Upgrading to Infinispan 9.0

The Infinispan community

Table of Contents

1. Upgrading from 8.X 10 9.0ttt e 2
1.1. Entry Retriever iSNOW removedoiiiiiiiiitiiiiiiii e, 2
1.2. Map / Reduce iSNOW FeIMOVEAttt ettt ettt eenn 2
1.3. Spring 3 SUPPOrt iS NOW FeMOVEdttt 2
1.4. Function classes have moved packages ... 2
1.5. SegmentCompletionListener interface hasmoved i i, 2
1.6. Spring module dependency changes.ttt 2
1.7. Total order executor iSNOt remMOvVedoitit ittt 3

2. Upgrading from 8.1 10 8.2. . ..o oot e 4
2.1. Entry Retrieveris deprecatedottt e 4
2.2.Map /Reduceisdeprecatedoouiiiiiiuiiiii e 4

3. Upgrading from 8.X 10 8.1ttt e 5
3.1. Packaging Changes ot 5

3.1.1. CDImodule SPlit oo e 5
3.1.2. Spring module Split e 5
3.2. Spring 3 supportisdeprecatedttt e 5

4. Upgrading from 7.X t0 8.0ottt e 6

4.1. Configuration Changest e e e 6
4.1.1. Removal of Async Marshalling 6
4.1.2. Reenabling of isolation level configurationsinservercoovvea.... 6
4.1.3. Subsystem renaming iN SEIVETttt e, 6
4.1.4. Server domain MOGet 6

5.Upgrading from 6.0 10 7.0.ottt e 7

S L APT CaN S . o oottt e 7
S5.1.1.Cache Loaderottt 7
5.1.2. Cache WIITeT .. oottt i e 7
o 0 TR = =) 7

5.2. Declarative configurationooiiiiiiiiii i e 7

6. Upgrading from 5.3 10 6.0.ttt e 8
6.1. Declarative CONfigurationiiuuuuuutttte ittt 8
6.2. Deprecated APITemoval.uuiiiiii i 8

7.Upgrading from 5.2 10 5.3,o e 9
7.1. Declarative CONfigurationouunutitttttett ittt 9

8. Upgrading from 5.1 10 5.2ttt e 10
8.1. Declarative configurationttt 10
8.2 TraANSACTION . .\ttt ettt e e e 10
8.3. Cache Loader and Store configuration ... 10

8.4. Virtual Nodes and SegMEeNTSuuuun it 10

L N 11
9.2. Eviction and EXPIrationttt ettt ettt e e et 11
9.3. TTANSACTIONSttt ettt ettt ettt ettt e e e e e e et e e 12
0.4, State tranS er. . .. e 12
9.5. CONFIGUIAtIONttt ettt e e et e e et e e e ettt et 12
9.6. Flags and ClassLoaders. vvuu ettt ettt et et e e e 14

9.7. JGroups Bind AdAresso oottt e e e 14

This guide walks you through the process of upgrading Infinispan.

Chapter 1. Upgrading from 8.x to 9.0

1.1. Entry Retriever is now removed

The entry retriever feature has been removed. Please update to use the new Streams feature
detailed in the User Guide. The org.infinispan.filter.CacheFilters class can be used to convert
KeyValueFilter and Converter instances into proper Stream operations that are able to be
marshalled.

1.2. Map / Reduce is now removed

Map reduce has been removed in favor of the new Streams feature which should provide more
features and performance. There are no bridge classes to convert to the new streams and all
references must be rewritten.

1.3. Spring 3 support is now removed

Spring 3 is no longer supported.

1.4. Function classes have moved packages

The class SerializableSupplier has moved from the org.infinispan.stream package to the
org.infinispan.util.function package.

The class CloseableSupplier has moved from the org.infinispan.util package to the
org.infinispan.util.function package.

The classes TriConsumer, C(loseableSupplier, SerializableRunnable, SerializableFunction &
SerializableCallable have all been moved from the org.infinispan.util package to the
org.infinispan.util.function package.

1.5. SegmentCompletionListener interface has moved

The interface SegmentCompletionListener has moved from the interface org.infinispan.CacheStream
to the new org.infinispan.BaseCacheStream.

1.6. Spring module dependency changes

All Infinispan dependencies from Spring modules (both embedded and remote) are now in
provided scope. One can decide whether use small jars or uber jars but they need to be added to the
classpath on client side. Here is an example:

<dependencies>
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-embedded</artifactId>
</dependency>
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-spring4-embedded</artifactId>
</dependency>
</dependencies>

Additionally there is no Logger implementation specified (since this may vary depending on use
case).

1.7. Total order executor is not removed

The total order protocol now uses the remote-command-executor. The attribute total-order-executor
in <container> tag is removed.

Chapter 2. Upgrading from 8.1 to 8.2

2.1. Entry Retriever is deprecated

Entry Retriever is now deprecated and will be removed in Infinispan 9. This is replaced by the new
Streams feature.

2.2. Map / Reduce is deprecated

Map reduce is now deprecated and will be removed in Infinispan 9. This is replaced by the new
Streams feature.

Chapter 3. Upgrading from 8.x to 8.1

3.1. Packaging changes

3.1.1. CDI module split

CDI module (Groupld:Artifactld org.infinispan:infinispan-cdi) has been split into
org.infinispan:infinispan-cdi-embedded and org.infinispan:infinispan-cdi-remote. Please make
sure that you use proper artifact.

3.1.2. Spring module split

Spring module (Groupld:Artifactld org.infinispan:infinispan-springd) has been split into
org.infinispan:infinispan-spring4-embedded and org.infinispan:infinispan-spring4-remote. Please
make sure that you use proper artifact.

3.2. Spring 3 support is deprecated

Spring 3 support (Groupld:Artifactld org.infinispan:infinispan-spring) is deprecated. Please
consider migrating into Spring 4 support.

Chapter 4. Upgrading from 7.x to 8.0

4.1. Configuration changes

4.1.1. Removal of Async Marshalling

Async marshalling has been entirely dropped since it was never reliable enough. The "async-
marshalling”" attribute has been removed from the 8.0 XML schema and will be ignored when
parsing 7.x configuration files. The programmatic configuration methods related to
asyncMarshalling/syncMarshalling are now deprecated and have no effect aside from producing a
WARN message in the logs.

4.1.2. Reenabling of isolation level configurations in server

Because of the inability to configure write skew in the server, the isolation level attribute was
ignored and defaulted to READ_COMMITTED. Now, when enabling REPEATABLE_READ together
with optimistic locking, write skew is enabled by default in local and synchronous configurations.

4.1.3. Subsystem renaming in server

In order to avoid conflict and confusion with the similar subsystems in WildFly, we have renamed
the following subsystems in server: * infinispan — datagrid-infinispan * jgroups — datagrid-jgroups
* endpoint — datagrid-infinispan-endpoint

4.1.4. Server domain mode

We no longer support the use of standalone mode for running clusters of servers. Domain mode
(bin/domain.sh) should be used instead.

Chapter 5. Upgrading from 6.0 to 7.0

5.1. API Changes

5.1.1. Cache Loader

To be more inline with JCache and java.util.collections interfaces we have changed the first
argument type for the CacheLoader.load & CacheLoader.contains methods to be Object from type K.

5.1.2. Cache Writer

To be more inline with JCache and java.util.collections interfaces we have changed the first
argument type for the CacheWriter.delete method to be Object from type K.

5.1.3. Filters

Over time Infinispan added 2 interfaces with identical names and almost identical methods. The
org.infinispan.notifications.KeyFilter and
org.infinispan.persistence.spi.AdvancedCacheLoader$KeyFilter interfaces.

Both of these interfaces are used for the sole purpose of filtering an entry by it’s given Kkey.
Infinispan 7.0 has also introduced the KeyValueFilter which is similar to both but also can filter on
the entries value and/or metadata.

As such all of these classes have been moved into a new package org.infinispan.filter and all of
their related helper classes.

The new org.infinispan.filter.KeyFilter interface has replaced both of the previous interfaces and all
previous references use the new interface.

5.2. Declarative configuration

The XML schema for the embedded configuration has changed to more closely follow the server
configuration. Use the config-converter.sh or config-converter.bat scripts to convert an Infinispan
6.0 to the current format.

Chapter 6. Upgrading from 5.3 to 6.0

6.1. Declarative configuration

In order to use all of the latest features, make sure you change the namespace declaration at the top
of your XML configuration files as follows:

<infinispan xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"urn:infinispan:config:6.0 http://www.infinispan.org/schemas/infinispan-config-
6.0.xsd" xmlns="urn:infinispan:config:6.0">

</infinispan>

6.2. Deprecated API removal

Class org.infinispan.persistence.remote.wrapperEntryWrapper.

Method ObjectOutput startObjectOutput(OutputStream os, boolean isReentrant) from class
org.infinispan.commons.marshall.StreamingMarshaller.

Method CacheEntry getCacheEntry(Object key, EnumSet<Flag> explicitFlags, ClasslLoader
explicitClassLoader) from class org.infinispan.AdvancedCache. Please use instead:
AdvanceCache.withFlags(Flag:-- flags).with(ClassLoader classLoader).getCacheEntry(K key).

Method AtomicMap<K, V> getAtomicMap(Cache<MK, 7> cache, MK key, FlagContainer
flagContainer) from class org.infinispan.atomic.AtomicMapLookup. Please use instead
AtomicMapLookup.getAtomicMap(cache.getAdvancedCache().withFlags(Flag::- flags), MK key).

Package org.infinispan.config (and all methods involving the old configuration classes). All
methods removed has an overloaded method which receives the new configuration classes as
parameters. Please refer to [_configuration] for more information about the new configuration
classes.

6 This only affects the programmatic configuration.

Class org.infinispan.context.FlagContainer.

Method boolean isLocal(Object key) from class
org.infinispan.distribution.DistributionManager. Please use instead
DistributionManager.getlLocality(Object key).

JMX operation void setStatisticsEnabled(boolean enabled) from class
org.infinispan.interceptors.TxInterceptor Please use instead the statisticsEnabled attribute.

Method boolean delete(boolean synchronous) from class org.infinispan.io.GridFile. Please use
instead GridFile.delete().

JMX attribute long getlLocallyInterruptedTransactions() from class
org.infinispan.util.concurrent.locks.DeadlockDetectinglLockManager.

Chapter 7. Upgrading from 5.2 to 5.3

7.1. Declarative configuration

In order to use all of the latest features, make sure you change the namespace declaration at the top
of your XML configuration files as follows:

<infinispan xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"urn:infinispan:config:5.2 http://www.infinispan.org/schemas/infinispan-config-
5.2.xsd" xmlns="urn:infinispan:config:5.3">

</infinispan>

Chapter 8. Upgrading from 5.1 to 5.2

8.1. Declarative configuration

In order to use all of the latest features, make sure you change the namespace declaration at the top
of your XML configuration files as follows:

<infinispan xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"urn:infinispan:config:5.2 http://www.infinispan.org/schemas/infinispan-config-
5.2.xsd" xmlns="urn:infinispan:config:5.2">

</infinispan>

8.2. Transaction

The default transaction enlistment model has changed (ISPN-1284) from XAResource to
Synchronization. Also now, if the XAResource enlistment is used, then recovery is enabled by default.

In practical terms, if you were using the default values, this should not cause any backward
compatibility issues but an increase in performance of about 5-7%. However in order to use the old
configuration defaults, you need to configure the following:

<transaction useSynchronization="false">
<recovery enabled="false"/>
</transaction>

or the programmatic configuration equivalent:

ConfiqurationBuilder builder = new ConfigurationBuilder();
builder.transaction().useSynchronization(false).recovery().enabled(false)

8.3. Cache Loader and Store configuration

Cache Loader and Store configuration has changed greatly in Infinispan 5.2. Please refer to the
Cache Loaders and Stores documentation.

8.4. Virtual Nodes and Segments

The concept of Virtual Nodes doesn’t exist anymore in Infinispan 5.2 and has been replaced by
Segments. Please refer to the Clustering modes documentation for details.

10

https://issues.jboss.org/browse/ISPN-1284
http://docs.oracle.com/javase/6/docs/api/javax/transaction/xa/XAResource.html
http://docs.oracle.com/javaee/6/api/javax/transaction/Synchronization.html
../user_guide/user_guide.html#_transaction_recovery
../user_guide/user_guide.html#_cache_loaders_and_stores
../user_guide/user_guide.html#_clustering_modes

Chapter 9. Upgrading from 5.0 to 5.1

9.1. API

The cache and cache manager hierarchies have changed slightly in 5.1 with the introduction of
BasicCache and BasicCacheContainer , which are parent classes of existing Cache and CacheContainer
classes respectively. What’s important is that Hot Rod clients must now code against BasicCache and
BasicCacheContainer rather than Cache and CacheContainer. So previous code that was written like
this will no longer compile.

WontCompile.java

import org.infinispan.Cache;
import org.infinispan.manager.CacheContainer;
import org.infinispan.client.hotrod.RemoteCacheManager;

CacheContainer cacheContainer = new RemoteCacheManager();
Cache cache = cacheContainer.getCache();

Instead, if Hot Rod clients want to continue using interfaces higher up the hierarchy from the
remote cache/container classes, they’ll have to write:

Correct.java

import org.infinispan.BasicCache;
import org.infinispan.manager.BasicCacheContainer;
import org.infinispan.client.hotrod.RemoteCacheManager;

BasicCacheContainer cacheContainer = new RemoteCacheManager();
BasicCache cache = cacheContainer.getCache();

However, previous code that interacted against the RemoteCache and RemoteCacheManager will work as
it used to:

AlsoCorrect.java

import org.infinispan.client.hotrod.RemoteCache;
import org.infinispan.client.hotrod.RemoteCacheManager;

RemoteCacheManager cacheContainer = new RemoteCacheManager();
RemoteCache cache = cacheContainer.getCache();

9.2. Eviction and Expiration

* The eviction XML element no longer defines the wakeUpInterval attribute. This is now
configured via the expiration element:

11

https://docs.jboss.org/infinispan/5.1/apidocs/org/infinispan/api/BasicCache.html
https://docs.jboss.org/infinispan/5.1/apidocs/org/infinispan/api/BasicCacheContainer.html
https://docs.jboss.org/infinispan/5.1/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/5.1/apidocs/org/infinispan/manager/CacheContainer.html

<expiration wakeUpInterval="60000"... />

Eviction’s maxEntries is used as guide for the entire cache, but eviction happens on a per cache
segment, so when the segment is full, the segment is evicted. That’s why maxEntries is a theoretical
limit but in practical terms, it’ll be a bit less than that. This is done for performance reasons.

9.3. Transactions

* A cache marked as TRANSACTIONAL cannot be accessed outside of a transaction, and a
NON_TRANSACTIONAL cache cannot be accessed within a transaction. In 5.0, a transactional cache
would support non-transactional calls as well. This change was done to be in-line with
expectations set out in JSR-107 as well as to provide more consistent behavior.

* In 5.0, commit and rollback phases were asynchronous by default. Starting with 5.1, these are
now synchronous by default, to provide the guarantees required by a single lock-owner model.

9.4. State transfer

One of the big changes we made in 5.1 was to use the same push-based state transfer we introduced
in 5.0 both for rehashing in distributed mode and for state retrieval in replicated mode. We even
borrow the consistent hash concept in replicated mode to transfer state from all previous cache
members at once in order to speed up transfer.

As a consequence we’ve unified the state transfer configuration as well, there is now a
stateTransfer element containing a simplified state transfer configuration. The corresponding
attributes in the stateRetrieval and hash elements have been deprecated, as have been some
attributes that are no longer used.

9.5. Configuration

If you use XML to configure Infinispan, you shouldn’t notice any change, except a much faster
startup, courtesy of the StAX based parser. However, if you use programmatic configuration, read
on for the important differences.

Configuration is now packaged in org.infinispan.configuration, and you must use a fluent, builder
style:

Configuration ¢1 = new ConfiqurationBuilder()
// Adjust any configuration defaults you want
.clustering()
11()
.disable()
.mode (DIST_SYNC)
.hash()
.numOwners(5)
.build();

12

https://github.com/jsr107
http://en.wikipedia.org/wiki/StAX

* The old javabean style configuration is now deprecated and will be removed in a later version.

* Configuration properties which can be safely changed at runtime are mutable, and all others
are immutable.

* To copy a configuration, use the read() method on the builder, for example:

Configuration c¢2 = new ConfigurationBuilder()

// Read in C1 to provide defaults
.read(c1)
.clustering()

11()

.enable()

// This cache is DIST_SYNC, will have 5 owners, with L1 cache enabled
.build();

This completely replaces the old system of defining a set of overrides on bean properties. Note that
this means the behaviour of Infinispan configuration is somewhat different when used
programmatically. Whilst before, you could define a default configuration, and any overrides would
be applied on top of your defaults when defined, now you must explicitly read in your defaults to
the builder. This allows for much greater flexibility in your code (you can have a as many "default"
configurations as you want), and makes your code more explicit and type safe (finding references
works).

The schema is unchanged from before. Infinispan 4.0 configurations are currently not being
parsed. To upgrade, just change the schema definition from:

<infinispan
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:config:4.1

http://www.infinispan.org/schemas/infinispan-config-4.1.xsd"
xmlns="urn:infinispan:config:4.1">

to

<infinispan
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:config:5.1

http://www.infinispan.org/schemas/infinispan-config-5.1.xsd"
xmlns="urn:infinispan:config:5.1">

The schema documentation has changed format, as it is now produced using the standard tool
xsddoc. This should be a significant improvement, as better navigation is offered. Some elements
and attributes are missing docs right now, we are working on adding this. As an added benefit, your
IDE should now show documentation when an xsd referenced (as above)

We are in the process of adding in support for this configuration style for modules (such as cache
stores). In the meantime, please use the old configuration or XML if you require support for cache

13

store module configuration.

9.6. Flags and ClassLoaders

The Flags and ClassLoader API has changed. In the past, the following would work:
cache.withFlags(f1, f2); cache.withClasslLoader(cl); cache.put(k, v);

In 5.1.0, these withX() methods return a new instance and not the cache itself, so thread locals are
avoided and the code above will not work. If used in a fluent manner however, things still work:

cache.withFlags(f1, f2).withClassLoader(cl).put(k, v);

The above pattern has always been the intention of this API anyway.

9.7.]Groups Bind Address

Since upgrading to JGroups 3.X, -Dbind.address is ignored. This should be replaced with
-Djgroups.bind_addr.

14

	Upgrading to Infinispan 9.0
	Table of Contents
	Chapter 1. Upgrading from 8.x to 9.0
	1.1. Entry Retriever is now removed
	1.2. Map / Reduce is now removed
	1.3. Spring 3 support is now removed
	1.4. Function classes have moved packages
	1.5. SegmentCompletionListener interface has moved
	1.6. Spring module dependency changes
	1.7. Total order executor is not removed

	Chapter 2. Upgrading from 8.1 to 8.2
	2.1. Entry Retriever is deprecated
	2.2. Map / Reduce is deprecated

	Chapter 3. Upgrading from 8.x to 8.1
	3.1. Packaging changes
	3.1.1. CDI module split
	3.1.2. Spring module split

	3.2. Spring 3 support is deprecated

	Chapter 4. Upgrading from 7.x to 8.0
	4.1. Configuration changes
	4.1.1. Removal of Async Marshalling
	4.1.2. Reenabling of isolation level configurations in server
	4.1.3. Subsystem renaming in server
	4.1.4. Server domain mode

	Chapter 5. Upgrading from 6.0 to 7.0
	5.1. API Changes
	5.1.1. Cache Loader
	5.1.2. Cache Writer
	5.1.3. Filters

	5.2. Declarative configuration

	Chapter 6. Upgrading from 5.3 to 6.0
	6.1. Declarative configuration
	6.2. Deprecated API removal

	Chapter 7. Upgrading from 5.2 to 5.3
	7.1. Declarative configuration

	Chapter 8. Upgrading from 5.1 to 5.2
	8.1. Declarative configuration
	8.2. Transaction
	8.3. Cache Loader and Store configuration
	8.4. Virtual Nodes and Segments

	Chapter 9. Upgrading from 5.0 to 5.1
	9.1. API
	9.2. Eviction and Expiration
	9.3. Transactions
	9.4. State transfer
	9.5. Configuration
	9.6. Flags and ClassLoaders
	9.7. JGroups Bind Address

