asset.

"Format:" The short format name of the type of Asset.

"Package:" The package to which the Asset belongs.

"Is Disabled:" Whether the Asset has been disabled from inclusion in a binary package.
"UUID:" A unique identifier for the Asset version.

B : Other miscellaneous meta data for the Asset.

C : Version history of the Asset.

D : Free-format documentation\description for the Asset. It is encouraged, but not mandatory,
to record a description of the Asset before editing.

E : Discussions regarding development of the Asset can be recored here.

15

Chapter 3. Guvnor concepts

File Edit Source Status: [Drafi]

Attributes Edit

[=IMetadata:
A
Title: RegexDsiRule
Categories; Home Morigage/Technical [<=
Last modified 2011-06-04 22:02
by: admin
Note:
Created on:2011-06-03 22:30
Created by: admin
Farmat: brl
Package: mortgages g7
Is Disabled: []
UUID:e688d746-0d63-4707-9715-e8bede3e0ich

[+/Other meta data ... A
[+version history ...
[+/Description

[+ Discussion

E C B A

Figure 3.4. The Asset Editor - Attributes tab

=|Other meta data ...
Subject:

Type:
External link:
Source:

Figure 3.5. The Asset Editor - Other meta data

16

The Asset Editor

[=IVersion history ...

Current version number: 2
Version history i

Figure 3.6. The Asset Editor - Version history

=IDescription

=documentation=

Figure 3.7. The Asset Editor - Description

[=IDiscussion

Comment by alan parsons on Sun Jun 05 20: 14:42 BST 2011
Please review changes.

Add a discussion comment | Erase all comments D

Figure 3.8. The Asset Editor - Discussion

+ Edit

» A : The Asset editor is where the "editor widget" lives - exactly what form the editor takes

depends on the Asset type.

* B : These are menus contains various actions for the Asset; such as Saving, Archiving,

changing Status etc.

e C: The current status of the Asset.

17

Chapter 3. Guvnor concepts

File Edit Source Status: [Draft]]
Attributes -
WHEN '

1. Wnenthe agesislessthan 57 L FL4
THEN oh
(show A
options...)

A

Figure 3.9. The Asset Editor - Edit tab

3.4. Rule authoring

The Guvnor supports a (growing) list of formats of assets (rules). Here the key ones are described.
Some of these are covered in other parts of the manual, and the detail will not be repeated here.

3.4.1. Business rules with the guided editor

Guided editor style "Business rules": (also known as "BRL format"). These rules use the guided
GUI which controls and prompts user input based on knowledge of the object model. This can
also be augmented with DSL sentences.

18

Business rules with the guided editor

File Edit Source E Status: [Draft]

Attributes Edit

WHEN
1 There is a LoanApplication [app]

ﬂ N
Any of the following are true: E a
There is an Applicant with: L
-]

creditRating equal to =i oK
v

2. applicationDate after d |C. a
There is an Applicant with a
creditRating equal to = | Sub prime 5, @

1 Setvalue of LoanApplication [app] approved false Ll a
) Setvalue of LoanApplication [app] explanation Only AA o
2, Retract LoanA pplication [app] L
(options)
Aftributes:

salience 10 |
H -

Figure 3.10. The guided BRL editor

The above diagram shows the editor in action. The following descriptions apply to the lettered
boxes in the diagram:-

A : The different parts of a rule:-

* The "WHEN" part, or conditions, of the rule.
e The "THEN" action part of the rule.
« Optional attributes that may effect the operation of the rule.

B : This shows a pattern which is declaring that the rule is looking for a "LoanApplication"
fact (the fields are listed below, in this case none). Another pattern, "Applicant”, is listed below
"LoanApplication”. Fields "creditRating" and "applicationDate" are listed. Clicking on the fact name
("LoanApplication") will pop-up a list of options to add to the fact declaration:-

« Add more fields (e.qg. their "location").
« Assign a variable name to the fact (which you can use later on if needs be)
« Add "multiple field" constraints - i.e. constraints that span across fields (e.g. age > 42 or risk > 2).

C : The "minus" icon ("[-]") indicates you can remove something. In this case it would remove
the whole "LoanApplication"” fact declaration. Depending upon the placement of the icon different
components of the rule declaration can be removed, for example a Fact Pattern, Field Constraint,

other Conditional Element ("exists", "not exists", "from" etc) or an Action.

19

Chapter 3. Guvnor concepts

D : The "plus" icon ("+") allows you to add more patterns to the condition or the action part of the
rule, or more attributes. In all cases, a popup option box is provided. For the "WHEN" part of the
rule, you can choose from a list of Conditional Elements to add:

A Constraint on a Fact: it will give you a list of facts.
"The following does not exist": the fact plus constraints must not exist.

"The following exists": at least one match should exist (but there only needs to be one - it will
not trigger for each match).

"Any of the following are true": any of the patterns can match (you then add patterns to these
higher level patterns).

"From": this will insert a new From Conditional Element to the rule.

"From Accumulate": this will insert a new Accumulate Conditional Element to the rule.
"From Collect": this will insert a new Collect Conditional Element to the rule.

"From Entry-point": this allows you to define an Entry Point for the pattern.

"Free Form DRL": this will let you insert a free chunk of DRL.

If you just put a fact (like is shown above) then all the patterns are combined together so they
are all true ("and").

E : This shows the constraint for the "creditRating" field. Looking from left to right you find:-

The field name: "creditRating". Clicking on it you can assign a variable name to it, or access
nested properties of it.

A list of constraint operations ("equal to" being selected): The content of this list changes
depending on the field's data type.

The value field: It could be one of the following:-

1. A literal value: depending on the field's data type different components will be displayed:

String or Number -> TextBox

Date -> Calendar
» Enumeration -> Combobox
* Boolean -> Checkbox
2. A "formula": this is an expression which is calculated (this is for advanced users only)

3. An Expression - this will let you use an Expression Builder to build up a full mvel expression.
(At the moment only basic expressions are supported)

20

Business rules with the guided editor

F : This shows the constraint for the "applicationDate" field. Looking from left to right you find:

» The field name: "applicationDate".
» Alist of constraint operations: "after” being selected.

« A "clock" icon. Since the "applicationDate" is a Date data-type the list of available operators
includes those relating to Complex Event Processing (CEP). When a CEP operator is used this
additional icon is displayed to allow you to enter additional CEP operator parameters. Clicking
the "clock" will cycle the available combinations of CEP operator parameters.

G : Pattern/Action toolbar. Next to each Pattern or Action you will find a toolbar containing 3
buttons. The first button lets you insert a new Pattern/Action below the one you selected, the other
two buttons will move the current Pattern/Action up or down.

H : This shows an "action" of the rule, the Right Hand Side of a rule consists in a list of actions.
In this case, we are updating the "explanation” field of the "LoanApplication" fact. There are quite
a few other types of actions you can use:-

Insert a completely new Fact
« Logically insert a completely new Fact (see "Truth Maintenance" in the Expert documentation).
» Modify an existing fact (which tells the engine the fact has changed).

» Setafield on afact (in which case the engine doesn't know about the change - normally because
you are setting a result).

* Retract a fact.
» Add Facts to existing global lists.
» Call a method on a variable.

» Write a chunk of free form code.

21

Chapter 3. Guvnor concepts

In most cases you can click on the Fact name to get a list of its attributes or to bind it to a variable
name.

3.4.1.1. User driven drop down lists

ok |

AL A
OK
Sun%ime v

Figure 3.11. Data enumeration showing as a drop down list

Note that is it possible to limit field values to items in a pre configured list. This list is configured
as part of the package (using a data enumeration to provide values for the drop down list). These
values can be a fixed list, or (for example) loaded from a database. This is useful for codes, and
other fields where there are set values. It is also possible to have what is displayed on screen, in a
drop down, be different to the value (or code) used in arule. See the section on data enumerations
for how these are configured.

3.4.1.2. Augmenting with DSL sentences

If the package the rule is part of has a DSL configuration, when when you add conditions or actions,
then it will provide a list of "DSL Sentences" which you can choose from - when you choose one,
it will add a row to the rule - where the DSL specifies values come from a user, then a edit box
(text) will be shown (so it ends up looking a bit like a form). This is optional, and there is another
DSL editor. Please note that the DSL capabilities in this editor are slightly less then the full set
of DSL features (basically you can do [when] and [then] sections of the DSL only - which is no
different to drools 3 in effect).

The following diagram shows the DSL sentences in action in the guided editor:

WHEN

A template captures |ya)ues ina form style of input®
THEN

Action sentence template®
(options)

Figure 3.12. DSL in guided editor

22

Business rules with the guided editor

3.4.1.3. A more complex example:

WHEN
There is a Person [$p] with:
1 birthDate | less than ;[19-Dec-1982

(®)= |carbrand == "Ford" && salary = (2500 *4.1)

There is an Address with:

2 street equal to ¥ Eim st.
From $p.addresses. Choose... Rd

The following does not exist:
There is a Person with:

sadlary equal to ;|[H]= tpsalary * 2

There is a Mumber [$totalAddresses]
From Accumulate

There is an Address [$a] with:

zipCode | equal to F 43240
From $p.addresses. Choose... d
Custom Code Function
Function:| count{%a)

THEN
Inzert Person: h‘\
name | $p.name

(show
options...)

Figure 3.13. A more complex BRL example

In the above example, you can see how to use a mixture of Conditional Elements, literal values,
and formulas. The rule has 4 "top level" Patterns and 1 Action. The "top level" Patterns are:

1. A Fact Pattern on Person. This Pattern contains two field constraints: one for birthdate field
and the other one is a formula. Note that the value of the birthdate restriction is selected from a
calendar. Another thing to note is that you can make calculations and use nested fields in the

formula restriction (i.e. car.brand). Finally, we are setting a variable name ($p) to the Person
Fact Type. You can then use this variable in other Patterns.

23

Chapter 3. Guvnor concepts

$p : Person(birthDate < "19-Dec-1982" , eval (car.brand == "Ford"
&% salary > (2500 * 4.1)))

2. A From Pattern. This condition will create a match for every Address whose street name is "EIm
St." from the Person's list of addresses. The left side of the from is a regular Fact Pattern and
the right side is an Expression Builder that let us inspect variable's fields.

3. A "Not Exist" Conditional Element. This condition will match when its content doesn't create a
match. In this case, its content is a regular Fact Pattern (on Person). In this Fact Pattern you
can see how variables ($p) could be used inside a formula value.

4. A "From Accumulate” Conditional Element. This is maybe one of the most complex Patterns
you can use. It consist in a Left Pattern (It must be a Fact Pattern. In this case is a Number
Pattern. The Number is named $totalAddresses), a Source Pattern (Which could be a Fact
Pattern, From, Collect or Accumulate conditional elements. In this case is an Address Pattern
Restriction with a field restriction in its zip field) and a Formula Section where you can use any
built-in or custom Accumulate Function (in this example a count() function is used). Basically,
this Conditional Element will count the addresses having a zip code of 43240 from the Person's
list of addresses.

24

Business rules with the guided editor

Add a condition to the rule...

Position: Bottom ~|®@

When the credit rating is rating
When the applicant dates is after dos
When the applicant approval is bool
When the ages is less than num
Applicant ...

Bankruptcy ...

IncomeSource ...

LoanApplication ...

The following does not exist ...

The following exists ...

Any of the following are true ...
From ...

From Accumulate ...

From Collect ...

From Entry Point ...

Free form drl

Figure 3.14. Adding Patterns

A QK | Cancel ‘

When clicking on the + button of the WHEN section, a new popup will appear letting you to add
a new Pattern to the Rule. The popup will looks similar to the image above. In this popup you
could select the type of Pattern to add by selecting one of the list items. In the list you will have an
entry for each defined Fact Type, in addition to the already mentioned Conditional Elements like
"exists", "doesn't exist", "from", "collect”, "accumulate", "from entry-point" and "free form DRL".
Once you have selected one of this elements, you can add a new Pattern by clicking on the "Ok"
button. The new pattern will be added at the bottom of the rule's left hand side. If you wan't to
choose a different position, you can use the combobox placed at the top of the popup.

You can also open this popup by clicking in the [+] button from a Pattern's action toolbar. If that
is the case, the pop-up that appears wouldn't containt the position combobox, because the new
Pattern will be added just after the Pattern where you clicked.

25

Chapter 3. Guvnor concepts

Modify constraints for Applicant x
= Modify constraints for Applicant
Add a restriction on a field .. hd
Multiple field constraint . =@
Advanced options:

Add a new formula style expression New formula |

Expression editor Expression editor |

Variable name Set

Figure 3.15. Adding constraints

The above dialog is what you will get when you want to add constraints to a fact. In the top
half are the simple options: you can either add a field constraint straight away (a list of fields of
the applicable fact will be shown), or you can add a "Multiple field constraint" using AND or OR
operands. In the bottom half of the window you have the Advanced options: you can add a formula
(which resolves to True or False - this is like in the example above: "... salary > (2500 * 4.1)". You
can also assign a Variable name to the fact (which means you can then access that variable on
the action part of the rule, to set a value etc).

3.4.2. DSL editor

The DSL editor allows DSL Sentences to be authored. The reader should take time to explore DSL
features in the Drools Expert documentation; as the syntax in Guvnor's DSL Editor is identical.
The normal syntax is extended to provide "hints" to control how the DSL variable is rendered and
validated within the user-interface.

The following "hints" are supported:-

» {<varName>:<regular expression>}

This will render a text field in place of the DSL variable when the DSL Sentence is used in the
guided editor. The content of the text field will be validated against the regular expression.

» {<varName>:ENUM:<factType.fieldName>}

This will render an enumeration in place of the DSL variable when the DSL Sentence is
used in the guided editor. <factType.fieldName> binds the enumeration to the model Fact and
Field enumeration definition. This could be either a "Guvnor enumeration" (i.e. defined as a
Knowledge Base "Enumeration") or a Java enumeration (i.e. defined in a model POJO JAR file).

26

DSL rules

» {<varName>:DATE:<dateFormat>}

This will render a Date selector in place of the DSL variable when the DSL Sentence is used
in the guided editor.

e {<varName>:BOOLEAN:<[checked | unchecked]>}
This will render a dropdown selector in place of the DSL variable, providing boolean choices,

when the DSL Sentence is used in the guided editor.

File Edit Source

Attributes | Edit

[when]When the credit rating is {rating:ENUM:Applicant.creditRating} = applicant:Applicant(creditRating=="{rating}")
[when]When the applicant dates is after {dos:DATE:default} = applicant:Applicant(applicationDate>"{dos}")

[when]When the applicant approval is {bool:BOOLEAN:checked} = applicant:Applicant(approved=={bool})

[when]When the ages is less than {num:1?7[0-9]?[0-9]} = applicant:Applicant(age<{num})

[then] Approve the loan = applicant.setApproved(true);

[then]Set applicant name to {name} = applicant.setName("{name}");

Figure 3.16. DSL rule

3.4.3. DSL rules

DSL rules are textual rules, that use a language configuration asset to control how they appear.

File Edit Source Status: Draft’
Attributes | Edit
WHEN & A
1, When the agesis less than 35 a ﬂ’@?@
2 When the applicant dates is after 01-Jan-2000 = NI
3. When the applicant approval is | f5)se LI g gL
THEM =
1. Approve the loan = gL
(show
options...) '

Figure 3.17. DSL rule

A dsl rule is a single rule. Referring to the picture above, you can a text editor. You can use the
icons to the right to provide lists of conditions and actions to choose from (or else press Control
+ Space at the same time to pop up a list).

27

Chapter 3. Guvnor concepts

3.4.4. Spreadsheet decision tables

Multiple rules can be stored in a spreadsheet (each row is a rule). The details of the spreadsheet
are not covered in this chapter (as there is a separate chapter for them).

5 0
Upload new version: [Choose File) no file selected Upload |

Download current version: Download |

Thiz is a decision lable in a spreadshee! (XLS). Tymcaly they comnfain many rukes i one shael,

Figure 3.18. Spreadsheet decision table

To use a spreadsheet, you upload an XLS file (and can download the current version, as per the
picture above). To create a new decision table, when you launch the rule wizard, you will get an
option to create one (after that point, you can upload the XLS file).

3.4.5. Guided decision tables (web based)

The guided decision table feature allows decision tables to be edited in place on the web. This
works similar to the guided editor by introspecting what facts and fields are available to guide the
creation of a decision table. Rule attributes, meta-data, conditions and actions can be defined in a
tabular format thus facilitating rapid entry of large sets of related rules. Web-based decision table
rules are compiled into DRL like all other rule assets.

Cells can be selected in a variety of ways:-

« Firstly individual cells can be double-clicked and a pop-up editor corresponding to the underlying
data-type will appear. Groups of cells in the same column can be selected by either clicking
in the first and dragging the mouse pointer or clicking in the first and clicking the extent of the
required range with the shift key pressed.

« Secondly the keyboard cursor keys can be used to navigate around the table. Pressing the
enter key will pop-up the correspondig editor. Ranges can be selected by pressing the shift key
whilst extending the range with the cursor keys.

Columns can be resized by hovering over the corresponding divider in the table header. The
mouse cursor will change and then the column width dragged either narrower or wider.

28

Guided decision tables (web based)

[=IDecision table

[+ Condition columns

[+ Action columns

[+ {options)
Description salience name age age
ELLE 4‘L
g = 1 1 Bill 30 12345
g = 2 2 Ben <ptherwise> 12345
g = 3 3 Weed 40 12345
g = 4 4 <otherwise> 50 17345

Figure 3.19. Decision table
3.4.5.1. Main components
The guided decision table is split into two main sections:-

« The upper section allows table columns to be defined representing rule attributes, meta-data,
conditions and actions.

» The lower section contains the actual table itself; where individual rows define seperate rules.

[+ Condition columns

FAction columns

[+ {options)
a # Descript ———Zalence e ape age
i .
_p""—
gl 1 1 Bill 30 12345
g 2 2 Ben <ptherwise> 12345
.::: W 3 Weed 40 12345
da = 4 ""‘-—..______‘___‘_-._._.___fj__ =ptherwise= 50 12345

Figure 3.20. Main components
3.4.5.2. Column configuration

When you edit or create a new column, you will be given a choice of the type of constraint:-

« Literal : The value in the cell will be compared with the field using the operator.
« Formula: The expression in the cell will be evaluated and then compared with the field.

» Predicate : No field is needed, the expression will be evaluated to true or false.

29

Chapter 3. Guvnor concepts

You can set a default value, but normally if there is no value in the cell, that constraint will not apply.

—|Decision table

—|Condition columns

8 /#name
8 age
5 New column

—|lAction columns

8 gfage
57 New column

—l{options)

Add Attribute/Metadata: &
Attributes:

Bsalience Use row number([Reverse order) Default value: [Hide this column

Figure 3.21. Column configuration

3.4.5.2.1. Utility columns
Two columns containing rule number and description are provided by default.
3.4.5.2.2. Attribute columns

Zero or more attribue columns representing any of the DRL rule attributes can be added. An
additional pseudo attribute is provide in the guided decision table editor to "negate" a rule. Use
of this attribute allows complete rules to be negated. For example the following simple rule can
be negated as also shown.

when
$c : Cheese(name == "Cheddar")
t hen

end

when
not Cheese(nane == "Cheddar")
t hen

end

3.4.5.2.3. Meta-data columns

Zero or more meta-data columns can be defined, each represents the normal meta-data
annotation on DRL rules.

30

=

Guided decision tables (web based)

3.4.5.2.4. Condition columns

Conditions represent fact patterns defined in the right-hand side, or "when" portion, of a rule.
To define a condition column you must define a binding to a model class or select one that has
previously been defined. You can choose to negate the pattern. Once this has been completed
you can define field constraints. If two or more columns are defined using the same fact pattern
binding the field constraints become composite field constraints on the same pattern. If you define
multiple bindings for a single model class each binding becomes a seperate model class in the
right-hand side of the rule.

3.4.5.2.5. Action columns

Action columns can be defined to perform simple operations on bound facts within the rule engine's
working memory or create new facts entirely. New facts can be inserted logically into the rule
engine's working memory thus being subject to truth maintenance as usual. Please refer to the
"Drools Expert" documentation for discussion on truth maintenance and logical insertions.

3.4.5.3. Rule definition

This section alows individual rules to be defined using the columns defined earlier.

name age
-
Description salience Person [Sp]

name [==] age =]

|

Add row... | Otherwise

Bill 30

Ben <otherwise>
Weed 40

L R R
L R R

=
[=]
=
[=]

11

[
=

12

-
ra

Figure 3.22. Rule definition

3.4.5.4. Cell merging

The icon in the top left of the decision table toggles cell merging on and off. When cells are
merged those in the same column with identical values are merged into a single cell. This simplifies
changing the value of multiple cells that shared the same original value. When cells are merged
they also gain an icon in the top-left of the cell that allows rows spanning the merged cell to be
grouped.

31

Chapter 3. Guvnor concepts

@ # Description salience name age age
I——

g om| 1 1 Bil 30 BH 12345

g = 2 2 = Ben <ptherwise>

gr B2 3 3

= 8|4 4

gr B B 5

g m| 6 6 Weed 40 B 12345

= =7 7 <otherwise> 50

4

Figure 3.23. Cell merging

3.4.5.5. Cell grouping

Cells that have been merged can be further collapsed into a single row. Clicking the [+\-] icon in
the top left of a merged cell collapses the corresponding rows into a single entry. Cells in other
columns spanning the collapsed rows that have identical values are shown unchanged. Cells in
other columns spanning the collapsed rows that have different values are highlighted and the first
value displayed.

Description zalience Litls age age

i+

AR AR AR |

| 1 1 Bill 30 12345
‘1 - - S
a6 [Weed 40 = 12345

al 7 7 <ptherwise=> 50

Figure 3.24. Cell grouping

When the value of a grouped cell is altered all cells that have been collapsed also have their
values updated.

3.4.5.6. Operation of "otherwise"

Condition columns defined with literal values that use either the equality (==) or inequality (!=)
operators can take advantage of a special decision table cell value of "otherwise". This special
value allows a rule to be defined that matches on all values not explicitly defined in all other rules
defined in the table. This is best illustrated with an example:-

32

Templates of assets/rules

when
Cheese(nanme not in ("Cheddar", "Edant, "Brie"))

t hen

end

when
Cheese(nane in ("Cheddar", "Edant, "Brie"))

t hen

end

3.4.6. Templates of assets/rules

The guided rule editor is great when you need to define a single rule, however if you need to
define multiple rules following the same structure but with different values in field constraints or
action sections a "Rule Template" is a valuable asset. Rule templates allow the user to define a
rule structure with place-holders for values that are to be interpolated from a table of data. Literal
values, formulae and expressions can also continue to be used.

Rule Templates can often be used as an alternative for Decision Tables in Drools Guvnor.
3.4.6.1. Creating a rule template

To create a template for a rule simply select the "New Rule Template" from the Knowlegde Bases
"Create New" popup menu. The create "New Rule Template" asset popup window will appear
from which the normal asset attributes can be defined; such as name, category and description.

33

Chapter 3. Guvnor concepts

@ Drocls

' Browse
tHKnowledge Bases
Create Mew »#

9 san Packages

&5 cep

g defaultPackage

e # mortgages

" Business rule assets
Technical rule assets
®)= Functions

% psL configurations
= Model

4R processes

1=o] Enumerations

Ef Test Scenarios

al XML, Properties

ﬂ] Other assets, documentation

o WorkingSets
f=:] SpringContext

sas Global Area

A70A

Figure 3.25. Create a template

Find Business rule assets [mortgages]

[refresh lisk] | [open selected]

£9 New Package
i MNew Spring Context
29 New WorkingSet

% New Rule

E2 New Rule Template

% Upload POJO Model jar
& New Declarative Model
& New BPEL package
()= New Function

% New DSL

#F New RuleFlow

+F New BPMNZ Process
j’ Mew Enumeration

Ef Mew Test Scenario

ﬁ‘ﬂ Create a file.

" Rebuild all package binaries

[open selecte

Jptcy history
Approval

1 credit checks
] loans
DsIRule

ige

1As
15!

34

Templates of assets/rules

New Rule Template

,) New Rule Template

® Create new:
) Import asset from global area:
Name: template-rule1
SR (~]

— Home Mortgage

Initial category: — Commercial Mortgage

(] B

® Create in Package: Mortgages ~

(_) Create in Global area

an example template rule

Initial description:

ok |

Figure 3.26. Create "New Rule Template" popup

3.4.6.2. Define the template

Once a rule template has been created the editor is displayed. The editor takes the form of the
standard guided editor explained in more detail under the "Rule Authoring" section. As the rule is
constructed you are given the ability to insert "Template Keys" as place-holders within your field

35

Chapter 3. Guvnor concepts

constraints and action sections. Literal values, formulae and expressions can continue to be used

as in the standard guided editor.

Field value 4
o Field value
Literal value: Literal value | @
Template key: Template key | @
Advanced options:

A formula:

Expression editor:

MNew Formula |

Expression editor |

Figure 3.27. Template Key popup

The following screenshot illustrates a simple rule that has been defined with a "Template Key"
for the applicants’ maximum age, minimum age and credit rating. The template keys have been
defined as "$max_age", "$min_age" and "$cr" respectively.

File Edit Source Status: [Draft]
Attributes | Edit
Load Template Data —
WHEN 5=
There is an Applicant with: =2
age less than j Fmax_age E}@ =}
L age greater than or equal to jiﬁmin_age g B &
creditRating equal to | Ser =8 3
9 There is a LoanApplication [$a] g L
THEN 5=
1. Modify value of LoanApplication [$a] approved false j g ® gedl4p
(show —
options...)

Figure 3.28. Rule template in the guided editor

36

Templates of assets/rules

3.4.6.3. Defining the template data

When you have completed the definition of your rule template you need to enter the data that will
be used to interpolate the "Template Key" place-holders. Drools Guvnor provides the facility to
enter data in a flexible grid within the guided editor screen. The grid editor can be launched by
pressing the "Load Template Data" button on the guided editor screen.

The rule template data grid is very flexible; with different pop-up editors for the underlying fields'
data-types. Columns can be resized and sorted; and cells can be merged and grouped to facilitate
rapid data entry.

One row of data interpolates the "Template Key" place-holders for a single rule; thus one row
becomes one rule.

@ Note

If any cells for a row are left blank a rule for the applicable row is not generated.

37

Chapter 3. Guvnor concepts

Template Data
Template Data
Smax_age Smin_age Sor
HiH
gs B 25 20 AL
gs B 26 20 OK
CE | 25 20 Sub prime
gs B 35 25 AA
g = 35 25 OK
gs B 35 25 Sub prime
gs B 45 35 AL
I | 45 35 OK
gs B 45 35 Sub prime

Save and close | Add row...

Figure 3.29. Template data grid

3.4.6.3.1. Cell merging

The icon in the top left of the grid toggles cell merging on and off. When cells are merged those in
the same column with identical values are merged into a single cell. This simplifies changing the
value of multiple cells that shared the same original value. When cells are merged they also gain
an icon in the top-left of the cell that allows rows spanning the merged cell to be grouped.

38

Templates of assets/rules

Template Data
Template Data

HEH Smax_age Emin_age Bor
g == 25 20 AA
SUI = OK
CE | Sub prime
g == 35 25 AA
& = OK
gs B Sub prime
% a|lEH 4 35 AA
& B OK
gs B Sub prime

Save and close | Add row...

Figure 3.30. Cell merging

3.4.6.3.2. Cell grouping

Cells that have been merged can be further collapsed into a single row. Clicking the [+\-] icon in
the top left of a merged cell collapses the corresponding rows into a single entry. Cells in other
columns spanning the collapsed rows that have identical values are shown unchanged. Cells in
other columns spanning the collapsed rows that have different values are highlighted and the first

value displayed.

39

Chapter 3. Guvnor concepts

Template Data
Template Data

HEH Smax_age Emin_age Bor
g == 25 = 20 AA
S OK
CE | Sub prime
g o= 35 25 AA
g = |E 45 = 35 AA
S OK
gs B Sub prime

Save and close | Add row...

Figure 3.31. Cell grouping

When the value of a grouped cell is altered all cells that have been collapsed also have their
values updated.

3.4.6.4. Generated DRL

Whilst not necessary, rule authors can view the DRL that will be generated for a "Rule Template"
and associated data. This feature and its operation is no different to that for other assets. Select
the "Source" -> "View Source" menu item from the Asset Editor screen. The DRL for all rules will
be displayed.

40

Rule flows

Viewing source for: template-rulel

(\(3% Viewing source for: template-rulel

1. |rule "template-rulel 8"
dialect "mwvel"
when
Applicant{ age < 45 , age >= 35, creditRating == "Sub prime" }
Fa : LoanApplication()
then
Fa.setApproved(false)
update($a);

oo

[{m]

end

I
[

rule "template-rulel 7

dialect "mwvel"

when
Applicant(age < 45 , age == 35, creditRating == "OK")
Fa : LoanApplication()

then
Fa.setfpproved| false);
update($a);

LU

[a]

-ﬁl
I

curr

Figure 3.32. Generated DRL

3.4.7. Rule flows

Rule flows: Rule flows allow you to visually describe the steps taken - so not all rules are evaluated
at once, but there is a flow of logic. Rule flows are not covered in this chapter on the Guvnor, but
you can use the IDE to graphically draw ruleflows, and upload the . r f mfile to the Guvnor.

Similar to spreadsheets, you upload/download ruleflow files (the eclipse IDE has a graphical editor
for them). The details of Rule Flows are not discussed here.

3.4.8. Technical rules (DRL)

Technical (DRL) rules are stored as text - they can be managed in the Guvnor. A DRL can either
be a whole chunk of rules, or an individual rule. if its an individual rule, no package statement or
imports are required (in fact, you can skip the "rule" statement altogether, just use "when" and
"then" to mark the condition and action sections respectively). Normally you would use the IDE to

41

Chapter 3. Guvnor concepts

edit raw DRL files, since it has all the advanced tooling and content assistance and debugging.
However, there are times when a rule may have to deal with something fairly technical in a package
in Guvnor. In any typical package of rules, you generally have a need for some "technical rules"
- you can mix and match all the rule types together of course.

salience 100 #this can short circuit any processing

when
a : Approve()
p : Policy()
then

Figure 3.33. DRL technical rule

3.4.9. Functions

Functions are another asset type. They are NOT rules, and should only be used when necessary.
The function editor is a textual editor. Functions

-
function <returnType= funcName(<armgs here=) {

/lcode goes in here...

Figure 3.34. Function

3.4.10. Data enumerations (drop down list configurations)

Data enumerations are an optional asset type that technical folk can configure to provide drop
down lists for the guided editor. These are stored and edited just like any other asset, and apply
to the package that they belong to.

42

Data enumerations (drop down list configurations)

The contents of an enum config are a mapping of Fact.field to a list of values to be used in a
drop down. That list can either be literal, or use a utility class (which you put on the classpath) to
load a list of strings. The strings are either a value to be shown on a drop down, or a mapping
from the code value (what ends up used in the rule) and a display value (see the example below,
using the '=").

Find EnumConfig

File Edit Source Status: fDraft]

Attributes Edit

'‘Board.type' : ['Short’,'Long’,'Mini Mal','Boogie’)
‘Person.age’ : [‘20, '25', '30', '35')

Figure 3.35. Data enumeration

In the above diagram - the "MM" indicates a value that will be used in the rule, yet "Mini Mal" will
be displayed in the GUI.

Getting data lists from external data sources: It is possible to have the Guvnor call a piece of code
which will load a list of Strings. To do this, you will need a bit of code thatreturns aj ava. uti | . Li st
(of String's) to be on the classpath of the Guvnor. Instead of specifying a list of values in the
Guvnor itself - the code can return the list of Strings (you can use the "=" inside the strings if you
want to use a different display value to the rule value, as normal). For example, in the 'Person.age’
line above, you could change it to:

' Person. age' : (new com yourco. Dat aHel per()). getLi st Of Ages()

This assumes you have a class called "DataHelper" which has a method "getListOfAges()" which
returns a List of strings (and is on the classpath). You can of course mix these "dynamic"
enumerations with fixed lists. You could for example load from a database using JDBC. The data
enumerations are loaded the first time you use the guided editor in a session. If you have any
guided editor sessions open - you will need to close and then open the rule to see the change. To

43

Chapter 3. Guvnor concepts

check the enumeration is loaded - if you go to the Package configuration screen, you can "save
and validate" the package - this will check it and provide any error feedback.

3.4.11. Advanced enumeration concepts

There are a few other advanced things you can do with data enumerations.

Drop down lists that depend on field values: Lets imagine a simple fact model, we have a class
called Vehicle, which has 2 fields: "engineType" and "fuelType". We want to have a choice for the
"engineType" of "Petrol" or "Diesel". Now, obviously the choice type for fuel must be dependent on
the engine type (so for Petrol we have ULP and PULP, and for Diesel we have BIO and NORMAL).
We can express this dependency in an enumeration as:

' Vehi cl e. engi neType' : ['Petrol', 'Diesel']
" Vehi cl e. fuel Type[engi neType=Petrol]"' : ['ULP', 'PULP]
' Vehi cl e. fuel Type[engi neType=Diesel]' : ['BIO, 'NORVAL']

This shows how it is possible to make the choices dependent on other field values. Note that once
you pick the engineType, the choice list for the fuelType will be determined.

Loading enums programmatically: In some cases, people may want to load their enumeration data
entirely from external data source (such as a relational database). To do this, you can implement
a class that returns a Map. The key of the map is a string (which is the Fact.field name as shown
above), and the value is aj ava. util. Li st of Strings.

public class Sanpl eDat aSource2 {

public Map<String>, List<String> |oadData() ({
Map data = new HashMap();

List d = new ArraylList();
d. add("val uel");

d. add("val ue2");

data. put ("Fact.field", d);

return data;

And in the enumeration in the BRMS, you put:

=(new Sanpl eDat aSource2()) .| oadDat a()

44

Status management

The "="tells it to load the data by executing your code.

Mode advanced enumerations: In the above cases, the values in the lists are calculated up front.
This is fine for relatively static data, or small amounts of data. Imagine a scenario where you have
lists of countries, each country has a list of states, each state has a list of localities, each locality
has a list of streets and so on... You can see how this is a lot of data, and it can not be loaded up.
The lists should be loaded dependent on what country was selected etc...

Well the above can be addressed in the following fashion:

'Fact . fiel d[dependent Fi el d1, dependent Fi el d2] " : " (new

" @ dependent Fi el d2}")"

Similar to above, but note that we have just specified what fields are needed, and also on the
right of the ":" there are quotes around the expression. This expression will then be evaluated,
only when needed, substituting the values from the fields specified. This means you can use the
field values from the GUI to drive a database query, and drill down into data etc. When the drop
down is loaded, or the rule loaded, it will refresh the list based on the fields. 'depenentField1' and
‘dependentField2' are names of fields on the 'Fact' type - these are used to calculate the list of
values which will be shown in a drop down if values for the "field".

3.5. Status management

Each asset (and also package) in Guvnor has a status flag set. The values of the status flag are
set in the Administration section of the Guvnor. (you can add your own status hames). Similar to
Categories, Statuses do NOT effect the execution in any way, and are purely informational. Unlike
categories, assets only have one status AT A TIME.

Using statuses is completely optional. You can use it to manage the lifecycle of assets (which you
can alternatively do with categories if you like).

45

Chapter 3. Guvnor concepts

Change status

Figure 3.36. Asset status

You can change the status of an individual asset (like in the diagram above). Its change takes
effect immediately, no separate save is needed.

hlﬂhnnge status

[C'.'I{ | #] Change status

Figure 3.37. Asset status

You can change the status of a whole package - this sets the status flag on the package itself,
but it ALSO changes the statuses on ALL the assets that belong to this package in one hit (to be
the same as what you set the package to).

3.6. Package management

Configuring packages is generally something that is done once, and by someone with some
experience with rules/models. Generally speaking, very few people will need to configure
packages, and once they are setup, they can be copied over and over if needed. Package
configuration is most definitely a technical task that requires the appropriate expertise.

All assets live in "packages" in the Guvnor - a package is like a folder (it also serves as a
"namespace"). A home folder for rule assets to live in. Rules in particular need to know what the
fact model is, what the namespace is etc.

46

Package management

‘“ Browse Find Business rule assets [mortgages]

HiKnowledge Bases [refresh list] | [open selected] | [open selected to single tab] | il |_|

Create New »

Format Name Status Last modified Open
B saw Packages — .
9 =] E Bankruptcy history Draft 2011 May 28 11:13:57 Open
= Payments
O & Comments Draft 2011 May 31 21:45:34 4]
= defaultPackage - & Y pen
B merchant 8 E CreditApproval Draft 2011 May 28 11:14:02 Open
& # mortgages g & Mo bad credit checks Draft 2011 May 28 11:13:58 Open
% Business rule assets . _ »
=] =] Pricing loans Draft 2011 May 28 11:14:00 Open
Technical rule assets
- . =)) RegexDslIRule Draft 2011 May 28 11:14:02 Open
~ Functions
& DSL configurations =] & Underage Draft 2011 May 28 11:13:57 Open
o " no NINJAs
=/ Model = &y Draft 2011 May 28 11:13:59 Open
& Na ninfas !
‘R* Processes
) 4 4 180fB8 »
| Enumerations

[Test Scenarios

&l XML, Properties o
&) Other assets, documentation
) WorkingSets

2| SpringContext

ann Global Area

Figure 3.38. The package explorer

The above picture shows the package explorer. Clicking on an asset type will show a list of
matches (for packages with thousands of rules, showing the list may take several seconds - hence
the importance of using categories to help you find your way around).

So while rules (and assets in general) can appear in any number of categories, they only live in
one package. If you think of the Guvnor as a file system, then each package is a folder, and the
assets live in that folder - as one big happy list of files. When you create a deployment snapshot of
a package, you are effectively copying all the assets in that "folder" into another special "folder".

The package management feature allows you to see a list of packages, and then "expand" them, to
show lists of each "type" of asset (there are many assets, so some of them are grouped together):

The asset types:

» Business assets: this shows a list of all "business rule" types, which include decision tables,
business rules etc. etc.

« Technical assets: this is a list of items that would be considered technical (e.g. DRL rules, data
enumerations and rule flows).

¢ Functions: In the Guvnor you can also have functions defined (optionally of course).

« DSL: Domain Specific Languages can also be stored as an asset. If they exist (generally there
is only one), then they will be used in the appropriate editor GUIs.

47

Chapter 3. Guvnor concepts

* Model: A package requires at least one model - for the rules.

« WorkingSets: Working Sets let you create subsets of package's Fact Types and apply

constraints to their fields.

fHKnowledge Bases

Create New #

2 daa Packages

=+

=

B Payments

& defaultPackage

£ merchant

B mortgages
% Business rule assets
Technical rule assets
&)= Functions
 psL configurations
= Model
R Processes
gec] Enumerations
[Test Scenarios

& XML, Properties

liﬂ Other assets, documentation

&5 Workingsets
focl SpringContext

ik Global Area

Figure 3.39. Creating new assets

[refresh list] | [open 5E|EC[EE||J

& MNew Package
= MNew Spring Context
&7 New Workingset

© New Rule

E=l New Rule Template

= Upload POJO Model jar
N MNew Declarative Model
oy New BPEL package
)= New Function

T New DSL

** New RuleFlow

R New BPMN2 Process
j MNew Enumeration

v MNew Test Scenario

& Create a file.

" Rebuild all package binaries

48

AP

!

Ap

D

=)

Ay
15

Package management

From the package explorer you can create new rules, or new assets. Some assets you can only
create from the package explorer. The above picture shows the icons which launch wizards for
this purpose. If you hover the mouse over them, a tooltip will tell you what they do.

Configuration: Imported types Globals Advanced view

com.lb.gpps.drools. PaymentData ::_}' java.util.Set [payments] e'_}"
com.lb.gpps.drools.ProcessBlackList I
com.lb.gpps.drools. ResultMerchant

Category Rules: /(1)

Walidate configuration

(® Build whole package(@
() Use built-in selector@)
() Use custom selector(L)

Build binary package: Build package

Building a package wil coflact al the assats, validale and compia into a deployabla package.

Take snapshot: Create snapshot for deployment |

URL for package documentation: http://127.0.0.1 :8888/0rg. drools .guvnor. Guvnor/package/Payments/LATEST/documentation. pdf (@
URL for package source: http://127.0.0.1 :BBBB/rest/packages/Payments/source(d)
URL for package binary: http://127.0.0.1:8888/rest/packages/Payments/binary &)
URL for running tests: http://127.0.0.1 :8888/org. drools. guvnor. Guvnor/package/Payments/L ATEST/SCENARIOS(D
Change Set: http:/(127.0.0.1 :8888/org. drools. guvnor. Guvnor/package/Payments/L ATEST/ChangeSet. xml (D
Model: http://127.0.0.1:8888/0rg.drools .quvnor. Guvnor/package/Payments/L ATEST/MODEL ®)

Figure 3.40. Package configuration

One of the most critical things you need to do is configure packages. This is mostly importing
the classes used by the rules, and globals variables. Once you make a change, you need
to save it, and that package is then configured and ready to be built. For example, you may
add a model which has a class called com sonet hi ng. Hel | o, you would then add i nport
com somnet hi ng. Hel | o in your package configuration and save the change.

Build binary package: Build package

Buiiding a package wil collect all the assets, valdate and ¢ 1. \will validate and compile all the assets in a package.

Take snapshot: Create snapshot for deployment

Figure 3.41. Package building

Finally you would "build" a package. Any errors caught are then shown at this point. If the build
was successful, then you will have the option to create a snapshot for deployment. You can also
view the DRL that this package results in.

49

Chapter 3. Guvnor concepts

A Warning

In cases of large numbers of rules, all these operations can take some time.

It is optional at this stage to enter the name of a "selector” - see the admin section for details
on how to configure custom selectors for your system (if you need them - selectors allow you to
filter down what you build into a package - if you don't know what they are for, you probably don't
need to use them).

3.6.1. Importing DRL packages

It is also possible to create a package by importing an existing DRL file. When you choose to
create a new package, you can choose an option to upload a . drl file. The Guvnor will then
attempt to understand that DRL, break create a package for you. The rules in it will be stored as
individual assets (but still as DRL text content). Note that to actually build the package, you will
need to upload an appropriate model (as a JAR) to validate against, as a separate step.

3.7. Version management

Both assets and whole packages of assets are "versioned" in the Guvnor, but the mechanism is
slightly different. Individual assets are saved a bit like a version of a file in a source control system.
However, packages of assets are versioned "on demand" by taking a snapshot (typically which is
used for deployment). The next section talks about deployment management and snapshots.

Current version number: 3
Version history i
3 modified on: 5/31/11 9:45 PM (ch ch changes!)
2 modified on: 5/31/11 9:45 PM (Another change)
1 modified on: 5/31/11 9:45 PM (My change)

View \

Figure 3.42. Asset versions

Each time you make a change to an asset, it creates a new item in the version history. This is a
bit like having an unlimited undo. You can look back through the history of an individual asset like
the list above, and view it (and restore it) from that point in time.

50

Deployment management

3.8. Deployment management

Snapshots, URLS and binary packages:

URLs are central to how built packages are provided. The Guvnor provides packages via URLs
(for download and use by the Knowledge Agent). These URLs take the form of:

http: // <server >/ guvnor - webapp/ or g. dr ool s. guvnor . Guvnor/ package/
<packageNane>/ <packageVer si on>

<packageName> is the name you gave the package. <packageVersion> is either the name of a
snapshot, or "LATEST" (if its LATEST, then it will be the latest built version from the main package,
not a snapshot). You can use these in the agent, or you can paste them into your browser and
it will download them as a file.

Refer to the section on the Knowledge Agent for details on how you can use these URLs (and
binary downloads) in your application, and how rules can be updated on the fly.

” Browse Find Snapshot: TEST
HiKnowledge Bases

i Viewing snapshot: TEST
“Yaa

For package: mortgages
— Deployment URL: click here to download binary (or copy URL for deployment agent)
Create New P Snapshot created on: 2011-06-27 19:24

qﬁhPackage snapshots

© sss Package snapshots Comment
” Delete | Copy
© defaultPackage Compare to: o\NOTHER 4 Compare
2 ¥ mortgages
TEST & 8 mortgages
ANOTHER P Business rule assets

Technical rule assets

™= Functions

@ psL configurations

&/ Model

4R processes

| Enumerations

B Test Scenarios

&) XML, Properties

al Other assets, documentation
) WaorkingSets

4] SpringContext

Figure 3.43. Deployment snapshots

The above shows deployment snapshots view. On the left there is a list of packages. Clicking on
a specific package will show you a list of snapshots for that package (if any). From there you can
copy, remove or view an asset snapshot. Each snapshot is available for download or access via
a URL for deployment.

51

Chapter 3. Guvnor concepts

3.9. Navigating and finding rules

The two main ways of viewing the repository are by using user-driven Categorization (tagging) as
outlined above, and the package explorer view.

The category view provides a way to navigate your rules in a way that makes sense to your
organization.

52

Navigating and finding rules

" Browse
Create New »
= f’ Assels
“A Find
¥ Inbox
o T2 By Status
= Draft
= QK
D ia By Category
= = Home Mortgage

—J
—

=

Eligibility rules

®
[0

Fricing rules

®
il

Test scenarios

Figure 3.44. Cat gory view

= Technical

[

[I].

Commercial Mortgage

Chapter 3. Guvnor concepts

The above diagram shows categories in action. Generally under each category you should have
no more then a few dozen rules, if possible.

The alternative and more technical view is to use the package explorer. This shows the rules
(assets) closer to how they are actually stored in the database, and also separates rules into
packages (name spaces) and their type (format, as rules can be in many different formats).

“ Browse Find Business rule assets [mortgages]

EE}Knowledge Bascs [refresh list] | [open selected] | [open selected to single tab] | i} |_-J

Create New »

Format Name Status Last modified Open
B saw Packages .
0 =] =] Bankruptcy history Draft 2011 May 28 11:13:57 Open
& Payments
=) & Comments Draft 2011 May 31 21:45:34 o
& defaultPackage - & Y pen
H merchant a & CreditApproval Draft 2011 May 28 11:14:02 Open
& # mortgages =] = Mo bad credit checks Draft 2011 May 28 11:13:58 Open
% Business rule assets —
O = Pricing loans Draft 2011 May 28 11:14:00 Open
Technical rule assets
9= . =) Eh RegexDsIRule Draft 2011 May 28 11:14:02 Open
- Functions
=) B 13
& DSL configurations =] & Underage Draft 2011 May 28 11:13:57 Open
& . no NINJAs
&8 Mode! =) & Draft 2011 May 28 11:13:50 Open
No ninfas !

+F Processes

4 4 1Bof8 »
2| Enumerations

[Test Scenarios

&l XML, Properties o
&) Other assets, documentation
o WorkingSets

2| SpringContext

ani Global Area

Figure 3.45. Package view

The above shows the alternate way of exploring - using packages.

54

Chapter 4.

Chapter 4. Creating a business user
view

In most cases not all users will want to see all the functionality described here. You could have a
subset of users who you only want to let view or edit certain sets of rules, without getting confused
by all the other stuff. In this case you can use fine grained authorization (see the Admin Guide
on how to initialize this). By setting permissions on a per category basis, users that only have
category permissions will see a limited subset of functionality, and only items that are tagged with
those categories.

55

56

Chapter 5.

Chapter 5. The Fact Model

For any rule base application, a fact model is needed to drive the rules. The fact model typically
overlaps with the applications domain model, but in general it will be decoupled from it (as it makes
the rules easier to manage over time). There are no technical limitations on using your domain
model as your fact model, however this introduces tighter coupling between your business domain
(domain model) and your knowledge domain (fact model). Consequentially if your domain model
were to change you would need to, at the very least, revisit your rule definitions.

5.1. Ways to define a Fact Model

There are two ways to do define your fact model; each of which will be discussed in more detail
in the following sections.

» Upload a JAR file containing Java Classes used by both your application and rules.

» Declare a model within Guvnor; that can be exported as a KnowledgeBase and used within
your Java code.

57

Chapter 5. The Fact Model

& Mew Package

o¥ MNew Spring Context

#7 New WorkingSet

¥ MNew Rule

E= New Rule Template

& Upload POJO Model jar
= Mew Declarative Model b
% New BPEL package
&)= New Function

% New DSL

#* New RuleFlow

#* New BPMN2 Process
&3 Mew Enumeration

v Mew Test Scenario

& Create a file.

" Rebuild all package binaries

Figure 5.1. Choosing a model type

5.2. Creating a JAR Model

Creating and uploading a JAR model file is a two step process.

5.2.1. Create a JAR Model asset

Select "Upload POJO Model JAR" from the "Create New" popup menu from the "Knowledge

Bases" section of the Explorer widget. This will launch the "New Asset" configuration screen from
which the new upload can be given basic details such as name, category and a description.

58

Upload a JAR Model into the asset

New model archive (jar) 4

New model archive (jar)

@ Create new:
O Import asset from global area:
Name: myPojoModel
@® Create in Package:; mortgages ~
() Create in Global area

A JAR containing my model.

Initial description:

ok

Figure 5.2. Creating a JAR Model asset

5.2.2. Upload a JAR Model into the asset

Once the POJO Model JAR asset has been created you are presented with a screen to upload
the actual JAR containing the model defined as Java classes and packaged in a regular Java JAR
file. Many Java IDE's are able to export classes as a JAR file.

File Edit Status: [Draft]

Attributes | Edit

A myPojoModel

Upload newversiﬂn:l | Browse... | Upload
Download current version: Download

Figure 5.3. Uploading the JAR

59

Chapter 5. The Fact Model

5.3. Declarative model

Why would you chose declared types over JAR files: generally this reinforces the fact that the
model "belongs" to the KnowledgeBase, rather then the application, and allows the model to have
a lifecycle separate from the application. It also allows Java types to be enriched with Rule specific
annotations. Additionally it also removes the burden of keeping JAR files syncronised between
rules and the applications that use the rules.

Declarative models can be either:-

* A standalone definition of the entire Fact model used within your rules.
» Supplementary Fact defintions to support a Java POJO Model.

» Used to enrich a Java JAR model as uploaded in the previous section. Enriching JAR models
allows annotations used by Drools (such as a "role" of type "event" for Facts used as events in
Complex Event Processing) to be appended to classes. When enriching an existing Java JAR
model the package name in Guvnor needs to be identical to the Java package name containing
the class(es) you wish to enrich.

5.3.1. Creating a Declarative Model

Creating a Declarative Model is a two step process.

5.3.1.1. Create a Declarative Model asset

Select "New Declarative Model" from the "Create New" popup menu from the "Knowledge Bases"

section of the Explorer widget. This will launch the "New Asset" configuration screen from which
the new upload can be given basic details such as name, category and a description.

60

Creating a Declarative Model

MNew declarative model (using guided editor). 4

New declarative model (using guided editor).

® Create new:
O Import asset from global area:
Name: myDeclarativeModel
@® Create in Package:; mortgages ~
() Create in Global area

A declarative model

Initial description:

ok

Figure 5.4. Creating a Declarative Model asset

5.3.1.2. Defining the model

Once the Declarative Model asset has been created you are presented with the initial modelling
screen; that is empty to begin.

File Edit Source Status: [Drafi]
Attributes | Edit

=r Add new fact type

[<] i |

Figure 5.5. Initial modelling screen

Facts, being semantically equivalent to Java classes, can be created by selecting the "Add new
fact type" button. An existing Fact definition can be edited by clicking the "pencil” icon on the same
row as the Fact name. Furthermore existing Facts can be deleted by clicking the "[-]" icon.

61

File

Chapter 5. The Fact Model

Name i

Name Person QK |

Figure 5.6. New fact popup

Edit Source Status: [Draft]

Attributes | Edit

57 Add new fact type

—|Person &

oF Add field =7 Add annotation

[T>]

Figure 5.7. A Declarative model with one Fact defined

Fact Fields can be created by selecting the "Add field" button. The type of a field is suggested
by a list (but this list is not exhaustive). An existing Fact Field definition can be edited by clicking
the "pencil” icon on the same row as the Fact Field name. Furthermore existing Fact Fields can
be deleted by clicking the "[-]" icon.

&

Field name age
Type | java.math.BigDecimal Decimal number |

Lok

Figure 5.8. Fact Field popup

Fact annotations can be created by selecting the "Add annotation" button. Annotations are listed
under the Fact title, before the fields, by convention. Annotations are prefixed with the "@" symbol.
This not only makes them instantly recognisable but is also consistent with their definition in DRL.

The annotation "Name" and "Value" are mandatory whereas the "Key" is optional. If a "Key" is
not given a default value of "value" will be assigned. This is consistent with how annotations are
held within Drools Expert.

An existing Fact Annotation can be edited by clicking the "pencil" icon on the same row as the Fact
Annotation name. Furthermore existing Fact Annotations can be deleted by clicking the "[-]" icon.

62

Creating a Declarative Model

Name Key Value

role event
] 4 |

Figure 5.9. Fact annotation popup

File Edit Source Status: [Drafi]
Attributes | Edit

=F Add new fact type
—|Person & |

=r Add field = Add annotation

@role:value=event f =
age:Decimal number &7 &

[«] i | E|

Figure 5.10. A completed definition

5.3.1.3. Consuming a declarative model from Java

Declared types are generated at knowledge base compilation time, i.e. the application will only
have access to them at application run time. Therefore, these classes are not available for direct
reference from the application.

Declarative types can be used like normal fact objects, but the way you create them is different
(as they are not on your applications classpath). To create these objects, they are available from
the KnowledgeBase instance.

Example 5.1. Handling declared fact types through the API

/'l get a reference to a know edge base with a declared type:
Know edgeBase kbase = ...

/1 get the declared Fact Type
Fact Type personType = kbase. get Fact Type("org. drool s. exanpl es",
"Person");

/1 handl e the type as necessary:
/'l create instances:

63

Chapter 5. The Fact Model

hj ect bob = personType. newl nstance();

/] set attributes val ues
personType. set (bob,

nanme",
n Bobll) ;
per sonType. set (bob,

age",
42);

/1 insert fact into a session

St at ef ul Knowl edgeSessi on ksession = ...
ksession.insert(bob);

ksession.fireAl |l Rul es();

/] read attributes
String nane = personType.get(bob, "nane");
int age = personType. get(bob, "age");

64

Chapter 6.

Chapter 6. Working Sets

Working Sets are a mean for grouping Facts and then defining constraints on them. You can create
groups of Facts and only those Facts will be visible when authoring rules using the Guided Editor.

Right now, Working Sets must be activated manually from the Guided Editor window (using the
"Select Working Set" button placed in the toolbar). In the future, different Working Sets could be
assigned to different users to reduce the scope and complexity when authoring rules.

Find Vehicles WS

File Edit Status: [Draft]

Attributes Edit

WS Definition WS Constraints | WS Custom Forms

Available Facts WorkingSet Facts
Cat Airplane
Collection Car
Dog Train
Driver
Person Kl
Rejection <
Address -

Figure 6.1. Creating a new Working Set

The figure above shows the window used to create or modify Working Sets. In this window you
will find 2 lists. The list on the left side contains the possible Fact Types that can be added to the
Working Set. These facts are those defined/imported in the package's model. The list on the right
side contains the allowed Fact Types of this Working Set. When this Working Sets is active, only
those Fact Types could be used while authoring rules using the Guided BRL Editor

65

Chapter 6. Working Sets

File Edit Status: [Draft]

Attributes Edit

WS Definition

&l

Field:

brand
- Constraints Parameters
Constraints

Matches | » =7 matches: Ford|Honda - E

C

Figure 6.2. Defining Field Constraints inside a Working Set

Once you have selected the valid Fact Types for a Working Set, you can add Constraints to the
fields of those Facts Types. The image above shows how the Field Constraint tab looks like. In
this configuration screen you will find:

A.- Fact Types dropdown: Here you will find a list containing the Working Set's Fact Types
B.- Field dropdown: Once you have selected a Fact Type, this dropdown will contain its fields.
C.- Constraints List: This lists shows all the Constraints applied to the selected Field

D.- Action Buttons: Using these buttons you will be able to add or remove Constraints to the
selected Field. Right now, Guvnor provides a built-in collection of Constraints. The idea for next
releases is to let users to plug their custom Constraints too.

E.- Constraint's Attributes: In this section you will find all the attributes of the current Constraint
that could be parametrized by the user.

In the example above, a Matches Constraint is created for Car.brand field. This means that when
rule authors use this field in a Rule condition, they should use a value valid according to this
constraint, otherwise they will receive an error or warning.

66

Activating and Using Working Sets

6.1. Activating and Using Working Sets

Working Sets are no active by default in Guvnor. Because this is an experimental feature, you
must enable them manually in the Guided Editor panel if you want to use them. In the future,
Working Sets will be associated to each user's profile.

A new button was added in Guided Editor's Toolbar: "Select Working Sets". This button will open
a popup with the list of the package's Working Sets. Using this popup you can activate one or
more Working Sets.

When Working Sets are activated, only the Fact Types allowed by them could be used when
inserting new Patterns or Actions. The Patterns and Actions already presentin the rule that contain
prohibited Fact Types are marked as read only. Take a look at the next screen shots comparing
the Guided Editor panel with and without Working Sets

Add a condition to the rule...
Position: | gotom |4 @

Add a condition to the rule...
Position: | gottom | a @

Condition sentence template vary OK | Cancel Condition sentence template var ﬂ_{:

Address ... Add a con

Hospital ... Airplane ...
Patient ... Alert ...
.................. App ...
The following does not exist ... Car ...
The following exists ... Cat ...
Any of the following are true ... |~ Collection ... vy

| Daoctor ... =

Using working sets Without working sets

Figure 6.3. Comparison of "Add new Pattern" window using Working Set
and without using them

In the image you can see how Working Sets could help rule's authors by reducing the amount
of available Fact Types

67

WHEN

WHEN

THEN

Chapter 6. Working Sets

o WHEN

There is a Doctor [$doctor] 1. There is a Doctor [$doctor]
There is a Bed [$bed] 7. There is a Bed [$bed]
There is a Monitor [fmonitor] with: LL lonitor [fmonitor] with

namel equal to | RH57-E 3 name equal to RH57-E
There is a Bed There is a Be
From 5bed.mc-nilc-r.| Choose... ;l From $bed.monitor

4.
Without Using Woorking Sets Using Working Sets

Figure 6.4. Comparison of "Add new Pattern" window using Working Set
and without using them

Here you can see how Patterns containing prohibited Fact Types are switched to read only mode
after Working Sets are activated.

6.1.1. Using Field Constraint

Up to now we have only cover how Facts are filtered using Working Sets. Another important
feature of Working Sets is Field Constraints. We have already saw how to configure them, now
we are going to explain how to use them.

Because Field Constraints are defined inside a Working Set, we need to activate one or more
Working Set to start working with them. Once a Working Set defining Field's Constraints is active
we have two ways to use them: on demand validation and real-time validation.

On demand validation is performed when you press the "Verify" button present in Guided Editor's
toolbar. This button will fire a rule verification and will end up showing a report with the results.
Any violated constraint will be shown as an error or warning according to its relevance

Title: [R3]

— N
= Verification report
v Verification report
— a Dr
i =] @ Errors {1 items).
=
2 The walue must be between 18 and 80
Reason: LiteralRestriction from rule [R3] valwe "= 1Z
Impacted rules:
nsert Person g

=] _i\» Warnings (1 items).
[Missing range
Reason: LiteralRestriction from rule [R3] value < 25

Impacted rules:

Motes [0 items).

Figure 6.5. On demand Field Constraints validation

68

Using Field Constraint

The image above shows the report that appears when a Working Set defines a Range Constraint
on Driver.age. The age should be between 18 and 80.

Real-Time validation is an experimental feature (yes, inside another experimental feature like
Working Sets) that checks for Field's Constraints violations in real time and mark the lines where
the violations are using error or warning icons. This feature is disabled by default because
sometimes it could be expensive. If you want to try it out, you should enable it in Administration
-> Rules Verification. This configuration is not yet persisted, so you need to enable it every time
you start Guvnor.

WHEMN A Title: [R3]
[show more info...]

There is a Driver with:

1.6
mn age equal to |
2.
A age less than 25
THEN ae
Insert Person
1.
(show
options...)

Figure 6.6. Real-Time Field Constraints validation

This Image shows the result of real-time validation. There you can see the same result as on
demand validation, but you don't need to click any button, and the errors/warnings are shown in
a more fashionable way!

Warning

The problem with real-time validation is that right now only support "top level"
Patterns.

69

70

Chapter 7.

Chapter 7. The business user
perspective

You can see from this manual, that some expertise and practice is required to use Guvnor. In fact
any software system in some sense requires that people be "technical" even if it has a nice looking
GUI. Having said that, in the right hands Guvnor can be setup to provide a suitable environment
for non technical users.

The most appropriate rule formats for this use are using the Guided editor, Decision tables and
DSL rules. You can use some DSL expressions also in the guided editor (so it provides "forms"
for people to enter values).

You can use categories to isolate rules and assets from non technical users. Only assets which
have a category assigned will appear in the "categories" view.

The initial setup of Guvnor will need to be done by a developer/technical person who will set the
foundations for all the rules. They may also create "templates" which are rules which may be
copied (they would typically live in a "dummy" package, and have a category of "template" - this
can also help ease the way).

Deployment should also not be done by non technical users (as mentioned previously this happens
from the "Package" feature).

71

72

Chapter 8.

Chapter 8. Advanced config
options in arule package

As drools supports various configuration options for a package (such as adding functions for
"accumulate" etc), this can be done by adding a X. package or X. conf file to the package - files
which contain name/value pairs in the "properties” style. These will then be automatically added
to the package configuration. See the main drools documentation for all the things you can do.

73

74

Chapter 9.

Chapter 9. Deployment: Integrating
rules with your applications

Its all very interesting to manage rules, but how to you use or "consume" them in your application?
This section covers the usage of the KnowledgeAgent deployment component that automates
most of this for you.

9.1. The Knowledge Agent

The knowledge agent is a component which is embedded in knowledge-api. To use this, you don't
need any extra components. In fact, if you are using Guvnor, your application should only need to
include the knowledge-api and drools-core dependencies in its classpath (drools and mvel JARs
only), and no other rules specific dependencies.

Note that there is also a drools-ant ant task, so you can build rules as part of an Ant script (for
example in cases where the rules are edited in the IDE) without using Guvnor at all - the drools-
ant task will generate .pkg files the same as Guvnor.

Once you have "built" your rules in a package in Guvnor (or from the ant task), you are ready to
use the agent in your target application.

The Following example constructs an agent that will build a new KnowledgeBase from the files
specified in the path String. It will poll those files every 60 seconds, which is the default, to see if
they are updated. If new files are found it will construct a new KnowledgeBase. If the change set
specifies a resource that is a directory it's contents will be scanned for changes too.

Knowl edgeAgent kagent = Know edgeAgent Fact ory. newkKnow edgeAgent ("M/Agent");
kagent . appl yChangeSet (Resour ceFactory. newlr | Resource(url));
Knowl edgeBase kbase = kagent. get Know edgeBase();

The KnowledgeAgent can accept a configuration that allows for some of the defaults to be
changed. An example property is drool s. agent . scanDi rect ori es, by default any specified
directories are scanned for new additions, it is possible to disable this.

Know edgeBase kbase = Know edgeBaseFact ory. newknow edgeBase() ;
Knowl edgeAgent Confi gurati on kaconf = Know edgeAgent Fact ory. newKnow edgeAgent Confi gurati on();

// we do not want to scan directories, just files
kaconf . set Property("drool s.agent.scanDirectories", "false");

/1 the nanme of the agent
Knowl edgeAgent kagent = Know edgeAgent Fact ory. newKnow edgeAgent ("test
agent", kaconf);

75

Chapter 9. Deployment: Integr...

/'l resource to the change-set xm for the resources to add

kagent . appl yChangeSet (Resour ceFact ory. newlr | Resource(url));

An example of the change- set . xmi file.

<change-set xm ns="http://drools. org/drool s-5. 0/ change- set
xm ns: xs="http://ww.w3. org/ 2001/ XM_Schema- i nst ance

xs: schemalLocati on=" http://drool s.org/drool s-5. 0/ change-set drool s-change-
set-5.0.xsd" >

<add>

<resource source="http://I|ocal host: 9000/ TEST. pkg' type='PKG />

</ add>

</ change- set >

Resource scanning is not on by default, it's a service and must be started, the same is for
notification. This can be done via the ResourceFactory.

Resour ceFact ory. get Resour ceChangeNot i fi er Service().start();
Resour ceFact ory. get Resour ceChangeScanner Servi ce().start();

Following shows the deployment screen of Guvnor, which provides URLs and downloads of

packages.
% Assets * Viewing snapshot: TEST
For package: mortgages
Packa -
f Packages Deployment URL: click here to download binary {or copy URL for Rule Agent)
_:“;. QA ol — Snapshot created on: Dec 19, 2008 8:40:25 PM
Comment:
béh Package snapshots - Delete Copy

Deploy... =
= t]j mortgages

*/ Business rule assets

H ¥ Payments &f Technical rule assets
o7 defaultPackage

=l snu Package snapshots

(=

{x)=Functions

& merchant 5¢ DSL configurations
= %Y mortgages % Model

=] TEST 1{1‘. Rule Flows

=] ANOTHER #20| Enumerations

i test] | Test Scenarios
EXML. Properties
ﬂ Other assets, documentation

Figure 9.1. Snapshot deployment

You can see the "Package URI" - this is the URL that you would copy and paste into the change-
set. xml file to specify that you want this package. It specifies an exact version (in this case to a

76

The Knowledge Agent

snapshot) - each snapshot has its own URL. If you want the "latest" - then replace "NewSnapshot"
with "LATEST".

You can also download a .pkg file from here, which you can drop in a directory and use the "file"
or "dir" feature of the KnowledgeAgent if needed (in some cases people will not want to have
the runtime automatically contact Guvnor for updates - but that is generally the easiest way for
many people).

77

78

Chapter 10.

Chapter 10. WebDAV and HTTP

The repository back end can also be accessed via webdav. WebDAV is a http based file system
API - which has clients on all platforms (some operating systems such as windows can connect

directly to WebDAYV repositories almost like a file system.

10.1. WebDAV

Folders = Mame
Z} Deskiop _I carm.billasurf . finance
+) My Docurents _\Icum.billasurf.hrman
= ¢ My Computer _\Iu:u:um.billasurf.manufacturing
+ 4 31 Floppy (A1) _I com.billasurF. manufacturing, plant
+ e Local Disk (Ci) _\Icnm.billasurf.sales
4 % DWD-RA Drive (D:) |l defaultPackage
+ _ﬂ Shared Folders on ' host' (2:)
+ [j-' Conkrol Panel
+) shared Documents
1 [) Administrator's Documents

29 weh Folders

Internet Address

hkbpe 172,16, 190, 2:8885 0rg.
htkpsfi172,16,190, 2:83888/org.«
http: /172, 16,190, 2:8888 org..
hkbpe 172,16, 190, 2:8885 0rg.
htkpsfi172,16,190,2:83588/org.«
http: /172, 16,190, 2:8888 org..

= Il Guvnor
=[] packages
[_] com. billasurf finance
_1 com.billasurf . hrman
C com, billasurf, manufackuring
| com, billasurf, manuf ackuring. plant
1 com.billasurf sales
C defaultPackage

O

Figure 10.1. Windows webdav

In windows the "web folders" feature can be used. On OSX - the free Cyberduck client can work
well. To access the repository as webdav, you the url is the same as the web interface, only with /
webdav at the end, instead of Guvnor. ht m . Authentication will be required to get access this
way. This will show a packages and snapshots directory - the snapshots directory is read only (a
view of created snapshots of packages). The packages directory will contain a list of packages in
the repository, drilling in to them will show the individual assets as files.

10.2. URLs

There are a few other URLs which are handy to know exist. The package deployment URL
mentioned in the section about knowledge agent deployment also has a few other features:
By appending . drl to the end of a URL, you will show the generated DRL for that package.
e.g.: / package/ t est PDSGet Package/ LATEST. dr| - will show the DRL (not the binary package)
for the latest package. Further to this, you can append / asset Narme. drl - and it will show the
generated DRL for that item. (even if it isn't a DRL file). E.g. / package/ t est PDSGet Package/
LATEST/ SoneFi | e. drl .

79

80

Chapter 11.

Chapter 11. Inbox and comments

Built into the Guvnor are two useful features to helping manage changes: an Inbox, and a
comments section. These features do not affect any execution or access to rules, but are purely
for documentation and notification purposes, and are of course always optional to use.

11.1. Comments

Below the documentation box of each artifact, is a "comments" section - simply, you can add a
new comment. Administrators can clear all comments on a given artifact, but other users can only
append comments. Each comment records what user made the comment, and when. Users who
can't edit artifacts can still comment on them.

11.2. Inbox

In the "browse" section of the application, there is an "Inbox" tree item, below this are 3 inboxes.
"Incoming changes" contains changes to any artifacts that the current logged in user has edited in
the past, or commented on. Simply editing or commenting on an artifact registers interest in it to
be notified of changes the next time you log in."Recently opened” contains items that have been
recently opened (simply opening an artifact will make it appear here, the last 100 recently opened
items will appear here). "Recently edited” contains the last 100 recently edited items (artifacts that
the current user has made changes to).

81

82

Chapter 12.

Chapter 12. Eclipse Guvnor
Integration

The Eclipse Guvnor tools (EGT) provide the ability to push/pull artifacts from the Guvnor repository
server and the developers workspace in eclipse. It is therefore possible for artifacts to be
both managed via Guvnor as well as in traditional developer friendly SCM systems (such as
subversion). The Guvnor repository is not intended as a Source Code Management (SCM)
solution, and the EGT are not intended to be Eclipse “team provider” extensions or replacements.
Rather, the Guvnor repository is a location where certain artifacts (such as rules and SOA policy
definitions) are controlled (“governed”) by policies defined by the deployment environment. The
purpose of the EGT is then to enable access to resources held by the Guvnor repository, so they
can be used in development. Thus, limited capabilities for reading, writing, adding, and removing
Guvnor repository resources are provided in the EGT.

12.1. Source Code and Plug-in Details

The source code for the EGT is available at: http://github.com/droolsjbpm/droolsjbpm-tools/tree/
master/drools-eclipse. EGT consist of two plug-ins: org.guvnor.tools and org.eclipse.webdav.
They require Eclipse 3.3.x. The current Eclipse Drools plug-ins are also useful for viewing Guvnor
repository resources such as rule definitions, but not required for operation of the EGT.

12.2. Functionality Overview

Views and Perspective: The EGT contains two views — Repository Explorer and Version History
— that will be the center of most interaction with Guvnor. Eclipse standard views such as
Properties and the Resource Navigator are also useful. While each of these views can be opened
and positioned independently within an Eclipse workbench, the Guvnor perspective provides
a convenient method of getting a suggested layout. In the Eclipse workbench menu, choose
Window, Open Perspective, Other to get the perspective list and then choose "Guvnor Repository
Exploring."

83

http://github.com/droolsjbpm/droolsjbpm-tools/tree/master/drools-eclipse
http://github.com/droolsjbpm/droolsjbpm-tools/tree/master/drools-eclipse

Chapter 12. Eclipse Guvnor in...

=1 CV'S Repository Exploring
%+ Debug
%) Drools

I Guvnor Repository Explonng

&' Java (default)

¢ Java Browsing

[+! Java Type Hierarchy
= Plug-in Development

1 Resource
£9 Team Synchronizing

OK

Cancel

Figure 12.1. Views and perspectives

This opens the Guvnor perspective.

84

Guvnor Connection Wizard

Tin Edr Wieigate Search Droject [n o Eep
- Qe | 4 L

T1 | i Geenar Ragcsinny Frploing

0 Carean Repusicnies O .-x —=n S Maegale 2 =T
b 1 him Vozal 0 L L T el e B B R T LT (o P g
b 7 him ¥z b RIS O o s UaTonie] dr s gL i ST s T Tk 5 o g nalhemmEe
b o b S hostcal [
bl Mgt ——
wormonl sty T oot e B 200 0 LTI
= i host
- i QIR
IR B TR |
[st Raslresd el
[cversiznn! oy Tessl sl
& toma
praget
AR TRSE.157
o sk 3, F00E-07-IRTIR A7 R4
e TR TR AANTAATIR 15 3
W vepmon | besluryTes L] 6, 2000-07-L7TLE
Fropemes H 1| 5 7 T B0 o Sesowres Helery =
Fraporiy walir Repilory.
= Sy
il Lo Rewmion Dabe Authar Comman
R (1113
et maciisd July 1i, 2000 420007 FK
naed tise
nraion fiomednnnttersomime- ok conlurationtesie
Wi wrrkionHi oy Tral mar

Figure 12.2. Views and perspectives

On the left side is the Guvnor Repository Explorer and the Eclipse Properties views, the Guvnor
Resource History view is on the bottom, and the Eclipse Resource Navigator is on the right side.
The purpose of the Guvnor Repository Explorer is to enable access to Guvnor repository resources
in a standard tree format, and the Guvnor Resource History view shows revisions of specific
resources available in the repository.

12.3. Guvnor Connection Wizard

After opening the Guvnor perspective, the first task is to make a connection to a Guvnor repository.
This is handled by the Guvnor Connection wizard. This wizard appears in a number of places
within the EGT (as detailed below), but in this section we will cover only the two most basic entry
points. The Guvnor Connection wizard can be started using the Eclipse menu: File , New , Other ,
Guvnor , Guvnor repository location, or in the Guvnor Explorer using the drop-down menu:

85

Chapter 12. Eclipse Guvnor in...

Figure 12.3. Connection wizard

or the menu button:

86

Guvnor Connection Wizard

H - "E"=D

riwebdd adqg a Guvnor respository location
wiwebdavipackages |'

Figure 12.4. Connection wizard

Choosing either of these will start the Guvnor connection wizard:

New Guvnor location J-
Create a new Guvnor repository connection | Guv |
Location: llocalhost

Port: 8080

Repository /drools-guvnor/org.drools. guvnor, Guvnoriwebday

User Name:

Password:

Save user name and password

=3

Finish Cancel

Figure 12.5. Connection wizard

Default values appear in the Location, Port, and Repository fields. (See Section 12.8, “Guvnor
plugin Preferences” for details about how to change these default values.) Of course, any of these

87

Chapter 12. Eclipse Guvnor in...

fields can be edited by typing in the corresponding text box. Drag-and-drop or paste into the
Location field of a typical Guvnor repository URL such as: http://localhost:8080/guvnor-webapp/
org.drools.guvnor.Guvnor/webdav results in the URL being parsed into the respective fields as
well. The authentication information (user name and password) can optionally be stored in the
Eclipse workbench's key-ring file based on the selection of "Save user name and password." If the
authentication information is not stored in the key-ring, then the EGT uses session authentication,
which means that the credentials supplied are used only for the lifetime of the Eclipse workbench
instance.

If authentication information is not stored in the key-ring or the authentication information (key-ring
or session) is not valid, the EGT will prompt for authentication information when it has to access
the Guvnor repository:

Guvnor Repository Log in

Authentication required for repositary: http:Mocalhost/cal { Guv

User Name: ||

Passwaord:

Save user name and password

? DK Cancel

Figure 12.6. Login

If authentication fails, the EGT will retry once and then issue an authentication failure error. (If
an authentication failure error occurs, you can retry the same operation and supply different
authentication information.) Note that the EGT calls the Guvnor repository at various times, such
as when determining if resource updates are available, so, if you use session authentication,
the authentication dialog will appear at different times during the Eclipse workbench session,
depending on what actions you take. For ease of use, we recommend saving the authentication
information in the Eclipse key-ring. (The Eclipse key-ring file is distinct from key-ring files found
in some platforms such as Mac OS X and many forms of Linux. Thus, sometimes if you access
a Guvnor repository outside the EGT, the key-ring files might become unsynchronized and you
will be unexpectedly prompted for authentication in Eclipse. This is nuisance, but your usual
credentials should apply in this case.)

Once the Guvnor connection wizard is complete, the new Guvnor repository connection will appear
in the Guvnor Repository Explorer. You can then expand the tree to view Guvnor repository
contents.

88

http://localhost:8080/guvnor-webapp/org.drools.guvnor.Guvnor/webdav
http://localhost:8080/guvnor-webapp/org.drools.guvnor.Guvnor/webdav

Guvnor Repository Explorer

12.4. Guvnor Repository Explorer

| Guvnor Repositonies = x -
= o http Mocalhost 8080/ drools -guvnorforg. drools. guvnor. Guvnoriwebday
= = packages/
» = anotherPackage/
= o gdefaultPackage!
addFromWebDav.txt
* derby.log
= drools.package
= guvnor-hsting. xml
= listing. htmi
newFleAdded.txt
simpleRule _dri
test.xmi
*versionHistory Test.txt
¢ = snapshots/
b o http:Mocalhost:8080/drools-guvnor/org. drools. guvnor. Guvnoriwebdavipackages
s http Mocalhost/cal
b o http:Mocalhost/cal/

Figure 12.7. Explorer

The Guvnor Repository Explorer view contains tree structures for Guvnor repository contents. As
described above, there are menu and tool-bar actions for creating Guvnor repository connections.
The red “X” in the tool-bar and “Delete” in the menu removes a Guvnor repository connection, and
the “Refresh” menu item reloads tree content for the selected node. Finally, there are a number of
tool-bar/menu items in support of “drill-into” functionality: one the tool-bar these are represented
by the house (“return to top level/home”) and the arrows (go into/back). Drill-down is useful when
working with deeply nested tree structures and when you wish to concentrate on only branch of the
tree. For example, drilling into the “defaultPackage” node shown above changes the tree view to:

89

Chapter 12. Eclipse Guvnor in...

= addFromWebDav. txt
= derby.log

= drools.package

= guvnor-lsting. xmi

= listing.html

* newHleAdded. Ixt

T simpleHule. drl

= test.xmi

= yersionHistory Test. txt

Figure 12.8. Explorer

90

Guvnor Repository Explorer

That is, we see only the contents of “defaultPackage” in the tree. Clicking on the house button, or
selecting “Go Home” returns the tree to the top-level structure shown in the previous picture above.

There are a number of operations that can be performed on Guvnor repository files. Selecting a file
in the Guvnor repository causes the Eclipse Properties view to update with details about that file:

Property Value

Created 2008-07-15T15:28:002

Last Modified 2008-07-17T15:41:51

Location | Ipackages/default PackageiversionHistoryTest. txt
Name versionHistoryTest.txt

Hevision 6

Type file

Figure 12.9. Properties

Double-clicking on a folder (directory) in the tree will cause that folder to expand if collapsed and
collapse if expanded. Double-clicking on a file in the tree will cause a read-only editor in Eclipse
to open, showing the contents of that file:

. R =9
H line at the front...

A test for version history.
Another line added.

More lines!

And more lines!

Overwrite line.

A change

Figure 12.10. Comments

Dragging a file from the Guvnor repository tree to a folder in an Eclipse local project (for example in
the Eclipse Resource Navigator view) will cause a copy of that file to be made in the local Eclipse
workspace. (Note: You can also “Save As...” when a file is open in a read-only editor to save a
local writable copy of the contents. Doing so, however, will not associate the file created with its

91

Chapter 12. Eclipse Guvnor in...

Guvnor source.) Finally, you can view the revision history of a file selected in the tree using the
“Show History” context menu item. (The details of resource history will be discussed below.)

12.5. Local Copies of Guvnor Files

As mentioned in the Introduction, the main purpose of the EGT is to allow development using
resources held in a Guvnor repository. There are two method of getting local copies of Guvnor
repository resources:

1. Drag-and-drop from the Guvnor Repository Explorer, as described above.
2. Using the “import from Guvnor” wizard, as described below.

When local copies of Guvnor repository files are created, the EGT sets an association between the
local copy and the master file in the repository. (This information is kept in the (normally) hidden
. guvnori nf o folder in the local project and, like all metadata, should not be changed by end
users.) This association allows for operations such as update and commit in synchronization with
the master copy held in the Guvnor repository. The EGT decorates local resources associated
with Guvnor repository master copies. This decoration appears in Eclipse views conforming to
the Eclipse Common Navigator framework, such as the Eclipse Resource Navigator and the Java
Package Explorer. The image below shows decoration in the Eclipse Resource Navigator:

- N = s

= = anotherproject
[versionHistoryTest.txt 6, 2008-07-17T15:41°51

= [emp
= delete Test.txt
‘7 simpleRule.drl 3, 2008-07-15T15:37:34

14 testRefresh.txt 1, 2008-07-16T15:15:21
L versionHistoryTest.txt 6, 2008-07-17/T15:41 51

Figure 12.11. Navigator

92

Actions for Local Guvnor Resources

Note the Guvnor icon decorator on the top right of the file images, and the Guvnor revision details
appended to the file names. (The presence/location of these can be changed. See Section 12.8,
“Guvnor plugin Preferences” for details.) Here we see that, for example, si npl eRul e. dr | is
associated with a Guvnor repository resource and the local copy is based on revision 3, with a
7-15-2008, 15:37:34 date/time stamp. The file del et eTest . t xt , however, is not associated with
a Guvnor repository file. Further details about the association can be found in the standard Eclipse
properties page, via the context menu “Properties” selection:

type filter text Guvnor =

Resource Repository: http:/Mocalhost:8080/drools-guvnoriorg.drools. guvnor. Guvnoriwebdavipackages

Path: fanotherPackage/simple Rule.drl

Run/Debug Settings Version: 2008-07-15T15:37:34
Rewsion: 3

Restore Defaults Apply

s (] Cancel

Figure 12.12. Properties

The EGT contributes a property page to the standard Eclipse properties dialog, the contents of
which are shown above. The specific Guvnor repository, the location within the repository, the
version (date/time stamp) and revision number are displayed.

12.6. Actions for Local Guvnor Resources

The EGT provides a number of actions (available through the “Guvnor” context menu on files)
for working with files, both those associated with Guvnor repository master copies and those
not associated. The actions are: 1. Update 2.Add 3.Commit 4. Show History 5. Conpare
with Version 6.Switch to Version 7.Delete 8.Disconnect Each of these actions will
be described below.

Update Action:

93

Chapter 12. Eclipse Guvnor in...

The Update action is available for one or more Guvnor resources that are not in synchronization
with the Guvnor repository master copies. These resources would not be in synchronization
because either/both (1) there are local changes to these resources or (2) the master copies have
changed in the Guvnor repository. Performing the Update action replaces the local file contents
with the current contents from the Guvnor repository master copies (equivalent to “Switch to
version” for latest version).

Add Action

The Add action is available for one or more local files that are not associated with a Guvnor
repository master copy. Choosing the Add action launches the “Add to Guvnor” wizard:

Select Guvnor repository location

Select an existing Guvnor repository location or k:reate A new one | Guv |

Create a new Guvnor repository location
* Use an existing Guvnor repository location

http:/Mocalhost:8080/drools-guvnorforg.drools. guvnor. Guvnorfwebdav

http:/Mocalhost/cal/
http:Mocalhost/cal
http Mocalhost: 8080/drools -guvnorforg. drools, guwnor. Guvnoriwebdavipackages

[=a3|

MNext = Cancel

Figure 12.13. Add action

The first page of the wizard asks for the selection of the target Guvnor repository and gives the
choice to create a new Guvnor repository connection (in which case the second page is the same
as the Guvnor Connection wizard described above). Once the target Guvnor repository is chosen,
the wizard then asks for the folder location to add the selection files:

94

Actions for Local Guvnor Resources

Select folder
Select the target folder in the Guvnor repository | G|

Select folder:
= o http:Mocalhost: 8080/drools-guvnoriorg. drools. guvnor. Guvnoriwebdav
= =« packages/
[+« default Package/
= testRefresh. txt
= listing.html
= oneFle ToAdd. txt

w A A BT #sce

(i 1]

< Back Finish Cancel

Figure 12.14. Add action

Here | have selected the folder “anotherPackage” as the destination locationl. Clicking on “Finish”
adds the selected files to the Guvnor repository and creates an association between the local
and Guvnor repository files. (Not that the wizard will not allow for overwrite of existing Guvnor
repository files — another target location must be chosen.)

Compare with Version Action:

The Compare with Version action is enabled for one Guvnor repository associated file. This action
first opens a wizard asking for the version for comparison (with the local file contents):

95

Chapter 12. Eclipse Guvnor in...

Resource Versions

Choose a version for versionHistoryTest.txt

Revision Date Author Comment
2008-07-177T15:41:51 john
2008-07-17T09:37:11 john

]
b
| 2008-07-16T14:41:16
3
2
1

2008-07-16T13:35:33 john
2008-07-15T15:40:32 john
2008-07-15T10:28:00 john

Figure 12.15. Compare

Once the revision is selected, the action opens the Eclipse compare editor (read-only):

& Compare &

<from webdawv>

Guw

Cancel

Text Compare

A line at the front...

A test for version history.
Another line added.

More lines!

A line at the front...

A test for version history.
Another line added.

More lines!

And more lines!
Overwrite line.
A change

Figure 12.16. Compare

This editor uses Eclipse-standard comparison techniques to show the differences in the two
versions. In cases where there are no differences, the editor will not open: rather, a dialog saying

that there are no differences will appear.

Switch to Version Action:

The Switch to Version action is enabled for one Guvnor repository associated file. First the Switch

to Version action prompts for selection of version:

96

Actions for Local Guvnor Resources

Resource Versions

Choose a version for versionHistoryTest.txt L
Revision Date Author Comment

G 2008-07-17T15:41:51 john

5 2008-07-17T09:37:11 john

| 2008-07-16T14:41:16 john

3 2008-07-16T13:35:33 john
2 2008-07-15T15:40:32 john
1 2008-07-15T10:28:00 john <from webdav=
D oK Cancel
Figure 12.17. Versions
Once the version is selected, the Switch to Version action replaces the local file contents with
those from the revision selected.
Delete Action:
The Delete action is enabled for one or more Guvnor repository associated files. After confirmation
via a dialog, the Delete action removes the files in the Guvnor repository and deletes local
metadata for the Guvnor repository association.
Disconnect Action:
The Disconnect action is enabled for one or more Guvnor repository associated files, and removes
local metadata for the Guvnor repository association.
Guvnor Resource History View:
The Guvnor Resource History view should details about revision history for selected files, both
local and those in Guvnor repositories. The initial state of this view is:
[Guvnor Resource History i =3
Repository:
Resource:
Rewision Date Author Comment

Figure 12.18. History

97

Chapter 12. Eclipse Guvnor in...

The Guvnor Resource History view is populated by “Show History” actions in either the local
“Guvnor” context menu or in the context menu for a Guvnor repository file in the Guvnor Repository
Explorer. Once this action is performed, the Guvnor Resource History view updates to show the
revision history:

| Guynor Resource History B
Repository: http-focalhost:B080/drools -guvmoriorg. drools . guvnor. Guwnorfiwebdavipackages
Resource: fanatherPackage/simple Rule, drl

Revision Date Author Comment

3 2008-07-15T15:37:34 john <from webday >
z 2008-07-15T15:32:03 ' john

1 2008-07-15T10:28:35 john <from webdav>

Figure 12.19. History

Here we see that the file “simpleRule.drl” has three revisions. Double clicking on a revision row (or
context menu “Open (Read only)”) opens an Eclipse read-only editor with the revision contents.
(Note: You can also “Save As...” when a file is open in a read-only editor to save a local writable
copy of the contents. Doing so, however, will not associate the file created with its Guvnor source.)

12.7. Importing Guvnor Repository Resources

In addition to the single file drag-and-drop from the Guvnor Repository Explorer view, the EGT also
includes a wizard for copying one or more files from a Guvnor repository to the local workspace
(and setting the association with the Guvnor repository). This wizard is available from the Eclipse
Import , Guvnor, Resource from Guvnor and the Eclipse File, New, Other, Guvnor, Resource from
Guvnor menu items. (Note: the wizard is identical but appears in both locations to accommodate
users who tend to view this functionality as being in either category.) The first page of the wizard
asks for the selection of the source Guvnor repository and gives the choice to create a new Guvnor
repository connection (in which case the second page is the same as the Guvnor Connection
wizard described above).

98

Importing Guvnor Repository Resources

Select Guvnor repository location |

Select an existing Guvnor repository location or create a new one o

~ Create a new Guvnor repository location
* Use an existing Guvnor repository location

hitp-Mocalhost: 8080/drools-guvnorforg.drools. guvnor. Guvnoriwehday
http-Mocalhost/cal/

http-Mocalhost/cal
http-Mocalhost:B080/drools-guvnor/org. drools. guwnor. Guvwnoriwebdavipackages

) - MNext = Cancel

Figure 12.20. Import

Once the source Guvnor repository is chosen, the wizard prompts for resource selection:

99

Chapter 12. Eclipse Guvnor in...

Select resources g
Select resources to copy from the Guvnor repository L| Guv |

Select resources:
= o http Mocahost: B080/drools-guvnoriorg. drools, guvnor. Guvnoriwebday
= - packages/
I = defaultPackage/
= = anotherPackage/

2 testRefresh.txt

= oneHle ToAdd. txt

README. txt =

= simple Rule.drl
= newHleAdded. txt __l

< Back MNext = ' Cancel

I;'E'!I

Figure 12.21. Import

Finally, the target location in the local workspace is chosen:

100

Importing Guvnor Repository Resources

Select copy location |

Select the destination location

Select location:

- & anotherproject
B = test

=< Back Finish Cancel

Figure 12.22. Import

On completion the wizard copies the selected files from the Guvnor repository to the local
workspace. If a file with the same name already exists in the destination, the wizard uses the

Eclipse standard “prompt for rename” dialog:

101

Chapter 12. Eclipse Guvnor in...

Enter a new name for versionHistory T est. txt

|Eﬂpyﬂmer5iunHismryTEﬁt.txﬂ

] Cancel

Figure 12.23. Copy

12.8. Guvnor plugin Preferences

The EGT provides a preference page in the “Guvnor” category:

type filter text Guvnor =14

b General Repository Connections
I Ant

Drools Preferences

<1 Save passwords in platform key-ring

Guvnor URL template: http:Mocalhost: 8080/drools-guvnor/org. drools. guvnor. Guvnoriwebday

- Help File Decoration
b InstalliUpdate leon decoration location: | Top right “
I Java
I Plug-in Development Text
b Run/Debug " Include change mdication (=)
< Include revision
B Team

< Include date/time stamp

Restore Defaults Apply

[

Ok Cancel

Figure 12.24. Preferences

The preferences cover two categories: Guvnor repository connections and local Guvnor repository
resource decorations.

102

Guvnor plugin Preferences

Guvnor Repository Connection Preferences

There are two preferences that can be set for Guvnor repository connections, and these are used
when creating new connections. The first is a default Guvnor repository URL template, which can
make it easier to create multiple similar connections by simply changing part of the field, such as
the host name. The second is whether saving of authentication information in the Eclipse platform
key-ring should be enabled by default. As with the Guvnor repository URL template, actually
whether to save a specific instance of authentication information in the Eclipse platform key-ring
can be determined when actually creating the connection. That is, both of these preferences are
simply convenience values set to reasonable defaults.

Local Guvnor Repository Resource Decoration Preferences

The second category of preferences provided by the EGT deals with how decoration of local
resources associated with Guvnor repository resources is presented. Since the Guvnor repository
is not a substitute for a SCM, and since SCM tools in Eclipse tend to decorate local resources, it is
useful to be able to control just how the EGT decorate its local resources to avoid messy conflicts
with SCM packages. In the “File Decoration” section of the preference page, you can choose the
location (top right, bottom right, top left, bottom left) of the decoration icon, or you can choose
not to display it. In the “Text” section, you can format the Guvnor metadata that is appended to
the file names: Whether to show an indicator (>) when the local file has changes not committed
back to the Guvnor repository. Whether to show the revision number. Whether to show the date/
time stamp. Any changes to these preferences take effect immediately upon clicking the “Apply”
or “Ok” buttons.

103

104

Part Il. Administration Guide

This part covers installation and administration issues of Drools Guvnor.

Drools Guvnor is a web application that can run in multiple environments, and be configured to
suit most situations. There is also some initial setup of data, and export/import functions covered.

Chapter 13.

Chapter 13. Installation

The Guvnor application is packaged as a . war file, which can be deployed to any application
server (such as JBoss AS, ...) or servlet container (such as Tomcat, ...) out-of-the-box.

13.1. Installation step by step

Installation is simple: download, deploy, start and surf.

1. If you don't have an application server or servlet container, download and install one. For
example, download JBoss AS [http://www.jboss.org/jbossas/].

2. Download the Guvnor distribution from the download site. In the download zip, there's 1 war
file per app server version, for example guvnor-5. 2. 1. Fi nal - j boss- as-5. 1. war for JBoss
AS 5.1. Use the war file best suited for your app server. Essentially there's little difference
between those war files: mostly it's a matter of excluded jars which are already available on
the app server.

If no war specifically for your app server exists yet, take the latest Tomcat war. It might require
minor configuration tweaks. Consult our wiki for specific tips. The community has been able
to make it run on various platforms. Patches (pull requests) to expand our war assemblies for
another app server or version are welcome.

3. Optionally rename that war file to guvnor . war to have a nicer URL. For the rest of the manual
we'll presume you've done this.

4. Optionally customize the configuration. First explode (unzip) the war file, and change any
configuration and then unexplode (zip) it again.

5. Deploy the war file by copying it into the deployment directory of the app server. For JBoss AS
5 and 6, that directory is ser ver/ def aul t / depl oy. Alternatively you can first explode (unzip)
the war file and copy that exploded directory. Note: in JBoss AS, the exploded directory name
must end with the suffix . war .

6. Start the app server. For JBoss AS 5 and 6, run $JBOSS_AS_HOVE/ bi n/ run. sh (or run. bat).

7. Surf to the Guvnor webapp. This will probably be at | ocal host on port 8080, for example
at http//localhost:8080/guvnor/ or (if you haven't rename the war file) at something like http//
localhost:8080/guvnor-5.2.1.Final-jboss-as-5.1/.

13.2. Supported and recommended platforms

Guvnor runs in any application server or servlet container that supports Java SE 5 (JEE 5 is not
required), this includes JBoss AS, Tomcat, Jetty and many more.

107

http://www.jboss.org/jbossas/
http://www.jboss.org/jbossas/
the download site
http//localhost:8080/guvnor/
http//localhost:8080/guvnor-5.2.1.Final-jboss-as-5.1/
http//localhost:8080/guvnor-5.2.1.Final-jboss-as-5.1/

Chapter 13. Installation

JBoss AS is the recommended application server, because it is actively tested/developed on it.
If you're looking for mission critical, enterprise support, take a look BRMS subscription [http://
www.jboss.com/products/platforms/brms/].

108

http://www.jboss.com/products/platforms/brms/
http://www.jboss.com/products/platforms/brms/
http://www.jboss.com/products/platforms/brms/

Chapter 14.

Chapter 14. Database configuration

Guvnor uses the JCR standard for storing assets such as rules. The default implementation is
Apache Jackrabbit, http://jackrabbit.apache.org. This includes an out of the box storage engine/
database, which you can use as is, or configure to use an existing RDBMS if needed.

14.1. Changing the location of the data store

Assuming you are using on of the JBoss platforms, running Guvnor for the first time will create a
database in the bi n/ directory of the application server. There you will find the default Jackrabbit
configuration file, namely repository. xnl, and a repository directory which contains your
repository data. Both of these are created automatically for you.

The location of the data store should be a secure location, that is backed up. The default location
may not be suitable for this, so the easiest way is to set a more suitable location. If you want
to change this, please make sure you have stopped Guvnor (i.e. stopped the app server or un-
deployed the application).

To change the location, unzip the Guvnor WAR file, and locate the conponents. xn file in the
VEB- | NF directory. This is a JBoss Seam configuration file (Seam 2 is the framework used) which
allows various parts of the system to be customized. When you have located the conponent s. xni
file, you should see something like the following:

<conmponent nanme="repositoryConfiguration">
<!-- JackRabbit -->
<property nane="properties">
<key>or g. drool s. reposi tory. confi gurator</
key><val ue>org. drool s. reposi tory.jackrabbit. Jackrabbit RepositoryConfi gurat or </
val ue>
<I-- theroot directory for the repo storage the directory nust exist. -->
<l-- <key>repository.root.directory</key><val ue>/ opt/ your pat h</ val ue>

</ property>

</ conponent >

Find the component with a name of r eposi t or yConfi gur ati on and its section for JackRabbit
configuration, then the key property with the name of r eposi tory. root. di rectory.

If you un-comment this key element (as in the example above it is commented out), you can set
whatever file-system path you need for the repository data to be stored in. You can also use this to
move the repository around. In that case, when you have set the location in the conponent s. xm
you can simply move the reposi t ory. xm AND the repository directory to the new location that
you set in the conponent s. xm .

109

http://jackrabbit.apache.org

Chapter 14. Database configur...

If there is no repository.xml configuration file, or the repository directory at the location specified
(or in the default location) then Guvnor will create new empty ones.

There are many more options which can be configured in the r eposi t ory. xni , but for the most
part, it is not recommended to change the defaults.

14.2. Configuring Guvnor to use an external RDBMS

In some cases it may be a requirement that you use an external RDBMS, such as Oracle, MySQL,
or Microsoft SQL Server as the data store - this is permitted and recommended as storing your
repository data in an external RDBMS is much more reliable than the default file-system storage
option. The JackRabbit r eposi t ory. xm file contains the information where your repository data
is stored, so changes to this file are necessary for RDBMS setup. You have two options to make
changes to reposi t ory. xnl , namely make all changes manually, or use the Guvnor Repository
Configuration Manager.

If you opt for the manual configuration, the easiest thing to do is to start up Guvnor with defaults
(or with a suitable repository.root.directory directory as specified above) to let it generate the
default r eposi tory. xnl . Locate the repository. xn file that was generated, and open it - it
will be annotated with comments describing many of the different options. From here on, you will
need to know a little about Jackrabbit Persistence managers, http://wiki.apache.org/jackrabbit/
PersistenceManagerFAQ. There are a few persistence managers, some are database specific (eg
Oracle). There is a SimpleDBPersistenceManager which works with any database that supports
JDBC - you also specify the database type, so it uses the specific DDL to create the table structure
(all major databases are supported).After you have added your configuraiton options, start the
Guvnor application again. Guvnor will then create the database tables the first time it is started up
if it is running against a fresh (empty) RDBMS - so its important to note that the user credentials
supplied have permissions to create tables (at least initially, on first run, after that they could be
locked down).

Using the Repository Configuration Manager in Guvnor is often a lot easier and a less error-
prone options to make the necessary configuration changes in reposi tory. xm . With Guvnor
application running, select the Administration tab in the left-hand-side navigation bar, then select
the Repository Configuration link.

110

http://wiki.apache.org/jackrabbit/PersistenceManagerFAQ
http://wiki.apache.org/jackrabbit/PersistenceManagerFAQ

Configuring Guvnor to use an external RDBMS

Figure 14.1. Finding the Repository Configuration Manager in the
Administration section

Repository Configuration Manager includes template configuration files for many external RDBMS
types. The first thing you have to do is the select the RDBMS type from the dropdown menu and
select if you are using JNDI to look up your data source or not.

Karnags Hepoidory Confqurafs

ADBNES
P T TR Ry [ru— _I

i BN Lhinied

Figure 14.2. Select RDBMS type

If you opt to use JNDI, you have to enter the JNDI hame configured in your deployed data source.
Otherwise you need to enter your RDBMS information.

Naragn Wepsadnsy Confounafos

HDEME M5
Srndancf HEDEIALE By -
e B0
A e
Dracia B Imic
e

Passreord

Lerarale refsay oy donlsg

Figure 14.3. RDBMS information

111

Chapter 14. Database configur...

At this point you are ready to generate your r eposi t ory. xm give your RDBMS information. Click
on the "Generate repository config" button.

Manage Repository Configuration

RDBMS Info <7xml version="1.0"7> Save Configuration |
<l--

Select RDBMS type: Oracle i :J Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
] this work for additional information regarding copyright ownership.
- The ASF licenses this file te You under the Apache License, Version 2.0
Continue (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses /LICENSE-2.0

Unless regquired by applicable law or agreed te in writing, software

Oracle 9i Info distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
carm.my.Driver See the License for the specifie language governing permissions and
limitations under the License.
myUrl -
<!DOCTYPE Repository PUBLIC "-//The Apache Software Foundation//DTD Jackrabbit 1.4//ER"
mylser "http://jackrabbit.apache.org/dtd/repository-1.4.dtd">
=l-- Example Repository Configuration File -->
Password: (seeessreee <Repository>
Py
Generate repository config virtual file system where the repository stores global state

{e.g. registered namespaces, custom node types, ete.)
-
<l
<FileSystem class="org.apache.jackrabbit.core.fs.local.LocalFileSystem">
<param name="path” wvalue="${rep.home}/repository"/>
</FileSystem>

<FileSystem class="org.apache.jackrabbit.core.fs.db.0OracleFileSysten">
<param name="driver” value="cem.my.Driver"/>
"url" value="myUrl"/>

........ Teroe et T S

Figure 14.4. Generated repository.xml

You can download the generated r eposi t ory. xni file by clicking the "Save Configuration" button,
or copy/paste the generated text manually. Replace your existing repository.xm with the
generated one and restart Guvnor for the changes to get picked up.

14.3. Searching and indexing, Version storage

Jackrabbit has a separate storage area for version storage (as over time, the number of old
versions will increase, yet it should not slow down the performance of the main data store). The
version storage also has its own persistence manage configuration in the r eposi t ory. xm , but for
most purposes you can use the same database as the main storage (just with a different schema
object prefix - ie in your database, all the version data will be prefixed with ver si on_ but otherwise
in the same tablespace). See the r eposi t ory. xnl for more details of this.

Lucene is used to provide indexing across the semi structured data, and across versions. This
indexing is generally best stored on a filesystem, local to Guvnor (as per the default in the
reposi tory. xm) - in most cases the default is fine.

112

Chapter 15.

Chapter 15. Switch from JackRabbit
to ModeShape

Guvnor supports running on either JackRabbit and ModeShape as the underlaying JCR-2.0
implementation. By default Guvnor ships using JackRabbit. However if you want to switch to
using ModeShape then you need to install ModeShape as a service in JBossAS-5.x. Check
the ModeShape project and download and install ModeShape ‘kit' version 2.5.0 or later. After
installing the kit, you should have a nodeshape- servi ce. j ar directory in your deploy directory.
Since ModeShape 2.5.0 only support deployment to JBoss-5.x, make sure to also use the
guvnor-5.2.1.Final-jboss-as-5.1.war. Now we can remove some jars from the guvnor WAR that
are no longer needed, and in fact will cause classloading issues if you don't remove them:

[local host]$ rm-f WEB-INF/Iib/jackrabbit-*

[l ocal host]$ rm -f WEB-INF/I|ib/hibernate-* WEB-|NF/ persistence-api-1.0.jar
\EB- | NF/ | ucene-*. j ar

[l ocal host]$ rm-f WEB-INF/lib/jcr-2.0.jar

Next you need to edit the WEB-INF/components.xml file to switch over to ModeShape. Comment
out the JackRabbit section and uncomment the ModeShape section:

<conponent nane="repositoryConfiguration">
<!-- JackRabbit
<property name="properties">
<key>or g. dr ool s. reposi tory. confi gurat or </ key>
<val ue>org. drool s. reposi tory.jackrabbi t. Jackrabbi t Reposi t or yConfi gur at or </
val ue>
-->

<l-- the root directory for the repo storage the directory nust exist. -->
<I-- <key>repository.root.directory</key><val ue>/ opt/yourpat h</val ue> -->
<!--

</ property>
-->
<!-- MbodeShape
passwords for the background users (admn and mail man), these need to
mat ch the setting
you provided for JAAS (used by ModeShape only)
S
<property name="properties">
<key>or g. drool s. reposi tory. confi gurator</ key>
<val ue>org. drool s. reposi t ory. nodeshape. ModeShapeReposi t or yConfi gur at or </
val ue>

<key>or g. nodeshape. j cr. URL</ key>
<val ue>j ndi:jcr/| ocal ?repositoryNane=repository</val ue>

113

Chapter 15. Switch from JackR...

<key>org. drool s. reposi tory. secure. passwor ds</ key>
<val ue>f al se</ val ue>

<key>or g. drool s. reposi tory. adm n. passwor d</ key>
<val ue>admi n</ val ue>

<key>org. drool s. reposi tory. mai | man. passwor d</ key>
<val ue>mai | man</ val ue>
</ property>
</ conponent >

Note that you can use encrypted passwords by setting the
org. drool s. repository. secure. passwor ds setting to t rue. To encrypt a password use:

[local host]$ java -cp client/jboss-Iogging-spi.jar:comon/lib/jbosssx.jar
org.j boss. resource. security. Securel dentityLogi nMddul e <passwor d>

ModeShape does not support 'trusted' access like JackRabbit does, and by default uses JAAS
for authentication and authorization. For more detail on Guvnor and Security see the next section
about Security. To use JAAS and the modeshape policy comment out the defaultAuthenticator
section and uncomment the jaas-configuration section, and change the policy name from 'other’
to 'modeshape”

<l-- SECURITY | DENTI TY CONFI GURATION - - >
<l--
default (will take any username, useful if you want to keep track of
users but not authenticate
<security:identity authenticate-nmethod="#{defaul t Aut henticator. authenticate}" /
>

Sy
& ==
NO aut hentication. This will bypass the [ogin screen when you hit the
app. Everyone is "guest"
<security:identity
aut hent i cat e- net hod="#{ ni | Aut henti cator. aut henticate}"/>
-->
<l--
FOR EXAMPLE: the following one will use the jaas configuration called
"other" - which in jboss AS neans you can use properties files for
users:
-->
<security:identity authenticate-method="#{authenticator.authenticate}"
j aas- confi g- nane="nodeshape"/ >
<l--

as JAAS is used you can use container specific ones to link up to your
| ogin services, eg LDAP/AD etc

114

You may have noticed the settings of two passwords in the modeshape property settings for the
‘admin' and 'mailman’ users. These users are used by guvnor to perform background tasks. Now
that we are no longer allowing for anyone to run as 'guest’, we need to ass these two users to
the modeshape users and roles files. Open the conf/ pr ops/ nodeshape- users. properti es file
and add the mailman and admin users,

adm n=adm n
mai | man=nai | man

Finally open the conf/ pr ops/ nodeshape-r ol es. properti es file and add the admin and mailman
roles,

adm n=connect, adm n
mai | mn=connect, readonl y, readwite

By default JackRabbit uses InMemory storage, which is configured in the nodeshape-
servi ce. j ar/ nodeshape- confi g. xm . To change this we recommend reading the modeshape
documentation. To use a referenced JNDI data source, replace the <node: source></
mode: sour ce> segment with the following:

<node: source jcr:nane="store" node: cl assnane="or g. nodeshape. connect or. store. j pa. JpaSour ce"
node: dat aSour ceJndi Nane="your JNDI namne"

node: nodel =" Si npl e"

node: di al ect ="or g. hi bernat e. di al ect. HSQLDi al ect"
node: referential I ntegrityEnforced="true"

node: | ar geVal ueSi zel nByt es="10000"

node: retryLi m t="3"

node: conpr essDat a="f al se"

node: pr edef i nedWor kspaceNanes="def aul t, syst enf'
node: showsql ="f al se”

node: aut oGener at eSchena="updat e"

node: cr eat i ngWr kspacesAl | owed="t r ue"

node: def aul t Wor kspaceNane="defaul t" />

Alternatively you can connect directly to a JDBC data source, use the same <node: sour ce>
fragment as for JNDI except replace the node: dat aSour ceJndi Name attribute with these
attributes:

115

Chapter 15. Switch from JackR...

node: dri ver Gl assNane=or g. hsql db. j dbcDri ver
node: user name=sa

node: passwor d=

node: ur |l =j dbc: hsql db: mem t ar get

node: maxi munConnect i onsl nPool =5

For purposes of illustration, the HSQL DB is being used, but simply replace the attribute values
with the appropriate driver class name, username, password, and database URL.

116

Chapter 16.

Chapter 16. Security -
Authentication and basic access

Please note that giving someone access to Guvnor indicates a level of trust. Being able to editing
and build rules is providing a great deal of power to a user. Thus you should not open up Guvnor
to your entire organization - but instead to a select few. Use https (http with TLS/SSL) where ever
possible, even internally in a company network this is a good idea. Use this power wisely - this
not a "run of the mill* application that provides read/write access to a database, but something
much more power. Just imagine you are spider man - with great power comes great responsibility
(of course even more so for super man).

Security is configured by using the conponent s. xnm file in the war file. To customize this, you will
need to unzip the WAR file, and locate the conponent s. xnl file which is in the WEB- | NF directory.

The JAAS standard is used as the underlying authentication and authorization mechanism, the
upshot of which means its very flexible and able to integrate into most existing environments.

Out of the box, Guvnor shows a login screen, but no security credentials are enforced - the
user name is used, but no password check is performed. To enforce authentication, you need to
configure it to use an appropriate user directory, you may have Active Directory or similar already.

In the conmponent s. xm file, you should located a security configuration section like the following:

<I-- SECURI TY CONFI GURATI ON - ->

<l-- default (wll take any usernane, useful if you want to keep track of users
but not authenticate -->
<security:identity authenticate-nethod="#{defaul t Authenticator.authenticate}"/>

<l-- NO authentication. This will bypass the |ogin screen when you hit the app.
Everyone is "guest" -->

<I-- <security:identity authenticate-nethod="#{nil Aut henticator.authenticate}"/

S cod

As you can see from above, the 2 "out of the box" options are pass through - which means any
user is allowed in, or bypassed, in which case there is no login screen (e.g. you may be securing
access to the app via a web server anyway).

16.1. Using your containers security and LDAP

Every application server supports advanced configurations which can work with your existing
security infrastructure. The case of JBoss AS will be shown here as an example.

117

Chapter 16. Security - Authen...

<security:identity authenticate-nmethod="#{authenticator.authenticate}"
j aas-confi g- nane="ot her"/ >

This will use the ot her JAAS config in JBoss AS. If you look in j boss- as/ server/ def aul t/ conf
you will see a | ogi n-confi g. xni file. This file contains various configurations. If you use ot her
like the one above, then it will look for users. properti es and rol es. properti es in the conf/
directory for usernames and passwords to authenticate against. This is maintainable only for a
fixed small number of users.

LDAP is perhaps the most popular choice for larger enterprises. Here is an example that works
with Active Directory. You can get much more information on how to configure JBoss AS for all
scenarios with LDAP from http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapLoginModule and http://
wiki.jboss.org/wiki/Wiki.jsp?page=LdapExtLoginModule.

<application-policy name="brns">
<aut henti cati on>

<l ogi n-
nodul e code="org.jboss.security.auth.spi.LdapExtLogi nMbdul e" flag="required" >
<l--
Sone AD configurations nay require searching against
the d obal Catal og on port 3268 instead of the usual
port 389. This is nost likely when the AD forest
i ncludes multiple domains.
—=>

<nmodul e-option nane="j ava. nanm ng. provi der.url ">l dap://
| dap. j boss. or g: 389</ nodul e- opti on>
<nmodul e- opt i on nanme="bi ndDN'>JBOSS\ someadni n</ nodul e- opti on>
<nmodul e- opti on nanme="bi ndCredenti al " >passwor d</ nodul e- opti on>
<nmodul e- opti on nane="baseCt xDN'>cn=User s, dc=j boss, dc=or g</ nodul e- opti on>
<nodul e- opti on nanme="baseFi | t er">(sAMAccount Nanme={ 0}) </ nodul e- opti on>

<nmodul e- option nane="rol esCt xDN'>cn=User s, dc=j boss, dc=or g</ nodul e-
opti on>
<nodul e-opti on nanme="rol eFi | t er">(sAMAccount Nanme={ 0}) </ nodul e- opti on>
<nmodul e- opti on nane="rol eAttri but el D' >nmenber Of </ nodul e- opti on>
<nmodul e-opti on name="rol eAttri butel sDN'>true</ nodul e-opti on>
<nmodul e- opti on name="rol eNaneAttri but el D'>cn</ nodul e- opti on>

<nmodul e- opti on name="r ol eRecur si on">- 1</ nodul e- opti on>
<nmodul e- opti on name="sear chScope" >ONELEVEL_SCOPE</ nodul e- opti on>
</l ogi n- nodul e>
</ aut henti cati on>
</ application-policy>

118

http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapLoginModule
http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapExtLoginModule
http://wiki.jboss.org/wiki/Wiki.jsp?page=LdapExtLoginModule

Using your containers security and LDAP

To use the above, you would put j aas- confi g- nanme="brns" in the security:identity tagin
the conponent s. xnl for Guvnor.

Similar configuration examples can be found for other directory services.

LDAP isn't the final word, you can use JDBC against a database of user name, or you can write
your own login module to use any sort of weird and wonderful authentication and authorization
systems that you may have to deal with (that would be an extreme case, but its possible). Refer
to JBoss AS documentation (or documentation for your existing application server).

119

120

Chapter 17.

Chapter 17. Fine grained
permissions and security

The above section talks about establishing identity and access for users. This section talks about
granting specific permissions to these users (to control data visibility and access). This can be
used to partition data, or to control access for "non power users" which can limit the damage they

= Administration -
=+ Admin
— Categories
._'. .
L, Archived Items
Statuses
|_;:j._| Import/Ex port
@ Error log
I, User permission mappings

Figure 17.1. Administer user permissions

A common need and desire of the web interface of Guvnor is to be able to have users of different
technical abilities interact with it. Another need is to be able to allocate people different sets of

data to "own".

Typically users identities are managed in a centralized directory - application servers can integrate
with these directories (e.g. active directory, LDAP) so users to Guvnor can be authenticated

121

Chapter 17. Fine grained perm...

without having to create another duplicate identity. It is also possible (thanks to JAAS) to define
what users have the "admin" role for Guvnor (note that an Admin user of Guvnor doesn't have to
really be a system administrator). Further to this, Guvnor augments this identity with data specific
permissions, which are managed in Guvnor itself.

Firsd Lisar Pormannicn
Currently confipared users: Relosd Credle fiow utir mappng Delebe selebend wner

Ly raame - S ey Mo pacicson porrmniil Mo Saiocry pemel

= Adminiirator: (Mens) {2 emd)

T LR Yierd

Cpmmid oFy i
d Admanietrator: Tox {1 IEam]

woork! | -1

Figure 17.2. User listing

Note that the above users identities are not stored in Guvnor, only their permission mappings are
which are specific to Guvnor.

There are really two system wide roles: Users who are Administrators and users who are not.
Administrators can see and do anything. Out of the box, the permission system is turned off,
and every user is an administrator (this is pretty much how things used to work). There is also a
system setting in conponent s. xnm that can turn the permissions system on and off (so people can
manually override if needs be). A administrator can also give other users admin rights, regardless
of their roles in the external directory service.

122

Edr® wdsr: Mewlhier

E?& Edit user: Newlser

-

Lsers e Ehenbicaied g direchory S, e o cl aiefnee Ao S0 DT RO 4T
iy
[analyst] for;
CdegqonyaHRE O
(packagn.admn] for;
packbdgen o, billasud finande B

I_.I

e changes

Figure 17.3. Editing

There are several types of permissions: Per package: Package Administrator ("owns" a package
- can deploy etc, but has no administrative rights to the system). Package developer - this
permissions allows users to create new items, edit etc - but only at the package level (not deploy).
They can also run and create tests. Package readonly - well this one is pretty obvious. Per
Category: This is the "interesting" one - as assets (rules) can be tagged with multiple categories,
you can use these to assign permissions to an "analyst" type of user. A user can be assigned
multiple categories. A user can then edit and view any asset that is tagged in that category
(regardless of package). A user that only has category permissions will not be shown any
package views or details, and will only see the simple categories view. This allows administrators
and managers to control exactly what these users can and can't see. Note that per category
permissions can also be set as "read only" so a user can view all the assets in a category, but
not make changes to them.

123

Chapter 17. Fine grained perm...

Figure 17.4. The analyst view

= g

Enabling fine grained authorization

The per category "analyst" permissions are quite useful - you can also augment their permissions
with a specific package (so on top of their category rights, they can see and play with a particular
package - which may be used as a "practice" area, or test area for instance). This provides a few
ways to manage permissions in a coarse or fine grained way, as suits the different types of users.

17.1. Enabling fine grained authorization

By default authorization is not enabled. To enable it, edit the conponent s. xnl file in the WEB-
I NF directory:

<component nane="org.jboss. seam security.rol eBasedPerni ssi onResol ver">;
<property nanme="enabl eRol eBasedAut hori zati on" >f al se</ property>
</ conponent >

125

126

Chapter 18.

Chapter 18. Data management

18.1. Backups

How backups are performed is dependent on what persistence manager scheme you are using.
Using the default one - then its a matter of backing up the repository directory (wherever you have
it configured to be). Restoring it is simply a matter of copying across the repository directory.

Ideally you will either stop Guvnor application while a file backup is being done, or ensure that
no one is using it.

In the case of using an external database (e.g. Oracle, MySQL), then the normal scheme can
apply that you would use to backup those database (you do back them up, right?). In this case,
when restoring, it is also a good idea to clear the indexes (delete the directory where the indexes
are) so they are created fresh from the data (and thus guaranteed to be in sync).

18.2. Repository Data Migration

It is often needed to migrate your existing repository from one persistence manager schema to
another. A typical scenario for this case is if you have existing rule assets in a repository using the
default file-system configuration and would like to move to storing your existing data to a RDBMS.
In these cases you can use the drools-ant JackrabbitMigrationAntTask which can easily convert
all your repository data from one repository configuration to another repository configuration.
Example configuration for this ant task can be:

<proj ect default="nigraterepo">
<path id="m gration.classpath">
<pat hel enent pat h="${cl asspath}" />
<fileset dir="/Users/tihom r/devel opnent/drool sjbpnijboss-4.2.3. GAl server/
def aul t / depl oy/ dr ool s- guvnor. war/VWEB- | NF/ | i b" >
<i nclude nanme="**/*_jar"/>
</[fileset>
<filelist refid="drools-ant" />
<filelist refid="db-driver-jars" />
</ pat h>

<filelist id="db-driver-jars" dir="/Users/tihon r/devel opment/drool sjbpnl
jboss-4.2.3. GA/server/defaul t/lib">
<file name="nysql -connector-java-5.1.11-bin.jar" />
</filelist>

<filelist id="drools-ant" dir="Ilib">
<file name="drool s-ant-5.2.0.jar" />

</filelist>

<t askdef name="m grate" classnane="org.drools.contrib.JackrabbitM grationAnt Task"

127

Chapter 18. Data management

cl asspat href ="m gration. cl asspath" />

<target name="mi graterepo">
<record name="m gration-log.txt"/>
<m grate verbose="true"
sourcedi r="/Users/tihom r/devel opnent/drool sj bpnlj boss-4. 2. 3. GA/ bi n/
repository/"
sour ceconfi g="/Users/tihom r/devel oprment/ dr ool sj bpnt j boss-4. 2. 3. GA/ bi n/
repository.xm"
targetdir="/Users/tihomr/deno-jrmgration/targetrepo/"
targetconfig="/Users/tihomr/deno-jrmgration/targetrepo/
repository.xm" />
</target>
</ proj ect >

In the above scenario JackrabbitMigrationAntTask is going to migrate all repository data
configured in repository. xm defined in the sourcedir attribute, to the repository configured
in repository. xm defined in the targetconfig attribute. Note that this data migration is a full
migration, which means it migrates the entire repository which also makes it a good tool to use for
backups as well. The blog post http://blog.athico.com/2011/03/using-drools-ant-to-migrateback-
up.html contains a video showing a full example on how to use the JackrabbitMigrationAntTask
for repository migration.

18.3. Selectors for package building

When building packages using the "Packages" feature you have the option to use a "selector".
This selector will filter the list of rules that are built into the package.

Guvnor provides several built-in selectors which allow you to choose what assets form part of a
package build according to asset's status and category.

You can use a custom selector if the built-in selector does not satisfy your requirement. To
configure a custom selector, you will need to "explode" the WAR file for Guvnor, and locate the
sel ectors. properti es file (note you can also put your own sel ect ors. properti es file in the
system classpath if you like). In this file, you will find details on how you can configure a custom
selector. The options are to use a DRL file, or the name of a class that you have written (and which
is available on the classpath). Classes must implement the Asset Sel ect or interface. DRL files
can also be used and there is an example one in the sel ect ors. properti es file). Each selector
you configure has a unique name in this properties file - and this is the name that you can use
when building packages.

18.4. Adding your own logos or styles to Guvnor web
GUI

To achieve, this, you can "explode" the deployment WAR file, and locate the Guvnor. ht nl file,
which will look something like the following:

128

Import and Export

<IDOCTYPE HTML PUBLIC "-//WBC//DTD HITML 4.01 Transitional//EN" "http://
www. W3. or g/ TR/ ht nl 4/ | oose. dtd" >
<htm >
<head>
<l-- Note you can append #asset=UUID to the end of the URL to preload a
gi ven asset.
Also, if you appent #asset=UUl D&anp; nochrome it will only show t he asset
wi thout all the GU "chrone"

To select a locale, specify &anp;local e=en_US at the end of the URL to
pi ck the appropriate bundle.
oo
<nmet a http-equi v="Content-Type" content="text/htm ; charset=UTF-8">
<meta http-equi v="X-UA- Conpati bl e" content="I|E=Emul atel E7" />
<title>JBoss Quvnor</title>

</ body>
</htnl >

Note that the above Guvnor . ht il file is fairly small (as most of the work is done by the GWT - the
GUI is built dynamically in the browser). The parts you can customize are the style sheet - you
can either edit the Guvnor . css (or better yet, take a copy, and change the style to be what you
need), the "shortcut icon” (its what shows in the address bar in the browser etc - also change the
"icon" link to be the same so it works in IE), and the header logo. The rest should be left as is, to
allow the GWT components to be loaded and attached to the page. This html page is loaded only
once by the browser when the user accesses Guvnor web GUI.

The best way to customize is to take a copy of the Guvnor. ht nl file and then edit. You can also
change the URL by editing the web.xml via the normal means.

18.5. Import and Export

A JCR standard export/import feature is available from the Admin part of the web interface.
This will export the entire repository to an XML format as defined by the JCR standard.
In the case of import, it will clear any existing content in the database.

This is not a substitute for backup but can be useful when migrating. It is important to note that
version history is not exported this way, only the current state. Hence it is still recommended that
a formal backup regime be used at all times on the repository database itself.

Note that when importing repositories with many thousands of items, extra memory will be required
when performing the import.

129

130

Chapter 19.

Chapter 19. Architecture

This section covers the technical aspects of Guvnor, it is not necessary to use this if you are
integrating or an end user of the application. However, Drools is open source, so build instructions

form part of the manual.

You may want to build from source if you want to re-use components, or embed the application

within another.

Browser

Application Server

BRMS application {(drools-jbrms)
User applications

(may be seperate
drools-repository drools-compiler... | app servers)

JCR {jackrabbit) drools-core

Data store (file system, or existing RDBMS)

Figure 19.1. Architectural diagram

The above diagram shows the major components of the system and how they integrate and
are deployed. The User Guide has more details on the parts that are highly configurable (e.g.

database).

131

Chapter 19. Architecture

Guvnor is deployed as a WAR, which provides user interfaces over the web, and provides binary
packages using URLSs (or files). It uses the JSR-170 standard for data storage (JCR). JBoss Seam
is used as the component framework, and GWT is used as the widget toolkit for constructing the
AJAX-based web user interface.

19.1. Building from source

This section will go over the steps necessary to build various components. Mostly this is
automated, but the manual process is described for thoroughness.

19.1.1. Modules

There are 2 modules: guvnor - reposi t ory (back end) and guvnor - webapp (front end and rules
integration). The guvnor - webapp module depends on the guvnor - r eposi t ory module, as well
as other components. Guvnor is part of the main build for all of Drools - when building Drools,
Guvnor is built alongside it.

19.1.2. Working with Maven 2

Maven 2 is used as the build system. To get started, the whole of the source tree for JBoss Rules
needs to be checked out. This includes the other modules, and the top level lib and repository
directories (which are needed by the build); as the Guvnor build is part of the main Drools build.

Initially, go into the root of the jboss-rules checked out source tree, and run nvn i nstal | to install
all the components for the inter-project dependencies. If the build is broken (all care is taken for
this eventuality not to occur), the flag - Dski pTest s can be used to prevent failing unit tests from
preventing the build.

When wishing to build Guvnor, go into the guvnor-webapp directory, and run nvn package. This
will run the tests, and then build a deployable WAR. Once the WAR file is in the target directory,
the Guvnor is ready to go.

19.1.3. Working with GWT

The GUI widgets for the web front end are developed with GWT (Google Web Toolkit).

19.1.4. Debugging, Editing and running with Eclipse

Each module has a ready to go and up to date eclipse project configuration, so they can merely
be imported into the eclipse workspace. These projects are generated by Maven. Use the nvn
ecl i pse: ecl i pse command to refresh them in case they are wrong or outdated. They have been
manually modified to have project dependencies which means that the code can be stepped
through when debugging.

Some environment variables are required in eclipse (for Window: >Pr ef er ences- >Java- >Bui | d
pat h- > Classpath variables): the M2_REPO, as normal, to point to where Maven downloads shared
dependencies. GM_HOVE should point to where you installed GWT. GAT_DEV must point to the
platform specific "dev" JAR that ships with the version of GWT you have.

132

Re-usable components

How to launch from Eclipse: unit tests can be launched, as normal (in which case only M2_REPO
setup is needed, GWT does not need to be downloaded separately), or it can be launched it in
hosted mode using the GWT browser, which is great for debugging (from GUI to back end, the
code can be stepped through, and changes made on the fly and simply hit refresh). There is a
Guvnor . | aunch file in in the guvnor - webapp directory. To launch Guvnor in debug mode, open
the Run dialog (Run->Run), and then choose Guvnor from the list. Launching this will open a
new window, with Guvnor in debug mode, ready to go.

Downloading and debugging Guvnor with GWT is optional, so if there are no GUI issues being
worked on then this step can be safely skipped.

19.2. Re-usable components

Guvnor uses a service interface to separate the GUI from the back end functionality. In this case
the back end both includes the asset repository (guvnor - reposi t ory and JCR) as well as the
compiler specifics to deal with rules.

The main interface is Reposi t or ySer vi ce, which is implemented in Servi cel npl enent at i on.
The GWT ajax front end talks to this interface using the asynchronous callback mechanism that
GWT uses. The Seam configuration file is conponent s. xnl . Refer to the Seam documentation,
and the conponent s. xm file for details.

This service interface may be re-used by alternative components or front ends.
The GWT user interface may be re-used, as it is GWT is only one html page: Guvnor. ht ni .

Normally Guvnor is intended to be deployed as its own WAR, however it can be combined with
another application (with some care), but it is easier to keep it as a separate WAR. We recommend
deploying Guvnor by itself because this will make it easier to upgrade to newer releases as they
come out.

The Guvnor. htm file can be customized. For example to change logos or embed Guvnor in
another page. Take a look at the Guvnor . ht nl file for details.

19.3. Versioning and Storage

Refer to Chapter 14, Database configuration for for configuration options for database and
filesystems.

Versions of assets are stored in the database along with the data.

When snapshots are created, copies are made of the entire package into a separate location in
the JCR database.

For those familiar with JCR and Apache Jackrabbit, the *. c¢nd files are in the source for the node
type definitions as some wish to view these. In a nutshell, a package is a folder and each asset
is a file: an asset can either be textual or have a binary attachment.

133

Chapter 19. Architecture

19.4. Contributing

As an open source project, contributions from the wider community are encouraged. In order to
contribute consult the wiki and project home pages. A useful way to contribute is via logging issues
or feature requests in JIRA. The JIRA link to use is https://jira.jboss.org/jira/browse/GUVNOR.

134

https://jira.jboss.org/jira/browse/GUVNOR

	Guvnor Manual
	Table of Contents
	Chapter 1. Introduction
	1.1. What is a Business Rules Manager?
	1.1.1. When to use Guvnor
	1.1.1.1. When to not use Guvnor

	1.1.2. Who uses Guvnor

	1.2. Features outline

	Part I. User Guide
	Chapter 2. Quick start guide
	2.1. Supported browser platforms
	2.2. Initial configuration
	2.3. Writing some rules
	2.4. Finding stuff
	2.5. Deployment

	Chapter 3. Guvnor concepts
	3.1. Rules are assets
	3.2. Categorization
	3.3. The Asset Editor
	3.4. Rule authoring
	3.4.1. Business rules with the guided editor
	3.4.1.1. User driven drop down lists
	3.4.1.2. Augmenting with DSL sentences
	3.4.1.3. A more complex example:

	3.4.2. DSL editor
	3.4.3. DSL rules
	3.4.4. Spreadsheet decision tables
	3.4.5. Guided decision tables (web based)
	3.4.5.1. Main components
	3.4.5.2. Column configuration
	3.4.5.2.1. Utility columns
	3.4.5.2.2. Attribute columns
	3.4.5.2.3. Meta-data columns
	3.4.5.2.4. Condition columns
	3.4.5.2.5. Action columns

	3.4.5.3. Rule definition
	3.4.5.4. Cell merging
	3.4.5.5. Cell grouping
	3.4.5.6. Operation of "otherwise"

	3.4.6. Templates of assets/rules
	3.4.6.1. Creating a rule template
	3.4.6.2. Define the template
	3.4.6.3. Defining the template data
	3.4.6.3.1. Cell merging
	3.4.6.3.2. Cell grouping

	3.4.6.4. Generated DRL

	3.4.7. Rule flows
	3.4.8. Technical rules (DRL)
	3.4.9. Functions
	3.4.10. Data enumerations (drop down list configurations)
	3.4.11. Advanced enumeration concepts

	3.5. Status management
	3.6. Package management
	3.6.1. Importing DRL packages

	3.7. Version management
	3.8. Deployment management
	3.9. Navigating and finding rules

	Chapter 4. Creating a business user view
	Chapter 5. The Fact Model
	5.1. Ways to define a Fact Model
	5.2. Creating a JAR Model
	5.2.1. Create a JAR Model asset
	5.2.2. Upload a JAR Model into the asset

	5.3. Declarative model
	5.3.1. Creating a Declarative Model
	5.3.1.1. Create a Declarative Model asset
	5.3.1.2. Defining the model
	5.3.1.3. Consuming a declarative model from Java

	Chapter 6. Working Sets
	6.1. Activating and Using Working Sets
	6.1.1. Using Field Constraint

	Chapter 7. The business user perspective
	Chapter 8. Advanced config options in a rule package
	Chapter 9. Deployment: Integrating rules with your applications
	9.1. The Knowledge Agent

	Chapter 10. WebDAV and HTTP
	10.1. WebDAV
	10.2. URLs

	Chapter 11. Inbox and comments
	11.1. Comments
	11.2. Inbox

	Chapter 12. Eclipse Guvnor integration
	12.1. Source Code and Plug-in Details
	12.2. Functionality Overview
	12.3. Guvnor Connection Wizard
	12.4. Guvnor Repository Explorer
	12.5. Local Copies of Guvnor Files
	12.6. Actions for Local Guvnor Resources
	12.7. Importing Guvnor Repository Resources
	12.8. Guvnor plugin Preferences

	Part II. Administration Guide
	Chapter 13. Installation
	13.1. Installation step by step
	13.2. Supported and recommended platforms

	Chapter 14. Database configuration
	14.1. Changing the location of the data store
	14.2. Configuring Guvnor to use an external RDBMS
	14.3. Searching and indexing, Version storage

	Chapter 15. Switch from JackRabbit to ModeShape
	Chapter 16. Security - Authentication and basic access
	16.1. Using your containers security and LDAP

	Chapter 17. Fine grained permissions and security
	17.1. Enabling fine grained authorization

	Chapter 18. Data management
	18.1. Backups
	18.2. Repository Data Migration
	18.3. Selectors for package building
	18.4. Adding your own logos or styles to Guvnor web GUI
	18.5. Import and Export

	Chapter 19. Architecture
	19.1. Building from source
	19.1.1. Modules
	19.1.2. Working with Maven 2
	19.1.3. Working with GWT
	19.1.4. Debugging, Editing and running with Eclipse

	19.2. Re-usable components
	19.3. Versioning and Storage
	19.4. Contributing

