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Chapter 1. User Guide

1.1. Solver introduction

1.1.1. What is a Solver?

Drools-solver combines a search algorithm with the power of the drools rule engine to solve

planning problems. Good examples of such planning problems include:

• Employee shift rostering

• Freight routing

• Supply sorting

• Lesson scheduling

• Exam scheduling

• The traveling salesman problem [http://en.wikipedia.org/wiki/Travelling_salesman_problem]

• The traveling tournament problem [http://mat.gsia.cmu.edu/TOURN/]

• Miss manners too (although drools-solver would solve this differently than the pure drools rule

engine example)

A planning problem consists out of a number of constraints. Generally, there are 3 types of

constraints:

• A (negative) hard constraint must not be broken. For example: 1 teacher can not teach 2 different

lessons at the same time.

• A (negative) soft constraint should not be broken if it can be avoided. For example: Teacher A

does not like to teach on Friday afternoon.

• A positive constraint (or reward) should be fulfilled if possible. For example: Teacher B likes to

teach on Monday morning.

These constraints define the score function of a planning problem. This is where the drools rule

engine comes into play: adding constraints with score rules is easy and scalable.

A planning problem has a number of solutions. Each solution has a score. We can break down

the solutions of a planning problem into 3 categories:

• A possible solution is a solution that does or does not break any number of constraints. Planning

problems tend to have a incredibly large number of possible solutions. Most of those solutions

are worthless.

http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/
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• A feasible solution is a solution that does not break any (negative) hard constraints. The number

of feasible solutions tends to be relative to the number of possible solutions. Sometimes there

are no feasible solutions.

• An optimal solution is a solution with the highest score. Planning problems tend to have 1 or a

few optimal solutions. There is always at least 1 optimal solution, even in the remote case that

it's not a feasible solution because there are no feasible solutions.

Drools-solver supports several search algorithms to efficiently wade through the incredbly large

number of possible solutions. It makes it easy to switch the search algorithm, by simply

changing the solver configuration.

1.1.2. Status of drools-solver

Drools-solver is an experimental module of Drools. The API is far from stable and backward

incompatible changes occur now and then. A recipe to upgrade and apply those API changes

between versions will be maintained soon.

You can download an alfa release of Drools-solver from the drools download site [http://

www.jboss.org/drools/downloads.html].

1.1.3. Building drools-solver and running an example

You can also easily build it from source yourself. Check out drools from subversion and do a

maven 2 build with the solver profile:

$ svn checkout http://anonsvn.jboss.org/repos/labs/labs/jbossrules/trunk/

 drools

...

$ cd drools

$ mvn -Dmaven.test.skip clean install

...

After that, you can run any example directly from the command line, for example to run the n

queens example, run:

$ cd drools-solver/drools-solver-examples/

$ mvn exec:exec

 -Dexec.mainClass="org.drools.solver.examples.nqueens.app.NQueensApp"

...

You will use drools-solver with the latest, unstable snapshot of the drools rule engine. If you would

rather use a stable version of the drools rule engine, edit /drools-solver/pom.xml and overwrite

the drools jar versions, before building and running the examples:

    <dependencyManagement>

http://www.jboss.org/drools/downloads.html
http://www.jboss.org/drools/downloads.html
http://www.jboss.org/drools/downloads.html
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        <dependencies>

            <dependency>

                <groupId>org.drools</groupId>

                <artifactId>drools-core</artifactId>

                <version>4.0.3</version>

            </dependency>

            <dependency>

                <groupId>org.drools</groupId>

                <artifactId>drools-compiler</artifactId>

                <version>4.0.3</version>

            </dependency>

        </dependencies>

    </dependencyManagement>

1.2. Solver examples

1.2.1. Introduction

Drools-solver has several examples. In this manual we explain drools-solver mainly using the n

queens example. So it's advisable to read at least the section about that example.

1.2.2. The n queens example

1.2.2.1. Running the example

In the directory /drools-solver/drools-solver-examples/ run the following command:

$ mvn exec:exec

 -Dexec.mainClass="org.drools.solver.examples.nqueens.app.NQueensApp"

...

1.2.2.2. Screenshot

Here is a screenshot of the example:
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Figure 1.1. Screenshot of the n queens example
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1.2.2.3. Problem statement

The n queens puzzle is a puzzle with the follow constraints:

• Use a chessboard of n rows and n columns.

• Place n queens on the chessboard.

• No 2 queens can attack each other. Note that a queen can attack any other queen on the same

horizontal, vertical or diagonal line.

The most common n queens puzzle is the 8 queens puzzle, with n = 8. We 'll explain drools-solver

using the 4 queens puzzle as the primary example.

A proposed solution could be:

Figure 1.2. A wrong solution for the 4 queens puzzle

The above solution is wrong because queens A1 and B0 can attack each other (as can queens B0

and D0). Removing queen B0 would respect the "no 2 queens can attack each other" constraint,

but would break the "place n queens" constraint.

1.2.2.4. Solution(s)

Below is a correct solution:

Figure 1.3. A correct solution for the 4 queens puzzle
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All the constraints have been met, so the solution is correct. Note that most n queens puzzles

have multiple correct solutions. We 'll focus on finding a single correct solution for a given n, not

on finding the number of possible correct solutions for a given n.

1.2.2.5. Problem size

These numbers might give you some insight on the size of this problem.

Table 1.1. NQueens problem size

# queens (n) # possible

solutions (each

queen it's own

column)

# feasible

solutions

(distinct)

# optimal

solutions

(distinct)

# possible / #

optimal

4 256 2 2 128

8 16777216 64 64 262144

16 1844674407370955161614772512 14772512 1248720872503

32 1.46150163733090291820368483e+48? ? ?

64 3.94020061963944792122790401e+115? ? ?

n n ^ n ? # feasible

solutions

?

1.2.2.6. Domain class diagram

Use a good domain model and it will be easier to understand and solve your problem with drools-

solver. We 'll use this domain model for the n queens example:

Figure 1.4. NQueens domain class diagram

A Queen instance has an x (its column, for example: 0 is column A, 1 is column B, ...) and a y

(its row, for example: 0 is row 0, 1 is row 1, ...). Based on the x and y, the ascending diagonal
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line as well as the descending diagonal line can be calculated. The x and y indexes start from the

upper left corner of the chessboard.

Table 1.2. A solution for the 4 queens puzzle shown in the domain model

A solution Queen x y ascendingD

(x + y)

descendingD

(x - y)

A1 0 1 1 (**) -1

B0 1 0 (*) 1 (**) 1

C2 2 2 4 0

D0 3 0 (*) 3 3

A single NQueens instance contains a list of all Queen instances. It is the Solution implementation

which will be supplied to and retrieved from drools-solver. Notice that in the 4 queens example,

NQueens's getN() method will always return 4.

You can find the source code of this example (as well as well as several other examples) in the

drools-solver-examples src distribution.

1.2.3. The lesson schedule example

1.2.3.1. Running the example

In the directory /drools-solver/drools-solver-examples/ run the following command:

$ mvn exec:exec

 -

Dexec.mainClass="org.drools.solver.examples.lessonschedule.app.LessonScheduleApp"

...

1.2.3.2. Screenshot

Here is a screenshot of the example:
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Figure 1.5. Screenshot of the lesson schedule example
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1.2.3.3. Problem statement

Schedule lessons with the follow constraints:

• No teacher with 2 lessons in the same timeslot

• No group with 2 lessons in the same timeslot

1.2.4. The traveling tournament example

1.2.4.1. Running the example

In the directory /drools-solver/drools-solver-examples/ run one of the the following

commands:

$ mvn exec:exec

 -

Dexec.mainClass="org.drools.solver.examples.travelingtournament.app.simple.SimpleTravelingTournamentApp"

...

$ mvn exec:exec

 -

Dexec.mainClass="org.drools.solver.examples.travelingtournament.app.smart.SmartTravelingTournamentApp"

...

The smart implementation performs and scales a lot better than the simple implementation.

1.2.4.2. Screenshot

Here is a screenshot of the example:
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Figure 1.6. Screenshot of the traveling tournament example
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1.2.4.3. Problem statement

Schedule matches between teams with the following hard constraints:

• Each team plays twice against every other team: once home and once away

• Each team has exactly 1 match on each playing day

• No more than 3 consecutive home or 3 consecutive away matches for any team

• No repeaters: 2 consecutive matches of the same 2 teams (so each team plays once home

and once away

and the following soft constraints:

• Minimize the total distance traveled of all teams.

You can find a detailed description as well as several records of this problem here. [http://

mat.gsia.cmu.edu/TOURN/]

1.2.4.4. Problem size

These numbers might give you some insight on the size of this problem.

Table 1.3. Traveling tournament problem size

# teams # days # matches # possible

solutions

(simple)

# possible

solutions

(smart)

# feasible

solutions

# optimal

solutions

4 6 12 2176782336 <= 518400 ? 1?

6 10 30 1000000000000000000000000000000<=

47784725839872000000

? 1?

8 14 56 1.52464943788290465606136043e+64<=

5.77608277425558771434498864e+43

? 1?

10 18 90 9.43029892325559280477052413e+112<=

1.07573451027871200629339068e+79

? 1?

12 22 132 1.58414112478195320415135060e+177<=

2.01650616733413376416949843e+126

? 1?

14 26 182 3.35080635695103223315189511e+257<=

1.73513467024013808570420241e+186

? 1?

16 30 240 3.22924601799855400751522483e+354<=

2.45064610271441678267620602e+259

? 1?

http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/
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# teams # days # matches # possible

solutions

(simple)

# possible

solutions

(smart)

# feasible

solutions

# optimal

solutions

n 2 * (n - 1) n * (n - 1) (2 * (n - 1)) ̂

(n * (n - 1))

<= (((2 * (n

- 1))!) ^ (n /

2))

? 1?

1.2.5. The ITC2007 examination example

1.2.5.1. Running the example

In the directory /drools-solver/drools-solver-examples/ run the following command:

$ mvn exec:exec

 -

Dexec.mainClass="org.drools.solver.examples.itc2007.examination.app.ExaminationApp"

...

1.2.5.2. Screenshot

Here is a screenshot of the example:
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Figure 1.7. Screenshot of the examination example
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1.2.5.3. Problem statement

Schedule each exam into a period and into a room. Multiple exams can share the same room

during the same period.

There are a number of hard constraints that cannot be broken:

• Exam conflict: 2 exams that share students should not occur in the same period.

• Room capacity: A room's seating capacity should suffice at all times.

• Period duration: A period's duration should suffice for all of its exams.

• Period related hard constraints should be fulfilled:

• Coincidence: 2 exams should use the same period (but possibly another room).

• Exclusion: 2 exams should not use the same period.

• After: 1 exam should occur in a period after another exam's period.

• Room related hard constraints should be fulfilled:

• Exclusive: 1 exam should not have to share its room with any other exam.

There are also a number of soft constraints that should be minimized (each of which has

parameterized penalty's):

• 2 exams in a row.

• 2 exams in a day.

• Period spread: 2 exams that share students should be a number of periods apart.

• Mixed durations: 2 exams that share a room should not have different durations.

• Front load: Large exams should be scheduled earlier in the schedule.

• Period penalty: Some periods have a penalty when used.

• Room penalty: Some rooms have a penalty when used.

It uses large test data sets of real-life universities.

You can find a more detailed description of this problem here. [http://www.cs.qub.ac.uk/itc2007/

examtrack/exam_track_index.htm]

1.2.5.4. Problem size

These numbers might give you some insight on the size of this problem.

http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
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Table 1.4. Examination problem size

Set #

students

# exams/

topics

# periods # rooms # possible

solutions

# feasible

solutions

# optimal

solutions

exam_comp_set17883 607 54 7 1.11000574474221096210367623e+1052? 1?

exam_comp_set212484 870 40 49 2.86903028422562597982749122e+5761? 1?

exam_comp_set316365 934 36 48 5.74648299136737635070728795e+5132? 1?

exam_comp_set44421 273 21 1 1.44349601026818742275741580e+51? 1?

exam_comp_set58719 1018 42 3 ? 1?

exam_comp_set67909 242 16 8 ? 1?

exam_comp_set713795 1096 80 28 ? 1?

exam_comp_set87718 598 80 8 ? 1?

? s t p r (t ^ p) ^ r ? 1?

1.2.5.5. Domain class diagram

Below you can see the main examination domain classes:
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Figure 1.8. Examination domain class diagram
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Notice that we've split up the exam concept into an Exam class and a Topic class. The Exam

instances change during solving, when they get another period or room. The Topic, Period and

Room instances never change during solving.

1.3. Solver configuration

1.3.1. Types of solvers

Different solvers solve problems in different ways. Each type has advantages and disadvantages.

We 'll roughly discuss a few of the solver types here. You can safely skip this section.

1.3.1.1. Brute force

Brute force creates and evaluates every possible solution, usually by creating a search tree.

Advantages:

• It finds an optimal solution. If there is more then 1 optimal solution, it finds all optimal solutions.

• It is straightforward and simple to implement.

Disadvantages:

• It has a horrible performance and scalability. Mostly unusable for a real-world problem due to

time constraints.

Brute force is currently not implemented in drools-solver. But we have plans to implement it in the

future, as a reference for validating the output of the other solver types.

1.3.1.2. Branch and bound

Branch and bound is an improvement over brute force, as it prunes away subsets of solutions

which cannot have a better solution than the best solution already found at that point.

Advantages:

• It finds an optimal solution. If there is more then 1 optimal solution, it can find all optimal solutions

if needed.

Disadvantages:

• It still scales very badly.

Branch and bound is currently not implemented in drools-solver.
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1.3.1.3. Simplex

Simplex turns all constraints and data into a big equation, which it transmutes into a mathematical

function without local optima. It then finds an optimal solution to the planning problem by finding

an optima of that mathematical function.

Advantages:

• It finds an optimal solution.

Disadvantages:

• It's usually rather complex and mathematical to implement constraints.

Drools-solver does not currently implement simplex.

1.3.1.4. Local search (tabu search, simulated annealing, ...)

Local search starts from an initial solution and evolves that single solution into a better and better

solution. It uses a single search path of solutions. At each solution in this path it evaluates a

number of possible moves on the solution and applies the most suitable move to take the step

to the next solution.

Local search works a lot like a human planner: it uses a single search path and moves facts

around to find a good feasible solution.

A simple local search can easily get stuck in a local optima, but improvements (such as tabu

search and simulated annealing) address this problem.

Advantages:

• It's relatively simple and natural to implement constraints (at least in drools-solver's

implementation).

• It's very scalable, even when adding extra constraints (at least in drools-solver's

implementation).

• It generally needs to worry about less negative hard constraints, because the move pattern can

fulfill a number of the negative hard constraints.

Disadvantages:

• It does not know when it has found an optimal solution.

• If the optimal score is unknown (which is usually the case), it must be told when to stop looking

(for example based on time spend, user input, ...).

Drools-solver implements local search, including tabu search and simulated annealing.
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1.3.2. The Solver interface

Every build-in solver implemented in drools-solver implements the Solver interface:

public interface Solver {

    void setStartingSolution(Solution solution);

    Number getBestScore();

    Solution getBestSolution();

    

    void solve();

    // ...

}

Solving a planning problem with drools-solver consists out of 4 steps:

1. Build a solver, for example a tabu search solver for any NQueens puzzle.

2. Set a starting solution on the solver, for example a 4 Queens puzzle instance.

3. Solve it.

4. Get the best solution found by the solver.

A Solver should currently directly be accessed from a single thread. Support from accessing

it from a different thread, for example to finish solving early or to change the problem facts in

real-time, will be added in future releases.

1.3.3. Building a solver

You can build a Solver instance with the XmlSolverConfigurer. Configure it with a solver

configuration xml file:

    XmlSolverConfigurer configurer = new XmlSolverConfigurer();

   

 configurer.configure("/org/drools/solver/examples/nqueens/solver/

nqueensSolverConfig.xml");

    Solver solver = configurer.buildSolver();

A basic solver configuration file looks something like this:

<?xml version="1.0" encoding="UTF-8"?>

<localSearchSolver>

   

 <scoreDrl>/org/drools/solver/examples/nqueens/solver/

nQueensScoreRules.drl</scoreDrl>
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    <scoreCalculator>

        <scoreCalculatorType>SIMPLE</scoreCalculatorType>

    </scoreCalculator>

    <finish>

        <feasableScore>0.0</feasableScore>

    </finish>

    <selector>

       

 <moveFactoryClass>org.drools.solver.examples.nqueens.solver.NQueensMoveFactory</

moveFactoryClass>

    </selector>

    <accepter>

        <completeSolutionTabuSize>1000</completeSolutionTabuSize>

    </accepter>

    <forager>

        <foragerType>MAX_SCORE_OF_ALL</foragerType>

    </forager>

</localSearchSolver>

This is a tabu search configuration for n queens. We 'll explain the various parts of a configuration

later in this manual.

Drools-solver makes it relatively easy to switch a solver type just by changing the

configuration. There's even a benchmark utility which allows you to play out different

configurations against each other and report the most appropriate configuration for your problem.

You could for example play out tabu search versus simulated annealing, on 4 queens and 64

queens.

A solver has a single Random instance. Some solver configurations use that instance a lot more

than others. For example simulated annealing depends highly on random numbers, while tabu

search only depends on it to deal with score ties. In any case, during your testing it's advisable to

set that Random instance, so your tests are reproducible.

1.3.4. The Solution interface

A Solver can only solve 1 problem at a time.

You need to present the problem as a starting Solution instance to the solver.

You need to implement the Solution interface:

public interface Solution {

    Collection<? extends Object> getFacts();

    Solution cloneSolution();

}
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For example, an NQueens instance just holds a list of all it's queens:

public class NQueens implements Solution {

    private List<Queen> queenList;

    // ...

}

1.3.4.1. The getFacts method

All Objects returned by the getFacts() method will be asserted into the drools working memory.

Those facts can be used by the score rules. For example, NQueens just returns all Queen instances.

    public Collection<? extends Object> getFacts() {

        return queenList;

    }

1.3.4.2. The cloneSolution method

Most solvers use the cloneSolution() method to clone the solution each time they encounter a

new best solution. The NQueens implementation just clones all Queen instances:

    public NQueens cloneSolution() {

        NQueens clone = new NQueens();

        List<Queen> clonedQueenList = new

 ArrayList<Queen>(queenList.size());

        for (Queen queen : queenList) {

            clonedQueenList.add(queen.clone());

        }

        clone.queenList = clonedQueenList;

        return clone;

    }

The cloneSolution() method should clone no more and no less than the parts of the Solution

that can change during solving. For example, in the lesson schedule example the lessons are

cloned, but teachers, groups and timeslots are not cloned because only a lesson's appointed

timeslot changes during solving:

    /**

     * Clone will only deep copy the lessons

     */

    public LessonSchedule cloneSolution() {

        LessonSchedule clone = new LessonSchedule();

        clone.timeslotList = timeslotList; // No Deep copy

        clone.teacherList = teacherList; // No Deep copy

        clone.groupList = groupList; // No Deep copy
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        List<Lesson> clonedLessonList = new

 ArrayList<Lesson>(lessonList.size());

        for (Lesson lesson : lessonList) {

            clonedLessonList.add(lesson.clone());

        }

        clone.lessonList = clonedLessonList;

        return clone;

    }

1.3.5. The starting solution

First, you will need to make a starting solution and set that on the solver:

solver.setStartingSolution(startingSolution);

1.3.6. A simple filler algorithm

For 4 queens we use a simple filler algorithm that creates a starting solution with all queens on

a different x and on the same y (with y = 0).

Figure 1.9. Starting solution for the 4 queens puzzle

Here's how we generate it:

    private NQueens createNQueens(int n) {

        NQueens nQueens = new NQueens();

        nQueens.setId(0L);

        List<Queen> queenList = new ArrayList<Queen>(n);

        for (int i = 0; i < n; i++) {

            Queen queen = new Queen();

            queen.setId((long) i);

            queen.setX(i); // Different column

            queen.setY(0); // Same row

            queenList.add(queen);

        }

        nQueens.setQueenList(queenList);

        return nQueens;

    }
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The starting solution will probably be far from optimal (or even feasible). Here it's actually the worst

possible solution. However, we 'll let the solver find a much better solution for us anyway.

1.3.6.1. StartingSolutionInitializer

For large problems, a simple filler algorithm like createNQueens(int) doesn't suffice. A (local

search) solver starting from a bad starting solution wastes a lot of time to reach a solution which

an initializer algorithm can generate in a fraction of that time.

An initializer algorithm ussually works something like this:

• It sorts the unplanned elements in a queue according to some general rules, for example by

exam student size.

• Next, it plans them in the order they come from the queue. Each element is put the best still

available spot.

• It doesn't change an already planned element. It exits when the queue is empty and all elements

are planned.

Such an algorithm is very deterministic: it's really fast, but you can't give it more time to generate

an even better solution. In some cases the solution it generates will be feasible, but in most cases

it won't. You 'll need a real solver to get to a feasible or more optimal solution. Nevertheless

you 'll want to such an initializer to give the real solver a serious head start. You can do this by

implementing the StartingSolutionInitializer interface:

public interface StartingSolutionInitializer extends SolverAware {

    boolean isSolutionInitialized(Solution solution);

    void initializeSolution(Solution solution);

}

You'll need to set a (uninitialized) solution on the solver. Once the solver starts, it will first call the

StartingSolutionInitializer to initialize the solution. If the StartingSolutionInitializer

adds, edits or removes facts it needs to notify the workingMemory about this. It can use score

calculation during its intialization process.

Here's an example on how you add the StartingSolutionInitializer to the configuration:

<localSearchSolver>

    ...

   

 <startingSolutionInitializerClass>org.drools.solver.examples.itc2007.examination.solver.solution.initializer.ExaminationStartingSolutionInitializer</

startingSolutionInitializerClass>

    ...

</localSearchSolver>
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1.3.7. Solving a problem

Solving a problem is quite easy once you have a solver and the starting solution:

    solver.setStartingSolution(startingSolution);

    solver.solve();

    Solution bestSolution = solver.getBestSolution();

The solve() method will take a long time (depending on the problem size and the solver

configuration). The solver will remember (actually clone) the best solution it encounters during its

solving. Depending on a number factors (including problem size, how long you allow the solver

to work, which solver type you use, ...), that best solution will be a feasible or even an optimal

solution.

Figure 1.10. Best solution for the 4 queens puzzle (also an optimal solution)

After a problem is solved, you can reuse the same solver instance to solve another problem (of

the same problem type).

1.4. Score calculation with a rule engine

1.4.1. Rule based score calculation

The score calculation of a planning problem is based on constraints (such as hard constraints,

soft constraints, rewards, ...). A rules engine, such as drools, makes it easy to implement those

constraints as score rules.

Here's an example of a constraint implemented as a score rule in drools:

rule "multipleQueensHorizontal"

    when

        $q1 : Queen($id : id, $y : y);

        $q2 : Queen(id > $id, y == $y);

    then

        insertLogical(new

 UnweightedConstraintOccurrence("multipleQueensHorizontal", $q1, $q2));

end
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This score rule will fire once for every 2 queens with the same y. The (id > $id) condition is

needed to assure that for 2 queens A and B, it can only fire for (A, B) and not for (B, A), (A, A) or

(B, B). Let's take a closer look at this score rule on the starting solution of 4 queens:

Figure 1.11. Starting solution for the 4 queens puzzle

In this starting solution the multipleQueensHorizontal score rule will fire for 6 queen couples: (A,

B), (A, C), (A, D), (B, C), (B, D) and (C, D). Because none of the queens are on the same vertical

or diagonal line, this starting solution will have a score of -6. An optimal solution of 4 queens has

a score of 0.

You need to add your score rules drl files in the solver configuration, for example:

   

 <scoreDrl>/org/drools/solver/examples/nqueens/solver/

nQueensScoreRules.drl</scoreDrl>

You can add multiple <scoreDrl> entries if needed.

It's recommended to use drools in forward-chaining mode (which is the default behaviour), as for

most solver implementations this will create the effect of a delta based score calculation instead

of a full score calculation on each solution evaluation. For example, if a single queen moves

from y 0 to 3, it won't bother to recalculate the "multiple queens on the same horizontal line"

constraint for queens with y 1 or 2. This is a huge performance gain. Drools-solver gives you

this huge performance gain without forcing you to write a very complicated delta based

score calculation algorithm. Just let the drools rule engine do the hard work.

Adding more constraints is easy and scalable (if you understand the drools rule syntax). This

allows you to add it a bunch of soft constraint score rules on top of the hard constraints score rules

with little effort and at a reasonable performance cost. For example, for a freight routing problem

you could add a soft constraint to avoid the certain flagged highways at rush hour.

1.4.2. The ScoreCalculator interface

The ScoreCalculator interface allows the solver to calculate the score of the currently evaluated

solution. The score must a Number instance and the instance type (for example Double or

Integer) must be stable throughout the problem.
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The solver aims to find the solution with the highest score. The best solution is the solution with

the highest score that it has encountered during its solving.

Most planning problems tend to use negative scores (the amount of negative constraints being

broken) with an impossible perfect score of 0. This explains why the score of a solution of 4 queens

is the negative of the number of queen couples that can attack each other.

A ScoreCalculator instance is configured in the solver configuration:

    <scoreCalculator>

        <scoreCalculatorType>SIMPLE</scoreCalculatorType>

    </scoreCalculator>

There are a couple of build-in ScoreCalculator implementations:

• SIMPLE: A SimpleScoreCalculator instance which has a setScore(Number) method for use

in the score rules.

• HARD_AND_SOFT_CONSTRAINTS: A HardAndSoftConstraintScoreCalculator

instance, which has a setHardConstraintsBroken(Number) and a

setSoftConstraintsBroken(Number) method for use in the score rules.

• DYNAMIC_HARD_AND_SOFT_CONSTRAINTS: A special

HardAndSoftConstraintScoreCalculator instance, for more information see the javadocs.

You can implement your own ScoreCalculator, although the build-in score calculators should

suffice for most needs.

The ScoreCalculator instance is asserted into the working memory as a global called

scoreCalculator. Your score rules need to (indirectly) update that instance. Usually you 'll make

a single rule as an aggregation of the other rules to update the score:

global SimpleScoreCalculator scoreCalculator;

rule "multipleQueensHorizontal"

    when

        $q1 : Queen($id : id, $y : y);

        $q2 : Queen(id > $id, y == $y);

    then

        insertLogical(new

 UnweightedConstraintOccurrence("multipleQueensHorizontal", $q1, $q2));

end

// multipleQueensVertical is obsolete because it is always 0

rule "multipleQueensAscendingDiagonal"

    when
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        $q1 : Queen($id : id, $ascendingD : ascendingD);

        $q2 : Queen(id > $id, ascendingD == $ascendingD);

    then

        insertLogical(new

 UnweightedConstraintOccurrence("multipleQueensAscendingDiagonal", $q1,

 $q2));

end

rule "multipleQueensDescendingDiagonal"

    when

        $q1 : Queen($id : id, $descendingD : descendingD);

        $q2 : Queen(id > $id, descendingD == $descendingD);

    then

        insertLogical(new

 UnweightedConstraintOccurrence("multipleQueensDescendingDiagonal", $q1,

 $q2));

end

rule "hardConstraintsBroken"

    when

        $occurrenceCount : Number() from accumulate(

            $unweightedConstraintOccurrence :

 UnweightedConstraintOccurrence(),

            count($unweightedConstraintOccurrence)

        );

    then

        scoreCalculator.setScore(- $occurrenceCount.intValue());

end

Optionally, you can also weigh your constraints differently, by multiplying the count of each score

rule with its weight. For example in freight routing, you can make 5 broken "avoid crossroads" soft

constraints count as much as 1 broken "avoid highways at rush hour" soft constraint. This allows

your business analysts to easily tweak the score function as they see fit.

Here's an example of all the NQueens constraints written as a single rule, using multi pattern

accumulates and making multipleQueensHorizontal constraint outweigh the other constraints 5

times:

// Warning: This currently triggers backwards chaining instead of forward

 chaining and seriously hurts performance and scalability.

rule "constraintsBroken"

    when

        $multipleQueensHorizontal : Long()

        from accumulate(

            $q1 : Queen($id : id, $y : y)

            and Queen(id > $id, y == $y),

           count($q1)

        );

        $multipleQueensAscendingDiagonal : Long()
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        from accumulate(

            $q2 : Queen($id : id, $ascendingD : ascendingD)

            and Queen(id > $id, ascendingD == $ascendingD),

           count($q2)

        );

        $multipleQueensDescendingDiagonal : Long()

        from accumulate(

            $q3 : Queen($id : id, $descendingD : descendingD)

            and Queen(id > $id, descendingD == $descendingD),

           count($q3)

        );

    then

        scoreCalculator.setScore(- (5 * $multipleQueensHorizontal) -

 $multipleQueensAscendingDiagonal - $multipleQueensDescendingDiagonal);

end

1.4.3. Tips and tricks

• If you know a certain constraint can never be broken, don't bother writing a score rule for it.

For example, the n queens example doesn't have a "multipleQueensVertical" rule because a

queen's x never changes and the starting solution puts each queen on a different x. This tends to

give a huge performance gain, not just because the score function is faster, but mainly because

most solver implementations will spend less time evaluating unfeasible solutions.

• Verify that your score calculation happens in the correct Number type. If you're making the

sum of integer values, don't let drools use Double's or your performance will hurt. Solver

implementations will usually spend most of their execution time running the score function.

• In case you haven't figured it out yet: performance (and scalability) is very important for solving

planning problems. What good is a real-time freight routing solver that takes a day to find a

feasible solution? Even small and innocent looking problems can hide an enormous problem

size. For example, they probably still don't know the optimal solution of the traveling tournament

problem for as little as 10 traveling teams.

• Always remember that premature optimization is the root of all evil. Make sure your design is

flexible enough to allow configuration based tweaking.

• Currently, don't allow drools to backward chain instead of forward chain, so avoid query's. It

kills scalibilty.

• Currently, don't allow drools to switch to MVEL mode, for performance. You can avoid this by

using eval in the score rules, for example: eval(day.getIndex() == $day1.getIndex() +

3).

• For optimal performance, use at least java 1.6 and always use server mode (java -server).

We have seen performance increases of 30% by switching from java 1.5 to 1.6 and 50% by

turning on server mode.
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• If you're doing performance tests, always remember that the JVM needs to warm up. First load

your solver and do a short run, before you start benchmarking it.

1.5. Local search solver

1.5.1. Overview

In number of possible solutions for a planning problem can be mind blowing. For example:

• 4 queens has 256 possible solutions (n ^ n) and 2 optimal solutions.

• 5 queens has 3125 possible solutions (n ^ n) and 1 optimal solution.

• 8 queens has 16777216 possible solutions (n ^ n) and 92 optimal solutions.

• Most real-life planning problems have an incredible number of possible solutions and only 1

optimal solution.

An algorithm that checks every possible solution (even with pruning) can easily run for a couple

of years on a single real-life planning problem. Most of the time, we are happy with a feasible

solution found in a limited amount of time. Local search tends to find a feasible solution relatively

fast. Because it acts very much like a human, it is also pretty natural to program.

Local search solves a problem making a move on the current solution to change it into a better

solution. It does that number of times till it is satisfied with the solution. It starts with the starting

solution.

A local search algorithm and the drools rule engine turn out to be a really nice combination,

because:

• A rule engine such as Drools is great for calculating the score of a solution of a planning

problem. It make it easy to add additional soft or hard constraints such as "a teacher shouldn't

teach more then 7 hours a day". However it tends to be too complex to use to actually find

new solutions.

• A local search algorithm is great at finding new improving solutions for a planning problem,

without brute-forcing every possibility. However it needs to know the score of a solution and

normally offers no support in calculating that score.

Drools-solver's local search implementation combines both. On top of that, it also offers additional

support for benchmarking etc.

1.5.2. A move

A move is the change from a solution A to a solution B. For example, below you can see a single

move on the starting solution of 4 queens that moves a single queen to another row:
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Figure 1.12. A single move (4 queens example)

A move can have a small or large impact. In the above example, the move of queen C0 to C2

is a small move. Some moves are the same move type. These are some possibilities for move

types in n queens:

• Move a single queen to another row. This is a small move. For example, move queen C0 to C2.

• Move all queens a number of rows down or up. This a big move.

• Move a single queen to another column. This is a small move. For example, move queen C2

to A0 (placing it on top of queen A0).

• Add a queen to the board at a certain row and column.

• Remove a queen from the board.

Because we have decided that all queens will be on the board at all times and each queen has

an appointed column (for performance reasons), only the first 2 move types are usable in our

example. Furthermore, we 're only using the first move type in the example because we think it

gives the best performance, but you are welcome to prove us wrong.

Each of your move types will be an implementation of the Move interface:

public interface Move {

    boolean isMoveDoable(EvaluationHandler evaluationHandler);

    Move createUndoMove(EvaluationHandler evaluationHandler);

    void doMove(EvaluationHandler evaluationHandler);

}

Let's take a look at the Move implementation for 4 queens which moves a queen to a different row:

public class YChangeMove implements Move {

    private Queen queen;
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    private int toY;

    public YChangeMove(Queen queen, int toY) {

        this.queen = queen;

        this.toY = toY;

    }

    // ... see below

}

An instance of YChangeMove moves a queen from it's current y to a different y.

Drool-solver calls the doMove(WorkingMemory) method to do a move. The Move implementation

must notify the working memory of any changes it does on the solution facts:

    public void doMove(WorkingMemory workingMemory) {

        FactHandle queenHandle = workingMemory.getFactHandle(queen);

        workingMemory.modifyRetract(queenHandle); // before changes are made

        queen.setY(toY);

        workingMemory.modifyInsert(queenHandle, queen); // after changes are

 made

    }

Drools-solver disables shadow facts for increased performance, so you cannot use the

workingMemory.update(FactHandle, Object) method, instead you need to call the

workingMemory.modifyRetract(FactHandle) method before modifying the fact and the

workingMemory.modifyInsert(FactHandle, Object) method after modifying the fact. Note

that you can alter multiple facts in a single move and effectively create a big move (also known

as a coarse-grained move).

Drools-solver automatically filters out non doable moves by calling the

isDoable(WorkingMemory) method on a move. A non doable move is:

• A move that changes nothing on the current solution. For example, moving queen B0 to row

0 is not doable.

• A move that is impossible to do on the current solution. For example, moving queen B0 to row

10 is not doable because it would move it outside the board limits.

In the n queens example, a move which moves the queen from it's current row to the same row

isn't doable:

    public boolean isMoveDoable(WorkingMemory workingMemory) {

        int fromY = queen.getY();

        return fromY != toY;

    }
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Because we won't generate a move which can move a queen outside the board limits, we don't

need to check it. A move that is currently not doable can become doable on a later solution.

Each move has an undo move: a move (usually of the same type) which does the exact opposite.

In the above example the undo move of C0 to C2 would be the move C2 to C0. An undo move

can be created from a move, but only before the move has been done on the current solution.

    public Move createUndoMove(WorkingMemory workingMemory) {

        return new YChangeMove(queen, queen.getY());

    }

Notice that if C0 would have already been moved to C2, the undo move would create the move

C2 to C2, instead of the move C2 to C0.

The local search solver can do and undo a move more than once, even on different (successive)

solutions.

A move must implement the equals() and hashcode() methods. 2 moves which make the same

change on a solution, must be equal.

    public boolean equals(Object o) {

        if (this == o) {

            return true;

        } else if (o instanceof YChangeMove) {

            YChangeMove other = (YChangeMove) o;

            return new EqualsBuilder()

                    .append(queen, other.queen)

                    .append(toY, other.toY)

                    .isEquals();

        } else {

            return false;

        }

    }

    public int hashCode() {

        return new HashCodeBuilder()

                .append(queen)

                .append(toY)

                .toHashCode();

    }

In the above example, the Queen class uses the default Object equal() and hashcode()

implementations. Notice that it checks if the other move is an instance of the same move type.

This is important because a move will be compared to a move with another move type if you're

using more then 1 move type.

It's also recommended to implement the toString() method as it allows you to read drools-

solver's logging more easily:
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    public String toString() {

        return queen + " => " + toY;

    }

Now that we can make a single move, let's take a look at generating moves.

1.5.3. Move generation

At each solution, local search will try all possible moves and pick the best move to change to the

next solution. It's up to you to generate those moves. Let's take a look at all the possible moves

on the starting solution of 4 queens:

Figure 1.13. Possible moves at step 0 (4 queens example)

As you can see, not all the moves are doable. At the starting solution we have 12 doable moves

(n * (n - 1)), one of which will be move which changes the starting solution into the next

solution. Notice that the number of possible solutions is 256 (n ^ n), much more that the amount

of doable moves. Don't create a move to every possible solution. Instead use moves which can

be sequentially combined to reach every possible solution.

It's highly recommended that you verify all solutions are connected by your move set. This

means that by combining a finite number of moves you can reach any solution from any solution.

Otherwise you're already excluding solutions at the start. Especially if you're using only big moves,

you should check it. Just because big moves outperform small moves in a short test run, it doesn't

mean that they will outperform them in a long test run.

You can mix different move types. Usually you're better off preferring small (fine-grained) moves

over big (course-grained) moves because the score delta calculation will pay off more. However,

as the traveling tournament example proves, if you can remove a hard constraint by using a certain

set of big moves, you can win performance and scalability. Try it yourself: run both the simple

(small moves) and the smart (big moves) version of the traveling tournament example. The smart

version evaluates a lot less unfeasible solutions, which enables it to outperform and outscale the

simple version.

Move generation currently happens with a MoveFactory:
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public class NQueensMoveFactory extends CachedMoveListMoveFactory {

    public List<Move> createMoveList(Solution solution) {

        NQueens nQueens = (NQueens) solution;

        List<Move> moveList = new ArrayList<Move>();

        for (Queen queen : nQueens.getQueenList()) {

            for (int n : nQueens.createNList()) {

                moveList.add(new YChangeMove(queen, n));

            }

        }

        return moveList;

    }

}

But we'll be making move generation part of the drl's soon.

1.5.4. A step

A step is the winning move. The local search solver tries every move on the current solution and

picks the best accepted move as the step:

Figure 1.14. Decide the next step at step 0 (4 queens example)

Because the move B0 to B3 has the highest score (-3), it is picked as the next step. Notice that

C0 to C3 (not shown) could also have been picked because it also has the score -3. If multiple

moves have the same highest score, one is picked randomly, in this case B0 to B3.
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The step is made and from that new solution, the local search solver tries all the possible moves

again, to decide the next step after that. It continually does this in a loop, and we get something

like this:

Figure 1.15. All steps (4 queens example)
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Notice that the local search solver doesn't use a search tree, but a search path. The search path

is highlighted by the green arrows. At each step it tries all possible moves, but unless it's the

step, it doesn't investigate that solution further. This is one of the reasons why local search is

very scalable.

As you can see, the local search solver solves the 4 queens problem by starting with the starting

solution and make the following steps sequentially:

1. B0 to B3

2. D0 to B2

3. A0 to B1

If we turn on INFO logging, this is reflected into the logging:

INFO  Solving with random seed (0).

INFO  Initial score (-6.0) is starting best score. Updating best solution

 and best score.

INFO  Step (0), time spend (0) doing next step ([Queen-1] 1 @ 0 => 3).

INFO  New score (-3.0) is better then last best score (-6.0). Updating best

 solution and best score.

INFO  Step (1), time spend (0) doing next step ([Queen-3] 3 @ 0 => 2).

INFO  New score (-1.0) is better then last best score (-3.0). Updating best

 solution and best score.

INFO  Step (2), time spend (15) doing next step ([Queen-0] 0 @ 0 => 1).

INFO  New score (0.0) is better then last best score (-1.0). Updating best

 solution and best score.

INFO  Solved in 3 steps and 15 time millis spend.

Notice that the logging used the toString() method from our Move implementation: [Queen-1]

1 @ 0 => 3.

The local search solver solves the 4 queens problem in 3 steps, by evaluating only 37

possible solutions (3 steps with 12 moves each + 1 starting solution), which is only fraction

of all 256 possible solutions. It solves 16 queens in 31 steps, by evaluating only 7441 out of

18446744073709551616 possible solutions.

1.5.5. Getting stuck in local optima

A simple local search always takes improving moves. This may seem like a good thing, but it's

not. It suffers from a number of problems:

• It can get stuck in a local optimum. For example if it reaches a solution X with a score -1 and

there is no improving move, it is forced to take a next step that leads to a solution Y with score

-2, after that however, it's very real that it will pick the step back to solution X with score -1. It

will then start looping between solution X and Y.

• It can start walking in it's own footsteps, picking the same next step at every step.
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Of course drools-solver implements better local searches, such tabu search and simulated

annealing which can avoid these problems. It's recommended to never use a simple local search,

unless you're absolutely sure there are no local optima in your planning problem.

1.5.6. Deciding the next step

The local search solver decides the next step with the aid of 3 configurable components:

• A selector which selects (or generates) the possible moves of the current solution.

• An accepter which filters out unacceptable moves. It can also weigh a move it accepts.

• A forager which gathers all accepted moves and picks the next step from them.

Figure 1.16. Decide the next step at step 0 (4 queens example)

In the above example the selector generated the moves shown with the blue lines, the accepter

accepted all of them and the forager picked the move B0 to B3.

If we turn on DEBUG logging, we can see the decision making in the log:

INFO  Solving with random seed (0).

INFO  Initial score (-6.0) is starting best score. Updating best solution

 and best score.

DEBUG     Move ([Queen-0] 0 @ 0 => 0) ignored because not doable.

DEBUG     Move ([Queen-0] 0 @ 1 => 1) with score (-4.0) and acceptChance

 (1.0).
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DEBUG     Move ([Queen-0] 0 @ 2 => 2) with score (-4.0) and acceptChance

 (1.0).

...

DEBUG     Move ([Queen-1] 1 @ 3 => 3) with score (-3.0) and acceptChance

 (1.0).

...

DEBUG     Move ([Queen-3] 3 @ 3 => 3) with score (-4.0) and acceptChance

 (1.0).

INFO  Step (0), time spend (0) doing next step ([Queen-1] 1 @ 0 => 3).

INFO  New score (-3.0) is better then last best score (-6.0). Updating best

 solution and best score.

...

1.5.6.1. Selector

A selector is currently based on a MoveFactory. We're working on improving this.

    <selector>

       

 <moveFactoryClass>org.drools.solver.examples.nqueens.solver.NQueensMoveFactory</

moveFactoryClass>

    </selector>

You're not obligated to generate the same stable set of moves at each step. You could start

with generating only big moves initially, and gradually switch to small moves. There's no build-in

support for this yet though.

1.5.6.2. Accepter

An accepter is used (together with a forager) to active tabu search, simulated annealing, great

deluge, ... For each move it generates an accept chance. If a move is rejected it is given an accept

chance of 0.0.

You can implement your own Accepter, although the build-in accepters should suffice for most

needs. You can also combine multiple accepters.

1.5.6.2.1. Tabu search accepter

When tabu search takes steps it creates tabu's. It does not accept a move as the next step if that

move breaks tabu. Drools-solver implements several tabu types:

• Solution tabu makes recently visited solutions tabu. It does not accept a move that leads to one

of those solutions. If you can spare the memory, don't be cheap on the tabu size. We recommend

this type of tabu because it tends to give the best results and requires little or no tweaking.

    <accepter>

        <completeSolutionTabuSize>1000</completeSolutionTabuSize>
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    </accepter>

• Move tabu makes recent steps tabu. It does not accept a move equal to one of those steps.

    <accepter>

        <completeMoveTabuSize>1000</completeMoveTabuSize>

    </accepter>

• Undo move tabu makes the undo move of recent steps tabu.

    <accepter>

        <completeUndoMoveTabuSize>1000</completeUndoMoveTabuSize>

    </accepter>

• Property tabu makes a property of recent steps tabu. For example, it can make the queen tabu,

so that a recently moved queen can't be moved.

    <accepter>

        <completePropertyTabuSize>1000</completePropertyTabuSize>

    </accepter>

To use property tabu, your moves must implement the TabuPropertyEnabled interface, for

example:

public class YChangeMove implements Move, TabuPropertyEnabled {

    private Queen queen;

    private int toY;

    // ...

    public List<? extends Object> getTabuPropertyList() {

        return Collections.singletonList(queen);

    }

}

You can even combine tabu types:

    <accepter>

        <completeSolutionTabuSize>1000</completeSolutionTabuSize>

        <completeUndoMoveTabuSize>10</completeUndoMoveTabuSize>

    </accepter>

If you pick a too small tabu size, your solver can still get stuck in a local optimum. On the other

hand, with the exception of solution tabu, if you pick a too large tabu size, your solver can get

stuck by bouncing of the walls. Use the benchmarker to fine tweak your configuration.
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A tabu search accepter should be combined with a maximum score of all or first best score

improving forager.

1.5.6.2.2. Simulated annealing accepter

Simulated annealing does not pick the move with the highest score, neither does it evaluate all

moves. At least at first.

It gives unimproving moves a chance, depending on it's score and the temperature. The

temperature is relative to how long it has been solving. In the end, it gradually turns into a simple

local search, only accepting improving moves.

A simulated annealing accepter should be combined with a first randomly accepted forager.

1.5.6.3. Forager

A forager gathers all accepted moves and picks the move which is the next step. A forager can

choose to allow only a subset of all selected moves to be evaluated, by quitting early if a suitable

move has been accepted.

You can implement your own Forager, although the build-in foragers should suffice for most

needs.

1.5.6.3.1. Maximum score of all forager

Allows all selected moves to be evaluated and picks the accepted move with the highest score. If

several accepted moves have the highest score, one is picked randomly, weighted on their accept

chance.

    <forager>

        <foragerType>MAX_SCORE_OF_ALL</foragerType>

    </forager>

1.5.6.3.2. First best score improving forager

Picks the first accepted move that improves the best score. If none improve the best score, it

behaves exactly like the maximum score of all forager.

    <forager>

        <foragerType>FIRST_BEST_SCORE_IMPROVING</foragerType>

    </forager>

1.5.6.3.3. First last step score improving forager

Picks the first accepted move that improves the last step score. If none improve the last step

score, it behaves exactly like the maximum score of all forager.

    <forager>

        <foragerType>FIRST_BEST_SCORE_IMPROVING</foragerType>
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    </forager>

1.5.6.3.4. First randomly accepted forager

Generates a random number for each accepted move and if the move's accept chance is higher,

it picks that move as the next move.

    <forager>

        <foragerType>FIRST_RANDOMLY_ACCEPTED</foragerType>

    </forager>

1.5.7. Best solution

Because the current solution can degrade (especially in tabu search and simulated annealing),

the local search solver remembers the best solution it has encountered through the entire search

path. Each time the current solution is better than the last best solution, the current solution is

cloned and referenced as the new best solution.

1.5.8. Finish

Sooner or later the local search solver will have to stop solving. This can be because of a number

of reasons: the time is up, the perfect score has been reached, ... The only thing you can't depend

on is on finding the optimal solution (unless you know the optimal score), because a local search

solver doesn't know that when it finds the optimal solution. For real-life problems this doesn't turn

out to be much of a problem, because finding the optimal solution would take years, so you 'll

want to finish early anyway.

You can configure when a local search solver needs to stop by configuring a Finish. You can

implement your own Finish, although the build-in finishes should suffice for most needs.

1.5.8.1. TimeMillisSpendFinish

Finishes when an amount of time has been reached:

    <finish>

        <maximumMinutesSpend>2</maximumMinutesSpend>

    </finish>

or

    <finish>

        <maximumHouresSpend>1</maximumHouresSpend>

    </finish>

Note that the time taken by a StartingSolutionInitializer also is taken into account by this

finish. So if you give the solver 2 minutes to solve something, but the initializer takes 1 minute,

the local search solver will only have a minute left.
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Note that if you use this finish, you will most likely sacrifice reproducability. The best solution will

depend on available CPU time, not only because it influences the amount of steps taken, but also

because time gradient based algorithms (such as simulated annealing) will probably act differently

on each run.

1.5.8.2. StepCountFinish

Finishes when an amount of steps has been reached:

    <finish>

        <maximumStepCount>100</maximumStepCount>

    </finish>

1.5.8.3. FeasableScoreFinish

Finishes when a feasible score has been reached. You can also use this finish if you know the

perfect score, for example for 4 queens:

    <finish>

        <feasableScore>0.0</feasableScore>

    </finish>

1.5.8.4. UnimprovedStepCountFinish

Finishes when the best score hasn't improved in a number of steps:

    <finish>

        <maximumUnimprovedStepCount>100</maximumUnimprovedStepCount>

    </finish>

If it hasn't improved recently, it's probably not going to improve soon anyway and it's not worth the

effort to continue. We have observed that once a new best solution is found (even after a long time

of no improvement on the best solution), the next few step tend to improve the best solution too.

1.5.8.5. Combining finishes

Finishes can be combined, for example: finish after 100 steps or if a score of 0.0 has been reached:

    <finish>

        <finishCompositionStyle>OR</finishCompositionStyle>

        <maximumStepCount>100</maximumStepCount>

        <feasableScore>0.0</feasableScore>

    </finish>

Alternatively you can use AND, for example: finish after reaching a feasible score of at least -100

and no improvements in 5 steps:
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    <finish>

        <finishCompositionStyle>AND</finishCompositionStyle>

        <maximumUnimprovedStepCount>5</maximumUnimprovedStepCount>

        <feasableScore>-100.0</feasableScore>

    </finish>

This ensures it doesn't just finish after finding a feasible solution, but also makes any obvious

improvements on that solution before finishing.
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