Drools Documentation

Version 6.0.0-SNAPSHOT

by The JBoss Drools team [http://www.jboss.org/drools/team.html]

http://www.jboss.org/drools/team.html
http://www.jboss.org/drools/team.html

IV = [o 4= PP 1
I 1 1 o To U o o1 I 3
0 OO 1o o o 0T i o 1o PP SPPPTTPPPIN 3

1.2. Getting INVOIVEAcooiiiiiiiiii e e 3
1.2.1. Sign UP t0 JDOSS.0IQ oevuriiiieiiiieiie e e e e e e e 4

1.2.2. Sign the Contributor Agreementcooooiiiiiiiiiii 4

1.2.3. Submitting isSUEs Via JIRAcoiiii i 5

1.2.4. FOrK GItHUD ooee e e 6

ST 1Y 11T T =) (= 6

1.2.6. Commit with Correct CONVENLIONScvvvviiiiiiieiiiee e 8

1.2.7. Submit PUll REQUESTEScvuiiiiciii e 9

1.3. Installation and Setup (Core and IDE)coveiiiiiiiiiiiiii e 11
1.3.1. Installing and USINGc.ooviiiiiiiiiecie e 11

1.3.2. BUilding from SOUICEociiiiiieiiii et 21

1.3.3. ECIPSE i 22

2. REIEASE NOLES .oouiiii i et 29
2.1. New and Noteworthy in KIE APl 6.0.0cciviiiiieiiiei e 29
2.1.1. NeW KIE NAME ..o 29

2.1.2. Maven aligned projects and modules and Maven Deployment 29

2.1.3. Configuration and convention based projectscccceevveeeiiineeeens 30

2.1.4. KieBase INCIUSIONcoouuiiiiiiii e 30

2.1.5. KieModules, KieContainer and KIE-Clccocoiiiiiiiiiiiiiiiiccieen, 31

2.1.6. KIESCANNET ..oivtiiieeiii e e e e s 31

2.1.7. Hierarchical ClassLoadercoccuiviiiiiiiiiieiieecieeeee e 32

2.1.8. Legacy API AdApLercoouieiiiiiiiie e 32

2.1.9. KIE DOCUMENTALION ...uiiiviiiiieii e eees 32

2.2. What is New and Noteworthy in Drools 6.0.0ccooeeviieiiineiiii e 33
2.2.1. PHREAK - Lazy rule matching algorithmcccoooeviiiiiiiiiiiiinnene, 33

2.2.2. Automatically firing timed rule in passive modeccoccciveviieennnnn. 33

2.2.3. EXPreSSioN TIMEIS ..o.uuuiiiiiiieieiii ettt e et e e 34

2.2.4. RuleFowGroup and AgendaGroups are mergedccoccoevevvneeennnnnns 35

2.3. New and Noteworthy in KIE Workbench 6.0.0ccccoviiiiiiiiiiiiiieicieees 35

2.4. New and Noteworthy in Integration 6.0.0cocciiiiiiiiiiii e 38
S O I | PP 38

A S Y o 12T 39

2.4.3. ArieS BIUEPIINTS ...ooeiiiiiiii e 39

244, OSGI REAAY .. .civviiiieiiii e e 39

3. Compatibility MALIIX oo 41
R PSP 43
O | PP 45
I @ V= g T O 45
4.1.1. Anatomy Of ProOJECESiiiiiiiiiiiii e 45

4.1.2. LITECYCIES ovniii e 46

Drools Documentation

4.2. Build, Deploy, Utilize and RUNc.oiiiiiiiiiiieee e 47
0 W [1o To (1T o o E PSP 47
4.2.2. BUIING ..o 50
o T LY o] [0/ g T [P 67
A.2.4, RUNNING ottt ettt e et e et e e et eeeaan s 70
4.2.5. Build, Deploy and Utilize EXamplesccoooeviiiiiiiiiiiecin e, 84

4.3, SECUNLY .ttt ettt e e e e 96
4.3.1. SECUNLY MANAGETcivviieiiii e e e e e e e e e eaaas 96

[Il. Drools Runtime and LAnQUAGEueiiiiiniiiiii ettt et e e e 99
5. HybBrid REASONING .vuiiiiiiiiii e e e e e 101

5.1. Artificial INtelligeNCEecoieei i 101
B5.1.1. A Little HIiSTONY .uviiiiiiii e 101
5.1.2. Knowledge Representation and Reasoningcccoevevevevineeennnnees 102
5.1.3. Rule Engines and Production Rule Systems (PRS)cccoeeevn 103
5.1.4. Hybrid Reasoning Systems (HRS)ccccoviiiiiiiiiiiiiii e 105
5.1.5. EXPEIT SYSIIMS ouiiiiiiiiii i 108
5.1.6. Recommended ReadiNgooeeiiuiiiiiiiiiiieiiii e 109

5.2. Rete AlGOrthm ... 112

5.3. ReteOO AlQOItNM ...t 119

5.4. PHREAK AIGOMthIM ..ot 120

ST LT =T €U o = PP 129

B.1. THE BASICS ..evuiiiiiiiiiiee ettt e et e et e et aaae 129
6.1.1. Stateless Knowledge SESSIONcccuuiiiiiiiiieiiiiiieeeiii e 129
6.1.2. Stateful Knowledge SeSSIONccoceviiiiiiiiiiii i, 132
6.1.3. Methods VErsuS RUIESoiviuiiii e 137
6.1.4. CroSS PrOoUUCESuiiiiiiiieeiiii et e e e 138

6.2. EXECULION CONIOI ...eviiiiiiii e e e e e e e ees 139
L T Vo =1 Vo - T 139
6.2.2. Rule Matches and Conflict Sets.ccoovviiiiiiiiiii e 140

6.3, INTEIENCE ... e 147
6.3.1. BUS Pass EXample ... 147

6.4. Truth Maintenance with Logical ObJECESccoevvviiiiiiiiiiiiciie e 149
L T @Y= V1 P 149

6.5. Decision Tables in SpPreadsheetsc.ccoovviiiiiiii i 153
6.5.1. When to Use Decision Tablesccccooviiiiiiiiiiiiie e 154
B.5.2. OVEIVIEBW ...ttt ettt e et e e et e e e e et e e e e ere s 154
6.5.3. How Decision Tables WOrKcccouiiiiiiiiiiiiiiiee e 156
6.5.4. Spreadsheet SYNLAXccoceuiiiiiiieiiiieiie e 160
6.5.5. Creating and integrating Spreadsheet based Decision Tables 170
6.5.6. Managing Business Rules in Decision Tablesccccccovviviineinnnnns 170
6.5.7. RUlE TEMPIALES ...ooviiiiiiii e 171

[S 20T 0T T 11 o RN 174

7. Rule Language REFEIENCEoiiiiiiiiii e 177

4 T O 1= 4T PP 177

0 T T N U < 11T 177

7.1.2. What Makes @ TUIEcocuuniiiiiiii e 178

7.2, KEYWOIUS ...ttt ettt e e e e e b 178
7.3, COMIMENES .ottt ettt e e e e e e e et e et e e e an e nnes 180
7.3.1. Single [IN@ COMMENTciiiiiiiiiii e 180
7.3.2. MUlti-lin€ COMMENT ...uuiiiiiiii i 181

T4, EITOr IMESSAGESiiiitiiiii ettt e ettt et ettt en e en e 181
7.4.1. MeSSage fOrmMalccuuiiiiiiii e 181
7.4.2. Error Messages DesSCriptionuveiiiiiieieiii e 182
7.4.3. Other MESSAQES . cvvvuiiiiiieiii et e e e e e aen 186

7.5, PACKAGE ...eeiiiii e 186
4% 5 T 111 o o o (N 187
7.5.2. 910DAI ..o 188

LG T ¥ To 1o o TSP 189
7.7. Type DECIAratioNccieiiiiiiiiiii e 190
7.7.1. Declaring NEW TYPES ..uucivuiiiiiiieiiieeei e e e e e e e e et e e e eens 191
7.7.2. Declaring Metadatac..uuiiiiiiiiiiiiii e 193
7.7.3. Declaring Metadata for EXisSting TYPES ...cccuveviiiiiiiieiiieeieeeeeeiis 200
7.7.4. Parametrized constructors for declared typesocceeiveieiiinnenes 200
7.7.5. Non Typesafe ClaSSeSccuoveiiiiiiiii e 201
7.7.6. Accessing Declared Types from the Application Code 201
7.7.7. Type Declaration 'extends’ccuoveiiiiiiiiiieii e 203
A - TR I - V1 T 203

7.8 RUIE e 210
7.8.1. RUle AHINDULES ..o e 211
7.8.2. Timers and Calendarscooeuuiiiiiiiiiieiiiiin e 215
7.8.3. Left Hand Side (When) SYNtaXoccviviiiiiiiiiiiieiii e 219
7.8.4. The Right Hand Side (then)ccoooiiiiiiiiii e 272
7.8.5. Conditional named CONSEQUENCEScccuuuieeiirinieeiiiiiie e e e 274
7.8.6. A Note on Auto-boxing and Primitive TYPeScccceevvviiiiiiiierineennnn. 276

S T O U= PP PPTPPTIN 277
7.10. Domain SpPecific LANQUAGEScouiiiiiiiiii e ee e e e e e e e 280
7.10.1. When t0 USE @ DSL ..covuiiiiieiii e 280
7.010.2. DSL BASICS ..eivitiieiiiiiiieeiii e et e et e e et e e et e et e e aa e aee 280
7.10.3. Adding Constraints to FACISc..iiiiiiiiiieiiiiiee e 283
7.10.4. Developing @ DSLoivuiiiiiciie e 285
7.10.5. DSL and DSLR Referencecoooeuiiiiiiiiiiiieiiieeeeee e, 285

8. CompleX EVENT ProCESSING ..ciuuiiiiiiiiiii e e e e e e et e e e eanes 291
8.1. Complex EVENE PrOCESSING .. cvvvvnieiiiiiie et 291
2 B (o To (-3 U= o T o PR 292
8.3. EVENE SEMANTICS ..oivuiiiiieiii ettt e e e e e e e e e e e en e eeen 294
8.4. Event Processing MOAEScoouiiiiiiiiiiiieii e e e 295
S 2 T o T I 1Y/ o To = P 296
8.4.2. Stream MOAEcocvuniiiiiii e 297

Drools Documentation

8.5. SESSION ClOCK ...ceviiiiiiee et e 299
8.5.1. Available Clock Implementationsccooevviiiiiiii i 300

8.6. SlidiNg WINUOWScovuniiiiiiie et 301
8.6.1. Sliding Time WINAOWSccovuiiiiiiiiii e 301
8.6.2. Sliding Length WINAOWSc..uiiiiiiiiiiiiiii e 302

8.7, SIrEAMS SUPPOI ittt e e e e 303
8.7.1. Declaring and Using Entry POINtSccoooviiiiiiiiiiiiiiiii e 304

8.8. Memory Management for EVENLScc.ooviiiiiiiici e 306
8.8.1. Explicit expiration OffSEtoceiiiiiiiiiiii e 306
8.8.2. Inferred expiration offSetccoeeviiiiiiii 306

8.9. Temporal REASONINGcouuuiiiiiiiiiei e 307
8.9.1. Temporal OPEIALOrScceuuieeiiiieiiieeiii e e e e e e e e e eanaeees 308

V. DroolS INTEGIALIONcouuiiiiiii ettt ettt e et e et e e e b 323
L I B o To] F-T @aT 1 4] 4o =T o £ PPTRSPPN 325
0. L. AP e e aan 325
LS 2 I B €5 1 (<1 o TSP 325
9.1.2. JSON oottt 325
9.1.3. JAXB ettt aan 325

9.2. ComMmMANAS SUPPOIEA ... ceeveeneiiiii ettt 326
9.2.1. BatchExecutionCommandcccuiiiiiiiiiieiiiiiieeeeene e 328
9.2.2. InsertObjectCoOMMANGooiiiieieiiii et 329
9.2.3. RetraCtCoOMMANTuiiiiiiiiieeiiii e e e e e 331
9.2.4. ModifyComMMEANTuuiiiiiiiieiiii e 332
9.2.5. GetObjectCommandcooeiiiiiiii i 333
9.2.6. InsertElementsCommandcooveuiiiiiiiiiiin e 334
9.2.7. FireAlIRUIESCOMMANGoovviiiiiii e 336
9.2.8. StartProcessCommanduiviiiiiiiiieiiir e 337
9.2.9. SignalEventCommaNdccuieiiiieiiiiieii e 339
9.2.10. CompleteWorkltemCommandoooeeviiiiiiiiiinniiiieeeei e 340
9.2.11. AbortWorklitemCommandcocuuiiiiiiiiiieriiiieee e 341
9.2.12. QUEIYCOMMANG ...vuuiiiiiiiiee it e et e e e et e e e e eaa s 342
9.2.13. SetGlobalCommandcoveiiiiiiiiriiiiie e 343
9.2.14. GetGlobalCommandcovviiiiiiiii e 345
9.2.15. GetObjectsCommandccocvuiiiiiiiiiii e 346

0 TR I PSP 349
025 O [1 o T [o 1T o TP 349
02 Y T T 7= 11T £ P 349
10.2.1. @KREAIASEIUicviiiieiiii e 349
10.2.2. @KCONTAINET ..ueniiiiieee e e e e e e e e 349
10.2.3. @KBASE ..coevviieiiiiiieeeei e 350
10.2.4. @KSeSsSion for KieSESSIONccviviiiiiieeieeeeeeeeeeeee e, 351
10.2.5. @KSession for StatelessSKIieSeSSIONc..vvvviniiiiiiiiiiiieiieeeineenas 352
10.3. API Example COMPATISONcccuuuieiiiiiieieiie ettt 353
11. Integration With SPriNg ..o e e e e e 355

Vi

11.1. Important Changes for Drools 6.0c.coiiiiiiiiiiiiiiii e 355

11.2. Integration with Drools EXPErtcoeeiuiiiiiiiiiiii e 355
11.2.1. KieMOAUIEouniiieiii et 355

11.2.2, KIEBASE ..ueieiiiiiiiiiii ettt 356

11.2.3. IMPORTANT NOTE ..ottt 357

11.2.4, KIESESSIONS ..ciivtiieeiiiiiee ettt e et e e e e et e e e et s e e e et s e e eenenneaaees 357

11.2.5. EVENL LISLENEIS ...oiiiieiiiiie et e e 358

0 O G T o To [1= £ TP 362

11.2.7. Defining Batch Commandsccooviiiiiiiiiiiiiieci e 364

11.2.8. PEISISIENCE ..oovviieiiiiiiici e 365

11.3. Integration with JBPM Human Taskccccoveiiiiiiiiiiiineiece e 366
11.3.1. How to configure Spring with JBPM Human task 366

12. Apache Camel INTEGrationcoouuiiiiiiiiiie e 371
12.0, CAMEI oot e 371

13. Drools CaAmeEl SEIVELiiiiieii ettt et e e e et e e aaes 375
R 200 I [11 o T [o 1T o T PP 375
13.2. DEPIOYMENT ...t et 375
RS T @do] 4o |1] =1 1 o] o RN 375
13.3.1. REST/Camel Services configurationcccooeeeviviinieiiiiineeiinnnnnn. 375

14. IMX monitoring with RHQ/JONoiiiiiiiii e 381
I I [1o T [T o o PPN 381
14.1.1. Enabling JMX monitoring in a Drools applicationc.cc.ccuu..e. 381

14.1.2. Installing and running the RHQ/JON plugincccoooviiiiiinniiiinnnnen. 381

V. Drools WOTKDENCKuiiiii e 383
15, WOTKDENCRN e et et e e e e e aans 385
15.0. INSTAlIALION .oiieiiieee e 385
15.1.2. War installationcooveiiiiiii e 385

15.1.2. WOrkbench datac..uviiiiiiiiiii e 385

15.1.3. SYSLEM PrOPEILIES ..oeuueiiiii ettt 385

15.2. QUICK STAIT ..iiiiiiiiee e e e e e e e e e 387
15.2.1. Add rEPOSITONY ..oeiiiei ettt e 387

15.2.2. AdA PrOJECE couniiii i 388

15.2.3. Define Data MOdelooveuiiiiiiiiii e 392

15.2.4. DefiNe RUIE ..oovuiiiiii i 396

15.2.5. Build @nd DeplOycooieiiiiiiiiiiiieee e 398

ST T @do] 41 o [¥] =1 1 o] o N 399
15.3.1. USEr ManagemeNntccouiiiuuniiiieiirieeieee e et e e 399

15.3.2. ROIES ot 400

15.3.3. Command line config toolccciiiiiiiiiiiii 401

15.4. ADMINISITALION ..oeovtiieiiiii e e et e et eeeaae e eeene 402
15.4.1. AdMINIStration OVEIVIEWviiiiiiiieiieee e 402

15.4.2. Organizational UNitc.coiiiiiiiieiiiiei e e 403

15.4.3. VS FEPOSIIONY ..uueiiiiiieiiiiii ettt et eea e e 404

ST ST g1 oo [Tox 1T o PP 404

Vii

Drools Documentation

15.5.1. Log in @nd [0g OULccouuniiiiiiieeii e 404
15.5.2. HOME SCrEEN ...cevviiiiiiii e 404
15.5.3. WOrkbench CONCEPLSccovuiiiiiiiiiiecii e 405
15.5.4. Initial [ayouloiiiiiie e 405
15.6. Changing the [aYOULoiiiiiiiiiii e 406
ST TR N = =174 oo [N 407
15.6.2. REPOSIIONING ...ceieitieeiiiiiiee e 407
15,7, AUTNOIING coniiiii e 409
15.7.1. Artifact REPOSIIONYocveveiieiiiiii ettt 409
15.7.2. ASSEL EQItOroeeiiieiiiiiie e 411
15.7.3. Project EXPIOTErccoouuiiiiiiiii e 414
15.7.4. Project EditOrooiiuiiiii e 420
15.7.5. Validationcccuniiiiiiie e 424
15.7.6. Data MOdelleriiiiiiiiiii e 426
15.7.7. Categories EditOroooiiiiiiiiii e 454

16. AULNOTING ASSBIS iuiiiiiiiiii e e e e e e e e et e e e e e et e eeanaaes 457
16.1. Creating & PACKAGEuuiiiiiiiiee et 457
16.1.1. EMPLY PACKAGE ...cevniiiiiieiii e 458
16.2. Business rules with the guided editorcccooviiiiiiiiiiii 459
16.2.1. Parts of the Guided Rule Editorccooviimiiiiiiiiieeiiiiiii e, 460
16.2.2. The "WHEN" (left-hand side) of a Ruleccoooeeiiiiiiiiiin, 460
16.2.3. The "THEN" (right-hand side) of a Rulecccooeviiiiiiiiiinns 464
16.2.4. Optional attribULeSoociiiiiiei e 467
16.2.5. Pattern/Action toolbar ... 467
16.2.6. User driven drop down [IStScccouuiiiiiiiiiiiiiiccce e 467
16.2.7. Augmenting with DSL SENtENCESoevvniiiiiieiiiiecieee e, 468
16.2.8. A more complex example: ... 469
16.3. Templates of aSSEtS/TUIESccovuiiiiiiiiiie e 470
16.3.1. Creating a rule templateooooeuiiiiiii e 471
16.3.2. Define the templateo.ooeviiiii i, 471
16.3.3. Defining the template dataccoiviiiiiiiiiiiii e, 472
16.3.4. Generated DRLcouvuiiiiiiiiiiiii e 476
16.4. Guided decision tables (web based)ccoooviiiiiiiii 478
16.4.1. Types of decCision tablecccoeeiiiiiiiiii e, 478
16.4.2. Main componentS\CONCEPLSeivivinieiiiiii ettt 479
16.4.3. Defining a web based decision tableccoocoiiiiiin 482
16.4.4. Rule definitioncoiiiiiiii e 497
16.4.5. AUGIL LOG .ooiiieeiiiiie ettt e e e 498
16.5. Spreadsheet decision tablescooiviiiiiiiiii 500
16.6. SCOIECAIUS ...oevvveiiiiieieee e e ettt e et ettt e e e ettt e e e e e e e eerbt e reeeeeeeenne 501
16.6.1. () Setup Parametersoiieiiiiiiieiiiii e 502
16.6.2. (B) CharacteristiCScccuiiiiiiiiii e 503
G A =TS A o =T - 1 (o T 505
16.7.1. GIVEN SECHON ..evvvviiiiieeeeiieiiti ettt e e e 508

viii

16.7.2. EXPECE SECHON ..oevviniiiiii e 508

16.7.3. Global SECHONiiiiiiiiieiii e 509
16.7.4. NEeW INPUL SECLIONcoouiiiiiiiii e 509
TR = T U] ot 1o) o PR 509
16.9. DSL @IOT ...t e 510
16.10. Data enumerations (drop down list configurations)cccoevvvviveinnns 511
16.10.1. Advanced enumeration CONCEPLScceuureierriiieririinieeeiiineeeeiinnne 512
16.11. Technical rules (DRL) ..ccuuiiiiieiii e 513
17. Workbench INtegration ... e 515
L7, 0, REST i e 515
17.0.0. 30D CallS ooeiiiei e 515
17.1.2. REPOSItOry CallSuiiiiiiiiiieii e 516
17.1.3. Organizational unit CallScooviiiiiiiiiiiiii e 518
17.0.4. MAVEN CallS ... 519

18. Workbench High Availabilitycooiiiiiiiiii e 521
00 PP 521
18.1.1. VFS CIUSEEIING .eevtueiiiiiieieiiie ettt 521
18.1.2. JBPM CIUSIEINNG .euiiiiieiieci et e e 525

V1. DroolS EXBMPIESouuiiiiiiiiei ittt ettt e e ettt e e et et e e e eat e e e eaa e eees 527
S R T 121 P 529
19.1. Getting the EXamPpIES ... 529
19.2. HEllo WOTIA ...coviieei e 529
19.3. State EXAMPIE ..o 535
19.3.1. Understanding the State Exampleccoccoiviiiiiiiii i, 535
19.4. FIbonacCi EXamMPIEiiiiiiiiii e 542
19.5. Banking TULOMIAloiiuiiii e e e e 549
19.6. Pricing Rule Decision Table EXamplecooviiiiiiiiiiiiiiiieecee e, 563
19.6.1. Executing the example ..o, 563
19.6.2. The decCiSion tablecooiiiiiiiii e 564
19.7. Pet Store EXampPIecoouiiiiiii e 566
19.8. Honest Politician EXamPpPlecoouuiiiiiiiiiiii e 578
19.9. SUdOKU EXAMPIEuiiiiii e 582
19.9.1. SUAOKU OVEIVIEWievniiiieiiieeeie e et e e e e e e e e e e e e eeens 583
19.9.2. Running the EXamPIleoooiiiiiiii e 583
19.9.3. Java Source and RUleS OVEIVIEWc.uuveiiiiiiieiiiiiiieieiineeeeneen 589
19.9.4. Sudoku Validator Rules (validate.drl)cccccoeveviiiiiiiiiiiieeee, 589
19.9.5. Sudoku Solving Rules (sudoku.drl)ccooviiiiiiiiiiiiiiiiei e, 590
19.20. NUMDEE GUESS ...ciiviiiiiiiii ettt e e e et e e e e e 591
19.11. Conway's Game OF Lifeccuuiiiiiiiiiieiiii e 598
I 200 7 o o o PPN 605
19.13. Adventures With Droolsccoiiiiiiiiiiii e 606
19.14. WUMPUS WOTIA ..oeoiinci e e e 607
19.15. Miss Manners and Benchmarkingccooiiiiiiinniii e 610
19.15.1. INtrOQUCLION ...iieiiieeeei e 611

Drools Documentation

19.15.2. In depth DISCUSSIONcceiviiieiiiiiiieieei et

19.15.3. Output Summary

(9Drools

Xii

Part I. Welcome

Welcome and Release Notes

Chapter 1.

Chapter 1. Introduction

1.1. Introduction

It's been a busy year since the last 5.x series release and so much has change.

One of the biggest complaints during the 5.x series was the lack of defined methodology for
deployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible.
A big focus for 6.0 was streamlining the build, deploy and loading(utilization) aspects of the
system. Building and deploying now align with Maven and the utilization is now convention and
configuration oriented, instead of programmatic, with sane default to minimise the configuration.

The workbench has been rebuilt from the ground up, inspired by Eclipse, to provide a flexible
and better integrated solution; with panels and perspectives via plugins. The base workbench
has been spun off into a standalone project called UberFire, so that anyone now can build high
quality web based workbenches. In the longer term it will facilitate user customised Drools and
jBPM installations.

Git replaces JCR as the content repository, offering a fast and scalable back-end storage for
content that has strong tooling support. There has been a refocus on simplicity away from
databases with an aim of storing everythign as as text file, even meta data is just a file. The
database is just there to provide fast indexing and search via Lucene. This will allow repositories
now to be synced and published with estbalished infrastructure, like GitHub.

jBPM has been dramatically beefed up, thanks to the Polymita acquisition, with human tasks, form
builders, class modellers, execution servers and runtime management. All fully integrated into the
new workbench.

OptaPlanner is now a top level project and getting full time attention.

A new umbrella name, KIE (Knowledge Is Everything), has been introduced to bring our related
technologies together under one roof. It also acts as the core shared around for our projects. So
expect to see it a lot.

1.2. Getting Involved

We are often asked "How do | get involved". Luckily the answer is simple, just write some code
and submit it :) There are no hoops you have to jump through or secret handshakes. We have
a very minimal "overhead" that we do request to allow for scalable project development. Below
we provide a general overview of the tools and "workflow" we request, along with some general
advice.

If you contribute some good work, don't forget to blog about it ;)

Chapter 1. Introduction

1.2.1. Sign up to jboss.org

Signing to jboss.org will give you access to the JBoss wiki, forums and JIRA. Go to http:/
www.jboss.org/ and click "Register".

In | Regist
Members Projects Products IR
Overview Lommunity User Groups Events Blogs Articles Books
Choosing the right technology... tay connected: 3 <) KD
JBoss Community JBoss Enterprise
EZL\n:n:u" ty driven propects m Products Stable, supported products ﬂ f_hErk out mg latest
eaturing the latest innovations h certified on multiple platforms & Asy audio podcasts
for cutting edge apps. Tor misshon critical apps.

JBoss Developer

Webinar Series

Learn more about the Webinar Series»

Found a security issue with
a |Boss project or product?

Report it now.

April 4-5 : Tokye, Roppongi Hills
JavaOne Tokyo 2012

Join Red Har at the JavaOne conference in

I '[0 Tokyo where you can hear talks on some of

has been teleased! - the latest JBoss projects.

June ¥5-26 : Boston
(N] Tty TaTh B B - EAET SN

1.2.2. Sign the Contributor Agreement

The only form you need to sign is the contributor agreement, which is fully automated via the web.
As the image below says "This establishes the terms and conditions for your contributions and
ensures that source code can be licensed appropriately"

https://cla.jboss.org/

http://www.jboss.org/
http://www.jboss.org/
https://cla.jboss.org/

Submitting issues via JIRA

Sign CLA

If vou've submitted a patch that's been accepted, or been offered an invitation to commit directly into a project's source code repository, then please
login using vour jboss.org user account and sign an [ndividual or Corporate Contributor License Agreement (CLA).

This establishes the terms and conditions for your contributions and ensures that the source code can be licensed appropriatelv.

Username: | E|

Password:]

Login

Do not sign a CLA unless you've met the conditions above.

This helps to keep our systems tidv and prevents project leads from reviewing unnecessary agreements.

1.2.3. Submitting issues via JIRA

To be able to interact with the core development team you will need to use JIRA, the issue tracker.
This ensures that all requests are logged and allocated to a release schedule and all discussions
captured in one place. Bug reports, bug fixes, feature requests and feature submissions should
all go here. General questions should be undertaken at the mailing lists.

Minor code submissions, like format or documentation fixes do not need an associated JIRA issue
created.

https://issues.jboss.org/browse/JBRULES [???](Drools)
https://issues.jboss.org/browse/JBPM

https://issues.jboss.org/browse/GUVNOR

???
???
https://issues.jboss.org/browse/JBPM
https://issues.jboss.org/browse/GUVNOR

Chapter 1. Introduction

Projects ! lssues = EENIEES

Drools / JBRULES-3370
|- Array fields are not supported in declared facts

Log In

Details

Type Enhancement Status s Open (View Workflow)
Priority 4 Minor Resolution Unresolved

Affects Version/s None Fix Version/s Mone

Component/s drools-compiler, drools-core Security Level Public (Everyone can see)
Labels None

Similar Issues Show 10 results *

Description

it should be possible to do

declare Bean
arrayField : SomeObject[]
end

optionally,

declare Bean
arrayField : SomeObject]] = new SomeQObject[3]
end

1.2.4. Fork GitHub

With the contributor agreement signed and your requests submitted to JIRA you should now be
ready to code :) Create a GitHub account and fork any of the Drools, jBPM or Guvnor repositories.
The fork will create a copy in your own GitHub space which you can work on at your own pace.
If you make a mistake, don't worry blow it away and fork again. Note each GitHub repository
provides you the clone (checkout) URL, GitHub will provide you URLs specific to your fork.

https://github.com/droolsjbpm
@ droolsjbpm / drools # Admin | ©Watch & Fork b PullRequest 125 4 81

Code Network Pull Requests 10 Stats & Graphs

Drools Expert is the rule engine and Drools Fusion does complex event processing (CEP). — Read more
http:/fwww.jboss.org/drools

=1 ZIP S5H. HTTP Git Read-Only | git@github.com:droclsibpm/drools.git Read+Write access

A branch: master ~ Files Commits Branches 4 Tags 10 Downloads

1.2.5. Writing Tests

When writing tests, try and keep them minimal and self contained. We prefer to keep the DRL
fragments within the test, as it makes for quicker reviewing. If their are a large number of rules

https://github.com/droolsjbpm

Writing Tests

then using a String is not practical so then by all means place them in separate DRL files instead
to be loaded from the classpath. If your tests need to use a model, please try to use those that
already exist for other unit tests; such as Person, Cheese or Order. If no classes exist that have
the fields you need, try and update fields of existing classes before adding a new class.

There are a vast number of tests to look over to get an idea, MiscTest is a good place to start.

https://github.com/droolsjbpm/drools/blob/master/drools-compiler/src/test/java/org/drools/
integrationtests/MiscTest.java [https://github.com/droolsjbpm]

https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm

Chapter 1. Introduction

ETest
public vold testEvalWithBigDecimal () throws Excepticon |
String str = "";

str += "package org.drools \n":

3tr += "import jeva.math.BigDecimal; “n":
str += "global javea.util.list list “\n":
str += "rule rulel “n";

Itr 4= " dialect “"Jjawvah"™ \n";

str += "when ‘n":

atr += " $bd : BigDecimal() “n™:

atr += " eval { $bd.compareTo(BigDecimal.ZERO § > 0) \n";
str += "then ‘n":

Str += " list.add{ sbkd }; n":

str += "end ‘\n";

EnowledgeBuilder kbuilder = EnowledgeBuilderFactory.newKnowledgeBuilder():

k¥builder.add(ResourceFactory.newByteArravBesocurce(str.getBytes()).,
ResourceType.DEL) :

if { kbuilder.hasErrcrs())} |
logger.warn({ kbuilder.getErrocrs().toString())
1

assertFalse(kbuilder.hasErrcra()):

EnowledgeBase kbase = KnowledgeBaseFactory.newkEnowledgeBase():
k¥base.addEnowledgePackages | kbuilder.getEnowledgePackages()):

StatefulKnowledgeSession ksession = createkKnowledgeSession(kbase) !
List list = new ArravList():
ksession.setGlckal("list",
list):
ksession.ingert{ new BigDecimal({ 1.5) }:

ksession.fireRl1Bules() ;

assertEquals(1,
list.zize()):
assertEquals(new BigDecimal({ 1.5),
list.gec{ 0)):

1.2.6. Commit with Correct Conventions

When you commit, make sure you use the correct conventions. The commit must start with the
JIRA issue id, such as JBRULES-220. This ensures the commits are cross referenced via JIRA,
so we can see all commits for a given issue in the same place. After the id the title of the issue
should come next. Then use a newline, indented with a dash, to provide additional information

Submit Pull Requests

related to this commit. Use an additional new line and dash for each separate point you wish to
make. You may add additional JIRA cross references to the same commit, if it's appropriate. In
general try to avoid combining unrelated issues in the same commit.

Don't forget to rebase your local fork from the original master and then push your commits back
to your fork.

Drools / JBRULES-328 FactTemplates / JBRULES-329
' implement core handling of Templates for ObjectType

Log In

mark_proctor@jboss.com submitted changeset 5421 to trunk in JBossRules (20 files) - 02/Aug/06 &:14 PM

JBRULES 229 Refactor ObjectType to work with Templates
-This also involved refactor Evaluator to use Enums for ValueType and Qperatar

JBRULES220 implement core handling of Templates for ObjectType
-Initial commmit for FactTemplate work. still not integrated into parsers and builds, it also needs unit tests.

JEBRULES24E Allow & and | connectives for field constraints

-XmiReader is now fixed

-Xml and Drl Dumpers have been fixed
[trunk/draols-compiler/sro/mainjavalorg/droolsflang/DriDumperjava (+53-27) A B ® &
[trunk/drools-compilerisro/mainjavalorg/droolsfiang/descr/FieldConstraintDescrjava (+5-1) A B ® &
[trunk/dracls-compiler’sro/mainjavalorg/droolsflang/descriLiteralRestrictionDescrjava (+7-7) A B ® &
[trunk/drools-compilerisro/mainjavalorg/droolsfiang/descr/ReturnValueRestricionDescrjava (+7-9) A B @ &
[trunk/dracls-compiler’sro/mainjavalorg/drools/semantics/java/RuleBuilder java (+74-62) A B @ &
[trunk/drools-compiler’sro/mainjavalorg/droolsfxmliBoundvariableHandlerjava (+0-110) A B © &
[trunk/dracls-compiler’sro/mainjavalorg/droolsiimliFieldBindingHandlerjava (+2-6) AE @ &
trunk/drools-compilen’sroimainijavalorg/droolsixmliFieldConstraintHandlerjava (+95) A B O 4
[trunk/dracls-compiler’sro/mainjavalorg/droolsimliLiteralHandlerjava (+0-110) ABE © &
trunk/drools-compilen’sroimainijavalorg/droolsixmliLiteralRestricionHandlerjava (+103) AEBE © &
...19 more files in changeset

Mark Proctor <mdproctor@gmail.com:= submitted changeset b98d43508c91f1cb01d53b22395603ca87d69d5¢e to 5.2.x in
8:14 PM

JBRULES 220 Refactor ObjectType to work with Templates -This also involved refactor Evaluator to use Enums for Value
JBRULES 320 implement core handling of Templates for ObjectType
-Initial commmit for FactTemplate work, still not integrated into parsers and builds, it also needs unit tests.

JBRULES 21& Allow & and | connectives for field constraints
-XmiReader is now fixed
-Xml and Drl Dumpers have been fixed

1.2.7. Submit Pull Requests

With your code rebased from original master and pushed to your personal GitHub area, you can
now submit your work as a pull request. If you look at the top of the page in GitHub for your work
area their will be a "Pull Request" button. Selecting this will then provide a gui to automate the
submission of your pull request.

Chapter 1. Introduction

The pull request then goes into a queue for everyone to see and comment on. Below you can see
a typical pull request. The pull requests allow for discussions and it shows all associated commits
and the diffs for each commit. The discussions typically involve code reviews which provide helpful
suggestions for improvements, and allows for us to leave inline comments on specific parts of the
code. Don't be disheartened if we don't merge straight away, it can often take several revisions
before we accept a pull request. Luckily GitHub makes it very trivial to go back to your code, do
some more commits and then update your pull request to your latest and greatest.

It can take time for us to get round to responding to pull requests, so please be patient. Submitted
tests that come with a fix will generally be applied quite quickly, where as just tests will often way
until we get time to also submit that with a fix. Don't forget to rebase and resubmit your request
from time to time, otherwise over time it will have merge conflicts and core developers will general
ignore those.

sotty wants someone to merge 5 commits into [EiEElmoEEEi=Sy from

Discussion #® | Commits <> |5 | Diff 3= |8

sotty opened this pull request 22 days ago
‘ JBRULES-3370 Array fields are not supported in declared facts

Mo one is assigned | £+ Mo milestone | £+

Well, not exactly a ground-breaking feature, but still useful -)
Also improves bean initialization with MVEL expression

, ‘ sotty and etirelli are participating in this pull request

*'I: etirelli commented 22 days ago

@sotty thanks for providing this. | was reviewing the code, and with a few changes it can also support multi-dimensional
arrays (e.g. Object[][], int[J{]{]. etc). Do you think you can change it for that?

1 etirelli started a discussion in the diff

drools-compiler/src/main/java/org/drools/lang/DRLParser. java View full changes
}
}
D 1
F YCIE N rceo colab 22 days ago

There is already a rule called type(). Please use that instead of creating a fieldType() rule. It supports multi-dimentional
arrays and generics, although | know MVEL does not support generics yet.

Add a line note

10

#90

+ 388 additions

- 60 deletions

All Pull Reguests

Installation and Setup (Core and IDE)

1.3. Installation and Setup (Core and IDE)

1.3.1. Installing and using

Drools provides an Eclipse-based IDE (which is optional), but at its core only Java 1.5 (Java SE)
is required.

A simple way to get started is to download and install the Eclipse plug-in - this will also require the
Eclipse GEF framework to be installed (see below, if you don't have it installed already). This will
provide you with all the dependencies you need to get going: you can simply create a new rule
project and everything will be done for you. Refer to the chapter on the Rule Workbench and IDE
for detailed instructions on this. Installing the Eclipse plug-in is generally as simple as unzipping
a file into your Eclipse plug-in directory.

Use of the Eclipse plug-in is not required. Rule files are just textual input (or spreadsheets as the
case may be) and the IDE (also known as the Rule Workbench) is just a convenience. People
have integrated the rule engine in many ways, there is no "one size fits all".

Alternatively, you can download the binary distribution, and include the relevant JARs in your
projects classpath.

1.3.1.1. Dependencies and JARs

Drools is broken down into a few modules, some are required during rule development/compiling,
and some are required at runtime. In many cases, people will simply want to include all the
dependencies at runtime, and this is fine. It allows you to have the most flexibility. However, some
may prefer to have their "runtime"” stripped down to the bare minimum, as they will be deploying
rules in binary form - this is also possible. The core runtime engine can be quite compact, and
only requires a few 100 kilobytes across 3 JAR files.

The following is a description of the important libraries that make up JBoss Drools

« knowledge-api.jar - this provides the interfaces and factories. It also helps clearly show what is
intended as a user API and what is just an engine API.

» knowledge-internal-api.jar - this provides internal interfaces and factories.

« drools-core.jar - this is the core engine, runtime component. Contains both the RETE engine
and the LEAPS engine. This is the only runtime dependency if you are pre-compiling rules (and
deploying via Package or RuleBase objects).

* drools-compiler.jar - this contains the compiler/builder components to take rule source, and build
executable rule bases. This is often a runtime dependency of your application, but it need not
be if you are pre-compiling your rules. This depends on drools-core.

« drools-jsr94.jar - this is the JSR-94 compliant implementation, this is essentially a layer over
the drools-compiler component. Note that due to the nature of the JSR-94 specification, not all
features are easily exposed via this interface. In some cases, it will be easier to go direct to the
Drools API, but in some environments the JSR-94 is mandated.

11

Chapter 1. Introduction

 drools-decisiontables.jar - this is the decision tables ‘compiler' component, which uses the
drools-compiler component. This supports both excel and CSV input formats.

There are quite a few other dependencies which the above components require, most of which
are for the drools-compiler, drools-jsr94 or drools-decisiontables module. Some key ones to note
are "POI" which provides the spreadsheet parsing ability, and "antlr" which provides the parsing
for the rule language itself.

NOTE: if you are using Drools in J2EE or servlet containers and you come across classpath issues
with "JDT", then you can switch to the janino compiler. Set the system property "drools.compiler":
For example: -Ddrools.compiler=JANINO.

For up to date info on dependencies in a release, consult the released POMs, which can be found
on the Maven repository.

1.3.1.2. Use with Maven, Gradle, lvy, Buildr or Ant

The JARs are also available in the central Maven repository [http://search.maven.org/#search|
galllorg.drools] (and also in the JBoss Maven repository [https://repository.jboss.org/nexus/
index.html#nexus-search;gav~org.drools~~~~]).

If you use Maven, add KIE and Drools dependencies in your project's pom xmi like this:

<dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifactld>drool s-bomx/artifactld>
<t ype>ponx/type>
<version>...</version>
<scope>i nport </ scope>
</ dependency>

</ dependenci es>
</ dependencyManagenent >
<dependenci es>
<dependency>
<groupl d>or g. ki e</ gr oupl d>
<artifactld>kie-api</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifactld>drool s-compiler</artifactld>
<scope>runti ne</ scope>
</ dependency>

<dependenci es>

12

http://search.maven.org/#search|ga|1|org.drools
http://search.maven.org/#search|ga|1|org.drools
http://search.maven.org/#search|ga|1|org.drools
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~

Installing and using

This is similar for Gradle, Ivy and Buildr. To identify the latest version, check the Maven repository.

If you're still using Ant (without Ivy), copy all the JARs from the download zip's bi nar i es directory
and manually verify that your classpath doesn't contain duplicate JARs.

1.3.1.3. Runtime

The "runtime" requirements mentioned here are if you are deploying rules as their binary form
(either as KnowledgePackage objects, or KnowledgeBase objects etc). This is an optional feature
that allows you to keep your runtime very light. You may use drools-compiler to produce rule
packages "out of process", and then deploy them to a runtime system. This runtime system only
requires drools-core.jar and knowledge-api for execution. This is an optional deployment pattern,
and many people do not need to "trim" their application this much, but it is an ideal option for
certain environments.

1.3.1.4. Installing IDE (Rule Workbench)

The rule workbench (for Eclipse) requires that you have Eclipse 3.4 or greater, as well as Eclipse
GEF 3.4 or greater. You can install it either by downloading the plug-in or, or using the update site.

Another option is to use the JBoss IDE, which comes with all the plug-in requirements pre
packaged, as well as a choice of other tools separate to rules. You can choose just to install rules
from the "bundle" that JBoss IDE ships with.

1.3.1.4.1. Installing GEF (arequired dependency)

GEF is the Eclipse Graphical Editing Framework, which is used for graph viewing components
in the plug-in.

If you don't have GEF installed, you can install it using the built in update mechanism (or
downloading GEF from the Eclipse.org website not recommended). JBoss IDE has GEF already,
as do many other "distributions" of Eclipse, so this step may be redundant for some people.

Open the Help->Software updates...->Available Software->Add Site... from the help menu.
Location is:

http://downl oad. ecl i pse. org/tool s/ gef/ updat es/rel eases/

Next you choose the GEF plug-in:

13

Chapter 1. Introduction

= [%] GEF Update Site -
> [J 000 GEF 5DK 3.2.2
b [000 GEF SDK 3.3.2
~ [=] 000 GEF SDK 3.4.2

O {tn Graphical Editing Framework Draw2d 3.4.2v20090218-1145-3317w311_12250244]

O &g Graphical Editing Framework Draw2d Developer Resour 3.4.2 v20090218-1145-3317w311_12250244]

O & Graphical Editing Framework Draw2d 5DK 3.42v20090218-1145-67738084A6665K366E

!ﬁ’- Graphical Editing Framework GEF 3.42w20090218-1145-67728084A56B412336]|

O &p Graphical Editing Framewaork GEF All-In-One SDK 3.4.2v20090218-1145-TF7I69NpWtnmMXBEpuUC

[J 4 Graphical Editing Framework GEF Developer Resources 3.4.2.v20090218-1145-67728084A56B4/12336!
[4 Graphical Editing Framework GEF Examples 3.4.1v20080806-7TETI0AQI99MORGC

O &g Graphical Editing Framewaork GEF SDK 3.4.2v20090218-1145-7BTES97TOKBd7QHQEH
O &g Graphical Editing Framework Zest Visualization Toolkit 1.0.0.v20080115-5318xB6CE899P233613552
[& Graphical Editing Framework Zest Visualization Toolkit D 1.0.0.w20080115-5318xB6CE899P233613552
O ke Graphical Editing Framework Zest Visualization Toolkit S 1.0.0.v20080115-5318_GCGFGJMZHOMaa6PM

(o]

Show only the latest versions of available software

Include items that have already been installed

Software Updates and Add-ons
Installed Software | Available Software
|type fiter text = Install...
Name Version E

Properties

Add Site...

Manage Sites...

IO

Refresh

Open the 'Automatic Updates' preference page to set up an autematic update schedule.

Close

Press next, and agree to install the plug-in (an Eclipse restart may be required). Once this is
completed, then you can continue on installing the rules plug-in.

1.3.1.4.2. Installing GEF from zip file

To install from the zip file, download and unzip the file. Inside the zip you will see a plug-in
directory, and the plug-in JAR itself. You place the plug-in JAR into your Eclipse applications plug-
in directory, and restart Eclipse.

1.3.1.4.3. Installing Drools plug-in from zip file

Download the Drools Eclipse IDE plugin from the link below. Unzip the downloaded file in your
main eclipse folder (do not just copy the file there, extract it so that the feature and plugin JARs
end up in the features and plugin directory of eclipse) and (re)start Eclipse.

http://www.jboss.org/drools/downloads.html

To check that the installation was successful, try opening the Drools perspective: Click the
'Open Perspective' button in the top right corner of your Eclipse window, select 'Other..." and
pick the Drools perspective. If you cannot find the Drools perspective as one of the possible

14

http://www.jboss.org/drools/downloads.html

Installing and using

perspectives, the installation probably was unsuccessful. Check whether you executed each of
the required steps correctly: Do you have the right version of Eclipse (3.4.x)? Do you have
Eclipse GEF installed (check whether the org.eclipse.gef 3.4.*.jar exists in the plugins directory
in your eclipse root folder)? Did you extract the Drools Eclipse plugin correctly (check whether the
org.drools.eclipse_*.jar exists in the plugins directory in your eclipse root folder)? If you cannot
find the problem, try contacting us (e.g. on irc or on the user mailing list), more info can be found
no our homepage here:

http://www.jboss.org/drools/
1.3.1.4.4. Drools Runtimes

A Drools runtime is a collection of JARs on your file system that represent one specific release
of the Drools project JARs. To create a runtime, you must point the IDE to the release of your
choice. If you want to create a new runtime based on the latest Drools project JARs included in
the plugin itself, you can also easily do that. You are required to specify a default Drools runtime
for your Eclipse workspace, but each individual project can override the default and select the
appropriate runtime for that project specifically.

1.3.1.4.4.1. Defining a Drools runtime

You are required to define one or more Drools runtimes using the Eclipse preferences view.
To open up your preferences, in the menu Window select the Preferences menu item. A new
preferences dialog should show all your preferences. On the left side of this dialog, under the
Drools category, select "Installed Drools runtimes". The panel on the right should then show the
currently defined Drools runtimes. If you have not yet defined any runtimes, it should like something
like the figure below.

15

http://www.jboss.org/drools/

Chapter 1. Introduction

S

[opefiter texd l

[General

P Ant
=~ Drools
Drools Flow nodes
Drools Task
Guvnor
Help
Install/lUpdate
Java
Maven
Plug-in Development
Run/Debug
Team

XML

R e

Preferences b

@ Select a default Drools Runtime o -

Add, remove or edit Drools Runtime definitions. By default, the checked
Drools Runtime is added to the build path of newly created Drools
projects.

Installed Drools Runtimes

Name Location [Add. .. l

[| Cancel

To define a new Drools runtime, click on the add button. A dialog as shown below should pop up,
requiring the name for your runtime and the location on your file system where it can be found.

16

Installing and using

Drools Runtime

Either select an existing Drools Runtime on your file system or create
a new one.

Mame:

Create a new Drools 5 Buntime ...

Cancel

In general, you have two options:

1. If you simply want to use the default JARs as included in the Drools Eclipse plugin, you can
create a new Drools runtime automatically by clicking the "Create a new Drools 5 runtime ..."
button. A file browser will show up, asking you to select the folder on your file system where
you want this runtime to be created. The plugin will then automatically copy all required
dependencies to the specified folder. After selecting this folder, the dialog should look like the
figure shown below.

2. If you want to use one specific release of the Drools project, you should create a folder on
your file system that contains all the necessary Drools libraries and dependencies. Instead of
creating a new Drools runtime as explained above, give your runtime a name and select the
location of this folder containing all the required JARs.

17

Chapter 1. Introduction

Drools Runtime

Either select an existing Drools Runtime on your file system or create
a new one.

Mame: Drools 5.0.0 runtime

Fath: /NotBackedUp/development/drools-runtimes/drools-5.0.

Create a new Drools 5 Buntime |

| OK | | Cancel

After clicking the OK button, the runtime should show up in your table of installed Drools runtimes,
as shown below. Click on checkbox in front of the newly created runtime to make it the default
Drools runtime. The default Drools runtime will be used as the runtime of all your Drools project
that have not selected a project-specific runtime.

|' = Preferences =

[type filter text l Installed Drools Runtimes =t =

P General Add, remove or edit Drools Runtime definitions. By default, the checked Drools Runtime is added to the
b Ant build path of newly created Drools projects.

< Drools Installed Drools Runtimes

Drools Flow nodes Name Location Add...

Installed Drools Runtimes Drools 5.0.0 runtime /NotBackedUp/development/drools-runtimes/drools-5.0.0

Drools Task

Guwvnor

Help

Install/Update

Java

Maven

Plug-in Development
Run/Debug

Team

v vV vy v v v v v

XML

&3] oK I [Cancel

You can add as many Drools runtimes as you need. For example, the screenshot below shows
a configuration where three runtimes have been defined: a Drools 4.0.7 runtime, a Drools 5.0.0

18

Installing and using

runtime and a Drools 5.0.0.SNAPSHOT runtime. The Drools 5.0.0 runtime is selected as the

default one.
Preferences
[l Installed Drools Runtimes o -
P General Add, remove or edit Drools Runtime definitions. By default, the checked Drools Runtime is added to the build path of
B Ant newly created Drools projects.
¥ Drools Installed Drools Runtimes

Drools Flow nodes Name Location

Installed Drools Runtimes

Drools 5.0.0 runtime /NotBackedUp/development/drools-runtimes/drools-5.0.0

Edit...

Drools Task [J Drools 4.0.7 runtime /MotBackedUp/development/drools-runtimes/drools-4.0.7

Guwvnor Remove

II>
o
=

[0 Drools 5.0.0.SNAPSHOT /NotBackedUp/development/drools-runtimes/drools-5.0.0 SNAPSHOT
Help

InstallfUpdate

Java

Maven

Flug-in Development
Run/Debug

Team

XML

R A A A S

@ | ok || cance |

Note that you will need to restart Eclipse if you changed the default runtime and you want to make
sure that all the projects that are using the default runtime update their classpath accordingly.

1.3.1.4.4.2. Selecting a runtime for your Drools project

Whenever you create a Drools project (using the New Drools Project wizard or by converting an
existing Java project to a Drools project using the "Convert to Drools Project" action that is shown
when you are in the Drools perspective and you right-click an existing Java project), the plugin
will automatically add all the required JARs to the classpath of your project.

When creating a new Drools project, the plugin will automatically use the default Drools runtime for
that project, unless you specify a project-specific one. You can do this in the final step of the New
Drools Project wizard, as shown below, by deselecting the "Use default Drools runtime" checkbox
and selecting the appropriate runtime in the drop-down box. If you click the "Configure workspace
settings ..." link, the workspace preferences showing the currently installed Drools runtimes will
be opened, so you can add new runtimes there.

19

Chapter 1. Introduction

Drools Runtime @

Select a Drools Runtime

[] Use default Drools Runtime {currently Drools 5.0.0 runtime)

Drools Runtime: |Drcm|5 4.0.7 runtirme b
~onfi W Setti
@ < Back Finish] | Cancel

You can change the runtime of a Drools project at any time by opening the project properties
(right-click the project and select Properties) and selecting the Drools category, as shown below.
Check the "Enable project specific settings" checkbox and select the appropriate runtime from the
drop-down box. If you click the "Configure workspace settings ..." link, the workspace preferences
showing the currently installed Drools runtimes will be opened, so you can add new runtimes
there. If you deselect the "Enable project specific settings" checkbox, it will use the default runtime
as defined in your global preferences.

20

Building from source

Properties for Drools Project

[pe filter tex l Drools -

Resource Enable project specific settings
Builders

Drools Runtime: |Drools 5.0.0. SNAPSHOT runtime A
Guvnor

Java Build Path
[Java Code Style
I Java Compiler
[» Java Editor
Javadoc Location
Project References
Run/Debug Settings
Task Tags

[Restnre gefaultsl [Apply l

@ [OK H Cancel]

1.3.2. Building from source

1.3.2.1. Getting the sources

The source code of each Maven artifact is available in the JBoss Maven repository as a source
JAR. The same source JARs are also included in the download zips. However, if you want to build
from source, it's highly recommended to get our sources from our source control.

Drools and jBPM use Git [http://git-scm.com/] for source control. The blessed git repositories are
hosted on GitHub [https://github.com]:

* https://github.com/droolsjbpm

Git allows you to fork our code, independently make personal changes on it, yet still merge in our
latest changes regularly and optionally share your changes with us. To learn more about git, read
the free book Git Pro [http://progit.org/book/].

1.3.2.2. Building the sources

In essense, building from source is very easy, for example if you want to build the guvnor project:

21

http://git-scm.com/
http://git-scm.com/
https://github.com
https://github.com
https://github.com/droolsjbpm
http://progit.org/book/
http://progit.org/book/

Chapter 1. Introduction

$ git clone git@ithub.com drool sjbpnf guvnor. git

$ cd guvnor
$ nmvn clean install -DskipTests -Dfull

However, there are a lot potential pitfalls, so if you're serious about building from source and
possibly contributing to the project, follow the instructions in the README file in droolsjbpm-
build-bootstrap [https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/
README.md].

1.3.3. Eclipse

1.3.3.1. Importing Eclipse Projects

With the Eclipse project files generated they can now be imported into Eclipse. When starting
Eclipse open the workspace in the root of your subversion checkout.

& Workspace Launcher |§|

—

Select a workspace

Eclipse 50K stores wour projects in a folder called a workspace,
Choose a workspace Folder ko use For this session,

Wiorkspace:

- j Erowse, .,

[Use this as the default and do not ask again

(] 4 Zancel

22

https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md

Eclipse

& Java - Eclipse SDK

File Edit Source Refackor Mavigate Search Proj

I -EHE | %9 %-0-Q- |

e

Hierarchy g |

: Package Explorer X

TG
Mew »

2 Copy ChrlH4-C

' Paste Chrl+y

¥ Cclete Dielete
Eiild Path »

¢ 1 Impoark...

iy Export...,

q}{h Refresh F5

23

Chapter 1. Introduction

& Import

Select

Create new projects From an archive file or directory,

Select an import source:

J kvpe Filker bexk

== General
L, archive File
QE‘ Breakpoints

Existing Projects inko WWorkspace
s {:L File Swstem
2L, Preferences

-2 CYS

-2 Plug-in Development
- Team
[+ = Other

24

Eclipse

& Import

Import Projects

Select a directary ko search for existing Eclipse projects.,

{+ Select rook directory: |C:'|,|:Iev'|,jl:unssrules

(" select archive file: |

Projects:

drools-carnpiler Select Al
drools-core
drools-ide Deselect Al
drools-jsra4

arg.nexb,easyveclpse.drools, deployer

Refresh

g | Copy projects inko workspace

When calling nvn i nstal | all the project dependencies were downloaded and added to the local
Maven repository. Eclipse cannot find those dependencies unless you tell it where that repository
is. To do this setup an M2_REPO classpath variable.

25

Chapter 1. Introduction

Project Run

Help

= I ﬁ Eﬁ} Mew \Window h,

— gt
Mew Editor

Open Perspective L&
Shiow Wiew »

Zuskomize Perspective. ..
Save Perspective &4s...
Reset Perspective

iZlose Perspective

ilose All Perspectives

Mavigation r

ff.'?' Working Sets k

26

Eclipse

& Preferences

] tyvpe filker text

+- eneral
+|- &nt
+-Help
+- Installflpdate
-|- Java
[+- Appearance
Build Path
spath Yariables
User Libraties
Code Skyle
Campiler
Debug
Editor
Installed JREs
JuUnik:
Properties Files Editor
+- Plug-in Development:
+- Run/Debug
+- Team

- -

(=13
Classpath V¥ariables =1

& classpath variable can be added to a project's class path. It can be used to define the location of a
JAR. file that isn't part of the workspace, The reserved class path wariables JRE_LIB, JRE_SR.C,
JRE_SRCROOT are set internally depending on the JRE setting.

Defined classpath variables:

[F=ECLIPSE_HOME - Du\javaleclpse Pew..,
EI JRE_LIE {reserved) - D:\javaljdkl . 5.0_0ahjre\liblrt.jar
& JRE_SRiC (reserved) - Dnijavaljdkl.5.0_08\src.zip

= IRE_SRCROOT (reserved) - (empky) e
(= JUNIT_HOME - Dn\javaleclipsepluginsiorg. junit_3.5.1 -
[= JUNIT_SRC_HOME - Dn\javalecipsepluginsorg. eclipse. jdt source_3.2.0,v200

Edit...

I

|

=

[oc]

& New Variable Entry

Ok Cancel

MName: | MZ_REPC
Path: | % /Docurnents and Settings/mproctar) . m2repository File. ..
Folder...
-:'E"_'] QK Zancel

27

Chapter 1. Introduction

& Preferences

| tyvpe filker text

+- eneral
+- Ant
+-Help
|- Install/Update
-l Java
[+- Appearance
Build Path
Classpath Yariables
User Libraties
Code Skyle
Campiler
Debug
Editor
Installed JREs
JuUnik:
Properties Files Editor
+- Plug-in Development:
+- Run/Debug
+- Team

[+

oy O e O e e B

- B

Classpath V¥ariables =1

& classpath variable can be added to a project's class path. It can be used to define the location of a
JAR. file that isn't part of the workspace, The reserved class path wariables JRE_LIB, JRE_SR.C,
JRE_SRCROOT are set internally depending on the JRE setting.

Defined classpath variables:

[ECLIPSE_HOME - Dn\javaleclpse

;:. JRE_LIE {reserved) - D:\javaljdkl . 5.0_0ahjre\liblrt.jar
& JRE_SRiC (reserved) - Dnijavaljdkl.5.0_08\src.zip

= IRE_SRCROOT (reserved) - (empky) e
(= JUNIT_HOME - Dn\javaleclipsepluginsiorg. junit_3.5.1 -
[£= JUNIT_SRC_HOME - Dn\javalecipsepluginsorg. eclipse. jdt source_3.2.0,v200
[Z=-M2_REPQ - Dt\Docurments and Settingsimprockar.m2repasitory

Edit...

eS|
e

ok Cancel

28

Chapter 2.

Chapter 2. Release Notes

2.1. New and Noteworthy in KIE API 6.0.0

2.1.1. New KIE name

KIE is the new umbrella name used to group together our related projects; as the family continues
to grow. KIE is also used for the generic parts of unified API; such as building, deploying and
loading. This replaces the droolsjbpm and knowledge keywords that would have been used before.

/\

[OptaPIanner Drools UberFlre iBPM]

Guvnor

)
v [v
[Drools WBT jBPM-WB J
=)

[KIE-WB

Figure 2.1. KIE Anatomy

2.1.2. Maven aligned projects and modules and Maven
Deployment
One of the biggest complaints during the 5.x series was the lack of defined methodology for

deployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible. A
big focus for 6.0 was streamlining the build, deploy and loading(utilization) aspects of the system.

29

Chapter 2. Release Notes

Building and deploying now align with Maven and Maven repositories. The utilization for loading
rules and processess is now convention and configuration oriented, instead of programmatic, with
sane defaults to minimise the configuration.

Projects can be built with Maven and installed to the local M2 _REPO or remote Maven
repositories. Maven is then used to declare and build the classpath of dependencies, for KIE to
access.

2.1.3. Configuration and convention based projects

The 'kmodule.xml' provides declarative configuration for KIE projects. Conventions and defaults
are used to reduce the amount of configuration needed.

Example 2.1. Declare KieBases and KieSessions

<kmodul e xm ns="http://jboss. org/kie/6.0.0/knmodul e">
<kbase nane="kbasel" packages="org. mypackages>
<ksessi on nane="ksessi onl"/>
</ kbase>
</ knmodul e>

Example 2.2. Utilize the KieSession

Ki eServi ces ks = KieServices. Factory. get();
Ki eCont ai ner kCont ai ner = ks. get Ki eCl asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl1");
kSession.insert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA | Rul es();

2.1.4. KieBase Inclusion

It is possible to include all the KIE artifacts belonging to a KieBase into a second KieBase. This
means that the second KieBase beyond all the rules, function and processes directly defined into
it will also contain the ones created in the included KieBase. This inclusion can be done both
declaratively in the kmodule.xml file

Example 2.3. Including a KieBase into another declaratively

<knodul e xm ns="http://]boss. org/ ki e/ 6.0. 0/ knodul e">
<kbase nane="kbase2" incl udes="kbasel">
<ksessi on nane="ksessi on2"/>
</ kbase>

30

KieModules, KieContainer and KIE-CI

</ knodul e>

or programmatically using the Ki eMbdul eMbdel .

Example 2.4. Including a KieBase into another programmatically

Ki eMbdul eMbdel knodul e = Ki eServi ces. Factory. get (). newki eModul eMbdel ();
Ki eBaseMbdel ki eBaseMbdel 1 = knodul e. newKi eBaseModdel (" KBase2"). addl ncl ude(" KBasel") ;

2.1.5. KieModules, KieContainer and KIE-CI

Any Maven produce JAR with a 'kmodule.xml' in it is considered a KieModule. This can be loaded
from the classpath or dynamically at runtime from a Resource location. If the kie-ci dependency
is on the classpath it embeds Maven and all resolving is done automatically using Maven and can
access local or remote repositories. Settings.xml is obeyed for Maven configuration.

The KieContainer provides a runtime to utilize the KieModule, versioning is built in throughout,
via Maven. Kie-ci will create a classpath dynamically from all the Maven declared dependencies
for the artefact being loaded. Maven LATEST, SNAPSHOT, RELEASE an version ranges are
supported.

Example 2.5. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory.get();
Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (ks. newRel easel d("org. nygroup", "nyartefact", "1.0"

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");
kSession.insert(new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireAl |l Rul es();

KieContainers can be dynamically updated to a specific version, all resolved through Maven if KIE-
Cl is on the classpath. For stateful KieSessions the existing sessions are incrementally updated.

Example 2.6. Dynamically Update- Java

Ki eCont ai ner kCont ai ner. updat eToVer si on(ks. newRel easel d("org. mygroup", "nyartefact”, "1.1"));

2.1.6. KieScanner

The Ki eScanner is a Maven-oriented replacement of the KnowledgeAgent present in Drools 5. In
fact it allows to continuously monitoring your Maven repository to check if a new release of a Kie

31

Chapter 2. Release Notes

project has been installed and if so deploying it in the Ki eCont ai ner wrapping that project. The
use of the Ki eScanner requires kie-ci.jar to be on the classpath.

In more detail a Ki eScanner can be registered on a Ki eCont ai ner as in the following example.

Example 2.7. Registering and starting a KieScanner on a KieContainer

Ki eServi ces ki eServices = Ki eServices. Factory. get();

Rel easel d rel easeld = ki eServi ces. newRel easel d("org.acne", "nyartifact", "1.0-
SNAPSHOT") ;

Ki eCont ai ner kCont ai ner = ki eServi ces. newKi eCont ai ner(rel easeld);

Ki eScanner kScanner = ki eServi ces. newKi eScanner (kCont ai ner);

/] Start the KieScanner polling the Maven repository every 10 seconds
kScanner.start(10000L);

In this example the Ki eScanner is configured to run with a fixed time interval, but it is also possible
to run it on demand by invoking the scanNow() method on it. If the Ki eScanner finds in the
Maven repository an updated version of the Kie project used by that Ki eCont ai ner it automatically
downloads the new version and triggers an incremental build of the new project. From this moment
all the new Ki eBases and Ki eSessi ons created from that Ki eCont ai ner will use the new project
version.

2.1.7. Hierarchical ClassLoader

The CompositeClassLoader is no longer used; as it was a constant source of performance
problems and bugs. Traditional hierarchical classloaders are now used. The root classloader is at
the KieContext level, there is then one child ClassLoader per namespace. This makes it cleaner
to add and remove rules, but there can now be no referencing between namespaces in DRL files;
i.e. functions can only be used by the namespaces that declared them. The recommendation is
to use static Java methods in your project, which is visible to all namespaces; but those cannot
(like other classes on the root KieContainer ClassLoader) be dynamically updated.

2.1.8. Legacy API Adapter

The 5.x API for building and running with Drools and jBPM is still available through
Maven dependency "knowledge-api-legacy5-adapter”. Because the nature of deployment has
significantly changed in 6.0, it was not possible to provide an adapter bridge for the
KnowledgeAgent. If any other methods are missing or problematic, please open a JIRA, and we'll
fix for 6.1

2.1.9. KIE Documentation

While a lot of new documentation has been added for working with the new KIE API, the entire
documentation has not yet been brought up to date. For this reason there will be continued

32

What is New and Noteworthy in Drools 6.0.0

references to old terminologies. Apologies in advance, and thank you for your patience. We hope
those in the community will work with us to get the documentation updated throughout, for 6.1

2.2. What is New and Noteworthy in Drools 6.0.0

2.2.1. PHREAK - Lazy rule matching algorithm

The main work done for Drools in 6.0 involves the new PREAK algorithm. This is a lazy algorithm
that should enable Drools to handle a larger number of rules and facts. AngendaGroups can now
help improvement performance, as rules are not evaluated until it attempts to fire them.

Sequential mode continues to be supported for PHREAK but now ‘'modify’ is allowed. While there is
no 'inference' with sequential configuration, as rules are lazily evaluated, any rule not yet evaluated
will see the more recent data as a result of 'modify’. This is more inline with how people intuitively
think sequential works.

The conflict resolution order has been tweaked for PHREAK, and now is ordered by salience and
then rule order; based on the rule position in the file.. Prior to Drools 6.0.0, after salience, it was
considered arbitrary. When KieModules and updateToVersion are used for dynamic deployment,
the rule order in the file is preserved via the diff processing.

2.2.2. Automatically firing timed rule in passive mode

When the rule engine runs in passive mode (i.e.: using fireAllRules) by default it doesn't fire
consequences of timed rules unless fireAllRules isn't invoked again. Now it is possible to change
this default behavior by configuring the KieSession with a Ti medRul eExecti onOpt i on as shown
in the following example.

Example 2.8. Configuring a KieSession to automatically execute timed rules

Ki eSessi onConfi guration ksconf = KieServices. Factory. get().newKi eSessi onConfi guration();
ksconf.set Opti on(Ti nedRul eExecti onOpti on. YES);
KSessi on ksessi on = kbase. newKi eSessi on(ksconf, null);

It is also possible to have a finer grained control on the timed rules that have to be automatically
executed. To do this it is necessary to set a FI LTERED Ti medRul eExect i onOpt i on that allows to
define a callback to filter those rules, as done in the next example.

Example 2.9. Configuring a filter to choose which timed rules should be
automatically executed

Ki eSessi onConfi gurati on ksconf = Ki eServi ces. Factory. get (). newKi eSessi onConfi guration();
conf.set Opti on(new Ti medRul eExecti onOpti on. FI LTERED(new Ti nedRul eExecutionFilter() {
publi ¢ bool ean accept(Rul e[] rules) {

33

Chapter 2. Release Notes

return rul es[0]. get Nane() . equal s("M/Rul e");

b))

2.2.3. Expression Timers

Itis now possible to define both the delay and interval of an interval timer as an expression instead
of a fixed value. To do that it is necessary to declare the timer as an expression one (indicated
by "expr:") as in the following example:

Example 2.10. An Expression Timer Example

decl are Bean
del ay . String = "30s"
period : long = 60000
end

rule "Expression tinmer"
timer(expr: $d, $p)
when
Bean($d : delay, $p : period)
t hen
end

The expressions, $d and $p in this case, can use any variable defined in the pattern matching
part of the rule and can be any String that can be parsed in a time duration or any numeric value
that will be internally converted in a long representing a duration expressed in milliseconds.

Both interval and expression timers can have 3 optional parameters named "start", "end" and
"repeat-limit". When one or more of these parameters are used the first part of the timer definition
must be followed by a semicolon ';' and the parameters have to be separated by a comma ', as
in the following example:

Example 2.11. An Interval Timer with a start and an end

timer (int: 30s 10s; start=3-JAN 2010, end=5-JAN- 2010)

The value for start and end parameters can be a Date, a String representing a Date or a long,
or more in general any Number, that will be transformed in a Java Date applying the following
conversion:

new Date(((Nunber) n).longVal ue())

34

RuleFowGroup and AgendaGroups are merged

Conversely the repeat-limit can be only an integer and it defines the maximum number of
repetitions allowed by the timer. If both the end and the repeat-limit parameters are set the timer
will stop when the first of the two will be matched.

The using of the start parameter implies the definition of a phase for the timer, where the beginning
of the phase is given by the start itself plus the eventual delay. In other words in this case the
timed rule will then be scheduled at times:

start + delay + n*period

for up to repeat-limit times and no later than the end timestamp (whichever first). For instance the
rule having the following interval timer

tinmer (int: 30s 1m start="3-JAN 2010")

will be scheduled at the 30th second of every minute after the midnight of the 3-JAN-2010. This
also means that if for example you turn the system on at midnight of the 3-FEB-2010 it won't
be scheduled immediately but will preserve the phase defined by the timer and so it will be
scheduled for the first time 30 seconds after the midnight. If for some reason the system is paused
(e.g. the session is serialized and then deserialized after a while) the rule will be scheduled only
once to recover from missing activations (regardless of how many activations we missed) and
subsequently it will be scheduled again in phase with the timer.

2.2.4. RuleFowGroup and AgendaGroups are merged

These two groups have been merged and now RuleFlowGroup's behave the same as
AgendaGroups. The get methods have been left, for deprecation reasons, but both return the
same underlying data. When jBPM activates a group it now just calls setFocus. RuleFlowGroups
and AgendaGroups when used together was a continued source of errors. It also aligns the
codebase, towards PHREAK and the multi-core explotation that is planned in the future.

2.3. New and Noteworthy in KIE Workbench 6.0.0

The workbench has had a big overhaul using a new base project called UberFire. UberFire is
inspired by Eclipse and provides a clean, extensible and flexible framework for the workbench.
The end result is not only a richer experience for our end users, but we can now develop more
rapidly with a clean component based architecture. If you like he Workbench experience you can
use UberFire today to build your own web based dashboard and console efforts.

As well as the move to a UberFire the other biggest change is the move from JCR to Git; there
is an utility project to help with migration. Git is the most scalable and powerful source repository
bar none. JGit provides a solid OSS implementation for Git. This addresses the continued
performance problems with the various JCR implementations, which would slow down once the
number of files and number of versions become too high. There has been a big "low tech” drive,

35

Chapter 2. Release Notes

to remove complexity. Everything is now stored as a file, including meta data. The database is
only there to provide fast indexing and search. So importing and exporting is all standard Git and
external sites, like GitHub, can be used to exchange repositories.

In 5.x developers would work with their own source repository and then push JCR, via the team
provider. This team provider was not full featured and not available outside Eclipse. Git enables
our repository to work any existing Git tool or team provider. While not yet supported in the Ul, this
will be added over time, it is possible to connect to the repo and tag and branch and restore things.

File Edit View History Bookmarks Tools Accessibility Help

) KIE Drools Workbench
\;D % localhost MLARES M Q @ et x
Drools Workbench

Explore ~ Newltem ~ Tools = Q
Project Explorer & Guided Editor [Bankruptcy history] Save || Delete || Rename || Copy | Vaidate | | x ||~
EXTENDS Mone selected o
demo ~ uf-playground ~ mortgages ~ a
WHEN s
= <default> 1. ThereisalLoanApplication [a]
The following exists
& org There is a Bankruptcy with:
= mortgages any ofthe following:
2 yearOfOccurrence| greater than j 1990
amountOwed greater than j 10000
% DRL THEN

1. delete LoanApplication [a]

(© DOMAIN SPECIFIC LANGUAGE DEFINITION i fals
Set value of LoanApplication [a] approved false j:

2 -
(® ENUMERATION DEFINITION L

Edit Source Config Metadata
/ GUIDED DECISION TABLE

@ GUIDED RULE Problems ~1=

Bankruptcy history Level Text File Column Line
No bad credit checks

[ERR 102] Line

no NINJAs 7:0 mismatched
[%] . . Dummy rule.drl o 7
Underage input ‘then"in rule

"Dmmy rule”

Figure 2.2. Workbench

The Guvnor brand leaked too much from its intended role; such as the authoring metaphors,
like Decision Tables, being considered Guvnor components instead of Drools components. This
wasn't helped by the monolithic projects structure used in 5.x for Guvnor. In 6.0 Guvnor 's focus
has been narrowed to encapsulates the set of UberFire plugins that provide the basis for building
a web based IDE. Such as Maven integration for building and deploying, management of Maven
repositories and activity notifications via inboxes. Drools and jBPM build workbench distributions
using Uberfire as the base and including a set of plugins, such as Guvnor, along with their own
plugins for things like decision tables, guided editors, BPMN2 designer, human tasks.

The "Model Structure" diagram outlines the new project anatomy. The Drools workbench is called
KIE-Drools-WB. KIE-WB is the uber workbench that combines all the Guvnor, Drools and jBPM

36

New and Noteworthy in KIE Workbench 6.0.0

plugins. The BPM-WB is ghosted out, as it doesn't actually exist, being made redundant by KIE-
WB.

g ™
Uberfire
|org uberfire]
s githul. comidrecisbpeyutarion 3
pS vy
- N
* Maven Reposilory
Guvnor * Projact Service
[.pusnorguvnos] “ I
* WoarkNow
hiips:¥github. comddroots bpeigumon [
oy
" ™
. * Hame page
kie-wb-common * Projact Explonar
[org. lokex kig-wib-cammcn] * Data Madaller
* Weta Data
- * Search
g gtk gl v T
Sy
' R S
* DRL : . JBPFM Consale
drools-wb * Guided Edilors I jopmewb } " FBPM Desigrer
[org. droals: dreals-wh) ‘ T'HH Scenarios L forg pmijbpmwt] 1
1
M e e e e e #
g gt wady, £ |u.'||.|miu||;-|;#;gh\ - _._T‘
~ % .- .
- /o~ DN
i |
kie-drools-whb kie-wh 1 kie-jopmewb
g kha: a-groods-whi] [0y ke kie-si] : [0 ki kie-bpm-wh]| :
L 4
- wh-dmirbusors | hiips:Ngihub comidroisbmikie-wh-distrizutions:

hN

S

Figure 2.3. Module Structure

Important

KIE Drools Workbench and KIE Workbench share a common set of components

for generic workbench functionality such as Project navigation, Project definitions,
Maven based Projects, Maven Artifact Repository. These common features are
described in more detail throughout this documentation.

The two primary distributions consist of:

+ KIE Drools Workbench

¢ Drools Editors, for rules and supporting assets.

37

Chapter 2. Release Notes

» jBPM Designer, for Rule Flow and supporting assets.

KIE Workbench

Drools Editors, for rules and supporting assets.

jBPM Designer, for BPMN2 and supporting assets.

jBPM Console, runtime and Human Task support.
» jBPM Form Builder.

* BAM.

Workbench highlights:

New flexible Workbench environment, with perspectives and panels.

New packaging and build system following KIE API.

» Maven based projects.

» Maven Artifact Repository replaces Global Area, with full dependency support.

New Data Modeller replaces the declarative Fact Model Editor; bringing authoring of Java
classes to the authoring environment. Java classes are packaged into the project and can be
used within rules, processes etc and externally in your own applications.

Virtual File System replaces JCR with a default Git based implementation.
» Default Git based implementation supports remote operations.
» External modifications appear within the Workbench.

Incremental Build system showing, near real-time validation results of your project and assets.

The editors themselves are largely unchanged; however of note imports have moved from the
package definition to individual editors so you need only import types used for an asset and not
the package as a whole.

2.4. New and Noteworthy in Integration 6.0.0

2.4.1. CDI

CDlI is now tightly integrated into the KIE API. It can be used to inject versioned KieSession and
KieBases.

@ nj ect
@KSessi on("kbasel")

38

Spring

@XRel easel d(groupld = "jar1", rtifactld = "art1", version = "1.0")
private Ki eBase kbaselv10;

@ nj ect

@KBase(" kbasel")

@XRel easel d(groupld = "jarl1", rtifactld = "art1", version = "1.1")

private Ki eBase kbaselv10;

Figure 2.4. Side by side version loading for 'jar1.KBasel' KieBase

@ nj ect

@KSessi on("ksessi onl")

@XRel easel d(groupld = "jarl", rtifactld = "art1", version = "1.0")
private Ki eSession ksessi onv10;

@ nj ect

@XSessi on(" ksessi onl")

@XRel easel d(groupld = "jarl", rtifactld = "artl1", version = "1.1")

private Ki eSession ksessionvll;

Figure 2.5. Side by side version loading for 'jar1.KBasel' KieBase

2.4.2. Spring

Spring has been revamped and now integrated with KIE. Spring can replace the 'kmodule.xml'
with a more powerful spring version. The aim is for consistency with kmodule.xml

2.4.3. Aries Blueprints

Aries blueprints is now also supported, and follows the work done for spring. The aim is for
consistency with spring and kmodule.xml

2.4.4. OSGIi Ready

All modules have been refactored to avoid package splitting, which was a problem in 5.x. Testing
has been moved to PAX.

39

40

Chapter 3.

Chapter 3. Compatibility matrix

Starting from KIE 6.0, Drools (including workbench), jBPM (including designer and console) and
OptaPlanner follow the same version numbering.

41

42

Part Il. KIE

KIE is the shared core for Drools and jBPM.It provides a unified methodology and programming
model for building, deploying and utilizing resources.

Chapter 4.

Chapter 4. KIE

4.1. Overview

4.1.1. Anatomy of Projects

The process of researching an integration knowledge solution for Drools and jBPM has simply
used the "droolsjbpm" group name. This name permeates GitHub accounts and Maven POMs.
As scopes broadened and new projects were spun KIE, an acronym for Knowledge Is Everything,
was chosen as the new group name. The KIE name is also used for the shared aspects of the
system; such as the unified build, deploy and utilization.

KIE currently consists of the following subprojects:

)
/ <

[OptaPlanner Drools [UberFire] jBPM

[
(omows]

Figure 4.1. KIE Anatomy

OptaPlanner, a local search and optimization tool, has been spun off from Drools Planner and is
now a top level project with Drools and jBPM. This was a natural evolution as Optaplanner, while
having strong Drools integration, has long been independant of Drools.

45

Chapter 4. KIE

From the Polymita acquisition, along with other things, comes the powerful Dashboard Builder
which provides powerful reporting capabities. Dashboard Builder is currently a temporary name
and after the 6.0 release a new name will be chosen. Dashboard Builder is completely independant
of Drools and jBPM and will be used by many projects at JBoss, and hopefully outside of JBoss :)

UberFire is the new base workbench project, spun off from the ground up rewrite. UberFire
provides Eclipse-like workbench capabilities, with panels and perspectives from plugins. The
project is independant of Drools and jBPM and anyone can use it as a basis of building flexible and
powerful workbenches. UberFire will be used for console and workbench development throughout
JBoss.

It was determined that the Guvnor brand leaked too much from its intended role; such as the
authoring metaphors, like Decision Tables, being considered Guvnor components instead of
Drools components. This wasn't helped by the monolithic projects structure used in 5.x for Guvnor.
In 6.0 Guvnor's focus has been narrowed to encapsulates the set of UberFire plugins that provide
the basis for building a web based IDE. Such as Maven integration for building and deploying,
management of Maven repositories and activity notifications via inboxes. Drools and jBPM build
workbench distributions using Uberfire as the base and including a set of plugins, such as Guvnor,
along with their own plugins for things like decision tables, guided editors, BPMN2 designer,
human tasks. The Drools workbench is called Drools-WB. KIE-WB is the uber workbench that
combined all the Guvnor, Drools and jBPM plugins. The jBPM-WB is ghosted out, as it doesn't
actually exist, being made redundant by KIE-WB.

4.1.2. Lifecycles

The different aspects, or life cycles, of working with KIE system, whether it's Drools or jBPM, can
typically be broken down into the following:

« Author

» Authoring of knowledge using a Ul metaphor, such as: DRL, BPMN2, decision table, class
models.

* Build

* Builds the authored knowledge into deployable units.

* For KIE this unitis a JAR.
* Test

» Test KIE knowedge before it's deployed to the application.
« Deploy

» Deploys the unit to a location where applications may utilize (consume) them.

46

Build, Deploy, Utilize and Run

» KIE uses Maven style repository.
« Utilize

» The loading of a JAR to provide a KIE session (KieSession), for which the application can
interact with.

» KIE exposes the JAR at runtime via a KIE container (KieContainer).

» KieSessions, for the runtime's to interact with, are created from the KieContainer.
* Run

» System interaction with the KieSession, via API.
* Work

» User interaction with the KieSession, via command line or UI.
* Manage

* Manage any KieSession or KieContainer.

4.2. Build, Deploy, Utilize and Run

4.2.1. Introduction

6.0 introduces a new configuration and convention approach to building knowledge bases, instead
of the using the programmatic builder approach in 5.x. Atlhough a builder is still available to fall
back on, as it's used for the tooling integration.

Building now uses Maven, and aligns with Maven practices. A KIE projcet or module is simply
a Maven Java project or module; with an additional metadata file META-INF/kmodule.xml. The
kmodule.xml file is the descriptor that selects resources to knowledge bases and configures those
knowledge bases and sessions. There is also alternative XML support via Spring and OSGi
BluePrints.

While standard Maven can build and package KIE resources, it will not provide validation at build
time. There is a Maven plugin which is recommend to use to get build time validation. The plugin
also pre-genenerates many classes, making the runtime loading faster too.

The example project layout and Maven POM descriptor is illustrated in the screenshot

47

Chapter 4. KIE

- e T
v [ldrools-examples-api
¥ [idefault-kiesession
v Clsrc
v CImain
v [Cjava
v org.drools.example.api.defaultkiesession
' & DefaultKieSessionExample
£ ' Message
¥ [Zresources
v defaultkiesession
Hall.drl
v META-INF
= kmodule.xml
= logback.xml
: test
v [java
v org.drools.example. api.defaultkiesession
& & DefaultkieSessionExampleTest
&4 DefaultKieSessionFromFSExampleTest
.gitignore
Il default-kiesession.im!
m pom.xml
¥ [ldefault-kiesession-from-file
v DOsrc
> Bl main
¥ Cltest
v Bjava

<?xml version="1.8" encoding="UTF-8"7>
J=project xmlns="http://maven.apache.org/POM/4.0.08"

xmlns:xsi="http://www.w3.0rg/2081/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven—4.0.0.xsd">
=modelVersion=4.8.8</modelVersion=
<parent>
<groupIld>org.drools</groupld>
<artifactId>drools-examples-api</artifactId-
<version=6.8.0=/version>
=/parent=>

<artifactId>default-kiesession</artifactId>
<name>Drools API examples - Default KieSession</name>

<dependencies>
=dependency=
<groupld=org.drools</groupld=
<artifactld=drools-compiler</artifactId>
</dependency>
</dependencies>

<build>
<plugins=
<plugin=>
<groupld=org.drools</groupId>
<artifactId-drools-maven-plugin</artifactld>
<version=h.@.2</version=
<extensions>true</extensions>
</plugin>
</plugins=
</build=

</project>

Figure 4.2. Example project layout and Maven POM

KIE uses defaults to minimise the amount of configuration. With an empty kmodule.xml being the
simplest configuration. There must always be a kmodule.xml file, even if empty, as it's used for

discovery of the JAR and its contents.

Maven can either 'mvn install' to deploy a KieModule to the local machine, where all other
applications on the local machine use it. Or it can 'mvn 'deploy’ to push the KieModule to a remote
Maven repository. Building the Application wil pull in the KieModule, populating its local Maven

repository, as it does so.

48

Introduction

—_ —
~—— ~—
Maven Maven
Repository [~ ™ Repository
(local) ' (local)
mvn deploy mvn install

Project Application

Figure 4.3. Example project layout and Maven POM

JARs can be deployed in one of two ways. Either added to the classpath, like any other JAR
in a Maven dependency listing, or they can be dynamically loaded at runtime. KIE will scan
the classpath to find all the JARs with a kmodule.xml in it. Each found JAR is represented by
the KieModule interface. The term Classpath KieModules and dynamic KieModule is used to
refer to the two loading approaches. While dynamic modules supports side by side versioning,
classpath modules do not. Further once module is on the classpath, no other version may be
loaded dynamically.

Detailed references for the API are included in the next sections, the impatient can jump straight
to the examples section, which is fairly intuitive for the different use cases.

49

Chapter 4. KIE

4.2.2. Building

org.kie.api.builder

Include KieBuilder
KieFileSystem KieModule
KieRepository KieScanner
Message Releaseld
Results

Message.Level

yviworks UML Doclet

Figure 4.4. org.kie.api.core.builder

4.2.2.1. Creating and building a Kie Project

A Kie Project has the structure of a normal Maven project with the only peculiarity of including
a kmodule.xml file defining in a declaratively way the Ki eBases and Ki eSessi ons that can be
created from it. This file has to be placed in the resources/META-INF folder of the Maven project
while all the other Kie artifacts, such as DRL or a Excel files, must be stored in the resources
folder or in any other subfolder under it.

50

Building

Since meaningful defaults have been provided for all configuration aspects, the simplest

kmodule.xml file can contain just an empty kmodule tag like the following:

Example 4.1. An empty kmodule.xml file

<?xm version="1.0" encodi ng="UTF- 8" ?>
<knodul e xm ns="http://] boss. org/ ki e/ 6. 0.0/ kmodul e"/ >

In this way the kmodule will contain one single default Ki eBase. All Kie assets stored under the
resources folder, or any of its subfolders, will be compiled and added to it. To trigger the building

of these artifacts it is enough to create a Ki eCont ai ner for them.

org.kie.api.runtime

KieContainer

% getClassLoader(] . ClassLoader

“ getKieBase(] : KieBase

. getkKieBase(String) : KieBase

“ getReleaseld() : Releasald

newkieBase(String, KieBaseConfiguration) : KieBase
newKieBase(KieBaseConfiguration) : KieBase

newkieSession(] : KieSession

newkieSession({String) ; KieSession

newkieSession(5tring, Environment) : KieSession

newkieSession(String, Environment, KieSessionConfiguration) : KieSession
newKieSession(String, KieSessionConfiguration) : KieSession
newKieSession{Environment) . KieSession
newkieSession{KieSessionConfiguration) : KieSession
newStatelesskieSession() : StatelessKieSession
newStatelesskieSession(String) « StatelesskKieSession
newStatelessKieSession(String, KieSessionConfiguration) : StatelessKieSession
newStatelessKieSession(KieSessionConfiguration) : StatelessKieSession
updateToVersion(Releaseid) : void

verify() : Results

LA AR AN A A

yWorks UML Doclet

Figure 4.5. KieContainer

java.lang

ClasslLoader

String

org.kie.api
KieBase

KieBaseConfiguration

org.kie.api.builder

Releaseld

Results

org.kie.api.runtime

Environment
KieSession
KieSessionConfiguration

StatelessKieSession

For this simple case it is enough to create a Ki eCont ai ner that reads the files to be built from

the classpath:

51

Chapter 4. KIE

Example 4.2. Creating a KieContainer from the classpath

Ki eServi ces ki eServices
Ki eCont ai ner kCont ai ner

Ki eServi ces is the interface from where it possible to access all the Kie building and runtime

facilities:

Ki eServi ces. Factory. get ();
ki eServi ces. get Ki eCl asspat hCont ai ner () ;

52

Building

org.kie.api java.io

KieServices File

“ getCommands(] : KieCommands
. getkieClasspathContainer(] : KieContainer

“ getloggers() : KieLoggers java.lang
% getMarshallers() : KieMarshallers
. getRepasitory(] : KieRepository ClassLoader
“ getResources(] : KleResources -
. getStoreServices() : KieStoreServices String
% newErvironment() : Environment
% newkKieBaseConfiguration() : KieBaseConfiguration
“ newkKieBaseConfiguration(Properties, ClassLoader] : KieBaseConfiguration java.util
‘. newkKieBuilder{File) : KieBuilder
. newkieBuilder(kKieFileSystem) : KieBuilder Properties
% newkKieContainer(Releaseld) : KieContainer
“ hewkKieFileSystemi) : KieFileSystem
“ newkKieMaduleModel() : KieModuleMode! org.kie.api
“ newkieScanner(KieContainer) : KieScanner
“ newkieSessionConfiguration() : KieSessionConfiguration KieBaseConfiguration
% newkKieSessionConfiguration(Properties) : KieSessionConfiguration
“ newReleaseld(String, String, String) : Releaseld
org.kie.api.builder
KieBuilder
KieFileSystem
KieRepository
KieScanner
Releaseld
org.kie.api.builder.model
KieModuleModel
org.kie.api.command
KieCommands
org.kie.api.io
KieResources
org.kie.api.logger
KieLoggers
org.kie.api.marshalling
KieMarshallers
Figure 4.6. KieServices org.kie.api.persistence.jpa

KieStoreServices

org.kie.api.runtime

Environment

Chapter 4. KIE

In this way all the Java sources and the Kie resources are compiled and deployed into the
KieContainer which makes its contents available for use at runtime.

4.2.2.2. The kmodule.xml file

As anticipated in the former section the kmodule.xml file is the place where it is possible to
declaratively configure the Ki eBase(s) and Ki eSessi on(s) that can be created from a KIE project.

In particular a Ki eBase is a repository of all the application's knowledge definitions. It will contain
rules, processes, functions, and type models. The Ki eBase itself does not contain data; instead,
sessions are created from the Ki eBase into which data can be inserted and from which process
instances may be started. Creating the Ki eBase can be heavy, whereas session creation is very
light, so it is recommended that Ki eBase be cached where possible to allow for repeated session
creation. However end-users usually shouldn't worry about it, because this caching mechanism
is already automatically provided by the Ki eCont ai ner .

54

Building

org.kie.api.event.kiebase

KieBaseEventManager

org.kie.api java.lang

KieBase String

“ getEntryPoint!ds() : Set<String=>
“ getFactType(String, String) : FactType

‘. getkiePackage(String) : KiePackage java. util

% getKiePackages() : Collection=KiePackage=

. getkieSessions() : Collection=? extends KieSession= Collection<E=>
% getProcess(String) : Process

% getProcesses() : Collection<Process= Set<E>

“ getQuery(String, String) : Query
“ getRule(String, String) : Rule

“ newkieSessian() : KieSession org.kie.api.definition

“ newkieSession(KieSessionConfiguration, Environment)] : KieSession

. newStatelessKieSession() : StatelessKieSession KiePackage

% newstatelessKieSession(KieSessionConfiguration) : StatelessKieSession

% removeFunction(String, String) : void

% removeKiePackage(String) : void org.kie.api.definition.process
% removeProcess(String) : void

% removeQuery(String, String) : void Process

S

removeRule(String, String) : vaid

org.kie.api.definition.rule
Query

Rule

org.kie.api.definition.type

FactType

org.kie.api.runtime

Environment
KieSession
KieSessionConfiguration

StatelessKieSession

yWorks UML Doclet

Figure 4.7. KieBase

Conversely the Ki eSessi on stores and executes on the runtime data. It is created from the
Ki eBase or more easily can be created directly from the Ki eCont ai ner if it has been defined in
the kmodule.xml file

55

Chapter 4. KIE

org.kie.api.runtime org.kie.api.runtime.process org.kie.api.runtime.rule

' CommandExecutor | | KieRuntime | | statefulProcessSession | | statefulRuleSession |

T I T T

org.kie/api.runtime

KieSession
. destroy() : void
. dispose() : void
% getld(] . int

yWorks UML Doclet

Figure 4.8. KieSession

The kmodule.xml allows to define and configure one or more Ki eBases and for each Ki eBase all
the different Ki eSessi ons that can be created from it, as showed by the follwing example:

Example 4.3. A sample kmodule.xml file

<knodul e xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Scherna- i nst ance"
xm ns="http://jboss.org/kiel/6.0.0/ knmodul e" >
<kbase nane="KBasel" defaul t="true" eventProcessi ngMbde="cl oud" equal sBehavi or="equal ity" dec
<ksessi on nane="KSession2_1" type="stateful" default="true/">
<ksessi on name="KSessi on2_1" type="st at el ess" defaul t ="fal se/
" beliefSystem="jtns">
</ kbase>
kKBats e2thaPsetessi ngvbdeeysat eBehavi or =" dquahbr ty 1 veAgenda=panabged=" or g. domai n. pkg2
or g. domai n. pkg3" i ncl udes="KBasel" >

<ksessi on nane="KSessi on2_1" type="stateful" default="fal se" clockType="realtine">
<filelLogger file="drools.log" threaded="true" interval ="10"/>
<wor kI t emHandl er s>
<wor kIl t enHandl er nane="nanme" type="org. donui n. Wr Kkl tenHandl er"/ >
</ wor kl t emHand| er s>
<l isteners>
<rul eRunti neEvent Li st ener type="org. domai n. Rul eRunti neLi stener"/>
<agendaEvent Li st ener type="org. donui n. Fi r st Agendali st ener"/ >
<agendaEvent Li st ener type="org. donai n. SecondAgendali st ener"/ >
<processEvent Li st ener type="org. donmai n. ProcessLi stener"/>
</listeners>
</ ksessi on>
</ kbase>
</ knmodul e>

56

Building

Here 2 Ki eBases have been defined and it is possible to instance 2 different types of Ki eSessi ons
from the first one, while only one from the second. A list of the attributes that can be defined on
the kbase tag, together with their meaning and default values follows:

Table 4.1. kbase Attributes

Attribute name Default value Admitted values Meaning

name none any The name with
which retrieve this
KieBase from the
KieContainer. This is
the only mandatory

attribute.
includes none any comma separated A comma separated
list list of other KieBases

contained in this
kmodule. The artifacts
of all these KieBases
will be also included in

this one.
packages all any comma separated By default all
list the Drools artifacts

under the resources
folder, at any level,
are included into
the KieBase. This
attribute allows to limit
the artifacts that will
be compiled in this
KieBase to only the
ones belonging to the
list of packages.

default false true, false Defines if this KieBase
is the default one
for this module, so
it can be created
from the KieContainer
without passing any
name to it. There
can be at most one
default KieBase in
each module.

equalsBehavior identity identity, equality Defines the behavior
of Drools when a

57

Chapter 4. KIE

Attribute name Default value Admitted values Meaning

new fact is inserted
into the Working
Memory. With identity
it always create a new
FactHandle unless the
same object isn't
already present in
the Working Memory,
while with equality
only if the newly
inserted object is not
equal (according to its
equal method) to an
already existing fact.

eventProcessingMode cloud cloud, stream When compiled in
cloud mode the
KieBase treats events
as normal facts, while
in stream mode allow
temporal reasoning on
them.

declarativeAgenda disabled disabled, enabled Defines if the
Declarative Agenda is
enabled or not.

In the same way also all attributes of the ksession tag (except of course the name) have meaningful
default. They are listed and described in the following table:

Table 4.2. ksession Attributes

Attribute name Default value Admitted values Meaning

name none any The name with
which retrieve this
KieSession from the
KieContainer. This is
the only mandatory
attribute.

type stateful stateful, stateless A stateful session
allows to iteratively
work with the Working
Memory, while a
stateless one is a
one-off execution of a

58

Building

Attribute name Default value Admitted values Meaning

Working Memory with
a provided data set.

default false true, false Defines if this
KieSession is the
default one for this
module, so it can
be created from the
KieContainer without
passing any name to
it. In each module
there can be at
most one default
KieSession for each

type.
clockType realtime realtime, pseudo Defines if events
timestamps are

determined by the
system clock or
by a psuedo clock
controlled by the
application. This clock
is specially useful for
unit testing temporal

rules.
beliefSystem simple simple, jtms, Defines the type of
defeasible belief system used by

the KieSession.

As outlined in the former kmodule.xml sample, it is also possible to declaratively create on
each Ki eSession a file (or a console) logger, one or more WrkltenHandl ers and some
listeners that can be of 3 different types: ruleRuntimeEventListener, agendaEventListener and
processEventListener

Having defined a kmodule.xml like the one in the former sample, it is now possible to simply
retrieve the KieBases and KieSessions from the KieContainer using their names.

Example 4.4. Retriving KieBases and KieSessions from the KieContainer

Ki eServi ces ki eServices = Ki eServices. Factory.get();
Ki eCont ai ner kCont ai ner = ki eServi ces. get Ki eC asspat hCont ai ner () ;

Ki eBase kBasel = kCont ai ner. get Ki eBase(" KBasel");
Ki eSessi on ki eSessi onl = kCont ai ner. newKi eSessi on("KSessi on2_1");

59

Chapter 4. KIE

St at el essKi eSessi on ki eSessi on2 = kCont ai ner. newSt at el essKi eSessi on(" KSessi on2_2");

It has to be noted that since KSession2_1 and KSession2_2 are of 2 different types (the first
is stateful, while the second is stateless) it is necessary to invoke 2 different methods on the
Ki eCont ai ner according to their declared type. If the type of the Ki eSessi on requested to the
Ki eCont ai ner doesn't correspond with the one declared in the kmodule.xml file the Ki eCont ai ner
will throw a Runt i meExcept i on. Also since a Ki eBase and a Ki eSessi on have been flagged as
default is it possible to get them from the Ki eCont ai ner without passing any name.

Example 4.5. Retriving default KieBases and KieSessions from the
KieContainer

Ki eCont ai ner kContai ner = ...

Ki eBase kBasel = kCont ai ner. get Ki eBase(); // returns KBasel
Ki eSessi on ki eSessi onl = kCont ai ner. newKi eSession(); // returns KSession2_1

Since a Kie project is also a Maven project the groupld, artifactld and version declared in the
pom.xml file are also used to generate a Rel easel d that uniquely identify this project inside your
application. This also allows to create a new KieContainer from that project by simply passing its
Rel easel d to the Ki eSer vi ces.

Example 4.6. Creating a KieContainer of an existing project retriving it by
Releaseld

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Rel easel d rel easeld = ki eServi ces. newRrel easel d("org.acne", "nyartifact”, "1.0");
Ki eCont ai ner ki eCont ai ner = ki eServi ces. newKi eCont ai ner(rel easeld);

4.2.2.3. Building with Maven

The KIE plugin for Maven ensures that artefact resources are validated and pre-compiled, it is
recommended that this is used at all times. To use the plugin simple add it to the build section
of the Maven pom.xml

Example 4.7. Adding the KIE plugin to a Maven pom.xml

<bui | d>
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. ki e</ gr oupl d>

60

Building

<artifact!|d>ki e-maven-pl ugin</artifactld>
<versi on>${proj ect.version}</version>
<ext ensi ons>tr ue</ ext ensi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Building a KIE module without the Maven plugin will copy all the resources, as is, into the resulting
JAR. When that JAR is loaded by the runtime, it will attempt to build all the resources then. If there
are compilation issues it will return a null KieContainer. It also pushes the compilation overhead
to the runtime. In general this is not recommended, and the Maven plugin should always be used.

4.2.2.4. Defining a KieModule programmatically

It is also possible to define the Ki eBases and Ki eSessions belonging to a KieModule
programmatically instead of declaratively define them in the kmodule.xml file. The same
programmatic API also allows to explicitly add the file containing the Kie artifacts instead of
automatically read them from the resources folder of your project. To do that it is necessary to
create a Ki eFi | eSyst em a sort of virtual file system, and add all the resources contained in your
project to it.

org.kie.api.builder java.lang

KieFileSystem string

% delete(String...) : void

generateAndWritePomXML(Releaseld) : KieFileSystem

read(String) : byte[] org.kie.api.builder
write(String, bytel]) : KieFileSystem

write(String. String) : KieFileSystem Releaseld
write(String, Resource) : KieFileSystem

write(Resource] : KieFlleSystem

writeKModuleXMLibytel]) : KieFileSystem org.kie.api.io
writeKModule XML{String) : KieFileSystem

writePomXML(bytel]) : KieFileSystem Resource
writePomXML(String) : KieFileSystem

A AR AR A AR

ywWaorks UML Doclet

Figure 4.9. KieFileSystem

Like all other Kie core component you can obtain an instance of the Ki eFi | eSyst emfrom the
Ki eServi ces. One of the thing that for sure it will be necessary to add to this file system is the
kmodule.xml configuration file. As anticipated above Kie also provides a convenient fluent API,
implemented by the Ki eMbdul eModel , to programmatically create this file.

61

Chapter 4. KIE

org.kie.api.builder.model java.lang

KieModuleModel String

“ getkieBaseModels() : Map=5String, KieBaseModel=
“ newkieBaseModel(String) : KieBaseMaode!
. removekieBaseModel{String) : void java.util

% feXML() : String
Map<K, V>

org.kie.api.builder.model

KieBaseModel

yWorks LML Doclet

Figure 4.10. KieModuleModel

To do this in practice it is necessary to create a Ki eModul eMbdel from the Ki eSer vi ces, configure
it with the desired Ki eBases and Ki eSessi ons, convert it in XML and add the XML to the
Ki eFi | eSyst em This process is shown by the following example:

Example 4.8. Creating a kmodule.xm| programmatically and adding it to a
KieFileSystem

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Ki eMbdul eMbdel ki eModul eMbdel = ki eServi ces. newKi eMbdul eMbdel () ;

Ki eBaseMbdel ki eBaseMbdel 1 = ki eModul eModel . newKi eBaseModel (" KBasel ")
.setDefault(true)
. set Equal sBehavi or (Equal i t yBehavi or Opti on. EQUALI TY)
. set Event Processi ngMbde(Event Processi ngOpti on. STREAM) ;

Ki eSessi onvbdel ksessi onModel 1 = ki eBaseMbdel 1. newKi eSessi onModel (" KSessi onl")
.setDefault(true)
.set Type(Ki eSessi onModel . Ki eSessi onType. STATEFUL)
.set d ockType(C ockTypeOption.get("realtine"));

Ki eFi | eSystem kfs = ki eServi ces. newKi eFi | eSystem();
At this point it is also necessary to add to the Ki eFi | eSyst em through its fluent API, all others

Kie artifacts composing your project. These artifacts have to be added in the same position of a
corresponding usual Maven project.

62

Building

Example 4.9. Adding Kie artifacts to a KieFileSystem

Ki eFi | eSystem kfs = ...
kfs.wite("src/ mai n/ resour ces/ KBasel/
ruleSetl.drl", stringContainingAVali dDRL)
.write("src/main/resources/dtable.xls",
ki eServi ces. get Resour ces(). new nput St r eanResource(dtableFileStream));

This example shows that it is possible to add the Kie artifacts both as plain Strings and as
Resour ces. In this second case the Resour ces can be created by the Ki eResour ces factory, also
provided by the Ki eSer vi ces. The Ki eResour ces provides many convenient factory methods to
convert an I nput Stream a URL, a Fi |l e, or a Stri ng representing a path of your file system to a
Resour ce that can be managed by the Ki eFi | eSyst em

63

Chapter 4. KIE

org.kie.api

Service

org.kie.api.io

B AR AR AR A A O A A O

KieResources

newBytedrrayResource(byte(]) : Resource
newClassPathResource(String) ; Resource
newClassPathResource(String, Class=?7=) : Resource
newClassPathResource(5String, Classloader) : Resource
newClassPathResource(String, String) : Resource
newClassPathResource(String, Stning, Class=7=) : Resource
newClassPathResource(String, String, Classloader) : Resource
newDescrResource{KieDescr) ; Resource
newFileSystemResource(File) : Resource
newFileSystemResource(String) : Resource
newlnputStreamResource(inputStream) . Resource
newinputStreamResource(lnputStream, String) : Resource
newReaderResource(Reader) : Resource
newReaderResource(Reader, String) : Resource
newlriResource(String) ; Resource

newlriResource(URL) : Resource

yWorks UML Doclet

Figure 4.11. KieResources

java.io
File
InputStream

Reader

java.lang

Class<T>
Classl oader

String

java.net

URL

org.kie.api.definition

KieDescr

org.kie,api.io

Resource

Normally the type of a Resour ce can be inferred from the extension of the name used to add it to
the Ki eFi | eSyst em However it also possible to not follow the Kie conventions about file extension
and then explicitly assign a specific Resour ceType to aResour ce as in the following example

64

Building

Example 4.10. Creating and adding a Resource with an explicit type

Ki eFi | eSystem kfs = ..
kfs.wite("src/main/resources/myDrl.txt",
ki eServi ces. get Resources() . new nput St reanResource(drl Stream)
. set Resour ceType(ResourceType. DRL));

After having added to the Ki eFi | eSyst emall the resources that has to be included into the project,
it is possible to build it by passing the Ki eFi | eSyst emto a Ki eBui | der

org.kie.api.builder org.kie.api.builder

KieBuilder KieModule
& buildall() : KieBuilder

W getkieMaodule() : KieModule Results

“w getResults() : Results

. setDependencies(KieModule...) : KieBuilder

«. setDependencies(Resource...) : KieBuilder org.kie.api.io
Resource

yWorks UML Doclet

Figure 4.12. KieBuilder

When a the contents of a Ki eFi | eSyst emis successfully built, the Ki eMbdul e resulting from this
compilation is automatically added to the Ki eReposi tory. The Ki eReposi tory is a singleton
acting as a repository for all the available Ki eMbdul es.

65

Chapter 4. KIE

org.kie.api.builder org.kie.api.builder

KieRepository KieModule
. addkieModule(KieModule) : vaid
. addkieModule(Resource, Resource...) : KieModule
. getDefaultReleaseld(] : Releasald
. getkieModule(Releaseld) : KieModule

Releaseld

org.kie.api.io

Resource

yWorks UML Doclet

Figure 4.13. KieRepository

After this it is possible to create through the Ki eServices a new Ki eContainer for that
Ki eMbdul e using its Rel easel d. However, since in this case the Ki eFi | eSyst emdon't contain
any pom.xml file (it is possible to add one using the Ki eFi | eSyst em wr i t ePonXM. method), Kie
cannot determine the Rel easel d of the Ki eMbdul e and assign to it a default one. This default
Rel easel d can be obtained from the Ki eReposi t ory and used to identify the Ki eModul e inside
the Ki eReposi t ory itself. The following example shows this whole process.

Example 4.11. Building the contents of a KieFileSystem and creating a
KieContainer

Ki eServi ces ki eServices = Ki eServices. Factory. get();

Ki eFi | eSystem kfs = ...

ki eServi ces. newKi eBui | der (kfs).buildAII ();

Ki eCont ai ner ki eCont ai ner = ki eServi ces. newKi eCont ai ner (ki eServi ces. get Repository().getDefaul t]

At this point it is possible to get Ki eBases and create new Ki eSessi ons from this Ki eCont ai ner
exactly in the same way as in the case of a Ki eCont ai ner created directly from the classpath.

It is a best practice to check the compilation results. The Ki eBui | der can report compilation
results of 3 different severities: ERROR, WARNING and INFO. An ERROR indicates that the
compilation of the project failed and in the case no Ki eMbdul e is produced and then nothing is
added to the Ki eReposi t ory. WARNING and INFO results can be ignored, but are available for
inspection nonetheless.

Example 4.12. Checking that a compilation didn't produce any error

Ki eBui | der ki eBuil der = ki eServices. newKi eBui |l der(kfs). buil dAII ();

66

Deploying

assert Equal s(0, kieBuilder.getResults().getMessages(Message. Level . ERROR). size());

4.2.2.5. Changing the Default Build Result Severity

In some cases, it is possible to change the default severity of a type of build result. For instance,
when a new rule with the same name of an existing rule is added to a package, the default behavior
is to replace the old rule by the new rule and report it as an INFO. This is probably ideal for most
use cases, but in some deployments the user might want to prevent the rule update and report
it as an error.

Changing the default severity for a result type is configured like any other option in Drools and can
be done by API calls, system properties or configuration files. As of this version, Drools supports
configurable result severity for rule updates and function updates. To configure it using system
properties or configuration files, the user has to use the following properties:

Example 4.13. Setting the severity using properties

/]l sets the severity of rule updates

drool s. kbui | der. severity. duplicateRul e = <I NFQ WARNI N§ ERROR>

/] sets the severity of function updates

drool s. kbui | der. severity. duplicateFuncti on = <l NFQ WARNI NG ERROR>

4.2.3. Deploying

4.2.3.1. KieBase

The Ki eBase is a repository of all the application's knowledge definitions. It will contain rules,
processes, functions, and type models. The Ki eBase itself does not contain data; instead,
sessions are created from the Ki eBase into which data can be inserted and from which process
instances may be started. The Ki eBase can be obtained from the Ki eCont ai ner containing the
Ki eMbdul e where the Ki eBase has been defined.

67

Chapter 4. KIE

org.kie.api.event.kiebase

KieBaseEventManager

org.kie.api java.lang

KieBase String

“ getEntryPoint!ds() : Set<String=>
“ getFactType(String, String) : FactType

‘. getkiePackage(String) : KiePackage java. util

% getKiePackages() : Collection=KiePackage=

. getkieSessions() : Collection=? extends KieSession= Collection<E=>
% getProcess(String) : Process

% getProcesses() : Collection<Process= Set<E>

“ getQuery(String, String) : Query
“ getRule(String, String) : Rule

“ newkieSessian() : KieSession org.kie.api.definition

“ newkieSession(KieSessionConfiguration, Environment)] : KieSession

. newStatelessKieSession() : StatelessKieSession KiePackage

% newstatelessKieSession(KieSessionConfiguration) : StatelessKieSession

% removeFunction(String, String) : void

% removeKiePackage(String) : void org.kie.api.definition.process
% removeProcess(String) : void

% removeQuery(String, String) : void Process

S

removeRule(String, String) : vaid

org.kie.api.definition.rule
Query

Rule

org.kie.api.definition.type

FactType

org.kie.api.runtime

Environment
KieSession
KieSessionConfiguration

StatelessKieSession

yWorks UML Doclet

Figure 4.14. KieBase

Sometimes, for instance in a OSGi environment, the Ki eBase needs to resolve types that are not
in the default class loader. In this case it will be necessary to create a Ki eBaseConfi gurati on
with an additional class loader and pass it to Ki eCont ai ner when creating a new Ki eBase from it.

68

Deploying

Example 4.14. Creating a new KieBase with a custom ClassLoader

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Ki eBaseConfi gurati on kbaseConf = ki eServi ces. newKi eBaseConfiguration(null, MType.class.getd :
Ki eBase kbase = ki eCont ai ner. newKi eBase(kbaseConf);

4.2.3.2. KieSessions and KieBase Modifications

KieSessions will be discussed in more detail in section "Running". The Ki eBase creates and
returns Ki eSessi on objects, and it may optionally keep references to those. When Ki eBase
modifications occur those modifications are applied against the data in the sessions. This
reference is a weak reference and it is also optional, which is controlled by a boolean flag.

4.2.3.3. KieScanner

The Ki eScanner allows to continously monitoring your Maven repository to check if a new release
of a Kie project has been installed and if so deploying it in the Ki eCont ai ner wrapping that project.
The use of the Ki eScanner requires kie-ci.jar to be on the classpath.

org.kie.api.builder

KieScanner

& scanNow() : void
% start(long) : void
% stop() : void

yWorks UML Doclet

Figure 4.15. KieScanner

In more detail a Ki eScanner can be registered on a Ki eCont ai ner as in the following example.

Example 4.15. Registering and starting a KieScanner on a KieContainer

Ki eServi ces ki eServices = Ki eServices. Factory.get();

Rel easel d rel easel d = ki eServi ces. newRel easel d("org.acne", "nyartifact", "1.0-
SNAPSHOT") ;

Ki eCont ai ner kCont ai ner = ki eServi ces. newKi eCont ai ner(rel easeld);

Ki eScanner kScanner = ki eServi ces. newKi eScanner (kCont ai ner);

69

Chapter 4. KIE

/1 Start the KieScanner polling the Maven repository every 10 seconds
kScanner.start(10000L);

In this example the Ki eScanner is configured to run with a fixed time interval, but it is also possible
to run it on demand by invoking the scanNow() method on it. If the Ki eScanner finds in the
Maven repository an updated version of the Kie project used by that Ki eCont ai ner it automatically
downloads the new version and triggers an incremental build of the new project. From this moment
all the new Ki eBases and Ki eSessi ons created from that Ki eCont ai ner will use the new project
version.

4.2.4. Running

4.2.4.1. KieBase

The Ki eBase is a repository of all the application's knowledge definitions. It will contain rules,
processes, functions, and type models. The Ki eBase itself does not contain data; instead,
sessions are created from the Ki eBase into which data can be inserted and from which process
instances may be started. The Ki eBase can be obtained from the Ki eCont ai ner containing the
Ki eMbdul e where the Ki eBase has been defined.

Example 4.16. Getting a KieBase from a KieContainer

Ki eBase kBase = kCont ai ner. get Ki eBase() ;

4.2.4.2. KieSession

The Ki eSessi on stores and executes on the runtime data. It is created from the Ki eBase.

org.kie.api.runtime org.kie.api.runtime.process org.kie.api.runtime.rule

CommandExecutor | | KieRuntime StatefulProcessSession StatefulRuleSession

org.kie/api.runtime

KieSession

. destroy() : void
. dispose() : void
% getld(] . int

yWorks UML Doclet

Figure 4.16. KieSession

70

Running

Example 4.17. Create a KieSession from a KieBase

Ki eSessi on ksessi on = kbase. newKi eSessi on() ;

4.2.4.3. KieRuntime

4.2.4.3.1. KieRuntime

The Ki eRunt i me provides further methods that are applicable to both rules and processes, such
as setting globals and registering channels. ("Exit point" is an obsolete synonym for "channel".)

org.kie.api.event org.kie.api.runtime.process org.kie.api.runtime.rule
KieRuntimeEventManager ProcessRuntime RuleRuntime
org.kie.api.runtime java.lang
KieRuntime Object

. getCalendars() : Calendars

“ getChannels() : Map<=String, Channel= String

“ getEnvironment() : Environment

“ getGlobal(String) : Object

. getGlobals() : Globals java.util

. getKieBase() ; KleBase

. getSessionClock() ; <T extends SessionClock= T Map<K, V=

. getSessionCanfiguration() : KieSessionConfiguration
“ registerChannel(String, Channel) : void
«. setGlobal(String, Object] : void org.kie.api

“ unregisterChannel{String) : void
KieBase

org.kie.api.runtime

Calendars
Channel
Environment
Globals

KieSessionConfiguration

yWorks UML Doclet

Figure 4.17. KieRuntime

71

Chapter 4. KIE

4.2.4.3.1.1. Globals

Globals are named objects that are made visible to the rule engine, but in a way that is
fundamentally different from the one for facts: changes in the object backing a global do not trigger
reevaluation of rules. Still, globals are useful for providing static information, as an object offering
services that are used in the RHS of a rule, or as a means to return objects from the rule engine.
When you use a global on the LHS of a rule, make sure it is immutable, or, at least, don't expect
changes to have any effect on the behavior of your rules.

A global must be declared in a rules file, and then it needs to be backed up with a Java object.

gl obal java.util.List |ist

With the Knowledge Base now aware of the global identifier and its type, it is now possible to call
ksessi on. set A obal () with the global's name and an object, for any session, to associate the
object with the global. Failure to declare the global type and identifier in DRL code will result in
an exception being thrown from this call.

List list = new ArrayList();
ksession.setd obal ("list", list);

Make sure to set any global before it is used in the evaluation of a rule. Failure to do so results
in a Nul | Poi nt er Excepti on.

4.2.4.4. Event Model

The event package provides means to be notified of rule engine events, including rules firing,
objects being asserted, etc. This allows you, for instance, to separate logging and auditing
activities from the main part of your application (and the rules).

The Ki eRunti meEvent Manager interface is implemented by the Ki eRunti ne which provides
two interfaces, Rul eRunt i neEvent Manager and Pr ocessEvent Manager . We will only cover the
Rul eRunt i meEvent Manager here.

72

Running

org.kie.api.event.process org.kie.api.event.rule
ProcessEventManager RuleRuntimeEventManager
org.kie.api.event org.kie.api.logger
KieRuntimeEventManager KieRuntimeLogger

w getlogger() : KieRuntimelLogger

yWorks UML Doclet

Figure 4.18. KieRuntimeEventManager

The Rul eRunt i neEvent Manager allows for listeners to be added and removed, so that events for

the working memory and the agenda can be listened to.

org.kie.api.event.rule

RuleRuntimeEventManager

% addEventListener{AgendaEventListener) . void

. addEventListener(RuleRuntimeEventListener) : void

« getAgendaEventListeners() : Collection=AgendaEventListener=

% getRuleRuntimeEventListeners() : Collecion<=RuleRuntimeEventlistener=
. removeEventlistener{AgendaEventListener) : void

« removeEventlistener(RuleRuntimeEventListener) : void

yWorks UML Doclet

Figure 4.19. RuleRuntimeEventManager

java.util

Collection<E>

org.kie.api.event.rule

AgendaEventListener

RuleRuntimeEventListener

The following code snippet shows how a simple agenda listener is declared and attached to a

session. It will print matches after they have fired.

Example 4.18. Adding an AgendaEventListener

ksessi on. addEvent Li st ener (new Def aul t AgendaEvent Li stener () {
public void afterMatchFired(AfterMat chFiredEvent event) {

super . af ter Mat chFi red(event);
Systemout.println(event);

73

Chapter 4. KIE

1)

Drools also provides DebugRul eRunt i meEvent Li st ener and DebugAgendaEvent Li st ener which
implement each method with a debug print statement. To print all Working Memory events, you
add a listener like this:

Example 4.19. Adding a DebugRuleRuntimeEventListener
ksessi on. addEvent Li st ener (new DebugRul eRunt i meEvent Li stener ());

All emitted events implement the Ki eRunt i meEvent interface which can be used to retrieve the
actual Know egeRunt i me the event originated from.

org.kie.api.event org.kie.api.runtime

KieRuntimeEvent KieRuntime

“ getKieRuntime() : KieRuntime

yWorks UML Doclet

Figure 4.20. KieRuntimeEvent

The events currently supported are:

* MatchCreatedEvent

+ MatchCancelledEvent

» BeforeMatchFiredEvent

» AfterMatchFiredEvent

» AgendaGroupPushedEvent
* AgendaGroupPoppedEvent
* ObjectinsertEvent

« ObjectDeletedEvent

* ObjectUpdatedEvent

74

Running

* ProcessCompletedEvent

ProcessNodeLeftEvent

ProcessNodeTriggeredEvent

* ProcessStartEvent
4.2.4.5. KieRuntimeLogger

The KieRuntimeLogger uses the comprehensive event system in Drools to create an audit log
that can be used to log the execution of an application for later inspection, using tools such as
the Eclipse audit viewer.

org.kie.api.logger java.lang

KieLoggers String

“ newConsolelLogger{KieRuntimeEventManager) : KieRuntimelLogger
“ newFileLogger(KieRuntimeEventManager, String) : KieRuntimelLogger
< newThreadedFileLogger(KieRuntimeEventManager, String, int) . KieRuntimelLogger org.kie.api.event

KieRuntimeEventManager

org.kie.api.logger

KieRuntimeLogger

yWorks UML Doclet

Figure 4.21. KieLoggers

Example 4.20. FileLogger

Ki eRunt i nreLogger | ogger =
Ki eServi ces. Factory. get (). newFi | eLogger (ksession, "logdir/nmylogfile");

| ogger. cl ose();

4.2.4.6. Commands and the CommandExecutor

KIE has the concept of stateful or stateless sessions. Stateful sessions have already been
covered, which use the standard KieRuntime, and can be worked with iteratively over time.
Stateless is a one-off execution of a KieRuntime with a provided data set. It may return some
results, with the session being disposed at the end, prohibiting further iterative interactions. You
can think of stateless as treating an engine like a function call with optional return results.

The foundation for this is the CommandExecut or interface, which both the stateful and stateless
interfaces extend. This returns an Execut i onResul t s:

75

Chapter 4. KIE

org.kie.api.runtime org.kie.api.command

CommandExecutor Command<T>

W execute(Command<=T=) : <T=>T

yWorks UML Doclet

Figure 4.22. CommandExecutor

org.kie.api.runtime java.lang
ExecutionResults Object
% getFactHandle(String) : Object .
4 getidentifiers() : Collection<String> string
% getValue(String) : Object
java.util
Collection<E=>

yWorks UML Doclet

Figure 4.23. ExecutionResults

The CommandExecut or allows for commands to be executed on those sessions, the only difference
being that the StatelessKieSession executes fireAl | Rul es() at the end before disposing the
session. The commands can be created using the ConmandExecut or .The Javadocs provides the
full list of the provided comands using the CommandExecut or .

SetGloban and getGlobal are two commands relevant to both Drools and jBPM.

Set Global calls setGlobal underneath. The optional boolean indicates on whether the command
should return value as part of the Execut i onResul t s. If true it uses the same name as the global
name. A String cna be used instead of the boolean, if an alternative name is desired.

Example 4.21. Set Global Command

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on() ;

76

Running

ExecutionResults bresults =

ksessi on. execut e(CommandFact ory. newSet d obal ("stilton", new Cheese("stilton"

Cheese stilton = bresults.getValue("stilton");

Allows an existing global to be returned. The second optional String argument allows for an
alternative return name.

Example 4.22. Get Global Command

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on() ;
ExecutionResults bresults =

ksessi on. execut e(ConmandFactory. getd obal ("stilton");
Cheese stilton = bresults.getValue("stilton");

The examples above all execute single commands. The Bat chExecut i on represents a composite
command, created from a list of commands. It will iterate over the list and execute each command
in turn. This means you can insert some objects, start a process, call fireAllRules and execute a
query, all in a single execut e(. . .) call, which is quite powerful.

The StatelessKieSession will execute fireAl | Rul es() automatically at the end. However the
keen-eyed reader probably has already noticed the Fi r eAl | Rul es command and wondered how
that works with a StatelessKieSession. The Fi r eAl | Rul es command is allowed, and using it will
disable the automatic execution at the end; think of using it as a sort of manual override function.

Any command, in the batch, that has an out identifier set will add its results to the returned
Execut i onResul t s instance. Let's look at a simple example to see how this works. The example
presented includes command from the Drools and jBPM, for the sake of illustartion. They are
covered in more detail in the Drool and jBPM specific sections.

Example 4.23. BatchExecution Command

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on();

Li st cnds = new ArrayList();

cmds. add(CommandFact ory. newl nsert Obj ect (new Cheese("stilton", 1), "stilton"));
cmds. add(CommandFact ory. newSt art Process("process cheeses"));

cnds. add(CommandFact ory. newQuery("cheeses"));

).

true);

ExecutionResults bresults = ksessi on. execut e(CommandFact ory. newBat chExecution(cnmds));

Cheese stilton = (Cheese) bresults.getValue("stilton");
QueryResults gresults = (QueryResults) bresults.getValue("cheeses");

In the above example multiple commands are executed, two of which populate the
Execut i onResul t s. The query command defaults to use the same identifier as the query name,
but it can also be mapped to a different identifier.

77

Chapter 4. KIE

All commands support XML and jSON marshalling using XStream, as well as JAXB marshalling.
This is covered in section XXX.

4.2.4.7. StatelessKieSession

The St at el essKi eSessi on wraps the Ki eSessi on, instead of extending it. Its main focus is on
decision service type scenarios. It avoids the need to call di spose() . Stateless sessions do not
support iterative insertions and the method call fi r eAl | Rul es() from Java code; the act of calling
execut e() is a single-shot method that will internally instantiate a Ki eSessi on, add all the user
data and execute user commands, call fi r eAl | Rul es(), and then call di spose() . While the main
way to work with this class is via the Bat chExecut i on (a subinterface of Command) as supported by
the CommandExecut or interface, two convenience methods are provided for when simple object
insertion is all that's required. The CommandExecut or and Bat chExecut i on are talked about in
detail in their own section.

org.kie.api.event org.kie.api.runtime org.kie.api.runtime.process org.kie.api.runtime.rule
KieRuntimeEventManager CommandExecutor StatelessProcessSession StatelessRuleSession
org.kie.api.runtime java.lang
StatelessKieSession Object

“ getChannels() : Map=5tring., Channe/=
 getGlobals() : Globals

W getKieBase(: KieBase

“ registerChannel(String, Channel) : void
& setGlobal(String, Object) : void java,util
“ unregisterChannel{String) : void

String

Map<K, V>

org.kie.api

KieBase

org.kie.api.runtime

Channel

Globals

yWorks UML Doclet

Figure 4.24. StatelessKieSession

Our simple example shows a stateless session executing a given collection of Java objects using
the convenience API. It will iterate the collection, inserting each element in turn.

Example 4.24. Simple StatelessKieSession execution with a Collection

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on() ;
ksessi on. execute(col l ection);

78

Running

If this was done as a single Command it would be as follows:

Example 4.25. Simple StatelessKieSession execution with InsertElements
Command

ksessi on. execut e(CommandFact ory. newl nsert El ements(col l ection));

If you wanted to insert the collection itself, and the collection's individual elements, then
ComandFact ory. newl nsert (col | ecti on) would do the job.

Methods of the CommandFact or y create the supported commands, all of which can be marshalled
using XStream and the Bat chExecut i onHel per . Bat chExecut i onHel per provides details on the
XML format as well as how to use Drools Pipeline to automate the marshalling of Bat chExecut i on
and Execut i onResul ts.

St at el essKi eSessi on supports globals, scoped in a number of ways. I'll cover the non-command
way first, as commands are scoped to a specific execution call. Globals can be resolved in three
ways.

» The StatelessKieSession method get A obal s() returns a Globals instance which provides
access to the session's globals. These are shared for all execution calls. Exercise caution
regarding mutable globals because execution calls can be executing simultaneously in different
threads.

Example 4.26. Session scoped global

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on() ;

/1l Set a gl obal hbnSession, that can be used for DB interactions in the rules.
ksessi on. set d obal ("hbnSessi on", hibernateSession);

/|l Execute while being able to resolve the "hbnSession" identifier.

ksessi on. execute(collection);

e Using a delegate is another way of global resolution. Assigning a value to a global (with
set d obal (String, bject)) results in the value being stored in an internal collection
mapping identifiers to values. Identifiers in this internal collection will have priority over any
supplied delegate. Only if an identifier cannot be found in this internal collection, the delegate
global (if any) will be used.

« The third way of resolving globals is to have execution scoped globals. Here, a Conmand to set
a global is passed to the CommandExecut or .

The CommandExecut or interface also offers the ability to export data via "out" parameters. Inserted
facts, globals and query results can all be returned.

79

Chapter 4. KIE

Example 4.27. Out identifiers

/1l Set up a list of commands

Li st cnds = new ArrayList();

cmds. add(CommandFact ory. newSet d obal ("list1", new ArrayList(), true));
cnds. add(CommandFactory. newi nsert(new Person("jon", 102), "person"));
cmds. add(CommandFact ory. newQuery("Get People" "get People");

/| Execute the |ist
ExecutionResults results =
ksessi on. execut e(CommandFact ory. newBat chExecution(cnds));

/'l Retrieve the Arrayli st

results.getValue("listl");

/1l Retrieve the inserted Person fact

resul ts. getVal ue("person");

/1l Retrieve the query as a QueryResults instance.
results. getValue("Get People");

4.2.4.8. Marshalling

The Ki eMar shal | er s is used to marshal and unmarshal KieSessions.

org.kie.api
Service
org.kie.api.marshalling java.lang
KieMarshallers String

< newClassFilterAcceptor(Stringl]) : ObjectMarshallingStrategyAcceptor
% newldentityMarshallingStrategy() : ObjectMarshallingStrategy

“ newldentityMarshallingStrategy(ObjectMarshallingStrategyAcceptor) : ObjectMarshallingStrategy org.kie.api
. newMarshaller(KieBase) : Marshaller -
“ newMarshaller{KieBase, ObjectMarshallingStrategyl]) : Marshaller KieBase

“ newsSerializeMarshallingStrategy() : ObjectMarshallingStrategy
v newSerializeMarshallingStrategy(ObjectMarshallingStrategyAcceptor) : ObjectMarshallingStrategy

org.kie.api.marshalling

Marshaller
ObjectMarshallingStrategy

ObjectMarshallingStrategyAcceptor

yWorks UML Doclet

Figure 4.25. KieMarshallers

An instance of the Ki eMar shal | er s can be retrieved from the Ki eSer vi ces and at the simplest
the it can be used as follows:

80

Running

Example 4.28. Simple Marshaller Example

/'l ksession is the KieSession

/1 kbase is the KieBase

Byt eArrayQut put St ream baos = new Byt eArrayQut put Stream() ;

Mar shal | er marshal |l er = Ki eServices. Factory. get().getMrshallers().newarshaller(kbase);
mar shal | er. marshal | (baos, ksession);

baos. cl ose();

However, with marshalling you need more flexibility when dealing with referenced
user data. To achieve this we have the ObjectMrshallingStrategy interface.
Two implementations are provided, but users can implement their own. The two
supplied strategies are | dent i t yMar shal | i ngStrat egy and Seri al i zeMar shal | i ngSt r at egy.
Seri al i zeMar shal | i ngSt r at egy is the default, as used in the example above, and it just calls the
Seri al i zabl e or Ext er nal i zabl e methods on a user instance. | dentit yMarshal | i ngStr at egy
instead creates an integer id for each user object and stores them in a Map, while the id is written to
the stream. When unmarshalling it accesses the | dent i t yMar shal | i ngSt r at egy map to retrieve
the instance. This means that if you use the | denti t yMar shal | i ngSt r at egy, it is stateful for the
life of the Marshaller instance and will create ids and keep references to all objects that it attempts
to marshal. Below is he code to use an Identity Marshalling Strategy.

Example 4.29. IdentityMarshallingStrategy

Byt eArrayCut put St ream baos = new Byt eArrayQut put Strean() ;
Ki eMarshal | ers kMarshal | ers = Ki eServi ces. Factory. get().get Marshal |l ers()
oj ect Marshal | i ngStrategy ons = kMarshal | ers. new dentityMarshal | i ngStrategy()
Mar shal | er marshal ler =
kMar shal | ers. newvar shal | er (kbase, new Obj ect Marshal lingStrategy[]{ oms });
mar shal | er. marshal | (baos, ksession);
baos. cl ose();

For added flexability we can't assume that a single strategy is suitable. Therefore we have added
the Cbj ect Marshal i ngStrat egyAccept or interface that each Object Marshalling Strategy
contains. The Marshaller has a chain of strategies, and when it attempts to read or write a user
object it iterates the strategies asking if they accept responsability for marshalling the user object.
One of the provided implementations is C assFi | t er Accept or . This allows strings and wild cards
to be used to match class names. The default is "*.*", so in the above example the Identity
Marshalling Strategy is used which has a default "*.*" acceptor.

Assuming that we want to serialize all classes except for one given package, where we will use
identity lookup, we could do the following:

81

Chapter 4. KIE

Example 4.30. IdentityMarshallingStrategy with Acceptor

Byt eArrayCut put St ream baos = new Byt eArrayQut put Streanm() ;
Ki eMarshal | ers kMarshal | ers = Ki eServi ces. Factory. get().get Marshal |l ers()
hj ect Marshal | i ngStrat egyAcceptor identityAcceptor =

kMar shal | ers. newd assFi |l ter Acceptor(new String[] { "org.donuin.pkgl.*" });
Ohj ect Marshal i ngStrategy identityStrategy =

kMarshal | ers. newl dentityMarshal | i ngStrategy(identityAcceptor);
hj ect Marshal | i ngStrategy sns = kMarshal | ers. newSeri al i zeMarshal | i ngStrat egy();
Mar shal | er marshal ler =

kMar shal | ers. newvar shal | er (kbase,

new Cbj ect Marshal lingStrategy[]{ identityStrategy, sms });

mar shal | er. marshal | (baos, ksession);
baos. cl ose();

Note that the acceptance checking order is in the natural order of the supplied elements.

Also note that if you are using scheduled matches (i.e. some of your rules use timers or calendars)
they are marshallable only if, before you use it, you configure your KieSession to use a trackable
timer job factory manager as it follows:

Example 4.31. Configuring a trackable timer job factory manager

Ki eSessi onConfi guration ksconf = Ki eServices. Factory. get().newKi eSessi onConfiguration();
ksconf. set Opti on(Ti mer JobFact oryOpti on. get ("trackabl e"));
KSessi on ksession = kbase. newKi eSessi on(ksconf, null);

4.2.4.9. Persistence and Transactions

Longterm out of the box persistence with Java Persistence API (JPA) is possible with Drools.
It is necessary to have some implementation of the Java Transaction APl (JTA) installed. For
development purposes the Bitronix Transaction Manager is suggested, as it's simple to set up and
works embedded, but for production use JBoss Transactions is recommended.

Example 4.32. Simple example using transactions

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Envi ronment env = ki eServi ces. newEnvi ronnment () ;
env. set (Envi ronnent Name. ENTI TY_MANAGER _FACTCRY,
Per si st ence. creat eEnti t yManager Factory("enf-nane"));
env. set (Envi r onnent Narme. TRANSACTI ON_MANAGER,
Transact i onManager Ser vi ces. get Tr ansact i onManager ());

/'l Ki eSessi onConfiguration may be null, and a default will be used

82

Running

Ki eSessi on ksession =
ki eServi ces. get St oreServi ces().newKi eSessi on(kbase, null, env);
int sessionld = ksession.getld();

User Transaction ut =
(User Transaction) new Initial Context ().l ookup("java:conp/UserTransaction");
ut . begi n();
ksession.insert(datal);
ksession.insert(data2);
ksession. startProcess("processl")
ut.commt();

To use a JPA, the Environment must be set with both the EntityManager Factory and the
Transact i onManager . If rollback occurs the ksession state is also rolled back, so it is possible
continue to use it after a rollback. To load a previously persisted KieSession you'll need the id,
as shown below:

Example 4.33. Loading a KieSession

Ki eSessi on ksession =
ki eServi ces. get StoreServices(). | oadKi eSessi on(sessionld, kbase, null, env);

To enable persistence several classes must be added to your persistence.xml, as in the example
below:

Example 4.34. Configuring JPA

<persi stence-unit nane="org.drool s. persistence.jpa" transacti on-type="JTA">
<provi der >or g. hi ber nat e. ej b. H ber nat ePer si st ence</ provi der >
<j ta- dat a- sour ce>j dbc/ Bi t r oni xJTADat aSour ce</ | t a- dat a- sour ce>
<cl ass>or g. drool s. persi st ence. i nfo. Sessi onl nf o</ cl ass>
<cl ass>org. drool s. persi stence. i nfo. Wrkl tem nfo</cl ass>
<properties>

<property nane="hi bernate. dial ect" val ue="org. hi bernate.di al ect. HDi al ect"/>
<property nane="hi bernate. nax_fetch_depth" val ue="3"/>
<property name="hi bernate. hbn2ddl . aut 0" val ue="update" />
<property nane="hi bernate.show sql" value="true" />
<property nanme="hi bernate.transaction. nanager _| ookup_cl ass"

val ue="org. hi bernat e. transacti on. BTMIt ansact i onManager Lookup" />
</ properties>
</ persi stence-unit>

83

Chapter 4. KIE

The jdbc JTA data source would have to be configured first. Bitronix provides a number of ways
of doing this, and its documentation should be contsulted for details. For a quick start, here is the
programmatic approach:

Example 4.35. Configuring JTA DataSource

Pool i ngDat aSour ce ds = new Pool i ngDat aSour ce() ;
ds. set Uni queNanme("j dbc/ Bi troni xJTADat aSour ce");
ds. set G assNane("org. h2.jdbcx. JdbcDat aSour ce");
ds. set MaxPool Si ze(3);

ds. set Al |l owLocal Transactions(true);

ds.getDriverProperties().put("user", "sa");

ds. getDriverProperties().put("password", "sasa");

ds. getDriverProperties().put("URL", "jdbc:h2: mem nmydb");
ds.init();

Bitronix also provides a simple embedded JNDI service, ideal for testing. To use it add a
jndi.properties file to your META-INF and add the following line to it:

Example 4.36. JNDI properties

java. nam ng. factory.initial=bitronix.tmjndi.Bitronixlnitial ContextFactory

4.2.5. Build, Deploy and Utilize Examples

The best way to learn the new build system is by example. The source project "drools-examples-
api" contains a number of examples, and can be found at GitHub:

https://github.com/droolsjbpm/drools/tree/6.0.x/drools-examples-api

Each example is described below, the order starts with the simplest and most default working its
way up to more complex use cases.

The Deploy use cases here all involve nvn i nstal | . Remote deployment of JARs in Maven is
well covered is Maven literature. Utilize refers to the initial act loading the resources and providing
access to the KIE runtimes. Where as Run refers to the act of interacting with those runtimes.

4.2.5.1. Default KieSession

» Project: default-kesession.

e Summary: Empty kmodule.xml KieModule on the classpath that includes all resources in a
single default KieBase . The example shows the retrieval of the default KieSession from the
classpath.

84

https://github.com/droolsjbpm/drools/tree/6.0.x/drools-examples-api

Build, Deploy and Utilize Examples

An empty kmodule.xml will produce a single KieBase that includes all files found under resources
path, be it DRL, BPMN2, XLS etc. That single KieBase is the default and also includes a single
default KieSession. Default means they can be created without knowing their names.

Example 4.37. Author - kmodule.xml

<knodul e xm ns="http://jboss. org/kie/6.0.0/ knodul "> </ knodul e>

Example 4.38. Build and Install - Maven

mvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed
onto the environment classpath. kContainer.newKieSession() creates the default KieSession.
Notice you no longer need to look up the KieBase, in orde to create the KieSession. The
KieSession knows which KieBase it's associated with, and use that, which in this case is the
default KieBase.

Example 4.39. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory.get();
Ki eCont ai ner kCont ai ner = ks. get Ki eCl asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on();
kSessi on. set d obal ("out", out);

kSession.insert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA | Rul es();

4.2.5.2. Named KieSession

» Project: named-kiesession.

e Summary: kmodule.xml that has one named KieBase and one named KieSession. The
examples shows the retrieval of the named KieSession from the classpath.

85

Chapter 4. KIE

kmodule.xml will produce a single named KieBase, 'kbasel' that includes all files found under
resources path, be it DRL, BPMN2, XLS etc. KieSession 'ksessionl' is associated with that
KieBase and can be created by name.

Example 4.40. Author - kmodule.xml

<knodul e xm ns="http://jboss. org/ ki e/ 6.0. 0/ knodul e" >
<kbase nanme="kbasel">
<ksessi on nane="ksessi onl"/>
</ kbase>
</ knodul e>

Example 4.41. Build and Install - Maven

mvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed
onto the environment classpath. This time the KieSession uses the name 'ksession1'. You do not
need to lookup the KieBase first, as it knows which KieBase 'ksessionl' is assocaited with.

Example 4.42. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory.get();
Ki eCont ai ner kCont ai ner = ks. get Ki ed asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");

kSessi on. set @ obal ("out", out);

kSession.insert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA |l Rul es();

4.2.5.3. KieBase Inheritence

» Project: kiebase-inclusion.

« Summary: 'kmodule.xml' demonstrate that one KieBase can include the resources from another
KieBase, from another KieModule. In this case it inherits the named KieBase from the 'name-
kiesession' example. The included KieBase can be from the current KieModule or any other
KieModule that is in the pom.xml dependency list.

kmodule.xml will produce a single named KieBase, 'kbase2' that includes all files found under
resources path, be it DRL, BPMN2, XLS etc. Further it will include all the resources found from the

86

Build, Deploy and Utilize Examples

KieBase 'kbasel’, due to the use of the 'includes' attribute. KieSession 'ksession2' is associated
with that KieBase and can be created by name.

Example 4.43. Author - kmodule.xml

<kbase nane="kbase2" i ncl udes="kbasel">
<ksessi on nane="ksessi on2"/ >
</ kbase>

This example requires that the previous example, 'named-kiesession’, is built and installed to the
local Maven repository first. Once installed it can be included as a dependency, using the standard
Maven <dependencies> element.

Example 4.44. Author - pom.xml

<proj ect xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/POM 4.0.0 http://
maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifactl| d>drool s-exanpl es-api </artifactld>
<version>6.0. 0/ versi on>
</ par ent >

<artifactld>ki ebase-inclusion</artifact!d>
<nanme>Drool s APl exanples - KieBase | ncl usion</nane>

<dependenci es>
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifactld>drool s-conpiler</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifact!| d>named- ki esessi on</artifactld>
<ver si on>6. 0. 0</ ver si on>
</ dependency>
</ dependenci es>

</ proj ect>

Once 'named-kiesession' is built and installed this example can be built and installed as normal.
Again the act of installing, will force the unit tests to run, demonstrating the use case.

87

Chapter 4. KIE

Example 4.45. Build and Install - Maven

mvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed
onto the environment classpath. This time the KieSession uses the name 'ksession2'. You do
not need to lookup the KieBase first, as it knows which KieBase 'ksessionl' is assocaited with.
Notice two rules fire this time, showing that KieBase 'kbase2' has included the resources from the
dependency KieBase 'kbasel'.

Example 4.46. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory.get();

Ki eCont ai ner kCont ai ner = ks. get Ki ed asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi on2");
kSessi on. set d obal ("out", out);

kSession.insert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireAl |l Rul es();

kSession.insert (new Message("Dave", "Open the pod bay doors, HAL."));
kSession.fireAl |l Rul es();

4.2.5.4. Multiple KieBases

« Project: 'multiple-kbases.

e Summary: Demonstrates that the 'kmodule.xml' can contain any number of KieBase or
KieSession declarations. Introduces the 'packages' attribute to select the folders for the
resources to be included inthe .

kmodule.xml produces 6 different named KieBases. 'kbasel' includes all resources from the
KieModule. The other KieBases include resources from other selected folders, via the 'packages’
attribute. Note the use wildcard *' use, to select this package and all packages below it.

Example 4.47. Author - kmodule.xml

<knodul e xm ns="http://] boss. org/ ki e/ 6.0.0/ knodul e" >

<kbase nane="kbasel">
<ksessi on nane="ksessionl"/>
</ kbase>

88

Build, Deploy and Utilize Examples

<kbase nanme="kbase2" packages="org.sone. pkg">
<ksessi on nane="ksessi on2"/>
</ kbase>

<kbase nane="kbase3" includes="kbase2" packages="org.sone. pkg2">
<ksessi on nane="ksessi on3"/>
</ kbase>

<kbase nanme="kbase4" packages="org.sone.pkg, org.other.pkg">
<ksessi on nane="ksessi on4"/>
</ kbase>

<kbase nanme="kbase5" packages="org.*">
<ksessi on nane="ksessi on5"/>
</ kbase>

<kbase nane="kbase6" packages="org.sone.*">
<ksessi on nane="ksessi on6"/>
</ kbase>
</ knodul e>

Example 4.48. Build and Install - Maven

mvn instal

Only part of the example is included below, as there is a test method per KieSession, but each
one is a repetitino of the other, with just different list expectations.

Example 4.49. Utilize and Run - Java

@est
public void testSinpl eKi eBase() ({
Li st<Integer> |ist = useKi eSession("ksessionl");
/'l no packages inported neans inport everything
assert Equal s(4, list.size());
assertTrue(list.containsAll(asList(0, 1, 2, 3)));

/l.. other tests for ksession2 to ksession6 here

private List<Integer> useKi eSession(String nane) {
Ki eServi ces ks = Ki eServices. Factory. get();
Ki eCont ai ner kCont ai ner = ks. get Ki ed asspat hCont ai ner () ;
Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on(nane) ;

89

Chapter 4. KIE

Li st<Integer> list = new Arrayli st<lnteger>();
kSession.setd obal ("list", list);
kSession.insert(1);

kSession.fireA |l Rul es();

return |ist;

4.2.5.5. KieContainer from KieRepository

« Project: kcontainer-from-repository

e Summary: The project does not contain a kmodule.xml, nor does the pom.xml have any
dependencies for other KieModules. Instead the Java code demonstrates the loading of a
dynamic KieModule from a Maven repository.

The pom.xml must include kie-ci as a depdency, to ensure Maven is available at runtime. As this
uses Maven under the hood you can also use the standard Maven settings.xml file.

Example 4.50. Author - pom.xml

<proj ect xm ns="http://mven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4.0.0 http://
maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifact!| d>drool s-exanpl es-api </artifactld>
<versi on>6. 0. 0</ ver si on>
</ parent >

<artifact|d>ki econtainer-fromkierepo</artifactld>
<nanme>Drool s APl exanples - KieContainer from Ki eRepo</nane>

<dependenci es>
<dependency>
<gr oupl d>or g. ki e</ gr oupl d>
<artifactld>kie-ci</artifactld>
</ dependency>
</ dependenci es>

</ proj ect>

90

Build, Deploy and Utilize Examples

Example 4.51. Build and Install - Maven

mvn install

In the previous examples the classpath KieContainer used. This example creates a dynamic
KieContainer as specified by the Releaseld. The Releaseld uses Maven conventions for group id,
artifact id and version. It also obey's LATEST and SNAPSHOT for versions.

Example 4.52. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory. get();
/1 Install exanplel in the | ocal Maven repo before to do this
Ki eCont ai ner kCont ai ner =ks. newKi eCont ai ner (ks. newRel easel d(" or g. dr ool s", "naned-

ki esession", "6.0.0- SNAPSHOT"));

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");
kSessi on. set @ obal ("out", out);

hj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read n®,
HAL?") ;

kSession.insert(nmsgl);
kSession.fireAl |l Rul es();

4.2.5.6. Default KieSession from File

 Project: default-kiesession-from-file

e Summary: Dynamic KieModules can also be loaded from any Resource location. The loaded
KieModule provides default KieBase and KieSession definitions.

No kmodue.xml file exists. The project 'default-kiesession' must be built first, so that the resulting
JAR, in the target folder, can be referenced as a File.

Example 4.53. Build and Install - Maven

mvn install

Any KieModule can be loaded from a Resource location and added to the KieRepository. Once in
the KieRepository it can be resolved via its Releaseld. Note neither Maven or kie-ci are needed
here. It will not setup a transitive dependency parent classloader.

91

Chapter 4. KIE

Example 4.54. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory.get();
Ki eRepository kr = ks.getRepository();

Ki eModidvbeddKi eMbdul e(ks. get Resour ces() . newFi | eSyst enResource(get Fil e("defaul t -
ki esession")));

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kMbdul e. get Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on();
kSessi on. set d obal ("out", out);

hj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne
HAL?") ;

kSessi on.insert(msgl);

kSession.fireA |l Rul es();

4.2.5.7. Named KieSession from File

» Project: named-kiesession-from-file

e Summary: Dynamic KieModules can also be loaded from any Resource location. The loaded
KieModule provides named KieBase and KieSession definitions.

No kmodue.xml file exists. The project 'named-kiesession' must be built first, so that the resulting
JAR, in the target folder, can be referenced as a File.

Example 4.55. Build and Install - Maven

nmvn instal

Any KieModule can be loaded from a Resource location and added to the KieRepository. Once in
the KieRepository it can be resolved via its Releaseld. Note neither Maven or kie-ci are needed
here. It will not setup a transitive dependency parent classloader.

Example 4.56. Utilize and Run - Java
Ki eServi ces ks = KieServices. Factory.get();
Ki eRepository kr = ks.getRepository();

Ki eMbdkMedua@dKi eModul e(ks. get Resour ces() . newFi | eSyst enmResour ce(get Fi | e(" naned-
ki esession")));

92

Build, Deploy and Utilize Examples

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kMbdul e. get Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");
kSessi on. set @ obal ("out", out);

hj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne,
HAL?") ;

kSession.insert (msgl);

kSession.fireA |l Rul es();

4.2.5.8. KieModule with Dependant KieModule

* Project: kie-module-form-multiple-files

e Summary: Programmatically provide the list of dependant KieModules, without any Maven to
resolve anything.

No kmodue.xml file exists. The projects 'named-kiesession' and 'kiebase-include' must be built
first, so that the resulting JARs, in the target folders, can be referenced as Files.

Example 4.57. Build and Install - Maven

mvn install

Creates two resources. One is for the main KieModule 'exRes1' the other is for the dependency
‘exRes2'. Even though kie-ci is not present and thus Maven is not there to resolve the
dependencies, this shows how you can manually specify the dependency KieModules, for the
vararg.

Example 4.58. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory. get();
Ki eRepository kr = ks.getRepository();

Resource ex1lRes = Kks.getResources().newril eSystenResource(getFile("kiebase-
i nclusion"));
Resource ex2Res = ks.getResources().newFi | eSyst enResour ce(get Fi | e(" named-

ki esession"));

Ki eMbdul e kModul e = kr. addKi eModul e(ex1Res, ex2Res);
Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kMbdul e. get Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi on2");
kSessi on. set @ obal ("out", out);

93

Chapter 4. KIE

hj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne,
HAL?") ;

kSession.insert(nmsgl);

kSession.fireA |l Rul es();

hj ect msg2 = creat eMessage(kCont ai ner, "Dave", "Open the pod bay doors, HAL.");

kSession.insert(nmsg2);
kSession.fireA |l Rul es();

4.2.5.9. Programmaticaly build a Simple KieModule with Defaults

 Project: kiemoduelmodel-example

e Summary: Programmaticaly buid a KieModule from just a single file. The POM and models are
all defaulted. This is the quickest out of the box approach, but should not be added to a Maven
repository.

Example 4.59. Build and Install - Maven
mvn install
This programmatically builds a KieModule. It populates the model that represents the Releaseld
and kmodule.xml, as well as added the resources tht. A pom.xml is generated from the Releaseld.
Example 4.60. Utilize and Run - Java
Ki eServi ces ks = KieServices. Factory.get();
Ki eRepository kr = ks.getRepository();
Ki eFi | eSystem kfs = ks. newKi eFi | eSystenm();
kfs.write("src/ main/resources/org/kiel/exanpl e5/HAL5. drl", getRule());
Ki eBui | der kb = ks. newkKi eBui | der (kfs);
kb.buildAI I (); // kieModule is automatically deployed to KieRepository if
successfully built.
i f (kb.getResults().hasMessages(Level.ERROR)) ({
throw new Runti meException("Build Errors:\n" + kb.getResults().toString());

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kr. get Def aul t Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on();
kSessi on. set d obal ("out", out);

94

Build, Deploy and Utilize Examples

kSession.insert(new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireAl | Rul es();

4.2.5.10. Programmaticaly build a KieModule using Meta Models

» Project: kiemoduelmodel-example

e Summary: Programmaticaly buid a KieModule, by creating its kmodule.xml meta models
resources.

Example 4.61. Build and Install - Maven

mvn install

This programmatically builds a KieModule. It populates the model that represents the Releaseld
and kmodule.xml, as well as added the resources tht. A pom.xml is generated from the Releaseld.

Example 4.62. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory. get();
Ki eFi | eSystem kfs = ks. newKi eFi | eSysten();

Resource exlRes = ks. get Resources().newFi | eSyst emrResour ce(get Fi | e(" nanmed-
ki esession"));
Resource ex2Res = Kks.getResources().newril eSystenResource(getFil e("ki ebase-

i nclusion"));

Rel easeld rid = ks. newRel easel d("org. drool s", "ki enpdul enodel - exanpl e", "6.0.0-
SNAPSHOT") ;
kfs. generat eAndWitePomXM.(ri d);

Ki eMbdul eMbdel kMbdul eModel = ks. newKi eModul eMbdel () ;
kModul eMbdel . newKi eBaseModel (" ki enodul enodel ")

. addl ncl ude(" ki ebasel")

. addl ncl ude(" ki ebase2")

. newKi eSessi onMbdel (" ksessi on6");

kfs.witeKvbodul eXM.(kModul eMbdel .t oXM_());
kfs.write("src/ main/resources/ki enodul enodel / HAL6. drl ", getRule());

Ki eBui | der kb = ks. newkKi eBui | der (kfs);

kb. set Dependenci es(ex1Res, ex2Res);

kb.buildAI I (); // kieMbdule is automatically deployed to KieRepository if
successfully built.

i f (kb.getResults().hasMessages(Level.ERROR)) ({

95

Chapter 4. KIE

throw new Runti meException("Build Errors:\n" + kb.getResults().toString());

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (rid);

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi on6");
kSessi on. set @ obal ("out", out);

Ohj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read n®,
HAL?") ;

kSession.insert(nmsgl);

kSession.fireA |l Rul es();

hj ect msg2 = creat eMessage(kCont ai ner, "Dave", "Open the pod bay doors, HAL.");
kSession.insert(nmsg2);
kSession.fireA |l Rul es();

hj ect neg3 = createMessage(kContai ner, "Dave", "Wat's the problenP");
kSession.insert (nmsg3);
kSession.fireA |l Rul es();

4.3. Security

4.3.1. Security Manager

The KIE engine is a platform for the modelling and execution of business behavior, using a
multitude of declarative abstractions and metaphores, like rules, processes, decision tables and
etc.

Many times, the authoring of these metaphores is done by third party groups, be it a different group
inside the same company, a group from a partner company, or even anonymous third parties on
the internet.

Rules and Processes are designed to execute arbitrary code in order to do their job, but in such
cases it might be necessary to constrain what they can do. For instance, it is unlikely a rule should
be allowed to create a classloader (what could open the system to an attack) and certainly it
should not be allowed to make a call to Systemexit ().

The Java Platform provides a very comprehensive and well defined security framework that allows
users to define policies for what a system can do. The KIE platform leverages that framework
and allow application developers to define a specific policy to be applied to any execution of user
provided code, be it in rules, processes, work item handlers and etc.

4.3.1.1. How to define a KIE Policy

Rules and processes can run with very restrict permissions, but the engine itself needs to perform
many complex operations in order to work. Examples are: it needs to create classloaders, read
system properties, access the file system, etc.

96

Security Manager

Once a security manager is installed, though, it will apply restrictions to all the code executing
in the JVM according to the defined policy. For that reason, KIE allows the user to define two
different policy files: one for the engine itself and one for the assets deployed into and executed
by the engine.

One easy way to setup the enviroment is to give the engine itself a very permissive policy, while
providing a constrained policy for rules and processes.

Policy files follow the standard policy file syntax as described in the Java documentation. For more
details, see:

http://docs.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax

A permissive policy file for the engine can look like the following:

Example 4.63. A sample engine.policy file

grant {
perm ssion java.security. Al | Perm ssion;

An example security policy for rules could be:

Example 4.64. A sample rules.policy file

grant {
perm ssion java.util.PropertyPerm ssion "*", "read";
perm ssion java. |l ang. Runti nePer m ssion "accessDecl ar edMenber s”;

Please note that depending on what the rules and processes are supposed to do, many more
permissions might need to be granted, like accessing files in the filesystem, databases, etc.

In order to use these policy files, all that is necessary is to execute the application with these files
as parameters to the JVM. Three parameters are required:

Table 4.3. Parameters

Parameter Meaning

-Djava.security.manager Enables the security manager

-Djava.security.policy=<jvm_policy_file> Defines the global policy file to be applied to
the whole application, including the engine

-Dkie.security.policy=<kie_policy_file> Defines the policy file to be applied to rules and
processes

97

Chapter 4. KIE

For instance:

java - Dj ava. securi ty. nanager -Dj ava. security. policy=gl obal . policy -
Dki e. security. policy=rul es.policy foo.bar. MApp

™

Part Ill. Drools
Runtime and Language

Drools is a powerful Hybrid Reasoning System.

Chapter 5.

Chapter 5. Hybrid Reasoning

5.1. Artificial Intelligence

5.1.1. A Little History

Over the last few decades artificial intelligence (Al) became an unpopular term, with
the well-known "Al Winter" [http://en.wikipedia.org/wiki/Al_winter]. There were large boasts
from scientists and engineers looking for funding, which never lived up to expectations,
resulting in many failed projects. Thinking Machines Corporation [http://en.wikipedia.org/wiki/
Thinking_Machines_Corporation] and the 5th Generation Computer [http://en.wikipedia.org/wiki/
Fifth-generation_computer] (5GP) project probably exemplify best the problems at the time.

Thinking Machines Corporation was one of the leading Al firms in 1990, it had sales of nearly $65
million. Here is a quote from its brochure:

“Some day we will build a thinking machine. It will be a truly intelligent machine. One that can see
and hear and speak. A machine that will be proud of us.”

Yet 5 years later it filed for bankruptcy protection under Chapter 11. The site inc.com has
a fascinating article titled "The Rise and Fall of Thinking Machines" [http://www.inc.com/
magazine/19950915/2622.html]. The article covers the growth of the industry and how a cosy
relationship with Thinking Machines and DARPA [http://en.wikipedia.org/wikiiDARPA] over-
heated the market, to the point of collapse. It explains how and why commerce moved away from
Al and towards more practical number-crunching super computers.

The 5th Generation Computer project was a USD 400 million project in Japan to build a next
generation computer. Valves (or Tubes) was the first generation, transistors the second, integrated
circuits the third and finally microprocessors was the fourth. The fifth was intended to be a machine
capable of effective Artificial Intelligence. This project spurred an "arms" race with the UK and USA,
that caused much of the Al bubble. The 5GP would provide massive multi-cpu parallel processing
hardware along with powerful knowledge representation and reasoning software via Prolog; a
type of expert system. By 1992 the project was considered a failure and cancelled. It was the
largest and most visible commercial venture for Prolog, and many of the failures are pinned on
the problems of trying to run a logic based programming language concurrently on multi CPU
hardware with effective results. Some believe that the failure of the 5GP project tainted Prolog
and relegated it to academia, see "Whatever Happened to Prolog" [http://www.dvorak.org/blog/
whatever-happened-to-prolog/] by John C. Dvorak.

However while research funding dried up and the term Al became less used, many green shoots
where planted and continued more quietly under discipline specific names: cognitive systems,
machine learning, intelligent systems, knowledge representation and reasoning. Offshoots of
these then made their way into commercial systems, such as expert systems in the Business
Rules Management System (BRMS) market.

101

http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://www.inc.com/magazine/19950915/2622.html
http://www.inc.com/magazine/19950915/2622.html
http://www.inc.com/magazine/19950915/2622.html
http://en.wikipedia.org/wiki/DARPA
http://en.wikipedia.org/wiki/DARPA
http://www.dvorak.org/blog/whatever-happened-to-prolog/
http://www.dvorak.org/blog/whatever-happened-to-prolog/
http://www.dvorak.org/blog/whatever-happened-to-prolog/

Chapter 5. Hybrid Reasoning

Imperative, system based languages, languages such as C, C++, Java and C#/.Net have
dominated the last 20 years, enabled by the practicality of the languages and ability to run
with good performance on commodity hardware. However many believe there is a renaissance
underway in the field of Al, spurred by advances in hardware capabilities and Al research. In
2005 Heather Havenstein authored "Spring comes to Al winter" [http://www.computerworld.com/s/
article/99691/Spring_comes_to_Al_winter] which outlines a case for this resurgence. Norvig and
Russel dedicate several pages to what factors allowed the industry to overcome it's problems and
the research that came about as a result:

Recent years have seen a revolution in both the content and the methodology of
work in artificial intelligence. It is now more common to build on existing theories
than to propose brand-new ones, to base claims on rigorous theorems or hard
experimental evidence rather than on intuition, and to show relevance to real-
world applications rather than toy examples.

—Atrtificial Intelligence: A Modern Approach

Computer vision, neural networks, machine learning and knowledge representation and reasoning
(KRR) have made great strides towards becoming practical in commercial environments. For
example, vision-based systems can now fully map out and navigate their environments with
strong recognition skills. As a result we now have self-driving cars about to enter the commercial
market. Ontological research, based around description logic, has provided very rich semantics
to represent our world. Algorithms such as the tableaux algorithm have made it possible to use
those rich semantics effectively in large complex ontologies. Early KRR systems, like Prolog in
5GP, were dogged by the limited semantic capabilities and memory restrictions on the size of
those ontologies.

5.1.2. Knowledge Representation and Reasoning

In A Little History talks about Al as a broader subject and touches on Knowledge Representation
and Reasoning (KRR) and also Expert Systems, I'll come back to Expert Systems later.

KRR is about how we represent our knowledge in symbolic form, i.e. how we describe something.
Reasoning is about how we go about the act of thinking using this knowledge. System based
object-oriented languages, like C++, Java and C#, have data definitions called classes for
describing the composition and behaviour of modeled entities. In Java we call exemplars of these
described things beans or instances. However those classification systems are limited to ensure
computational efficiency. Over the years researchers have developed increasingly sophisticated
ways to represent our world. Many of you may already have heard of OWL (Web Ontology
Language). There is always a gap between what can be theoretically represented and what can be
used computationally in practically timely manner, which is why OWL has different sub-languages
from Lite to Full. It is not believed that any reasoning system can support OWL Full. However,
algorithmic advances continue to narrow that gap and improve the expressiveness available to
reasoning engines.

There are also many approaches to how these systems go about thinking. You may have heard
discussions comparing the merits of forward chaining, which is reactive and data driven, with

102

http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter
http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter
http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter

Rule Engines and Production Rule Systems (PRS)

backward chaining, which is passive and query driven. Many other types of reasoning techniques
exist, each of which enlarges the scope of the problems we can tackle declaratively. To list just a
few: imperfect reasoning (fuzzy logic, certainty factors), defeasible logic, belief systems, temporal
reasoning and correlation. You don't need to understand all these terms to understand and use
Drools. They are just there to give an idea of the range of scope of research topics, which is
actually far more extensive, and continues to grow as researchers push new boundaries.

KRR is often referred to as the core of Artificial Intelligence. Even when using biological
approaches like neural networks, which model the brain and are more about pattern recognition
than thinking, they still build on KRR theory. My first endeavours with Drools were engineering
oriented, as | had no formal training or understanding of KRR. Learning KRR has allowed me to
get a much wider theoretical background. Allowing me to better understand both what I've done
and where I'm going, as it underpins nearly all of the theoretical side to our Drools R&D. It really
is a vast and fascinating subject that will pay dividends for those who take the time to learn. |
know it did and still does for me. Bracham and Levesque have written a seminal piece of work,
called "Knowledge Representation and Reasoning" that is a must read for anyone wanting to build
strong foundations. | would also recommend the Russel and Norvig book "Artificial Intelligence,
a modern approach” which also covers KRR.

5.1.3. Rule Engines and Production Rule Systems (PRS)

We've now covered a brief history of Al and learnt that the core of Al is formed around KRR.
We've shown than KRR is a vast and fascinating subject which forms the bulk of the theory driving
Drools R&D.

The rule engine is the computer program that delivers KRR functionality to the developer. At a
high level it has three components:

* Ontology
* Rules
e Data

As previously mentioned the ontology is the representation model we use for our "things". It could
use records or Java classes or full-blown OWL based ontologies. The rules perform the reasoning,
i.e., they facilitate "thinking". The distinction between rules and ontologies blurs a little with OWL
based ontologies, whose richness is rule based.

The term "rules engine" is quite ambiguous in that it can be any system that uses rules, in any form,
that can be applied to data to produce outcomes. This includes simple systems like form validation
and dynamic expression engines. The book "How to Build a Business Rules Engine" (2004) by
Malcolm Chisholm exemplifies this ambiguity. The book is actually about how to build and alter
a database schema to hold validation rules. The book then shows how to generate Visual Basic
code from those validation rules to validate data entry. While perfectly valid, this is very different
to what we are talking about.

103

Chapter 5. Hybrid Reasoning

Drools started life as a specific type of rule engine called a Production Rule System (PRS) and was
based around the Rete algorithm (usually pronounced as two syllables, e.g., REH-te or RAY-tay).
The Rete algorithm, developed by Charles Forgy in 1974, forms the brain of a Production Rule
System and is able to scale to a large number of rules and facts. A Production Rule is a two-part
structure: the engine matches facts and data against Production Rules - also called Productions
or just Rules - to infer conclusions which result in actions.

when

<condi ti ons>
t hen

<actions>;

The process of matching the new or existing facts against Production Rules is called pattern
matching, which is performed by the inference engine. Actions execute in response to changes
in data, like a database trigger; we say this is a data driven approach to reasoning. The actions
themselves can change data, which in turn could match against other rules causing them to fire;
this is referred to as forward chaining

Drools 5.x implements and extends the Rete algorithm. This extended Rete algorithm is named
ReteOO, signifying that Drools has an enhanced and optimized implementation of the Rete
algorithm for object oriented systems. Other Rete based engines also have marketing terms
for their proprietary enhancements to Rete, like RetePlus and Rete Ill. The most common
enhancements are covered in "Production Matching for Large Learning Systems™ (1995) by Robert
B. Doorenbos' thesis, which presents Rete/UL. Drools 6.x introduces a new lazy algorithm named
PHREAK; which is covered in more detail in the PHEAK algorithm section.

The Rules are stored in the Production Memory and the facts that the Inference Engine matches
against are kept in the Working Memory. Facts are asserted into the Working Memory where they
may then be modified or retracted. A system with a large number of rules and facts may result in
many rules being true for the same fact assertion; these rules are said to be in conflict. The Agenda
manages the execution order of these conflicting rules using a Conflict Resolution strategy.

104

Hybrid Reasoning Systems (HRS)

Inference Engine
{Rete0O0 / Leaps)

Pattern

ﬁ-
Matcher

mory

les)

Agenda

Figure 5.1. High-level View of a Production Rule System

5.1.4. Hybrid Reasoning Systems (HRS)

You may have read discussions comparing the merits of forward chaining (reactive and data
driven) or backward chaining (passive query). Here is a quick explanation of these two main types
of reasoning.

Forward chaining is "data-driven" and thus reactionary, with facts being asserted into working
memory, which results in one or more rules being concurrently true and scheduled for execution
by the Agenda. In short, we start with a fact, it propagates through the rules, and we end in a
conclusion.

105

Chapter 5. Hybrid Reasoning

Fule
Base ““-.I
A Detarmine
- possible rules to
.-'f fire
Working '
Memory
Conflict Set
Y
Conflict
. Rule Selact ,
| Fire Rule |-'l Found @ Eg;gli::[gr?rn
Mo Fule
Found

¥
—Exit If specified by rule ';I et l

Figure 5.2. Forward Chaining

Backward chaining is "goal-driven”, meaning that we start with a conclusion which the engine
tries to satisfy. If it can't, then it searches for conclusions that it can satisfy. These are known as
subgoals, that will help satisfy some unknown part of the current goal. It continues this process
until either the initial conclusion is proven or there are no more subgoals. Prolog is an example
of a Backward Chaining engine. Drools can also do backward chaining, which we refer to as
derivation queries.

106

Hybrid Reasoning Systems (HRS)

retums trua?

Rule
Base “~1
l'-.\ Examine working memaory
e _| and goals to see if goals Working
e . are “"known’” true in Memmory
{ knowledge base
|
Gaal J
I 9
@
=]
£la
2l Retum Do goals
i o True ™ yes match?
R
Al
|2 |
g |= |
8|2 |
3|5 |
m —
| B | Retum
=] F=1 Palee [~ —————1 Mo
a False .
= | (retum false to recursive procedurs)
w |
|
| Detarmine next possible
For each rule | rules to fire by checking
condition, recursively 1 conclusions and goals
backchain with
condition as goal.
Conflict
Fiﬂl:d Resolution
Strategy
Mo Rule
Found
¥ Exit

All rec$

One or maore goals failed, Check next matching rule

als found to be true, axist, retuming true true

L

Figure 5.3. Backward Chaining

107

Chapter 5. Hybrid Reasoning

Historically you would have to make a choice between systems like OPS5 (forward) or Prolog
(backward). Nowadays many modern systems provide both types of reasoning capabilities. There
are also many other types of reasoning techniques, each of which enlarges the scope of the
problems we can tackle declaratively. To list just a few: imperfect reasoning (fuzzy logic, certainty
factors), defeasible logic, belief systems, temporal reasoning and correlation. Modern systems
are merging these capabilities, and others not listed, to create hybrid reasoning systems (HRS).

While Drools started out as a PRS, 5.x introduced Prolog style backward chaining reasoning
as well as some functional programming styles. For this reason we now prefer the term Hybrid
Reasoning System when describing Drools.

Drools currently provides crisp reasoning, but imperfect reasoning is almost ready. Initially this
will be imperfect reasoning with fuzzy logic; later we'll add support for other types of uncertainty.
Work is also under way to bring OWL based ontological reasoning, which will integrate with our
traits system. We also continue to improve our functional programming capabilities.

5.1.5. Expert Systems

You will often hear the terms expert systems used to refer to production rule systems or Prolog-
like systems. While this is normally acceptable, it's technically incorrect as these are frameworks
to build expert systems with, rather than expert systems themselves. It becomes an expert system
once there is an ontological model to represent the domain and there are facilities for knowledge
acquisition and explanation.

Mycin is the most famous expert system, built during the 70s. It is still heavily covered in academic
literature, such as the recommended book "Expert Systems" by Peter Jackson.

108

Recommended Reading

Dendral

1970s @@
[Teiresias]f: Emycin] [WM J
[Wheeze] [Clot]
1;805 [Neomycin] [Oncocin}

Figure 5.4. Early History of Expert Systems

5.1.6. Recommended Reading

General Al, KRR and Expert System Books

For those wanting to get a strong theoretical background in KRR and expert systems, I'd strongly
recommend the following books. "Atrtificial Intelligence: A Modern Approach” is a must have, for
anyone's bookshelf.

* Introduction to Expert Systems

» Peter Jackson

» Expert Systems: Principles and Programming

109

Chapter 5. Hybrid Reasoning

» Joseph C. Giarratano, Gary D. Riley

» Knowledge Representation and Reasoning

* Ronald J. Brachman, Hector J. Levesque

« Artificial Intelligence : A Modern Approach.

» Stuart Russell and Peter Norvig

"~ Expert Systems

EXPERT BRI

| Feler bchrea |

KNOWLEDGE Artificial Inteligence
REPRESENTATION pireleindovien

AND REASONING

Frmald |. Brachman
Hector . Levesque -

itilacel Tl |||.:-r|' o

- I JETRTS % Alisdere Npgrrua
—— st H"" = = vl Lia

Figure 5.5. Recommended Reading

110

Recommended Reading

Papers

Here are some recommended papers that cover interesting areas in rule engine research:

* Production Matching for Large Learning Systems: Rete/UL (1993)
* Robert B. Doorenbos
» Advances In Rete Pattern Matching

e Marshall Schor, Timothy P. Daly, Ho Soo Lee, Beth R. Tibbitts (AAAI 1986)

Collection-Oriented Match
e Anurag Acharya and Milind Tambe (1993)
* The Leaps Algorithm

« Don Batery (1990)

Gator: An Optimized Discrimination Network for Active Database Rule Condition Testing
e Eric Hanson , Mohammed S. Hasan (1993)
Drools Books

There are currently three Drools books, all from Packt Publishing.

» JBoss Drools Business Rules
» Paul Browne

» Drools JBoss Rules 5.0 Developers Guide
* Michal Bali

» Drools Developer's Cookbook

* Lucas Amador

111

Chapter 5. Hybrid Reasoning

JBoss Drools Business Rules Drools JBoss Rules 3.0
Developer's Guide

Drools Developer's
Cookbook

Lucas Amador PACKY ot

Figure 5.6. Recommended Reading

5.2. Rete Algorithm

The Rete algorithm was invented by Dr. Charles Forgy and documented in his PhD thesis in
1978-79. A simplified version of the paper was published in 1982 (http://citeseer.ist.psu.edu/
context/505087/0). The latin word "rete” means "net" or "network". The Rete algorithm can be
broken into 2 parts: rule compilation and runtime execution.

112

http://citeseer.ist.psu.edu/context/505087/0
http://citeseer.ist.psu.edu/context/505087/0

Rete Algorithm

The compilation algorithm describes how the Rules in the Production Memory are processed to
generate an efficient discrimination network. In non-technical terms, a discrimination network is
used to filter data as it propagates through the network. The nodes at the top of the network would
have many matches, and as we go down the network, there would be fewer matches. At the very
bottom of the network are the terminal nodes. In Dr. Forgy's 1982 paper, he described 4 basic
nodes: root, 1-input, 2-input and terminal.

ObjectTypeNode ReteMNode

AlphaNode JoinNode

LeftinputAdapterNode

{ \ MotMode
EvalNode

 NON N

TerminalNode

Figure 5.7. Rete Nodes

The root node is where all objects enter the network. From there, it immediately goes to the
ObjectTypeNode. The purpose of the ObjectTypeNode is to make sure the engine doesn't do
more work than it needs to. For example, say we have 2 objects: Account and Order. If the rule
engine tried to evaluate every single node against every object, it would waste a lot of cycles. To
make things efficient, the engine should only pass the object to the nodes that match the object
type. The easiest way to do this is to create an ObjectTypeNode and have all 1-input and 2-input
nodes descend from it. This way, if an application asserts a new Account, it won't propagate to
the nodes for the Order object. In Drools when an object is asserted it retrieves a list of valid
ObjectTypesNodes via a lookup in a HashMap from the object's Class; if this list doesn't exist
it scans all the ObjectTypeNodes finding valid matches which it caches in the list. This enables
Drools to match against any Class type that matches with an i nst anceof check.

113

Chapter 5. Hybrid Reasoning

ReteNode

Cheese T~ Person

-.f..

Figure 5.8. ObjectTypeNodes

ObjectTypeNodes can propagate to AlphaNodes, LeftinputAdapterNodes and BetaNodes.
AlphaNodes are used to evaluate literal conditions. Although the 1982 paper only covers equality
conditions, many RETE implementations support other operations. For example, Account . nane
== "M Trout" is a literal condition. When a rule has multiple literal conditions for a single object
type, they are linked together. This means that if an application asserts an Account object, it must
first satisfy the first literal condition before it can proceed to the next AlphaNode. In Dr. Forgy's
paper, he refers to these as IntraElement conditions. The following diagram shows the AlphaNode
combinations for Cheese(name == "cheddar", strength == "strong"):

Cheese

name == “cheddar”

strength == "strong

Figure 5.9. AlphaNodes

114

Rete Algorithm

Drools extends Rete by optimizing the propagation from ObjectTypeNode to AlphaNode using
hashing. Each time an AlphaNode is added to an ObjectTypeNode it adds the literal value as a key
to the HashMap with the AlphaNode as the value. When a new instance enters the ObjectType
node, rather than propagating to each AlphaNode, it can instead retrieve the correct AlphaNode
from the HashMap,thereby avoiding unnecessary literal checks.

There are two two-input nodes, JoinNode and NotNode, and both are types of BetaNodes.
BetaNodes are used to compare 2 objects, and their fields, to each other. The objects may be the
same or different types. By convention we refer to the two inputs as left and right. The left input for
a BetaNode is generally a list of objects; in Drools this is a Tuple. The right input is a single object.
Two Nodes can be used to implement 'exists' checks. BetaNodes also have memory. The left
input is called the Beta Memory and remembers all incoming tuples. The right input is called the
Alpha Memory and remembers all incoming objects. Drools extends Rete by performing indexing
on the BetaNodes. For instance, if we know that a BetaNode is performing a check on a String
field, as each object enters we can do a hash lookup on that String value. This means when facts
enter from the opposite side, instead of iterating over all the facts to find valid joins, we do a lookup
returning potentially valid candidates. At any point a valid join is found the Tuple is joined with the
Object; which is referred to as a partial match; and then propagated to the next node.

115

Chapter 5. Hybrid Reasoning

Cheese Person

name == "cheddar’

Person. favouriteCheese ==
Cheese.name

Figure 5.10. JoinNode
To enable the first Object, in the above case Cheese, to enter the network we use a

LeftinputNodeAdapter - this takes an Object as an input and propagates a single Object Tuple.

Terminal nodes are used to indicate a single rule having matched all its conditions; at this point we
say the rule has a full match. A rule with an 'or' conditional disjunctive connective results in subrule
generation for each possible logically branch; thus one rule can have multiple terminal nodes.

Drools also performs node sharing. Many rules repeat the same patterns, and node sharing allows
us to collapse those patterns so that they don't have to be re-evaluated for every single instance.

The following two rules share the first pattern, but not the last:

rule

when
Cheese($cheddar : nanme == "cheddar")
$person : Person(favouriteCheese == $cheddar)

116

Rete Algorithm

t hen
Systemout.println($person.getNane() + " |ikes cheddar");
end
rul e
when
Cheese($cheddar : name == "cheddar")
$person : Person(favouriteCheese != $cheddar)
t hen

Systemout. println($person.getNanme() + " does not |ike cheddar")
end

As you can see below, the compiled Rete network shows that the alpha node is shared, but the
beta nodes are not. Each beta node has its own TerminalNode. Had the second pattern been the
same it would have also been shared.

117

Chapter 5. Hybrid Reasoning

Person

name == “cheddar”

Person. favouriteCheese == |
Cheese.name |
|

/

System.out.printin{ person.getName() + " likes cheddar")
/
)
/S
o
o~

—

Ferson.favouriteCheesea =
Cheesa.name

Figure 5.11. Node Sharing

System.out.printin{ person.getName() + " does not like
cheddar")

ReteOO Algorithm

5.3. ReteOO Algorithm

The ReteOO was developed throughout the 3, 4 and 5 series releases. It takes the RETE algorithm
and applies well known enhancements, all of which are covered by existing academic literature:

Node sharing
« Sharing is applied to both the alpha and beta network. The beta network sharing is always from
the root pattern.

Alpha indexing

» Alpha Nodes with many children use a hash lookup mechanism, to avoid testing each result.

Beta indexing

« Join, Not and Exist nodes indexing their memories using a hash. This reduces the join attempts
for equal checks. Recently range indexing was added to Not and Exists.

Tree based graphs

« Join matches did not contain any references to their parent or children matches. Deletions would
have to recalculate all join matches again, which involves recreating all those join match objects,
to be able to find the parts of the network where the tuples should be deleted. This is called
symmetrical propagation. A tree graph provides parent and children references, so a deletion
is just a matter of following those references. This is asymmetrical propagation. The result is
faster and less impact on the GC, and more robust because changes in values will not cause
memory leaks if they happen without the engine being notified.

Modify-in-place
« Traditional RETE implements a modify as a delete + insert. This causes all join tuples to be GC'd,

many of which are recreated again as part of the insert. Modify-in-place instead propagates as
a single pass, every node is inspected

Property reactive
« Also called "new trigger condition”. Allows more fine grained reactivity to updates. A Pattern can

react to changes to specific properties and ignore others. This alleviates problems of recursion
and also helps with performance.

Sub-networks

* Not, Exists and Accumulate can each have nested conditional elements, which forms sub
networks.

119

Chapter 5. Hybrid Reasoning

Backward Chaining

» Prolog style derivation trees for backward chaining are supported. The implementation is stack
based, so does not have method recursion issues for large graphs.

Lazy Truth Maintenance

« Truth maintenance has a runtime cost, which is incurred whether TMS is used or not. Lazy TMS
only turns it on, on first use. Further it's only turned on for that object type, so other object types
do not incur the runtime cost.

Heap based agenda

« The agenda uses a binary heap queue to sort rule matches by salience, rather than any linear
search or maintenance approach.

Dynamic Rules

* Rules can be added and removed at runtime, while the engine is still populated with data.

5.4. PHREAK Algorithm

Drools 6 introduces a new algorithm, that attempts to address some of the core issues of RETE.
The algorithm is not a rewrite form scratch and incorporates all of the existing code from ReteOO,
and all its enhancements. While PHREAK is an evolution of the RETE algorithm, it is no longer
classified as a RETE implementation. In the same way that once an animal evolves beyond a
certain point and key characteristics are changed, the animal becomes classified as new species.
There are two key RETE characteristics that strongly identify any derivative strains, regardless of
optimizations. That it is an eager, data oriented algorithm. Where all work is doing done the insert,
update or delete actions; eagerly producing all partial matches for all rules. PHREAK in contrast is
characterised as a lazy, goal oriented algorithm; where partial matching is aggressively delayed.

This eagerness of RETE can lead to a lot of churn in large systems, and much wasted work.
Where wasted work is classified as matching efforts that do not result in a rule firing.

PHREAK was heavily inspired by a number of algorithms; including (but not limited to) LEAPS,
RETE/UL and Collection-Oriented Match. PHREAK has all enhancements listed in the ReteOO
section. In addition it adds the following set of enhancements, which are explained in more detail
in the following paragraphs.

» Three layers of contextual memory; Node, Segment and Rule memories.

¢ Rule, segment and node based linking.

* Lazy (delayed) rule evaluation.

120

PHREAK Algorithm

« Isolated rule evaluation.
« Set oriented propagations.
» Stack based evaluations, with pause and resume.

When the PHREAK engine is started all rules are said to be unlinked, no rule evaluation can
happen while rules are unlinked. The insert, update and deletes actions are queued before
entering the beta network. A simple heuristic, based on the rule most likely to result in firings, is
used to select the next rule for evaluation; this delays the evaluation and firing of the other rules.
Only once a rule has all right inputs populated will the rule be considered linked in, although no
work is yet done. Instead a goal is created, that represents the rule, and placed into a priority
gueue; which is ordered by salience. Each queue itself is associated with an AgendaGroup. Only
the active AgendaGroup will inspect its queue, popping the goal for the rule with the highest
salience and submitting it for evaluation. So the work done shifts from the insert, update, delete
phase to the fireAllIRules phase. Only the rule for which the goal was created is evaluated, other
potential rule evaluations from those facts are delayed. While individual rules are evaluated, node
sharing is still achieved through the process of segmentation, which is explained later.

Each successful join attempt in RETE produces a tuple (or token, or partial match) that will be
propagated to the child nodes. For this reason it is characterised as a tuple oriented algorithm.
For each child node that it reaches it will attempt to join with the other side of the node, again each
successful join attempt will be propagated straight away. This creates a descent recursion effect.
Thrashing the network of nodes as it ripples up and down, left and right from the point of entry
into the beta network to all the reachable leaf nodes.

PHREAK propagation is set oriented (or collection-oriented), instead of tuple oriented. For the rule
being evaluated it will visit the first node and process all queued insert, update and deletes. The
results are added to a set and the set is propagated to the child node. In the child node all queued
inset, update and deletes are processed, adding the results to the same set. Once finished that set
is propagated to the next child node, and so on until the terminal node is reached. This creates a
single pass, pipeline type effect, that is isolated to the current rule being evaluated. This creates a
batch process effect which can provide performance advantages for certain rule constructs; such
as sub-networks with accumulates. In the future it will leans itself to being able to exploit multi-
core machines in a number of ways.

The Linking and Unlinking uses a layered bit mask system, based on a network segmentation.
When the rule network is built segments are created for nodes that are shared by the same set
of rules. A rule itself is made up from a path of segments, although if there is no sharing that will
be a single segment. A bit-mask offset is assigned to each node in the segment. Also another
bit mask (the layering) is assigned to each segment in the rule's path. When there is at least
one input (data propagation) the node's bit is set to on. When each node has its bit set to on the
segment's bit is also set to on. Conversely if any node's bit is set to off, the segment is then also
set to off. If each segment in the rule's path is set to on, the rule is said to be linked in and a goal
is created to schedule the rule for evaluation. The same bit-mask technique is used to also track
dirty node, segments and rules; this allows for a rule already link in to be scheduled for evaluation
if it's considered dirty since it was last evaluated.

121

Chapter 5. Hybrid Reasoning

This ensures that no rule will ever evaluate partial matches, if it's impossible for it to result in rule
instances because one of the joins has no data. This is possible in RETE and it will merrily churn
away producing martial match attempts for all nodes, even if the last join is empty.

While the incremental rule evaluation always starts from the root node, the dirty bit masks are
used to allow nodes and segments that are not dirty to be skipped.

Using the existence of at at least one items of data per node, is a fairly basic heuristic. Future
work would attempt to delay the linking even further; using techniques such as arc consistency to
determine whether or not matching will result in rule instance firings.

Where as RETE has just a singe unit of memory, the node memory, PHREAK has 3 levels of
memory. This allows for much more contextual understanding during evaluation of a Rule.

rHul»e Memory

r.'E‘.-.E-q:_;ment Memory

Node Node Node
Memory Memaory Memory

% "

F.E‘.-.egment Memory

Node Node Node
Memory Memaory Memory
: :
segment Memory
Node Node Node
Memory Memaory Memory

Figure 5.12. PHREAK 3 Layered memory system

Example 1 shows a single rule, with three patterns; A, B and C. It forms a single segment, with
bits 1, 2 and 4 for the nodes. The single segment has a bit offset of 1.

122

PHREAK Algorithm

R1=ABC

1

1

[
el

Y N [T —

1

1

1

I
N S |

Figure 5.13. Examplel: Single rule, no sharing

Example 2 demonstrates what happens when another rule is added that shares the pattern A.
A is placed in its own segment, resulting in two segments per rule. Those two segments form a
path, for their respective rules. The first segment is shared by both paths. When A is linked the
segment becomes linked, it then iterates each path the segment is shared by, setting the bit 1 to
on. If B and C are later turned on, the second segment for path R1 is linked in; this causes bhit 2 to
be turned on for R1. With bit 1 and bit 2 set to on for R1, the rule is now linked and a goal created
to schedule the rule for later evaluation and firing.

When a rule is evaluated it is the segments that allow the results of matching to be shared. Each
segment has a staging memory to queue all insert, update and deletes for that segment. If R1 was
to evaluated it would process A and result in a set of tuples. The algorithm detects that there is a
segmentation split and will create peered tuples for each insert, update and delete in the set and
add them to R2's staging memory. Those tuples will be merged with any existing staged tuples
and wait for R2 to eventually be evaluated.

123

Chapter 5. Hybrid Reasoning

R1=ABC
R2=ADE

1
[l
[

1 P

e m\] mmm————————————————

N —)

Figure 5.14. Example 2: Two rules, with sharing

Example 3 adds a third rule and demonstrates what happens when A and B are shared. Only
the bits for the segments are shown this time. Demonstrating that R4 has 3 segments, R3 has
3 segments and R1 has 2 segments. A and B are shared by R1, R3 and R4. While D is shared
by R3 and R4.

124

PHREAK Algorithm

R1=ABC
R3=ABDE
R4=ABDFG

e Y Y, T Y

Figure 5.15. Example 3: Three rules, with sharing

Sub-networks are formed when a Not, Exists or Accumulate node contain more than one element.
In Example 4 "B not(C)" forms the sub network, note that "not(C)" is a single element and does
not require a sub network and is merged inside of the Not node.

The sub network gets its own segment. R1 still has a path of two segments. The sub network
forms another "inner" path. When the sub network is linked in, it will link in the outer segment.

125

Chapter 5. Hybrid Reasoning

Ri=Anot(Bnot(C))D
®
—

S I

T

Figure 5.16. Example 4 : Single rule, with sub-network and no sharing

Example 5 shows that the sub-network nodes can be shard by a rule that does not have a sub-
network. This results in the sub-network segment being split into two.

126

PHREAK Algorithm

(]
.

Figure 5.17. Example 5: Two rules, one with a sub-network and sharing

4

H

Not nodes with constraints and accumulate nodes have special behaviour and can never unlink
a segment, and are always considered to have their bits on.

All rule evaluations are incremental, and will not waste work recomputing matches that it has
already produced.

The evaluation algorithm is stack based, instead of method recursion. Evaluation can be paused
and resumed at any time, via the use of a StackEntry to represent current node being evaluated.

When a rule evaluation reaches a sub-network a StackEntry is created for the outer path segment
and the sub-network segment. The sub-network segment is evaluated first, when the set reaches
the end of the sub-network path it is merged into a staging list for the outer node it feeds into. The
previous StackEntry is then resumed where it can process the results of the sub network. This
has the added benefit that all work is processed in a batch, before propagating to the child node;
which is much more efficient for accumulate nodes.

The same stack system can be used for efficient backward chaining. When a rule evaluation
reaches a query node it again pauses the current evaluation, by placing it on the stack. The query
is then evaluated which produces a result set, which is saved in a memory location for the resumed
StackEntry to pick up and propagate to the child node. If the query itself called other queries the

127

Chapter 5. Hybrid Reasoning

process would repeat, with the current query being paused and a new evaluation setup for the
current query node.

One final point on performance. One single rule in general will not evaluate any faster with
PHREAK than it does with RETE. For a given rule and same data set, which using a root context
object to enable and disable matching, both attempt the same amount of matches and produce
the same number of rule instances, and take roughly the same time. Except for the use case with
subnetworks and accumulates.

PHREAK can however be considered more forgiving that RETE for poorly written rule bases and
with a more graceful degradation of performance as the number of rules and complexity increases.

RETE will also churn away producing partial machines for rules that do not have data in all the
joins; where as PHREAK will avoid this.

So it's not that PHREAK is faster than RETE, it just won't slow down as much as your system
grows :)

AgendaGroups did not help in RETE performance, as all rules where evaluated at all times,
regardless of the group. The same is true for salience. Which is why root context objects are often
used, to limit matching attempts. PHREAK only evaluates rules for the active AgendaGroup, and
within that group will attempt to avoid evaluation of rules (via salience) that do not result in rule
instance firings.

With PHREAK AgendaGroups and salience now become useful performance tools. The root
context objects are no longer needed and potentially counter productive to performance, as they
force the flushing and recreation of matches for rules.

128

Chapter 6.

Chapter 6. User Guide

6.1. The Basics

6.1.1. Stateless Knowledge Session

So where do we get started? There are so many use cases and so much functionality in a
rule engine such as Drools that it becomes beguiling. Have no fear my intrepid adventurer, the
complexity is layered and you can ease yourself in with simple use cases.

Stateless session, not utilising inference, forms the simplest use case. A stateless session can be
called like a function passing it some data and then receiving some results back. Some common
use cases for stateless sessions are, but not limited to:

* Validation
« Is this person eligible for a mortgage?
 Calculation
« Compute a mortgage premium.
* Routing and Filtering
* Filter incoming messages, such as emails, into folders.
» Send incoming messages to a destination.

So let's start with a very simple example using a driving license application.

public class Applicant {
private String nane;
private int age;
private bool ean vali d;
/1 getter and setter nethods here

Now that we have our data model we can write our first rule. We assume that the application uses
rules to reject invalid applications. As this is a simple validation use case we will add a single rule
to disqualify any applicant younger than 18.

package com conpany. | icense

rule "Is of valid age"
when

129

Chapter 6. User Guide

$a : Applicant(age < 18)
t hen

$a.setValid(false);
end

To make the engine aware of data, so it can be processed against the rules, we have to insert
the data, much like with a database. When the Applicant instance is inserted into the engine it
is evaluated against the constraints of the rules, in this case just two constraints for one rule.
We say two because the type Applicant is the first object type constraint, and age < 18 is the
second field constraint. An object type constraint plus its zero or more field constraints is referred
to as a pattern. When an inserted instance satisfies both the object type constraint and all the field
constraints, it is said to be matched. The $a is a binding variable which permits us to reference the
matched object in the consequence. There its properties can be updated. The dollar character ('$")
is optional, but it helps to differentiate variable names from field names. The process of matching
patterns against the inserted data is, not surprisingly, often referred to as pattern matching.

To use this rule it is necessary to put it a Drools file, just a plain text file with .drl extension , short
for "Drools Rule Language". Let's call this file licenseApplication.drl, and store it in a Kie Project.
A Kie Project has the structure of a normal Maven project with the only peculiarity of including
a kmodule.xml file defining in a declaratively way the Ki eBases and Ki eSessi ons that can be
created from it. This file has to be placed in the resources/META-INF folder of the Maven project
while all the other Droools artifacts, such as the licenseApplication.drl containing the former rule,
must be stored in the resources folder or in any other subfolder under it.

Since meaningful defaults have been provided for all configuration aspects, the simplest

kmodule.xml file can contain just an empty kmodule tag like the following:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<knodul e xm ns="http://] boss. org/ ki e/ 6. 0.0/ knmodul e"/ >

At this point it is possible to create a Ki eCont ai ner that reads the files to be build from the
classpath as it follows

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Ki eCont ai ner kCont ai ner = ki eServi ces. get Ki ed asspat hCont ai ner () ;

The above code snippet looks compiles the DRL files it can find on the classpath and put the result
of this compilation, a Ki eMbdul e, in the Ki eCont ai ner . If there are no errors, we are now ready
to create our session from the Ki eCont ai ner and execute against some data:

St at el essKi eSessi on kSessi on = kCont ai ner. newSt at el essKi eSessi on() ;
Appl i cant applicant = new Applicant("M John Smith", 16);

130

Stateless Knowledge Session

assertTrue(applicant.isValid());
ksessi on. execute(applicant);
assertFal se(applicant.isValid());

The preceding code executes the data against the rules. Since the applicant is under the age of
18, the application is marked as invalid.

So far we've only used a single instance, but what if we want to use more than one? We can
execute against any object implementing Iterable, such as a collection. Let's add another class
called Appl i cat i on, which has the date of the application, and we'll also move the boolean valid
field to the Appl i cati on class.

public class Applicant {
private String nane;
private int age;
/'l getter and setter nethods here

public class Application {
private Date dateApplied;
private bool ean vali d;
/1 getter and setter nethods here

We can also add another rule to validate that the application was made within a period of time.

package com conpany. | icense

rule "Is of valid age"
when
Applicant(age < 18)
$a : Application()
t hen
$a.setValid(false);
end

rule "Application was made this year"
when
$a : Application(dateApplied > "01-jan-2009")
t hen
$a.setValid(false);
end

131

Chapter 6. User Guide

Unfortunately a Java elements does not implement the I t er abl e interface, so we have to use
the JDK converter method Arrays. asLi st (...). The code shown below executes against an
iterable list, where all collection elements are inserted before any matched rules are fired.

St at el essKi eSessi on kSessi on = kCont ai ner. newsSt at el essKi eSessi on();

Appl i cant applicant = new Applicant("M John Smith", 16);

Application application = new Application();

assert True(application.isValid());

ksessi on. execute(Arrays. asList(new Cbject[] { application, applicant }));
assertFal se(application.isValid());

The two execute methods execut e(Chj ect object) and execute(lterable objects) are
actually convenience methods for the interface Bat chExecut or's method execut e(Conmand
comand) .

The Ki eConmmands commands factory, obtainable from the Ki eSer vi ces like all other factories of
the KIE API, is used to create commands, so that the following is equivalent to execut e(I t er abl e
it):

ksessi on. execut e(ki eServi ces. get Commands(). newl nsert El enents(Arrays. asList(new Object[] { aj

Batch Executor and Command Factory are particularly useful when working with multiple
Commands and with output identifiers for obtaining results.

Ki eCommands ki eCommands = ki eServi ces. get Conmands() ;
Li st <Conmand> cnds = new Arrayli st <Command>();

cnds. add(ki eCommands. newl nsert (new Per son("M John
Smth"), "mrSmth", true, null));
cnds. add(ki eCommands. newl nsert (new Per son("M John

Doe"), "nrDoe", true, null));
Bat chExecuti onResults results = ksessi on. execut e(ki eCommands. newBat chExecuti on(cnds));
assert Equal s(new Person("M John Smth"), results.getValue("nrSmth"));

ComandFact ory supports many other Commands that can be used in the Bat chExecut or like
St art Process, Query, and Set G obal .

6.1.2. Stateful Knowledge Session

Stateful Sessions are longer lived and allow iterative changes over time. Some common use cases
for Stateful Sessions are, but not limited to:

* Monitoring

132

Stateful Knowledge Session

» Stock market monitoring and analysis for semi-automatic buying.
» Diagnostics

 Fault finding, medical diagnostics
« Logistics

 Parcel tracking and delivery provisioning
e Compliance

* Validation of legality for market trades.

In contrast to a Stateless Session, the di spose() method must be called afterwards to ensure
there are no memory leaks, as the KieBase contains references to Stateful Knowledge Sessions
when they are created. Since Stateful Knowledge Session is the most commonly used session
type it is just named Ki eSessi on in the KIE API. Ki eSessi on also supports the Bat chExecut or
interface, like St at el essKi eSessi on, the only difference being that the Fi r eAl | Rul es command
is not automatically called at the end for a Stateful Session.

We illustrate the monitoring use case with an example for raising a fire alarm. Using just four
classes, we represent rooms in a house, each of which has one sprinkler. If a fire starts in a room,
we represent that with a single Fi r e instance.

public class Room {

private String nane

/1 getter and setter nethods here
}
public class Sprinkler {

private Room room

private bool ean on;

/'l getter and setter methods here
}
public class Fire {

private Room room

/'l getter and setter methods here
}

public class Alarm{

}

In the previous section on Stateless Sessions the concepts of inserting and matching against data
were introduced. That example assumed that only a single instance of each object type was ever
inserted and thus only used literal constraints. However, a house has many rooms, so rules must
express relationships between objects, such as a sprinkler being in a certain room. This is best
done by using a binding variable as a constraint in a pattern. This "join" process results in what
is called cross products, which are covered in the next section.

133

Chapter 6. User Guide

When a fire occurs an instance of the Fi r e class is created, for that room, and inserted into the
session. The rule uses a hinding on the r oomfield of the Fi re object to constrain matching to
the sprinkler for that room, which is currently off. When this rule fires and the consequence is
executed the sprinkler is turned on.

rule "When there is a fire turn on the sprinkler”
when
Fire($room: room
$sprinkler : Sprinkler(room== $room on == false)
t hen
nodi fy($sprinkler) { setOn(true) };
Systemout.println("Turn on the sprinkler for room" + $room getNane());
end

Whereas the Stateless Session uses standard Java syntax to modify a field, in the above rule
we use the nodi fy statement, which acts as a sort of "with" statement. It may contain a series
of comma separated Java expressions, i.e., calls to setters of the object selected by the nodi fy
statement's control expression. This modifies the data, and makes the engine aware of those
changes so it can reason over them once more. This process is called inference, and it's essential
for the working of a Stateful Session. Stateless Sessions typically do not use inference, so the
engine does not need to be aware of changes to data. Inference can also be turned off explicitly
by using the sequential mode.

So far we have rules that tell us when matching data exists, but what about when it does not exist?
How do we determine that a fire has been extinguished, i.e., that there isn't a Fi r e object any
more? Previously the constraints have been sentences according to Propositional Logic, where
the engine is constraining against individual instances. Drools also has support for First Order
Logic that allows you to look at sets of data. A pattern under the keyword not matches when
something does not exist. The rule given below turns the sprinkler off as soon as the fire in that
room has disappeared.

rule "Wien the fire is gone turn off the sprinkler”

when
$room : Roon()
$sprinkler : Sprinkler(room== $room on == true)
not Fire(room == $room)

t hen

nmodi fy($sprinkler) { setOn(false) };
Systemout.println("Turn off the sprinkler for room" + $room get Name());
end

While there is one sprinkler per room, there is just a single alarm for the building. An Al ar mobject
is created when a fire occurs, but only one Al ar mis needed for the entire building, no matter how

134

Stateful Knowledge Session

many fires occur. Previously not was introduced to match the absence of a fact; now we use its
complement exi st s which matches for one or more instances of some category.

rule "Rai se the al arm when we have one or nore fires”
when
exists Fire()
t hen
insert(new Alarm());
Systemout.println("Raise the alarni);
end

Likewise, when there are no fires we want to remove the alarm, so the not keyword can be used
again.

rule "Cancel the alarmwhen all the fires have gone"
when
not Fire()
$alarm: Alarm()
t hen
delete($alarm);
Systemout. println("Cancel the alarn);
end

Finally there is a general health status message that is printed when the application first starts
and after the alarm is removed and all sprinklers have been turned off.

rule "Status output when things are ok"
when
not Al arm()
not Sprinkler(on == true)
t hen
Systemout.println("Everything is ok");
end

As we did in the Stateless Session example, the above rules should be placed in a single DRL
file and saved into the resouces folder of your Maven project or any of its subfolder. As before,
we can then obtain a Ki eSessi on from the Ki eCont ai ner. The only difference is that this time
we create a Stateful Session, whereas before we created a Stateless Session.

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Ki eCont ai ner kCont ai ner = ki eServi ces. get Ki eCl asspat hCont ai ner () ;

135

Chapter 6. User Guide

Ki eSessi on ksession = kCont ai ner. newKi eSessi on();

With the session created it is now possible to iteratively work with it over time. Four Roomobjects
are created and inserted, as well as one Spri nkl er object for each room. At this point the engine
has done all of its matching, but no rules have fired yet. Calling ksessi on. fi reAl | Rul es() allows
the matched rules to fire, but without a fire that will just produce the health message.

String[] nanmes = new String[]{"kitchen", "bedroont, "office", "livingroon};
Map<Stri ng, Roon® name2r oom = new HashMap<Stri ng, Roone();
for(String nanme: names){

Room room = new Roon(nane);

nanme2r oom put (nane, room);

ksession.insert(room);

Sprinkl er sprinkler = new Sprinkler(room);

ksession.insert(sprinkler);

ksession.fireAl |l Rul es();

> Everything is ok

We now create two fires and insert them; this time a reference is kept for the returned Fact Handl e.
A Fact Handle is an internal engine reference to the inserted instance and allows instances to be
retracted or modified at a later point in time. With the fires now in the engine, oncefi r eAl | Rul es()
is called, the alarm is raised and the respective sprinklers are turned on.

Fire kitchenFire = new Fire(nane2roomget("kitchen"));
Fire officeFire = new Fire(name2roomget("office"));

Fact Handl e ki tchenFireHandl e = ksession.insert(kitchenFire);
Fact Handl e of fi ceFi reHandl e = ksession.insert(officeFire);

ksession.fireAl |l Rul es();

> Rai se the alarm
> Turn on the sprinkler for roomkitchen
> Turn on the sprinkler for roomoffice

136

Methods versus Rules

After a while the fires will be put out and the Fi r e instances are retracted. This results in the
sprinklers being turned off, the alarm being cancelled, and eventually the health message is printed
again.

ksessi on. del et e(kitchenFireHandl e);
ksession. del ete(officeFireHandl e);

ksession.fireAl |l Rul es();

Cancel the alarm
Turn off the sprinkler for roomoffice
Turn off the sprinkler for roomkitchen
Everything is ok

V V V V

Everyone still with me? That wasn't so hard and already I'm hoping you can start to see the value
and power of a declarative rule system.

6.1.3. Methods versus Rules

People often confuse methods and rules, and new rule users often ask, "How do | call a rule?"
After the last section, you are now feeling like a rule expert and the answer to that is obvious, but
let's summarize the differences nonetheless.

public void hell owrl d(Person person) {
if (person.getName().equal s("Chuck")) {
Systemout.printin("Hello Chuck");

Methods are called directly.
» Specific instances are passed.

* One call results in a single execution.

rule "Hello Worl d" when

Per son(nane == " Chuck")
t hen

Systemout.println("Hello Chuck");
end

* Rules execute by matching against any data as long it is inserted into the engine.

137

Chapter 6. User Guide

* Rules can never be called directly.
 Specific instances cannot be passed to a rule.

» Depending on the matches, a rule may fire once or several times, or not at all.
6.1.4. Cross Products

Earlier the term "cross product" was mentioned, which is the result of a join. Imagine for a moment
that the data from the fire alarm example were used in combination with the following rule where
there are no field constraints:

rul e "Show Sprinkl ers" when
$room : Room()
$sprinkler : Sprinkler()
t hen
Systemout.println("room" + $room get Nane() +
" sprinkler:" + $sprinkler.getRoon().getName());
end

In SQL terms this would be like doing sel ect * from Room Sprinkl er and every row in the
Room table would be joined with every row in the Sprinkler table resulting in the following output:

room of fi ce sprinkler:office

room of fi ce sprinkler:kitchen
room of fice sprinkler:livingroom
room of fice sprinkl er: bedroom
room kit chen sprinkl er:office
room kit chen sprinkl er:kitchen
room kit chen sprinkl er:livingroom
room ki t chen sprinkl er: bedroom
room | i vi ngroom sprinkler:office
room | i vi ngroom spri nkl er: ki tchen
room | i vi ngroom sprinkl er:livingroom
room | i vi ngroom spri nkl er: bedroom
room bedroom spri nkl er: of fice
room bedr oom spri nkl er: kit chen
room bedr oom spri nkl er:1ivi ngroom
room bedr oom spri nkl er: bedr oom

These cross products can obviously become huge, and they may very well contain spurious data.
The size of cross products is often the source of performance problems for new rule authors. From
this it can be seen that it's always desirable to constrain the cross products, which is done with
the variable constraint.

138

Execution Control

rul e
when

$room : Room()

$sprinkler : Sprinkler(room== $room)
t hen

Systemout.printlin("room" + $room get Name() +

" sprinkler:" + $sprinkler.getRoom().getNanme());

end

This results in just four rows of data, with the correct Sprinkler for each Room. In SQL (actually
HQL) the corresponding query would be sel ect * from Room Sprinkler where Room ==
Spri nkl er.room

room of fi ce sprinkler:office

room ki t chen sprinkl er:kitchen

room | i vingroom sprinkler:livingroom
room bedr oom spri nkl er: bedr oom

6.2. Execution Control

6.2.1. Agenda

The Agenda is a Rete feature. It maintains set of rules that are able to execute, its job is to schedule
that execution in a deterministic order.

During actions on the Rul eRunt i me, rules may become fully matched and eligible for execution;
a single Rule Runtime Action can result in multiple eligible rules. When a rule is fully matched a
Rule Match is created, referencing the rule and the matched facts, and placed onto the Agenda.
The Agenda controls the execution order of these Matches using a Conflict Resolution strategy.

The engine cycles repeatedly through two phases:

1. Rule Runtime Actions. This is where most of the work takes place, either in the Consequence
(the RHS itself) or the main Java application process. Once the Consequence has finished or
the main Java application process calls fi reAl | Rul es() the engine switches to the Agenda
Evaluation phase.

2. Agenda Evaluation. This attempts to select a rule to fire. If no rule is found it exits, otherwise it
fires the found rule, switching the phase back to Rule Runtime Actions.

139

Chapter 6. User Guide

Determine
possible rules to
fire

" Agenda Evaluation

. Working Memory Action

k.
- Rule
Found AEE‘J
Fire Rule | %ﬂa Fire

Mo Rule
Found

axit

Figure 6.1. Two Phase Execution

The process repeats until the agenda is clear, in which case control returns to the calling
application. When Rule Runtime Actions are taking place, no rules are being fired.

6.2.2. Rule Matches and Conflict Sets.

6.2.2.1. Cashflow Example

So far the data and the matching process has been simple and small. To mix things up a bit a
new example will be explored that handles cashflow calculations over date periods. The state of
the engine will be illustratively shown at key stages to help get a better understanding of what
is actually going on under the hood. Three classes will be used, as shown below. This will help
us grow our understanding of pattern matching and joins further. We will then use this to illustate
different techniques for execution control.

public class CashFl ow {
private Date dat e;
private doubl e anmount;
private int type;
| ong account No;
/1 getter and setter methods here

140

Rule Matches and Conflict Sets.

public class Account {
private |ong account No
private doubl e bal ance
/1 getter and setter nethods here

publ i ¢ Account Period {
private Date start;
private Date end
[l getter and setter nethods here

By now you already know how to create KieBases and how to instantiate facts to populate the
Ki eSessi on, so tables will be used to show the state of the inserted data, as it makes things
clearer for illustration purposes. The tables below show that a single fact was inserted for the
Account . Also inserted are a series of debits and credits as CashFl ow objects for that account,

extending over two quarters.

Figure 6.2. CashFlows and Account

Two rules can be used to determine the debit and credit for that quarter and update the Account
balance. The two rules below constrain the cashflows for an account for a given time period. Notice
the "&&" which use short cut syntax to avoid repeating the field name twice.

rul e "increase bal ance for credits”
when
ap : Account Period()
acc : Account($account No
account No)
CashFl om(type == CREDIT,
account No == $account No,
date >= ap. start && <= ap. end
$anount : anount)
t hen
acc. bal ance += $anount;

when

ap :

rul e "decrease bal ance for debits"
Account Peri od()
acc : Account($account No

account No)
CashFl om(type == DEBIT,
No == $account No,

account

date >= ap.start

ap. end,

t hen

$anount

anount)

&& <=

141

CashFlow Account
date amount type accountMo accountMo balance
12-Jan-07 100|CREDIT 1 1 0
2-Feb-07 200DEBIT 1
18-May-07 50|{CREDIT 1
9-Mar-07 75|(CREDIT 1

Chapter 6. User Guide

end acc. bal ance -= $anount;
end

Earlier we showed how rules would equate to SQL, which can often help people with an SQL
background to understand rules. The two rules above can be represented with two views and a
trigger for each view, as below:

Table 6.1.
select * from Account acc, sel ect * from Account acc,
Cashf | ow cf, Cashfl ow cf,
Account Peri od ap Account Peri od ap
where acc.accountNo == cf.accountN where acc.accountNo == cf.accountNo
and and
cf.type == CREDIT and cf.type == DEBI T and
cf.date >= ap.start and cf.date >= ap.start and
cf.date <= ap.end cf.date <= ap. end
trigger : acc.bal ance += cf.anount trigger : acc.bal ance -= cf. anount

If the Account Peri od is set to the first quarter we constrain the rule "increase balance for credits
to fire on two rows of data and "decrease balance for debits" to act on one row of data.

Figure 6.3. AccountingPeriod, CashFlows and Account

The two cashflow tables above represent the matched data for the two rules. The data is matched
during the insertion stage and, as you discovered in the previous chapter, does not fire straight
away, butonly afterfi reAl | Rul es() is called. Meanwhile, the rule plus its matched data is placed
on the Agenda and referred to as an Rule Match or Rule Instance. The Agenda is a table of Rule
Matches that are able to fire and have their consequences executed, as soon as fireAllRules()
is called. Rule Matches on the Agenda are referred to as a conflict set and their execution is
determine by a conflict resolution strategy. Notice that the order of execution so far is considered
arbitrary.

142

AccountingP eriod
start end
01-Jan-07 31-Mar-07
CashFlow CashFlow
date amaount type date amount type
12-Jan-07 TO0[CREDIT 2-Feb-07 200|DEBIT
O-Mar-07 THICREDIT

Rule Matches and Conflict Sets.

Agenda
1 Increase balance
2 decrease balance arbitrary
3 Increase balance

Figure 6.4. CashFlows and Account

After all of the above activations are fired, the account has a balance of -25.

Account
accountMo balance
1 -25

Figure 6.5. CashFlows and Account

If the Account Peri od is updated to the second quarter, we have just a single matched row of
data, and thus just a single Rule Match on the Agenda.

The firing of that Activation results in a balance of 25.

AccountingPeriod
stan end
01-Apr-07 30-Jun07
CashFlow
date amount type
18-May-07 L0|CREDIT

Figure 6.6. CashFlows and Account

accountMo balance
1 25

Figure 6.7. CashFlows and Account

6.2.2.2. Conflict Resolution

What if you don't want the order of rule execution to be arbitrary? When there is one or more Rule
Match on the Agenda they are said to be in conflict, and a conflict resolution strategy is used to

143

Chapter 6. User Guide

determine the order of execution. The Drools strategy is very simple and based around a salience
value, which assigns a priority to a rule. Each rule has a default value of 0, the higher the value
the higher the priority.

As a general rule, it is a good idea not to count on rules firing in any particular order, and to author
the rules without worrying about a "flow". However when a flow is needed a number of possibilities
exist beyond salience: agenda groups, rule flow groups, activation groups and control/semaphore
facts.

As of Drools 6.0 rule definition order in the source file is used to set priority after salience.

6.2.2.3. Salience

To illustrate Salience we add a rule to print the account balance, where we want this rule to be
executed after all the debits and credits have been applied for all accounts. We achieve this by
assigning a negative salience to this rule so that it fires after all rules with the default salience 0.

Table 6.2.

rule "Print bal ance for AccountPeriod"
sal i ence -50
when
ap : Account Period()
acc : Account ()
t hen
Systemout.println(acc.accountNo + " : " + acc. bal ance);
end

The table below depicts the resulting Agenda. The three debit and credit rules are shown to be in
arbitrary order, while the print rule is ranked last, to execute afterwards.

Agenda
1 Increase balance
2 decrease balance arbitrary
J Increase balance
4 print balance

Figure 6.8. CashFlows and Account

6.2.2.4. Agenda Groups

Agenda groups allow you to place rules into groups, and to place those groups onto a stack. The
stack has push/pop bevaviour. Calling "setFocus" places the group onto the stack:

144

Rule Matches and Conflict Sets.

ksessi on. get Agenda() . get AgendaG oup("G oup A").setFocus();

The agenda always evaluates the top of the stack. When all the rules have fired for a group, it is
poped from the stack and the next group is evaluated.

Table 6.3.
rule "increase bal ance for credits" rule "Print bal ance for AccountPeriod"
agenda- group “"cal cul ati on" agenda- group "report"
when when
ap : Account Peri od() ap : Account Peri od()
acc : Account($account No acc : Account ()
account No) t hen
CashFl om(type == CREDIT, Systemout. println(acc.accountNo +
account No == $account No, "t o+
date >= ap. start && <= ap. end acc. bal ance);
$anount : anount) end
t hen
acc. bal ance += $anount;
end

First set the focus to the "report" group and then by placing the focus on "calculation" we ensure
that group is evaluated first.

Agenda agenda = ksessi on. get Agenda();

agenda. get AgendaG oup("report").setFocus();
agenda. get AgendaGroup("cal cul ati on").setFocus();
ksession.fireA |l Rul es();

6.2.2.5. Rule Flow

Drools also features ruleflow-group attributes which allows workflow diagrams to declaratively
specify when rules are allowed to fire. The screenshot below is taken from Eclipse using the Drools
plugin. It has two ruleflow-group nodes which ensures that the calculation rules are executed
before the reporting rules.

145

Chapter 6. User Guide

a2 *banking.rf 7

[;g Select

r

L

L Marquee

—t i_onneckion Creation

2 start

[~ Components *

. Start

[& End

[RuleFlowGroup
2 split

=+ Jiin

(7) Milestone

e SubFlow

calculation

Bckion

[#| End

The use of the ruleflow-group attribute in a rule is shown below.

Table 6.4.

rule "increase bal ance for credits"
rul efl owgroup "cal cul ati on”
when
ap : Account Period()
acc Account (
account No)
CashFl om(type == CREDIT,
account No == $account No,
date >= ap. start && <= ap. end
$anount anount)

$account No

t hen
acc. bal ance += $anount;

end

rule "Print bal ance for Account Peri od"
rul efl ow-group "report"”

when
ap : Account Period()
acc : Account ()

t hen

System out. println(acc.accountNo +
.o o
acc. bal ance);
end

146

Inference

6.3. Inference

6.3.1. Bus Pass Exampl

e

Inference has a bad name these days, as something not relevant to business use cases and
just too complicated to be useful. It is true that contrived and complicated examples occur with
inference, but that should not detract from the fact that simple and useful ones exist too. But more
than this, correct use of inference can crate more agile and less error prone business rules, which

are easier to maintain.

So what is inference? Something is inferred when we gain knowledge of something from using
previous knowledge. For example, given a Person fact with an age field and a rule that provides
age policy control, we can infer whether a Person is an adult or a child and act on this.

rule "Infer Adult"
when
$p : Person(age >= 18)
t hen
insert(new IsAdult($p))
end

Due to the preceding rule, every Person who is 18 or over will have an instance of IsAdult inserted
for them. This fact is special in that it is known as a relation. We can use this inferred relation

in any rule:

$p : Person()
| sAdul t (person == $p)

So now we know what inference is, and have a basic example, how does this facilitate good rule

design and maintenance?

Let's take a government department that are responsible for issuing ID cards when children
become adults, henceforth referred to as ID department. They might have a decision table that
includes logic like this, which says when an adult living in London is 18 or over, issue the card:

COMDITION COMDITICN ACTION
p ¢ Person
bocation age == 51 £1)
Select Person Select Adults Issue ID Card
Issue ID Card to Adults London i3 1]

147

Chapter 6. User Guide

However the ID department does not set the policy on who an adult is. That's done at a central
government level. If the central government were to change that age to 21, this would initiate a
change management process. Someone would have to liaise with the ID department and make
sure their systems are updated, in time for the law going live.

This change management process and communication between departments is not ideal for an
agile environment, and change becomes costly and error prone. Also the card department is
managing more information than it needs to be aware of with its "monolithic" approach to rules
management which is "leaking" information better placed elsewhere. By this | mean that it doesn't
care what explicit "age >= 18" information determines whether someone is an adult, only that they
are an adult.

In contrast to this, let's pursue an approach where we split (de-couple) the authoring
responsibilities, so that both the central government and the ID department maintain their own
rules.

It's the central government's job to determine who is an adult. If they change the law they just
update their central repository with the new rules, which others use:

CONDITION ACTION
p i Person
3ge == 51 insert| =1)
Adult Age Policy Add Adult Relation
Infer Adult 18
new [sAdult(p)

The IsAdult fact, as discussed previously, is inferred from the policy rules. It encapsulates the
seemingly arbitrary piece of logic "age >= 18" and provides semantic abstractions for its meaning.
Now if anyone uses the above rules, they no longer need to be aware of explicit information that
determines whether someone is an adult or not. They can just use the inferred fact:

aD|e 1 =gt
CONDITION CONDITION ACTION
p : Person Isfdult
location person == 51 EmeldCardl £1)
Select Person Select Adults Issue ID Card
Issue ID Card to Adults London p

While the example is very minimal and trivial it illustrates some important points. We started with a
monolithic and leaky approach to our knowledge engineering. We created a single decision table
that had all possible information in it and that leaks information from central government that the
ID department did not care about and did not want to manage.

148

Truth Maintenance with Logical Objects

We first de-coupled the knowledge process so each department was responsible for only what it
needed to know. We then encapsulated this leaky knowledge using an inferred fact IsAdult. The
use of the term IsAdult also gave a semantic abstraction to the previously arbitrary logic "age >=
18".

So a general rule of thumb when doing your knowledge engineering is:

* Bad
» Monolithic
* Leaky
+ Good
» De-couple knowledge responsibilities
» Encapsulate knowledge

» Provide semantic abstractions for those encapsulations
6.4. Truth Maintenance with Logical Objects

6.4.1. Overview

After regular inserts you have to retract facts explicitly. With logical assertions, the fact that was
asserted will be automatically retracted when the conditions that asserted it in the first place are
no longer true. Actually, it's even cleverer then that, because it will be retracted only if there isn't
any single condition that supports the logical assertion.

Normal insertions are said to be stated, i.e., just like the intuitive meaning of "stating a fact" implies.
Using a HashMap and a counter, we track how many times a particular equality is stated; this
means we count how many different instances are equal.

When we logically insert an object during a RHS execution we are said to justify it, and it is
considered to be justified by the firing rule. For each logical insertion there can only be one equal
object, and each subsequent equal logical insertion increases the justification counter for this
logical assertion. A justification is removed by the LHS of the creating rule becoming untrue, and
the counter is decreased accordingly. As soon as we have no more justifications the logical object
is automatically retracted.

If we try to logically insert an object when there is an equal stated object, this will fail and return
null. If we state an object that has an existing equal object that is justified we override the Fact;
how this override works depends on the configuration setting Wv BEHAVI OR_PRESERVE. When the
property is set to discard we use the existing handle and replace the existing instance with the
new Object, which is the default behavior; otherwise we override it to stated but we create an
new Fact Handl e.

149

Chapter 6. User Guide

This can be confusing on a first read, so hopefully the flow charts below help. When it says that it
returns a new Fact Handl e, this also indicates the Obj ect was propagated through the network.

Is there an
existing Equal
Object?

Returm new
FactHandle

yes

Return new

FactHandls

JUSTIFIED

Cwerride JUSTIFIED,

and set to STATED, Dizcard Logical

set existing handle to Assertion?
fhe new Ohject,

no

already exist?

yes

Return existing
FactHandle.

JUSTIFIED

Override JUSTIFIED
and seat to STATED,
remove justifications
and retum existing
FactHandle

h J
Overide JUSTIFIED
and set to STATED,
remove justifications
and return existing
FactHandle

Figure 6.9. Stated Insertion

150

Overview

Add first
justification and

Is there an
existing Equal
Object?

[oes the Object
already exist?

retunn mew
FactHandle

yES yes

Can't Justify a s tha Object g?'ltféﬁgcta
STATED faet, STATED or STATED e
return null. JUSTIFE? JUSTIFED? FactHandle,

JUSTIFIED JUSTIFIED

Add additional
justification and

Add first
justification and

retuUrm e
FactHandle

return existing
FactHandle

Figure 6.10. Logical Insertion

6.4.1.1. Bus Pass Example With Inference and TMS

The previous example was issuing ID cards to over 18s, in this example we now issue bus passes,
either a child or adult pass.

rule "lssue Child Bus Pass" when

$p : Person(age < 16)
t hen

i nsert (new Chi |l dBusPass($p));
end

rule "lIssue Adult Bus Pass" when
$p : Person(age >= 16)
t hen
i nsert (new Adul t BusPass($p));

151

Chapter 6. User Guide

end

As before the above example is considered monolithic, leaky and providing poor separation of
concerns.

As before we can provide a more robust application with a separation of concerns using inference.
Notice this time we don't just insert the inferred object, we use "insertLogical":

rule "Infer Child" when

$p : Person(age < 16)
t hen

i nsertLogical (new IsChild($p))
end
rule "Infer Adult" when

$p : Person(age >= 16)
t hen

i nsertLogical (new IsAdult($p))
end

A "insertLogical" is part of the Drools Truth Maintenance System (TMS). When a fact is logically
inserted, this fact is dependant on the truth of the "when" clause. It means that when the rule
becomes false the fact is automatically retracted. This works particularly well as the two rules are
mutually exclusive. So in the above rules if the person is under 16 it inserts an IsChild fact, once
the person is 16 or over the IsChild fact is automatically retracted and the IsAdult fact inserted.

Returning to the code to issue bus passes, these two rules can + logically insert the ChildBusPass
and AdultBusPass facts, as the TMS + supports chaining of logical insertions for a cascading set
of retracts.

rule "lIssue Child Bus Pass" when
$p : Person()
I sChild(person == $p)
t hen
i nsert Logi cal (new Chi | dBusPass($p));
end

rule "lIssue Adult Bus Pass" when
$p : Person(age >= 16)
I sAdul t (person =$p)
t hen
i nsert Logi cal (new Adul t BusPass($p));
end

152

Decision Tables in Spreadsheets

Now when a person changes from being 15 to 16, not only is the IsChild fact automatically
retracted, so is the person's ChildBusPass fact. For bonus points we can combine this with the
'not' conditional element to handle notifications, in this situation, a request for the returning of the
pass. So when the TMS automatically retracts the ChildBusPass object, this rule triggers and
sends a request to the person:

rule "Return Chil dBusPass Request "when
$p : Person()
not (Chi |l dBusPass(person == $p))
t hen
request Chi | dBusPass($p);
end

6.4.1.2. Important note: Equality for Java objects

It is important to note that for Truth Maintenance (and logical assertions) to work at all, your
Fact objects (which may be JavaBeans) must override equals and hashCode methods (from
java.lang.Object) correctly. As the truth maintenance system needs to know when two different
physical objects are equal in value, both equals and hashCode must be overridden correctly, as
per the Java standard.

Two objects are equal if and only if their equals methods return true for each other and if their
hashCode methods return the same values. See the Java API for more details (but do keep in
mind you MUST override both equals and hashCode).

TMS behaviour is not affected by theruntime configuration of Identity vs Equality, TMS is always
equality.

6.5. Decision Tables in Spreadsheets

Decision tables are a "precise yet compact” (ref. Wikipedia) way of representing conditional logic,
and are well suited to business level rules.

Drools supports managing rules in a spreadsheet format. Supported formats are Excel (XLS),
and CSV, which means that a variety of spreadsheet programs (such as Microsoft Excel,
OpenOffice.org Calc amongst others) can be utilized. It is expected that web based decision table
editors will be included in a near future release.

Decision tables are an old concept (in software terms) but have proven useful over the years. Very
briefly speaking, in Drools decision tables are a way to generate rules driven from the data entered
into a spreadsheet. All the usual features of a spreadsheet for data capture and manipulation can
be taken advantage of.

153

Chapter 6. User Guide

6.5.1. When to Use Decision Tables

Consider decision tables as a course of action if rules exist that can be expressed as rule templates
and data: each row of a decision table provides data that is combined with a template to generate
arule.

Many businesses already use spreadsheets for managing data, calculations, etc. If you are happy
to continue this way, you can also manage your business rules this way. This also assumes you are
happy to manage packages of rules in . x| s or . csv files. Decision tables are not recommended
for rules that do not follow a set of templates, or where there are a small number of rules (or if there
is a dislike towards software like Excel or OpenOffice.org). They are ideal in the sense that there
can be control over what parameters of rules can be edited, without exposing the rules directly.

Decision tables also provide a degree of insulation from the underlying object model.

6.5.2. Overview

Here are some examples of real world decision tables (slightly edited to protect the innocent).

@ Microsoft Excel - TeamAllocationExample_TYPICAL_EXAMPLE.xls g@
: @J Fle Edit View Insert Format Tools Data Window Help Typeaquestionforhelp = - & x
[@} Tahoma -7 -[B]Z U |E[E|=HS % » %
B17 - # Catastrophic Claim
] ™
1 B | C | D | E
£
+ Type of New Claim Is case catastrophic Allocation code Claim 1
16
1 7 Catastrophic Claim v
New Claim with previous Accident num 2
18
Previous Open claim 1 P
19
20 Dependency Claim &
2 1 Dependency Claim 3
22 Interstate Claim A
23 Interstate Claim o
24 Interstate Claim N
25 Interstate Claim : 5 .v L
M 4 » »[\Tables, Lsts / < 5
Ready NUM

Figure 6.11. Using Excel to edit a decision table

154

Overview

J | L
mer Allocate to Team Stop processing Log reason
Team Red)]]
Stop processing The claim was catastrophic

Figure 6.12. Multiple actions for a rule row

i;l TeamAllocationExample_TYPICAL_EXAMPLE - OpenOffice.org Calc Q@
File Edit View Insert Format Tools Data Window Help x
B-rslaeFBSRIVELBR & SHH Sy BorpEQ @
i bd |Tahoma ~| |7 v B FT U (=== b eEEIO-S A
B17 ¥ f 2 = |Catastruph|c Claim
:'| -
z
1l2] B [c D E F c
4 8
L]
16 Type of New Claim 1Is case catastrophic Allocation code Claim Type | Insurance Class |Date of accident is after Da
17 Catastrophic Claim v
19 [lew Claim with previous Accident 2
19 Previous Open claim 1 P
20 Dependency Claim 8
21 Dependency Claim 9
22 Interstate Claim A
23 Interstate Claim D
24 Interstate Claim N
25 Interstate Claim s
26 Interstate Claim T il
', Tables / Lists / B >
Sheet1/2 PageStyle_Tables 100% STD Sum=0

Figure 6.13. Using OpenOffice.org

In the above examples, the technical aspects of the decision table have been collapsed away
(using a standard spreadsheet feature).

The rules start from row 17, with each row resulting in a rule. The conditions are in columns C, D,
E, etc., the actions being off-screen. The values in the cells are quite simple, and their meaning
is indicated by the headers in Row 16. Column B is just a description. It is customary to use color
to make it obvious what the different areas of the table mean.

Note

Note that although the decision tables look like they process top down, this is not
necessarily the case. Ideally, rules are authored without regard for the order of

155

Chapter 6. User Guide

rows, simply because this makes maintenance easier, as rows will not need to be
shifted around all the time.

As each row is a rule, the same principles apply. As the rule engine processes the facts, any rules
that match may fire. (Some people are confused by this. It is possible to clear the agenda when a
rule fires and simulate a very simple decision table where only the first match effects an action.)
Also note that you can have multiple tables on one spreadsheet. This way, rules can be grouped
where they share common templates, yet at the end of the day they are all combined into one rule
package. Decision tables are essentially a tool to generate DRL rules automatically.

1 I H [3 I [I 5 &

Module
RuleSet Control Cajas[1]

1.validarAperturaCaja (Caja, Registro Estado Sucursal, Transacdon)

Prioridades de

ID_Caso de Uso| Caso de Uso Identificadores de las Reglas las Reghs Nombres de las Reglas Descripciones
1
Esta Regla tiene por Mision Validar que la sucursal de k
se encuentre abierta
ValidarAperturaCajasucursal
1 2000 P] Trabaja sobre la Caja que se intenta abrir, la Sucurs:

Abiert: .
era corresponde a esa caja y la Transaccion de Ca;

L] apertura

Esta Regla tiene por Mision Validar que en la sucursal
caja se encuentre abierta para la misma fecha de ape
ValdarAperturaCajaMismaFe |de la caja.

2 2000
cha Trabaja sobre la Caja que se intenta abrir, la Sucursz
corresponde a esa caja y la Transaccion de Ca
i apertura
6
7
[l 2.validarCierreCajasSucursal(Registro Estado Sucursal, TransaccionCaja)
ID_Caso de Uso| Caso de Uso Identificadores de las Reglas prg;":::;fsde Nombres de las Reglas Descripciones
2
Esta Regla tiene por Misidn Valdar que al moment
C_PRSC_503 efectuarse el Clerre Conta?le de una sucursal de FOI
C_PRSC_504 1 1000 ValidarCierreCajassucursal todas las Cajas de esta (iftima se encuentren en E
C_PRSC 513 Cerrado, es decir la Fecha de Cierre de Caja debe ser

a la Fecha de cierre de la entidad Registro_Cierre_Suc

3.validarTransaccionCaja(Caja, Transacdon_Caja)

RuleTable[3] ValidarTransaccdonCaja(CajaVO caja, MovimientoCajaVO movimientoCaja)
ID_Casode Uso Caso de Uso Identificador Nombre

Figure 6.14. A real world example using multiple tables for grouping like
rules

6.5.3. How Decision Tables Work

The key point to keep in mind is that in a decision table each row is a rule, and each column in
that row is either a condition or action for that rule.

156

How Decision Tables Work

12 B

D

E

31

+ Type of Nex Claim

s case catastrophic

Allocation code

Catastrophic Claim
17

Mew Claim with previous Accident num

Each row results in a rule

21 Dependency Claim

22 Interstate Claim

23 Interstate Claim

24

aim

25 Interstate
M 4 » »]\Tables/ Lists /

Figure 6.15. Rows and columns

P

Each colurmn
may be a
condition, or

action etc

Insurance Class

Date of accident is after

>

The spreadsheet looks for the RuleTable keyword to indicate the start of a rule table (both the
starting row and column). Other keywords are also used to define other package level attributes
(covered later). It is important to keep the keywords in one column. By convention the second
column ("B") is used for this, but it can be any column (convention is to leave a margin on the
left for notes). In the following diagram, C is actually the column where it starts. Everything to the

left of this is ignored.

If we expand the hidden sections, it starts to make more sense how it works; note the keywords

in column C.

157

Chapter 6. User Guide

IntegrationExampleTest — OpenOffice.org Calc

File Edit View |Insert Format Tools Data Window Help X
. . 3
B-elia FEES TY KB 2 @b 2 [
H [rtahoma |~ [7 I~ RAE BEEB i I I =
G17 -] fo 2 = |
Al2| B | c | D E [[=
Fi
8
ﬂ) RulaSet Some business rules
10 mp ort org.drools.decisiontable. Cheese, org.drools. decfl |
L= | s |
2
- [15 RuleTable Cheesetans | |
14 CONDITION COMDITION ACTION [
15 Person Cheese list
16
(descriptions) ange [ty pe add(Fparam”)
17 Case Persons age Cheese type Log |
18 o1 guy 42 stilton 0ld man stilton
19 Young guy
21 cheddar Young man cheddar
20
_'_I 21 hariahle; java.util List list]
22 =1
73 L]
Tables { Lists 1] 4] [I |
Sheet 1/ 2 PageStyle_Tables 100% STD Sum=0 Average=

Figure 6.16. Expanded for rule templates

Now the hidden magic which makes it work can be seen. The RuleSet keyword indicates the name
to be used in the rule package that will encompass all the rules. This name is optional, using a
default, but it must have the RuleSet keyword in the cell immediately to the right.

The other keywords visible in Column C are Import and Sequential which will be covered later. The
RuleTable keyword is important as it indicates that a chunk of rules will follow, based on some rule
templates. After the RuleTable keyword there is a name, used to prefix the names of the generated
rules. The sheet name and row numbers are appended to guarantee unique rule names.

Warning

The RuleTable name combined with the sheet name must be unique across all
spreadsheet files in the same KieBase. If that's not the case, some rules might
have the same name and only 1 of them will be applied. To show such ignored
rules, raise the severity of such rule name conflicts.

The column of RuleTable indicates the column in which the rules start; columns to the left are
ignored.

158

How Decision Tables Work

@ Note
In general the keywords make up name-value pairs.

Referring to row 14 (the row immediately after RuleTable), the keywords CONDITION and
ACTION indicate that the data in the columns below are for either the LHS or the RHS parts of a
rule. There are other attributes on the rule which can also be optionally set this way.

Row 15 contains declarations of ObjectTypes. The content in this row is optional, but if this option
is not in use, the row must be left blank; however this option is usually found to be quite useful.
When using this row, the values in the cells below (row 16) become constraints on that object type.
In the above case, it generates Per son(age=="42") and Cheese(type=="stilton"), where 42
and "stilton" come from row 18. In the above example, the "=="is implicit; if just a field name is
given the translator assumes that it is to generate an exact match.

@ Note
An ObjectType declaration can span columns (via merged cells), meaning that all
columns below the merged range are to be combined into one set of constraints
within a single pattern matching a single fact at a time, as opposed to non-merged
cells containing the same ObjectType, but resulting in different patterns, potentially
matching different or identical facts.

Row 16 contains the rule templates themselves. They can use the "$param" placeholder to
indicate where data from the cells below should be interpolated. (For multiple insertions, use "$1",
"$2", etc., indicating parameters from a comma-separated list in a cell below.) Row 17 is ignored;
it may contain textual descriptions of the column'’s purpose.

Rows 18 and 19 show data, which will be combined (interpolated) with the templates in row 15, to
generate rules. If a cell contains no data, then its template is ignored. (This would mean that some
condition or action does not apply for that rule row.) Rule rows are read until there is a blank row.
Multiple RuleTables can exist in a sheet. Row 20 contains another keyword, and a value. The row
positions of keywords like this do not matter (most people put them at the top) but their column
should be the same one where the RuleTable or RuleSet keywords should appear. In our case
column C has been chosen to be significant, but any other column could be used instead.

In the above example, rules would be rendered like the following (as it uses the "ObjectType" row):

//row 18
rul e "Cheese_fans_18"
when

Per son(age=="42")
Cheese(type=="stilton")
t hen

159

Chapter 6. User Guide

list.add("A d man stilton");
end

@ Note
The constraints age=="42" and type=="stilton" are interpreted as single
constraints, to be added to the respective ObjectType in the cell above. If the cells
above were spanned, then there could be multiple constraints on one "column®.

Warning

Very large decision tables may have very large memory requirements.

6.5.4. Spreadsheet Syntax

6.5.4.1. Spreadsheet Structure

There are two types of rectangular areas defining data that is used for generating a DRL file. One,
marked by a cell labelled Rul eSet , defines all DRL items except rules. The other one may occur
repeatedly and is to the right and below a cell whose contents begin with Rul eTabl e. These areas
represent the actual decision tables, each area resulting in a set of rules of similar structure.

A Rule Set area may contain cell pairs, one below the Rul eSet cell and containing a keyword
designating the kind of value contained in the other one that follows in the same row.

The columns of a Rule Table area define patterns and constraints for the left hand sides of the
rules derived from it, actions for the consequences of the rules, and the values of individual rule
attributes. Thus, a Rule Table area should contain one or more columns, both for conditions and
actions, and an arbitrary selection of columns for rule attributes, at most one column for each of
these. The first four rows following the row with the cell marked with Rul eTabl e are earmarked
as header area, mostly used for the definition of code to construct the rules. It is any additional
row below these four header rows that spawns another rule, with its data providing for variations
in the code defined in the Rule Table header.

All keywords are case insensitive.

Only the first worksheet is examined for decision tables.

6.5.4.2. Rule Set Entries

Entries in a Rule Set area may define DRL constructs (except rules), and specify rule attributes.
While entries for constructs may be used repeatedly, each rule attribute may be given at most
once, and it applies to all rules unless it is overruled by the same attribute being defined within
the Rule Table area.

160

Spreadsheet Syntax

Entries must be given in a vertically stacked sequence of cell pairs. The first one contains a
keyword and the one to its right the value, as shown in the table below. This sequence of cell
pairs may be interrupted by blank rows or even a Rule Table, as long as the column marked by
Rul eSet is upheld as the one containing the keyword.

Table 6.5. Entries in the Rule Set area

Keyword Value Usage

RuleSet The package name for the Must be First entry.
generated DRL file. Optional,
the defaultisrul e_t abl e.

Sequential "true" or "false". If "true", then Optional, at most once. If
salience is used to ensure that omitted, no firing order is
rules fire from the top down. imposed.

EscapeQuotes "true" or "false". If "true", then Optional, at most once. If

guotation marks are escaped omitted, quotation marks are
so that they appear literally in escaped.

the DRL.

Import A comma-separated list of Optional, may be used
Java classes to import. repeatedly.

Variables Declarations of DRL globals, Optional, may be used

i.e., a type followed by a repeatedly.
variable name. Multiple global

definitions must be separated

with a comma.

Functions One or more function Optional, may be used
definitions, according to DRL repeatedly.
syntax.

Queries One or more query definitions, Optional, may be used
according to DRL syntax. repeatedly.

Declare One or more declarative types, Optional, may be used
according to DRL syntax. repeatedly.

Warning

In some locales, MS Office, LibreOffice and OpenOffice will encode a double quoth
" differently, which will cause a compilation error. The difference is often hard to
see. For example: “ A” will fail, but " A" will work.

For defining rule attributes that apply to all rules in the generated DRL file you can use any of the
entries in the following table. Notice, however, that the proper keyword must be used. Also, each
of these attributes may be used only once.

161

Chapter 6. User Guide

Table 6.6. Rule attribute entries in the Rule Set area

Keyword
PRIORITY

Initial

P

Value

An integer defining the
"salience" value for the
rule. Overridden by the
"Sequential” flag.

DURATION

A long integer value defining
the "duration" value for the
rule.

TIMER

A timer definition. See "Timers
and Calendars".

ENABLED

A Boolean value. "true"
enables the rule; "false"
disables the rule.

CALENDARS

A calendars definition. See
"Timers and Calendars".

NO-LOOP

LOCK-ON-ACTIVE

A Boolean value. "true"
inhibits looping of rules due
to changes made by its
consequence.

A Boolean value. "true" inhibits
additional activations of all
rules with this flag set within
the same ruleflow or agenda

group.

AUTO-FOCUS

A Boolean value. "true" for a
rule within an agenda group
causes activations of the rule
to automatically give the focus
to the group.

ACTIVATION-GROUP

A string identifying an
activation (or XOR) group.
Only one rule within an
activation group will fire, i.e.,
the first one to fire cancels any
existing activations of other
rules within the same group.

AGENDA-GROUP

A string identifying an agenda
group, which has to be
activated by giving it the
"focus", which is one way of

162

Spreadsheet Syntax

Keyword Initial Value

controlling the flow between
groups of rules.

RULEFLOW-GROUP R A string identifying a rule-flow

group.

6.5.4.3. Rule Tables

All Rule Tables begin with a cell containing "RuleTable", optionally followed by a string within the
same cell. The string is used as the initial part of the name for all rules derived from this Rule
Table, with the row number appended for distinction. (This automatic naming can be overridden
by using a NAME column.) All other cells defining rules of this Rule Table are below and to the
right of this cell.

The next row defines the column type, with each column resulting in a part of the condition or
the consequence, or providing some rule attribute, the rule name or a comment. The table below
shows which column headers are available; additional columns may be used according to the table
showing rule attribute entries given in the preceding section. Note that each attribute column may
be used at most once. For a column header, either use the keyword or any other word beginning
with the letter given in the "Initial" column of these tables.

Table 6.7. Column Headers in the Rule Table

Keyword Initial Value Usage

NAME N Provides the name At mostone column
for the rule generated
from that row. The
default is constructed
from the text following
the RuleTable tag and
the row number.

DESCRIPTION I A text, resulting in a At most one column
comment within the
generated rule.

CONDITION C Code snippet and At least one per rule
interpolated values table
for constructing a
constraint within a
pattern in a condition.

ACTION A Code snippet and At least one per rule
interpolated values for table
constructing an action
for the consequence
of the rule.

163

Chapter 6. User Guide

Keyword Initial Value Usage

METADATA @ Code snippet and Optional, any number
interpolated values of columns
for constructing a
metadata entry for the
rule.

Given a column headed CONDITION, the cells in successive lines result in a conditional element.

» Text in the first cell below CONDITION develops into a pattern for the rule condition, with
the snippet in the next line becoming a constraint. If the cell is merged with one or more
neighbours, a single pattern with multiple constraints is formed: all constraints are combined
into a parenthesized list and appended to the text in this cell. The cell may be left blank, which
means that the code snippet in the next row must result in a valid conditional element on its own.

To include a pattern without constraints, you can write the pattern in front of the text for another
pattern.

The pattern may be written with or without an empty pair of parentheses. A "from" clause may
be appended to the pattern.

If the pattern ends with "eval", code snippets are supposed to produce boolean expressions for
inclusion into a pair of parentheses after "eval".

« Textin the second cell below CONDITION is processed in two steps.

1. The code snippet in this cell is modified by interpolating values from cells farther down in
the column. If you want to create a constraint consisting of a comparison using "==" with
the value from the cells below, the field selector alone is sufficient. Any other comparison
operator must be specified as the last item within the snippet, and the value from the cells
below is appended. For all other constraint forms, you must mark the position for including
the contents of a cell with the symbol $par am Multiple insertions are possible by using the
symbols $1, $2, etc., and a comma-separated list of values in the cells below.

A text according to the pattern f or al | (delimiter) { snippet} is expanded by repeating the
shippet once for each of the values of the comma-separated list of values in each of the cells
below, inserting the value in place of the symbol $ and by joining these expansions by the
given delimiter. Note that the forall construct may be surrounded by other text.

2. If the cell in the preceding row is not empty, the completed code snippet is added to the
conditional element from that cell. A pair of parentheses is provided automatically, as well as
a separating comma if multiple constraints are added to a pattern in a merged cell.

If the cell above is empty, the interpolated result is used as is.

e Text in the third cell below CONDITION is for documentation only. It should be used to indicate
the column's purpose to a human reader.

164

Spreadsheet Syntax

« From the fourth row on, non-blank entries provide data for interpolation as described above. A
blank cell results in the omission of the conditional element or constraint for this rule.

Given a column headed ACTION, the cells in successive lines result in an action statement.

« Textin the first cell below ACTION is optional. If present, it is interpreted as an object reference.
» Textin the second cell below ACTION is processed in two steps.

1. The code snippet in this cell is modified by interpolating values from cells farther down in the
column. For a singular insertion, mark the position for including the contents of a cell with
the symbol $par am Multiple insertions are possible by using the symbols $1, $2, etc., and a
comma-separated list of values in the cells below.

A method call without interpolation can be achieved by a text without any marker symbols.
In this case, use any non-blank entry in a row below to include the statement.

The forall construct is available here, too.

2. If the first cell is not empty, its text, followed by a period, the text in the second cell and a
terminating semicolon are stringed together, resulting in a method call which is added as an
action statement for the consequence.

If the cell above is empty, the interpolated result is used as is.

« Text in the third cell below ACTION is for documentation only. It should be used to indicate the
column's purpose to a human reader.

« From the fourth row on, non-blank entries provide data for interpolation as described above. A
blank cell results in the omission of the action statement for this rule.

@ Note
Using $1 instead of $par amwaorks in most cases, but it will fail if the replacement
text contains a comma: then, only the part preceding the first comma is inserted.
Use this "abbreviation" judiciously.

Given a column headed METADATA, the cells in successive lines result in a metadata annotation
for the generated rules.

e Textin the first cell below METADATA is ignored.

» Textin the second cell below METADATA is subject to interpolation, as described above, using
values from the cells in the rule rows. The metadata marker character @is prefixed automatically,
and thus it should not be included in the text for this cell.

e Textin the third cell below METADATA is for documentation only. It should be used to indicate
the column's purpose to a human reader.

165

Chapter 6. User Guide

« From the fourth row on, non-blank entries provide data for interpolation as described above. A
blank cell results in the omission of the metadata annotation for this rule.

6.5.4.4. Examples

The various interpolations are illustrated in the following example.

Example 6.1. Interpolating cell data
If the template is Foo(bar == $paran) and the cell is 42, then the result is Foo(bar == 42).

If the template is Foo(bar < $1, baz == $2) and the cell contains 42, 43, the result will be
Foo(bar < 42, baz ==43).

The template foral | (&) {bar != $} with a cell containing 42, 43 results in bar !'= 42 &&
bar != 43.

The next example demonstrates the joint effect of a cell defining the pattern type and the code
snippet below it.

RuleTable Cheese fans
15 [Person
16
lage ¥pe
17 Persons age Cheese type
18 ;
42 stilton
15
21 cheddar

This spreadsheet section shows how the Per son type declaration spans 2 columns, and thus both
constraints will appear as Person(age == ..., type == ...). Since only the field names are
present in the snippet, they imply an equality test.

In the following example the marker symbol $par amis used.

166

Spreadsheet Syntax

[CONDITION
Person

_|pge=="§param’

Persons age

42
The result of this column is the pattern Per son(age == "42")). You may have noticed that the
marker and the operator "==" are redundant.

The next example illustrates that a trailing insertion marker can be omitted.

[CONDITION 1
Person

Persons age

42

Here, appending the value from the cell is implied, resulting in Per son(age < "42")).

You can provide the definition of a binding variable, as in the example below. .

167

Chapter 6. User Guide

W

c: Cheese

type

Cheese type

stilton

Here, the result is c: Cheese(type == "stilton"). Note that the quotes are provided
automatically. Actually, anything can be placed in the object type row. Apart from the definition of
a binding variable, it could also be an additional pattern that is to be inserted literally.

A simple construction of an action statement with the insertion of a single value is shown below.

ACTION

list.add("$ param®);

Log

Old man stilton

The cell below the ACTION header is left blank. Using this style, anything can be placed in
the consequence, not just a single method call. (The same technique is applicable within a
CONDITION column as well.)

Below is a comprehensive example, showing the use of various column headers. It is not an error
to have no value below a column header (as in the NO-LOOP column): here, the attribute will not
be applied in any of the rules.

168

Spreadsheet Syntax

B D E F
1
2 org.acme.insurance base
3 import import org acme.insurance.base.Approve, import org.acme.insurance.base. Driver
4 Package ora.acme.insurance.base
6 RuleTable Oid Driver
7 CONDITION CONDITION RULEFLOW-GROUP NO-LOGP ACTION
8 Sdriver: Driver

9 iptions) ficenceYears
1002z Persons age

11 d guy

priarClaims insertinew Aporove("Sparam"lk;
Priar Claims Inserting approvment

1 risk assessment Safe and mature

ACTION

Figure 6.17. Example usage of keywords for imports, headers, etc.

And, finally, here is an example of Import, Variables and Functions.

[Control Cajas[1]

Import foo.Bar, bar.Baz

Variables Parameters parametros, RulesResult resultado,
EvalDate fecha

Functions function boolean isRango(int iValor, int iRangoInicio, T

int iRangoFinal) {
if (IRangoInicio <= iValor && Valor <= iRangoFinal)
return true;
return false;

¥

function boolean isIgualTipo(TipoVO tipoVO, int
p_ftipo, boolean isMNull) {

if (tipovO == null)

return isMull;

return tipoV0.getSecuendia().intValue() == p_tipo;
¥

Figure 6.18. Example usage of keywords for functions, etc.

Multiple package names within the same cell must be separated by a comma. Also, the pairs of
type and variable names must be comma-separated. Functions, however, must be written as they
appear in a DRL file. This should appear in the same column as the "RuleSet" keyword; it could
be above, between or below all the rule rows.

g

Note

It may be more convenient to use Import, Variables, Functions and Queries

repeatedly rather than packing several definitions into a single cell.

169

Chapter 6. User Guide

6.5.5. Creating and integrating Spreadsheet based Decision
Tables

The API to use spreadsheet based decision tables is in the drools-decisiontables module. There
is really only one class to look at: Spreadsheet Conpi | er. This class will take spreadsheets in
various formats, and generate rules in DRL (which you can then use in the normal way). The
Spr eadsheet Conpi | er can just be used to generate partial rule files if it is wished, and assemble
it into a complete rule package after the fact (this allows the separation of technical and non-
technical aspects of the rules if needed).

To get started, a sample spreadsheet can be used as a base. Alternatively, if the plug-in is being
used (Rule Workbench IDE), the wizard can generate a spreadsheet from a template (to edit it an
xls compatible spreadsheet editor will need to be used).

‘*'fv :ﬁ;v@v%v 'gtﬂ?@?
| New Rule Project
New Rule resource
MNew Domain Specific Language
New Decision Table

1 N s

Figure 6.19. Wizard in the IDE
6.5.6. Managing Business Rules in Decision Tables

6.5.6.1. Workflow and Collaboration

Spreadsheets are well established business tools (in use for over 25 years). Decision tables lend
themselves to close collaboration between IT and domain experts, while making the business
rules clear to business analysts, it is an ideal separation of concerns.

Typically, the whole process of authoring rules (coming up with a new decision table) would be
something like:

1. Business analyst takes a template decision table (from a repository, or from IT)
2. Decision table business language descriptions are entered in the table(s)
3. Decision table rules (rows) are entered (roughly)

4. Decision table is handed to a technical resource, who maps the business language
(descriptions) to scripts (this may involve software development of course, if it is a new
application or data model)

5. Technical person hands back and reviews the modifications with the business analyst.

6. The business analyst can continue editing the rule rows as needed (moving columns around
is also fine etc).

170

Rule Templates

7. In parallel, the technical person can develop test cases for the rules (liaising with business
analysts) as these test cases can be used to verify rules and rule changes once the system
is running.

6.5.6.2. Using spreadsheet features

Features of applications like Excel can be used to provide assistance in entering data into
spreadsheets, such as validating fields. Lists that are stored in other worksheets can be used to
provide valid lists of values for cells, like in the following diagram.

<title> Wizard in the IDE </title>

9
w

& .
—0 |
—N -
_15 |

T
—y |
J— 'III'III' —
— v‘ e
Figure 6.20.

Some applications provide a limited ability to keep a history of changes, but it is recommended to
use an alternative means of revision control. When changes are being made to rules over time,
older versions are archived (many open source solutions exist for this, such as Subversion or Git).

6.5.7. Rule Templates

Related to decision tables (but not necessarily requiring a spreadsheet) are "Rule Templates” (in
the drools-templates module). These use any tabular data source as a source of rule data -
populating a template to generate many rules. This can allow both for more flexible spreadsheets,
but also rules in existing databases for instance (at the cost of developing the template up front
to generate the rules).

With Rule Templates the data is separated from the rule and there are no restrictions on which
part of the rule is data-driven. So whilst you can do everything you could do in decision tables
you can also do the following:

 store your data in a database (or any other format)
« conditionally generate rules based on the values in the data
 use data for any part of your rules (e.g. condition operator, class name, property name)

« run different templates over the same data

171

Chapter 6. User Guide

As an example, a more classic decision table is shown, but without any hidden rows for the rule
meta data (so the spreadsheet only contains the raw data to generate the rules).

Case Persons age Cheese type Log
old
gL] 42 stilton Old man stilton
Young guy
21 cheddar ¥oung man cheddar

Figure 6.21. Template data

See the Exanpl eCheese. x| s in the examples download for the above spreadsheet.

If this was a regular decision table there would be hidden rows before row 1 and between rows
1 and 2 containing rule metadata. With rule templates the data is completely separate from the
rules. This has two handy consequences - you can apply multiple rule templates to the same data
and your data is not tied to your rules at all. So what does the template look like?

© 00 N O 0o WN P

N PP R R R R R R R
O © 0 N O UM WNDNREL O

tenpl at e header
age
type
| og

package org. drool s. exanpl es. t enpl at es;

gl obal java.util.List list;

tenpl ate "cheesefans"

rul e "Cheese fans_@row. r owNunber } "

when
Person(age == @ age})
Cheese(type == "@type}")
t hen

list.add("@!og}");
end

end tenpl ate

Annotations to the preceding program listing:

 Line 1: All rule templates start with t enpl at e header .

172

Rule Templates

« Lines 2-4: Following the header is the list of columns in the order they appear in the data. In
this case we are calling the first column age, the second t ype and the third | og.

* Line 5: An empty line signifies the end of the column definitions.

 Lines 6-9: Standard rule header text. This is standard rule DRL and will appear at the top of the
generated DRL. Put the package statement and any imports and global and function definitions
into this section.

e Line 10: The keyword t enpl at e signals the start of a rule template. There can be more than
one template in a template file, but each template should have a unique name.

e Lines 11-18: The rule template - see below for details.
 Line 20: The keywords end t enpl at e signify the end of the template.

The rule templates rely on MVEL to do substitution using the syntax @{token_name}. There is
currently one built-in expression, @{row.rowNumber} which gives a unique number for each row of
data and enables you to generate unique rule names. For each row of data a rule will be generated
with the values in the data substituted for the tokens in the template. With the example data above
the following rule file would be generated:

package org. drool s. exanpl es. t enpl at es;
gl obal java.util.List Iist;

rul e "Cheese fans_1"

when
Person(age == 42)
Cheese(type == "stilton")
t hen
list.add("A d man stilton");
end

rul e "Cheese fans_2"

when

Per son(age == 21)

Cheese(type == "cheddar")
t hen

|'ist.add("Young man cheddar");
end

The code to run this is simple:

Deci si onTabl eConfi gurati on dtabl econfiguration =

173

Chapter 6. User Guide

Know edgeBui | der Fact ory. newDeci si onTabl eConfi guration();
dt abl econfi gurati on. set | nput Type(Deci si onTabl el nput Type. XLS);

Knowl edgeBui | der kbuil der = Knowl edgeBui | der Fact ory. newkKnow edgeBui | der () ;

kbui | der. add(ResourceFactory. newCl assPat hResour ce(get Spreadsheet Nane(),
getd ass()),
Resour ceType. DTABLE
dt abl econfiguration);

6.6. Logging

One way to illuminate the black box that is a rule engine, is to play with the logging level.

Everything is logged to SLF4J [http://www.slf4j.org/], which is a simple logging facade that
can delegate any log to Logback, Apache Commons Logging, Log4j or java.util.logging. Add a
dependency to the logging adaptor for your logging framework of choice. If you're not using any
logging framework yet, you can use Logback by adding this Maven dependency:

<dependency>
<groupl d>ch. qos. | ogback</ gr oupl d>
<artifactld>l ogback-cl assic</artifactld>
<ver si on>1. x</ ver si on>

</ dependency>

@ Note
If you're developing for an ultra light environment, use sl f 4j - nop or sl f 4j - si npl e
instead.

Configure the logging level on the package or g. dr ool s. For example:

In Logback, configure it in your | ogback. xm file:

<configuration>

<l ogger nane="org. drool s" | evel ="debug"/>

<configuration>

In Log4J, configure it in your | og4j . xm file:

174

http://www.slf4j.org/
http://www.slf4j.org/

Logging

<l og4j:configuration xm ns:|log4j="http://]akarta.apache.org/l og4j/">
<cat egory nane="org. drool s">

<priority val ue="debug" />
</ cat egory>

</l og4j: configuration>

175

176

Chapter 7.

Chapter 7. Rule Language
Reference

7.1. Overview

Drools has a "native" rule language. This format is very light in terms of punctuation, and supports
natural and domain specific languages via "expanders" that allow the language to morph to your
problem domain. This chapter is mostly concerted with this native rule format. The diagrams used
to present the syntax are known as "railroad" diagrams, and they are basically flow charts for the
language terms. The technically very keen may also refer to DRL. g which is the Antlr3 grammar
for the rule language. If you use the Rule Workbench, a lot of the rule structure is done for you with
content assistance, for example, type "ru" and press ctrl+space, and it will build the rule structure
for you.

7.1.1. A rule file

A rule file is typically a file with a .drl extension. In a DRL file you can have multiple rules, queries
and functions, as well as some resource declarations like imports, globals and attributes that
are assigned and used by your rules and queries. However, you are also able to spread your
rules across multiple rule files (in that case, the extension .rule is suggested, but not required) -
spreading rules across files can help with managing large numbers of rules. A DRL file is simply
a text file.

The overall structure of a rule file is:

Example 7.1. Rules file

package package- nane

i mports

gl obal s

functions

queries

rul es

The order in which the elements are declared is not important, except for the package name that,

if declared, must be the first element in the rules file. All elements are optional, so you will use
only those you need. We will discuss each of them in the following sections.

177

Chapter 7. Rule Language Refe...

7.1.2. What makes a rule

For the inpatients, just as an early view, a rule has the following rough structure:

rule "nane"
attributes
when
LHS
t hen
RHS
end

It's really that simple. Mostly punctuation is not needed, even the double quotes for "name" are
optional, as are newlines. Attributes are simple (always optional) hints to how the rule should
behave. LHS is the conditional parts of the rule, which follows a certain syntax which is covered
below. RHS is basically a block that allows dialect specific semantic code to be executed.

It is important to note that white space is not important, except in the case of domain specific
languages, where lines are processed one by one and spaces may be significant to the domain
language.

7.2. Keywords

Drools 5 introduces the concept of hard and soft keywords.

Hard keywords are reserved, you cannot use any hard keyword when naming your domain objects,
properties, methods, functions and other elements that are used in the rule text.

Here is the list of hard keywords that must be avoided as identifiers when writing rules:

e true
e fal se
e null

Soft keywords are just recognized in their context, enabling you to use these words in any other
place if you wish, although, it is still recommended to avoid them, to avoid confusions, if possible.
Here is a list of the soft keywords:

* | ock-on-active

* date-effective

e date-expires

* no-| oop

178

Keywords

aut o- f ocus
activati on-group
agenda- gr oup
rul ef | ow group
entry- poi nt
duration
package

i mport

di al ect
sal i ence
enabl ed
attributes
rule

ext end

when

then

tenpl ate
query

decl are
function

gl obal

eval

not

or
and

exi sts

179

Chapter 7. Rule Language Refe...

e forall

e accumulate
 collect

o from

e action

* reverse

* result

* end

e over

* init

Of course, you can have these (hard and soft) words as part of a method name in camel case,
like notSomething() or accumulateSomething() - there are no issues with that scenario.

Although the 3 hard keywords above are unlikely to be used in your existing domain models, if
you absolutely need to use them as identifiers instead of keywords, the DRL language provides
the ability to escape hard keywords on rule text. To escape a word, simply enclose it in grave
accents, like this:

Hol i day(“true’ == "yes") // please note that Drools will resolve that reference
to the nethod Holiday.isTrue()

7.3. Comments

Comments are sections of text that are ignored by the rule engine. They are stripped out when
they are encountered, except inside semantic code blocks, like the RHS of a rule.

7.3.1. Single line comment

To create single line comments, you can use '//'. The parser will ignore anything in the line after
the comment symbol. Example:

rule "Testing Comments"
when

/Il this is a single |line conment

eval (true) // this is a comment in the same |line of a pattern
t hen

/Il this is a comment inside a semantic code bl ock

180

Multi-line comment

end

A Warning

'#' for comments has been removed.

7.3.2. Multi-line comment

O~ —0

Figure 7.1. Multi-line comment

Multi-line comments are used to comment blocks of text, both in and outside semantic code blocks.
Example:

rule "Test Multi-Iline Coments"
when
/* this is a multi-line coment
inthe left hand side of a rule */
eval (true)
t hen
/* and this is a multi-line coment
in the right hand side of a rule */
end

7.4. Error Messages

Drools 5 introduces standardized error messages. This standardization aims to help users to find
and resolve problems in a easier and faster way. In this section you will learn how to identify and
interpret those error messages, and you will also receive some tips on how to solve the problems
associated with them.

7.4.1. Message format

The standardization includes the error message format and to better explain this format, let's use
the following example:

[ERR 101] Line 6:35 no wiable alternative at input *)* in rule “test rule® in pattern WorkerPerformanceContext

1st Z2nd

Block Block 3rd Block 4th Block 5th Block

Figure 7.2. Error Message Format

181

Chapter 7. Rule Language Refe...

1st Block: This area identifies the error code.
2nd Block: Line and column information.
3rd Block: Some text describing the problem.

4th Block: This is the first context. Usually indicates the rule, function, template or query where
the error occurred. This block is not mandatory.

5th Block: Identifies the pattern where the error occurred. This block is not mandatory.
7.4.2. Error Messages Description

7.4.2.1. 101: No viable alternative

Indicates the most common errors, where the parser came to a decision point but couldn't identify
an alternative. Here are some examples:

Example 7.2.

rul e one
when
exi sts Foo()
exits Bar()
t hen
end

& W2 ®RE

The above example generates this message:

* [ERR 101] Line 4:4 no viable alternative at input 'exits' in rule one

At first glance this seems to be valid syntax, but it is not (exits != exists). Let's take a look at next
example:

Example 7.3.

package org. drool s. exanpl es;
rul e
when
oj ect ()
t hen
Systemout.println("A RHS");

T2 RIRE

end

Now the above code generates this message:

182

Error Messages Description

* [ERR 101] Line 3:2 no viable alternative at input "WHEN'

This message means that the parser encountered the token WHEN, actually a hard keyword, but
it's in the wrong place since the the rule name is missing.

The error "no viable alternative" also occurs when you make a simple lexical mistake. Here is a
sample of a lexical problem:

Example 7.4.

1: rule sinple_rule

2: when

3: St udent (na == "Andy)
4 t hen

5: end

The above code misses to close the quotes and because of this the parser generates this error
message:

* [ERR 101] Line 0:-1 no viable alternative at input '<eof>" in rule simple_rule in pattern Student

@ Note
Usually the Line and Column information are accurate, but in some cases (like
unclosed quotes), the parser generates a 0:-1 position. In this case you should
check whether you didn't forget to close quotes, apostrophes or parentheses.

7.4.2.2. 102: Mismatched input

This error indicates that the parser was looking for a particular symbol that it didn't #nd at the
current input position. Here are some samples:

Example 7.5.

1: rule sinple_rule
: when
3: foo3 : Bar(

The above example generates this message:

* [ERR 102] Line 0:-1 mismatched input '<eof>' expecting)" in rule simple_rule in pattern Bar

183

Chapter 7. Rule Language Refe...

To fix this problem, it is necessary to complete the rule statement.

The following code generates more than one error message:

Example 7.6.

1. package org. drool s. exanpl es;

2:

3: rule "Avoid NPE on wong syntax"

4: when

5: not (Cheese((type == "stilton", price == 10) || (type == "brie",
price == 15)) from $cheeselLi st)

6: t hen

7: Systemout. println("OK");

8: end

These are the errors associated with this source:

* [ERR 102] Line 5:36 mismatched input '," expecting)" in rule "Avoid NPE on wrong syntax" in
pattern Cheese

* [ERR 101] Line 5:57 no viable alternative at input 'type' in rule "Avoid NPE on wrong syntax"

* [ERR 102] Line 5:106 mismatched input *)' expecting 'then'in rule "Avoid NPE on wrong syntax”

Note that the second problem is related to the first. To fix it, just replace the commas (’,") by AND
operator ('&&").

7.4.2.3. 103: Failed predicate

A validating semantic predicate evaluated to false. Usually these semantic predicates are used to
identify soft keywords. This sample shows exactly this situation:

Error Messages Description

Example 7.7.

package nesti ng;
di al ect "nvel "

import org.drools.conpiler.Person
i mport org.drools.conpiler.Address

f dsf dsfds

PRI E

rule "test sonething"
when
p: Person(nane=="M chael ")
t hen
p. nane = "ot her";
System out . printl n(p. nane) ;
end

e o o
BHEERRES

With this sample, we get this error message:

* [ERR 103] Line 7:0 rule rule_key' failed predicate:
{(validateldentifierKey(DroolsSoftKeywords.RULE))}? in rule

The fdsfdsfds text is invalid and the parser couldn't identify it as the soft keyword r ul e.

7.4.2.4. 104: Trailing semi-colon not allowed

This error is associated with the eval clause, where its expression may not be terminated with
a semicolon. Check this example:

Example 7.8.

rule sinple_rule
when
eval (abc();)
t hen
end

e @R E

185

Chapter 7. Rule Language Refe...

Due to the trailing semicolon within eval, we get this error message:

* [ERR 104] Line 3:4 trailing semi-colon not allowed in rule simple_rule

This problem is simple to fix: just remove the semi-colon.

7.4.2.5. 105: Early Exit

The recognizer came to a subrule in the grammar that must match an alternative at least once,
but the subrule did not match anything. Simply put: the parser has entered a branch from where
there is no way out. This example illustrates it:

Example 7.9.

1: tenplate test_error
2. aa s 11;
3: end

This is the message associated to the above sample:

* [ERR 105] Line 2:2 required (...)+ loop did not match anything at input ‘aa’ in template test_error

To fix this problem it is necessary to remove the numeric value as it is neither a valid data type
which might begin a new template slot nor a possible start for any other rule file construct.

7.4.3. Other Messages

Any other message means that something bad has happened, so please contact the development
team.

7.5. Package

A package is a collection of rules and other related constructs, such as imports and globals. The
package members are typically related to each other - perhaps HR rules, for instance. A package
represents a namespace, which ideally is kept unique for a given grouping of rules. The package
name itself is the namespace, and is not related to files or folders in any way.

It is possible to assemble rules from multiple rule sources, and have one top level package
configuration that all the rules are kept under (when the rules are assembled). Although, it is not
possible to merge into the same package resources declared under different names. A single
Rulebase may, however, contain multiple packages built on it. A common structure is to have
all the rules for a package in the same file as the package declaration (so that is it entirely self-
contained).

186

import

The following railroad diagram shows all the components that may make up a package. Note that
a package must have a namespace and be declared using standard Java conventions for package
names; i.e., no spaces, unlike rule names which allow spaces. In terms of the order of elements,
they can appear in any order in the rule file, with the exception of the package statement, which
must be at the top of the file. In all cases, the semicolons are optional.

B S S T

function 3
L I
query
[|
)
EQF -

Figure 7.3. package

Notice that any rule attribute (as described the section Rule Attributes) may also be written at
package level, superseding the attribute's default value. The modified default may still be replaced
by an attribute setting within a rule.

7.5.1. import

il
e ¥ .

Ot o J— L0

Figure 7.4. import

Import statements work like import statements in Java. You need to specify the fully qualified paths
and type names for any objects you want to use in the rules. Drools automatically imports classes
from the Java package of the same name, and also from the package j ava. | ang.

187

Chapter 7. Rule Language Refe...

7.5.2. global

@
O’['glnbal'_] b[class }b[name]J @

Figure 7.5. global

With gl obal you define global variables. They are used to make application objects available
to the rules. Typically, they are used to provide data or services that the rules use, especially
application services used in rule consequences, and to return data from the rules, like logs or
values added in rule consequences, or for the rules to interact with the application, doing callbacks.
Globals are not inserted into the Working Memory, and therefore a global should never be used to
establish conditions in rules except when it has a constantimmutable value. The engine cannot be
notified about value changes of globals and does not track their changes. Incorrect use of globals
in constraints may yield surprising results - surprising in a bad way.

If multiple packages declare globals with the same identifier they must be of the same type and
all of them will reference the same global value.

In order to use globals you must:

1. Declare your global variable in your rules file and use it in rules. Example:

gl obal java.util.List nyd obal List;

rule "Using a gl obal "
when
eval (true)
t hen
nmyd obal List.add("Hello World");
end

2. Set the global value on your working memory. It is a best practice to set all global values before
asserting any fact to the working memory. Example:

List list = new ArrayList();
Wor ki ngMenmory wm = rul ebase. newSt at ef ul Sessi on() ;
wm set d obal ("myd obal List", list);

Note that these are just named instances of objects that you pass in from your application to
the working memory. This means you can pass in any object you want: you could pass in a

188

Function

service locator, or perhaps a service itself. With the new f r omelement it is now common to pass
a Hibernate session as a global, to allow f r omto pull data from a named Hibernate query.

One example may be an instance of a Email service. In your integration code that is calling the
rule engine, you obtain your emailService object, and then set it in the working memory. In the
DRL, you declare that you have a global of type EmailService, and give it the name "email". Then
in your rule consequences, you can use things like email.sendSMS(number, message).

Globals are not designed to share data between rules and they should never be used for that
purpose. Rules always reason and react to the working memory state, so if you want to pass data
from rule to rule, assert the data as facts into the working memory.

It is strongly discouraged to set or change a global value from inside your rules. We recommend
to you always set the value from your application using the working memory interface.

7.6. Function

)
e — \
G- —m

o

Figure 7.6. function

Functions are a way to put semantic code in your rule source file, as opposed to in normal Java
classes. They can't do anything more than what you can do with helper classes. (In fact, the
compiler generates the helper class for you behind the scenes.) The main advantage of using
functions in a rule is that you can keep the logic all in one place, and you can change the functions
as needed (which can be a good or a bad thing). Functions are most useful for invoking actions
on the consequence (t hen) part of a rule, especially if that particular action is used over and over
again, perhaps with only differing parameters for each rule.

A typical function declaration looks like:

function String hello(String nane) {

189

Chapter 7. Rule Language Refe...

return "Hello "+nane+"!";

Note that the f unct i on keyword is used, even though its not really part of Java. Parameters to
the function are defined as for a method, and you don't have to have parameters if they are not
needed. The return type is defined just like in a regular method.

Alternatively, you could use a static method in a helper class, e.g., Foo. hel | o() . Drools supports
the use of function imports, so all you would need to do is:

i mport function ny. package. Foo. hel |l o

Irrespective of the way the function is defined or imported, you use a function by calling it by its
name, in the consequence or inside a semantic code block. Example:

rule "using a static function"
when
eval (true)
t hen
Systemout.println(hello("Bob"));
end

7.7. Type Declaration

O S G S G
I

Figure 7.7. meta_data

190

O

Declaring New Types

—-[‘declars’]—-[name

.
F o Rt
I |

I

rmata_data

Figure 7.8. type_declaration

Type declarations have two main goals in the rules engine: to allow the declaration of new types,
and to allow the declaration of metadata for types.

Declaring new types: Drools works out of the box with plain Java objects as facts. Sometimes,
however, users may want to define the model directly to the rules engine, without worrying about
creating models in a lower level language like Java. At other times, there is a domain model
already built, but eventually the user wants or needs to complement this model with additional
entities that are used mainly during the reasoning process.

Declaring metadata: facts may have meta information associated to them. Examples of meta
information include any kind of data that is not represented by the fact attributes and is consistent
among all instances of that fact type. This meta information may be queried at runtime by the
engine and used in the reasoning process.

7.7.1. Declaring New Types

To declare a new type, all you need to do is use the keyword decl ar e, followed by the list of fields,
and the keyword end. A new fact must have a list of fields, otherwise the engine will look for an
existing fact class in the classpath and raise an error if not found.

191

Chapter 7. Rule Language Refe...

Example 7.10. Declaring a new fact type: Address

decl are Address
nunber : int
streetName : String
city : String

end

The previous example declares a new fact type called Addr ess. This fact type will have three
attributes: nunber, street Nane and ci ty. Each attribute has a type that can be any valid Java
type, including any other class created by the user or even other fact types previously declared.

For instance, we may want to declare another fact type Per son:

Example 7.11. declaring a new fact type: Person

decl are Person
name : String
dateOBirth : java.util.Date
address : Address

end

As we can see on the previous example, dat eOf Bi rt h is of type j ava. uti | . Dat e, from the Java
API, while addr ess is of the previously defined fact type Address.

You may avoid having to write the fully qualified name of a class every time you write it by using
the i nport clause, as previously discussed.

Example 7.12. Avoiding the need to use fully qualified class names by using
import

i mport java.util.Date

decl are Person
name : String
dateOBirth : Date
address : Address
end

When you declare a new fact type, Drools will, at compile time, generate bytecode that implements
a Java class representing the fact type. The generated Java class will be a one-to-one Java Bean
mapping of the type definition. So, for the previous example, the generated Java class would be:

192

Declaring Metadata

Example 7.13. generated Java class for the previous Person fact type
declaration

public class Person inplenents Serializable {
private String name;
private java.util.Date dateOfBirth
private Address address;

[/ enpty constructor
public Person() {...}

/1 constructor with all fields
public Person(String name, Date dateO'Birth, Address address) {...}

/1 if keys are defined, constructor with keys
public Person(...keys...) {...}

/'l getters and setters
/'l equal s/ hashCode
/1 toString

Since the generated class is a simple Java class, it can be used transparently in the rules, like
any other fact.

Example 7.14. Using the declared types in rules

rule "Using a decl ared Type"
when
$p : Person(nanme == "Bob")
t hen
/1 Insert Mark, who is Bob's nate.
Person mark = new Person();
mar k. set Nane(" Mar k") ;
insert(mark);
end

7.7.2. Declaring Metadata

Metadata may be assigned to several different constructions in Drools: fact types, fact attributes
and rules. Drools uses the at sign ('@") to introduce metadata, and it always uses the form:

@ret adat a_key(netadata_val ue)

193

Chapter 7. Rule Language Refe...

The parenthesized metadata_value is optional.

For instance, if you want to declare a metadata attribute like aut hor, whose value is Bob, you
could simply write:

Example 7.15. Declaring a metadata attribute

@ut hor (Bob)

Drools allows the declaration of any arbitrary metadata attribute, but some will have special
meaning to the engine, while others are simply available for querying at runtime. Drools allows the
declaration of metadata both for fact types and for fact attributes. Any metadata that is declared
before the attributes of a fact type are assigned to the fact type, while metadata declared after an
attribute are assigned to that particular attribute.

Example 7.16. Declaring metadata attributes for fact types and attributes

i mport java.util.Date

decl are Person
@ut hor (Bob)
@lat ef Creation(01- Feb-2009)

name : String @ey @maxLength(30)
dateOBirth : Date
address : Address

end

In the previous example, there are two metadata items declared for the fact type (@ut hor and
@lat eOX Cr eat i on) and two more defined for the name attribute (@ey and @raxLengt h). Please
note that the @ey metadata has no required value, and so the parentheses and the value were
omitted.:

7.7.2.1. Predefined class level annotations

Some annotations have predefined semantics that are interpreted by the engine. The following is
a list of some of these predefined annotations and their meaning.

7.7.2.1.1. @role(<fact | event>)

The @role annotation defines how the engine should handle instances of that type: either as
regular facts or as events. It accepts two possible values:

« fact : this is the default, declares that the type is to be handled as a regular fact.

« event : declares that the type is to be handled as an event.

194

Declaring Metadata

The following example declares that the fact type StockTick in a stock broker application is to be
handled as an event.

Example 7.17. declaring a fact type as an event

i mport sone. package. St ockTi ck

decl are StockTick
@ol e(event)
end

The same applies to facts declared inline. If StockTick was a fact type declared in the DRL itself,
instead of a previously existing class, the code would be:

Example 7.18. declaring a fact type and assigning it the event role

decl are St ockTi ck
@ol e(event)

datetinme : java.util.Date
symbol : String
price : double

end

7.7.2.1.2. @typesafe(<boolean>)

By default all type declarations are compiled with type safety enabled; @typesafe(false) provides
a means to override this behaviour by permitting a fall-back, to type unsafe evaluation where all
constraints are generated as MVEL constraints and executed dynamically. This can be important
when dealing with collections that do not have any generics or mixed type collections.

7.7.2.1.3. @timestamp(<attribute name>)

Every event has an associated timestamp assigned to it. By default, the timestamp for a given
event is read from the Session Clock and assigned to the event at the time the event is inserted
into the working memory. Although, sometimes, the event has the timestamp as one of its own
attributes. In this case, the user may tell the engine to use the timestamp from the event's attribute
instead of reading it from the Session Clock.

@i nmestanp(<attributeNane>)

To tell the engine what attribute to use as the source of the event's timestamp, just list the attribute
name as a parameter to the @timestamp tag.

195

Chapter 7. Rule Language Refe...

Example 7.19. declaring the VoiceCall timestamp attribute

decl are Voi ceCal |

@ol e(event)

@i nestanp(cal |l DateTinme)
end

7.7.2.1.4. @duration(<attribute name>)

Drools supports both event semantics: point-in-time events and interval-based events. A point-in-
time event is represented as an interval-based event whose duration is zero. By default, all events
have duration zero. The user may attribute a different duration for an event by declaring which
attribute in the event type contains the duration of the event.

@lur ation(<attributeName>)

So, for our VoiceCall fact type, the declaration would be:

Example 7.20. declaring the VoiceCall duration attribute

decl are Voi ceCal |
@ol e(event)
@i nestanp(cal |l DateTi nme)
@luration(callDuration)
end

7.7.2.1.5. @expires(<time interval>)

Important

This tag is only considered when running the engine in STREAM mode. Also,
additional discussion on the effects of using this tag is made on the Memory
Management section. It is included here for completeness.

Events may be automatically expired after some time in the working memory. Typically this
happens when, based on the existing rules in the knowledge base, the event can no longer match
and activate any rules. Although, it is possible to explicitly define when an event should expire.

@xpires(<timeOfset>)

196

Declaring Metadata

The value of timeOffset is a temporal interval in the form:

[#d] [#h] [#n] [#s] [#[8]]

Where [] means an optional parameter and # means a numeric value.

So, to declare that the VoiceCall facts should be expired after 1 hour and 35 minutes after they
are inserted into the working memory, the user would write:

Example 7.21. declaring the expiration offset for the VoiceCall events

decl are Voi ceCal |
@ol e(event)
@i nmestanp(call DateTine)
@lur ation(callDuration)
@xpires(1h35m)

end

The @expires policy will take precedence and override the implicit expiration offset calculated
from temporal constraints and sliding windows in the knowledge base.

7.7.2.1.6. @propertyChangeSupport

Facts that implement support for property changes as defined in the Javabean(tm) spec, now can
be annotated so that the engine register itself to listen for changes on fact properties. The boolean
parameter that was used in the insert() method in the Drools 4 API is deprecated and does not
exist in the drools-api module.

Example 7.22. @propertyChangeSupport

decl are Person
@r oper t yChangeSuppor t
end

7.7.2.1.7. @propertyReactive
Make this type property reactive. See Fine grained property change listeners section for details.
7.7.2.2. Predefined attribute level annotations

As noted before, Drools also supports annotations in type attributes. Here is a list of predefined
attribute annotations.

197

Chapter 7. Rule Language Refe...

7.7.2.2.1. @key

Declaring an attribute as a key attribute has 2 major effects on generated types:

1. The attribute will be used as a key identifier for the type, and as so, the generated class
will implement the equals() and hashCode() methods taking the attribute into account when
comparing instances of this type.

2. Drools will generate a constructor using all the key attributes as parameters.
For instance:

Example 7.23. example of @key declarations for a type

decl are Person
firstName : String @key
| ast Nane : String @ey
age : int

end

For the previous example, Drools will generate equals() and hashCode() methods that will check
the firstName and lastName attributes to determine if two instances of Person are equal to each
other, but will not check the age attribute. It will also generate a constructor taking firstName and
lastName as parameters, allowing one to create instances with a code like this:

Example 7.24. creating an instance using the key constructor

Person person = new Person("John", "Doe");

7.7.2.2.2. @position
Patterns support positional arguments on type declarations.

Positional arguments are ones where you don't need to specify the field name, as the position
maps to a known named field. i.e. Person(name == "mark") can be rewritten as Person("mark";).
The semicolon ';' is important so that the engine knows that everything before it is a positional
argument. Otherwise we might assume it was a boolean expression, which is how it could be
interpreted after the semicolon. You can mix positional and named arguments on a pattern by
using the semicolon ;' to separate them. Any variables used in a positional that have not yet been
bound will be bound to the field that maps to that position.

decl are Cheese
name : String

198

Declaring Metadata

shop : String
price : int
end

The default order is the declared order, but this can be overridden using @position

decl are Cheese
name : String @osition(l)
shop : String @osition(2)
price : int @osition(0)
end

The @Position annotation, in the org.drools.definition.type package, can be used to annotate
original pojos on the classpath. Currently only fields on classes can be annotated. Inheritance of
classes is supported, but not interfaces of methods yet.

Example patterns, with two constraints and a binding. Remember semicolon ;' is used to
differentiate the positional section from the named argument section. Variables and literals and
expressions using just literals are supported in positional arguments, but not variables.

Cheese("stilton", "Cheese Shop", p;)

Cheese("stilton", "Cheese Shop"; p : price)

Cheese("stilton"; shop == "Cheese Shop", p : price)

Cheese(name == "stilton"; shop == "Cheese Shop", p : price)

@Position is inherited when beans extend each other; while not recommended, two fields may
have the same @position value, and not all consecutive values need be declared. If a @position
is repeated, the conflict is solved using inheritance (fields in the superclass have the precedence)
and the declaration order. If a @position value is missing, the first field without an explicit @ position
(if any) is selected to fill the gap. As always, conflicts are resolved by inheritance and declaration
order.

decl are Cheese
nanme : String
shop : String @osition(2)
price : int @osition(0)
end

decl are SeasonedCheese extends Cheese
year : Date @osition(0)
origin : String @osition(6)
country : String

199

Chapter 7. Rule Language Refe...

end

In the example, the field order would be : price (@position 0 in the superclass), year (@position
0 in the subclass), name (first field with no @position), shop (@position 2), country (second field
without @position), origin.

7.7.3. Declaring Metadata for Existing Types

Drools allows the declaration of metadata attributes for existing types in the same way as when
declaring metadata attributes for new fact types. The only difference is that there are no fields
in that declaration.

For instance, if there is a class org.drools.examples.Person, and one wants to declare metadata
for it, it's possible to write the following code:

Example 7.25. Declaring metadata for an existing type

i nport org.drools. exanpl es. Person

decl are Person

@ut hor (Bob)

@lat e Creati on(01- Feb-2009)
end

Instead of using the import, it is also possible to reference the class by its fully qualified name,
but since the class will also be referenced in the rules, it is usually shorter to add the import and
use the short class name everywhere.

Example 7.26. Declaring metadata using the fully qualified class name

decl are org. drool s. exanpl es. Per son
@ut hor (Bob)
@lat e Creati on(01- Feb-2009)
end

7.7.4. Parametrized constructors for declared types

Generate constructors with parameters for declared types.

Example: for a declared type like the following:

decl are Person
firstName : String @key

200

Non Typesafe Classes

| ast Nane : String @ey
age : int
end

The compiler will implicitly generate 3 constructors: one without parameters, one with the @key
fields, and one with all fields.

Person() // paraneterless constructor
Person(String firstNane, String |astName)
Person(String firstNanme, String |astNane, int age)

7.7.5. Non Typesafe Classes

@typesafe(<boolean>) has been added to type declarations. By default all type declarations are
compiled with type safety enabled; @typesafe(false) provides a means to override this behaviour
by permitting a fall-back, to type unsafe evaluation where all constraints are generated as MVEL
constraints and executed dynamically. This can be important when dealing with collections that
do not have any generics or mixed type collections.

7.7.6. Accessing Declared Types from the Application Code

Declared types are usually used inside rules files, while Java models are used when sharing the
model between rules and applications. Although, sometimes, the application may need to access
and handle facts from the declared types, especially when the application is wrapping the rules
engine and providing higher level, domain specific user interfaces for rules management.

In such cases, the generated classes can be handled as usual with the Java Reflection API, but,
as we know, that usually requires a lot of work for small results. Therefore, Drools provides a
simplified API for the most common fact handling the application may want to do.

The first important thing to realize is that a declared fact will belong to the package
where it was declared. So, for instance, in the example below, Person will belong to the
or g. dr ool s. exanpl es package, and so the fully qualified name of the generated class will be
org. drool s. exanpl es. Per son.

Example 7.27. Declaring a type in the org.drools.examples package

package org. drool s. exanpl es
i mport java.util.Date

decl are Person
name : String
dateOfBirth : Date
address : Address

201

Chapter 7. Rule Language Refe...

end

Declared types, as discussed previously, are generated at knowledge base compilation time, i.e.,
the application will only have access to them at application run time. Therefore, these classes are
not available for direct reference from the application.

Drools then provides an interface through which users can handle declared types from the
application code: or g. dr ool s. def i ni ti on. t ype. Fact Type. Through this interface, the user can
instantiate, read and write fields in the declared fact types.

Example 7.28. Handling declared fact types through the API

/'l get a reference to a knowl edge base with a decl ared type:
Ki eBase kbase = ...

/1l get the declared Fact Type
Fact Type personType = kbase. get Fact Type("org. drool s. exanpl es",
"Person");

/1l handl e the type as necessary:
/'l create instances:
hj ect bob = personType. new nstance();

/1 set attributes val ues

per sonType. set (bob,
"nane",
"Bob");

per sonType. set (bob,
“age”,
42);

/1 insert fact into a session
Ki eSessi on ksession = ...
ksession.insert(bob);
ksession.fireAl |l Rul es();

/'l read attributes
String nane = personType.get(bob, "nane");
int age = personType.get(bob, "age");

The API also includes other helpful methods, like setting all the attributes at once, reading values
from a Map, or reading all attributes at once, into a Map.

Although the API is similar to Java reflection (yet much simpler to use), it does not use reflection
underneath, relying on much more performant accessors implemented with generated bytecode.

202

Type Declaration 'extends’

7.7.7. Type Declaration 'extends'

Type declarations now support 'extends' keyword for inheritance
In order to extend a type declared in Java by a DRL declared subtype, repeat the supertype in
a declare statement without any fields.
b org. peopl e. Person
decl are Person end
decl are Student extends Person
school : String

end

decl are LongTer nf5t udent extends Student

years : int
course : String
end
7.7.8. Traits

WARNING : this feature is still experimental and subject to changes

The same fact may have multiple dynamic types which do not fit naturally in a class hierarchy.
Traits allow to model this very common scenario. A trait is an interface that can be applied (and
eventually removed) to an individual object at runtime. To create a trait rather than a traditional
bean, one has to declare them explicitly as in the following example:

Example 7.29.

declare trait Col denCust oner
/1 fields will map to getters/setters

code : String

bal ance : long

di scount : int

maxExpense : | ong
end

At runtime, this declaration results in an interface, which can be used to write patterns, but can
not be instantiated directly. In order to apply a trait to an object, we provide the new don keyword,
which can be used as simply as this:

203

Chapter 7. Rule Language Refe...

Example 7.30.
when

$c : Custoner()
t hen

CGol denCust omer gc = don($c, Col denCustoner.class);
end

when a core object dons a trait, a proxy class is created on the fly (one such class will be generated
lazily for each coreftrait class combination). The proxy instance, which wraps the core object and
implements the trait interface, is inserted automatically and will possibly activate other rules. An
immediate advantage of declaring and using interfaces, getting the implementation proxy for free
from the engine, is that multiple inheritance hierarchies can be exploited when writing rules. The
core classes, however, need not implement any of those interfaces statically, also facilitating the
use of legacy classes as cores. In fact, any object can don a trait, provided that they are declared
as @Traitable. Notice that this annotation used to be optional, but now is mandatory.

Example 7.31.

i mport org.drools.core.factnodel .traits. Traitable;
decl are Custoner

@raitabl e
code : String
bal ance : | ong

end

The only connection between core classes and trait interfaces is at the proxy level: a trait is not
specifically tied to a core class. This means that the same trait can be applied to totally different
objects. For this reason, the trait does not transparently expose the fields of its core object. So,
when writing a rule using a trait interface, only the fields of the interface will be available, as usual.
However, any field in the interface that corresponds to a core object field, will be mapped by the
proxy class:

Example 7.32.
when

$o: Orderlten($p : price, $code : cust Code)

$c: Col denCustonmer(code == $code, $a : bal ance, $d: discount)
t hen

$c. set Bal ance($a - $p*$d);
end

204

Traits

In this case, the code and balance would be read from the underlying Customer object. Likewise,
the setAccount will modify the underlying object, preserving a strongly typed access to the data
structures. A hard field must have the same name and type both in the core class and all donned
interfaces. The name is used to establish the mapping: if two fields have the same name, then they
must also have the same declared type. The annotation @org.drools.core.factmodel.traits.Alias
allows to relax this restriction. If an @Alias is provided, its value string will be used to resolve
mappings instead of the original field name. @Alias can be applied both to traits and core beans.

Example 7.33.

i nport org.drools.core.factnodel .traits.*;
declare trait Gol denCust oner

bal ance : long @\ ias("org.acne.foo.accountBal ance")
end

decl are Person

@raitable

name : String

savings : long @\ ias("org.acne.foo.accountBal ance")
end

when

Col denCust oner (bal ance > 1000) // will react to new Person(2000)
t hen
end

More work is being done on reaxing this constraint (see the experimental section on "logical"
traits later). Now, one might wonder what happens when a core class does NOT provide the
implementation for a field defined in an interface. We call hard fields those trait fields which are also
core fields and thus readily available, while we define soft those fields which are NOT provided
by the core class. Hidden fields, instead, are fields in the core class not exposed by the interface.

So, while hard field management is intuitive, there remains the problem of soft and hidden fields.
Hidden fields are normally only accessible using the core class directly. However, the "fields" Map
can be used on a trait interface to access a hidden field. If the field can't be resolved, null will be
returned. Notice that this feature is likely to change in the future.

Example 7.34.

when

$sc : Col denCustomer(fields["age"] > 18) [// age is declared by the
underlying core class, but not by CGol denCust oner
t hen

205

Chapter 7. Rule Language Refe...

Soft fields, instead, are stored in a Map-like data structure that is specific to each core object
and referenced by the proxy(es), so that they are effectively shared even when an object dons
multiple traits.

Example 7.35.

when
$sc : Col denCustoner($c : code, // hard getter
$nmaxExpense : maxExpense > 1000 // soft getter
)

t hen
$sc.setDiscount(...); // soft setter
end

A core object also holds a reference to all its proxies, so that it is possible to track which type(s)
have been added to an object, using a sort of dynamic "instanceof" operator, which we called isA.
The operator can accept a String, a class literal or a list of class literals. In the latter case, the
constraint is satisfied only if all the traits have been donned.

Example 7.36.

$sc : Col denCust oner ($maxExpense : maxExpense > 1000
this i sA "SeniorCustoner"”, this i sA[National Custoner.cl ass,
Onl i neCust omer . cl ass]

)

Eventually, the business logic may require that a trait is removed from a wrapped object. To this
end, we provide two options. The first is a "logical don", which will result in a logical insertion of
the proxy resulting from the traiting operation. The TMS will ensure that the trait is removed when
its logical support is removed in the first place.

Example 7.37.

t hen
don($x, // core object
Custoner.class, // trait class
true // optional flag for logical insertion

The second is the use of the "shed" keyword, which causes the removal of any type that is a
subtype (or equivalent) of the one passed as an argument. Notice that, as of version 5.5, shed
would only allow to remove a single specific trait.

206

Traits

Example 7.38.

t hen
Thing t = shed($x, Col denCustoner.class) // also renpves any trait that

This operation returns another proxy implementing the org.drools.core.factmodel.traits.Thing
interface, where the getFields() and getCore() methods are defined. Internally, in fact, all declared
traits are generated to extend this interface (in addition to any others specified). This allows to
preserve the wrapper with the soft fields which would otherwise be lost.

A trait and its proxies are also correlated in another way. Starting from version 5.6, whenever
a core object is "modified", its proxies are "modified" automatically as well, to allow trait-based
patterns to react to potential changes in hard fields. Likewise, whenever a trait proxy (mached by
a trait pattern) is modified, the modification is propagated to the core class and the other traits.
Morover, whenever a don operation is performed, the core object is also modified automatically,
to reevaluate any "isA" operation which may be triggered.

Potentially, this may result in a high number of modifications, impacting performance (and
correctness) heavily. So two solutions are currently implemented. First, whenever a core object
is modified, only the most specific traits (in the sense of inheritance between trait interfaces) are
updated and an internal blocking mechanism is in place to ensure that each potentially matching
pattern is evaluated once and only once. So, in the following situation:

declare trait Col denCustoner end
declare trait National Gol denust oner extends CGol denCustoner end
decl are trait SeniorGol denCust oner extends Gol denCust oner end

a modification of an object that is both a GoldenCustomer, a NationalGoldenCustomer and
a SeniorGoldenCustomer wold cause only the latter two proxies to be actually modified. The
first would match any pattern for GoldenCustomer and NationalGoldenCustomer; the latter
would instead be prevented from rematching GoldenCustomer, but would be allowed to match
SeniorGoldenCustomer patterns. It is not necessary, instead, to modify the GoldenCustomer
proxy since it is already covered by at least one other more specific trait.

The second method, up to the usr, is to mark traits as @PropertyReactive. Property reactivity
is trait-enabled and takes into account the trait field mappings, so to block unnecessary
propagations.

7.7.8.1. Cascading traits

WARNING : This feature is extremely experimental and subject to changes

Normally, a hard field must be exposed with its original type by all traits donned by an object, to
prevent situations such as

207

Chapter 7. Rule Language Refe...

Example 7.39.

decl are Person
@raitabl e
name : String
id: String
end

declare trait Custoner
id: String
end

declare trait Patient
id: long // Person can't don Patient, or an exception will be thrown
end

Should a Person don both Customer and Patient, the type of the hard field id would be ambiguous.
However, consider the following example, where GoldenCustomers refer their best friends so that
they become Customers as well:

Example 7.40.

decl are Person
@raitable(|ogical =true)
best Friend : Person

end

declare trait Custoner end

declare trait Col denCustoner extends Customner
refers : Custoner @\ ias("bestFriend")
end

Aside from the @Alias, a Person-as-GoldenCustomer's best friend might be compatible
with the requirements of the trait GoldenCustomer, provided that they are some kind of
Customer themselves. Marking a Person as "logically traitable" - i.e. adding the annotation
@Traitable(logical = true) - will instruct the engine to try and preserve the logical consistency
rather than throwing an exception due to a hard field with different type declarations (Person vs
Customer). The following operations would then work:

Example 7.41.

Person pl = new Person();
Person p2 = new Person();

208

Traits

pl. setBestFriend(p2);
Custoner c2 = don(p2, Customer.class);
Gol denCust oner gcl = don(pl, Col denCustoner.class);

pl. getBestFriend(); // returns p2
gcl.getRefers(); // returns c2, a Customer proxy w apping p2

Notice that, by the time pl becomes GoldenCustomer, p2 must have already become a
Customer themselves, otherwise a runtime exception will be thrown since the very definition of
GoldenCustomer would have been violated.

In some cases, however, one might want to infer, rather than verify, that p2 is a Customer by virtue
that pl is a GoldenCustomer. This modality can be enabled by marking Customer as "logical”,
using the annotation @org.drools.core.factmodel.traits. Trait(logical = true). In this case, should
p2 not be a Customer by the time that p1 becomes a GoldenCustomer, it will be automatically don
the trait Customer to preserve the logical integrity of the system.

Notice that the annotation on the core class enables the dynamic type management for its
fields, whereas the annotation on the traits determines whether they will be enforced as integrity
constraints or cascaded dynamically.

Example 7.42.

i mport org.drools.factnodel .traits. *;

declare trait Custoner
@rait(logical = true)
end

209

Chapter 7. Rule Language Refe...

7.8. Rule

O
‘ATl) e]_)

o
!

(::

o LHS |

Figure 7.9. rule

A rule specifies that when a particular set of conditions occur, specified in the Left Hand Side
(LHS), then do what queryis specified as a list of actions in the Right Hand Side (RHS). A common
question from users is "Why use when instead of if?" "When" was chosen over "if" because "if"
is normally part of a procedural execution flow, where, at a specific point in time, a condition is
to be checked. In contrast, "when" indicates that the condition evaluation is not tied to a specific
evaluation sequence or point in time, but that it happens continually, at any time during the life
time of the engine; whenever the condition is met, the actions are executed.

A rule must have a name, unique within its rule package. If you define a rule twice in the same
DRL it produces an error while loading. If you add a DRL that includes a rule name already in the
package, it replaces the previous rule. If a rule name is to have spaces, then it will need to be
enclosed in double quotes (it is best to always use double quotes).

Attributes - described below - are optional. They are best written one per line.

The LHS of the rule follows the when keyword (ideally on a new line), similarly the RHS follows
the t hen keyword (again, ideally on a newline). The rule is terminated by the keyword end. Rules
cannot be nested.

210

Rule Attributes

Example 7.43. Rule Syntax Overview

rule "<name>"
<attri but e>*

when

<condi ti onal el enent>*
t hen

<action>*
end

Example 7.44. A simple rule

rule "Approve if not rejected"
sal i ence -100
agenda- group "approval "
when
not Rejection()
p : Policy(approved == fal se, policyState:status)
exi sts Driver(age > 25)
Process(status == policyState)
t hen
| og(" APPROVED: due to no objections.")
p. set Approved(true);
end

7.8.1. Rule Attributes

Rule attributes provide a declarative way to influence the behavior of the rule. Some are quite
simple, while others are part of complex subsystems such as ruleflow. To get the most from Drools
you should make sure you have a proper understanding of each attribute.

211

Chapter 7. Rule Language Refe...

() 'no-loop’ value

—{ 'lock-on-active’ |——
—{ ‘agenda-group’ | —
o ‘audfocus’ |
— “ruleflow-group” |
—y ‘activation-group’ }—
— ‘dialect |
— 'date-effective’ ||
—{ ‘date-expires’ |
— ‘enabled’ |~
—.[“duration”]—.[duration-value (ms)]—

Figure 7.10. rule attributes

no- | oop
default value: f al se

type: Boolean

When a rule's consequence modifies a fact it may cause the rule to activate again, causing

an infinite loop. Setting no-loop to true will skip the creation of another Activation for the rule
with the current set of facts.

rul ef | ow group
default value: N/A

type: String

Ruleflow is a Drools feature that lets you exercise control over the firing of rules. Rules that
are assembled by the same ruleflow-group identifier fire only when their group is active.

212

Rule Attributes

| ock-on-active
default value: f al se

type: Boolean

Whenever a ruleflow-group becomes active or an agenda-group receives the focus, any rule
within that group that has lock-on-active set to true will not be activated any more; irrespective
of the origin of the update, the activation of a matching rule is discarded. This is a stronger
version of no-loop, because the change could now be caused not only by the rule itself. It's
ideal for calculation rules where you have a nhumber of rules that modify a fact and you don't
want any rule re-matching and firing again. Only when the ruleflow-group is no longer active or
the agenda-group loses the focus those rules with lock-on-active set to true become eligible
again for their activations to be placed onto the agenda.

sal i ence
default value: 0

type: integer

Each rule has an integer salience attribute which defaults to zero and can be negative or
positive. Salience is a form of priority where rules with higher salience values are given higher
priority when ordered in the Activation queue.

Drools also supports dynamic salience where you can use an expression involving bound
variables.

Example 7.45. Dynamic Salience

rule "Fire in rank order 1,2,.."
sal i ence(-$rank)
when
El ement ($rank : rank,...)
t hen

end

agenda- gr oup
default value: MAIN
type: String

Agenda groups allow the user to partition the Agenda providing more execution control. Only
rules in the agenda group that has acquired the focus are allowed to fire.

aut o-f ocus
default value: f al se

213

Chapter 7. Rule Language Refe...

type: Boolean

When a rule is activated where the aut o- f ocus value is true and the rule's agenda group
does not have focus yet, then it is given focus, allowing the rule to potentially fire.

activation-group
default value: N/A

type: String

Rules that belong to the same activation-group, identified by this attribute's string value, will
only fire exclusively. More precisely, the first rule in an activation-group to fire will cancel all
pending activations of all rules in the group, i.e., stop them from firing.

Note: This used to be called Xor group, but technically it's not quite an Xor. You may still hear
people mention Xor group; just swap that term in your mind with activation-group.

di al ect
default value: as specified by the package

type: String
possible values: "java" or "mvel"

The dialect species the language to be used for any code expressions in the LHS or the RHS
code block. Currently two dialects are available, Java and MVEL. While the dialect can be
specified at the package level, this attribute allows the package definition to be overridden
for arule.

date-effective
default value: N/A

type: String, containing a date and time definition
A rule can only activate if the current date and time is after date-effective attribute.

dat e- expires
default value: N/A

type: String, containing a date and time definition
A rule cannot activate if the current date and time is after the date-expires attribute.

duration
default value: no default value

type: long

The duration dictates that the rule will fire after a specified duration, if it is still true.

214

Timers and Calendars

Example 7.46. Some attribute examples

rule "ny rule"
sal i ence 42
agenda- group "nunber 1"
when ...

7.8.2. Timers and Calendars

Rules now support both interval and cron based timers, which replace the now deprecated duration
attribute.

Example 7.47. Sample timer attribute uses

timer (int: <initial delay> <repeat interval >?)
tinmer (int: 30s)
timer (int: 30s 5m)

timer (cron: <cron expression>)

tinmer (cron:* 0/15 * * * 2)

Interval (indicated by "int:") timers follow the semantics of java.util. Timer objects, with an initial
delay and an optional repeat interval. Cron (indicated by "cron:") timers follow standard Unix cron
expressions:

Example 7.48. A Cron Example

rule "Send SMS every 15 m nutes”
timer (cron:* 0/15 * * * ?)

when

$a : Alarn(on == true)
t hen

channel s["sns"].insert(new Sns($a. nobi | eNunber, "The alarmis still on");
end

A rule controlled by a timer becomes active when it matches, and once for each individual match.
Its consequence is executed repeatedly, according to the timer's settings. This stops as soon as
the condition doesn't match any more.

Consequences are executed even after control returns from a call to fireUntilHalt. Moreover, the
Engine remains reactive to any changes made to the Working Memory. For instance, removing
a fact that was involved in triggering the timer rule's execution causes the repeated execution to
terminate, or inserting a fact so that some rule matches will cause that rule to fire. But the Engine

215

Chapter 7. Rule Language Refe...

is not continually active, only after a rule fires, for whatever reason. Thus, reactions to an insertion
done asynchronously will not happen until the next execution of a timer-controlled rule. Disposing
a session puts an end to all timer activity.

Conversely when the rule engine runs in passive mode (i.e.: using fireAllRules instead of
fireUntilHalt) by default it doesn't fire consequences of timed rules unless fireAllRules isn't invoked
again. However it is possible to change this default behavior by configuring the KieSession with
a Ti medRul eExect i onOpt i on as shown in the following example.

Example 7.49. Configuring a KieSession to automatically execute timed
rules

Ki eSessi onConfi guration ksconf = KieServices. Factory. get().newKi eSessi onConfi guration();
ksconf.set Opti on(Ti nedRul eExecti onOpti on. YES);
KSessi on ksessi on = kbase. newKi eSessi on(ksconf, null);

It is also possible to have a finer grained control on the timed rules that have to be automatically
executed. To do this it is necessary to set a FI LTERED Ti medRul eExect i onOpt i on that allows to
define a callback to filter those rules, as done in the next example.

Example 7.50. Configuring a filter to choose which timed rules should be
automatically executed

Ki eSessi onConfi gurati on ksconf = Ki eServi ces. Factory. get (). newKi eSessi onConfi guration();
conf.set Option(new Ti medRul eExecti onOpti on. FI LTERED(new Ti medRul eExecutionFilter() {
publi ¢ bool ean accept (Rul e[] rules) {
return rul es[0]. get Nane() . equal s("M/Rul e");

1)

For what regards interval timers it is also possible to define both the delay and interval as an
expression instead of a fixed value. To do that it is necessary to use an expression timer (indicated
by "expr:") as in the following example:

Example 7.51. An Expression Timer Example

decl are Bean
del ay : String = "30s"
period : long = 60000
end

rule "Expression timer"
timer(expr: $d, $p)

216

Timers and Calendars

when

Bean($d : delay, $p : period)
t hen
end

The expressions, $d and $p in this case, can use any variable defined in the pattern matching
part of the rule and can be any String that can be parsed in a time duration or any numeric value
that will be internally converted in a long representing a duration expressed in milliseconds.

Both interval and expression timers can have 3 optional parameters named "start", "end" and
"repeat-limit". When one or more of these parameters are used the first part of the timer definition
must be followed by a semicolon ';' and the parameters have to be separated by a comma ', as
in the following example:

Example 7.52. An Interval Timer with a start and an end

timer (int: 30s 10s; start=3-JAN 2010, end=5-JAN 2010)

The value for start and end parameters can be a Date, a String representing a Date or a long,
or more in general any Number, that will be transformed in a Java Date applying the following
conversion:

new Date(((Nunber) n).longVal ue())

Conversely the repeat-limit can be only an integer and it defines the maximum number of
repetitions allowed by the timer. If both the end and the repeat-limit parameters are set the timer
will stop when the first of the two will be matched.

The using of the start parameter implies the definition of a phase for the timer, where the beginning
of the phase is given by the start itself plus the eventual delay. In other words in this case the
timed rule will then be scheduled at times:

start + delay + n*period

for up to repeat-limit times and no later than the end timestamp (whichever first). For instance the
rule having the following interval timer

timer (int: 30s 1m start="3-JAN- 2010")

217

Chapter 7. Rule Language Refe...

will be scheduled at the 30th second of every minute after the midnight of the 3-JAN-2010. This
also means that if for example you turn the system on at midnight of the 3-FEB-2010 it won't
be scheduled immediately but will preserve the phase defined by the timer and so it will be
scheduled for the first time 30 seconds after the midnight. If for some reason the system is paused
(e.g. the session is serialized and then deserialized after a while) the rule will be scheduled only
once to recover from missing activations (regardless of how many activations we missed) and
subsequently it will be scheduled again in phase with the timer.

Calendars are used to control when rules can fire. The Calendar APl is modelled on Quartz [http://
www.quartz-scheduler.org/]:

Example 7.53. Adapting a Quartz Calendar

Cal endar weekDayCal = QuartzHel per. quartzCal endar Adapt er (org. quartz. Cal endar quartzCal)

Calendars are registered with the KieSession:

Example 7.54. Registering a Calendar

ksessi on. get Cal endars().set("weekday", weekDayCal);

They can be used in conjunction with normal rules and rules including timers. The rule attribute
"calendars" may contain one or more comma-separated calendar names written as string literals.

Example 7.55. Using Calendars and Timers together

rul e "weekdays are high priority"
cal endars "weekday"
timer (int:0 1h)
when
Al arnm()
t hen
send("priority high - we have an alarn#);
end

rule "weekend are low priority"

cal endars "weekend"

tinmer (int:0 4h)
when

Al arm()
t hen

send("priority low - we have an alarn#);

end

218

http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/

Left Hand Side (when) syntax

7.8.3. Left Hand Side (when) syntax

7.8.3.1. What is the Left Hand Side?

The Left Hand Side (LHS) is a common name for the conditional part of the rule. It consists of zero
or more Conditional Elements. If the LHS is empty, it will be considered as a condition element
that is always true and it will be activated once, when a new WorkingMemory session is created.

O { c'l::-rrdﬁr.l'c'r?;fEn'arr?&nt _]—"l O

Figure 7.11. Left Hand Side

Example 7.56. Rule without a Conditional Element

rule "no CEs"
when

/] enpty
t hen

/1 actions (executed once)
end

/'l The above rule is internally rewmitten as

rule "eval (true)"

when
eval (true)
t hen
/1 actions (executed once)
end

Conditional elements work on one or more patterns (which are described below). The most
common conditional element is "and" . Therefore it is implicit when you have multiple patterns in
the LHS of a rule that are not connected in any way:

Example 7.57. Implicit and

rule "2 unconnected patterns"”
when
Patternl()
Patt er n2()
t hen
/] actions
end

219

Chapter 7. Rule Language Refe...

/1 The above rule is internally rewitten as:

rule "2 and connected patterns"
when
Patternl()
and Pattern2()
t hen
/'l actions
end

/1 Conpile error
$person : (Person(name == "Roneo") and Person(name == "Juliet"))

7.8.3.2. Pattern (conditional element)

7.8.3.2.1. What is a pattern?

A pattern element is the most important Conditional Element. It can potentially match on each fact
that is inserted in the working memory.

A pattern contains of zero or more constraints and has an optional pattern binding. The railroad
diagram below shows the syntax for this.

OB)\)— ()T} —O

Figure 7.12. Pattern

In its simplest form, with no constraints, a pattern matches against a fact of the given type. In
the following case the type is Cheese, which means that the pattern will match against all Per son
objects in the Working Memory:

Per son()

220

Left Hand Side (when) syntax

The type need not be the actual class of some fact object. Patterns may refer to superclasses or
even interfaces, thereby potentially matching facts from many different classes.

oject() // matches all objects in the working menory

Inside of the pattern parenthesis is where all the action happens: it defines the constraints for that
pattern. For example, with a age related constraint:

Person(age == 100)

@ Note
For backwards compatibility reasons it's allowed to suffix patterns with the ;
character. But it is not recommended to do that.

7.8.3.2.2. Pattern binding

For referring to the matched object, use a pattern binding variable such as $p.

Example 7.58. Pattern with a binding variable

rule ...
when
$p : Person()
t hen
Systemout.println("Person " + $p);
end

The prefixed dollar symbol ($) is just a convention; it can be useful in complex rules where it helps
to easily differentiate between variables and fields, but it is not mandatory.

7.8.3.3. Constraint (part of a pattern)

7.8.3.3.1. What is a constraint?

A constraint is an expression that returns t r ue or f al se. This example has a constraint that states
5 is smaller than 6:

Person(5 <6) // just an exanple, as constraints like this would be usel ess
in a real pattern

221

Chapter 7. Rule Language Refe...

In essence, it's a Java expression with some enhancements (such as property access) and a few
differences (such as equal s() semantics for ==). Let's take a deeper look.

7.8.3.3.2. Property access on Java Beans (POJO's)

Any bean property can be used directly. A bean property is exposed using a standard Java bean
getter: a method get MyProperty() (ori sMyProperty() for a primitive boolean) which takes no
arguments and return something. For example: the age property is written as age in DRL instead
of the getter get Age() :

Person(age == 50)
// this is the sane as:

Person(get Age() == 50)

Drools uses the standard JDK I nt r ospect or class to do this mapping, so it follows the standard
Java bean specification.

@ Note

We recommend using property access (age) over using getters explicitly
(get Age()) because of performance enhancements through field indexing.

Warning

Property accessors must not change the state of the object in a way that may
effect the rules. Remember that the rule engine effectively caches the results of its
matching in between invocations to make it faster.

222

Left Hand Side (when) syntax

To solve this latter case, insert a fact that wraps the current date into working

memory and update that fact between fi r eAl | Rul es as needed.

@ Note

The following fallback applies: if the getter of a property cannot be found, the
compiler will resort to using the property name as a method name and without
arguments:

Person(age == 50)

/1 1f Person.get Age() does not exists, this falls back to:
Person(age() == 50)

Nested property access is also supported:

Per son(address. houseNurmber == 50)

// this is the sanme as:
Per son(get Address() . get HouseNunber() == 50)

Nested properties are also indexed.

Warning

In a stateful session, care should be taken when using nested accessors as the
Working Memory is not aware of any of the nested values, and does not know when
they change. Either consider them immutable while any of their parent references
are inserted into the Working Memory. Or, instead, if you wish to modify a nested
value you should mark all of the outer facts as updated. In the above example,
when the houseNunber changes, any Per son with that Addr ess must be marked
as updated.

7.8.3.3.3. Java expression

You can use any Java expression that returns a bool ean as a constraint inside the parentheses of
a pattern. Java expressions can be mixed with other expression enhancements, such as property
access:

223

Chapter 7. Rule Language Refe...

Person(age == 50)

It is possible to change the evaluation priority by using parentheses, as in any logic or
mathematical expression:

Person(age > 100 && (age %10 == 0))

It is possible to reuse Java methods:

Person(Math.round(weight / (height * height)) < 25.0)

Warning

As for property accessors, methods must not change the state of the object in a
way that may affect the rules. Any method executed on a fact in the LHS should
be a read only method.

Warning

The state of a fact should not change between rule invocations (unless those facts
are marked as updated to the working memory on every change):

Normal Java operator precedence applies, see the operator precedence list below.

Important

All operators have normal Java semantics except for == and ! =.

The == operator has null-safe equal s() semantics:

224

Left Hand Side (when) syntax

The ! = operator has null-safe ! equal s() semantics:

Type coercion is always attempted if the field and the value are of different types; exceptions will
be thrown if a bad coercion is attempted. For instance, if "ten" is provided as a string in a numeric
evaluator, an exception is thrown, whereas "10" would coerce to a numeric 10. Coercion is always
in favor of the field type and not the value type:

Person(age == "10") // "10" is coerced to 10

7.8.3.3.4. Comma separated AND

The comma character (',) is used to separate constraint groups. It has implicit AND connective
semantics.

/1l Person is at |least 50 and wei ghs at |east 80 kg
Person(age > 50, weight > 80)

/'l Person is at |east 50, weighs at least 80 kg and is taller than 2 neter
Person(age > 50, weight > 80, height > 2)

@ Note

Although the && and , operators have the same semantics, they are resolved with
different priorities: The && operator precedes the | | operator. Both the && and | |
operator precede the , operator. See the operator precedence list below.

225

Chapter 7. Rule Language Refe...

The comma (,) operator cannot be embedded in a composite constraint expression, such as
parentheses:

Person((age > 50, weight >80) || height > 2) // Do NOT do this: conpile error

/'l Use this instead
Person((age > 50 && weight > 80) || height > 2)

7.8.3.3.5. Binding variables

A property can be bound to a variable:

/1 2 persons of the sane age
Person($firstAge : age) // binding
Person(age == $firstAge) // constraint expression

The prefixed dollar symbol ($) is just a convention; it can be useful in complex rules where it helps
to easily differentiate between variables and fields.

/1 Not
Person($age :

reconmended
age * 2 < 100)

/'l Recommended (separates bindings and constraint expressions)
Person(age * 2 < 100, $age : age)

Bound variable restrictions using the operator == provide for very fast execution as it use hash
indexing to improve performance.

226

Left Hand Side (when) syntax

7.8.3.3.6. Unification

Drools does not allow bindings to the same declaration. However this is an important aspect to
derivation query unification. While positional arguments are always processed with unification
a special unification symbol, "=', was introduced for named arguments named arguments. The
following "unifies" the age argument across two people.

Person($age := age)
Person($age : = age)

In essence unification will declare a binding for the first occurrence and constrain to the same
value of the bound field for sequence occurrences.

7.8.3.3.7. Grouped accessors for nested objects

Often it happens that it is necessary to access multiple properties of a nested object as in the
following example

Person(name == "mark", address.city == "l ondon", address.country == "uk")

These accessors to nested objects can be grouped with a '.(...)' syntax providing more readable
rules as in

Person(nane== "nmark", address.(city == "london", country == "uk"))

Note the "." prefix, this is necessary to differentiate the nested object constraints from a method call.

7.8.3.3.8. Inline casts and coercion

When dealing with nested objects, it also quite common the need to cast to a subtype. It is possible
to do that via the # symbol as in:

Person(nane=="nmar k", address#lLongAddress.country == "uk")

This example casts Address to LongAddress, making its getters available. If the cast is not possible
(instanceof returns false), the evaluation will be considered false. Also fully qualified names are
supported:

Per son(name=="mar k", address#org. donai n. LongAddr ess. country == "uk")

227

Chapter 7. Rule Language Refe...

It is possible to use multiple inline casts in the same expression:

Person(name == "nark", address#LongAddress. country#Detail edCountry. popul ation
> 10000000)

moreover, since we also support the instanceof operator, if that is used we will infer its results for
further uses of that field, within that pattern:

Person(nanme=="mar k", address instanceof LongAddress, address.country == "uk")

7.8.3.3.9. Special literal support
Besides normal Java literals (including Java 5 enums), this literal is also supported:
7.8.3.3.9.1. Date literal

The date format dd- mmm yyyy is supported by default. You can customize this by providing an
alternative date format mask as the System property named dr ool s. dat ef or mat . If more control
is required, use a restriction.

Example 7.59. Date Literal Restriction

Cheese(bestBefore < "27-Cct-2009")

7.8.3.3.10. List and Map access

It's possible to directly access a Li st value by index:

/1 Same as chil dList(0).getAge() == 18
Person(childList[0].age == 18)

It's also possible to directly access a Map value by key:

/] Same as credential Map.get("jsmth").isValid()
Person(credential Map["jsnmith"].valid)

7.8.3.3.11. Abbreviated combined relation condition

This allows you to place more than one restriction on a field using the restriction connectives &&
or | | . Grouping via parentheses is permitted, resulting in a recursive syntax pattern.

228

Left Hand Side (when) syntax

—-—b{ rastrichion
O— —{ &1 f—
|—u|| r&srrﬁcﬂﬂn-ﬂrﬂup]—l—f

Figure 7.13. Abbreviated combined relation condition

(O « o muttiRestriction }—{ v |—+{")

Figure 7.14. Abbreviated combined relation condition with parentheses

/1 Sinple abbreviated conbined relation condition using a single &
Person(age > 30 && < 40)

/| Conpl ex abbrevi ated conbi ned rel ati on using groupi ngs
Person(age ((> 30 && < 40) ||
(> 20 && < 25)))

/1 M xing abbrevi ated conbined relation with constraint connectives
Person(age > 30 & < 40 || location == "london")

7.8.3.3.12. Special DRL operators

| et | | ==t | ==t = | 'containg” | 'not contains' |
‘memberot | ‘mot membercf’ | ‘'matches” | “'not matches'

Figure 7.15. Operators

Coercion to the correct value for the evaluator and the field will be attempted.
7.8.3.3.12.1. The operators < <= > >=

These operators can be used on properties with natural ordering. For example, for Date fields, <
means before, for St ri ng fields, it means alphabetically lower.

Person(firstNanme < $ot her Fi rst Nanme)

229

Chapter 7. Rule Language Refe...

Person(birthDate < $otherBirthDate)

Only applies on Conpar abl e properties.
7.8.3.3.12.2. Null-safe dereferencing operator

The !. operator allows to derefencing in a null-safe way. More in details the matching algorithm
requires the value to the left of the !. operator to be not null in order to give a positive result for
pattern matching itself. In other words the pattern:

Person($streetNane : address!.street)
will be internally translated in:

Person(address != null, $streetNane : address.street)

7.8.3.3.12.3. The operator nat ches

Matches a field against any valid Java Regular Expression. Typically that regexp is a string literal,
but variables that resolve to a valid regexp are also allowed.

Example 7.60. Regular Expression Constraint

Cheese(type matches "(Buffal o) ?\\ S*Mzarella")

@ Note
Like in Java, regular expressions written as string literals need to escape '\ ".

Only applies on St ri ng properties. Using mat ches against a nul | value always evaluates to false.
7.8.3.3.12.4. The operator not mat ches

The operator returns true if the String does not match the regular expression. The same rules
apply as for the mat ches operator. Example:

Example 7.61. Regular Expression Constraint

Cheese(type not matches " (Bufful o) ?\\ S*Mzarella")

230

Left Hand Side (when) syntax

Only applies on Stri ng properties. Using not mat ches against a nul | value always evaluates
to true.

7.8.3.3.12.5. The operator cont ai ns

The operator cont ai ns is used to check whether a field that is a Collection or elements contains
the specified value.

Example 7.62. Contains with Collections

CheeseCount er (cheeses contains "stilton") // contains with a String literal
CheeseCount er (cheeses contains $var) // contains with a variable

Only applies on Col | ecti on properties.
7.8.3.3.12.6. The operator not contai ns

The operator not cont ai ns is used to check whether a field that is a Collection or elements does
not contain the specified value.

Example 7.63. Literal Constraint with Collections

CheeseCount er (cheeses not contains "cheddar”) // not contains with a String
literal
CheeseCount er (cheeses not contains $var) // not contains with a variable

Only applies on Col | ect i on properties.

G] Note
For backward compatibility, the excl udes operator is supported
as a synonym for not cont ai ns.

7.8.3.3.12.7. The operator menber O

The operator menber O is used to check whether a field is a member of a collection or elements;
that collection must be a variable.

Example 7.64. Literal Constraint with Collections

CheeseCount er (cheese nmenber O $nmat ur eCheeses)

231

Chapter 7. Rule Language Refe...

7.8.3.3.12.8. The operator not menber Of

The operator not nmenber O is used to check whether a field is not a member of a collection or
elements; that collection must be a variable.

Example 7.65. Literal Constraint with Collections

CheeseCount er (cheese not nenber O $mat ur eCheeses)

7.8.3.3.12.9. The operator soundsl i ke

This operator is similar to mat ches, but it checks whether a word has almost the same sound
(using English pronunciation) as the given value. This is based on the Soundex algorithm (see
http://en.wi ki pedi a. or g/ w ki / Soundex).

Example 7.66. Test with soundslike

/1 match cheese "fubar" or "foobar"
Cheese(nane soundslike 'foobar')

7.8.3.3.12.10. The operator str

This operator str is used to check whether a field that is a Stri ng starts with or ends with a
certain value. It can also be used to check the length of the String.

Message(routingVal ue str[startsWth] "R1")

Message(routingVal ue str[endsWth] "R2")

Message(routingValue str[length] 17)

7.8.3.3.12.11. The operators in and not in (compound value restriction)

The compound value restriction is used where there is more than one possible value to match.
Currently only the i n and not i n evaluators support this. The second operand of this operator
must be a comma-separated list of values, enclosed in parentheses. Values may be given as
variables, literals, return values or qualified identifiers. Both evaluators are actually syntactic sugar,
internally rewritten as a list of multiple restrictions using the operators ! = and ==.

232

O

Left Hand Side (when) syntax

P vanabia "

o in'| motin’) = literal | ' | (

variable il

raturm\Value

| qualifisdidentifier |— -f

+ qualifiedidentifier }—

g

Figure 7.16. compoundValueRestriction

Example 7.67. Compound Restriction using "in"

Person($cheese : favouriteCheese)
Cheese(type in ("stilton", "cheddar", $cheese))

7.8.3.3.13. Inline eval operator (deprecated)

‘aval(’ BXpression T

Figure 7.17. Inline Eval Expression

An inline eval constraint can use any valid dialect expression as long as it results to a primitive
boolean. The expression must be constant over time. Any previously bound variable, from the
current or previous pattern, can be used; autovivification is also used to auto-create field binding
variables. When an identifier is found that is not a current variable, the builder looks to see if the
identifier is a field on the current object type, if it is, the field binding is auto-created as a variable
of the same name. This is called autovivification of field variables inside of inline eval's.

This example will find all male-female pairs where the male is 2 years older than the female; the
variable age is auto-created in the second pattern by the autovivification process.

Example 7.68. Return Value operator

Person(girl Age : age, sex = "F")
Person(eval (age == girlAge + 2), sex ='M) // eval() is actually obsolete
in this exanple

233

Chapter 7. Rule Language Refe...

@ Note
Inline eval's are effectively obsolete as their inner syntax is now directly supported.
It's recommended not to use them. Simply write the expression without wrapping

eval() around it.

7.8.3.3.14. Operator precedence

The operators are evaluated in this precedence:

Table 7.1. Operator precedence

Operator type Operators Notes
(nested / null safe) property . !. Not normal Java semantics
access
List/Map access [1 Not normal Java semantics
constraint binding Not normal Java semantics
multiplicative *| %
additive +-
shift << >> >>>
relational <> <=>=jnst anceof
equality === Does not use normal

Java (not) same semantics:
uses (not) equals semantics
instead.

non-short circuiting AND

non-short circuiting exclusive
OR

non-short circuiting inclusive
OR

logical AND
logical OR

ternary

Comma separated AND

Not normal Java semantics

7.8.3.4. Positional Arguments

Patterns now support positional arguments on type declarations.

Positional arguments are ones where you don't need to specify the field name, as the position
maps to a known named field. i.e. Person(name == "mark") can be rewritten as Person("mark";).

234

Left Hand Side (when) syntax

The semicolon ';' is important so that the engine knows that everything before it is a positional
argument. Otherwise we might assume it was a boolean expression, which is how it could be
interpreted after the semicolon. You can mix positional and named arguments on a pattern by
using the semicolon ;' to separate them. Any variables used in a positional that have not yet been
bound will be bound to the field that maps to that position.

decl are Cheese
nane : String
shop : String
price : int
end

Example patterns, with two constraints and a binding. Remember semicolon ';' is used to
differentiate the positional section from the named argument section. Variables and literals and
expressions using just literals are supported in positional arguments, but not variables. Positional
arguments are always resolved using unification.

Cheese("stilton", "Cheese Shop", p;)

Cheese("stilton", "Cheese Shop"; p : price)

Cheese("stilton"; shop == "Cheese Shop", p : price)

Cheese(name == "stilton"; shop == "Cheese Shop", p : price)

Positional arguments that are given a previously declared binding will constrain against that using
unification; these are referred to as input arguments. If the binding does not yet exist, it will create
the declaration binding it to the field represented by the position argument; these are referred to
as output arguments.

7.8.3.5. Fine grained property change listeners

When you call modify() (see the modify statement section) on a given object it will trigger a
revaluation of all patterns of the matching object type in the knowledge base. This can can lead
to unwanted and useless evaluations and in the worst cases to infinite recursions. The only
workaround to avoid it was to split up your objects into smaller ones having a 1 to 1 relationship
with the original object.

This feature allows the pattern matching to only react to modification of properties actually
constrained or bound inside of a given pattern. That will help with performance and recursion and
avoid artificial object splitting.

By default this feature is off in order to make the behavior of the rule engine backward compatible
with the former releases. When you want to activate it on a specific bean you have to annotate it
with @propertyReactive. This annotation works both on DRL type declarations:

decl are Person

235

Chapter 7. Rule Language Refe...

@ropertyReacti ve
firstName : String
| ast Nane : String

end

and on Java classes:

@r opertyReacti ve
public static class Person {
private String firstNane;
private String | astNane;

In this way, for instance, if you have a rule like the following:

rule "Every person naned Mario is a nale" when
$person : Person(firstName == "Mari 0")
t hen
nodi fy ($person) { setMale(true) }
end

you won't have to add the no-loop attribute to it in order to avoid an infinite recursion because the
engine recognizes that the pattern matching is done on the ‘firstName' property while the RHS of
the rule modifies the 'male’ one. Note that this feature does not work for update(), and this is one of
the reasons why we promote modify() since it encapsulates the field changes within the statement.
Moreover, on Java classes, you can also annotate any method to say that its invocation actually
modifies other properties. For instance in the former Person class you could have a method like:

@nbdifies({ "firstNanme", "l astName" })

public void set Nane(String name) {
String[] nanmes = nane.split("\\s");
this.firstNane = nanes[0];
this. |l ast Nane = nanes[1];

That means that if a rule has a RHS like the following:

nodi fy($person) { set Nane("Mario Fusco") }

236

Left Hand Side (when) syntax

it will correctly recognize that the values of both properties ‘firstName' and 'lastName' could
have potentially been modified and act accordingly, not missing of reevaluating the patterns
constrained on them. At the moment the usage of @Maodifies is not allowed on fields but only on
methods. This is coherent with the most common scenario where the @Modifies will be used for
methods that are not related with a class field as in the Person.setName() in the former example.
Also note that @Modifies is not transitive, meaning that if another method internally invokes
the Person.setName() one it won't be enough to annotate it with @Modifies({ "name" }), but it

is necessary to use @Modifies({ "firstName", "lastName" }) even on it. Very likely @Modifies
transitivity will be implemented in the next release.

For what regards nested accessors, the engine will be notified only for top level fields. In other
words a pattern matching like:

Person (address.city.name == "London)

will be revaluated only for modification of the ‘address' property of a Person object. In the same
way the constraints analysis is currently strictly limited to what there is inside a pattern. Another
example could help to clarify this. An LHS like the following:

$p : Person()
Car (owner = $p.nane)

will not listen on modifications of the person's name, while this one will do:

Person($nanme : nane)
Car (owner = $nane)

To overcome this problem it is possible to annotate a pattern with @watch as it follows:

$p : Person() @watch (nane)
Car(owner = $p.nane)

Indeed, annotating a pattern with @watch allows you to modify the inferred set of properties for
which that pattern will react. Note that the properties named in the @watch annotation are actually
added to the ones automatically inferred, but it is also possible to explicitly exclude one or more
of them prepending their name with a ! and to make the pattern to listen for all or none of the
properties of the type used in the pattern respectively with the wildcrds * and !*. So, for example,
you can annotate a pattern in the LHS of a rule like:

Il listens for changes on both firstNanme (inferred) and | astNane

237

Chapter 7. Rule Language Refe...

Person(firstNane == $expectedFirstNane) @watch(| astNane)

/1 listens for all the properties of the Person bean
Person(firstNane == $expectedFirstNane) @watch(*)

/1 listens for changes on | astNane and explicitly exclude firstName
Person(firstNane == $expectedFirstNane) @watch(|astNane, !firstNane)

/1 listens for changes on all the properties except the age one
Person(firstName == $expectedFirstName) @watch(*, !age)

Since doesn't make sense to use this annotation on a pattern using a type not annotated with
@PropertyReactive the rule compiler will raise a compilation error if you try to do so. Also the
duplicated usage of the same property in @watch (for example like in: @watch(firstName, !
firstName)) will end up in a compilation error. In a next release we will make the automatic
detection of the properties to be listened smarter by doing analysis even outside of the pattern.

It also possible to enable this feature by default on all the types of your model or to completely
disallow it by using on option of the KnowledgeBuilderConfiguration. In particular this new
PropertySpecificOption can have one of the following 3 values:

- DI SABLED => the feature is turned off and all the other related annotations
are just ignored

- ALLOWED => this is the default behavior: types are not property reactive unl ess
they are not annotated w th @PropertySpecific

- ALVWAYS => all types are property reactive by default

So, for example, to have a KnowledgeBuilder generating property reactive types by default you
could do:

Know edgeBui | der Confi gurati on config =
Knowl edgeBui | der Fact ory. newKnow edgeBui | der Confi gurati on();

config. set Option(PropertySpecificOption. ALVAYS);

Knowl edgeBui | der kbui | der =
Know edgeBui | der Fact ory. newKnow edgeBui | der (confi g);

In this last case it will be possible to disable the property reactivity feature on a specific type by
annotating it with @ClassReactive.

238

Left Hand Side (when) syntax

7.8.3.6. Basic conditional elements

7.8.3.6.1. Conditional Element and

The Conditional Element "and" is used to group other Conditional Elements into a logical
conjunction. Drools supports both prefix and and infix and.

:{- m
O { ¢t) O

Figure 7.18. infixAnd

Traditional infix and is supported:

//infixAnd
Cheese(cheeseType : type) and Person(favouriteCheese == cheeseType)

Explicit grouping with parentheses is also supported:

/1infixAnd with grouping
(Cheese(cheeseType : type) and
(Person(favouriteCheese == cheeseType) or
Person(favouriteCheese == cheeseType))

O—(D—E@D)—-E > —{—C

Figure 7.19. prefixAnd

Prefix and is also supported:

(and Cheese(cheeseType : type)
Person(favouriteCheese == cheeseType))

The root element of the LHS is an implicit prefix and and doesn't need to be specified:

239

Chapter 7. Rule Language Refe...

Example 7.69. implicit root prefixAnd

when

Cheese(cheeseType : type)

Person(favouriteCheese == cheeseType)
t hen

7.8.3.6.2. Conditional Element or

The Conditional Element or is used to group other Conditional Elements into a logical disjunction.
Drools supports both prefix or and infix or .

o fE==" @

Figure 7.20. infixOr

Traditional infix or is supported:

/1infixOr
Cheese(cheeseType : type) or Person(favouriteCheese == cheeseType)

Explicit grouping with parentheses is also supported:

/1infixOr with grouping
(Cheese(cheeseType : type) or
(Person(favouriteCheese == cheeseType) and
Person(favouriteCheese == cheeseType))

L o (e @

Figure 7.21. prefixOr

240

Left Hand Side (when) syntax

Prefix or is also supported:

(or Person(sex == "f", age > 60)
Person(sex == "nl', age > 65)

The Conditional Element or also allows for optional pattern binding. This means that each resulting
subrule will bind its pattern to the pattern binding. Each pattern must be bound separately, using
eponymous variables:

pensioner : (Person(sex == "f", age > 60) or Person(sex == "n{', age > 65))
(or pensioner : Person(sex == "f", age > 60)
pensi oner : Person(sex == "ni, age > 65))

Since the conditional element or results in multiple subrule generation, one for each possible
logically outcome, the example above would result in the internal generation of two rules. These
two rules work independently within the Working Memory, which means both can match, activate
and fire - there is no shortcutting.

The best way to think of the conditional element or is as a shortcut for generating two or more
similar rules. When you think of it that way, it's clear that for a single rule there could be multiple
activations if two or more terms of the disjunction are true.

241

Chapter 7. Rule Language Refe...

7.8.3.6.3. Conditional Element not

|_. ._| AT

Figure 7.22. not

¥ 1| & k "
conditionalElermant] O

The CE not is first order logic's non-existential quantifier and checks for the non-existence of
something in the Working Memory. Think of "not" as meaning "there must be none of...".

The keyword not may be followed by parentheses around the CEs that it applies to. In the simplest
case of a single pattern (like below) you may optionally omit the parentheses.

Example 7.70. No Busses

not Bus()

Example 7.71. No red Busses

/'l Brackets are optional:

not Bus(color == "red")
/'l Brackets are optional:
not (Bus(color == "red", nunber == 42))

/1l "not" with nested infix and - two patterns,
/'l brackets are requires:
not (Bus(color == "red") and

Bus(col or == "blue"))

7.8.3.6.4. Conditional Element exi sts

(O—A{(exists’}+———{conditionalElement | - 0

Figure 7.23. exists

The CE exi st s is first order logic's existential quantifier and checks for the existence of something
in the Working Memory. Think of "exists" as meaning "there is at least one..". It is different from
just having the pattern on its own, which is more like saying "for each one of...". If you use exi st s
with a pattern, the rule will only activate at most once, regardless of how much data there is in
working memory that matches the condition inside of the exi st s pattern. Since only the existence
matters, no bindings will be established.

242

Left Hand Side (when) syntax

The keyword exi st s must be followed by parentheses around the CEs that it applies to. In the
simplest case of a single pattern (like below) you may omit the parentheses.

Example 7.72. At least one Bus

exi sts Bus()

Example 7.73. At least one red Bus

exi sts Bus(color == "red")
/1 brackets are optional
exists (Bus(color == "red", nunber == 42))

/1l "exists" with nested infix and

/'l brackets are required

exists (Bus(color == "red") and
Bus(col or == "blue"))

7.8.3.7. Advanced conditional elements

7.8.3.7.1. Conditional Element foral |

O o) ()t - O

Figure 7.24. forall

The Conditional Element forall completes the First Order Logic support in Drools. The
Conditional Element f or al | evaluates to true when all facts that match the first pattern match all
the remaining patterns. Example:

rule "All English buses are red"
when
forall ($bus : Bus(type == 'english')
Bus(this == $bus, color = 'red))
t hen
/1 all English buses are red
end

In the above rule, we "select" all Bus objects whose type is "english". Then, for each fact that
matches this pattern we evaluate the following patterns and if they match, the forall CE will
evaluate to true.

243

Chapter 7. Rule Language Refe...

To state that all facts of a given type in the working memory must match a set of constraints,
foral |l can be written with a single pattern for simplicity. Example:

Example 7.74. Single Pattern Forall

rule "All Buses are Red"

when

forall (Bus(color == "'red"))
t hen

/1 all Bus facts are red
end

Another example shows multiple patterns inside the foral | :

Example 7.75. Multi-Pattern Forall

rul e

when
forall ($enp : Enpl oyee()

Heal t hCare(enpl oyee == $enp)

Dent al Care(enpl oyee == $enp)

all enpl oyees have health and dental care prograns

t hen
/1 all enployees have health and dental care
end

Forall can be nested inside other CEs. For instance, f oral | can be used inside a not CE. Note
that only single patterns have optional parentheses, so that with a nested foral | parentheses
must be used:

Example 7.76. Combining Forall with Not CE

rule "not all enployees have health and dental care"
when
not (forall($enp : Enpl oyee()
Heal t hCare(enpl oyee == $enp)
Dent al Care(enpl oyee == $enp))

t hen

/1l not all enployees have health and dental care
end

As a side note, foral | (p1 p2 p3...) is equivalent to writing:

244

Left Hand Side (when) syntax

not (p1 and not(and p2 p3...))

Also, it is important to note that f or al | is a scope delimiter. Therefore, it can use any previously
bound variable, but no variable bound inside it will be available for use outside of it.

7.8.3.7.2. Conditional Element from

O o O

Figure 7.25. from

The Conditional Element f r omenables users to specify an arbitrary source for data to be matched
by LHS patterns. This allows the engine to reason over data not in the Working Memory. The
data source could be a sub-field on a bound variable or the results of a method call. It is a
powerful construction that allows out of the box integration with other application components
and frameworks. One common example is the integration with data retrieved on-demand from
databases using hibernate named queries.

The expression used to define the object source is any expression that follows regular MVEL
syntax. Therefore, it allows you to easily use object property navigation, execute method calls and
access maps and collections elements.

Here is a simple example of reasoning and binding on another pattern sub-field:

rule "validate zi pcode"

when

Per son($personAddress : address)

Addr ess(zi pcode == "23920W) from $per sonAddress
t hen

Il zip code is ok
end

With all the flexibility from the new expressiveness in the Drools engine you can slice and dice this
problem many ways. This is the same but shows how you can use a graph notation with the 'from":

rule "validate zi pcode"

when

$p : Person()

$a : Address(zi pcode == "23920W) from $p. address
t hen

/'l zip code is ok
end

245

Chapter 7. Rule Language Refe...

Previous examples were evaluations using a single pattern. The CE fromalso support object
sources that return a collection of objects. In that case, fromwill iterate over all objects in the
collection and try to match each of them individually. For instance, if we want a rule that applies
10% discount to each item in an order, we could do:

rule "apply 10% di scount to all itens over US$ 100,00 in an order"
when
$order : Order()
$item : Oderltem value > 100) from $order.itens
t hen
/'l apply discount to $item
end

The above example will cause the rule to fire once for each item whose value is greater than 100
for each given order.

You must take caution, however, when using f r om especially in conjunction with the | ock- on-
act i ve rule attribute as it may produce unexpected results. Consider the example provided earlier,
but now slightly modified as follows:

rule "Assign people in North Carolina (NC) to sales region 1"
rul efl ow-group "test"
| ock-on-active true
when
$p : Person()
$a : Address(state == "NC') from $p. address
t hen
nodi fy ($p) {} // Assign person to sales region 1 in a nodify block
end

rule "Apply a discount to people in the city of Raleigh”
rul efl ow-group "test"
| ock-on-active true
when
$p : Person()
$a : Address(city == "Raleigh") from $p. addr ess
t hen
modi fy ($p) {} // Apply discount to person in a nodify bl ock
end

In the above example, persons in Raleigh, NC should be assigned to sales region 1 and receive
a discount; i.e., you would expect both rules to activate and fire. Instead you will find that only
the second rule fires.

246

Left Hand Side (when) syntax

If you were to turn on the audit log, you would also see that when the second rule fires, it
deactivates the first rule. Since the rule attribute | ock- on- act i ve prevents a rule from creating
new activations when a set of facts change, the first rule fails to reactivate. Though the set of facts
have not changed, the use of f romreturns a new fact for all intents and purposes each time it
is evaluated.

First, it's important to review why you would use the above pattern. You may have many rules
across different rule-flow groups. When rules modify working memory and other rules downstream
of your RuleFlow (in different rule-flow groups) need to be reevaluated, the use of nodify is
critical. You don't, however, want other rules in the same rule-flow group to place activations on
one another recursively. In this case, the no- | oop attribute is ineffective, as it would only prevent
a rule from activating itself recursively. Hence, you resort to | ock- on- acti ve.

There are several ways to address this issue:

« Avoid the use of fr omwhen you can assert all facts into working memory or use nested object
references in your constraint expressions (shown below).

» Place the variable assigned used in the modify block as the last sentence in your condition
(LHS).

« Avoid the use of | ock-on-acti ve when you can explicitly manage how rules within the same
rule-flow group place activations on one another (explained below).

The preferred solution is to minimize use of f r omwhen you can assert all your facts into working
memory directly. In the example above, both the Person and Address instance can be asserted
into working memory. In this case, because the graph is fairly simple, an even easier solution is
to modify your rules as follows:

rule "Assign people in North Carolina (NC) to sales region 1"
rul efl ow-group "test”
| ock-on-active true
when
$p : Person(address.state == "NC')
t hen
nmodi fy ($p) {} // Assign person to sales region 1 in a nodify bl ock
end

rule "Apply a discount to people in the city of Ral eigh”
rul efl ow-group "test"
| ock-on-active true
when
$p : Person(address.city == "Ral eigh")
t hen
nmodi fy ($p) {} //Apply discount to person in a nodify bl ock
end

247

Chapter 7. Rule Language Refe...

Now, you will find that both rules fire as expected. However, it is not always possible to access
nested facts as above. Consider an example where a Person holds one or more Addresses and
you wish to use an existential quantifier to match people with at least one address that meets
certain conditions. In this case, you would have to resort to the use of fromto reason over the
collection.

There are several ways to use f r omto achieve this and not all of them exhibit an issue with the use
of | ock- on- act i ve. For example, the following use of f r omcauses both rules to fire as expected:

rule "Assign people in North Carolina (NC) to sales region 1"
rul efl ow-group "test"
| ock-on-active true
when
$p : Person($addresses : addresses)
exists (Address(state == "NC') from $addresses)
t hen
nmodi fy ($p) {} // Assign person to sales region 1 in a nodify bl ock
end

rule "Apply a discount to people in the city of Raleigh”
rul efl ow-group "test”
| ock-on-active true
when
$p : Person($addresses : addresses)
exi sts (Address(city == "Ral ei gh") from $addresses)
t hen
nodi fy ($p) {} // Apply discount to person in a nodify bl ock
end

However, the following slightly different approach does exhibit the problem:

rule "Assign people in North Carolina (NC) to sales region 1"
rul efl ow-group "test”
| ock-on-active true
when

$assessment : Assessnent ()

$p : Person()

$addresses : List() from $p. addresses

exi sts (Address(state == "NC') from $addresses)
t hen

nodi fy ($assessnent) {} // Mdify assessnent in a nodify bl ock
end

rule "Apply a discount to people in the city of Raleigh”
rul efl ow-group "test"
| ock-on-active true

248

Left Hand Side (when) syntax

when

$assessment : Assessnent ()

$p : Person()

$addresses : List() from $p. addresses

exists (Address(city == "Ral ei gh") from $addresses)
t hen

nodi fy ($assessnent) {} // Mdify assessnent in a nodify bl ock
end

In the above example, the $addresses variable is returned from the use of from The example
also introduces a new object, assessment, to highlight one possible solution in this case. If the
$assessment variable assigned in the condition (LHS) is moved to the last condition in each rule,
both rules fire as expected.

Though the above examples demonstrate how to combine the use of f r omwith | ock- on- acti ve
where no loss of rule activations occurs, they carry the drawback of placing a dependency on the
order of conditions on the LHS. In addition, the solutions present greater complexity for the rule
author in terms of keeping track of which conditions may create issues.

A better alternative is to assert more facts into working memory. In this case, a person's addresses
may be asserted into working memory and the use of f r omwould not be necessary.

There are cases, however, where asserting all data into working memory is not practical and we
need to find other solutions. Another option is to reevaluate the need for | ock- on-acti ve. An
alternative to | ock- on- acti ve is to directly manage how rules within the same rule-flow group
activate one another by including conditions in each rule that prevent rules from activating each
other recursively when working memory is modified. For example, in the case above where a
discount is applied to citizens of Raleigh, a condition may be added to the rule that checks whether
the discount has already been applied. If so, the rule does not activate.

7.8.3.7.3. Conditional Element col I ect

O—{pattem)—(rom }—{Teates }—{T

g8l 3] B
j

' accumulate 4
Figure 7.26. collect

The Conditional Element col | ect allows rules to reason over a collection of objects obtained
from the given source or from the working memory. In First Oder Logic terms this is the cardinality
quantifier. A simple example:

249

Chapter 7. Rule Language Refe...

i mport java.util.Arraylist

rule "Raise priority if systemhas nore than 3 pending al arns"
when

$system : Systen()

$alarms : Arraylist(size >= 3)

fromcollect(Alarm system == $system status == 'pending'))

t hen

/! Raise priority, because system $system has

/'l 3 or nmore alarns pending. The pendi ng al arms

/'l are $al arns.
end

In the above example, the rule will look for all pending alarms in the working memory for each
given system and group them in ArrayLists. If 3 or more alarms are found for a given system,
the rule will fire.

The result pattern of collect can be any concrete class that implements the
java.util.Col | ecti on interface and provides a default no-arg public constructor. This means
that you can use Java collections like ArrayList, LinkedList, HashSet, etc., or your own class, as
long as it implements the j ava. util . Col | ecti on interface and provide a default no-arg public
constructor.

Both source and result patterns can be constrained as any other pattern.

Variables bound before the col | ect CE are in the scope of both source and result patterns
and therefore you can use them to constrain both your source and result patterns. But note that
col I ect is a scope delimiter for bindings, so that any binding made inside of it is not available
for use outside of it.

Collect accepts nested f r omCEs. The following example is a valid use of "collect":

i mport java.util.LinkedList;

rule "Send a nessage to all nothers"

when
$town : Town(nane == 'Paris')
$not hers : LinkedLi st ()
fromcollect(Person(gender == 'F', children > 0)
from $t own. get Peopl e()
)
t hen

/'l send a nessage to all nothers
end

250

Left Hand Side (when) syntax

7.8.3.7.4. Conditional Element accumul ate

O—b[paﬂem]—h[“from’]—-[‘accumulate’ }7
|

e

accumwateFunclion]—

- palfem “

Figure 7.27. accumulate

The Conditional Element accunul at e is a more flexible and powerful form of col | ect , inthe sense
that it can be used to do what col | ect does and also achieve results that the CE col | ect is not
capable of achieving. Accumulate allows a rule to iterate over a collection of objects, executing
custom actions for each of the elements, and at the end, it returns a result object.

Accumulate supports both the use of pre-defined accumulate functions, or the use of inline custom
code. Inline custom code should be avoided though, as it is harder for rule authors to maintain,
and frequently leads to code duplication. Accumulate functions are easier to test and reuse.

The Accumulate CE also supports multiple different syntaxes. The preferred syntax is the top level
accumulate, as noted bellow, but all other syntaxes are supported for backward compatibility.

7.8.3.7.4.1. Accumulate CE (preferred syntax)
The top level accumulate syntax is the most compact and flexible syntax. The simplified syntax
is as follows:

accurmul at e(<source pattern>; <functions> [;<constraints>])

For instance, a rule to calculate the minimum, maximum and average temperature reading for a
given sensor and that raises an alarm if the minimum temperature is under 20C degrees and the
average is over 70C degrees could be written in the following way, using Accumulate:

251

Chapter 7. Rule Language Refe...

rul e "Rai se al arnf
when
$s : Sensor ()
accumul at e(Readi ng(sensor == $s, $tenp : tenperature);
$min : min($tenmp),
$max @ max($tenp),
$avg : average($tenp);
$min < 20, $avg > 70)
t hen
/'l raise the alarm
end

In the above example, min, max and average are Accumulate Functions and will calculate the
minimum, maximum and average temperature values over all the readings for each sensor.

Drools ships with several built-in accumulate functions, including:

e average
* min

* max

e count

e sum

» collectList

collectSet

These common functions accept any expression as input. For instance, if someone wants to
calculate the average profit on all items of an order, a rule could be written using the average
function:

rule "Average profit"
when
$order : Order()
accurul ate(Orderltem order == $order, $cost : cost, S$price : price);
$avgProfit : average(1 - $cost / $price))
t hen

252

Left Hand Side (when) syntax

/'l average profit for $order is $avgProfit
end

Accumulate Functions are all pluggable. That means that if needed, custom, domain specific
functions can easily be added to the engine and rules can start to use them without any restrictions.
To implement a new Accumulate Function all one needs to do is to create a Java class that
implements the or g. drool s. core. runti me. rul e. TypedAccunul at eFunct i on interface. As an
example of an Accumulate Function implementation, the following is the implementation of the
aver age function:

/**
* An inplementation of an accunul ator capabl e of cal cul ati ng average val ues
*/
public class AverageAccunul at eFunction inplenents org.drools.core.runtine.rul e. TypedAccunul at el

public void readExternal (Qojectlnput in) throws | CException, C assNotFoundException {

public void witeExternal (CbjectQutput out) throws |COException {

public static class AverageData inplenments Externalizable {
public int count = O;
public double total = 0;

public AverageData() {}

public void readExternal (Objectlnput in) throws | OException, C assNotFoundException {
count = in.readlnt();
t ot al = in.readDoubl e();

public void witeExternal (ObjectQutput out) throws | COException {
out.witelnt(count);
out.witeDouble(total);

/* (non-Javadoc)
* @ee org.drool s. base. accunul at ors. Accunul at eFunct i on#cr eat eCont ext ()
*/
public Serializable createContext() {
return new AverageData();

253

Chapter 7. Rule Language Refe...

/* (non-Javadoc)
& &ee
org. drool s. core. base. accunul at ors. Accunul at eFuncti on#i ni t (j ava. | ang. Obj ect)
*/
public void init(Serializable context) throws Exception {
Aver ageDat a data = (AverageData) context;
dat a. count = O;
data.total =0

}
/* (non-Javadoc)
2 @ee
j ava. | ang. Obj ect)
*/
public void accurul ate(Seri al i zabl e cont ext,
bj ect value) {
Aver ageDat a data = (AverageData) context;
dat a. count ++
data.total += ((Nunber) val ue). doubl eVval ue();
}
/* (non-Javadoc)
2 @ee
j ava. | ang. Obj ect)
*/
public void reverse(Serializable context,
bj ect value) throws Exception {
Aver ageDat a data = (AverageData) context;
dat a. count - - ;
data.total -= ((Nunber) val ue). doubl eVval ue();
}
/* (non-Javadoc)
2 @ee

org. drool s. core. base. accunul at ors. Accunmul at eFunct i on#get Resul t (j ava. | ang. Obj ect)
*/
public Object getResult(Serializable context) throws Exception {
Aver ageDat a data = (AverageData) context;
return new Doubl e(data.count == 0 ? 0 : data.total / data.count);

/* (non-Javadoc)
* @ee
org. drool s. core. base. accunul at ors. Accunul at eFunct i on#support sRever se()
*/
publi ¢ bool ean supportsReverse() {

254

Left Hand Side (when) syntax

return true;

/**

* }

S

public dass< ? > getResultType() {
return Nunber. cl ass;

The code for the function is very simple, as we could expect, as all the "dirty" integration work
is done by the engine. Finally, to use the function in the rules, the author can import it using the
"import accumulate" statement:

i nport accumul ate <cl ass_nanme> <functi on_nane>

For instance, if one implements the class sone. package. Vari anceFuncti on function that
implements the vari ance function and wants to use it in the rules, he would do the following:

Example 7.77. Example of importing and using the custom "variance"
accumulate function

i mport accumul at e sone. package. Vari anceFuncti on vari ance

rule "Cal cul ate Variance"
when
accunul ate(Test($s : score), $v : variance($s))
t hen
/] the variance of the test scores is $v
end

g Note
-

The built in functions (sum, average, etc) are imported automatically by the engine.
Only user-defined custom accumulate functions need to be explicitly imported.

255

Chapter 7. Rule Language Refe...

drool s. accunul ate. functi on. vari ance = sone. package. Vari anceFuncti on

7.8.3.7.4.2. Alternate Syntax: single function with return type

The accumulate syntax evolved over time with the goal of becoming more compact and
expressive. Nevertheless, Drools still supports previous syntaxes for backward compatibility
purposes.

In case the rule is using a single accumulate function on a given accumulate, the author may
add a pattern for the result object and use the "from" keyword to link it to the accumulate result.
Example: a rule to apply a 10% discount on orders over $100 could be written in the following way:

rule "Apply 10% di scount to orders over US$ 100, 00"
when

$order : Order()

$total : Nunber(doubl eval ue > 100)

fromaccumul ate(Orderltem order == $order, $value : value),
sun($value))

t hen

apply discount to $order
end

In the above example, the accumulate element is using only one function (sum), and so, the rules
author opted to explicitly write a pattern for the result type of the accumulate function (Number)
and write the constraints inside it. There are no problems in using this syntax over the compact
syntax presented before, except that is is a bit more verbose. Also note that it is not allowed to
use both the return type and the functions binding in the same accumulate statement.

256

Left Hand Side (when) syntax

7.8.3.7.4.3. Accumulate with inline custom code

Warning

The use of accumulate with inline custom code is not a good practice for several
reasons, including difficulties on maintaining and testing rules that use them, as
well as the inability of reusing that code. Implementing your own accumulate
functions is very simple and straightforward, they are easy to unit test and to use.
This form of accumulate is supported for backward compatibility only.

Another possible syntax for the accumulate is to define inline custom code, instead of using
accumulate functions. As noted on the previous warned, this is discouraged though for the stated
reasons.

The general syntax of the accumul at e CE with inline custom code is:

<result pattern> from accunul ate(<source pattern>,
init(<init code>),
action(<action code>),
reverse(<reverse code>),
result(<result expression>))

The meaning of each of the elements is the following:

e <source pattern>: the source pattern is a regular pattern that the engine will try to match against
each of the source objects.

* <init code>: this is a semantic block of code in the selected dialect that will be executed once
for each tuple, before iterating over the source objects.

» <action code>: this is a semantic block of code in the selected dialect that will be executed for
each of the source objects.

» <reverse code>: this is an optional semantic block of code in the selected dialect that if present
will be executed for each source object that no longer matches the source pattern. The objective
of this code block is to undo any calculation done in the <action code> block, so that the engine
can do decremental calculation when a source object is modified or deleted, hugely improving
performance of these operations.

« <result expression>: this is a semantic expression in the selected dialect that is executed after
all source objects are iterated.

« <result pattern>: this is a regular pattern that the engine tries to match against the object
returned from the <result expression>. If it matches, the accumul at e conditional element

257

Chapter 7. Rule Language Refe...

evaluates to true and the engine proceeds with the evaluation of the next CE in the rule. If it
does not matches, the accunul at e CE evaluates to false and the engine stops evaluating CEs
for that rule.

It is easier to understand if we look at an example:

rule "Apply 10% di scount to orders over US$ 100, 00"
when
$order : Order()
$total : Nunber(doubl eVal ue > 100)
fromaccurmul ate(Orderlten(order == $order, $value : value),
init(double total = 0;),
action(total += $value;),
reverse(total -= $value;),
result(total))
t hen
apply discount to $order
end

In the above example, for each Order in the Working Memory, the engine will execute the init
code initializing the total variable to zero. Then it will iterate over all Or der I t emobjects for that
order, executing the action for each one (in the example, it will sum the value of all items into
the total variable). After iterating over all Or der | t emobjects, it will return the value corresponding
to the result expression (in the above example, the value of variable t ot al). Finally, the engine
will try to match the result with the Nunber pattern, and if the double value is greater than 100,
the rule will fire.

The example used Java as the semantic dialect, and as such, note that the usage of the semicolon
as statement delimiter is mandatory in the init, action and reverse code blocks. The result is an
expression and, as such, it does not admit ';'. If the user uses any other dialect, he must comply
to that dialect's specific syntax.

As mentioned before, the reverse code is optional, but it is strongly recommended that the user
writes it in order to benefit from the improved performance on update and delete.

The accunul at e CE can be used to execute any action on source objects. The following example
instantiates and populates a custom object:

rul e "Accunul ate using custom obj ects"
when
$person : Person($likes : likes)
$cheesery : Cheesery(total Ampunt > 100)
fromaccunul ate($cheese : Cheese(type == $likes),
init(Cheesery cheesery = new Cheesery();)
action(cheesery.addCheese($cheese);),
reverse(cheesery.renpveCheese($cheese);),

258

Left Hand Side (when) syntax

result(cheesery));
t hen
/1 do sonet hi ng
end

7.8.3.8. Conditional Element eval

‘eval’ 1) expression]—-[i]_"O

Figure 7.28. eval

The conditional element eval is essentially a catch-all which allows any semantic code (that
returns a primitive boolean) to be executed. This code can refer to variables that were bound in the
LHS of the rule, and functions in the rule package. Overuse of eval reduces the declarativeness
of your rules and can result in a poorly performing engine. While eval can be used anywhere in
the patterns, the best practice is to add it as the last conditional element in the LHS of a rule.

Evals cannot be indexed and thus are not as efficient as Field Constraints. However this makes
them ideal for being used when functions return values that change over time, which is not allowed
within Field Constraints.

For folks who are familiar with Drools 2.x lineage, the old Drools parameter and condition tags are
equivalent to binding a variable to an appropriate type, and then using it in an eval node.

pl : Paraneter()
p2 : Paraneter()
eval (pl.getList().containsKey(p2.getlten()))

pl : Paraneter()

p2 : Paraneter()

// call function isValid in the LHS
eval (isvValid(pl, p2))

7.8.3.9. Railroad diagrams

ScounmlateAction

@0 = o

Accumulatel | ause

(lmmuu'}@{ Condiiomalind |- @ — [AccumsicSicpe | {D

| Accumulaie Function |-

259

Chapter 7. Rule Language Refe...

AccumulateFunction

O
RN 1 a PN

Accunmulatelnit
GO
AcounmlasteResuli

AccumulateReverse

=0

AccumulateSieps

o O

i — :,_-' R

©

A AccumubseReverse |-
‘*—l.ﬁ.n:mnhi.-]!:ml |

~| Accumubie lnit |=| Accumubie Action |—

Accumulations

©

- demifies }@1 Accumubse Funcsem |-

hddili\rtE:;E}-.I
®,

2

O

Annodation

260

Left Hand Side (when) syntax

AurranyC reatorRest

NRClo]
LoE=0- P

AmayInitializer
©

-:;‘-I\f:-hhh]r:ih]irer If_ F{_-@-:—
o -®

AssignmentOperator

®

HHOOBEE000E

b

BindingPattern

s N
o= 0

Block
o0
BaoaleanLiteral
&

261

Chapter 7. Rule Language Refe...

CompilationUnit

e I vy

Conditional And

Conditional Element Accunmulate

(Cacowmitate) (O {Comimatind - { Accomubtees |(3)-
Conditional ElemeniEval
{wnlj@»{fmﬂﬁnﬂp |>®a
Conditional ElementExists
folE==alo}
Canditional ElementForall

(EoralL) () { BindingPumeem | (3
Conditional ElementNot

===
Conditional Element
ISR O R0}

262

Left Hand Side (when) syntax

Conditional OrExpr

iy

ofclelelole

#Bi

Conditional Or
D
: J

Constraints

_.".

I {ComtmioE |15 \ | Comdiomatorbage |

s

Crested Name
.. O ..
o] |
o R

Creator
‘ | MomWikicardType Asgumenns | - . [Ay Creararien |,
| Creaedame |
[efinition
«

263

Chapter 7. Rule Language Refe...

Digit

ExplicitGenericinvocationSuffix

*{'“F“}i SuperSuffix | .
1 Tkt fier ngmum |-

ExplicitCenericinyocation

{ ¥onWikicardType Arguments | { Asgumenss |-

Exponent

©

® 0

®
ExpressionList
—

Expression

o -
5,]
P S
- " f
i [.\-.I
i b

Field

[t () {@uidiome |-

Fraction

a B
O =1

FromAcooumulsteClause

{Em}l AccumubieC o |

From{Clamse

A £rom }{ Condioma)eExge |+

FromColleaiClause

(=) (Fie=) (D) Fmrmm | (D)

264

Left Hand Side (when) syntax

FunctionDrfinition

{ function].:-'f — :| Identifier HP‘:n.mﬂ:n H Black |

Cilobal Definition

(globul)| Type |{ Tk |-
[dentifierSuffix

pologelcl
T OE=I0O

Impont Definition

InExpr

-IRehli-:rnIEqr |-'

[nlineListExpr

@».-'“
[nlineMapEspr
, o 5
© F=10F=1 ©

InnerCreator

{ ldensifier || Argamenss |-

[nstancefExpr

a{.‘iqutmfjl-i Type |-,_,,

=3

265

Chapter 7. Rule Language Refe...

[ntLiteral

& =
‘O - H

1
-

-

Literal
‘ Boakanlieral \)

ModifyStatement

OrRestriction
- i
\E2

O

—{mﬂlm@a{]&uﬁr@’“ @

Parameters

: O :

- '=| Type || Idbewificr |: B

_@ b

O}

266

Left Hand Side (when) syntax

Placehalders

QualificdName

o

267

Chapter 7. Rule Language Refe...

(uery Definition

{ query) Swingld | QueryOptions |-
CueryDptions

Relational perator

Slollolole

268

Left Hand Side (when) syntax

RuleAtiribuies

O — g

o il

RuleAtiribute

(Lock-on-active)
{rentegorw)
| [(aetivationgromp)
{:d.ntc—cffucuu:),
- t
|
| O @

RuleDwfimition

(e) Seigld |{ RukeOpsioms |-~ | MheaPast |-
RuleOptions

-{ﬂttﬂﬂlj-lﬂﬂ'lg]dl— |Am|.] Rule Amritnnes

Selactor

(O (e [Sopersir

O, [foerCrosee |1
O)l lckertifier I:- -
@ 1

269

Chapter 7. Rule Language Refe...

RingleRestriction

,| Rehtionai0perator H ShiftExpr }

[ore== 1O

EpurcePattem

Q

SuperSuffix
' Idenifier | d
ThenPan
RisSaement |
TypeArsuments

O
o =10

TypeArgument

.- .
% | & %

270

Left Hand Side (when) syntax

TypeDefinition

Field

(Gatare) [Giedoms |{Tomomm] -—— (=)-

TypeCplions

—{m:}-{ raalifedName I;«.. { Annoation | |
Type

=y OO

P ‘

[IT}FW |) _@{I};

. -| Icemifier |-f v
UnaryExprdotPlusMinus
~\ Uy Fixge
tg_ I e
. e J— .
(-m'?{%l) i"'lg])
- | Primary |- -

271

Chapter 7. Rule Language Refe...

Variablelnitializer

Arraynitialeer
Engpression

‘WhenPar

@ CondiioralCr

7.8.4. The Right Hand Side (then)

7.8.4.1. Usage

The Right Hand Side (RHS) is a common name for the consequence or action part of the rule;
this part should contain a list of actions to be executed. It is bad practice to use imperative or
conditional code in the RHS of a rule; as a rule should be atomic in nature - "when this, then
do this", not "when this, maybe do this". The RHS part of a rule should also be kept small, thus
keeping it declarative and readable. If you find you need imperative and/or conditional code in the
RHS, then maybe you should be breaking that rule down into multiple rules. The main purpose of
the RHS is to insert, delete or modify working memory data. To assist with that there are a few
convenience methods you can use to modify working memory; without having to first reference
a working memory instance.

updat e(object, handle) ; will tell the engine that an object has changed (one that has been bound
to something on the LHS) and rules may need to be reconsidered.

updat e(object) ; can also be used; here the Knowledge Helper will look up the facthandle for you,
via an identity check, for the passed object. (Note that if you provide Property Change Listeners
to your Java beans that you are inserting into the engine, you can avoid the need to call updat e()
when the object changes.). After a fact's field values have changed you must call update before
changing another fact, or you will cause problems with the indexing within the rule engine. The
modify keyword avoids this problem.

i nsert (newSomething()); will place a new object of your creation into the Working Memory.

i nsert Logi cal (new Something()); is similar to insert, but the object will be automatically
deleted when there are no more facts to support the truth of the currently firing rule.

del et e(handle) ; removes an object from Working Memory.

These convenience methods are basically macros that provide short cuts to the Know edgeHel per
instance that lets you access your Working Memory from rules files. The predefined variable
drool s of type Know edgeHel per lets you call several other useful methods. (Refer to the
Knowl edgeHel per interface documentation for more advanced operations).

e The call drool s. hal t () terminates rule execution immediately. This is required for returning
control to the point whence the current session was put to work with fi reUnti | Hal t ().

272

The Right Hand Side (then)

Methods i nsert (Obj ect 0), updat e(CObj ect 0) and del et e(hj ect o) can be called on
dr ool s as well, but due to their frequent use they can be called without the object reference.

dr ool s. get Wor ki ngMenor y() returns the Wor ki ngMenor y object.
drool s. set Focus(String s) sets the focus to the specified agenda group.
drool s. get Rul e() . get Nane(), called from a rule's RHS, returns the name of the rule.

drool s. get Tupl e() returns the Tuple that matches the currently executing rule, and
drool s. get Acti vation() delivers the corresponding Activation. (These calls are useful for
logging and debugging purposes.)

The full Knowledge Runtime API is exposed through another predefined variable, kcont ext , of
type Ki eCont ext . Its method get Ki eRunt i me() delivers an object of type Ki eRunt i me, which, in
turn, provides access to a wealth of methods, many of which are quite useful for coding RHS logic.

The call kcont ext . get Ki eRunti me() . hal t () terminates rule execution immediately.

The accessor get Agenda() returns a reference to this session's Agenda, which in turn provides
access to the various rule groups: activation groups, agenda groups, and rule flow groups. A
fairly common paradigm is the activation of some agenda group, which could be done with the
lengthy call:

/1 give focus to the agenda group C eanUp
kcont ext . get Ki eRunti ne() . get Agenda() . get AgendaG oup("C eanUp"). set Focus();

(You can achieve the same using dr ool s. set Focus(" C eanUp").)

To run a query, you call get Quer yResul t s(String query), whereupon you may process the
results, as explained in section Query.

A set of methods dealing with event management lets you, among other things, add and remove
event listeners for the Working Memory and the Agenda.

Method get Ki eBase() returns the Ki eBase object, the backbone of all the Knowledge in your
system, and the originator of the current session.

You can manage globals with set @ obal (...), getd obal (...) and get d obal s().

Method get Envi ronment () returns the runtime's Envi ronment which works much like what
you know as your operating system's environment.

7.8.4.2. The nodi fy Statement

This language extension provides a structured approach to fact updates. It combines the update

operation with a number of setter calls to change the object's fields. This is the syntax schema

for the nodi f y statement:

273

Chapter 7. Rule Language Refe...

nmodi fy (<fact-expression>) {
<expression> [, <expression>]*

The parenthesized <fact-expression> must yield a fact object reference. The expression list in
the block should consist of setter calls for the given object, to be written without the usual object
reference, which is automatically prepended by the compiler.

The example illustrates a simple fact modification.

Example 7.78. A modify statement

rule "nodify stilton”
when
$stilton : Cheese(type == "stilton")
t hen
nodi fy($stilton){
setPrice(20),
set Age("overripe")

end
The advantages in using the modify statment are particularly clear when used in conjuction with
fine grained property change listeners. See the corresponding section for more details.

7.8.5. Conditional named consequences

Sometimes the constraint of having one single consequence for each rule can be somewhat
limiting and leads to verbose and difficult to be maintained repetitions like in the following example:

rule "G ve 10% di scount to custoners ol der than 60"

when

$cust omer : Custoner(age > 60)
t hen

nodi fy($custoner) { setDiscount(0.1) };
end

rule "Gve free parking to custoners ol der than 60"
when
$custonmer : Custoner(age > 60)
$car : Car (owner == S$custoner)
t hen
nodi fy($car) { setFreeParking(true) };
end

274

Conditional named consequences

It is already possible to partially overcome this problem by making the second rule extending the
first one like in:

rule "G ve 10% di scount to custoners ol der than 60"
when
$custoner : Custoner(age > 60)
t hen
nodi fy($custoner) { setDiscount(0.1) };
end

rule "Gve free parking to custoners ol der than 60"
extends "G ve 10% di scount to customers ol der than 60"
when
$car : Car (owner == S$custoner)
t hen
nodi fy($car) { setFreeParking(true) };
end

Anyway this feature makes it possible to define more labelled consequences other than the default
one in a single rule, so, for example, the 2 former rules can be compacted in only one like it follows:

rule "G ve 10%di scount and free parking to custoners ol der than 60"
when
$cust omer : Custoner(age > 60)
do[gi veDi scount]
$car : Car (owner == S$custoner)
t hen
nodi fy($car) { setFreeParking(true) };
t hen[gi veDi scount]
nmodi fy($custoner) { setDiscount(0.1) };
end

This last rule has 2 consequences, the usual default one, plus another one named "giveDiscount"
that is activated, using the keyword do, as soon as a customer older than 60 is found in the
knowledge base, regardless of the fact that he owns a car or not. The activation of a hamed
consequence can be also guarded by an additional condition like in this further example:

rule "Gve free parking to custonmers older than 60 and 10% di scount to gol den
ones anong t hent

when
$custonmer : Custoner(age > 60)
if (type == "Golden") do[giveDi scount]
$car : Car (owner == S$custoner)

t hen

275

Chapter 7. Rule Language Refe...

nmodi fy($car) { setFreeParking(true) };
t hen[gi veDi scount]

nodi fy($custoner) { setDiscount(0.1) };
end

The condition in the if statement is always evaluated on the pattern immediately preceding it. In
the end this last, a bit more complicated, example shows how it is possible to switch over different
conditions using a nested if/else statement:

rule "G ve free parking and 10% di scount to over 60 CGolden custonmer and 5% to
Silver ones"

when
$custoner : Custoner(age > 60)
if (type == "Golden") do[giveDi scount 10]
elseif (type == "Silver") break[giveD scountb5]
$car : Car (owner == S$custoner)

t hen

nodi fy($car) { setFreeParking(true) };
t hen[gi veDi scount 10]

nmodi fy($custoner) { setDiscount(0.1) };
t hen[gi veDi scount 5]

nodi fy($custoner) { setDiscount(0.05) };
end

Here the purpose is to give a 10% discount AND a free parking to Golden customers over 60, but
only a 5% discount (without free parking) to the Silver ones. This result is achieved by activating
the consequence named "giveDiscount5" using the keyword break instead of do. In fact do just
schedules a consequence in the agenda, allowing the remaining part of the LHS to continue of
being evaluated as per normal, while break also blocks any further pattern matching evaluation.
Note, of course, that the activation of a named consequence not guarded by any condition with
break doesn't make sense (and generates a compile time error) since otherwise the LHS part
following it would be never reachable.

7.8.6. A Note on Auto-boxing and Primitive Types

Drools attempts to preserve numbers in their primitive or object wrapper form, so a variable bound
to an int primitive when used in a code block or expression will no longer need manual unboxing;
unlike Drools 3.0 where all primitives were autoboxed, requiring manual unboxing. A variable
bound to an object wrapper will remain as an object; the existing JDK 1.5 and JDK 5 rules to
handle auto-boxing and unboxing apply in this case. When evaluating field constraints, the system
attempts to coerce one of the values into a comparable format; so a primitive is comparable to
an object wrapper.

276

Query

7.9. Query

(:}]

ey) —{(mame }~—(T~
—~ :- —(

[),

Figure 7.29. query

A query is a simple way to search the working memory for facts that match the stated conditions.
Therefore, it contains only the structure of the LHS of a rule, so that you specify neither "when"
nor "then". A query has an optional set of parameters, each of which can be optionally typed. If
the type is not given, the type Obiject is assumed. The engine will attempt to coerce the values
as needed. Query names are global to the KieBase; so do not add queries of the same name to
different packages for the same RuleBase.

To return the results use ksessi on. get Quer yResul t s("nane"), where "name" is the query's
name. This returns a list of query results, which allow you to retrieve the objects that matched
the query.

The first example presents a simple query for all the people over the age of 30. The second one,
using parameters, combines the age limit with a location.

Example 7.79. Query People over the age of 30

query "people over the age of 30"
person : Person(age > 30)
end

Example 7.80. Query People over the age of x, and who liveiny

query "people over the age of x" (int x, String y)

277

Chapter 7. Rule Language Refe...

person : Person(age > x, location ==y)
end

We iterate over the returned QueryResults using a standard "for" loop. Each element is a
QueryResultsRow which we can use to access each of the columns in the tuple. These columns
can be accessed by bound declaration name or index position.

Example 7.81. Query People over the age of 30

QueryResults results = ksessi on. get QueryResul ts("peopl e over the age of 30");
Systemout.println("we have " + results.size() +" people over the age of 30");

Systemout.println("These people are are over 30:");

for (QueryResultsRow row : results) {
Person person = (Person) row. get("person");
Systemout . println(person.getName() + "\n");

Support for positional syntax has been added for more compact code. By default the declared
type order in the type declaration matches the argument position. But it possible to override these
using the @position annotation. This allows patterns to be used with positional arguments, instead
of the more verbose named arguments.

decl are Cheese
name : String @osition(1l)
shop : String @osition(2)
price : int @osition(0)
end

The @Position annotation, in the org.drools.definition.type package, can be used to annotate
original pojos on the classpath. Currently only fields on classes can be annotated. Inheritance of
classes is supported, but not interfaces or methods. The isContainedin query below demonstrates
the use of positional arguments in a pattern; Locati on(x, y;) instead of Locati on(thing ==
X, location ==y).

Queries can now call other queries, this combined with optional query arguments provides
derivation query style backward chaining. Positional and named syntax is supported for
arguments. It is also possible to mix both positional and named, but positional must come first,
separated by a semi colon. Literal expressions can be passed as query arguments, but at this
stage you cannot mix expressions with variables. Here is an example of a query that calls another
guery. Note that 'z here will always be an 'out’ variable. The '?' symbol means the query is pull only,
once the results are returned you will not receive further results as the underlying data changes.

278

Query

decl are Location
thing : String
location : String
end

query isContainedln(String x, Stringy)
Location(x, y;)
or
(Location(z, y;) and ?isContainedln(x, z;))
end

As previously mentioned you can use live "open" queries to reactively receive changes over time
from the query results, as the underlying data it queries against changes. Notice the "look" rule
calls the query without using '?".

query isContainedln(String x, Stringy)
Location(x, vy;)
or
(Location(z, y;) and isContainedln(x, z;))
end

rul e | ook when

Person($I : likes)
i sContainedln($I, 'office';)
t hen
insertLogical ($ '"is in the office');

end

Drools supports unification for derivation queries, in short this means that arguments are optional.
It is possible to call queries from Java leaving arguments unspecified using the static field
org.drools.core.runtime.rule.Variable.v - note you must use 'v' and not an alternative instance of
Variable. These are referred to as 'out' arguments. Note that the query itself does not declare at
compile time whether an argument is in or an out, this can be defined purely at runtime on each
use. The following example will return all objects contained in the office.

results = ksessi on. get QueryResul ts("isContai nedln", new Object[] { Variable.v,
"office" });
| = new ArrayList<List<String>>();
for (QueryResultsRowr : results) {
|.add(Arrays.asList(new String[] { (String) r.get("x"), (String)
roget("y") }))
}

279

Chapter 7. Rule Language Refe...

The algorithm uses stacks to handle recursion, so the method stack will not blow up.

The following is not yet supported:

« List and Map unification
* Variables for the fields of facts

» Expression unification - pred(X, X+ 1, X*Y /7)

7.10. Domain Specific Languages

Domain Specific Languages (or DSLs) are a way of creating a rule language that is dedicated to
your problem domain. A set of DSL definitions consists of transformations from DSL "sentences"
to DRL constructs, which lets you use of all the underlying rule language and engine features.
Given a DSL, you write rules in DSL rule (or DSLR) files, which will be translated into DRL files.

DSL and DSLR files are plain text files, and you can use any text editor to create and modify them.
But there are also DSL and DSLR editors, both in the IDE as well as in the web based BRMS,
and you can use those as well, although they may not provide you with the full DSL functionality.

7.10.1. When to Use a DSL

DSLs can serve as a layer of separation between rule authoring (and rule authors) and the
technical intricacies resulting from the modelling of domain object and the rule engine's native
language and methods. If your rules need to be read and validated by domain experts (such as
business analysts, for instance) who are not programmers, you should consider using a DSL; it
hides implementation details and focuses on the rule logic proper. DSL sentences can also act as
"templates” for conditional elements and consequence actions that are used repeatedly in your
rules, possibly with minor variations. You may define DSL sentences as being mapped to these
repeated phrases, with parameters providing a means for accommodating those variations.

DSLs have no impact on the rule engine at runtime, they are just a compile time feature, requiring
a special parser and transformer.

7.10.2. DSL Basics

The Drools DSL mechanism allows you to customise conditional expressions and consequence
actions. A global substitution mechanism ("keyword") is also available.

Example 7.82. Example DSL mapping
[when] Somet hi ng is {col our}=Sonet hi ng(col our=="{col our}")

In the preceding example, [when] indicates the scope of the expression, i.e., whether it is valid
for the LHS or the RHS of a rule. The part after the bracketed keyword is the expression that you

280

DSL Basics

use in the rule; typically a natural language expression, but it doesn't have to be. The part to the
right of the equal sign ("=") is the mapping of the expression into the rule language. The form of
this string depends on its destination, RHS or LHS. If it is for the LHS, then it ought to be a term
according to the regular LHS syntax; if it is for the RHS then it might be a Java statement.

Whenever the DSL parser matches a line from the rule file written in the DSL with an expression in
the DSL definition, it performs three steps of string manipulation. First, it extracts the string values
appearing where the expression contains variable names in braces (here: {col our}). Then, the
values obtained from these captures are then interpolated wherever that name, again enclosed
in braces, occurs on the right hand side of the mapping. Finally, the interpolated string replaces
whatever was matched by the entire expression in the line of the DSL rule file.

Note that the expressions (i.e., the strings on the left hand side of the equal sign) are used as
regular expressions in a pattern matching operation against a line of the DSL rule file, matching all
or part of a line. This means you can use (for instance) a '?' to indicate that the preceding character
is optional. One good reason to use this is to overcome variations in natural language phrases of
your DSL. But, given that these expressions are regular expression patterns, this also means that
all "magic" characters of Java's pattern syntax have to be escaped with a preceding backslash ('\").

Itis important to note that the compiler transforms DSL rule files line by line. In the above example,
all the text after "Something is " to the end of the line is captured as the replacement value for
"{colour}", and this is used for interpolating the target string. This may not be exactly what you
want. For instance, when you intend to merge different DSL expressions to generate a composite
DRL pattern, you need to transform a DSLR line in several independent operations. The best way
to achieve this is to ensure that the captures are surrounded by characteristic text - words or even
single characters. As a result, the matching operation done by the parser plucks out a substring
from somewhere within the line. In the example below, quotes are used as distinctive characters.
Note that the characters that surround the capture are not included during interpolation, just the
contents between them.

As a rule of thumb, use quotes for textual data that a rule editor may want to enter. You can also
enclose the capture with words to ensure that the text is correctly matched. Both is illustrated by
the following example. Note that a single line such as Sonething is "green" and another
sol i d thing is now correctly expanded.

Example 7.83. Example with quotes

[when] somet hing is "{col our}"=Sonet hi ng(col our=="{col our}")
[when] anot her {state} thing=CQ herThing(state=="{state}"

It is a good idea to avoid punctuation (other than quotes or apostrophes) in your DSL expressions
as much as possible. The main reason is that punctuation is easy to forget for rule authors
using your DSL. Another reason is that parentheses, the period and the question mark are magic
characters, requiring escaping in the DSL definition.

281

Chapter 7. Rule Language Refe...

In a DSL mapping, the braces "{" and "}" should only be used to enclose a variable definition or
reference, resulting in a capture. If they should occur literally, either in the expression or within the
replacement text on the right hand side, they must be escaped with a preceding backslash ("\"):

[then] do something= if (foo) \{ doSonething(); \}

@ Note

If braces "{" and "}" should appear in the replacement string of a DSL definition,
escape them with a backslash ('\').

Example 7.84. Examples of DSL mapping entries

This is a conment to be ignored.

[when] There is a person with nane of "{nane}"=Person(nanme=="{nane}")

[when] Person is at |east {age} years old and lives in "{location}"=
Person(age >= {age}, location=="{location}")

[then] Log "{nmessage}"=Systemout.println("{message}");

[when] And = and

Given the above DSL examples, the following examples show the expansion of various DSLR
shippets:

Example 7.85. Examples of DSL expansions

There is a person with name of "Kitty"
==> Person(nane="Kitty")
Person is at |least 42 years old and lives in "Atlanta
==> Person(age >= 42, location="Atlanta")
Log "boo"
==> Systemout. println("boo");
There is a person with name of "Bob" and Person is at |east 30 years old and
lives in "Uah"
==> Person(nane="Bob") and Person(age >= 30, |ocation="Utah")

282

Adding Constraints to Facts

@ Note
Don't forget that if you are capturing plain text from a DSL rule line and want to
use it as a string literal in the expansion, you must provide the quotes on the right
hand side of the mapping.

You can chain DSL expressions together on one line, as long as it is clear to the parser where
one ends and the next one begins and where the text representing a parameter ends. (Otherwise
you risk getting all the text until the end of the line as a parameter value.) The DSL expressions
are tried, one after the other, according to their order in the DSL definition file. After any match,
all remaining DSL expressions are investigated, too.

The resulting DRL text may consist of more than one line. Line ends are in the replacement text
are written as \ n.

7.10.3. Adding Constraints to Facts

A common requirement when writing rule conditions is to be able to add an arbitrary combination
of constraints to a pattern. Given that a fact type may have many fields, having to provide an
individual DSL statement for each combination would be plain folly.

The DSL facility allows you to add constraints to a pattern by a simple convention: if your DSL
expression starts with a hyphen (minus character, "-") it is assumed to be a field constraint and,
consequently, is is added to the last pattern line preceding it.

For an example, lets take look at class Cheese, with the following fields: type, price, age and
country. We can express some LHS condition in normal DRL like the following

Cheese(age < 5, price == 20, type=="stilton", country=="ch")

The DSL definitions given below result in three DSL phrases which may be used to create any
combination of constraint involving these fields.

[when] There is a Cheese w t h=Cheese()

[when] - age is | ess than {age}=age<{age}

[when] - type is '{type}' =type=="{type}’

[when] - country equal to '{country}'=country=="{country}’

You can then write rules with conditions like the following:

There is a Cheese with
- age is less than 42

283

Chapter 7. Rule Language Refe...

- type is 'stilton'

The parser will pick up a line beginning with "-" and add it as a constraint to the preceding pattern,
inserting a comma when it is required. For the preceding example, the resulting DRL is:

Cheese(age<42, type=='stilton')

Combining all all numeric fields with all relational operators (according to the DSL expression "age
is less than..." in the preceding example) produces an unwieldy amount of DSL entries. But you
can define DSL phrases for the various operators and even a generic expression that handles
any field constraint, as shown below. (Notice that the expression definition contains a regular
expression in addition to the variable name.)

[when][]is | ess than or equal to=<=

[when][]is less than=<

[when][]is greater than or equal to=>=

[when][]is greater than=>

[when][]is equal to===

[when] [] equal s===

[when][] There is a Cheese w t h=Cheese()

[when][]- {field:\w} {operator} {value:\d*}={field} {operator} {val ue}

Given these DSL definitions, you can write rules with conditions such as:

There is a Cheese with
- age is less than 42
- rating is greater than 50
- type equals 'stilton'

In this specific case, a phrase such as "is less than" is replaced by <, and then the line matches
the last DSL entry. This removes the hyphen, but the final result is still added as a constraint to
the preceding pattern. After processing all of the lines, the resulting DRL text is:

Cheese(age<42, rating > 50, type=="stilton")

284

Developing a DSL

@ Note

The order of the entries in the DSL is important if separate DSL expressions are
intended to match the same line, one after the other.

7.10.4. Developing a DSL

A good way to get started is to write representative samples of the rules your application requires,
and to test them as you develop. This will provide you with a stable framework of conditional
elements and their constraints. Rules, both in DRL and in DSLR, refer to entities according to
the data model representing the application data that should be subject to the reasoning process
defined in rules. Notice that writing rules is generally easier if most of the data model's types are
facts.

Given an initial set of rules, it should be possible to identify recurring or similar code snippets and
to mark variable parts as parameters. This provides reliable leads as to what might be a handy
DSL entry. Also, make sure you have a full grasp of the jargon the domain experts are using, and
base your DSL phrases on this vocabulary.

You may postpone implementation decisions concerning conditions and actions during this first
design phase by leaving certain conditional elements and actions in their DRL form by prefixing a
line with a greater sign (">"). (This is also handy for inserting debugging statements.)

During the next development phase, you should find that the DSL configuration stabilizes pretty
quickly. New rules can be written by reusing the existing DSL definitions, or by adding a parameter
to an existing condition or consequence entry.

Try to keep the number of DSL entries small. Using parameters lets you apply the same DSL
sentence for similar rule patterns or constraints. But do not exaggerate: authors using the DSL
should still be able to identify DSL phrases by some fixed text.

7.10.5. DSL and DSLR Reference

A DSL file is a text file in a line-oriented format. Its entries are used for transforming a DSLR file
into a file according to DRL syntax.

A line starting with "#" or "//" (with or without preceding white space) is treated as a comment.
A comment line starting with "#/" is scanned for words requesting a debug option, see below.

« Any line starting with an opening bracket ("[") is assumed to be the first line of a DSL entry
definition.

« Any other line is appended to the preceding DSL entry definition, with the line end replaced
by a space.

285

Chapter 7. Rule Language Refe...

A DSL entry consists of the following four parts:

e A scope definition, written as one of the keywords "when" or "condition", "then" or
"consequence", "*" and "keyword", enclosed in brackets ("[" and "]"). This indicates whether the
DSL entry is valid for the condition or the consequence of a rule, or both. A scope indication
of "keyword" means that the entry has global significance, i.e., it is recognized anywhere in a

DSLR file.

» Atype definition, written as a Java class hame, enclosed in brackets. This part is optional unless
the the next part begins with an opening bracket. An empty pair of brackets is valid, too.

« A DSL expression consists of a (Java) regular expression, with any number of embedded
variable definitions, terminated by an equal sign ("="). A variable definition is enclosed in braces
("{" and "}"). It consists of a variable name and two optional attachments, separated by colons
(":"). If there is one attachment, it is a regular expression for matching text that is to be assigned
to the variable; if there are two attachments, the first one is a hint for the GUI editor and the
second one the regular expression.

Note that all characters that are "magic" in regular expressions must be escaped with a
preceding backslash ("\") if they should occur literally within the expression.

« The remaining part of the line after the delimiting equal sign is the replacement text for any
DSLR text matching the regular expression. It may contain variable references, i.e., a variable
name enclosed in braces. Optionally, the variable name may be followed by an exclamation
mark ("!") and a transformation function, see below.

Note that braces ("{" and "}") must be escaped with a preceding backslash ("\") if they should
occur literally within the replacement string.

Debugging of DSL expansion can be turned on, selectively, by using a comment line starting with
"#/" which may contain one or more words from the table presented below. The resulting output
is written to standard output.

Table 7.2. Debug options for DSL expansion

Word Description

result Prints the resulting DRL text, with line numbers.

steps Prints each expansion step of condition and
consequence lines.

keyword Dumps the internal representation of all DSL
entries with scope "keyword".

when Dumps the internal representation of all DSL
entries with scope "when" or "*".

then Dumps the internal representation of all DSL
entries with scope "then" or "*".

286

DSL and DSLR Reference

Word Description

‘ usage Displays a usage statistic of all DSL entries. ‘

Below are some sample DSL definitions, with comments describing the language features they
illustrate.

Conment: DSL exanpl es
#/ debug: display result and usage

keyword definition: replaces "regula" by "rule"
[keyword] []regul a=rul e

conditional elenent: "T" or "t", "a" or "an", convert matched word
[when][]1[Tt]here is an? {entity:\wt}=
${entityllc}: {entitylucfirst} ()

consequence statement: convert matched word, literal braces
[then][]update {entity:\w+}=nodify(${entity!lc})\{ \}

The transformation of a DSLR file proceeds as follows:

1. The text is read into memory.

2. Each of the "keyword" entries is applied to the entire text. First, the regular expression from the
keyword definition is modified by replacing white space sequences with a pattern matching any
number of white space characters, and by replacing variable definitions with a capture made
from the regular expression provided with the definition, or with the default (".*?"). Then, the
DSLR text is searched exhaustively for occurrences of strings matching the modified regular
expression. Substrings of a matching string corresponding to variable captures are extracted
and replace variable references in the corresponding replacement text, and this text replaces
the matching string in the DSLR text.

3. Sections of the DSLR text between "when" and "then", and "then" and "end", respectively, are
located and processed in a uniform manner, line by line, as described below.

For a line, each DSL entry pertaining to the line's section is taken in turn, in the order it appears
in the DSL file. Its regular expression part is modified: white space is replaced by a pattern
matching any number of white space characters; variable definitions with a regular expression
are replaced by a capture with this regular expression, its default being ".*?". If the resulting
regular expression matches all or part of the line, the matched part is replaced by the suitably
modified replacement text.

Modification of the replacement text is done by replacing variable references with the text
corresponding to the regular expression capture. This text may be modified according to the
string transformation function given in the variable reference; see below for details.

287

Chapter 7. Rule Language Refe...

If there is a variable reference naming a variable that is not defined in the same entry, the
expander substitutes a value bound to a variable of that name, provided it was defined in one
of the preceding lines of the current rule.

4. If a DSLR line in a condition is written with a leading hyphen, the expanded result is inserted
into the last line, which should contain a pattern CE, i.e., a type name followed by a pair of
parentheses. if this pair is empty, the expanded line (which should contain a valid constraint)

is simply inserted, otherwise a comma (",") is inserted beforehand.

Ifa DSLR line in a consequence is written with a leading hyphen, the expanded result is inserted
into the last line, which should contain a "modify" statement, ending in a pair of braces ("{" and
"I"). If this pair is empty, the expanded line (which should contain a valid method call) is simply

inserted, otherwise a comma (",") is inserted beforehand.

@ Note
It is currently not possible to use a line with a leading hyphen to insert text into
other conditional element forms (e.g., "accumulate") or it may only work for the first
insertion (e.g., "eval").

All string transformation functions are described in the following table.

Table 7.3. String transformation functions

Name Description

uc Converts all letters to upper case.
Ic Converts all letters to lower case.
ucfirst Converts the first letter to upper case, and all

other letters to lower case.

num Extracts all digits and "-" from the string. If the
last two digits in the original string are preceded

by "." or ",", a decimal period is inserted in the
corresponding position.

a?blc Compares the string with string a, and if they
are equal, replaces it with b, otherwise with c.
But ¢ can be another triplet a, b, c, so that the
entire structure is, in fact, a translation table.

The following DSL examples show how to use string transformation functions.

definitions for conditions
[when][] There is an? {entity}=${entity!lc}: {entitylucfirst}()
[when][]- with an? {attr} greater than {amount}={attr} <= {anount!nun}

288

DSL and DSLR Reference

[when][]1- with a {what} {attr}={attr} {what! positive?>0/negative?%t;0/zero?==0/
ERROR}

A file containing a DSL definition has to be put under the resources folder or any of its subfolders
like any other drools artifact. It must have the extension . dsl, or alternatively be marked with
type Resour ceType. DSL. when programmatically added to a Ki eFi | eSyst em For a file using DSL
definition, the extension . dsl r should be used, while it can be added to a Ki eFi | eSyst emwith
type Resour ceType. DSLR.

For parsing and expanding a DSLR file the DSL configuration is read and supplied to the parser.
Thus, the parser can "recognize" the DSL expressions and transform them into native rule
language expressions.

289

290

Chapter 8.

Chapter 8. Complex Event
Processing

8.1. Complex Event Processing

There is no broadly accepted definition on the term Complex Event Processing. The term Event
by itself is frequently overloaded and used to refer to several different things, depending on the
context it is used. Defining terms is not the goal of this guide and as so, lets adopt a loose definition
that, although not formal, will allow us to proceed with a common understanding.

So, in the scope of this guide:

Important

Event, is a record of a significant change of state in the application domain at a
given point in time.

For instance, on a Stock Broker application, when a sale operation is executed, it causes a change
of state in the domain. This change of state can be observed on several entities in the domain,
like the price of the securities that changed to match the value of the operation, the ownership of
the traded assets that changed from the seller to the buyer, the balance of the accounts from both
seller and buyer that are credited and debited, etc. Depending on how the domain is modelled, this
change of state may be represented by a single event, multiple atomic events or even hierarchies
of correlated events. In any case, in the context of this guide, Event is the record of the change
of a particular piece of data in the domain.

Events are processed by computer systems since they were invented, and throughout the
history, systems responsible for that were given different names and different methodologies were
employed. It wasn't until the 90's though, that a more focused work started on EDA (Event Driven
Architecture) with a more formal definition on the requirements and goals for event processing.
Old messaging systems started to change to address such requirements and new systems started
to be developed with the single purpose of event processing. Two trends were born under the
names of Event Stream Processing and Complex Event Processing.

In the very beginnings, Event Stream Processing was focused on the capabilities of processing
streams of events in (near) real time, while the main focus of Complex Event Processing was on
the correlation and composition of atomic events into complex (compound) events. An important
(maybe the most important) milestone was the publishing of Dr. David Luckham's book "The
Power of Events" in 2002. In the book, Dr Luckham introduces the concept of Complex Event
Processing and how it can be used to enhance systems that deal with events. Over the years,
both trends converged to a common understanding and today these systems are all referred to
as CEP systems.

291

Chapter 8. Complex Event Proc...

This is a very simplistic explanation to a really complex and fertile field of research, but sets a high
level and common understanding of the concepts that this guide will introduce.

The current understanding of what Complex Event Processing is may be briefly described as the
following quote from Wikipedia:

Important

"Complex Event Processing, or CEP, is primarily an event
processing concept that deals with the task of processing multiple
events with the goal of identifying the meaningful events within
the event cloud. CEP employs techniques such as detection
of complex patterns of many events, event correlation and
abstraction, event hierarchies, and relationships between events
such as causality, membership, and timing, and event-driven

processes."
—Wikipedia [http://en.wikipedia.org/wiki/
Complex_event_processing]

In other words, CEP is about detecting and selecting the interesting events (and only them) from
an event cloud, finding their relationships and inferring new data from them and their relationships.

E] Note
For the remaining of this guide, we will use the terms Complex Event Processing
and CEP as a broad reference for any of the related technologies and techniques,
including but not limited to, CEP, Complex Event Processing, ESP, Event Stream
Processing and Event Processing in general.

8.2. Drools Fusion

Event Processing use cases, in general, share several requirements and goals with Business
Rules use cases. These overlaps happen both on the business side and on the technical side.

On the Business side:

» Business rules are frequently defined based on the occurrence of scenarios triggered by events.
Examples could be:

» On an algorithmic trading application: take an action if the security price increases X%
compared to the day opening price, where the price increases are usually denoted by events
on a Stock Trade application.

» On a monitoring application: take an action if the temperature on the server room increases
X degrees in Y minutes, where sensor readings are usually denoted by events.

292

http://en.wikipedia.org/wiki/Complex_event_processing
http://en.wikipedia.org/wiki/Complex_event_processing
http://en.wikipedia.org/wiki/Complex_event_processing

Drools Fusion

« Both business rules and event processing queries change frequently and require immediate
response for the business to adapt itself to new market conditions, new regulations and new
enterprise policies.

From a technical perspective:

« Both require seamless integration with the enterprise infrastructure and applications, specially
on autonomous governance, including, but not limited to, lifecycle management, auditing,
security, etc.

« Both have functional requirements like pattern matching and non-functional requirements like
response time and query/rule explanation.

Even sharing requirements and goals, historically, both fields were born appart and although
the industry evolved and one can find good products on the market, they either focus on event
processing or on business rules management. That is due not only because of historical reasons
but also because, even overlapping in part, use cases do have some different requirements.

Important

Drools was also born as a rules engine several years ago, but following the vision
of becoming a single platform for behavioral modelling, it soon realized that it could
only achieve this goal by crediting the same importance to the three complementary
business modelling techniques:

e Business Rules Management
» Business Processes Management

» Complex Event Processing

In this context, Drools Fusion is the module responsible for adding event processing capabilities
into the platform.

Supporting Complex Event Processing, though, is much more than simply understanding what an
event is. CEP scenarios share several common and distinguishing characteristics:

 Usually required to process huge volumes of events, but only a small percentage of the events
are of real interest.

» Events are usually immutable, since they are a record of state change.

« Usually the rules and queries on events must run in reactive modes, i.e., react to the detection
of event patterns.

293

Chapter 8. Complex Event Proc...

» Usually there are strong temporal relationships between related events.

« Individual events are usually not important. The system is concerned about patterns of related
events and their relationships.

« Usually, the system is required to perform composition and aggregation of events.

Based on this general common characteristics, Drools Fusion defined a set of goals to be achieved
in order to support Complex Event Processing appropriately:

» Support Events, with their proper semantics, as first class citizens.

« Allow detection, correlation, aggregation and composition of events.

» Support processing of Streams of events.

» Support temporal constraints in order to model the temporal relationships between events.
» Support sliding windows of interesting events.

» Support a session scoped unified clock.

« Support the required volumes of events for CEP use cases.

» Support to (re)active rules.

« Support adapters for event input into the engine (pipeline).

The above list of goals are based on the requirements not covered by Drools Expert itself, since
in a unified platform, all features of one module are leveraged by the other modules. This way,
Drools Fusion is born with enterprise grade features like Pattern Matching, that is paramount to a
CEP product, but that is already provided by Drools Expert. In the same way, all features provided
by Drools Fusion are leveraged by Drools Flow (and vice-versa) making process management
aware of event processing and vice-versa.

For the remaining of this guide, we will go through each of the features Drools Fusion adds to the
platform. All these features are available to support different use cases in the CEP world, and the
user is free to select and use the ones that will help him model his business use case.

8.3. Event Semantics

An event is a fact that present a few distinguishing characteristics:

« Usually immutables: since, by the previously discussed definition, events are a record of a
state change in the application domain, i.e., a record of something that already happened,
and the past can not be "changed", events are immutables. This constraint is an important

294

Event Processing Modes

requirement for the development of several optimizations and for the specification of the event
lifecycle. This does not mean that the Java object representing the object must be immutable.
Quite the contrary, the engine does not enforce immutability of the object model, because one
of the most common use cases for rules is event data enrichment.

E] Note
As a best practice, the application is allowed to populate un-populated event
attributes (to enrich the event with inferred data), but already populated attributes
should never be changed.

» Strong temporal constraints: rules involving events usually require the correlation of multiple
events, specially temporal correlations where events are said to happen at some point in time
relative to other events.

* Managed lifecycle: due to their immutable nature and the temporal constraints, events usually
will only match other events and facts during a limited window of time, making it possible for
the engine to manage the lifecycle of the events automatically. In other words, one an event is
inserted into the working memory, it is possible for the engine to find out when an event can no
longer match other facts and automatically delete it, releasing its associated resources.

« Use of sliding windows: since all events have timestamps associated to them, it is possible
to define and use sliding windows over them, allowing the creation of rules on aggregations of
values over a period of time. Example: average of an event value over 60 minutes.

Drools supports the declaration and usage of events with both semantics: point-in-time events
and interval-based events.

@ Note
A simplistic way to understand the unitification of the semantics is to consider a
point-in-time event as an interval-based event whose duration is zero.

8.4. Event Processing Modes

Rules engines in general have a well known way of processing data and rules and provide the
application with the results. Also, there is not many requirements on how facts should be presented
to the rules engine, specially because in general, the processing itself is time independent. That
is a good assumption for most scenarios, but not for all of them. When the requirements include
the processing of real time or near real time events, time becomes and important variable of the
reasoning process.

The following sections will explain the impact of time on rules reasoning and the two modes
provided by Drools for the reasoning process.

295

Chapter 8. Complex Event Proc...

8.4.1. Cloud Mode

The CLOUD processing mode is the default processing mode. Users of rules engine are familiar
with this mode because it behaves in exactly the same way as any pure forward chaining rules
engine, including previous versions of Drools.

When running in CLOUD mode, the engine sees all facts in the working memory, does not matter
if they are regular facts or events, as a whole. There is no notion of flow of time, although events
have a timestamp as usual. In other words, although the engine knows that a given event was
created, for instance, on January 1st 2009, at 09:35:40.767, it is not possible for the engine to
determine how "old" the event is, because there is no concept of "now".

In this mode, the engine will apply its usual many-to-many pattern matching algorithm, using the
rules constraints to find the matching tuples, activate and fire rules as usual.

This mode does not impose any kind of additional requirements on facts. So for instance:

« There is no notion of time. No requirements clock synchronization.

e There is no requirement on event ordering. The engine looks at the events as an unordered
cloud against which the engine tries to match rules.

On the other hand, since there is no requirements, some benefits are not available either. For
instance, in CLOUD mode, it is not possible to use sliding windows, because sliding windows are
based on the concept of "now" and there is no concept of "now" in CLOUD mode.

Since there is no ordering requirement on events, it is not possible for the engine to determine
when events can no longer match and as so, there is no automatic life-cycle management for
events. l.e., the application must explicitly delete events when they are no longer necessary, in
the same way the application does with regular facts.

Cloud mode is the default execution mode for Drools, but in any case, as any other configuration
in Drools, it is possible to change this behavior either by setting a system property, using
configuration property files or using the API. The corresponding property is:

Ki eBaseConfigurati on config = Ki eServices. Factory. get (). newKi eBaseConfi guration();
config.setOption(EventProcessi ngOpti on. CLOUD);

The equivalent property is:

dr ool s. event Processi ngMbde = cl oud

296

Stream Mode

8.4.2. Stream Mode

The STREAM processing mode is the mode of choice when the application needs to process
streams of events. It adds a few common requirements to the regular processing, but enables a
whole lot of features that make stream event processing a lot simpler.

The main requirements to use STREAM mode are:

« Events in each stream must be time-ordered. l.e., inside a given stream, events that happened
first must be inserted first into the engine.

» The engine will force synchronization between streams through the use of the session clock,
so, although the application does not need to enforce time ordering between streams, the use
of non-time-synchronized streams may result in some unexpected results.

Given that the above requirements are met, the application may enable the STREAM mode using

the following API:

Ki eBaseConfiguration config = KieServices. Factory. get (). newKi eBaseConfi guration();
config.setOption(EventProcessi ngOpti on. STREAM) ;

Or, the equivalent property:

dr ool s. event Processi nghbde = stream

When using the STREAM, the engine knows the concept of flow of time and the concept of "now",
i.e., the engine understands how old events are based on the current timestamp read from the
Session Clock. This characteristic allows the engine to provide the following additional features
to the application:

* Sliding Window support
» Automatic Event Lifecycle Management
« Automatic Rule Delaying when using Negative Patterns

All these features are explained in the following sections.
8.4.2.1. Role of Session Clock in Stream mode

When running the engine in CLOUD mode, the session clock is used only to time stamp the
arriving events that don't have a previously defined timestamp attribute. Although, in STREAM
mode, the Session Clock assumes an even more important role.

297

Chapter 8. Complex Event Proc...

In STREAM mode, the session clock is responsible for keeping the current timestamp, and based
on it, the engine does all the temporal calculations on event's aging, synchronizes streams from
multiple sources, schedules future tasks and so on.

Check the documentation on the Session Clock section to know how to configure and use different
session clock implementations.

8.4.2.2. Negative Patterns in Stream Mode

Negative patterns behave different in STREAM mode when compared to CLOUD mode. In
CLOUD mode, the engine assumes that all facts and events are known in advance (there is no
concept of flow of time) and so, negative patterns are evaluated immediately.

When running in STREAM mode, negative patterns with temporal constraints may require the
engine to wait for a time period before activating a rule. The time period is automatically calculated
by the engine in a way that the user does not need to use any tricks to achieve the desired result.

For instance:

Example 8.1. a rule that activates immediately upon matching

rul e "Sound the al arnt
when
$f : FireDetected()
not (SprinklerActivated())
t hen
/'l sound the alarm
end

The above rule has no temporal constraints that would require delaying the rule, and so, the rule
activates immediately. The following rule on the other hand, must wait for 10 seconds before
activating, since it may take up to 10 seconds for the sprinklers to activate:

Example 8.2. a rule that automatically delays activation due to temporal
constraints

rule "Sound the al arnt
when
$f : FireDetected()
not (SprinklerActivated(this after[0Os, 10s] $f))
t hen
/] sound the alarm
end

298

Session Clock

This behaviour allows the engine to keep consistency when dealing with negative patterns and
temporal constraints at the same time. The above would be the same as writing the rule as below,
but does not burden the user to calculate and explicitly write the appropriate duration parameter:

Example 8.3. same rule with explicit duration parameter

rule "Sound the al arnt
duration(10s)
when
$f : FireDetected()
not (SprinklerActivated(this after[0Os, 10s] $f))
t hen
/1 sound the alarm
end

The following rule expects every 10 seconds at least one “Heartbeat” event, if not the rule fires.
The special case in this rule is that we use the same type of the object in the first pattern and in
the negative pattern. The negative pattern has the temporal constraint to wait between 0 to 10
seconds before firing and it excludes the Heartbeat bound to $h. Excluding the bound Heartbeat
is important since the temporal constraint [0s, ...] does not exclude by itself the bound event $h
from being matched again, thus preventing the rule to fire.

Example 8.4. excluding bound events in negative patterns

rule "Sound the alarnt

when
$h: Heartbeat() from entry-point "MonitoringStreant
not(Heartbeat(this != $h, this after[0s,10s] $h) from entry-point
"Moni toringStreant)
t hen
/1 Sound the alarm
end

8.5. Session Clock

Reasoning over time requires a reference clock. Just to mention one example, if a rule reasons
over the average price of a given stock over the last 60 minutes, how the engine knows what stock
price changes happened over the last 60 minutes in order to calculate the average? The obvious
response is: by comparing the timestamp of the events with the "current time". How the engine
knows what time is now? Again, obviously, by querying the Session Clock.

The session clock implements a strategy pattern, allowing different types of clocks to be plugged
and used by the engine. This is very important because the engine may be running in an elements
of different scenarios that may require different clock implementations. Just to mention a few:

299

Chapter 8. Complex Event Proc...

* Rules testing: testing always requires a controlled environment, and when the tests include
rules with temporal constraints, it is necessary to not only control the input rules and facts, but
also the flow of time.

* Regular execution: usually, when running rules in production, the application will require a real
time clock that allows the rules engine to react immediately to the time progression.

e Special environments: specific environments may have specific requirements on time
control. Cluster environments may require clock synchronization through heart beats, or JEE
environments may require the use of an AppServer provided clock, etc.

* Rules replay or simulation: to replay scenarios or simulate scenarios it is necessary that the
application also controls the flow of time.

8.5.1. Available Clock Implementations

Drools 5 provides 2 clock implementations out of the box. The default real time clock, based on
the system clock, and an optional pseudo clock, controlled by the application.

8.5.1.1. Real Time Clock

By default, Drools uses a real time clock implementation that internally uses the system clock to
determine the current timestamp.

To explicitly configure the engine to use the real time clock, just set the session configuration
parameter to real time:

Ki eSessi onConfi guration config = Ki eServi ces. Factory. get (). newKi eSessi onConfi guration();
config.setOption(C ockTypeOption.get("realtine"));

8.5.1.2. Pseudo Clock

Drools also offers out of the box an implementation of a clock that is controlled by the application
that is called Pseudo Clock. This clock is specially useful for unit testing temporal rules since it
can be controlled by the application and so the results become deterministic.

To configure the pseudo session clock, do:

Ki eSessi onConfi guration config = Ki eServi ces. Factory. get (). newKi eSessi onConfi guration();
config.setOption(C ockTypeOption. get("pseudo"));

As an example of how to control the pseudo session clock:

Ki eSessi onConfiguration config = Ki eServi ces. Factory. get (). newKi eSessi onConfi guration();
conf.set Option(O ockTypeQption.get("pseudo"));

300

Sliding Windows

Ki eSessi on session = kbase. newKi eSessi on(conf, null);
Sessi onPseudoC ock cl ock = sessi on. get Sessi ond ock();

/'l then, while inserting facts, advance the clock as necessary:
Fact Handl e handl el = session.insert(tickl);

cl ock. advanceTi me(10, Ti neUnit.SECONDS);

Fact Handl e handl e2 = session.insert(tick2);

cl ock. advanceTi me(30, Ti meUnit.SECONDS);

Fact Handl e handl e3 = session.insert(tick3);

8.6. Sliding Windows

Sliding Windows are a way to scope the events of interest by defining a window that is constantly
moving. The two most common types of sliding window implementations are time based windows
and length based windows.

The next sections will detail each of them.

Important

Sliding Windows are only available when running the engine in STREAM mode.
Check the Event Processing Mode section for details on how the STREAM mode
works.

Important

Sliding windows start to match immediately and defining a sliding window does
not imply that the rule has to wait for the sliding window to be "full* in order to
match. For instance, a rule that calculates the average of an event property on a
window:length(10) will start calculating the average immediately, and it will start at
0 (zero) for no-events, and will update the average as events arrive one by one.

8.6.1. Sliding Time Windows

Sliding Time Windows allow the user to write rules that will only match events occurring in the
last X time units.

For instance, if the user wants to consider only the Stock Ticks that happened in the last 2 minutes,
the pattern would look like this:

St ockTi ck() over w ndow tine(2m)

301

Chapter 8. Complex Event Proc...

Drools uses the "over" keyword to associate windows to patterns.

On a more elaborate example, if the user wants to sound an alarm in case the average temperature
over the last 10 minutes read from a sensor is above the threshold value, the rule would look like:

Example 8.5. aggregating values over time windows

rule "Sound the alarmin case tenperature rises above threshol d"
when
Tenper at ur eThr eshol d($max : max)
Nunmber (doubl eVal ue > $max) from accumnul at g(
Sensor Readi ng($tenp : tenperature) over w ndow tinme(10m),
average($temp))
t hen
/1 sound the alarm
end

The engine will automatically disregard any SensorReading older than 10 minutes and keep the
calculated average consistent.

Important

Please note that time based windows are considered when calculating the interval
an event remains in the working memaory before being expired, but an event falling
off a sliding window does not mean by itself that the event will be discarded from
the working memory, as there might be other rules that depend on that event. The
engine will discard events only when no other rules depend on that event and the
expiration policy for that event type is fulfilled.

8.6.2. Sliding Length Windows

Sliding Length Windows work the same way as Time Windows, but consider events based on
order of their insertion into the session instead of flow of time.

For instance, if the user wants to consider only the last 10 RHT Stock Ticks, independent of how
old they are, the pattern would look like this:

St ockTi ck(conpany == "RHT") over wi ndow | ength(10)

As you can see, the pattern is similar to the one presented in the previous section, but instead of
using window:time to define the sliding window, it uses window:length.

302

Streams Support

Using a similar example to the one in the previous section, if the user wants to sound an alarm
in case the average temperature over the last 100 readings from a sensor is above the threshold
value, the rule would look like:

Example 8.6. aggregating values over length windows

rule "Sound the alarmin case tenperature rises above threshol d"
when
Tenper at ureThreshol d($max : max)
Nurber (doubl eVal ue > $nmax) from accunul at e(
Sensor Readi ng($tenp : tenperature) over wi ndow | ength(100),
average($temp))
t hen
/1 sound the alarm
end

The engine will keep only consider the last 100 readings to calculate the average temperature.

Important

Please note that falling off a length based window is not criteria for event expiration
in the session. The engine disregards events that fall off a window when calculating
that window, but does not remove the event from the session based on that
condition alone as there might be other rules that depend on that event.

Important

Please note that length based windows do not define temporal constraints for event
expiration from the session, and the engine will not consider them. If events have
no other rules defining temporal constraints and no explicit expiration policy, the
engine will keep them in the session indefinitely.

8.7. Streams Support

Most CEP use cases have to deal with streams of events. The streams can be provided to the
application in various forms, from JMS queues to flat text files, from database tables to raw sockets
or even through web service calls. In any case, the streams share a common set of characteristics:

« events in the stream are ordered by a timestamp. The timestamp may have different semantics
for different streams but they are always ordered internally.

 volumes of events are usually high.

303

Chapter 8. Complex Event Proc...

« atomic events are rarely useful by themselves. Usually meaning is extracted from the correlation
between multiple events from the stream and also from other sources.

« streams may be homogeneous, i.e. contain a single type of events, or heterogeneous, i.e.
contain multiple types of events.

Drools generalized the concept of a stream as an "entry point" into the engine. An entry point is for
drools a gate from which facts come. The facts may be regular facts or special facts like events.

In Drools, facts from one entry point (stream) may join with facts from any other entry point or
event with facts from the working memory. Although, they never mix, i.e., they never lose the
reference to the entry point through which they entered the engine. This is important because one
may have the same type of facts coming into the engine through several entry points, but one
fact that is inserted into the engine through entry point A will never match a pattern from a entry
point B, for example.

8.7.1. Declaring and Using Entry Points

Entry points are declared implicitly in Drools by directly making use of them in rules. l.e. referencing
an entry point in a rule will make the engine, at compile time, to identify and create the proper
internal structures to support that entry point.

So, for instance, lets imagine a banking application, where transactions are fed into the system
coming from streams. One of the streams contains all the transactions executed in ATM machines.
So, if one of the rules says: a withdraw is authorized if and only if the account balance is over the
requested withdraw amount, the rule would look like:

Example 8.7. Example of Stream Usage

rule "aut horize withdraw'

when
Wt hdrawRequest ($ai : accountld, $am: amount) fromentry-point "ATM St reant
Checki ngAccount (accountld == $ai, bal ance > $am)

t hen
/1 authorize w thdraw

end

In the previous example, the engine compiler will identify that the pattern is tied to the entry point
"ATM Stream" and will both create all the necessary structures for the rulebase to support the
"ATM Stream" and will only match WithdrawRequests coming from the "ATM Stream". In the
previous example, the rule is also joining the event from the stream with a fact from the main
working memory (CheckingAccount).

Now, lets imagine a second rule that states that a fee of $2 must be applied to any account for
which a withdraw request is placed at a bank branch:

304

Declaring and Using Entry Points

Example 8.8. Using a different Stream

rule "apply fee on withdraws on branches"

when
Wt hdrawRequest ($ai : accountld, processed == true) from entry-point
"Branch Streant
Checki ngAccount (accountld == $ai)
t hen

/'l apply a $2 fee on the account
end

The previous rule will match events of the exact same type as the first rule (WithdrawRequest),
but from two different streams, so an event inserted into "ATM Stream” will never be evaluated
against the pattern on the second rule, because the rule states that it is only interested in patterns
coming from the "Branch Stream".

So, entry points, besides being a proper abstraction for streams, are also a way to scope facts
in the working memory, and a valuable tool for reducing cross products explosions. But that is a
subject for another time.

Inserting events into an entry point is equally simple. Instead of inserting events directly into the
working memory, insert them into the entry point as shown in the example below:

Example 8.9. Inserting facts into an entry point

/1 create your rul ebase and your session as usua
Ki eSessi on session = ...

/1l get a reference to the entry point
EntryPoi nt atnfStream = sessi on. get EntryPoi nt ("ATM Streant);

/1 and start inserting your facts into the entry point
atnStream i nsert(aWthdrawRequest);

The previous example shows how to manually insert facts into a given entry point. Although,
usually, the application will use one of the many adapters to plug a stream end point, like a IMS
queue, directly into the engine entry point, without coding the inserts manually. The Drools pipeline
API has several adapters and helpers to do that as well as examples on how to do it.

305

Chapter 8. Complex Event Proc...

8.8. Memory Management for Events

Important

The automatic memory management for events is only performed when running
the engine in STREAM mode. Check the Event Processing Mode section for details
on how the STREAM mode works.

One of the benefits of running the engine in STREAM mode is that the engine can detect when
an event can no longer match any rule due to its temporal constraints. When that happens, the
engine can safely delete the event from the session without side effects and release any resources
used by that event.

There are basically 2 ways for the engine to calculate the matching window for a given event:

« explicitly, using the expiration policy

« implicitly, analyzing the temporal constraints on events

8.8.1. Explicit expiration offset

The first way of allowing the engine to calculate the window of interest for a given event type is
by explicitly setting it. To do that, just use the declare statement and define an expiration for the
fact type:

Example 8.10. explicitly defining an expiration offset of 30 minutes for
StockTick events

decl are St ockTi ck
@xpires(30m)
end

The above example declares an expiration offset of 30 minutes for StockTick events. After that
time, assuming no rule still needs the event, the engine will expire and remove the event from
the session automatically.

8.8.2. Inferred expiration offset

Another way for the engine to calculate the expiration offset for a given event is implicitly, by
analyzing the temporal constraints in the rules. For instance, given the following rule:

306

Temporal Reasoning

Example 8.11. example rule with temporal constraints

rule "correl ate orders”
when
$bo : BuyOrderEvent($id : id)
$ae : AckEvent(id == $id, this after[0,10s] $bo)
t hen
/'l do somet hi ng
end

Analyzing the above rule, the engine automatically calculates that whenever a BuyOrderEvent
matches, it needs to store it for up to 10 seconds to wait for matching AckEvent's. So, the implicit
expiration offset for BuyOrderEvent will be 10 seconds. AckEvent, on the other hand, can only
match existing BuyOrderEvent's, and so its expiration offset will be zero seconds.

The engine will make this analysis for the whole rulebase and find the offset for every event type.
Whenever an implicit expiration offset clashes with the explicit expiration offset, then engine will
use the greater of the two.

8.9. Temporal Reasoning

Temporal reasoning is another requirement of any CEP system. As discussed previously, one of
the distinguishing characteristics of events is their strong temporal relationships.

Temporal reasoning is an extensive field of research, from its roots on Temporal Modal Logic to its
more practical applications in business systems. There are hundreds of papers and thesis written
and approaches are described for several applications. Drools once more takes a pragmatic and
simple approach based on several sources, but specially worth noting the following papers:

[ALLENS81] Allen, J.F.. An Interval-based Representation of Temporal Knowledge. 1981.
[ALLENS3] Allen, J.F.. Maintaining knowledge about temporal intervals. 1983.

[BENNEOQ] by Bennet, Brandon and Galton, Antony P.. A Unifying Semantics for Time and
Events. 2005.

[YONEKOS5] by Yoneki, Eiko and Bacon, Jean. Unified Semantics for Event Correlation Over Time
and Space in Hybrid Network Environments. 2005.

Drools implements the Interval-based Time Event Semantics described by Allen, and represents
Point-in-Time Events as Interval-based evens with duration O (zero).

@ Note
For all temporal operator intervals, the "*" (star) symbol is used to indicate positive
infinity and the "-*" (minus star) is used to indicate negative infinity.

307

Chapter 8. Complex Event Proc...

8.9.1. Temporal Operators

Drools implements all 13 operators defined by Allen and also their logical complement (negation).
This section details each of the operators and their parameters.

8.9.1.1. After

The after evaluator correlates two events and matches when the temporal distance from the
current event to the event being correlated belongs to the distance range declared for the operator.

Lets look at an example:

$event A : EventA(this after[3nB0s, 4m] S$eventB)

The previous pattern will match if and only if the temporal distance between the time when $eventB
finished and the time when $eventA started is between (3 minutes and 30 seconds) and (4
minutes). In other words:

3nB0s <= $event A. start Ti mestanp - $event B. endTi meStanp <= 4m

The temporal distance interval for the after operator is optional:

« If two values are defined (like in the example below), the interval starts on the first value and
finishes on the second.

« If only one value is defined, the interval starts on the value and finishes on the positive infinity.

« If no value is defined, it is assumed that the initial value is 1ms and the final value is the positive
infinity.

$event A : EventA(this after[-3nB0s, -2m] $eventB)

308

Temporal Operators

$event A : EventA(this after[-3nB0s, -2m] $eventB)
$event A : EventA(this after[-2m -3nB0s] $eventB)

Event A(this after $soneDate)

8.9.1.2. Before

The before evaluator correlates two events and matches when the temporal distance from the
event being correlated to the current correlated belongs to the distance range declared for the
operator.

Lets look at an example:

$event A : Event A(this before[3nB0s, 4m] $eventB)

The previous pattern will match if and only if the temporal distance between the time when $eventA
finished and the time when $eventB started is between (3 minutes and 30 seconds) and (4
minutes). In other words:

3nB0s <= $eventB.startTi mestanp - $event A endTi meStanp <= 4m

The temporal distance interval for the before operator is optional:

« If two values are defined (like in the example below), the interval starts on the first value and
finishes on the second.

« If only one value is defined, then the interval starts on the value and finishes on the positive
infinity.

« If no value is defined, it is assumed that the initial value is 1ms and the final value is the positive
infinity.

309

Chapter 8. Complex Event Proc...

$event A : Event A(this before[-3nB0s, -2m] $eventB)

$event A : Event A(this before[-3nB0s, -2m] $eventB)
$event A : EventA(this before[-2m -3nB0s] $eventB)

Event A(this after $soneDate)

8.9.1.3. Coincides

The coincides evaluator correlates two events and matches when both happen at the same
time. Optionally, the evaluator accept thresholds for the distance between events' start and finish
timestamps.

Lets look at an example:

$event A : Event A(this coincides $eventB)

The previous pattern will match if and only if the start timestamps of both $eventA and $eventB
are the same AND the end timestamp of both $eventA and $eventB also are the same.

310

Temporal Operators

Optionally, this operator accepts one or two parameters. These parameters are the thresholds for
the distance between matching timestamps.

 If only one parameter is given, it is used for both start and end timestamps.

* If two parameters are given, then the first is used as a threshold for the start timestamp and the
second one is used as a threshold for the end timestamp.

In other words:

$event A : Event A(this coincides[15s, 10s] $eventB)

Above pattern will match if and only if:

abs($event A startTi mestanp - $eventB.startTinestanp) <= 15s &&
abs($event A endTi nestanp - $event B. endTi nestanp) <= 10s

Warning

It makes no sense to use negative interval values for the parameters and the engine
will raise an error if that happens.

@ Note
The after, before and coincides operators can be used to define constraints
between events, java.util.Date attributes, and long attributes (interpreted as
timestamps since epoch) in any combination. Example:

Event A(this after $soneDate)

8.9.1.4. During

The during evaluator correlates two events and matches when the current event happens during
the occurrence of the event being correlated.

Lets look at an example:

$event A : Event A(this during $eventB)

311

Chapter 8. Complex Event Proc...

The previous pattern will match if and only if the $eventA starts after $eventB starts and finishes
before $eventB finishes.

In other words:

$eventB.startTimestanp < $eventA startTinmestanp <= $eventA endTinestanp <
$event B. endTi mest anp

The during operator accepts 1, 2 or 4 optional parameters as follow:

* If one value is defined, this will be the maximum distance between the start timestamp of both
event and the maximum distance between the end timestamp of both events in order to operator
match. Example:

$event A : EventA(this during[5s] $eventB)

Will match if and only if:

0 < $eventA startTinmestanp - $eventB.startTi mestanp <= 5s &&
0 < $eventB. endTi mestanp - $event A endTi nestanp <= 5s

« If two values are defined, the first value will be the minimum distance between the timestamps
of both events, while the second value will be the maximum distance between the timestamps
of both events. Example:

$event A : EventA(this during][5s, 10s] $eventB)

Will match if and only if:

5s <= $event A. startTi nestanp - $eventB.start Ti nestanp <= 10s &&
5s <= $event B. endTi nestanp - $event A. endTi nestanp <= 10s

« If four values are defined, the first two values will be the minimum and maximum distances
between the start timestamp of both events, while the last two values will be the minimum and
maximum distances between the end timestamp of both events. Example:

$event A : EventA(this during[2s, 6s, 4s, 10s] $eventB)

312

Temporal Operators

Will match if and only if:

2s <= $event A startTi mestanp - $eventB.start Ti mestanp <= 6s &&
4s <= $event B. endTi nest anp - $event A endTi nestanp <= 10s

8.9.1.5. Finishes

The finishes evaluator correlates two events and matches when the current event's start
timestamp happens after the correlated event's start timestamp, but both end timestamps occur
at the same time.

Lets look at an example:

$event A : Event A(this finishes $eventB)

The previous pattern will match if and only if the $eventA starts after $eventB starts and finishes
at the same time $eventB finishes.

In other words:

$event B. start Ti mestanp < $event A. start Ti nestanp &&
$event A endTi nest anp == $event B. endTi mest anp

The finishes evaluator accepts one optional parameter. If it is defined, it determines the maximum
distance between the end timestamp of both events in order for the operator to match. Example:

$event A : EventA(this finishes[5s] $eventB)

Will match if and only if:

$event B. start Ti mestanp < $event A start Ti nestanp &&
abs($event A endTi mestanp - $event B. endTi mestanp) <= 5s

A Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

313

Chapter 8. Complex Event Proc...

8.9.1.6. Finished By

The finishedby evaluator correlates two events and matches when the current event start
timestamp happens before the correlated event start timestamp, but both end timestamps occur
at the same time. This is the symmetrical opposite of finishes evaluator.

Lets look at an example:

$event A : Event A(this finishedby $eventB)

The previous pattern will match if and only if the $eventA starts before $eventB starts and finishes
at the same time $eventB finishes.

In other words:

$event A start Ti mestanp < $event B. start Ti nest anp &&
$event A. endTi mest anp == $event B. endTi mest anp

The finishedby evaluator accepts one optional parameter. If it is defined, it determines the
maximum distance between the end timestamp of both events in order for the operator to match.
Example:

$event A : EventA(this finishedby[5s] $eventB)

Will match if and only if:

$event A. start Ti mestanp < $eventB.start Ti mestanp &&
abs($event A endTi nestanp - $eventB. endTi mestanp) <= 5s

Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

8.9.1.7. Includes

The includes evaluator correlates two events and matches when the event being correlated
happens during the current event. It is the symmetrical opposite of during evaluator.

Lets look at an example:

314

Temporal Operators

$event A : Event A(this includes $eventB)

The previous pattern will match if and only if the $eventB starts after $eventA starts and finishes
before $eventA finishes.

In other words:

$event A . start Tinestanp < S$eventB.startTinmestanp <= $eventB.endTi nestanp <
$event A. endTi nest anp

The includes operator accepts 1, 2 or 4 optional parameters as follow:

« If one value is defined, this will be the maximum distance between the start timestamp of both
event and the maximum distance between the end timestamp of both events in order to operator
match. Example:

$event A : EventA(this includes[5s] $eventB)

Will match if and only if:

0 < $eventB.startTimestanp - $event A start Ti mestanp <= 5s &&
0 < $event A endTi nestanp - $event B. endTi nest anp <= 5s

« If two values are defined, the first value will be the minimum distance between the timestamps
of both events, while the second value will be the maximum distance between the timestamps
of both events. Example:

$event A : Event A(this includes[5s, 10s] $eventB)

Will match if and only if:

5s <= $eventB.startTi nestanp - $event A start Ti mestanp <= 10s &&
5s <= $event A. endTi nestanp - $event B. endTi nest anp <= 10s

« If four values are defined, the first two values will be the minimum and maximum distances
between the start timestamp of both events, while the last two values will be the minimum and
maximum distances between the end timestamp of both events. Example:

315

Chapter 8. Complex Event Proc...

$event A : EventA(this includes[2s, 6s, 4s, 10s] $eventB)

Will match if and only if:

2s <= $eventB.startTi nestanp - $event A startTi nestanp <= 6s &&
4s <= $event A endTi nestanp - $event B. endTi mest anp <= 10s

8.9.1.8. Meets

The meets evaluator correlates two events and matches when the current event's end timestamp
happens at the same time as the correlated event's start timestamp.

Lets look at an example:

$event A : Event A(this neets $eventB)

The previous pattern will match if and only if the $eventA finishes at the same time $eventB starts.

In other words:

abs($eventB.startTi mestanp - $event A endTi mestanp) ==

The meets evaluator accepts one optional parameter. If it is defined, it determines the maximum
distance between the end timestamp of current event and the start timestamp of the correlated
event in order for the operator to match. Example:

$event A : EventA(this neets[5s] $eventB)

Will match if and only if:

abs($eventB.startTi mestanp - $event A endTi mestanp) <= 5s

Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

316

Temporal Operators

8.9.1.9. Met By

The metby evaluator correlates two events and matches when the current event's start timestamp
happens at the same time as the correlated event's end timestamp.

Lets look at an example:

$event A : Event A(this netby $eventB)

The previous pattern will match if and only if the $eventA starts at the same time $eventB finishes.

In other words:

abs($event A startTi mestanp - S$eventB. endTi mestanp) ==

The metby evaluator accepts one optional parameter. If it is defined, it determines the maximum
distance between the end timestamp of the correlated event and the start timestamp of the current
event in order for the operator to match. Example:

$event A : EventA(this nmetby[5s] $eventB)

Will match if and only if:

abs($event A startTi mestanp - $event B. endTi nest anp) <= 5s

A Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

8.9.1.10. Overlaps

The overlaps evaluator correlates two events and matches when the current event starts before
the correlated event starts and finishes after the correlated event starts, but before the correlated
event finishes. In other words, both events have an overlapping period.

Lets look at an example:

$event A : Event A(this overlaps $eventB)

317

Chapter 8. Complex Event Proc...

The previous pattern will match if and only if:

$event A . start Tinestanp < S$eventB.startTinestanp < $eventA endTi mestanp <
$event B. endTi mest anp
The overlaps operator accepts 1 or 2 optional parameters as follow:

« If one parameter is defined, this will be the maximum distance between the start timestamp of
the correlated event and the end timestamp of the current event. Example:

$event A : Event A(this overlaps[5s] $eventB)

Will match if and only if:

$event A . startTinestanp < $eventB.startTimestanp < $event A endTi mestanp <
$event B. endTi nest anp &&
0 <= $event A endTi nestanp - $eventB.start Ti mestanp <= 5s

« If two values are defined, the first value will be the minimum distance and the second value
will be the maximum distance between the start timestamp of the correlated event and the end
timestamp of the current event. Example:

$event A : Event A(this overlaps[5s, 10s] $eventB)

Will match if and only if:

$event A startTimestanp < $eventB.startTinestanp < $event A endTi mestanp <
$event B. endTi nest anp &&
5s <= $event A endTi nestanp - $event B.start Ti nestanp <= 10s

8.9.1.11. Overlapped By

The overlappedby evaluator correlates two events and matches when the correlated event starts
before the current event starts and finishes after the current event starts, but before the current
event finishes. In other words, both events have an overlapping period.

Lets look at an example:

$event A : Event A(this overl appedby $eventB)

318

Temporal Operators

The previous pattern will match if and only if:

$eventB.start Tinestanp < $eventA startTinestanp < $eventB. endTi mestanp <
$event A. endTi mest anp

The overlappedby operator accepts 1 or 2 optional parameters as follow:

« If one parameter is defined, this will be the maximum distance between the start timestamp of
the current event and the end timestamp of the correlated event. Example:

$event A : Event A(this overlappedby[5s] $eventB)

Will match if and only if:

$eventB.startTinestanp < $eventA startTinmestanp < $eventB. endTi mestanp <
$event A endTi nest anp &&
0 <= $eventB. endTi nestanp - $event A start Ti mestanp <= 5s

« If two values are defined, the first value will be the minimum distance and the second value
will be the maximum distance between the start timestamp of the current event and the end
timestamp of the correlated event. Example:

$event A : Event A(this overl appedby[5s, 10s] $eventB)

Will match if and only if:

$eventB.startTinestanp < $eventA startTimestanp < $eventB. endTi mestanp <
$event A endTi nest anp &&
5s <= $event B. endTi nestanp - $event A. start Ti nestanp <= 10s

8.9.1.12. Starts

The starts evaluator correlates two events and matches when the current event's end timestamp
happens before the correlated event's end timestamp, but both start timestamps occur at the
same time.

Lets look at an example:

319

Chapter 8. Complex Event Proc...

$event A : EventA(this starts $eventB)

The previous pattern will match if and only if the $eventA finishes before $eventB finishes and
starts at the same time $eventB starts.

In other words:

$event A. start Ti mestanp == $event B. start Ti nestanp &&
$event A endTi nest anp < $event B. endTi nest anp

The starts evaluator accepts one optional parameter. If it is defined, it determines the maximum
distance between the start timestamp of both events in order for the operator to match. Example:

$event A : EventA(this starts[5s] $eventB)

Will match if and only if:

abs($event A startTi nestanp - $eventB.startTinmestanp) <= 5s &&
$event A endTi nest anp < $event B. endTi nest anp

A Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

8.9.1.13. Started By

The startedby evaluator correlates two events and matches when the correlating event's end
timestamp happens before the current event's end timestamp, but both start timestamps occur at
the same time. Lets look at an example:

$event A : Event A(this startedby $eventB)

The previous pattern will match if and only if the $eventB finishes before $eventA finishes and
starts at the same time $eventB starts.

In other words:

320

Temporal Operators

$event A. start Ti mestanp == $event B. start Ti nestanp &&
$event A. endTi mest anp > $event B. endTi nmest anp

The startedby evaluator accepts one optional parameter. If it is defined, it determines the maximum
distance between the start timestamp of both events in order for the operator to match. Example:

$event A : EventA(this starts[5s] $eventB)

Will match if and only if:

abs($event A startTi mestanp - $eventB.startTimestanp) <= 5s &&
$event A. endTi nest anp > $event B. endTi mest anp

Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

321

322

Part IV. Drools Integration

Integration Documentation

Chapter 9.

Chapter 9. Drools Commands

9.1. API

XML marshalling/unmarshalling of the Drools Commands requires the use of special classes,
which are going to be described in the following sections.

The following urls show sample script examples for jaxb, xstream and json marshalling using:

* http://ffisheye.jboss.org/browse/IJBossRules/trunk/drools-camel/src/test/resources/org/drools/
camel/component/jaxb.mvt?r=HEAD

* http://fisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/
camel/component/jaxb.mvt?r=HEAD

« http://ffisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/
camel/component/xstream.mvt?r=HEAD

9.1.1. XStream

To use the XStream commands marshaller you need to use the DroolsHelperProvider to obtain
an XStream instance. We need to use this because it has the commands converters registered.

« Marshalling
BatchExecutionHelperProviderimpl.newXStreamMarshaller().toXML(command);
* Unmarshalling

BatchExecutionHelperProviderimpl.newXStreamMarshaller().fromXML(xml)

9.1.2. JSON

JSON API to marshalling/unmarshalling is similar to XStream API:

» Marshalling
BatchExecutionHelper.newJSonMarshaller().toXML(command);
e Unmarshalling

BatchExecutionHelper.newJSonMarshaller().fromXML(xml)

9.1.3. JAXB

There are two options for using JAXB, you can define your model in an XSD file or you can have
a POJO model. In both cases you have to declare your model inside JAXBContext, and in order
to do that you need to use Drools Helper classes. Once you have the JAXBContext you need to
create the Unmarshaller/Marshaller as needed.

325

Chapter 9. Drools Commands

9.1.3.1. Using an XSD file to define the model

With your model defined in a XSD file you need to have a KnowledgeBase that has your XSD
model added as a resource.

To do this, the XSD file must be added as a XSD ResourceType into the KnowledgeBuilder. Finally
you can create the JAXBContext using the KnowledgeBase created with the KnowledgeBuilder

Options xjcOpts = new Options();

Xj cOpt s. set SchenaLanguage(Language. XMLSCHEMA) ;

JaxbConfiguration jaxbConfigurati on = Know edgeBui | der Fact ory. newJaxbConfi gurati on(xjcOpts, ">
kbui | der . add(Resour ceFact ory. newCl assPat hResour ce(" person. xsd", getCd ass()), ResourceType. XSD,
Knowl edgeBase kbase = kbui |l der. newKnow edgeBase();

Li st<String> classesNanme = new ArrayLi st<String>();
cl assesNane. add(" org. drool s. conpi |l er. test. Person");

JAXBCont ext jaxbCont ext = Know edgeBui | der Hel per . newJAXBCont ext (cl assesName. t oArray(new Stri ng|

9.1.3.2. Using a POJO model

In this case you need to use DroolsJaxbHelperProviderimpl to create the JAXBContext. This class
has two parameters:

1. classNames: A List with the canonical name of the classes that you want to use in the
marshalling/unmarshalling process.

2. properties: JAXB custom properties

Li st<String> classNames = new ArrayList<String>();

cl assNames. add("org. drool s. conpi | er. test. Person");

JAXBCont ext j axbCont ext = Dr ool sJaxbHel per Provi der | npl . creat eDr ool sJaxbCont ext (cl assNanes, nul |
Mar shal | er marshal |l er = jaxbContext.createMarshaller();

9.2. Commands supported

Currently, the following commands are supported:

+ BatchExecutionCommand
« InsertObjectCommand

¢ RetractCommand

326

Commands supported

* ModifyCommand

e GetObjectCommand

* InsertElementsCommand

* FireAllRulesCommand

+ StartProcessCommand
 SignalEventCommand

e CompleteWorkltemCommand
» AbortWorkltemCommand

* QueryCommand

+ SetGlobalCommand

» GetGlobalCommand

* GetObjectsCommand

-

String xm = BatchExecuti onHel per. newxstreamnvarshal | er ().t oXM.(conmmand);

= Bat chExecut i onHel per. newJSonMar shal | er ().t oXM.(conmand) ;

327

Chapter 9. Drools Commands

* JAXB

Mar shal | er marshal | er = jaxbCont ext.createMarshaller();
StringWiter xm = new StringWiter();

mar shal | er. set Property(Marshal | er. JAXB_FORMATTED_QOUTPUT, true)
mar shal | er. mar shal (command, xm);

9.2.1. BatchExecutionCommand

» Description: The command that contains a list of commands, which will be sent and executed.

» Attributes

Table 9.1. BatchExecutionCommand attributes

Name Description required

lookup Sets the knowledge session true
id on which the commands
are going to be executed

commands List of commands to be false
executed

« Command creation

Bat chExecut i onCommand command = new Bat chExecut i onCommand() ;

command. set Lookup("ksessi onl");

I nsert Cbj ect Conmand i nsert Obj ect Command = new | nsert Cbj ect Conmand(new Person("j ohn", 25));
Fi reAl | Rul esConmand fireAl | Rul esCommand = new FireAl | Rul esConmand() ;

command. get Commands() . add(i nsert Qbj ect Cormand) ;

command. get Commands() . add(fi reAl | Rul esConmand) ;

* XML output

e XStream

<bat ch- executi on | ookup="ksessi onl1">
<i nsert>
<or g. drool s. conpi | er.test. Person>
<nane>j ohn</ nane>
<age>25</ age>

328

InsertObjectCommand

</ org.drool s. conpil er.test. Person>
</insert>
<fire-all-rules/>
</ bat ch- execut i on>

» JSON

{"bat ch-execution": {"l ookup": "ksessi onl", "conmands":[{"i nsert":{"object":
{"org.drool s. conpiler.test.Person":{"nane":"john", "age": 25}}}},{"fire-all-
rules":""}]1}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl1">
<i nsert>
<obj ect xsi:type="person" xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena-
i nstance" >
<age>25</ age>
<name>j ohn</ nane>
</ obj ect >
</insert>
<fire-all-rules max="-1"/>
</ bat ch- execut i on>

9.2.2. InsertObjectCommand

« Description: Insert an object in the knowledge session.

» Attributes

Table 9.2. InsertObjectCommand attributes

Name Description required
object The object to be inserted true
outldentifier Id to identify the FactHandle false

created in the object insertion
and added to the execution
results

329

Chapter 9. Drools Commands

Name Description required

returnObject Boolean to establish if the false
object must be returned in

the execution results. Default
value: true

entryPoint Entrypoint for the insertion false

« Command creation

Li st <Conmand> cmds = Arrayli st <Command>();

Command i nsert Obj ect Command = CommandFact ory. newl nsert (new Person("john", 25), "john", false
crmds. add(i nsert Cbj ect Conmand) ;

Bat chExecut i onCommand comand = CommandFact ory. cr eat eBat chExecuti on(cnds, "ksessionl");

« XML output

* XStream

<bat ch- executi on | ookup="ksessi onl">
<i nsert out-identifier="john" entry-poi nt ="ny st rean return-
obj ect="fal se">
<org. drool s. conpi | er. test. Person>
<name>j ohn</ nane>
<age>25</ age>
</ org.drool s.conpil er.test. Person>
</insert>
</ bat ch- execut i on>

* JSON

{"bat ch-execution": {"l ookup": "ksessi onl", "conmands": {"insert":{"entry-
point":"my strean', "out-identifier":"john","return-object":fal se,"object":
{"org.drool s. conpiler.test.Person":{"nane":"john", "age": 25}}}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">

330

RetractCommand

<insert out-identifier="john" entry-point="ny streant >
<obj ect xsi:type="person" xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena-
i nst ance" >
<age>25</ age>
<nane>j ohn</ nane>
</ obj ect >
</insert>
</ bat ch- execut i on>

9.2.3. RetractCommand

» Description: Retract an object from the knowledge session.

» Attributes

Table 9.3. RetractCommand attributes

Description required

handle The FactHandle associated to true
the object to be retracted

» Command creation: we have two options, with the same output result:

1. Create the Fact Handle from a string

Bat chExecut i onCommand comand = new Bat chExecut i onComrand() ;
command. set Lookup("ksessi onl");

Ret r act Cormand retract Conmand = new Retract Command();

retract Command. set Fact Handl eFronStri ng("123: 234: 345: 456: 567") ;
conmmand. get Commands() . add(r et ract Comrand) ;

2. Set the Fact Handle that you received when the object was inserted

Bat chExecut i onCommand command = new Bat chExecut i onComrand() ;
command. set Lookup(" ksessi onl");

Ret r act Command retract Cormand = new Retract Command(fact Handl e) ;
command. get Conmands() . add(r et ract Conmand) ;

* XML output

* XStream

331

Chapter 9. Drools Commands

<bat ch- executi on | ookup="ksessi onl">
<retract fact-handl e="0:234: 345: 456: 567"/ >
</ bat ch- execut i on>

* JSON

{"bat ch-execution": {"| ookup": "ksessi onl", "commands": {"retract": {"fact -
handl e": " 0: 234: 345: 456: 567"}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl1">

<retract fact-handl e="0:234: 345: 456: 567"/ >
</ bat ch- execut i on>

9.2.4. ModifyCommand

 Description: Allows you to modify a previously inserted object in the knowledge session.

» Attributes

Table 9.4. ModifyCommand attributes

Name Description required

handle The FactHandle associated to true
the object to be retracted

setters List of setters object's true
modifications

« Command creation

Bat chExecut i onConmand conmand = new Bat chExecut i onConmand() ;
command. set Lookup(" ksessi onl");

Modi f yCommrand nodi f yConmand = new Modi f yComand() ;

nodi f yCommand. set Fact Handl eFrontt ri ng(" 123: 234: 345: 456: 567") ;
Li st<Setter> setters = new Arrayli st<Setter>();

setters. add(new Setterlnpl ("age", "30"));

nmodi f yCommand. set Setters(setters);

332

GetObjectCommand

conmmand. get Commands() . add(nodi f yConmand) ;

* XML output

e XStream

<bat ch- executi on | ookup="ksessi onl">
<nodi fy fact-handl e="0: 234: 345: 456: 567" >
<set accessor="age" val ue="30"/>
</ nodi fy>
</ bat ch- execut i on>

* JSON

{"bat ch-execution": {"l ookup": "ksessi onl", "conmands": {"nodi fy": {"fact -
handl e": " 0: 234: 345: 456: 567", "setters": {"accessor": "age", "val ue":30}}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">
<nodi fy fact-handl e="0:234: 345: 456: 567" >
<set val ue="30" accessor="age"/>
</ nmodi fy>
</ bat ch- execut i on>

9.2.5. GetObjectCommand

» Description: Used to get an object from a knowledge session

» Attributes

Table 9.5. GetObjectCommand attributes

Description required

factHandle The FactHandle associated to true
the object to be retracted

outldentifier Id to identify the FactHandle false
created in the object insertion

333

Chapter 9. Drools Commands

Name Description required

and added to the execution
results

« Command creation

Bat chExecut i onConmand conmand = new Bat chExecut i onConmand() ;
command. set Lookup(" ksessi onl");

Get Obj ect Conmand get Obj ect Conmand = new Get Obj ect Conmand() ;

get Obj ect Conmand. set Fact Handl eFronSt ri ng("123: 234: 345: 456: 567") ;
get Obj ect Conmand. set Qut I dentifier("john");

conmand. get Commands() . add(get Cbj ect Command) ;

* XML output

* XStream

<bat ch- executi on | ookup="ksessi onl">
<get - obj ect fact-handl e="0: 234: 345: 456: 567" out-identifier="john"/>
</ bat ch- execut i on>

* JSON

{"bat ch-execution": {"| ookup": "ksessi onl", "commands": {"get-object": {"fact -
handl e": " 0: 234: 345: 456: 567", "out-identifier":"john"}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">

<get - obj ect out-identifier="john" fact-handl e="0:234: 345: 456: 567"/ >
</ bat ch- executi on>

9.2.6. InsertElementsCommand

» Description: Used to insert a list of objects.

» Attributes

334

InsertElementsCommand

Table 9.6. InsertElementsCommand attributes

Name Description required
objects The list of objects to be true
inserted on the knowledge
session
outldentifier Id to identify the FactHandle false

created in the object insertion
and added to the execution
results

returnObject Boolean to establish if the false
object must be returned in

the execution results. Default
value: true

entryPoint Entrypoint for the insertion false

Command creation

Li st <Conmand> cnds = Arrayli st <Command>();

Li st <hj ect > obj ects = new ArraylLi st <Qhj ect>();
obj ects. add(new Person("john", 25));
obj ect s. add(new Person("sarah", 35));

Command i nsert El enent sConmand = CommandFact ory. newl nsert El enent s(obj ects);
cnds. add(i nsert El enent sCommand) ;

Bat chExecut i onConmand conmmand = CommandFact ory. cr eat eBat chExecuti on(cmds, "ksessionl")

XML output

* XStream

<bat ch- executi on | ookup="ksessi onl">
<i nsert-el enent s>
<or g. drool s. conpi | er.test. Person>
<name>j ohn</ nane>
<age>25</ age>
</ org.drool s. conpil er.test. Person>
<or g. drool s. conpi | er.test. Person>
<nane>sar ah</ nanme>
<age>35</ age>
</ org.drool s. conpil er.test. Person>

335

Chapter 9. Drools Commands

</insert-el enent s>
</ bat ch- execut i on>

JSON

{"bat ch-execution": {"| ookup": "ksessi onl", "commands": {"i nsert-el ements":
{"objects":[{"contai nedOj ect"

{"@l ass":"org.drool s.conpil er.test.Person", "nane":"john", "age": 25}},
{"cont ai nedObj ect": {" @l ass": "Person", "name": "sarah", "age":35}}]1}}}}

JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">
<insert-el enments return-objects="true">
<list>
<el ement xsi:type="person" xm ns:xsi="http://ww. w3. org/ 2001/
XMLSchema- i nst ance" >
<age>25</ age>
<name>j ohn</ nane>
</ el ement >
<el ement xsi:type="person" xm ns:xsi="http://ww. w3. org/2001/
XM_Schema- i nst ance" >
<age>35</ age>
<nane>sar ah</ nane>
</ el ement >
<list>
</insert-el enent s>
</ bat ch- execut i on>

9.2.7. FireAllRulesCommand

 Description: Allow execution of the rules activations created.

» Attributes

Table 9.7. FireAllRulesCommand attributes

Description required

max The max number of rules false
activations to be executed.
default is -1 and will not put
any restriction on execution

336

StartProcessCommand

Name Description required

outldentifier Add the number of rules false
activations fired on the
execution results

agendakFilter Allow the rules execution false
using an Agenda Filter

 Command creation

Bat chExecut i onConmand conmmand = new Bat chExecut i onConmand() ;
command. set Lookup(" ksessionl");

Fi reAl | Rul esConmand fireAl |l Rul esCommand = new FireAl |l Rul esConmand() ;
fireAl |l Rul esCommand. set Max(10) ;

fireAll Rul esCommand. set Qutldentifier("firedActivations");

conmmand. get Commands() . add(fi r eAl | Rul esCommand) ;

* XML output

* XStream

<bat ch- executi on | ookup="ksessi onl">
<fire-all-rules max="10" out-identifier="firedActivations"/>
</ bat ch- execut i on>

» JSON

{"bat ch-execution": {"l ookup": "ksessi onl","conmmands": {"fire-all-rul es":
{"max":10,"out-identifier":"firedActivations"}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">

<fire-all-rules out-identifier="firedActivations" max="10"/>
</ bat ch- execut i on>

9.2.8. StartProcessCommand

337

Chapter 9. Drools Commands

» Description: Allows you to start a process using the ID. Also you can pass parameters and initial

data to be inserted.

» Attributes

Table 9.8. StartProcessCommand attributes

NETIE Description required
processld The ID of the process to be true
started
parameters A Map<String, Object> to false
pass parameters in the
process startup
data A list of objects to be inserted false
in the knowledge session
before the process startup

« Command creation

Bat chExecut i onConmand conmand = new Bat chExecut i onConmand() ;
comand. set Lookup(" ksessi onl");

St art ProcessConmmand st art ProcessConmand =

new Start ProcessCommand() ;

start ProcessComrand. set Processl d("org. drool s. task. processOne");
command. get Commands() . add(st art Pr ocessComuand) ;

e XML output

* XStream

<bat ch- executi on | ookup="ksessi onl1">
<start-process processld="org.drools.task.processOne"/>

</ bat ch- execut i on>

* JSON

{"bat ch-execution": {"| ookup": "ksessi onl", "conmands": {"start-process":
{"process-id":"org.drool s.task. processOne"}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">

338

SignalEventCommand

<start-process processld="org.drool s.task. processOne">

<par aneter/ >
</start-process>
</ bat ch- execut i on>

9.2.9. SignalEventCommand

 Description: Send a signal event.

« Attributes

Table 9.9. SignalEventCommand attributes

Name Description required
event-type true
processlinstanceld false
event false

« Command creation

Bat chExecut i onConmand conmand = new Bat chExecut i onConmand() ;

command. set Lookup(" ksessi onl");

Si gnal Event Command si gnal Event Command = new Si gnal Event Conmand() ;

si gnal Event Command. set Processl nst ancel d(1001) ;

si gnal Event Command. set Event Type("start");

si gnal Event Command. set Event (new Person("j ohn", 25));
command. get Commands() . add(si gnal Event Cormand) ;

e XML output

* XStream

<bat ch- executi on | ookup="ksessi onl">

<si gnal -event process-instance-id="1001" event-type="start">

<or g. drool s. pi pel i ne. canel . Per son>
<nane>j ohn</ nane>
<age>25</ age>
</ org. drool s. pi pel i ne. canel . Per son>
</ si gnal - event >
</ bat ch- execut i on>

+ JSON

339

Chapter 9. Drools Commands

{"bat ch-execution": {"| ookup": "ksessi onl", "commands": {"si gnal -event":
{"process-instance-id": 1001, "@vent-type":"start", "event -
type":"start","object":{"org.drool s. pi peline. canel . Person":

{"name":"john", "age":25}}}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">
<si gnal -event event-type="start" process-instance-id="1001">
<event xsi:type="person" xm ns:xsi ="http://ww.w3. org/ 2001/ XM_Schena-

i nstance" >
<age>25</ age>
<nane>j ohn</ nane>
</ event >

</ si gnal - event >
</ bat ch- executi on>

9.2.10. CompleteWorkltemCommand

» Description: Allows you to complete a Workltem.

» Attributes

Table 9.10. CompleteWorkltemCommand attributes

NETIE Description required
workltemld The ID of the Workltem to be true
completed
results false

« Command creation

Bat chExecut i onCommand command = new Bat chExecut i onCommand() ;

conmand. set Lookup("ksessi onl");

Conpl et eWor kl t emCommand conpl et eWor kl t enConmmand = new Conpl et eWor kl t emCommrand() ;
conpl et eWor kl t emConmand. set Wor kl t em d(1001) ;

command. get Commands() . add(conpl et eWor ki t enConmand) ;

¢ XML output

340

AbortWorkltemCommand

e XStream

<bat ch- executi on | ookup="ksessi onl1">
<conpl et e-wor k-item i d="1001"/>
</ bat ch- execut i on>

* JSON

{"bat ch-execution": {"| ookup": "ksessi onl", "commands": {"conpl et e-work-iteni:
{"id":1001}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">

<conpl et e-wor k-item i d="1001"/>
</ bat ch- execut i on>

9.2.11. AbortWorkltemCommand

 Description: Allows you abort an Workltem. The same as
session.getWorkltemManager().abortWorkltem(workltemld)

» Attributes

Table 9.11. AbortWorkltemCommand attributes

Description required

workltemld The ID of the Workltem to be true
completed

« Command creation

Bat chExecut i onCommand command = new Bat chExecut i onComand() ;

command. set Lookup(" ksessi onl");

Abor t Wor ki t emConmand abor t Wor ki t enCommand = new Abor t Wir ki t enConmmand() ;
abort Wor kI t enCommrand. set Wor kI t emi d(1001) ;

341

Chapter 9. Drools Commands

conmmand. get Commands() . add(abor t Wor ki t enCommand) ;

* XML output

e XStream

<bat ch- executi on | ookup="ksessi onl">
<abort-work-itemid="1001"/>
</ bat ch- execut i on>

» JSON

{"bat ch-execution": {"l ookup": "ksessi onl", "conmands": {"abort-work-iteni:
{"id":1001}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>

<bat ch- executi on | ookup="ksessi onl">
<abort-work-itemid="1001"/>

</ bat ch- executi on>

9.2.12. QueryCommand

 Description: Executes a query defined in knowledge base.

» Attributes

Table 9.12. QueryCommand attributes

Name Description required
name The query name true
outldentifier The identifier of the query false

results. The query results are
going to be added in the
execution results with this
identifier

342

SetGlobalCommand

Name Description required

arguments A list of objects to be passed false
as a guery parameter

« Command creation

Bat chExecut i onConmand conmand = new Bat chExecut i onConmand() ;
comrand. set Lookup(" ksessi onl");

Quer yCommand quer yConmand = new Quer yComrand()

quer yComand. set Name(" persons");

quer yComand. set Qut | denti fi er (" persons");

comand. get Commands() . add(quer yComrand) ;

« XML output

* XStream

<bat ch- executi on | ookup="ksessi onl">
<query out-identifier="persons" nane="persons"/>
</ bat ch- execut i on>

* JSON

{"bat ch-execution": {"l ookup": "ksessi onl", "conmands": {"query": {"out -
identifier":"persons","nanme": "persons"}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl1">

<query name="persons" out-identifier="persons"/>
</ bat ch- execut i on>

9.2.13. SetGlobalCommand

 Description: Allows you to set a global.

« Attributes

343

Chapter 9. Drools Commands

Table 9.13. SetGlobalCommand attributes

Name Description required
identifier The identifier of the global true
defined in the knowledge
base
object The object to be set into the false
global
out A boolean to add, or not, false

the set global result into the
execution results

outldentifier The identifier of the global false
execution result

« Command creation

Bat chExecut i onCommand command = new Bat chExecut i onCommand() ;
command. set Lookup(" ksessi onl");

Set d obal Command set d obal Conmand = new Set G obal Conmand() ;
set @ obal Conmand. set | denti fier("hel per");

set @ obal Command. set Obj ect (new Person("kyl e", 30));

set G obal Command. set Qut (true);

set @ obal Cormmand. set Qut I denti fier("output");

command. get Commands() . add(set G obal Conmand) ;

« XML output

* XStream

<bat ch- executi on | ookup="ksessi onl1">
<set-global identifier="helper" out-identifier="output">
<org.drool s. conpi |l er.test. Person>
<nane>kyl e</ nane>
<age>30</ age>
</ org.drool s. conpil er.test. Person>
</ set - gl obal >
</ bat ch- executi on>

* JSON

344

GetGlobalCommand

{"bat ch-execution": {"| ookup": "ksessi onl", "commands": {"set - gl obal ":

{"identifier":"helper","out-identifier":"output","object":

{"org.drool s.conpiler.test.Person":{"nanme": "kyle", "age":30}}}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl1">
<set-global out="true" out-identifier="output" identifier="hel per">
<obj ect xsi:type="person" xm ns:xsi ="http://ww.w3. org/ 2001/ XM_Schena-

i nstance" >
<age>30</ age>
<nane>kyl e</ nane>
</ obj ect >

</ set - gl obal >
</ bat ch- execut i on>

9.2.14. GetGlobalCommand

» Description: Allows you to get a global previously defined.

» Attributes

Table 9.14. GetGlobalCommand attributes

Name Description required
identifier The identifier of the global true
defined in the knowledge
base
outldentifier The identifier to be used inthe false
execution results

« Command creation

Bat chExecut i onCommand command = new Bat chExecut i onCommand() ;
conmmand. set Lookup("ksessi onl");

Get @ obal Cormand get d obal Conmand = new Cet @ obal Conmand() ;
get d obal Conmand. set | denti fier("hel per");

get @ obal Command. set Qut I denti fier("hel perQut put");

conmmand. get Commands() . add(get G obal Conmand) ;

345

Chapter 9. Drools Commands

« XML output

e XStream

<bat ch- executi on | ookup="ksessi onl">
<get-global identifier="helper" out-identifier="hel perQutput"/>
</ bat ch- execut i on>

+ JSON

{"bat ch-execution": {"| ookup": "ksessi onl", "commands": {" get - gl obal ":
{"identifier":"helper","out-identifier":"hel perQutput"}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">

<get - gl obal out-identifier="hel perQutput” identifier="helper"/>
</ bat ch- execut i on>

9.2.15. GetObjectsCommand

 Description: Returns all the objects from the current session as a Collection.

» Attributes

Table 9.15. GetObjectsCommand attributes

Name Description required

objectFilter An ObjectFilter to filter the false
objects returned from the
current session

outldentifier The identifier to be used in the false
execution results

« Command creation

Bat chExecut i onConmand conmand = new Bat chExecut i onConmand() ;

346

GetObjectsCommand

commrand. set Lookup(" ksessi onl");

Get Obj ect sCommand get Obj ect sCommand = new Get Obj ect sConmmand() ;
get Obj ect sConmand. set Qut | denti fi er (" objects");

command. get Commands() . add(get Obj ect sComrand) ;

* XML output
» XStream
<bat ch- executi on | ookup="ksessi onl1">

<get - obj ects out-identifier="objects"/>
</ bat ch- execut i on>

+ JSON

{"bat ch-executi on": {"| ookup": "ksessi onl", "commands": {"get - obj ect s": {"out -
identifier":"objects"}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl1">

<get - obj ects out-identifier="objects"/>
</ bat ch- executi on>

347

348

Chapter 10.

Chapter 10. CDI

10.1. Introduction

CDI [http://lwww.cdi-spec.org], Contexts and Dependency Injection, is Java specification that
provides declarative controls and strucutres to an application. KIE can use it to automatically
instantiate and bind things, without the need to use the programmatic API.

10.2. Annotations

@KContainer, @KBaser and @KSession all support an optional 'name' attribute. CDI typically
does "getOrCreate" when it injects, all injections receive the same instance for the same set of
annotations. the 'name’ annotation forces a unique instance for each name, although all intsance
for that name will be identity equals.

10.2.1. @KRealaseld

Used to bind an instance to a specific version of a KieModule. If kie-ci is on the classpath this will
resolve dependencies automatically, downloading from remote repositories.

10.2.2. @KContainer

@KContainer is optional as it can be detected and added by the use of @Inject and variable type
inferrence.

@ nj ect
private Ki eContai ner kContai ner;

Figure 10.1. Injects Classpath KieContainer

@ nj ect
@KRel easel d(groupld = "jarl1", artifactld = "artl1", version = "1.1")
private Ki eContai ner kContai ner;

Figure 10.2. Injects KieContianer for Dyanmic KieModule

@ nj ect
@XCont ai ner (nane = "kcl")
@XRel easel d(groupld = "jar1", artifactld = "artl1", version = "1.1")

349

http://www.cdi-spec.org
http://www.cdi-spec.org

Chapter 10. CDI

private Ki eContai ner kContai ner;

Figure 10.3. Injects named KieContianer for Dyanmic KieModule

10.2.3. @KBase

@KBase is optional as it can be detected and added by the use of @Inject and variable type
inferrence.

The default argument, if given, maps to the value attribute and specifie the name of the KieBase
from the kmodule.xml file.

@ nj ect
private Ki eBase kbase;

Figure 10.4. Injects the Default KieBase from the Classpath KieContainer

@ nj ect
@XRel easel d(groupld = "jarl", artifactld = "art1", version = "1.0")
private Ki eBase kbase;

Figure 10.5. Injects the Default KieBase from a Dynamic KieModule

@ nj ect

@XSessi on("kbasel")

@XRel easel d(groupld = "jarl", rtifactld = "artl1", version = "1.0")
private Ki eBase kbaselv10;

@ nj ect

@XBase(" kbasel")

@XRel easel d(groupld = "jar1", rtifactld
private Ki eBase kbaselv10;

"art1", version = "1.1")

Figure 10.6. Side by side version loading for 'jarl.KBasel' KieBase

@ nj ect

@KSessi on(val ue="kbasel", nane="kb1l")

@KRel easel d(groupld = "jarl", artifactld = "art1", version = "1.0")
private Ki eBase kbaselkbl;

@ nj ect

350

@KSession for KieSession

@KSessi on(val ue="kbasel", nane="kb2")
@XRel easel d(groupld = "jarl1", artifactld = "art1", version = "1.0")
private Ki eBase kbaselkb2;

Figure 10.7. Use 'name' attribute to force new Instance for 'jarl.KBasel
KieBase

10.2.4. @KSession for KieSession

@KSession is optional as it can be detected and added by the use of @Inject and variable type
inferrence.

The default argument, if given, maps to the value attribute and specifie the name of the KieSession
from the kmodule.xml file

@ nj ect
private Ki eSessi on ksession;

Figure 10.8. Injects the Default KieSession from the Classpath KieContainer

@ nj ect
@XRel easel d(groupld = "jarl", artifactld = "artl1", version = "1.0")
private Ki eSessi on ksession;

Figure 10.9. Injects the Default KieSession from a Dynamic KieModule

@ nj ect

@KSessi on("ksessi onl")

@XRel easel d(groupld = "jarl1", rtifactld = "artl1l", version
private Ki eSession ksessionv10;

"1.0")

@ nj ect

@XSessi on(" ksessi onl")

@XRel easel d(groupld = "jar1", rtifactld
private Ki eSessi on ksessionvll;

"artl1l", version "1.1")

Figure 10.10. Side by side version loading for 'jarl.KBasel' KieBase

@ nj ect
@XSessi on(val ue="ksessi onl", nane="ks1")
@XRel easel d(groupld = "jar1", artifactld = "art1", version = "1.0")

351

Chapter 10. CDI

private Ki eSession ksessionlksl

@ nj ect

@XSessi on(val ue="ksessi onl", nane="ks2")

@XRel easel d(groupld = "jar1", artifactld = "art1", version = "1.0")
private Ki eSessi on ksessi onlks2

Figure 10.11. Use 'name' attribute to force new Instance for 'jarl.KBasel'
KieSession

10.2.5. @KSession for StatelessKieSession

@KSession is optional as it can be detected and added by the use of @Inject and variable type
inferrence.

The default argument, if given, maps to the value attribute and specifie the name of the KieSession
from the kmodule.xml file.

@ nj ect
private Statel essKi eSessi on ksessi on;

Figure 10.12. Injects the Default StatelessKieSession from the Classpath
KieContainer

@ nj ect
@XRel easel d(groupld = "jar1", artifactld = "art1", version = "1.0")
private Statel essKi eSessi on ksessi on;

Figure 10.13. Injects the Default StatelessKieSession from a Dynamic
KieModule

@ nj ect
@XSessi on(" ksessi onl")

@XRel easel d(groupld = "jar1", rtifactld = "art1", version = "1.0")
private Statel essKi eSession ksessi onv10;

@ nj ect

@KSessi on("ksessi onl")

@XRel easel d(groupld = "jarl1", rtifactld = "art1", version = "1.1")

352

API Example Comparison

private Statel essKi eSession ksessi onvli;

Figure 10.14. Side by side version loading for 'jar1.KBasel' KieBase

@ nj ect
@XSessi on(val ue="ksessi onl", nane="ks1")

@XRel easel d(groupld = "jar1", artifactld = "art1", version = "1.0")
private Statel essKi eSessi on ksessi onlksl

@ nj ect

@KSessi on(val ue="ksessi onl", name="ks2")

@XRel easel d(groupld = "jar1", artifactld = "art1", version = "1.0")

private Statel essKi eSessi on ksessi onlks2

Figure 10.15. Use 'name' attribute to force new Instance for 'jarl.KBasel'
StatelessKieSession

10.3. APl Example Comparison

CDI caninject instances into fields, or even pass them as arguments. In this example field injection
is used.

@ nj ect
@KSessi on("ksessi onl")
Ki eSessi on kSessi on;

public void go(PrintStreamout) ({
kSessi on. set d obal ("out", out);
kSession.insert(new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA | Rul es();

Figure 10.16. CDI example for a named KieSession

This is less code and more declarative than the APl approach.

public void go(PrintStreamout) {
Ki eServi ces ks = KieServices. Factory. get();
Ki eCont ai ner kCont ai ner = ks. get Ki ed asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");
kSessi on. set @ obal ("out", out);
kSession.insert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));

353

Chapter 10. CDI

kSession.fireA |l Rul es();

Figure 10.17. API equivalent example for a named KieSession

354

Chapter 11.

Chapter 11. Integration with Spring

11.1. Important Changes for Drools 6.0

Drools Spring integration has undergone a complete makeover inline with the changes for Drools
6.0. The following are some of the major changes

* The recommended prefix for the Drools Spring has changed from 'drools:' to 'kie:'
* New Top Level Tags in 6.0

» kie:kmodule

The following tags are no longer valid as top level tags.
 kie:kbase - A child of the kie:kmodule tag.

 kie:ksession - A child of the kie:kbase tag.

Removed Tags from previous versions Drools 5.x
 drools:resources

* drools:resource

* drools:grid

* drools:grid-node

11.2. Integration with Drools Expert
In this section we will explain the kie namespace.

11.2.1. KieModule

The <kie:kmodule> defines a collection of KieBase and associated KieSession's. The kmodule
tag has one MANDATORY parameter 'id'.

Table 11.1. Sample

Attribute Description Required

id Bean's id is the name to be Yes
referenced from other beans.
Standard Spring ID semantics

apply.

A kmodule tag can contain only the following tags as children.

» kie:kbase

355

Chapter 11. Integration with ...

Refer to the documentation of kmodule.xml in the Drools Expert documentation for detailed
explanation of the need for kmodule.

11.2.2. KieBase
11.2.2.1. <kie:kbase>'s parameters as attributes:

Table 11.2. Sample

Attribute Description Required
name Name of the KieBase Yes
packages Comma separated list of No

resource packages to be
included in this kbase

includes kbase names to be included. No
All resources from the
corresponding kbase are

included in this kbase.

default Default kbase No

default Boolean (TRUE/FALSE). No
Default kbase, if not provided,
it is assumed to be FALSE

scope . No

eventProcessingMode Event Processing Mode. No
Valid options are STREAM,
CLOUD

equalsBehavior Valid options are IDENTITY, No
EQUALITY

declarativeAgenda Valid options are enabled, No

disabled, true, false

11.2.2.2. A kbase tag can contain only the following tags as children.

* kie:ksession

11.2.2.3. <kie:kbase>'s definition example

A kmodule can contain multiple (1..n) kbase elements.

Example 11.1. kbase definition example

<ki e: knodul e i d="sanpl e_nodul e" >
<ki e: kbase nane="kbasel" packages="org.drools.spring.sanple">

356

IMPORTANT NOTE

</ ki e: kbase>
</ ki e: knodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

11.2.3. IMPORTANT NOTE

For proper initialization of the kmodule objects (kbase/ksession), it is mandatory for a bean of type
or g. ki e. spri ng. KMbdul eBeanFact or yPost Processor be defined.

Example 11.2. kie-spring post processorbean definition

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor "/ >

E] Note
Without the org.kie.spring.KModuleBeanFactoryPostProcessor bean definition,
the kie-spring integration will not work.

11.2.4. KieSessions

<kie:ksession> element defines KieSessions. The same tag is used to define both
Stateful (org.kie.api.runtime.KieSession) and Stateless (org.kie.api.runtime.StatelessKieSession)
sessions.

11.2.4.1. <kie:ksession>'s parameters as attributes:

Table 11.3. Sample

Attribute Description Required
name ksession's name. Yes
type is the session stateful or No

stateless?. If this attribute is
empty or missing, the session
is assumed to be of type

Stateful.
default Is this the default session? no
scope . no
clockType REALTIME or PSEUDO no

357

Chapter 11. Integration with ...

Attribute Description Required

listeners-ref Specifies the reference to the no
event listeners group (see
'Defining a Group of listeners'
section below).

Example 11.3. ksession definition example

<ki e: knodul e i d="sanpl e- knodul e" >
<ki e: kbase nane="dr| ki esanpl e3" packages="drl| ki esanpl e3">
<ki e: ksessi on nane="ksessi onl" type="statel ess"/>
<ki e: ksessi on nane="ksessi on2"/>
</ ki e: kbase>
</ ki e: knodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KModul eBeanFact or yPost Processor "/ >

11.2.5. Event Listeners

Drools supports adding 3 types of listeners to KieSessions - Agendalistener,
WorkingMemoryListener, ProcessEventListener

The kie-spring module allows you to configure these listeners to KieSessions
using XML tags. These tags have identical names as the actual listener
interfaces i.e., <kie:agendaEventListener....>, <kie:ruleRuntimeEventListener....> and
<kie:processEventListener....>.

kie-spring provides features to define the listeners as standalone (individual) listeners and also
to define them as a group.

11.2.5.1. Defining Stand alone Listeners:
11.2.5.1.1. Attributes:

Table 11.4. Sample

Attribute Required Description

ref No A reference to another
declared bean.

Example 11.4. Listener configuration example - using a bean:ref.

<bean i d="nock-agenda-listener" class="nocks. MbckAgendaEventLi stener"/>

358

Event Listeners

<bean id="mock-rr-listener" class="nocks. MockRul eRunti neEvent Li stener"/>
<bean i d="nock-process-listener" class="nocks. MockProcessEventLi stener"/>

<ki e: knodul e i d="Ii st eners_knodul e">
<ki e: kbase nane="dr| _ki esanpl e" packages="dr| _ki esanpl e">
<ki e: ksessi on name="ksessi on2">
<ki e: agendaEvent Li st ener ref="nock-agenda-I|istener"/>
<ki e: processEvent Li st ener ref="nock-process-|istener"/>
<ki e: rul eRunti meEvent Li st ener ref="nock-rr-Iistener"/>
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: kmodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor "/ >

11.2.5.1.2. Nested Elements:

* bean
* class = String

* name = String (optional)

Example 11.5. Listener configuration example - using nested bean.

<ki e: knodul e i d="Ii st eners_nodul e" >
<ki e: kbase name="dr| _ki esanpl e" packages="dr| _ki esanpl e">
<ki e: ksessi on nanme="ksessi onl">
<ki e: agendaEvent Li st ener >
<bean cl ass="nobcks. MbckAgendaEventLi stener"/>
</ ki e: agendaEvent Li st ener >
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: knodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor "/ >

11.2.5.1.3. Empty Tag : Declaration with no 'ref' and without a nested bean

When a listener is defined without a reference to a implementing bean and does not contain a
nested bean, <drools:ruleRuntimeEventListener/> the underlying implementation adds the Debug
version of the listener defined in the API.

The debug listeners print the corresponding Event toString message to System.err.

359

Chapter 11. Integration with ...

Example 11.6. Listener configuration example - defaulting to the debug
versions provided by the Knowledge-API .

<bean i d="nock-agenda-|istener"” class="nocks. MbockAgendaEventLi stener"/>
<bean id="mock-rr-listener" class="nocks. MockRul eRunti neEvent Li st ener"/>
<bean i d="nock-process-listener" class="nocks. MockProcessEventLi stener"/>

<ki e: knodul e i d="11i st eners_nodul e">
<ki e: kbase nane="dr| _ki esanpl e" packages="dr| _ki esanpl e">
<ki e: ksessi on name="ksessi on2">
<ki e: agendaEvent Li st ener />
<ki e: processEvent Li st ener />
<ki e: rul eRunti meEvent Li st ener />
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: knodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

11.2.5.1.4. Mix and Match of different declaration styles

The drools-spring module allows you to mix and match the different declarative styles within the
same KieSession. The below sample provides more clarity.

Example 11.7. Listener configuration example - mix and match of ‘ref'/
nested-bean/empty styles.

<bean id="nock-agenda-listener" class="nocks. MbckAgendaEventLi stener"/>
<bean id="nock-rr-listener" class="nocks. MockRul eRunti neEventLi stener"/>
<bean i d="nock-process-listener" class="nocks. MockProcessEventLi stener"/>

<ki e: knodul e i d="Ii st eners_nodul e" >
<ki e: kbase nane="dr| _ki esanpl e" packages="dr| _ki esanpl e">
<ki e: ksessi on name="ksessi onl">
<ki e: agendaEvent Li st ener >
<bean cl ass="org. ki e. spri ng. nocks. MockAgendaEvent Li st ener"/ >
</ ki e: agendaEvent Li st ener >
</ ki e: ksessi on>
<ki e: ksessi on nane="ksessi on2">
<ki e: agendaEvent Li st ener ref="nock-agenda-I|istener"/>
<ki e: processEvent Li st ener ref="nock-process-|istener"/>
<ki e: rul eRunti meEvent Li st ener ref="nock-rr-Iistener"/>
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: knmodul e>

360

Event Listeners

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor "/ >

11.2.5.1.5. Defining multiple listeners of the same type

It is also valid to define multiple beans of the same event listener types for a KieSession.

Example 11.8. Listener configuration example - multiple listeners of the
same type.

<bean i d="nock-agenda-listener" class="nocks. MbckAgendaEventLi stener"/>

<ki e: knodul e i d="11i st eners_nodul e" >
<ki e: kbase nanme="dr| _ki esanpl e" packages="dr| _ki esanpl e">
<ki e: ksessi on name="ksessi onl">
<ki e: agendaEvent Li st ener ref="nock-agenda-|istener"/>
<ki e: agendaEvent Li st ener >
<bean cl ass="org. ki e. spri ng. nocks. MockAgendaEvent Li st ener"/ >
</ ki e: agendaEvent Li st ener >
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: knmodul e>

<bean i d="ki ePost Processor "
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >
11.2.5.2. Defining a Group of listeners:

drools-spring allows for grouping of listeners. This is particularly useful when you define a set of
listeners and want to attach them to multiple sessions. The grouping feature is also very useful,
when we define a set of listeners for 'testing' and then want to switch them for 'production’ use.

11.2.5.2.1. Attributes:

Table 11.5. Sample

Attribute Required Description
‘ ID ‘ yes Unique identifier ‘

11.2.5.2.2. Nested Elements:

« drools:agendaEventListener...

361

Chapter 11. Integration with ...

« drools:ruleRuntimeEventListener...

« drools:processEventListener...

@ Note
The above mentioned child elements can be declared in any order. Only one
declaration of each type is allowed in a group.

11.2.5.2.3. Example:

Example 11.9. Group of listeners - example

<bean i d="nock-agenda-listener" class="nocks. MockAgendaEventLi stener"/>
<bean id="nmock-rr-listener” class="nocks. MockRul eRunti neEvent Li st ener"/>
<bean i d="nock-process-listener" class="nocks. MockProcessEventLi stener"/>

<ki e: knodul e i d="Ii st eners_nodul e">
<ki e: kbase nanme="dr| _ki esanpl e" packages="dr| _ki esanpl e">
<ki e: ksessi on nane="st at el essWt hG oupedLi st eners" type="stat el ess”
|'i steners-ref="debugLi steners"/>
</ ki e: kbase>
</ ki e: knodul e>

<ki e: event Li st eners i d="debuglLi st eners" >

<ki e: agendaEvent Li st ener ref="nock-agenda-|istener"/>

<ki e: processEvent Li st ener ref="nobck-process-|istener"/>

<ki e: rul eRunti meEvent Li st ener ref="mock-rr-1istener"/>
</ ki e: event Li st ener s>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

11.2.6. Loggers

Drools supports adding 2 types of loggers to KieSessions - ConsoleLogger, FileLogger.

The kie-spring module allows you to configure these loggers to KieSessions using XML tags.
These tags have identical names as the actual logger interfaces i.e., <kie:consoleLogger....> and
<kie:fileLogger....>.

11.2.6.1. Defining a console logger:

A console logger can be attached to a KieSession by using the <kie:consoleLogger/> tag. This
tag has no attributes and must be present directly under a <kie:ksession....> element.

362

Loggers

Example 11.10. Defining a console logger - example

<ki e: knodul e i d="1 ogger s_nodul e" >
<ki e: kbase nanme="dr| _ki esanpl e" packages="dr| _ki esanpl e">
<ki e: ksessi on nanme="Consol eLogger - st at ef ul Sessi on" type="stateful ">
<ki e: consol eLogger/ >
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: kmodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

11.2.6.2. Defining a file logger:

A file logger can be attached to a KieSession by using the <kie:fileLogger/> tag. This tag has the
following attributes and must be present directly under a <kie:ksession....> element.

Table 11.6. Sample

Attribute Required Description
ID yes Unique identifier
file yes Path to the actual file on the
disk
threaded no Defaults to false. Valid values

are 'true'or 'false’

interval no Integer. Specifies the interval
for flushing the contents from
memory to the disk.

Example 11.11. Defining a file logger - example

<ki e: knodul e i d="1 oggers_nodul e" >
<ki e: kbase nanme="dr| _ki esanpl e" packages="dr| _ki esanpl e">
<ki e: ksessi on nane="Consol eLogger - st at ef ul Sessi on" type="stateful ">

<ki e: fil eLogger id="fl_| ogger" file="#{
systenProperties['java.io.tnpdir'] }/logl"/>
<ki e: fil eLogger id="tfl _l ogger" file="#{

systenProperties['java.io.tnpdir'] }/log2"
t hreaded="true" interval ="5"/>
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: knodul e>

363

Chapter 11. Integration with ...

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

11.2.6.2.1. Closing a FileLogger
To prevent leaks, it is advised to close the <kie:fileLogger ...> programmatically.

Logger Adapt or adaptor = (Logger Adaptor) context.getBean("fl _| ogger");
adapt or. cl ose();

11.2.7. Defining Batch Commands

A <kie:batch> element can be used to define a set of batch commands for a given ksession.This
tag has no attributes and must be present directly under a <kie:ksession....> element. The
commands supported are

* insert-object
 ref = String (optional)
* Anonymous bean
 set-global
* identifier = String (required)
» reg = String (optional)
* Anonymous bean
* fire-all-rules
* max:n
« fire-until-halt
* start-process
e parameter
* identifier = String (required)
« ref = String (optional)
¢ Anonymous bean

* signal-event

364

Persistence

* ref = String (optional)
» event-type = String (required)

* process-instance-id =n (optional)
Figure 11.1. Initialization Batch Commands

Example 11.12. Batch commands - example

<ki e: knodul e i d="bat ch_commands_nodul e" >
<ki e: kbase nanme="dr| _ki esanpl e" packages="dr| _ki esanpl e">
<ki e: ksessi on nane="ksessi onFor Cormands" type="stateful ">
<ki e: bat ch>
<ki e:insert-object ref="person2"/>
<ki e: set-gl obal identifier="persons" ref="personsList"/>
<kie:fire-all-rules max="10"/>
</ ki e: bat ch>
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: kmodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KModul eBeanFact or yPost Processor "/ >

11.2.8. Persistence

* jpa-persistence
* transaction-manager
* ref = String
 entity-manager-factory
 ref = String

Figure 11.2. Persistence Configuration Options

Example 11.13. ksession JPA configuration example

<ki e: kstore i d="kstore" /> <!-- provi des Know edgeSt oreServi ce i npl enent ati on -->

<bean id="nyEnf"

365

Chapter 11. Integration with ...

cl ass="org. spri ngframewor k. orm j pa. Local Cont ai ner Enti t yManager Fact or yBean" >
<property nanme="dat aSource" ref="ds" />
<property name="persi stenceUni t Nane"
val ue="org. drool s. persi stence.jpa.local" />
</ bean>

<bean i d="t xManager" cl ass="org. spri ngframework. orm jpa.JpaTransacti onManager" >
<property name="entityManager Factory" ref="nyEnf" />
</ bean>

<ki e: knodul e i d="persi st ence_nodul e" >
<ki e: kbase name="dr| _ki esanpl e" packages="dr| _ki esanpl e">
<ki e: ksessi on nanme="j paSi ngl eSessi onCommandSer vi ce" >
<ki e: confi gurati on>
<ki e:] pa- persi st ence>
<ki e: transacti on- manager ref="txManager"/>
<ki e:entity-nanager-factory ref="nyEnf"/>
</ ki e: j pa- persi stence>
</ ki e: configuration>
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: knmodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor "/ >

11.3. Integration with JBPM Human Task

This chapter describes the infrastructure used when configuring a human task server with Spring
as well as a little bit about the infrastructure used when doing this.

11.3.1. How to configure Spring with jJBPM Human task

The jBPM human task server can be configured to use Spring persistence. Example 11.14,
“Configuring Human Task with Spring” is an example of this which uses local transactions and
Spring's thread-safe EntityManager proxy.

The following diagram shows the dependency graph used in Example 11.14, “Configuring Human
Task with Spring”.

366

How to configure Spring with jBPM Human task

TaskSessionSpringFactorylmpl
@wks pringTran r:iwlir.u@
@ﬂiﬂflEm ityTv 11|111gf|'F1@

Figure 11.3. Spring Human Task integration injection dependencies

Shared EntityManagerBean

A TaskService instance is dependent on two other bean types: a drools
SystenEvent Li stener bean as well as a TaskSessi onSpringFactorylmpl bean. The
TaskSessi onSpri ngFactoryl npl bean is howerver not injected into the TaskServi ce bean
because this would cause a circular dependency. To solve this problem, when the TaskSer vi ce
bean is injected into the TaskSessi onSpri ngFact or yl npl bean, the setter method used secretly
injects the TaskSessi onSpri ngFact oryl npl instance back into the TaskServi ce bean and
initializes the TaskSer vi ce bean as well.

The TaskSessi onSpri ngFact oryl npl bean is responsible for creating all the internal instances
in human task that deal with transactions and persistence context management. Besides a
TaskSer vi ce instance, this bean also requires a transaction manager and a persistence context
to be injected. Specifically, it requires an instance of a HumanTaskSpri ngTr ansact i onManager
bean (as a transaction manager) and an instance of a Shar edEnt i t yManager Bean bean (as a
persistence context instance).

We also use some of the standard Spring beans in order to configure persistence: there's a
bean to hold the Enti t yManager Fact ory instance as well as the Shar edEnt i t yManager Bean
instance. The Shar edEnt i t yManager Bean provides a shared, thread-safe proxy for the actual
Enti t yManager .

The HumanTaskSpri ngTransacti onManager bean serves as a wrapper around the Spring
transaction manager, in this case the JpaTransactionManager. An instance of a
JpaTransacti onManager bean is also instantiated because of this.

Example 11.14. Configuring Human Task with Spring

<?xm version="1.0" encodi ng="UTF- 8" ?>

367

Chapter 11. Integration with ...

<beans xm ns="http://ww. springfranework. org/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xm ns:j bpm="http://drool s. org/schema/ drool s-spring”

xsi : schemalLocati on="http://wwmv. spri ngfranewor k. or g/ schena/ beans http://
www. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd

http://drool s. org/schema/ drool s-spring org/drool s/contai ner/spring/drool s-
spring-1.2.0.xsd">

<I-- persistence & transactions-->

<bean id="htEnf" class="org.springfranmework. orm jpa.Local Contai ner Enti t yManager Fact or yBean" >
<property nane="persistenceUnit Name" val ue="org.jbpmtask"” />
</ bean>

<bean id="ht Enf' cl ass="org. springfranmework. orm jpa. support. SharedEntityManager Bean" >
<property nane="entityManager Factory" ref="htEnf"/>
</ bean>

<bean i d="j paTxMgr" cl ass="org. spri ngframewor k. orm j pa. JpaTransacti onManager" >
<property nane="entityManager Factory" ref="htEnf" />
<l-- this must be true if using the SharedEntityManagerBean, and fal se
ot herwi se -->

<property nane="nestedTransacti onAl | owed" val ue="true"/>
</ bean>

<bean id="ht TxMgr" cl ass="org. drool s. contai ner.spring. beans. persi stence. HunanTaskSpri ngTr ans:
<constructor-arg ref="jpaTxMr" />
</ bean>

<!-- human-task beans -->

<beand="syst emEvent Li st enertl ass="or g. dr ool s. Syst enEvent Li st ener Fact or yf act ory-
nmet hod="get Syst enEvent Li stener" />

<bean id="taskService" class="org.jbpmtask. service. TaskServi ce" >

<property nanme="systenEventLi stener" ref="systenEventListener" />
</ bean>

<bean i d="springTaskSessi onFactory" class="org.jbpm task.service. persi stence. TaskSessi onSpri r
init-nmethod="initialize" depends-on="taskService" >
<l-- if wusing the SharedEntityManagerBean, nake sure to enable nested

transactions -->
<property nane="entityManager" ref="htEn' />
<property nane="transacti onManager" ref="ht TxMyr" />
<property nane="useJTA" val ue="fal se" />
<property nane="taskService" ref="taskService" />

</ bean>

</ beans>

368

How to configure Spring with jBPM Human task

When using the Shar edEntityManager Bean instance, it's important to configure the Spring
transaction manager to use nested transactions. This is because the Shar edEnt i t yManager Bean
is a transactional persistence context and will close the persistence context after every operation.
However, the human task server needs to be able to access (persisted) entities after operations.
Nested transactions allow us to still have access to entities that otherwise would have been
detached and are no longer accessible, especially when using an ORM framework that uses lazy-
initialization of entities.

Also, while the TaskSessi onSpri ngFact oryl npl bean takes an “useJTA” parameter, at the
moment, JTA transactions with Spring have not yet been fully tested.

369

370

Chapter 12.

Chapter 12. Apache Camel
Integration

12.1. Camel

Camel provides a light weight bus framework for getting information into and out of Drools.

Drools introduces two elements to make easy integration.

 Drools Policy

Augments any JAXB or XStream data loaders. For JAXB it adds drools related paths ot the
contextpath, for XStream it adds custom converters and aliases for Drools classes. It also
handles setting the ClassLoader to the targeted ksession.

 Drools Endpoint
Executes the payload against the specified drools session

Drools can be configured like any normal camel component, but notice the policy that wraps the
drools related segments. This will route all payloads to ksessionl

Example 12.1. Drools EndPoint configured with the CXFRS producer

<bean id="kiePolicy" class="org.kie.canel.conponent.KiePolicy" />

<canel Context id="canel" xm ns="http://canel.apache. org/schema/ spring">
<r out e>
<fromuri="cxfrs://bean://rsServer"/>
<policy ref="kiePolicy">
<unmar shal ref="xstreanl />
<to uri="kie: ksessionl" />
<mar shal ref="xstreant’ />
</ policy>
</route>
</ canel Cont ext >

It is possible to not specify the session in the drools endpoint uri, and instead "multiplex" based on
an attribute or header. In this example the policy will check either the header field "DroolsLookup”
for the named session to execute and if that isn't specified it'll check the "lookup" attribute on the
incoming payload.

371

Chapter 12. Apache Camel Inte...

Example 12.2. Drools EndPoint configured with the CXFRS producer

<bean id="kiePolicy" class="org.kie.canel.conponent.KiePolicy" />

<canel Context id="canel" xm ns="http://canel.apache. org/schena/ spring">
<r out e>
<fromuri="cxfrs://bean://rsServer"/>
<policy ref="kiePolicy">
<unnar shal ref="xstrean' />
<to uri="kie:dynanmc" />
<mar shal ref="xstreani’ />
</ policy>
</route>
</ canel Cont ext >

Example 12.3. Java Code to execute against Route from a Spring and Camel
Context

public class MyTest extends Canel SpringTest Support {

@verride
prot ect ed Abstract Xm Appl i cati onCont ext createApplicati onContext() {
return new Cl assPat hXm Appli cati onCont ext (" or g/ dr ool s/ canel / conponent /
Cxf RsSpring. xm");

}

public void testl() throws Exception {
String cnmd = "";
cmd += "<bat ch-execution | ookup=\"ksessi onl\">\n";
cnmd += " <insert out-identifier=\"sal aboy\">\n";
cnmd += " <or g. drool s. pi pel i ne. canel . Person>\n";
cmd += " <nane>sal aboy</ nane>\n";
cmd += " </ org.drool s. pi pel i ne. canel . Person>\n";
cmd += " </insert>\n";
cmd += " <fire-all-rules/>\n";

cmd += "</ batch-execution>\n";
Qbj ect obj ect =

thi s. cont ext. createProducer Tenpl ate().requestBody("direct://client", cnd);
System out. println(object);

The following urls show sample script examples for jaxb, xstream and json marshalling using:

372

Camel

* http://ffisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/
camel/component/jaxb.mvt?r=HEAD

* http://ffisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/
camel/component/jaxb.mvt?r=HEAD

« http://ffisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/
camel/component/xstream.mvt?r=HEAD

373

374

Chapter 13.

Chapter 13. Drools Camel Server

13.1. Introduction

The drools camel server (drools-camel-server) module is a war which you can deploy to execute
KnowledgeBases remotely for any sort of client application. This is not limited to JVM application
clients, but any technology that can use HTTP, through a REST interface. This version of the
execution server supports stateless and stateful sessions in a native way.

13.2. Deployment

Drools Camel Server is a war file, which can be deployed in a application server (such as JBoss
AS). As the service is stateless, it is possible to have have as many of these services deployed
as you need to serve the client load. Deploy on JBoss AS 4.x / Tomcat 6.x works out-of-the-box,
instead some external dependencies must be added and the configuration must be changed to
be deployed in JBoss AS 5

13.3. Configuration
Inside the war file you will find a few XML configuration files.

* beans.xml

» Skeleton XML that imports knowledge-services.xml and camel-server.xml
« camel-server.xml

» Configures CXF endpoints with Camel Routes

» Came Routes pipeline messages to various configured knowledge services

knowledge-services.xml

» Various Knowledge Bases and Sessions

« camel-client.xml

» Sample camel client showing how to send and receive a message

» Used by "out of the box" test.jsp

13.3.1. REST/Camel Services configuration
The next step is configure the services that are going to be exposed through drools-server. You

can modify this configuration in camel-server.xml file.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranework. org/ schena/ beans"

375

Chapter 13. Drools Camel Server

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xm ns: cxf="http://canel . apache. or g/ schema/ cxf"

xm ns:jaxrs="http://cxf.apache. org/jaxrs”

xsi : schenmaLocat i on="

http://ww. springfranework. org/ schena/ beans http://ww. springframework. org/

schema/ beans/ spri ng- beans- 2. 5. xsd

http://canel . apache. org/ schema/ cxf http://canel.apache. org/ schema/ cxf/canel -
cxf. xsd

http://cxf.apache.org/jaxrs http://cxf.apache. org/ schemas/jaxrs. xsd

http://canel . apache. org/ schema/ spring http://canel.apache. org/ schema/ spri ng/
canel - spring. xsd" >

<inmport resource="cl asspat h: META- | NF/ cxf/cxf.xm " />
<i nport resource="cl asspat h: META- | NF/ cxf / cxf - ext ensi on-j axrs-bi ndi ng. xm "/ >
<i nport resource="cl asspat h: META- | NF/ cxf/cxf-servlet.xm" />

& eo
! If you are running on JBoss you will need to copy a canel-jboss.jar into
the Iib and set this C assLoader configuration
I http://camnel.apache. org/ canel -j boss. ht m
! <bean i d="j bossResol ver"
cl ass="org. apache. canel . j boss. JBossPackageScanC assResol ver"/ >
-->

SIS
! Define the server end point.
! Copy and paste this elenent, changing id and the address, to expose
services on different urls.
! Different Canel routes can handl e different end point paths.
S
<cxf:rsServer id="rsServer"
address="/rest"
servi ceC ass="org. ki e. j ax. rs. ConmandExecut or | npl ">
<cxf:provi ders>
<bean cl ass="org. ki e. j ax. rs. CoomandMessageBodyReader "/ >
</ cxf: provi der s>
</ cxf:rsServer>

<cxf: cxf Endpoi nt i d="soapServer"
addr ess="/soap"
servi ceNanme="ns: CommandExecut or "
endpoi nt Nane="ns: ConmandExecut or Port"
wsdl URL="soap. wsdl "
xm ns: ns="http://soap.jax.drools.org/" >
<cxf: properties>
<entry key="dataFormat" val ue="NMESSAGE"/ >
<entry key="defaul t Operati onNane" val ue="execute"/>
</ cxf:properties>
</ cxf : cxf Endpoi nt >

376

REST/Camel Services configuration

<l-- Leave this, as it's needed to nake Canel "drools" aware -->
<bean id="kiePolicy" class="org.kie.canel.conponent.KiePolicy" />

<canel Context id="canel" xm ns="http://canel.apache. org/schema/spring">
SIS

I Routes incom ng nessages fromend point id="rsServer".

I Exanpl e route unnmarshals the nessages with xstream and executes agai nst
ksessi onl.

I Copy and paste this elenment, changing marshallers and the "to' wuri, to
target different sessions, as needed.

I-->

<r out e>
<fromuri="cxfrs://bean://rsServer"/>
<policy ref="kiePolicy">
<unmar shal ref="xstrean />
<to uri="kie: ksessionl" />
<mar shal ref="xstreant' />
</ policy>
</route>

<r out e>
<fromuri="cxf://bean://soapServer"/>
<policy ref="kiePolicy">
<unnar shal ref="xstreanl />
<to uri="kie: ksessionl" />
<mar shal ref="xstrean!' />
</ policy>
</rout e>

</ canel Cont ext >

</ beans>

13.3.1.1. RESTful service endpoint creation

In the next XML snippet code we are creating a RESTful (JAX-RS) endpoint bound to /kservice/
rest address and using org.drools.jax.rs.CommandExecutorimpl as the service implementer. This
class is only used to instantiate the service endpoint because all the internal implementation is
managed by Camel, and you can see in the source file that the exposed execute service must
be never called.

Also a JAX-RS Provider is provided to determine if the message transported can be processed
in this service endpoint.

<cxf:rsServer id="rsServer"

377

Chapter 13. Drools Camel Server

address="/rest"
servi ceC ass="org. ki e. j ax. rs. ConmandExecut or | npl ">
<cxf: providers>
<bean cl ass="org. ki e. j ax. rs. ComandMessageBodyReader "/ >
</ cxf: providers>
</ cxf:rsServer>

Ideally this configuration doesn't need to be modified, at least the Service Class and the JAX-
RS Provider, but you can add more endpoints associated to different addresses to use them in
other Camel Routes.

After all this initial configuration, you can start config your own Knowledge Services.

13.3.1.2. Camel Kie Policy & Context creation

KiePolicy is used to add Drools support in Camel, basically what it does is to add interceptors into
the camel route to create Camel Processors on the fly and modify the internal navigation route.
If you want to have SOAP support you need to create your custom Drools Policy, but it's going
to be added in the next release.

But you don't need to know more internal details, only instantiate this bean:

<bean i d="kiePolicy" class="org.Kkie.canel.conponent.Ki ePolicy" />

The next is create the camel route that will have the responsibility to execute the commands
sent through JAX-RS. Basically we create a route definition associated with the JAX-RS
definition as the data input, the camel policy to be used and inside the “execution route” or
ProcessorDefinitions. As you can see, we set XStream as the marshaller/unmarshaller and the
drools execution route definition

<canel Context id="canel" xm ns="http://canel.apache. org/schena/spring">
<r out e>
<fromuri="cxfrs://bean://rsServer"/>
<policy ref="kiePolicy">
<unnar shal ref="xstreanl />
<to uri="kie: ksessi onl" />
<mar shal ref="xstrean!' />
</ policy>
</route>
<r out e>
<fromuri="cxf://bean://soapServer"/>
<policy ref="kiePolicy">
<unmar shal ref="xstreant />
<to uri="kie: ksessi onl" />
<mar shal ref="xstream' />
</ policy>

378

REST/Camel Services configuration

</ rout e>
</ canel Cont ext >

The drools endpoint creation has the next arguments

<to uri="kie:{1}/{2}" />

1. Execution Node identifier that is registered in the CamelContext
2. Knowledge Session identifier that was registered in the Execution Node with identifier {1}

Both parameters are configured in knowledge-services.xml file.
13.3.1.3. Knowledge Services configuration

The next step is create the Knowledge Sessions that you are going to use.

<beans xm ns="http://ww. springfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns: ki e="http://drool s. org/ schena/ ki e-spring"
xsi : schemalLocati on="http://wwmv. spri ngfranmewor k. or g/ schema/ beans http://
www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans- 3. 0. xsd
http://drool s.org/schema/ ki e-spring http://drools.org/
schenwa/ ki e- spri ng. xsd" >

<ki e: knodul e i d="dr ool s-canel - server">
<ki e: kbase nane="kbasel" packages="org.drools.server">
<ki e: ksessi on nane="ksessi onl" type="statel ess"/>
</ ki e: kbase>
</ ki e: krmodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KModul eBeanFact or yPost Processor "/ >

</ beans>

The execution-node is a context or registered kbases and ksessions, here kbasel and ksessionl
are planed in the nodel context. The kbase itself consists of two knowledge definitions, a DRL
and an XSD. The Spring documentation contains a lot more information on configuring these
knowledge services.

13.3.1.4. Test

With drools-server war unzipped you should be able to see a test.jsp and run it. This example just
executes a simple "echo” type application. It sends a message to the rule server that pre-appends

379

Chapter 13. Drools Camel Server

the word "echo"” to the front and sends it back. By default the message is "Hello World", different
messages can be passed using the url parameter msg - test.jsp?msg="My Custom Message".

Under the hood the jsp invokes the Test.java class, this then calls out to Camel which is where
the meet happens. The camel-client.xml defines the client with just a few lines of XML

<I-- Leave this, as it's needed to make Canel "drools" aware -->
<bean id="kiePolicy" class="org.kie.canel.conponent.Ki ePolicy" />

<canel Context id="canel" xm ns="http://canel.apache. org/schema/spring">
<r out e>
<fromuri="direct://kservice/rest"/>
<policy ref="kiePolicy">
<to uri="cxfrs://http://local host: 8080/ drool s-server/kservice/rest"/>
</ policy>
</ route>
<rout e>
<fromuri="direct://kservicelsoap"/>
<policy ref="kiePolicy">
<to uri="cxfrs://http://]ocal host: 8080/ drool s-server/kservi ce/ soap"/ >
</ policy>
</route>
</ canel Cont ext >

"direct://kservice" is just a named hook, allowing Java to grab a reference and push data into it.
In this example the data is already in XML, so we don't need to add any Dat aFor mat s to do the
marshalling. The KiePolicy adds some smarts to the route and you'll see it used on the server side
too. If JAXB or XStream were used, it would inject custom paths and converters, it can also set
the ClassLoader too on the server side, on the client side it automatically unwraps the Response
object.

The rule itself can be found here: test.drl. Notice the type Message is declared part of the DRL
and is thus not present on the Classpath.

decl are Message
text : String
end

rule "echo" dialect "mvel"

when

$m : Message();
t hen

$mtext = "echo:" + $mtext;
end

380

Chapter 14.

Chapter 14. IMX monitoring with
RHQ/JON

14.1. Introduction

The Drools engine supports runtime monitoring through JMX standard MBeans. These MBeans
expose configuration and metrics data, from live knowledge bases and sessions, to internal details
like rule execution times. Any JMX compatible console can be used to access that data. This
chapter details how to use RHQ/JON to do it, but similar steps can be used for any other console.

14.1.1. Enabling JMX monitoring in a Drools application

To enable JMX monitoring in a Drools application, it is necessary to enable remote monitoring in
the JVM. There are several tutorials on how to do that in the internet, but we recommend that you
check the documentation of your specific JVM. Using the Oracle/Sun JVM, it can be as simple as
running the engine with a few command line system properties.

For instance, to enable remote monitoring on port 19988 with disabled authentication (should
be only used for tests/demos, as in production authentication should be enabled), just run the
application with the following command line parameters:

- Dcom sun. managenent . j nxr enpt e. port =19988 -
Dcom sun. managemnent . j nxr enot e. ssl =f al se -
Dcom sun. managenent . j nxr enot e. aut hent i cat e=f al se

The second step is to enable the Drools MBeans. As any Drools configuration, that can be done
by setting a system property, or adding the property to a configuration file, or using the API.
To enable it in the command line, use:

- Ddr ool s. mbeans=enabl ed

To enable id using the API, use:

Ki eBaseConfiguration conf = ...
conf.set Option(MBeansQOpti on. ENABLED);

14.1.2. Installing and running the RHQ/JON plugin

The following sequence of steps can be used to configure JON to monitor a Drools application:

381

Chapter 14. JMX monitoring wi...

8.

9.

. Download the JON server and agent.

. Download Drools plugin included in the "Drools and jBPM tools" bundle (http://www.jboss.org/

drools/downloads.html).

. Install server, agent, and the plugin.
. Check that the server is running, agent is running and plugin is installed.
. Execute the drools application [see details in the previous section].

. On the agent console, type "discovery" command for the agent to find the drools application,

which it will find on port 19988.

. On JON console, click on auto-discovery queue.

Select the IMX Server process that is showing there, running on port 19988.

Click import.

10Click on Resources->servers.

11Click on the JMX Server.

12Under JMXServer on the left hand side, you have Drools Service.

382

Part V. Drools Workbench

The Drools workbench is built with the UberFire framework and uses the Guvnor plugin. Drools
provides an additional rich set of plugins for rule authoring metaphors.

Chapter 15.

Chapter 15. Workbench

15.1. Installation

15.1.1. War installation

From the workbench distribution zip, take the ki e- wh- *. war that corresponds to your application
server:

e j boss-as7: tailored for JBoss AS 7 (which is being renamed to WildFly in version 8)

e eap- 6: tailored to JBoss EAP 6

 tontat 7: the generic war, works on Tomcat and Jetty

To use the workbench on a different application server (WebSphere, WebLogic, ...), use the
t ontat 7 war and tailor it to your application server's version.

15.1.2. Workbench data

The workbench stores its data, by default in the directory $WORKI NG_DI RECTORY/ . ni ogi t, for
example wi | df | y-8. 0. 0. Fi nal / bi n/ . gi t ni o, but it can be overridden with the system property
-Dorg.uberfire.nio.git.dir.

15.1.3. System properties

Here's a list of all system properties:

e org.uberfire.nio.git.dir:Location of the directory . ni ogi t . Default: working directory
e org.uberfire.nio.git.daenon. enabl ed: Enables/disables git daemon. Default: t r ue

e org.uberfire.nio.git.daenon. host: If daemon enabled, uses this property as local host
identifier. Default: | ocal host

385

Chapter 15. Workbench

e org.uberfire.nio.git.daenon. port:If daemon enabled, uses this property as port number.
Default: 9418

e org.uberfire.nio.git.daenon. upl oad: If daemon enabled, uses this information to define if
it's possible to push (upload) data to git. Default: t r ue

e org.uberfire. metadata.index.dir: Place where Lucene .index folder will be stored.
Default: working directory

e org.uberfire.cluster.id: Name of the helix cluster, for example: ki e- cl ust er

e org.uberfire.cluster.zk: Connection string to zookeeper. This is of the form
host 1: port 1, host 2: port 2, host 3: port 3, for example: | ocal host: 2188

e org.uberfire.cluster.!ocal.id:Unique id of the helix cluster node, note that ": ' is replaced
with ' ', for example: nodel_ 12345

e org.uberfire.cluster.vfs.|ock: Name of the resource defined on helix cluster, for example:
ki e-vfs

e org.uberfire.cluster.autostart: Delays VFS clustering until the application is fully
initialized to avoid conflicts when all cluster members create local clones. Default: f al se

e org.uberfire. sys.repo. nonitor.disabl ed: Disable configuration monitor (do not disable
unless you know what you're doing). Default: f al se

e org.uberfire.secure. key: Secret password used by password encryption. Default:
org. uberfire.admn

e org.uberfire.secure.alg: Crypto algorithm used by password encryption. Default:
PBEW t hMD5ANdDES

e org. guvnor. n2repo. di r : Place where Maven repository folder will be stored. Default: working-
directory/repositories/kie

e org. ki e. exanpl e. reposi tori es: Folder from where demo repositories will be cloned. The
demo repositories need to have been obtained and placed in this folder. Demo repositories can
be obtained from the kie-wb-6.1.0-SNAPSHOT-example-repositories.zip artifact. This System
Property takes precedence over org.kie.demo and org.kie.example. Default: Not used.

e org. ki e. denn: Enables external clone of a demo application from GitHub. This System
Property takes precedence over org.kie.example. Default: t r ue

» org. ki e. exanpl e: Enables example structure composed by Repository, Organization Unit and
Project. Default: f al se

To change one of these system properties in a WildFly or JBoss EAP cluster:

1. Edit the file $JBOSS_HOME/ domai n/ confi gur ati on/ host . xni .

2. Locate the XML elements server that belong to the nai n- server - group and add a system
property, for example:

386

Quick Start

<syst ent properties>
<property nane="org.uberfire.nio.git.dir" value="..." boot-tinme="false"/>

</ syst em properties>

15.2. Quick Start

These steps help you get started with minimum of effort.

They should not be a substitute for reading the documentation in full.

15.2.1. Add repository

Create a new repository to hold your project by selecting the Administration Perspective.

Authoring -

Project Authoring

Administration N

The Knowledge

Figure 15.1. Selecting Administration perspective

Select the "New repository" option from the menu.

Organizational Units - -

File Explorer List isitorieskEditor
Clone repository

& Repositories |
New repository A

Figure 15.2. Creating new repository

387

Chapter 15. Workbench

Enter the required information.

Create Repository

Repository Infomation -« is required

* Repository Name

myExampleRepository

* Qrganizational Unit

demo =

Figure 15.3. Entering repository information

15.2.2. Add project

Select the Authoring Perspective to create a new project.

388

Add project

Authoring -

Organiz Project Authoring Wiories ~
Administration

File Explorer

& Repositories
&= myExampleRepository
& readme.md

Figure 15.4. Selecting Authoring perspective

Select "Project” from the "New ltem" menu.

389

Chapter 15. Workbench

Explore - m Tools ~ Repository -

Project Explol Business Process

L
L
0

|
i
[wh]
|
[

demo ~ ' Myl pELfie

- = |
- fa 't d el s
—_— A '-I
[= a a’ a’)

m - I I - - I N

- - - T -
[= & f & =] ==l
- s —_— ot L L
[= = - =
- — —_ .
[=) L fu}) HaTe
- e L L L
[=] ==
s r L
Y =T fa

LAk L=

Figure 15.5. Creating new project

Enter a project name first.

390

Add project

Create new Project

* Resource Name [myPrnjecd

Location default//master@myExampleRepository/

Figure 15.6. Entering project name

Enter the project details next.

« Group ID follows Maven conventions.
* Artifact ID is pre-populated from the project name.

» Version follows Maven conventions.

391

Chapter 15. Workbench

New Project Wizard Project General Settings

Project Name |In5ert a project name ...

Project Description | |nsert a project description for documentation purposes ...

Group artifact version

Group ID [| N] Example: com.myorganization.myprojects @
Artifact ID |.myPr0jeci | Example: MyProject @
Version 1D | | 100 @

<- Previous l Next = l Cancel l Finish l

Figure 15.7. Entering project details

15.2.3. Define Data Model

After a project has been created you need to define Types to be used by your rules.

Select "Data Modeller" from the "Tools" menu.

392

Define Data Model

Explore ~ New ltem ~ m Repository -

Project Explorer Project Editor ¢

demo ~ myExampleReposmory ~ myrroject ~ @

Figure 15.8. Selecting "Data Modeller"

Click on "Create" to create a new type.

Data modeler Create | Save | X
myProject
S Create
Create new field
Identifier
The model is empty *Id sert a valid Java identifier Label | Insert a labe

]

Position Identifier 4 Label Type

The data object is empty

Figure 15.9. Selecting "Create" (type)

Enter the required details for the type.

393

Chapter 15. Workbench

Create new data object

*Identifier

MyExampleType

Label

Package
New package @ Existing package

org.anstis.myproject -

Superclass

4

Figure 15.10. Entering required details

Click on "Create" to create a field for the type.

q Cancel

394

Define Data Model

Data modeler Create | Save | %

myProjec o MyExampleType
Create

Identifier

MyExampleType .

Create new field

Id figldl Label | Insert a label

L3

org.anstis.myproject. MyExampleType

Paosition Identifier 4 Label Type

The data object is empty

Figure 15.11. Selecting "Create" (field)

Click "Save" to create the model.

Data modeler Create || Save | (x| ~
myProjec o MyExampleType
Create
Identifier

Create new field

MyExampleType .

*Id nsert a valid Java identifier Label | |nsert a label

.

org.anstis.myproject. MyExampleType

Position Identifier & Label

Figure 15.12. Clicking "Save"

395

Chapter 15. Workbench

15.2.4. Define Rule

Select "DRL file" (for example) from the "New Item" menu.

Explore - m Tools ~ Repository =

Project Exploi Business Process o
Decision Table (Spreadsheet)

demo - My ct -

DSL definition

Enumeration
BT Global Variable(s)

Guided Decision Table

Guided Rule

Guided Rule Template

Guided Score Card

Package

Project

Score Card (Spreadsheet)

Test Scenario

Work Item definition

Figure 15.13. Selecting "DRL file" from the "New Item" menu

Enter a file name for the new rule.

396

Define Rule

Create new DRL file

* Resource Name | myDrlFile

Location default/imaster@MyExampleRepository/myProject

fsrc/mainfresources

Cancel

Figure 15.14. Entering file name for rule
Enter a definition for the rule.
The definition process differs from asset type to asset type.

The full documentation has details about the different editors.

397

Chapter 15. Workbench

DRL Editor [my’Dl’lFl'E] Save | Delete || Rename @ Copy @ \Validate x|~
Fact types:(hide) [. . .
® org.anstis. myproject. MyExampieType import org.anstis.myproject. MyExampleType;
rule "one"
when
MyExampleType(field1 == "hello")
then
end

Figure 15.15. Defining a rule

Once the rule has been defined it will need to be saved.

DRL Editor [ITT)"DI"FI'E] SEWE['-L Delete = Rename

Fact types:(hide) . . . - .
® org.anstis. myproject MyExampleTyp import org.anstis.myproject. MyExample Type;

rule "one"

Figure 15.16. Saving the rule

15.2.5. Build and Deploy

Once rules have been defined within a project; the project can be built and deployed to the
Workbench's Maven Artifact Repository.

To build a project select the "Project Editor" from the "Tools" menu.

398

Configuration

Explore ~ New ltem ~ -~ Repository ~

Project Explorer Project Editor
Data Modeler
demo ~ MyExampleReposiory ~ = myrroject =

w# DRL

Figure 15.17. Selecting "Project Editor"

Click "Build and Deploy" to build the project and deploy it to the Workbench's Maven Aftifact
Repository.

If there are errors during the build process they will be reported in the "Problems Panel".

Project: [myProject:org.anstis:0.1.1] Save Buid & Deploy

N

Project Settings: Project General Settings ~

Figure 15.18. Building and deploying a project

Now the project has been built and deployed; it can be referenced from your own projects as any
other Maven Artifact.

The full documentation contains details about integrating projects with your own applications.
15.3. Configuration

15.3.1. User management

The workbench authenticates its users against the application server's authentication and
authorization (JAAS).

399

Chapter 15. Workbench

On JBoss EAP and WildFly, add a user with the script $JBOSS_HOVE/ bi n/ add- user . sh (or. bat):

$./add-user.sh

/'l Type: Application User

// Realm enpty (defaults to Applicati onReal m
/] Role: admn

There is no need to restart the application server.

15.3.2. Roles

The following roles are available:

e admin

e analyst
 developer
* manager

e user

15.3.2.1. Admin

Administrates the BPMS system. Has full access rights to make any changes necessary. Also has
the ability to add and remove users from the system.

15.3.2.2. Analyst
Creates rules, models, process flows, forms, dashboards and handles process change requests.
15.3.2.3. Developer

Implements code required for process to work. Mostly uses the JBDS connection to view
processes, but may use the web tool occasionally.

15.3.2.4. Business user

Daily user of the system to take actions on business tasks that are required for the processes to
continue forward. Works primarily with the task lists.

15.3.2.5. Manager/Viewer-only User

Viewer of the system that is interested in statistics around the business processes and their
performance, business indicators, and other reporting of the system and people who interact with
the system.

400

Command line config tool

15.3.3. Command line config tool

Provides capabilities to manage the system repository from command line.

15.3.3.1. Modes

« Online (default and recommended) - Connects to the Git repository on startup using Git server
provided by the KIE Workbench. All changes are made locally and published to upstream when:

» "push-changes" command is explicitly executed

+ "exit" command will publish all local changes and exit

« Offline - Creates and manipulates system repository directly on the server (no discard option)

15.3.3.2. Available Commands

Table 15.1. Available Commands

exit Publishes local changes, cleans up temporary
directories and quits the command line tool

discard Discards local changes without publishing
them, cleans up temporary directories and
quits this command line tool

help Prints a list of available commands

list-repo List available repositories

list-org-units List available organizational units

list-deployment

List available deployments

create-org-unit

Creates new organizational unit

remove-org-unit
add-deployment

remove-deployment

Removes existing organizational unit
Adds new deployment unit

Removes existing deployment

create-repo

Creates new git repository

remove-repo

Removes existing repository (only from
config)

add-repo-org-unit

Adds repository to the organizational unit

remove-repo-org-unit

add-role-repo

Removes repository from the organizational
unit

Adds role(s) to repository

remove-role-repo

Removes role(s) from repository

add-role-org-unit

Adds role(s) to organizational unit

401

Chapter 15. Workbench

remove-role-org-unit Removes role(s) from organizational unit

add-role-project Adds role(s) to project

remove-role-project Removes role(s) from project

push-changes Pushes changes to upstream repository (only
in online mode)

15.3.3.3. How to use

The tool can be found from kie-config-cli-${version}-dist.zip. Execute the kie-config-cli.sh script
and by default it will start in online mode asking for a Git url to connect to (the default value is
git://localhost/system). To connect to a remote server, replace the host and port with appropriate
values, e.g. git://kie-wb-host:9148/system.

./l kie-config-cli.sh

To operate in offline mode, append the offline parameter to the kie-config-cli.sh command. This
will change the behaviour and ask for a folder where the .niogit (system repository) is. If .niogit
does not yet exist, the folder value can be left empty and a brand new setup is created.

.l kie-config-cli.sh offline

15.4. Administration

15.4.1. Administration overview

A workbench is structured with Organization Units, VFS repositories and projects:

402

Organizational unit

Workbench structure overview

Car insurance

Home insurance

Car loans

15.4.2. Organizational unit

Organization units are useful to model departments and divisions.

An organization unit can hold multiple repositories.

Organizational Unit Manager

Organizational Units Associated repositories Available repositories
A unting department ? Insuran{es .. , ~No Repositories available - ,:
Business department Loans

Human Resources department

Y

YOl @ Edit

403

Chapter 15. Workbench

15.4.3. VFS repository

A VFS repository is a Virtual File System repository. By default a VFS is a Git repository.

A repository can hold multiple projects and belongs to 1 organization unit.

RepositoriesEditor

Loans

URI: git://Loans

Root: default://masten@Loans/

@ Delete

Insurances

URI: git://Insurances

Root: default://master@Insurances/

@ Delete

A new repository can be created from scratch or cloned from an existing repository.
15.5. Introduction

15.5.1. Log in and log out

Create a user with the role adni n and log in with those credentials.

After successfully logging in, the account username is displayed at the top right. Click on it to
review the roles of the current account.

15.5.2. Home screen

After logging in, the home screen shows. The actual content of the home screen depends on the
workbench variant (Drools, jBPM, ...).

404

Workbench concepts

The Knowledge Life Cycle

Authoring Deploy Process Management Tasks Dashboards
Project Authoring Deployments Process Definitions Tasks List Process & Task Dashboard
Asset repository Jobs Process Instances Business Dashboards

R

Administration

The Business Knowledge to drive your company

15.5.3. Workbench concepts

The Workbench is comprised of different logical entities:

e Part
A Part is a screen or editor with which the user can interact to perform operations.

Example Parts are "Project Explorer”, "Project Editor", "Guided Rule Editor" etc. Parts can be
repositioned.

e Panel
A Panel is a container for one or more Parts.
Panels can be resized.
» Perspective
A perspective is a logical grouping of related Panels and Parts.

The user can switch between perspectives by clicking on one of the top-level menu items; such
as "Home", "Authoring", "Deploy" etc.

15.5.4. Initial layout

The Workbench consists of three main sections to begin; however its layout and content can be
changed.

405

Chapter 15. Workbench

KIE Werkbench

Explore ~ Newltem ~ Tools = Q

Project Explorer & x |v
example ~ uf-playground ~ mortgages ~ @
&= <default>

= org
E morigages

% DRL

© DOMAIN SPECIFIC L ANGUAGE DEFINITION

3 ENUMERATION DEFINITION 1
/ GUIDED DECISION TABLE

@ GUIDED RULE

Bankruptcy history

Problems x|~
No bad credit checks
no NINJAs Level Text File Column Line

Underage
@ GUIDED RULE (WITH DSL)

JAVA SOURCE FILES

Figure 15.19. The Workbench

The initial Workbench shows the following components:-

» Project Explorer

This provides the ability for the user to browse their configuration; of Organizational Units (in
the above "example" is the Organizational Unit), Repositories (in the above "uf-playground"” is
the Repository) and Project (in the above "mortgages” is the Project).

e Problems
This provides the user will real-time feedback about errors in the active Project.
» Empty space
This empty space will contain an editor for assets selected from the Project Explorer.

Other screens will also occupy this space by default; such as the Project Editor.

15.6. Changing the layout

The default layout may not be suitable for a user. Panels can therefore be either resized or
repositioned.

406

Resizing

This, for example, could be useful when running tests; as the test defintion and rule can be
repositioned side-by-side.

15.6.1. Resizing

The following screenshot shows a Panel being resized.
Move the mouse pointer over the panel splitter (a grey horizontal or vertical line in between panels).

The cursor will changing indicating it is positioned correctly over the splitter. Press and hold the
left mouse button and drag the splitter to the required position; then release the left mouse button.

File Edit View History Bookmarks Tools Accessibility Help

& Inbox (1) - michael.anstis@gma...) KIE Workbench

& |9 loclhost - @| [~ Q= Y
KIE Workbench

Explore ~ Newltem ~ Tools ~ Q
Project Explorer o Guided Editor [Bankruptcy history]
EXTENDS None selected o
example ~ uf-playground ~ morigages ~&
WHEN &
B <default> 1. ThereisaLoanApplication [a] Bgl
The following exists:
& o There is a Bankruptcy with: =]
&= morigages any of the following.
2 yearOiOccurrence greater than j 1990 a5, gl
e
amountowed Oreater than j 10000 5,8
% DRL THEN &
1 Retract LoanApplication [a] Bl
© DOMAIN SPECIFIC LANGUAGE DEFINITION fal
% Set value of LoanApplication [a] approved alse j: =
2 LEErat]
{3 ENUMERATION DEFINITION 1 Set value of LoanApplication [a] explanation has been bankrupt = =
(show
/' GUIDED DECISION TABLE options...)
® GUIDED RULE Edit Source Config Metadata
Bankruptcy history
No bad credit checks -
Problems x|~
no NINJAs
Underage Level Text File Column Line

® GUIDED RULE (WITH DSL)

JAVA SOURCE FILES

o

Figure 15.20. Resizing

15.6.2. Repositioning

The following screenshot shows a Panel being repositioned.

Move the mouse pointer over the Panel title ("Guided Editor [No bad credit checks]" in this
example).

The cursor will change indicating it is positioned correctly over the Panel title. Press and hold the
left mouse button. Drag the mouse to the required location. The target position is indicated with
a pale blue rectangle. Different positions can be chosen by hovering the mouse pointer over the
different blue arrows.

407

Chapter 15. Workbench

Explore ~ Newltem ~ Tools - Q

Project Explorer o Guided Editor [No bad credit checks]
example ~ uf-playground ¥ morigages ~ =
B <default>

& org
& mortgages

@
@ DRL @D
J&

© DOMAIN SPECIFIC LANGUAGE DEFINITION I
© ENUMERATION DEFINITION I
GUIDED DECISION TABLE

® GUIDED RULE

Bankruptcy history

. No bad credit checks -

t Problems x| v
no NINJAs
Underage Level Text File Column Line

® GUIDED RULE (WITH DSL)

JAVA SOURCE FILES

Figure 15.21. Repositioning - dragging

408

Authoring

File Edit View History Bookmarks Tools Accessibility Help

& Inbox (1) - michael.anstis@ama... 43 KIE Workbench
& [D locathost @ - o fy = - X
KIE Workbench

Explore ~ Newliem -~ Tools ~ Q
Project Explorer @ Guided Editor [Bankruptcy history] Guided Editor [No bgd credit checks] Save || Delete || Rename || Copy Validate | % | ¥
EXTENDS None selected EXTENDS None selected
example ~ uf-playground ~ morigages ~=
WHEN WHEN
B <default> 1 There is a LoanApplication [a] 1 There is a LoanApplication [app]
B or The following exists: Any of the following are true:
4 There is a Bankruptcy with. There is an Applicant with
& mortgages any of the following: , crediRating equal to j OK j’”u
2 p reatd
yearotaccurrence 0 There is an Applicant with
amountOwed greats creditRating €qual to j Sub prime j:DE
$DRL N 'THEN
1 Retract LoanApplication [a] B Relract LoanApplication [app]
© DOMAIN SPECIFIC LANGUAGE DEFINITION Setvalue of LoanApplcaton] Setvalue of LoanApplication [app] approved | false j=
2
2 p icati Only AA
(B ENUMERATION DEFINITION | Setvalue of LoanApplication [a] Setvalue of LoanApplication [app] explanation Y =]
(show [Di;:jav\:s)
#/ GUIDED DECISION TABLE options...) - -
v D
® GUIDED RULE Edit Source Config Metadata Edit Source Config Metadata
Bankruptcy history
No bad credit checks -
Problems x|z
no NINJAs
Underage Level Text File Column Line

® GUIDED RULE (WITH DSL)

JAVA SOURCE FILES

.

Figure 15.22. Repositioning - complete

15.7. Authoring

15.7.1. Artifact Repository

Projects often need external artifacts in their classpath in order to build, for example a domain
model JARs. The artifact repository holds those artifacts.

The Artifact Repository is a full blown Maven repository. It follows the semantics of a Maven remote
repository: all snapshots are timestamped. But it is often stored on the local hard drive.

By default the artifact repository is stored under $WORKI NG_DI RECTORY/ r eposi t ori es/ ki e, but it
can be overridden with the system property - Dor g. guvnor . n2r epo. di r. There is only 1 Maven
repository per installation.

The Artifact Repository screen shows a list of the artifacts in the Maven repository:

409

Chapter 15. Workbench

Jplo. Refresh
Name Path LastModified Open Download
mortgages-0.0.1 jar jages/.0.1 2013 Nov 16 15:46:40 Open Diownioad
0.1.jar

example-1,0 jar ong s/example/ 1, (example- 2013 Nov 16 15:08:26 pen iy
1.0

jboss-modules-1.1.1.GA jar orglibossimodulesfboss-modules 2013 Nov 16 15:07:18 en Diowmion
M.1.1.GAjjboss-modules-1.1.1.GA jar

async-examples-1.0 jar c-examples 2013 Nov 16 16:14:33 en Dawrion

HR-1.0.jar org/ibpmiHRM.WHR-1.0 jar 2013 Nov 16 16:14:13 Gpen i

To add a new artifact to that Maven repository, either:

M H H B 15005

» Use the upload button and select a JAR. If the JAR contains a POM file under META- | NF/ maven
(which every JAR build by Maven has), no further information is needed. Otherwise, a groupld,

artifactld and version need be given too.

ane KIE Workbench
KIE Workbeneh Lt

o | & 127.0.0.1:8888 org kie.workbench. KIEWebapp KIEWebapp. htmifgwt

Artifact Upload

DataTypes jar Choose File..

Upload

« Using Maven, nvn depl oy to that Maven repository. Refresh the list to make it show up.

Note

This remote Maven repository is relatively simple. It does not support proxying,

mirroring, ... like Nexus or Archiva.

410

Asset Editor

15.7.2. Asset Editor

The Asset Editor is the principle component of Guvnor's User-Interface. It consists of two main
views Edit and Metadata.

» The views
» A The editing area - exactly what form the editor takes depends on the Asset type.

« B : This menu bar contains various actions for the Asset; such as Saving, Renaming, Copy
etc.

» C: Different views for asset content or asset information.

Edit shows the main editor for the asset

» Source shows the asset in plain DRL. Note: This tab is only visible if the asset content can
be generated into DRL.

« Config contains the model imports used by the asset.

* Metadata contains the metadata view for this editor. Explained in more detail below.

411

Chapter 15. Workbench

Guided Editor [Bankruptey history] Save | Delets | Rename | Copy | Maldae
EXTENDS Mone selected
WHEN

1. There is aLoanApplication [a]

The following exisis
There is a Bankruptcy with:

! o
any of the following:
5 - 390
2 yearDiDccumence greater than v el B5,8
a
R _— 10000 L
amountOwed qreater than v (10DLL -

THEN | ‘

delete LoanApplication [a]
Setvalue of LoanApplication [a] approved false L =]

Setvalue of Loanfpplication [a] explanatipr has been bankrupt

(show
aptions..)

Eclit Source Coanfig Metadata

0

Figure 15.23. The Asset Editor - Edit tab

* Metadata
* A : Meta data (from the "Dublin Core" standard):-
"Title:" Name of the asset
"Categories:" A deprecated feature for grouping the assets.
"Last modified:" The last modified date.
"By:" Who made the last change.
"Note:" A comment made when the Asset was last updated (i.e. why a change was made)

"Created on:" The date and time the Asset was created.

412

Asset Editor

"Created by:" Who initially authored the Asset.
"Format:" The short format name of the type of Asset.
"URI:" URI to the asset inside the Git repository.

* B : Other miscellaneous meta data for the Asset.

» C: Version history of the Asset.

» D : Free-format documentation\description for the Asset. It is encouraged, but not mandatory,

to record a description of the Asset before editing.

» E : Discussions regarding development of the Asset can be recorded here.

Guided Editor [Bankruptcy history] Save Delete | Rename Copy | Validate

=] Metadata
Title:Bankruptcy history.rarl &
Categories: da
Last modified2013-11-07 13:07
by-admin
Fote:Some changes
Created on:2013-09-18 16:54
Created by:Walter Medvedeo
Format:guided rule
LRLgitfmaster@uf-playground/mortgages/sre/mainfresources/org/mortgage s/Bankruptey ¥ 20hisgdry.rdrl

Other meta data f

Version history '
Description '

Discussion A

Edit Source Confify Metadata

e B W

Figure 15.24. The Asset Editor - Attributes tab

413

x

Chapter 15. Workbench

[=| Other meta data

Subject:
Type:
External link:

Source:

Figure 15.25. The Asset Editor - Other meta data

[—] Wersion history

WVersion history Q:gh
2 modified on: 2013-11-07 1.07 PM by admin (Some changes)
1 modified on: 2013-09-18 4:54 PM by Walter Medvedeo (project refactoring to use mortgages pac

Wiew

Figure 15.26. The Asset Editor - Version history

[=| Description

<documentation=

Figure 15.27. The Asset Editor - Description

[=] Discussion

Add a discussion comment | Erase all comments

Comment by admin on Thu Nowv 07 14:50:58 EET 2013:
This asset should be removed

Figure 15.28. The Asset Editor - Discussion

15.7.3. Project Explorer

The Project Explorer provides the ability to browse different Organizational Units, Repositories,
Projects and their files.

414

Project Explorer

15.7.3.1. Initial view

The initial view could be empty when first opened.

Project Explorer &

example - uf-playground ~ mortgages -

=== Mo items found ===

Figure 15.29. An empty initial view

The user may have to select an Organizational Unit, Repository and Project from the drop-down
boxes.

Project Explorer &

example = ufplayground = morgages ~ &

jbpm
repositoryl

k= <default>

= org
et uf-playground

@ mypackagename

R

Figure 15.30. Selecting a repository
The default configuration hides Package details from view.

In order to reveal packages click on the icon as indicated in the following screen-shot.

415

Chapter 15. Workbench

Project Explorer o
example - uf-playground ~ mortgages ~ %

B <default>
&= org
& morigages
@ mypackagename

Figure 15.31. Showing packages

After a suitable combination of Organizational Unit, Repository, Project and Package have been
selected the Project Explorer will show the contents. The exact combination of selections depends
wholly on the structures defined within the Workbench installation and projects. Each section

contains groups of related files.

416

Project Explorer

Project Explorer o
example - uf-playground ~ mortgages ~ =
k& <default>

&= org

& mortgages
@ mypackagename

(2 DOMAIN SPECIFIC LANGUAGE DEFINITION

(9 ENUMERATION DEFINITION

It:ﬁ':"llilullIZ:I'EI:I' DECISION TABLE

® GUIDED RULE
Bankruptcy history
Mo bad credit checks L}
no NINJAs

Underage

® GUIDED RULE (WITH D5SL)

® GUIDED RULE TEMPLATE

Figure 15.32. Expanded asset group

417

Chapter 15. Workbench

15.7.3.2. Different views

Project Explorer supports multiple views.

* Project View
A simplified view of the underlying project structure. Certain system files are hidden from view.
* Repository View

A complete view of the underlying project structure including all files; either user-defined or
system generated.

Views can be selected by clicking on the icon within the Project Explorer, as shown below.

Both Project View and Repository Views can be further refined by selecting either "Show as
Folders" or "Show as Links".

Project Explorer o

* Project View
demo ~ uf-playground ~ :

Repository View h

k= <default>
& org Show as Folders
Im mortgages ¥ Show as Links

Figure 15.33. Switching view

418

Project Explorer

15.7.3.2.1. Project View examples

Project Explorer

demo = uf-playground -
= <default>

k= org
& morigages

Figure 15.34. Project View - Folders

Project Explorer

demo ~ uf-playground ~

<default> org

= mortgages

Figure 15.35. Project View - Links

N

mortgages ~

mortgages ~

419

Chapter 15. Workbench

15.7.3.2.2. Repository View examples

Project Explorer &
demo =~ ufplayground = mortgages ~ =

& mortgages
& SIC
&= main
m java
BB resources h‘
4 pom.xmi
[project.imports

Figure 15.36. Repository View - Folders

Project Explorer &

demo -~ ufplayground =~ morgages ~ =

mortigages SrIc main resources h

= META-INF

| org

Figure 15.37. Repository View - Links

15.7.4. Project Editor

The Project Editor screen can be accessed from the Project menu. Project menu shows the
settings for the currently active project.

420

Project Editor

Unlike most of the workbench editors, project editor edits more than one file. Showing everything
that is needed for configuring the KIE project in one place.

Project: [mortgages:mortgages:0.0.1] Save | Buld&Deploy | % |~

Project Settings: Project General Settings ~

Project General Settings
Dependencies
Metadata
Prq tgages project
Pra sample project for KIE workbenc
Knowledge bases and sessions I & sample project for KIE workbench

Metadata

Import Suggestions

Metadata

Group artifact version

Group ID mortgages Example: com myorganization myprojects @
Artifact ID mortgages Example: MyProject @
Version ID 00.1 100 @

Figure 15.38. Project Screen and the different views

15.7.4.1. Build & Deploy

Build & Depoy builds the current project and deploys the KJAR into the workbench internal Maven
repository.

15.7.4.2. Project Settings
Project Settings edits the pom.xml file used by Maven.
15.7.4.2.1. Project General Settings

General settings provide tools for project name and GAV-data (Group, Artifact, Version). GAV
values are used as identifiers to differentiate projects and versions of the same project.

Project Settings: Project General Settings

Project General Settings

Froject Hame Mortgages project

Project Description Just a sample project for KIE workbench

Group artifact version

Group ID mortgages
Artifact ID mortgages
Version 1D 0.0.1

Figure 15.39. Project Settings

421

Chapter 15. Workbench

15.7.4.2.2. Dependencies

The project may have any number of either internal or external dependencies. Dependency is a
project that has been built and deployed to a Maven repository. Internal dependencies are projects
build and deployed in the same workbench as the project. External dependencies are retrieved
from repositories outside of the current workbench. Each dependency uses the GAV-values to
specify the project name and version that is used by the project.

Dependencies: Dependancies list =

Add Add from

Dependencies
repository

Group ID Artifact ID Version ID

org project anotherProject 1.0 i

Figure 15.40. Dependencies

15.7.4.2.3. Metadata

Metadata for the pom.xml file.

15.7.4.3. Knowledge Base Settings

Knowledge Base Settings edits the kmodule.xml file used by Drools.

Add Rename Delete Make Default

This one is default

Include me

Included Knowledge Bases

Add Delete
Include me

Packages

Add = Delete

org.mortgages

Equals Behavior
@ Identity
Equality
Event Processing Mode
@ Stream

Knowledge Sessions

Add
Name Default State Clock

Session 1 v

Session 2

Session 3 Stateful v Realtime

Figure 15.41. Knowledge Base Settings

422

Project Editor

@ Note
For more information about the Knowledge Base properties, check the Drools
Expert documentation for kmodule.xml.

15.7.4.3.1. Knowledge bases and sessions

Knowledge bases and sessions lists the knowledge bases and the knowledge sessions specified
for the project.

15.7.4.3.1.1. Knowledge base list
Lists all the knowledge bases by name. Only one knowledge base can be set as default.
15.7.4.3.1.2. Knowledge base properties

Knowledge base can include other knowledge bases. The models, rules and any other content in
the included knowledge base will be visible and usable by the currently selected knowledge base.

Rules and models are stored in packages. The packages property specifies what packages are
included into this knowledge base.

Equals behavior is explained in the Drools Expert part of the documentation.
Event processing mode is explained in the Drools Fusion part of the documentation.
15.7.4.3.1.3. Knowledge sessions

The table lists all the knowledge sessions in the selected knowledge base. There can be only one
default of each type. The types are stateless and stateful. Clicking the pen-icon opens a popup
that shows more properties for the knowledge session.

15.7.4.3.2. Metadata

Metadata for the kmodule.xml

15.7.4.4. Imports

Settings edits the project.imports file used by the workbench editors.

Imports: Import Suggestions +

Type Remove
org test.Person
java.util ArrayList

org.test.Address © Remove

Figure 15.42. Imports

423

Chapter 15. Workbench

15.7.4.4.1. Import Suggestions

Import Suggestions lists imports that are used as suggestions when using the guided editors the
workbench has. Making it easier to work with the workbench, as there is no need to type each
import in each file that uses the import.

15.7.4.4.2. Metadata

Metadata for the project.imports file.

15.7.5. Validation

The Workbench provides a common and consistent service for users to understand whether files
authored within the environment are valid.

15.7.5.1. Problem Panel

The Problems Panel shows real-time validation results of assets within a Project.

When a Project is selected from the Project Explorer the Problems Panel will refresh with validation
results of the chosen Project.

When files are created, saved or deleted the Problems Panel content will update to show either
new validation errors, or remove existing if a file was deleted.

Here an invalid DRL file has been created and saved.

The Problems Panel shows the validation errors.

424

Validation

DRL Editor [Dummy rule] Save | Delete | Rename | Copy | Validate : R4
Show fact
owfactypes package org.mortgages
Some invalid DRL
DRL Metadata
Problems x|~
Level Text File Column Line
[ERR 107] Line 3:0
mismatched input 'Some’
expecting one of the
%] P) g Dummy rule.drl 0 3
following tokens: [package,
import, global, declare,
function, rule, query]'
Parser returned a null
%] Dummy rule.drl 0 0

Package

Figure 15.43. The Problems Panel

15.7.5.2. On demand validation

It is not always desirable to save a file in order to determine whether it is in a valid state.

All of the file editors provide the ability to validate the content before it is saved.

Clicking on the 'Validate' button shows validation errors, if any.

425

Chapter 15. Workbench

Validation errors

€@ [ERR 107] Line 3:0 mismatched input 'Some’ expecting one of the following
tokens: Tpackage, import, global, declare, function, rule, query]".

@ Parser retumed a null Package

15.7.6. Data Modeller

15.7.6.1. First steps to create a data model

By default, a data model is always constrained to the context of a project. For the purpose of this
tutorial, we will assume that a correctly configured project already exists.

To start the creation of a data model inside a project, take the following steps:

1. From the home panel, select the authoring perspective

KIE Workbench

Authoring =

Project Authoring

Asset repository

Administration

Figure 15.44. Go to authoring perspective

2. If not open already, start the Project Explorer panel

426

Data Modeller

KIE Workbench

Mew Item - TC

Incoming changes

Recently edited

Recently opened

Figure 15.45. Open project explorer panel

. From Project Explorer panel (the "Business" tab), select the organizational unit, repository, and
the project the data model has to be created for. For this tutorial's example, the values "Tutorial",
"Examples”, and "Purchases" were respectively chosen

Business = Technical i

Organizational Unit: | % Tutorial =™
Repository: [[Examples ™
Project: CdPurchases ™

Package =N gepk=0

Figure 15.46. Choose project

. Open the Data Modeller tool by clicking on the "Tools" authoring-menu entry, and selecting the
"Data Modeller" option from the drop-down menu

427

Chapter 15. Workbench

KIE Workbench

Explore = Mew [tem =

Project Explorer

Business | Techricd -
Organizational Unit: & Tutorial ™
Repository: [[Examples =~
Project: [dPuchases =

Figure 15.47. Open data modeller

This will start up the Data Modeller tool, which has the following general aspect:

Purchase Order ’
Data object Field

Purchases

Identifier
Create new field
Purchase Order . ldentifier | qegaription
Purchase Qrder Header x "d | ns lid Jar Jentifier Label | |nsert al
Label Description
Purchase Order Line » *Type j @ Create
Description
|
Purchase Order (org.joppm.examples.purchases.PurchaseOrder)
Type String
Position Identifier & Label
Equals O
Fosition 0
header Header (@ Purchase Order Header
2 lines Lines @ Purchase Qrder Line [0 N] x

Figure 15.48. Data modeller overview

The Data Modeller panel is divided into the following sections:

« The leftmost "model browser" section, which shows a list of already existing data entities (if any
are present, as in this example's case). Above the list the project's name and a button for new
object creation are shown. Note that as soon as any changes are applied to the project, an "*' will
be appended to the project's name to notify the user of the existence of non-persisted changes.

428

Data Modeller

Purchases
Identifier
Purchas
Furchase Order Header x
FPurchase Order Line »

Figure 15.49. The data model browser

» The central section consists of three distinct parts:

At the top, the "bread crumb widget": this is a navigational aid, which allows navigating back and
forth through the data model, when accessing properties that themselves are model entities. The
bread crumb trail shown in the image indicates that the object browser is currently visualizing
the properties of an entity called "Purchase Order Line", which we accessed through another
entity ("Purchase Order"), where it is defined as a field.

Purchase Order - Purchase Order Line

Figure 15.50. The bread crumb

the section beneath the bread crumb widget, is dedicated to the creation of new fields.

Create new field

"d |insert a valid Java identifiel AR

*Type j

Figure 15.51. New field creation

the bottom section comprises the Entity's "field browser", which displays a list of the currently
selected data object's (in the model browser) fields.

429

Chapter 15. Workbench

Purchase Order (org.jppm.examples.purchases.PurchaseOrder2)

Position ldentifier & Label
-ll
header Header (i) Purchase Order Header
2 lines Lines @ Purchase Order Line [0.M] b4

Figure 15.52. The entity field browser

e The "entity / field property editor". This is the rightmost section of the Data Modeller screen
which visualizes a tabbed pane. The Data object tab allows the user to edit the properties of
the currently selected entity in the model browser, whilst the Field tab enables edition of the
properties of any of the currently selected object's fields.

Data object | Field

ldentifier pyrchaseOrder

Label Purchase Order

Deseription | This entity models the

client purchase orders.

Package org.jbpm.examples.purchases jg
Superclass Example Parent Class {c:nj

Role EVENT j ©

Figure 15.53. The entity/field property editor

15.7.6.2. Entities

A data model consists of data entities which are a logical representation of some real-world data.
Such data entities have a fixed set of modeller (or application-owned) properties, such as its

430

Data Modeller

internal identifier, a label, description, package etc. Besides those, an entity also has a variable
set of user-defined fields, which are an abstraction of a real-world property of the type of data that
this logical entity represents.

Creating a data entity can be achieved either by clicking the "Create" button in the model browser
section (see fig. "The data model browser" above), or by clicking the one in the top data modeller
menu:

Create Save x X

Data object Field

Figure 15.54. Starting creation of an entity from the top menu

This will pop up the new object screen:

Create new data object

e i

Figure 15.55. The new entity pop up screen

Some initial information needs to be provided before creating the new object:

» The object's internal identifier (mandatory). The value of this field must be unique per package,

i.e. if the object's proposed identifier already exists in the selected package, an error message
will be displayed.

431

Chapter 15. Workbench

» Alabel (optional): this field allows the user to define a user-friendly label for the data entity about
to be created. This is purely conceptual info that has no further influence on how objects of this
entity will be treated. If a label is defined, then this is how the entity will be displayed throughout
the data modeller tool.

» A package (mandatory): a data entity must always be created within a package (or name space,
in which this entity will be unique at a platform level). By default, the option for selecting an
already existing package will be activated, in which case the corresponding drop-down shows
all the packages that are currently defined. If a new package needs to be defined for this entity,
then the "New package" option should be selected. In this case the new to be created package
should be input into the corresponding text-field. The format for defining new packages is the
same as the one for standard Java packages.

« A superclass (optional): this will indicate that this entity extends from another already existing
one. Since the data modeller entities are translated into standard Java classes, indicating a
superclass implies normal Java object extension at the generated-code level.

Once the user has provided at least the mandatory information, by pushing the "Ok" button at the
bottom of the screen the new data entity will be created. It will be added to the model browser's
entity listing.

It will also appear automatically selected, to make it easy for the user to complete the definition
of the newly created entity, by completing the entity's properties in the Data Object Properties
browser, or by adding new fields.

Purchases* © Create

Identifier
Create new field
Purchase Order o

Purchase Order Header »® *id 1 tif Label
Purchase Order Line x® “Type -
frutorial Exarmple Entity .

Tutorial Example Entity (org.jbpm.examples.Example)

Position Identifier 4 Label Type

The data of

Figure 15.56. New entity has been created

@ Note
As can be seen in the above figure, after performing changes to the data model, the
model name will appear with an ** to alert the user of the existence of un-persisted
changes to the model.

432

Data Modeller

In the Data Modeller's object browsing section, an entity can be deleted by clicking upon the 'x'
icon to the right of each entity. If an entity is being referenced from within another entity (as a
field type), then the modeller tool will not allow it to be deleted, and an error message will appear
on the screen.

15.7.6.3. Properties & relationships

Once the data entity has been created, it now has to be completed by adding user-defined
properties to its definition. This can be achieved by providing the required information in the
"Create new field" section (see fig. "New field creation"), and clicking on the "Create" button when
finished. The following fields can (or must) be filled out:

« The field's internal identifier (mandatory). The value of this field must be unique per data entity,
i.e. if the proposed identifier already exists within current entity, an error message will be
displayed.

« A label (optional): as with the entity definition, the user can define a user-friendly label for the
data entity field which is about to be created. This has no further implications on how fields
from objects of this entity will be treated. If a label is defined, then this is how the field will be
displayed throughout the data modeller tool.

« A field type (mandatory): each entity field needs to be assigned with a type.
This type can be either of the following:

1. A 'primitive’ type: these include most of the object equivalents of the standard Java primitive
types, such as Boolean, Short, Float, etc, as well as String, Date, BigDecimal and Biglnteger.

*Type - @ Create

BigDecimal
irchas Biginteger
Boolean
Date
Double

Float
. Integer

Lang

Short

String

‘osition

7]

Figure 15.57. Primitive field types

2. An 'entity’ type: any user defined entity automatically becomes a candidate to be defined as
a field type of another entity, thus enabling the creation of relationships between entities. As

433

Chapter 15. Workbench

can be observed in the above figure, our recently defined 'Tutorial Example Entity' already
appears in the types list and can be used as a field type, even for a field of itself. An entity
type field can be created either in 'single’ or in 'multiple’ form, the latter implying that the field
will be defined as a collection of this type, which will be indicated by the extension '[0..N]'
in the type drop-down or in the entity fields table (as can be seen for the 'Lines' field of the

'Purchase Order' entity, for example).

Example Parent Class (org.jbpm.examples. purchases. parent)

Example Parant Class (org.jbpm.examples. purchases parent) [0..N]

Purchase Order (org.jbpm.examples purchases. PurchaseOrder)

Purchase Order (org.jbpm.examples.purchases PurchaseOrder) [0..N]
Purchase Order Header (org.jbpm.examples.purchases PurchaseOrderHeader)

Purchase Order Header (org.jbpm.examples.purchases PurchaseOrderHeader) [0..N]

Purchase Order Line (org.jbpm.examples. purchases.PurchaseOrderLing)
Purchase Order Line {org.jbpm.examples, purchases PurchaseOrderLing) [0..N]
Tutorial Example Entity (org.jbpm.examples. Example)

Tutorial Example Entity l{nrg.jbpm.examples.Exam ple) [0..M]

A

Figure 15.58. Entity field types

When finished introducing the initial information for a new field, clicking the 'Create' button will add

the newly created field to the end of the entity's fields table below:

. . Tutorial Example Entity
urchases

Identifier
Create new field

Purchase Order x
Purchase Order Header 3¢ Fe |insert a valid Java identifier Label ||nsert a label
Purchase Order Line *® *Type j

Tutorial Example Entity .

Tutorial Example Entity (org.jppm.examples.Example)

Position Identifier 4 Label T

vpe

Figure 15.59. New field has been created

Data ohject

Identifier

Lahel

Description

Type

Equals

Position

The new field will also automatically be selected in the entity's field list, and its properties will be
shown in the Field tab of the Property editor. The latter facilitates completion of some additional

properties of the new field by the user (see below).

At any time, any field (without restrictions) can be deleted from an entity definition by clicking on

the corresponding 'x' icon in the entity's fields table.

434

Field

title

Title

String j
O
4

Data Modeller

15.7.6.4. Additional options

As stated before, both entities as well as entity fields require some of their initial properties to be
set upon creation. These are by no means the only properties entities and fields have. Below we
will give a detailed description of the additional entity and field properties.

15.7.6.4.1. Additional entity properties ("Data object tab")

Data object | Field

...

ldentifier prchaseOrder

Lakel Purchase Order

Deseription | Thig entity models the

client purchase orders.
Package org.jbpm.examples.purchases jg
Superclass Example Parent Class |j-::-|j

Role EVENT j [}

Figure 15.60. The entity's properties

» Description: this field allows the user to introduce some kind of description for the current entity,
for documentation purposes only. As with the label property, this is conceptual information that
will not influence the use or treatment of this entity or its instances in any way.

» Role: this property allows the assignment of a Role to the entity. The Role is a concept inherited
from Drools Fusion, which for the time being only allows one possible value ("Event"). An entity
that is designated with this value will be treated by the rules engine as an event type Fact (See
Drools Fusion for more information on this matter).

435

Chapter 15. Workbench

15.7.6.4.2. Additional field properties ("Field tab")

Diata object Fiald

Identifier header

Labal

Description

Figure 15.61. The entity's field properties

 Description: this field allows the user to introduce some kind of description for the current field,
for documentation purposes only. As with the label property, this is conceptual information that
will not influence the use or treatment of this entity or its instances in any way.

« Equals: checking this property for an entity field implies that it will be taken into account, at
the code generation level, for the creation of both the equals() and hashCode() methods in the
generated Java class. We will explain this in more detail in the following section.

 Position: this field requires a zero or positive integer. When set, this field will be interpreted
by the Drools engine as a positional argument (see the section below and also the Drools
documentation for more information on this subject).

15.7.6.5. Generate data model code.

The data model in itself is merely a visual tool that allows the user to define high-level data
structures, for them to interact with the Drools Engine on the one hand, and the jBPM platform
on the other. In order for this to become possible, these high-level visual structures have to be
transformed into low-level artifacts that can effectively be consumed by these platforms. These
artifacts are Java POJOs (Plain Old Java Objects), and they are generated every time the data
model is saved, by pressing the "Save" button in the top Data Modeller Menu.

436

Data Modeller

Create Save x

Data ohject Field

Figure 15.62. Save the data model from the top menu

At this time each entity that has been defined in the model will be translated into a Java class,
according to the following transformation rules:

The entity's identifier property will become the Java class's name. It therefore needs to be a
valid Java identifier.

The entity's package property becomes the Java class's package declaration.
The entity's superclass property (if present) becomes the Java class's extension declaration.

The entity's label and description properties will translate into the Java
annotations "@org.kie.workbench.common.services.datamodeller.annotations.Label" and
"@org.kie.workbench.common.services.datamodeller.annotations.Description”, respectively.
These annotations are merely a way of preserving the associated information, and as yet are
not processed any further.

The entity's role property (if present) will be translated into the
"@org.kie.api.definition.type.Role" Java annotation, that IS interpreted by the application
platform, in the sense that it marks this Java class as a Drools Event Fact-Type.

A standard Java default (or no parameter) constructor is generated, as well as a full parameter
constructor, i.e. a constructor that accepts as parameters a value for each of the entity's user-
defined fields.

The entity's user-defined fields are translated into Java class fields, each one of them with its own
getter and setter method, according to the following transformation rules:

The entity field's identifier will become the Java field identifier. It therefore needs to be a valid
Java identifier.

The entity field's type is directly translated into the Java class's field type. In case the entity field
was declared to be multiple (i.e. '[0..N]'), then the generated field is of the "java.util.List" type.

The equals property: when it is set for a specific field, then this class property will be
annotated with the "@org.kie.api.definition.type.Key" annotation, which is interpreted by the
Drools Engine, and it will 'participate’ in the generated equals() method, which overwrites the
equals() method of the Object class. The latter implies that if the field is a 'primitive’ type, the
equals method will simply compares its value with the value of the corresponding field in another

437

Chapter 15. Workbench

instance of the class. If the field is a sub-entity or a collection type, then the equals method will
make a method-call to the equals method of the corresponding entity's Java class, or of the
java.util.List standard Java class, respectively.

If the equals property is checked for ANY of the entity's user defined fields, then this also implies
thatin addition to the default generated constructors another constructor is generated, accepting
as parameters all of the fields that were marked with Equals. Furthermore, generation of the
equals() method also implies that also the Object class's hashCode() method is overwritten, in
such a manner that it will call the hashCode() methods of the corresponding Java class types
(be it 'primitive’ or user-defined types) for all the fields that were marked with Equals in the Data
Model.

« The position property: this field property is automatically set for all user-defined fields, starting
from 0, and incrementing by 1 for each subsequent new field. However the user can freely
changes the position among the fields. At code generation time this property is translated into
the "@org.kie.api.definition.type.Position" annotation, which can be interpreted by the Drools
Engine. Also, the established property order determines the order of the constructor parameters
in the generated Java class.

e The entity's role property (if present) will be translated into the
"@org.kie.api.definition.type.Role" Java annotation, that IS interpreted by the application
platform, in the sense that it marks this Java class as a Drools Event Fact-Type.

As an example, the generated Java class code for the Purchase Order entity, corresponding to
its definition as shown in the following figure purchase_example.jpg is visualized in the figure at
the bottom of this chapter. Note that the two of the entity's fields, namely 'header' and 'lines’ were
marked with Equals, and have been assigned with the positions 2 and 1, respectively).

| Dataohject | Field

Create new field !
Identifier | pyrehaseOrder

“id: [inser Label

*Type j

L Purchase Order

Descriplion | This entity models the

client purchase orders.

Purchase Order (org.jbpm.examples.purchases.PurchaseOrder)
Package | org.jbpm.examples purchases j o

Position Identifier a Label Type
Superclass Example Parent Class njmj
description Description String
Rale EVENT -|e
O o
lines Lines (@ Purchase Order Ling [0..N]

Figure 15.63. Purchase Order configuration

438

Data Modeller

package org.j bpm exanpl es. pur chases;

/**

* This class was autonatically generated by the data nodel er tool.

*/

@rg. kie.api.definition.type. Rol e(val ue =

org. ki e. api . definition.type. Rol e. Type. EVENT)

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot ati ons. Label (val ue =
"Purchase Order")

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot ati ons. Descri ption(val ue =
"This entity nodels the client purchase orders.")

public class PurchaseOrder extends org.jbpm exanpl es. purchases. par ent

i mpl ements java.io. Serializable {

static final long serial VersionU D = 1L;

@r g. ki e. wor kbench. common. servi ces. dat anodel | er. annot ati ons. Label (val ue =
"Descri ption")

@rg. kie.api.definition.type.Position(value = 0)

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot ati ons. Descri pti on(val ue
"A description for this purchase order.")

private java.lang. String description;

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot at i ons. Label (val ue =

"Li nes")

@rg. kie.api.definition.type. Position(value = 1)

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot ati ons. Descri pti on(val ue
"The purchase order itens (collection of Purchase Order Line sub-entities).")
@rg. ki e.api . definition.type. Key
private java.util.List<org.jbpm exanpl es. purchases. PurchaseO derLi ne> | i nes;

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot at i ons. Label (val ue =
"Header")

@rg. kie.api.definition.type. Position(value = 2)

@r g. ki e. wor kbench. conmon. servi ces. dat anodel | er. annot at i ons. Descri ption(val ue =
"The purchase order header (Purchase Order Header sub-entity).")

@rg. ki e.api . definition.type. Key

private org.jbpm exanpl es. purchases. PurchaseO der Header header;

public PurchaseOrder() {}

publ i ¢ PurchaseOr der (

java.lang. String description,

java. util.List<org.jbpm exanpl es. purchases. PurchaseCOr derLi ne> |ines,
org. j bpm exanpl es. pur chases. Pur chaseOr der Header header)

{
thi s.description = description;
this.lines = |ines;

thi s. header = header;

439

Chapter 15. Workbench

publ i ¢ PurchaseOrder (
java. util.List<org.jbpm exanpl es. purchases. PurchaseCOr derLi ne> |ines,
org. j bpm exanpl es. pur chases. Pur chaseOr der Header header)

{

this.lines = |ines;

t hi s. header = header;
}

public java.lang. String getDescription() {
return this.description;

}

public void setDescription(java.lang.String description) {
thi s.description = description;

}

public java.util.List<org.jbpm exanpl es. purchases. PurchaseOr der Li ne>
get Li nes()
{

return this.lines;

}

public void setLines(

java. util.List<org.jbpm exanpl es. purchases. PurchaseOrderLi ne> |ines)
{

this.lines = |ines;

}

public org.jbpm exanpl es. purchases. PurchaseOr der Header get Header () {
return this. header;

}

public void set Header(org.jbpm exanpl es. purchases. PurchaseOr der Header
header)

{

thi s. header = header;

}

@verride

publi ¢ bool ean equal s(Obj ect 0) {

if (this == 0) return true;

if (o ==null || getdass() != o.getClass()) return fal se;

org. j bpm exanpl es. purchases. Pur chaseOrder that =

(org.j bpm exanpl es. pur chases. Pur chaseOr der) o;

if (lines !'= null ? Ilines.equals(that.lines) : that.lines !'= null)
return fal se;

if (header !'= null ? !header.equal s(that.header) : that.header != null)

440

Data Modeller

return fal se;
return true;

}

@verride
public int hashCode() {
int result = 17;

result = 13 * result + (lines !'=null ? lines.hashCode() : 0);
result = 13 * result + (header != null ? header.hashCode() : 0);
return result;

}

}

15.7.6.6. Using external models

Using an external model means the ability to use a set for already defined POJOs in current
project context. In order to make those POJOs available a dependency to the given JAR should
be added. Once the dependency has been added the external POJOs can be referenced from
current project data model.

There are two ways to add a dependency to an external JAR file:

« Dependency to a JAR file already installed in current local M2 repository (typically associated
the the user home).

« Dependency to a JAR file installed in current Kie Workbench/Drools Workbench "Guvnor M2
repository”. (internal to the application)

15.7.6.6.1. Dependency to a JAR file in local M2 repository

To add a dependency to a JAR file in local M2 repository follow this steps.

441

Chapter 15. Workbench

15.7.6.6.1.1. Open the Project Editor for current project and select the
Dependencies view.

File Edit View History Bookmarks Tools Help

| © KIE Warkbench ” + |
v @| |Bv coogle Q J\‘/L g

& localhost

KIE Workbench

Explore ~ NewItem ~ Tools v

Project Explorer x |~ Project Screen File™ || Build &Deploy | | % | ™

Business Technical <
Dependencies: Dependencies list v

Organizational Unit: 4 demo ~

Repository: [ke-eamples ¥ Dependencles Add Add from
Project: GdPurchases ~ n peposony
Package: & orgjbpm.examples.purchases ¥
Group ID Artifact ID Verslon ID
Figure 15.64. Project editor.
15.7.6.6.1.2. Click on the "Add" button to add a new dependency line.
File Edit View History Bookmarks Tools Help
| @ KIE Workbench | #+]
S localhost v @| | Google (s} _\l‘/L o

KIE Workbench

Explore ~ NewItem ~ Tools

File” | Build&Deploy | x ¥

Project Explorer = |~ Project Screen

Business = Technical <

Dependencies: Dependencies list ~

Organizational Unit: i demo ™

Add from

Repository: []ke-examples ~ Dependencles Mﬂ
repository

Project: | (Jpurchases ~ "

Package: | & org;jbpm.examples purchases ¥
Group ID Artifact ID Verslon ID

w

javascripts;

Figure 15.65. New dependency line.

442

Data Modeller

15.7.6.6.1.3. Complete the GAV for the JAR file already installed in local M2
repository.

File Edit View History Bookmarks Tools Help

| © KIE Warkbench ” + |
v @| |Bv coogle Q J\‘/L g

& localhost

KIE Workbench

Explore ~ NewItem ~ Tools v

Project Explorer x |~ Project Screen File™ || Build &Deploy | | % | ™

Business Technical [+
Dependencies: Dependencies list v

Organizational Unit: 4 demo ~

Repository: [ke-eamples ¥ Dependencles Add Add from
Project: GdPurchases ~ n peposony
Package: & orgjbpm.examples.purchases ¥
Group ID Artifact ID Verslon ID
101 "Il
Figure 15.66. Dependency line edition.
15.7.6.6.1.4. Save the project to update its dependencies.
When project is saved the POJOs defined in the external file will be available.
File Edit View History Bookmarks Tools Help
| © KIE Workbench |+
@ @av Q J\‘/L &

& localhost

KIE Workbench

Explore -~ NewlItem - Tools ~
File ™ || Build & Deploy | x| ™

Project Explorer x |~ Project Screen

Business = Technical (s
Dependencies: Dependencies list ~

Organizational Unit: & demo ~
Repository: []kie-eamples ¥ Dependencles Add Add from
Project: | LJ Purchases ~ I Eeposhon,
Package: 8 orgjbpm.examplespurchases ¥

Group ID Artifact ID Verslon ID

ternal-mod termal-model 10 i

javascript:;

Figure 15.67. Save project.
15.7.6.6.2. Dependency to a JAR file in current "Guvnor M2 repository".

To add a dependency to a JAR file in current "Guvnor M2 repository" follow this steps.

443

Chapter 15. Workbench

15.7.6.6.2.1. Open the Maven Artifact Repository editor.

File Edit View History Bookmarks Tools Help

| @ KIE Workbench |+
G localhost v @| |Bv Google a & @
KIE Workbench
Authoring ~
Project Authoring Q

Explore
Asset repository
x|[*

File Explor administration % ~ Guvnor M2 REPOSITORY

Browse... | upload
Upload new Jar:

fiRepositories

Find items with a name matching:

Search
I

Refresh | Delete selected jar

m

Name Path LastModified View Artifact Detall Download

M 4 0of0 » M

javascript:;

Figure 15.68. Guvnor M2 Repository editor.

15.7.6.6.2.2. Browse your local file system and select the JAR file to be uploaded
using the Browse button.

File Edit View History Bookmarks Tools Help

9 KIE Workbench | +]
g localhost v @ B Google Q J\‘/L &
A < wmedvede | development | projects | extemnal-model | target
Explore ~ Q
File Explorer x ~| Guvnor M2 REPOSITORY Places Name v | Size | Modified x|[~
FReposiories 1 Q Search [classes 10:29
Uplood nee Jary _|/ome/wmedvede/developmen| Browse... & Recently Used & maven-archiver 10:29
wmedvede B0 surefire 10:29

B Desktop B external-model jar 13kB 12:03

& File System

Find items with a name matching:
| Search
i All Files

Refresh | Delete selected jar

m

Name Path LastModified View Artifact Detail Download

Cancel Open

M 4 000 » M

Figure 15.69. File browser.

444

Data Modeller

15.7.6.6.2.3. Upload the file using the Upload button.

File Edit View History Bookmarks Tools Help

J Q) KIE Workbench |[+ }

& | @ Localhost:8080/kie-wb-6.1.0-SNAPSHOT-eap-6_1/org.kie.workbench. KIEWebapp/KIEWebapp.html 74#M2RepoEditor v @| [Av Google a & @

Uploaded successfully

I oKk:ill

Figure 15.70. File upload success.

15.7.6.6.2.4. Guvnor M2 repository files.

Once the file has been loaded it will be displayed in the repository files list.

File Edit View History Bookmarks Tools Help

J Q) KIE Workbench |[+ }
& | @ Localhost:8080/kie-wb-6.1.0-SNAPSHOT-eap-6_1/org.kie.workbench. KIEWebapp/KIEWebapp.html 2#M2RepoE ditor v @| [Bv coogle a I @
Explore ~ search Q
File Explorer x ~ Guvnor M2 REPOSITORY x v

H3Repositories

Upload new Jar:

Find items with a name matching:
K Search
Refresh | Delete selected jar

m

Name Path LastModified View Artifact Detall Download

M extemal-model-1.0.jar extemal-model/external-model/1.0/external-model-1.0.jar kgO‘\ﬂ Sep 27 12:17:39 | Open Download

K o« 10f1 » » M

Figure 15.71. Files list.

15.7.6.6.2.5. Provide a GAV for the uploaded file (optional).

If the uploaded file is not a valid Maven JAR (don't have a pom.xml file) the system will prompt
the user in order to provide a GAV for the file to be installed.

445

Chapter 15. Workbench

File Edit View History Bookmarks Tools Help

J Q) KIE Workbench |[+ }

@“ | @ tocalhost:8080/kie-wb-6 1.0-SNAPSHOT-eap-6_1/org.kie.workbench.KIEWebapp/KIEWebapp.html ?#M2RepoEditor ~ @ 8- Google Q @ r_@]‘

The Jar does not contain a valid POM file. Please specify GAV info manually.

Figure 15.72. Not valid POM.

File Edit View History Bookmarks Tools Help

| Q KIE Workbench |[+ 1
& | @ Localhost:3080/kie-wb-6.1.0-SNAPSHOT-eap-6_1/org.kie.workbench.KIEWebapp/KIEWebapp.html 74#M2RepoEditor v @| [Bv Google a 4 @
Explore ~ search Q
File Explorer x | ~ Guvnor M2 REPOSITORY x|~

HiRepositorles

fhome/wmedvede/developmen| Browse... | upioad

Groupp: External-model

Upload new Jar: p ooy, eXternal-model

versionmo] 101 L

Find items with a name matching:

Search

Refresh | Delete selected jar

Figure 15.73. Enter GAV manually.

15.7.6.6.2.6. Add dependency from repository.

Open the project editor (see bellow) and click on the "Add from repository" button to open the JAR
selector to see all the installed JAR files in current "Guvnor M2 repository”. When the desired file
is selected the project should be saved in order to make the new dependency available.

446

Data Modeller

File Edit View History Bookmarks Tools Help

[@ KIE Workbench]@

@“ I@ localhost:8080/kie-wb-6.1.0-SNAPSHOT-eap-6_1/org.kie.workbench.KIEWebapp/KIEWebapp.html ?#projectScreen N @‘ IV Google Q} @ @

LastModified View Artifact Detail

Mo o4 1of1 > » M

Figure 15.74. Select JAR from "Maven Artifact Repository".

15.7.6.6.3. Using the external objects

When a dependency to an external JAR has been set, the external POJOs can be used in the
context of current project data model in the following ways:

» External POJOs can be extended by current model data objects.

» External POJOs can be used as field types for current model data objects.

The following screenshot shows how external objects are prefixed with the string " -ext- " in order
to be quickly identified.

447

Chapter 15. Workbench

File Edit View History Bookmarks Tools Help
| @ KIE Workbench +
@“ ‘@Lo:alhost:&OBO/kle—wb—é.l.O—SNAPSHOT—eap—G_1/org.k\e.workbench.K\EWeDapp/’K\EWebapp.html?#org.kle.guvnor.TestResuLts V@‘ “’ Google Ql @]ﬁf
Explore ~ NewItem ~ Tools ~ search.. Q

Project Explorer x| v Data modeler AL AR A
Cierzs Pesils Bl . Purchase Order

— S

Identifier

Organizational Unit: & demo ~

= | Create new field
- Identifier
Repository: | [kie-examples |~ [z e . PurchaseQrder

Project: [Purchases |~ Purchase Order x Id | useExternalType Label | Insert a label]

cader -
Package: [org ppmeampics penases |~ “Type —e)ct—e)demalmudel.l’ruduc_.l
e L o

Purchase Order Line %

Purchase Order

BigDecimal
BigInteger
Purchas Bo

olean
JAVA SOURCE FILES I Date Package |org.jbpm.examples.purchases j [+

Positiol) ble
Superclass j

[¥EsT scenARIO Float
)
Integer Role j)

Long

! Short

String

2 Purchase Order (org.jppm.examples.purchases.PurchaseOrder)

Purchase Order (org.jbpm.examples.purchases.PurchaseOrder) [0..N]
Purchase Order Header (org.jopm.examples.purchases.PurchaseOrderHeader)
Purchase Order Header (org.joppm.examples.purchases.PurchaseOrderHeader) [0..N]
Purchase Order Line (org.jopm.examples.purchases.PurchaseOrderLine)
Purchase Order Line (org.jppm.examples.purchases.PurchaseOrderLine) [0..N]
- ext - externalmodel. Product

- ext - externalmodel.Product [0..N]

Figure 15.75. Identifying external objects.

15.7.6.7. External changes to models

It is possible to modify a project's assets externally, i.e. accessing them directly through the
project's repository. While NOT a recommended practice, it is important to be aware of the
implications this entails.

@

From an application context's perspective, we can basically identify two different scenarios:

15.7.6.7.1. No changes have been undertaken through the application

In this scenario the application user has basically just been navigating through the data model,
without making any changes to it. Meanwhile, another user modifies the data model externally.

In this case, no immediate warning is issued to the application user. However, as soon as the user
tries to make any kind of change, such as add or remove data objects or properties, or change
any of the existing ones, the following pop-up will be shown:

448

Data Modeller

Error

User <system> updated current project default: //master@uf-playground
/mortgages data model.

Re-open

Figure 15.76. External changes warning

The user can choose to either:

« Re-open the data model, thus loading any external changes, and then perform the modification
he was about to undertake, or

 Ignore any external changes, and go ahead with the modification to the model. In this case,
when trying to persist these changes, another pop-up warning will be shown:

449

Chapter 15. Workbench

_—— - - - - __________—_—_—_—_——3

Error

User =system > updated current project default: //master@uf-playground
/mortgages data model,

Force Save Re-open Cancel

Figure 15.77. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open™ will
discard any local changes and reload the model.

A Warning

"Force Save" overwrites any external changes!

15.7.6.7.2. Changes have been undertaken through the application

The application user has made changes to the data model. Meanwhile, another user
simultaneously modifies the data model from outside the application context.

In this alternative scenario, immediately after the external user commits his changes to the asset
repository, a warning is issued to the application user:

450

Data Modeller

Error

User <system> updated current project default: //master@uf-playground
/mortgages data model.

Re-open

Figure 15.78. External changes warning

As with the previous scenario, the user can choose to either:

» Re-open the data model, thus losing any modifications that where made through the application,
or

« Ignore any external changes, and continue working on the model.
One of the following possibilities can now occur:

» The user tries to persist the changes he made to the model by clicking the "Save" button in
the data modeller top level menu. This leads to the following warning message:

451

Chapter 15. Workbench

—— - ______—_——3

Error

User <system= updated current project default: //master@uf-playground
/mortgages data model.

Force Save Re-open Cancel

Figure 15.79. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open" will
discard any local changes and reload the model.

» The user switches to another project. In this case he will be warned of the existence of non-
persisted local changes through the following warning message:

452

Data Modeller

Warning

Current project data model has been modiified, do you want your changes to
be saved before switching from:

project: default://master@uf-playground/mortgages

to

project: default://master@uf-playground/newproject ?

Figure 15.80. Project switch warning

If the user chooses to persist the local changes, then another pop-up message will point out
the existence of the changes that were made externally:

453

Chapter 15. Workbench

T
Error

User <system= updated current project default: //master@uf-playground
J/mortgages data model, lilkely in another session or editor,
Do you want to force wour changes to be saved before switching projects?

© Yes, Force Save Mo, Discard my Changes

Figure 15.81. Project switch external changes warning

The "Yes, Force Save" option will effectively overwrite any external changes, while "No,
Discard my Changes" will switch to the other project, discarding any local changes.

15.7.7. Categories Editor

Categories allow assets to be labelled (or tagged) with any number of categories that you define.
Assets can belong to any number of categories. In the below diagram, you can see this can in
effect create a folder/explorer like view of categories. The names can be anything you want, and
are defined by the Workbench administrator (you can also remove/add new categories).

@ Note
Categories do not have the same role in the current release of the Workbench
as they had in prior versions (up to and including 5.5). Projects can no longer be
built using a selector to include assets that are labelled with certain Categories.
Categories are therefore considered a deprecated feature.

454

Categories Editor

15.7.7.1. Launching the Categories Editor

The Categories Editor is available from the Repository menu on the Authoring Perspective.

Project - category
Categoriqe: G0 A —

C Edit categories

Current categories: g+
@ = categoryl
= subcategoryl.1
—category2

Mew category | Rename selected | Delete selected

Figure 15.82. Launching Categories Editor

15.7.7.2. Managing Categories

The below view shows the administration screen for setting up categories (there) are no categories
in the system by default. As the categories can be hierarchical you chose the "parent" category
that you want to create a sub-category for. From here categories can also be removed (but only
if they are not in use by any current versions of assets).

Categories Editor Save

Current categories: @i+

Edit categories

B = categoryl
= subcategoryl.1
= category2

Mew category | Rename selected | Delete selected

Figure 15.83. Managing categories

455

Chapter 15. Workbench

Generally categories are created with meaningful name that match the area of the business the
rule applies to (if the rule applies to multiple areas, multiple categories can be attached).

15.7.7.3. Adding Categories to assets

Assets can be assigned Categories using the MetaData tab on the assets' editor.

When you open an asset to view or edit, it will show a list of categories that it currently belongs to
If you make a change (remove or add a category) you will need to save the asset - this will create
a new item in the version history. Changing the categories of a rule has no effect on its execution.

Guided Editor [Bankruptcy history] save Delete Rename Copy \Vaidate @ % <

= Metadata
Title:Bankruptcy history.rdrl
Categoriesicategoryl/subcategoryl. 17| =

Last modified2013-11-07 11:46
by:admin
Mote:
Created on:2013-09-18 14:54
Created by:Walter Medvedeo
Formatguided rule
URLgit#/master@uf-playground/mortgages/src/main/resources/org/morgages/Bankruptcyde20history.rdrl

Other meta data
Version history
Description

Discussion

Edit Source Config Metadata

Figure 15.84. Adding Categories to an asset

456

Chapter 16.

Chapter 16. Authoring Assets

16.1. Creating a package

Configuring packages is generally something that is done once, and by someone with some
experience with rules/models. Generally speaking, very few people will need to configure
packages, and once they are setup, they can be copied over and over if needed. Package
configuration is most definitely a technical task that requires the appropriate expertise.

All assets live in "packages” in Drools Workbench - a package is like a folder (it also serves as
a "namespace”). A home folder for rule assets to live in. Rules in particular need to know what
the fact model is, what the namespace is etc.

So while rules (and assets in general) can appear in any number of categories, they only live in
one package. If you think of Drools Workbench as a file system, then each package is a folder,
and the assets live in that folder - as one big happy list of files.

To create an empty package select "Package" from the "New item" menu.

457

Chapter 16. Authoring Assets

KIE Workbench

Project Explol Business Process o
' Decision Table (Spreadsheet)
example ~ | pRL file =
DSL definition
& <default> _
& org Enumeration

= ma Form

Global Variable(s)
Guided Decision Table
Guided Rule

(9 pomaIN sPEC _

Guided Rule Template

® ENUMERATION Guided Score Card
Package

//GUIDED DECIS Project
Score Card (Spreadsheet)

® GUIDEDRULE Test Scenario

Work Item definition
® GUIDED RULE ywwrs s mrary

Figure 16.1. New Package

16.1.1. Empty package

An empty package can be created by simply specifying a name.

458

Business rules with the guided editor

Create new Package
* Resource Name myPackageName

Location default://master@uf-playground/mortgages/src/main
fresources/org/mortgages

.....................................

O Ok Cancel

.....................................

Figure 16.2. New empty Package

Once the Package has been created it will appear in the Project Explorer.

Project Explorer &
example = ufplayground = morgages ~ &=

k& <default>

&= org
& mortgages
@ mypackagename

Figure 16.3. Project Explorer showing new Package

16.2. Business rules with the guided editor

Guided Rules are authored with a Ul to control and prompt user input based on knowledge of

the object model.

459

Chapter 16. Authoring Assets

This can also be augmented with DSL sentences.

16.2.1. Parts of the Guided Rule Editor

The Guided Rule Editor is composed of three main sections.

The following diagram shows the editor in action. The following descriptions apply to the lettered
boxes in the diagram:-

File Edit Source E Status: [Draft]

Attributes Edit

WHEN
1. There is a LoanApplication [app]

ﬂ “
Any of the following are true: E a
There is an Applicant with: a
-]

creditRating equal to | OK %
&

2, applicationDate after hd(ck L]
There is an Applicant with e
creditRating equal to _* | Sub prime %, @

1 Setvalue of LoanApplication [app] approved faise ~|
' Setvalue of LoanApplication [app] explanation Only AA
2. Retract LoanApplication [app] a
(options)
Aftributes:

salience 10 ©

Figure 16.4. The guided BRL editor

A : The different parts of a rule:-

e The "WHEN" part, or conditions, of the rule.
e The "THEN" action part of the rule.

« Optional attributes that may effect the operation of the rule.

16.2.2. The "WHEN" (left-hand side) of a Rule

B : This shows a pattern which is declaring that the rule is looking for a "LoanApplication”
fact (the fields are listed below, in this case none). Another pattern, "Applicant”, is listed below
"LoanApplication”. Fields "creditRating" and "applicationDate" are listed. Clicking on the fact name
("LoanApplication") will pop-up a list of options to add to the fact declaration:-

« Add more fields (e.qg. their "location").

» Assign a variable name to the fact (which you can use later on if needs be)

460

The "WHEN?" (left-hand side) of a Rule

» Add "multiple field" constraints - i.e. constraints that span across fields (e.g. age > 42 or risk > 2).

C : The "minus" icon ("[-]") indicates you can remove something. In this case it would remove
the whole "LoanApplication" fact declaration. Depending upon the placement of the icon different
components of the rule declaration can be removed, for example a Fact Pattern, Field Constraint,

other Conditional Element ("exists", "not exists", "from" etc) or an Action.

D : The "plus" icon ("+") allows you to add more patterns to the condition or the action part of the
rule, or more attributes. In all cases, a popup option box is provided. For the "WHEN" part of the
rule, you can choose from a list of Conditional Elements to add:

» A Constraint on a Fact: it will give you a list of facts.

» "The following does not exist": the fact plus constraints must not exist.

« "The following exists": at least one match should exist (but there only needs to be one - it will
not trigger for each match).

« "Any of the following are true": any of the patterns can match (you then add patterns to these
higher level patterns).

« "From": this will insert a new From Conditional Element to the rule.

* "From Accumulate™: this will insert a new Accumulate Conditional Element to the rule.
* "From Collect": this will insert a new Collect Conditional Element to the rule.

« "From Entry-point": this allows you to define an Entry Point for the pattern.

» "Free Form DRL": this will let you insert a free chunk of DRL.
If you just put a fact (like is shown above) then all the patterns are combined together so they
are all true ("and").

E : This shows the constraint for the "creditRating" field. Looking from left to right you find:-

« The field name: "creditRating". Clicking on it you can assign a variable name to it, or access
nested properties of it.

« A list of constraint operations ("equal to" being selected): The content of this list changes
depending on the field's data type.

« The value field: It could be one of the following:-
1. A literal value: depending on the field's data type different components will be displayed:
» String -> Textbox

* Any numerical value -> Textbox restricting entry to values valid for the numerical sub-type
(e.g. a byte can hold values from -128 to 127). BigDecimal and Biglnteger data-types are
also supported. Please ensure the appropriate Class has been imported in the Package

461

Chapter 16. Authoring Assets

configuration. The import will be added automatically if a POJO model has been uploaded
that exposes an accessor or mutator for a BigDecimal or Biginteger field. BigDecimal
values are automatically suffixed with "B" indicating to the underlying Engine that the literal
value should be interpreted as a BigDecimal. Biglntegers are suffixed with "I". The user
does not need to enter the suffix.

» Date -> Calendar
* Enumeration -> Listbox
» Boolean -> Checkbox
2. A "formula": this is an expression which is calculated (this is for advanced users only)

3. An Expression - this will let you use an Expression Builder to build up a full mvel expression.
(At the moment only basic expressions are supported)

F : This shows the constraint for the "applicationDate" field. Looking from left to right you find:

» The field name: "applicationDate".
» Alist of constraint operations: "after" being selected.

< A "clock" icon. Since the "applicationDate" is a Date data-type the list of available operators
includes those relating to Complex Event Processing (CEP). When a CEP operator is used this
additional icon is displayed to allow you to enter additional CEP operator parameters. Clicking
the "clock" will cycle the available combinations of CEP operator parameters.

@ Note
Complex Event Processing operators are also available when the Fact has been
declared as an event. Refer to the "Fact Model" chapter of this user-guide for details
on how to add annotations to your Fact model. Events have access to the full range

of CEP operators; Date field-types are restricted to "after", "before" and "coincides".

@ Note
Facts annotated as Events can also have CEP sliding windows defined.

16.2.2.1. Adding Patterns

When clicking on the + button of the WHEN section, a new popup will appear letting you to add
a new Pattern to the Rule. The popup will looks similar to the image below. In this popup you
could select the type of Pattern to add by selecting one of the list items. In the list you will have an
entry for each defined Fact Type, in addition to the already mentioned Conditional Elements like

462

The "WHEN?" (left-hand side) of a Rule

"exists", "doesn't exist", "from", "collect", "accumulate", "from entry-point" and "free form DRL".
Once you have selected one of this elements, you can add a new Pattern by clicking on the "Ok"
button. The new pattern will be added at the bottom of the rule's left hand side. If you want to
choose a different position, you can use the combobox placed at the top of the popup.

You can also open this popup by clicking in the [+] button from a Pattern's action toolbar. If that
is the case, the pop-up that appears wouldn't constraint the position combobox, because the new
Pattern will be added just after the Pattern where you clicked.

Add a condition to the rule... b ¢

Position: Bottom +|®@

When the credit rating is rating A | DK | Cancel |
When the applicant dates is after dos

When the applicant approval is bool
When the ages is less than num

Applicant ...

Bankruptcy ...

IncomeSource ...
LoanApplication ...

The following does not exist ...
The following exists ...

Any of the following are true ...
From ...

From Accumulate ...

From Collect ...

From Entry Point ...

Free form drl

Figure 16.5. Adding Patterns

16.2.2.2. Adding constraints

The below dialog is what you will get when you want to add constraints to a fact. In the top
half are the simple options: you can either add a field constraint straight away (a list of fields of
the applicable fact will be shown), or you can add a "Multiple field constraint" using AND or OR
operands. In the bottom half of the window you have the Advanced options: you can add a formula
(which resolves to True or False - this is like in the example above: "... salary > (2500 * 4.1)". You
can also assign a Variable name to the fact (which means you can then access that variable on
the action part of the rule, to set a value etc).

463

Chapter 16. Authoring Assets

Modify constraints for Applicant 4
B Modify constraints for Applicant
Add a restriction on a field |
Multiple field constraint . ~|®
Advanced options:

Add a new formula style expression MNew formula

Expression editor Expression editor |

Yariable name Set

Figure 16.6. Adding constraints

16.2.3. The "THEN" (right-hand side) of a Rule

H : This shows an "action" of the rule, the Right Hand Side of a rule consists in a list of actions.
In this case, we are updating the "explanation” field of the "LoanApplication” fact. There are quite
a few other types of actions you can use:-

 Insert a completely new Fact and optionally set a field on the Fact.
The value field can be one of the following:-
1. A literal value: depending on the field's data type different components will be displayed:

 String -> Textbox

» Any numerical value -> Textbox restricting entry to values valid for the numerical sub-type
(e.g. a byte can hold values from -128 to 127). BigDecimal and Biglnteger data-types are
also supported. Please ensure the appropriate Class has been imported in the Package
configuration. The import will be added automatically if a POJO model has been uploaded
that exposes an accessor or mutator for a BigDecimal or Biginteger field. BigDecimal
values are automatically suffixed with "B" indicating to the underlying Engine that the literal
value should be interpreted as a BigDecimal. Bigintegers are suffixed with "I". The user
does not need to enter the suffix.

» Date -> Calendar
e Enumeration -> Listbox
» Boolean -> Checkbox

2. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being set
must match the data-type of the variable.

464

The "THEN" (right-hand side) of a Rule

3. A "formula™: this is an expression which is calculated (this is for advanced users only)

* Logically insert a completely new Fact (see "Truth Maintenance" in the Expert documentation)
and optionally set a field on the Fact.

1. A literal value: depending on the field's data type different components will be displayed:
The value field can be one of the following:-
a. A literal value: depending on the field's data type different components will be displayed:
 String -> Textbox

» Any numerical value -> Textbox restricting entry to values valid for the numerical sub-
type (e.g. a byte can hold values from -128 to 127). BigDecimal and Biginteger data-
types are also supported. Please ensure the appropriate Class has been imported in
the Package configuration. The import will be added automatically if a POJO model
has been uploaded that exposes an accessor or mutator for a BigDecimal or Biginteger
field. BigDecimal values are automatically suffixed with "B" indicating to the underlying
Engine that the literal value should be interpreted as a BigDecimal. Bigintegers are
suffixed with "I". The user does not need to enter the suffix.

» Date -> Calendar
* Enumeration -> Listbox
» Boolean -> Checkbox

b. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being
set must match the data-type of the variable.

c. A "formula™: this is an expression which is calculated (this is for advanced users only)

2. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being set
must match the data-type of the variable.

3. A "formula": this is an expression which is calculated (this is for advanced users only)
« Modify a field of an existing fact (which tells the engine the fact has changed).
The value field can be one of the following:-
1. A literal value: depending on the field's data type different components will be displayed:
 String -> Textbox

» Any numerical value -> Textbox restricting entry to values valid for the numerical sub-type
(e.g. a byte can hold values from -128 to 127). BigDecimal and Biglnteger data-types are
also supported. Please ensure the appropriate Class has been imported in the Package
configuration. The import will be added automatically if a POJO model has been uploaded

465

Chapter 16. Authoring Assets

that exposes an accessor or mutator for a BigDecimal or Biginteger field. BigDecimal
values are automatically suffixed with "B" indicating to the underlying Engine that the literal
value should be interpreted as a BigDecimal. Bigintegers are suffixed with "I". The user
does not need to enter the suffix.

» Date -> Calendar
* Enumeration -> Listbox
* Boolean -> Checkbox

2. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being set
must match the data-type of the variable.

3. A "formula": this is an expression which is calculated (this is for advanced users only)

» Setafield on afact (in which case the engine doesn't know about the change - normally because
you are setting a result).

The value field can be one of the following:-
1. A literal value: depending on the field's data type different components will be displayed:
 String -> Textbox

« Any numerical value -> Textbox restricting entry to values valid for the numerical sub-type
(e.g. a byte can hold values from -128 to 127). BigDecimal and Biglinteger data-types are
also supported. Please ensure the appropriate Class has been imported in the Package
configuration. The import will be added automatically if a POJO model has been uploaded
that exposes an accessor or mutator for a BigDecimal or Biginteger field. BigDecimal
values are automatically suffixed with "B" indicating to the underlying Engine that the literal
value should be interpreted as a BigDecimal. Biglntegers are suffixed with "I". The user
does not need to enter the suffix.

» Date -> Calendar
* Enumeration -> Listbox
» Boolean -> Checkbox

2. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being set
must match the data-type of the variable.

3. A "formula™: this is an expression which is calculated (this is for advanced users only)
» Delete a fact from the Engine's Working Memory.
» Add Facts to existing global lists.

» Call a method on a variable.
466

Optional attributes

» Write a chunk of free form code.

16.2.4. Optional attributes

The attributes section of a rule provides the means to define metadata and attributes (such as
"salience", "no-loop" etc).

Click on the "+" icon to add a new metadata or attribute definition. Each defined will appear listed
in this section.

Click on the "-" icon beside each metadata or attribute to remove it.

16.2.4.1. Salience

Each rule has a salience value which is an integer value that defaults to zero. The salience value
represents the priority of the rule with higher salience values representing higher priority. Salience
values can be positive or negative.

16.2.5. Pattern/Action toolbar

G : Next to each Pattern or Action you will find a toolbar containing 3 buttons.

The first "+" icon lets you insert a new Pattern/Action at an arbitrary location. The other "+" icons
allow you to insert a new Pattern/Action below that you have selected.

The remaining arrow icons allow you to move the current Pattern/Action up or down.

16.2.6. User driven drop down lists

ok

AA A
oK
Sun%’ime v

Figure 16.7. Data enumeration showing as a drop down list

Note that is it possible to limit field values to items in a pre-configured list. This list is either defined
by a Java enumeration or configured as part of the package (using a data enumeration to provide
values for the drop down list). These values can be a fixed list, or (for example) loaded from a
database. This is useful for codes, and other fields where there are set values. It is also possible

467

Chapter 16. Authoring Assets

to have what is displayed on screen, in a drop down, be different to the value (or code) used in a
rule. See the section on data enumerations for how these are configured.

It is possible to define a list of values for one field that are dependent upon the value of one or
more other fields, on the same Fact (e.g. a list of "Cities" depending on the selected "Country
region"). Please refer to the section on "Enumerations” for more information.

16.2.7. Augmenting with DSL sentences

If the package the rule is part of has a DSL configuration, when when you add conditions or actions,
then it will provide a list of "DSL Sentences" which you can choose from - when you choose one,
it will add a row to the rule - where the DSL specifies values come from a user, then a edit box
(text) will be shown (so it ends up looking a bit like a form). This is optional, and there is another
DSL editor. Please note that the DSL capabilities in this editor are slightly less then the full set
of DSL features (basically you can do [when] and [then] sections of the DSL only - which is no
different to drools 3 in effect).

The following diagram shows the DSL sentences in action in the guided editor:

WHEN

A template captures |yalues ina form style of input®
THEN

Action sentence template®
(options)

Figure 16.8. DSL in guided editor

468

A more complex example:

16.2.8. A more complex example:

WHEMN o
There is a Person [$p] with:

1 birthDate | less than ;[19-Dec-1982
)= |carbrand == "Ford" && salary = (2500 * 4.1)
There is an Address with:
> street| equal to E| Eim st.
From $p.addresses. Choose... =l

The following does not exist:
There is a Person with:

3.
salary| equal to :ll'.ﬂ.'l= tp.salary * 2
There is a Mumber [$totalAddresses]
From Accumulate
There is an Address [$a] with:
zipCode | equal to Fl43240
4.
From $p.addresses. Choose... |
Customn Code Function
Function:| count{%a)
THEN e
Insert Person: %
1.
name $p.name
(show
options...}

Figure 16.9. A more complex BRL example

In the above example, you can see how to use a mixture of Conditional Elements, literal values,
and formulas. The rule has 4 "top level" Patterns and 1 Action. The "top level" Patterns are:

1. A Fact Pattern on Person. This Pattern contains two field constraints: one for birthDate field
and the other one is a formula. Note that the value of the birthDate restriction is selected from
a calendar. Another thing to note is that you can make calculations and use nested fields in the
formula restriction (i.e. car.brand). Finally, we are setting a variable name ($p) to the Person
Fact Type. You can then use this variable in other Patterns.

E] Note
The generated DRL from this Pattern will be:

469

Chapter 16. Authoring Assets

$p : Person(birthDate < "19-Dec-1982" , eval (car.brand == "Ford"
&& salary > (2500 * 4.1)))

2. AFrom Pattern. This condition will create a match for every Address whose street name is "Elm
St." from the Person's list of addresses. The left side of the from is a regular Fact Pattern and
the right side is an Expression Builder that let us inspect variable's fields.

3. A "Not Exist" Conditional Element. This condition will match when its content doesn't create a
match. In this case, its content is a regular Fact Pattern (on Person). In this Fact Pattern you
can see how variables ($p) could be used inside a formula value.

4. A "From Accumulate" Conditional Element. This is maybe one of the most complex Patterns
you can use. It consist in a Left Pattern (It must be a Fact Pattern. In this case is a Number
Pattern. The Number is named $totalAddresses), a Source Pattern (Which could be a Fact
Pattern, From, Collect or Accumulate conditional elements. In this case is an Address Pattern
Restriction with a field restriction in its zip field) and a Formula Section where you can use any
built-in or custom Accumulate Function (in this example a count() function is used). Basically,
this Conditional Element will count the addresses having a zip code of 43240 from the Person's
list of addresses.

16.3. Templates of assets/rules

The guided rule editor is great when you need to define a single rule, however if you need to
define multiple rules following the same structure but with different values in field constraints or
action sections a "Rule Template" is a valuable asset. Rule templates allow the user to define a

470

Creating a rule template

rule structure with place-holders for values that are to be interpolated from a table of data. Literal
values, formulae and expressions can also continue to be used.

Rule Templates can often be used as an alternative for Decision Tables in Drools Workbench.

16.3.1. Creating a rule template

To create a template for a rule simply select the "Guided Rule Template" from the "New Item"
menu.

16.3.2. Define the template

Once a rule template has been created the editor is displayed. The editor takes the form of the
standard guided editor explained in more detail under the "Rule Authoring" section. As the rule is
constructed you are given the ability to insert "Template Keys" as place-holders within your field
constraints and action sections. Literal values, formulae and expressions can continue to be used
as in the standard guided editor.

Field value 2
o Field value
Literal value: Literal value | @
Template key: Template key | €Y
Advanced options:
Aformula: Mew Formula | @
Expression editor: Expression editor | @

Figure 16.10. Template Key popup

The following screenshot illustrates a simple rule that has been defined with a "Template Key"
for the applicants' maximum age, minimum age and credit rating. The template keys have been
defined as "$max_age", "$min_age" and "$cr" respectively.

471

Chapter 16. Authoring Assets

Guided Template [t1]

EXTENDS
WHEN
1
THEN
(show
options...)
Edit Source

Mone selected o

There is an Applicant with:
age less than

age greater than or equal to

creditRating €qual to

Data Config Metadata

j Emax_age

j Emin_age

j Ser

Figure 16.11. Rule template in the guided editor

16.3.3. Defining the template data

%
8%,8
e FOE
=E>|E=

o

When you have completed the definition of your rule template you need to enter the data that will
be used to interpolate the "Template Key" place-holders. Drools Workbench provides the facility
to enter data in a flexible grid within the guided editor screen. The data entry section is located
on the Data tab within the editor.

The rule template data grid is very flexible; with different pop-up editors for the underlying fields'
data-types. Columns can be resized and sorted; and cells can be merged and grouped to facilitate
rapid data entry.

One row of data interpolates the "Template Key" place-holders for a single rule; thus one row
becomes one rule.

472

Defining the template data

473

Chapter 16. Authoring Assets

Guided Template [t1]

...........................

Figure 16.12. Template data grid

Add row...
l: : _Ema:{_age Smin_age Bor
gs B 25 20 Al
g B 25 20 OK
gs B 25 20 Sub prime
g B 35 25 Al
gs B 35 25 OK
g B 35 25 Sub prime
gs B 45 35 AR,
g B 45 35 OK
gs B 45 35 Sub prime
Edit Source Data Config Metadata

474

Defining the template data

16.3.3.1. Cell merging

The icon in the top left of the grid toggles cell merging on and off. When cells are merged those in
the same column with identical values are merged into a single cell. This simplifies changing the
value of multiple cells that shared the same original value. When cells are merged they also gain
an icon in the top-left of the cell that allows rows spanning the merged cell to be grouped.

Guided Template [t1]

Add row...

Imax_age amin_age Bor

= 25 = 20 AL
Ok

=ub prime

= 35 = 25 AL
Ok

sub prime

= 45 = 35 AL

Ok

oL L L L L L

=ub prime

Figure 16.13. Cell merging

16.3.3.2. Cell grouping

Cells that have been merged can be further collapsed into a single row. Clicking the [+\-] icon in
the top left of a merged cell collapses the corresponding rows into a single entry. Cells in other
columns spanning the collapsed rows that have identical values are shown unchanged. Cells in
other columns spanning the collapsed rows that have different values are highlighted and the first
value displayed.

475

Chapter 16. Authoring Assets

Guided Template [t1]

Add row...

_Smax_age amin_age BCr
g 2|5 25 EI 20 AA,
+ = ok
== B Sub prime
&= =g % g 3 AA
== B : : OK
== B Sub prime

Figure 16.14. Cell grouping

When the value of a grouped cell is altered all cells that have been collapsed also have their
values updated.

16.3.4. Generated DRL

Whilst not necessary, rule authors can view the DRL that will be generated for a "Rule Template"
and associated data. This feature and its operation is no different to that for other assets. Select
the "Source" tab from the bottom of the editor screen. The DRL for all rules will be displayed.

476

Generated DRL

Guided Template [t1]

1. |package org.morigages;

2. |

3. Jrule "t1_8"

4. | dialect "mvel"

5. | when

6. | Applicant(age < 45, age >= 35, creditRating == "Sub prime")
7. | then

8. jend

9. |

10.jrule "t1_7"

11| dialect "mvel"

12.] when

13, Applicant(age < 45 , age >= 35, creditRating == "OK")
IJ_f-1.| then

15.jend

16.]

17.jrule "t1_g"

18.] dialect "mvel"

19.] when

20| Applicant(age < 45, age >= 35, creditRating == "AA")
21.| then

22 jend

Data Config

..................................

Figure 16.15. Generated DRL

Metadata

477

Chapter 16. Authoring Assets

16.4. Guided decision tables (web based)

The guided decision table feature allows decision tables to be edited in place on the

web. This

works similar to the guided editor by introspecting what facts and fields are available to guide the

creation of a decision table. Rule attributes, meta-data, conditions and actions can be d

efined in a

tabular format thus facilitating rapid entry of large sets of related rules. Web-based decision table

rules are compiled into DRL like all other rule assets.

16.4.1. Types of decision table

There are broadly two different types of decision table, both of which are supported in Drools

Workbench:-

« Extended Entry

 Limited Entry

16.4.1.1. Extended Entry

An Extended Entry decision table is one for which the column definitions, or stubs, specify Pattern,
Field and operator but not value. The values, or states, are themselves held in the body of the

decision table. It is normal, but not essential, for the range of possible values to be re

stricted by

limiting entry to values from a list. Drools Workbench supports use of Java enumerations, Drools

Workbench enumerations or decision table "optional value lists" to restrict value entry.

Decision tahle

Age Make
T 4 Description Applicant [Sa) Vehicle [Sv] Premium
ge |
age [<] make [==
gr B 1 35 BMW iLEL L
gn 2| 2 35 Audi LY
Figure 16.16. Extended Entry Decision table
16.4.1.2. Limited Entry
A Limited Entry decision table is one for which the column definitions specify value in addition to
Pattern, Field and operator. The decision table states, held in the body of the table, are boolean

where a positive value (a checked tick-box) has the effect of meaning the column should apply,

or be matched. A negative value (a cleared tick-box) means the column does not appl

Y.

478

Main components\concepts

Decision table

Age =35 BN Audi
T # Description m Premium 100
age [<35] meke [==BMW] méeke [==Audi
= 8|1 V] V] /] O
% 8|2 O (] /] O
4 m| 3 & O &)
g m| 4 O O & O]
% 8|5 &] O O
% 8|6 O (v O O
= 8|7 V] | O O
5 2| 8 O O O O

Figure 16.17. Limited Entry Decision table

16.4.2. Main components\concepts

The guided decision table is split into two main sections:-

» The upper section allows table columns to be defined representing rule attributes, meta-data,
conditions and actions.

« The lower section contains the actual table itself; where individual rows define separate rules.

e Desupm T e ae g
Ei%_____, eeee——
gl 1 1 Bil 30 12345
a2 2 Ben <otherwise> 12345

G Ed 3 Weed 0 12345
% o4 -“-"_""'-—---.._.____-3__ <otherwise> 50 12345

Figure 16.18. Main components

479

Chapter 16. Authoring Assets

16.4.2.1. Navigation

Cells can be selected in a variety of ways:-

« Firstly individual cells can be double-clicked and a pop-up editor corresponding to the underlying
data-type will appear. Groups of cells in the same column can be selected by either clicking
in the first and dragging the mouse pointer or clicking in the first and clicking the extent of the
required range with the shift key pressed.

» Secondly the keyboard cursor keys can be used to navigate around the table. Pressing the
enter key will pop-up the corresponding editor. Ranges can be selected by pressing the shift
key whilst extending the range with the cursor keys.

Columns can be resized by hovering over the corresponding divider in the table header. The
mouse cursor will change and then the column width dragged either narrower or wider.

16.4.2.2. Cell merging

The icon in the top left of the decision table toggles cell merging on and off. When cells are
merged those in the same column with identical values are merged into a single cell. This simplifies
changing the value of multiple cells that shared the same original value. When cells are merged
they also gain an icon in the top-left of the cell that allows rows spanning the merged cell to be
grouped.

Drescription salience name age age
% r
g =1 1 Bil 30 = 12346
g =2 2 = Ben <ptherwise=
gr B2 3 3
gr B2 4 4
gr B B 5
g =6 6 Weed 40 = 12345
g om| 7 7 <otherwise> 50

Figure 16.19. Cell merging

16.4.2.3. Cell grouping

Cells that have been merged can be further collapsed into a single row. Clicking the [+\-] icon in
the top left of a merged cell collapses the corresponding rows into a single entry. Cells in other

480

Main components\concepts

columns spanning the collapsed rows that have identical values are shown unchanged. Cells in
other columns spanning the collapsed rows that have different values are highlighted and the first

value displayed.

EEH # Description salience name afe age
gr B2 1 1 Bill 30 12345
g o [2 Ben <otherwise> 12345
g a6 6 Weed 40 = 12345
gr B 7 7 <ptherwise> 50

Figure 16.20. Cell grouping

When the value of a grouped cell is altered all cells that have been collapsed also have their

values updated.

16.4.2.4. Operation of "otherwise"

Condition columns defined with literal values that use either the equality (==) or inequality (I=)
operators can take advantage of a special decision table cell value of "otherwise". This special
value allows a rule to be defined that matches on all values not explicitly defined in all other rules

defined in the table. This is best illustrated with an example:-

when

Cheese(name not in ("Cheddar", "Edani,

t hen

end

when
Cheese(name in ("Cheddar", "Edant,

t hen

end

16.4.2.5. Re-arranging columns

"Brie"))

"Brie"))

Whole patterns and individual conditions can be re-arranged by dragging and dropping them
in the configuration section of the screen. This allows constraints to be re-ordered to maximise

481

Chapter 16. Authoring Assets

performance of the resulting rules, by placing generalised constraints before more specific. Action
columns can also be re-arranged by dragging and dropping them.

. = Condition columns

B e |

income : IncomeSource
B #income

A Mew column

Figure 16.21. Re-arranging Condition patterns

application : LoanApplication
= ﬁ;?amnunt min

ﬁ'ﬁéﬁ nt max
8 /deposit max

Figure 16.22. Re-arranging columns
16.4.3. Defining a web based decision table

16.4.3.1. Manual creation

When a new empty decision table has been created you need to define columns for Facts, their
constraints and corresponding actions.

16.4.3.1.1. Column configuration

Expand the "Decision table" element and you will see three further sections for "Conditions",
"Actions" and "Options". Expanding either the "Conditions" or "Actions" sections reveals the "New
column” icon. This can be used to add new column definitions to the corresponding section.
Existing columns can be removed by clicking the "-" icon beside each column name, or edited by
clicking the "pencil” icon also beside each column name. The "Options" section functions slightly
differently however the principle is the same: clicking the "Add Attribute/Metadata” icon allows
columns for table attributes to be defined (such as "salience", "no-loop" etc) or metadata added.

482

Defining a web based decision table

[=] Decision table

=F New column

[=I Condition columns

LoanApplication [application]

B /amount min
B ;/amount max

B #period
B deposit max

IncomeSource [income]
B Fincome
[=I Action columns

B ;7Loan approved
B LM
B Arate
I=| (options)
Attributes:
Benabled Default value:

[Hide column:

Figure 16.23. Column configuration

16.4.3.1.1.1. Utility columns

All decision table contain two utility columns containing rule number and rule description.

16.4.3.1.1.2. Adding columns

To add a column click on the "New column" icon.

You are presented with the following column type selection popup.

483

Chapter 16. Authoring Assets

Add a new column b4
Add a new Metadata\l&Attribute column N

Add a simple Condition

Add a Condition BRL fragment

Set the value of a field

Set the value of a field on a new fact

Retract an existing fact

Execute a Work Item

Set the value of a field with a Work Itermn parameter Ll

&4 Include advanced options

ok

Figure 16.24. Column type popup

Type of column:

By default the column type popup only shows the following simple types:-

Add a new Metadata\Attribute column

* Add a simple Condition

Set the value of a field

Set the value of a field on a new fact
* Delete an existing fact

Clicking on "Include advanced options" adds the following additional "advanced" column types for
more advanced use cases:-

Add a Condition BRL fragment
» Execute a Work Item

 Set the value of a field with a Work Item parameter

Set the value of a field on a new Fact with a Work Item parameter

Add an Action BRL fragment
16.4.3.1.1.3. Simple column types
16.4.3.1.1.3.1. Metadata

Zero or more meta-data columns can be defined, each represents the normal meta-data
annotation on DRL rules.

484

Defining a web based decision table

16.4.3.1.1.3.2. Attributes

Zero or more attribute columns representing any of the DRL rule attributes (e.g. salience, timer,
enabled etc) can be added. An additional pseudo attribute is provide in the guided decision table
editor to "negate" a rule. Use of this attribute allows complete rules to be negated. For example
the following simple rule can be negated as also shown.

when
$c : Cheese(nane == "Cheddar")
t hen

end

when
not Cheese(nane == "Cheddar")
t hen

end

16.4.3.1.1.3.3. Simple Condition

Conditions represent constraints on Fact Patterns defined in the left-hand side, or "when" portion,
of a rule. To define a condition column you must first select or define a Fact Pattern bound to
a model class. You can choose to negate the pattern. Once this has been completed you can
define field constraints. If two or more columns are defined using the same fact pattern binding the
field constraints become composite field constraints on the same pattern. If you define multiple
bindings for a single model class each binding becomes a separate model class in the left-hand
side of the rule.

When you edit or create a new column, you will be given a choice of the type of constraint:-

« Literal : The value in the cell will be compared with the field using the operator.
* Formula: The expression in the cell will be evaluated and then compared with the field.

» Predicate : No field is needed, the expression will be evaluated to true or false.

485

Chapter 16. Authoring Assets

Condition column configuration x
Pattern: LoanApplication [application] &7

Calculation type: @ Literal value O Formula O Predicate
Field: amount @®7
Operator: greater than &
From Entry Point:
Column header (description): amounkt min
(optional) value list:)
Default value:
Binding:
Hide column: []

Apply changes

Figure 16.25. Simple Condition popup

16.4.3.1.1.3.4. Set the value of a field

An Action to set the value of a field on previously bound fact. You have the option to notify the
Rule Engine of the modified values which could lead to other rules being re-activated.

Column configuration (set a field on a fact)

Fact application &7

Field: approved &
Column header (description): Loan approved

(optional) value list: true, false @

Defaultvalue:; Choose. . |

Update engine with changes: [] @
Hide column: [

Apply changes |

Figure 16.26. Set the value of a field popup

486

Defining a web based decision table

16.4.3.1.1.3.5. Set the value of a field on a new fact

An Action to insert a new Fact into the Rule Engine Working Memory and set the a value of one of
the new Facts' fields. You can choose to have the new Fact "logically inserted" meaning it will be
automatically deleted should the conditions leading to the action being invoked cease to be true.
Please refer to the Drools Expert documentation for details on Truth Maintenance and Logical
insertions.

Action column configuration (inserting a new fact) 4
Pattern: LoanApplication [§la] o#
Field: approved &

Column header (description): Approve application
(optional) value list: @
Defaultvalue: Choose. . ~|
Logically insert: (] (@
Hide column: [

Apply changes |

Figure 16.27. Set the value of a field on a new fact popup
16.4.3.1.1.3.6. Delete an existing fact

An Action to delete a bound Fact.

Column configuration (retract a fact) x
Column header (description): Remove application
Hide column: [

Apply changes

Figure 16.28. Delete an existing fact popup

16.4.3.1.1.4. Advanced column types
16.4.3.1.1.4.1. Condition BRL fragments

A construct that allows a BRL fragment to be used in the left-hand side of a rule. A BRL fragment
is authored using the Guided Rule Editor and hence all features available in that editor can be
used to define a decision table column; such as "from", "collect” and "accumulate” etc. When using

487

Chapter 16. Authoring Assets

the embedded Guided Rule Editor field values defined as "Template Keys" will form columns in
the decision table. Facts and Fact's fields bound in the BRL fragment can be referenced by the

simpler column types and vice-versa.

In the following example two Template Keys have been defined and hence two columns appear

in the decision table.

Condition column configuration (ERL fragment) x®
Column header (description): Complex
Hide column: []
WHEN s
There is an Applicant [$a] with: 2
1 age greater than ~|Sages 5, B F0o5
creditRating equal to d LU -
There is a LoanApplication with: =
3 deposit greater than ~|10000m =, 8 F0o5
lengthYears equal to ;|$IengmlnYears=l Ng B
Apply changes
Figure 16.29. Defining a Condition with BRL
w deposit max INCome Complex Loan approved LMI
nj IncomeSource Sage SlengthinYears application application
s [=] deposit [<] type [=] age lengthYears approved insuranceCost
20000 Asset 30 10 true 0
2000 Job 30 20 true 0
3000 Job 30 a0 true 10

/

Figure 16.30. The resulting decision table

16.4.3.1.1.4.2. Execute a Work Item

An Action invoking a jJBPM Work Item Handler setting its input parameters to bound Facts\Facts

fields values.

488

Defining a web based decision table

16.4.3.1.1.4.3. Set the value of a field with a Work Item parameter

An Action setting the value of a Fact's field to that of a JBPM Work Item Handler's result parameter.

16.4.3.1.1.4.4. Set the value of a field on a new Fact with a Work Item parameter

An Action setting the value of a new Fact's field to that of a]JBPM Work Item Handler's result

parameter.

16.4.3.1.1.4.5. Action BRL fragment

A construct that allows a BRL fragment to be used in the right-hand side of a rule. A BRL fragment
is authored using the Guided Rule Editor and hence all features available in that editor can be
used to define a decision table column. When using the embedded Guided Rule Editor field values
defined as "Template Keys" will form columns in the decision table. Facts bound in the BRL
fragment can be referenced by the simpler column types and vice-versa.

In the following example two Template Keys have been defined and hence two columns appear

in the decision table.

Action column configuration (BRL fragment)
Column header (description):

Hide column:]

THEN

Setvalue of LoanApplication [application] amount

Set value of LoanApplication [application]

Apply changes

explanation

Figure 16.31. Defining an Action with BRL

Samount |2

L Rt

Sexplanation a a

proved LMI rate Compilex action pprove application ;| Remove application
ation application application Samount Sexplanation LpanApplication [Sla]

wed insuranceCost approvedRate ArTHLnt explanation approved [Retract]

g 0 2] application

e 0 4 O

e 10 [O

-

/

Figure 16.32. The resulting decision table

489

Chapter 16. Authoring Assets

16.4.3.2. Using a Wizard

A Wizard can also be used to assist with defining the decision table columns.

The wizard can be chosen when first electing to create a new rule. The wizard provides a number
of pages to define the table:-

e Summary

* Add Fact Patterns

* Add Constraints

* Add Actions to update facts

» Add Actions to insert facts

e Columns to expand

16.4.3.2.1. Selecting the wizard

The "New Wizard" dialog shows a "Use wizard" checkbox.

Create new Guided Decision Table

* Fesource Mame

Location default://master@uf-

playground/mortgages/src/main/resources/org/mortgages

llse Wizard

* Extended entry, values defined in table body

Limited entry, values defined in columns

o Ok Cancel

Figure 16.33. Selecting the wizard

490

Defining a web based decision table

16.4.3.2.2. Summary page

The summary page shows a few basic details about the decision table and allows the asset name
to be changed.

Guided Decision Table Wizard

&
&
&
&
&
&

/ Summary

/' Add Constraints
/' Add Actions to update Facts

/' Add Actions to insert Facts

Summary of fields for the decision table.

/' Add Fact Patterns

*
Name: | example

Initial description:

Create in Package: cep

/' Columns to expand

<- Previous | Mext -> | Cancel | Finish |

Figure 16.34. Summary page

16.4.3.2.3. Add Fact Patterns page

This page allows Fact types to be defined that will form the "When" columns of the rules. Fact
types that are available in your model will be shown in the left-hand listbox. Select a Fact type
and use the ">>" button to add it to your list of chosen facts on the right-hand listbox. Removal
is a similar process: the Fact that is no longer required can be selected in the right-hand listbox
and the "<<" button used to remove it. All Fact types need to be bound to a variable. Incomplete
Fact types will be highlighted and a warning message displayed. You will be unable to finish your
definition until all warnings have been resolved.

491

Chapter 16. Authoring Assets

Guided Decision Table Wizard ®
v Summary Define Facts\Patterns on which constraints can be defined.
+/ Add Fact Patterns
+/ Add Constraints Available patterns Chosen patterns
+/ Add Actions to update Facts ArrayList tc : TelephoneCall
Cheese
+/ Add Actions to insert Facts
Collection

+ Columns to expand

List =
TelephoneCall <<

Binding: tc
From Entry Point:

Over sliding window: — None — ~|

<- Previous | Mext -> | Cancel | Finish |

Figure 16.35. Add Fact Patterns page

Guided Decision Table Wizard ®
S _
[Add Fact PHHTS 1

%/ Add Constraints Define Facts\Patterns on which constraints can be defined.

+/ Add Actions to ipdate Facts

+/ Add Actions to |nsert Facts CXEET I [Chosen patterns
+ Columns to exphnd ArrayList TelephoneCall
Cheese
Collection

List =
TelephoneCall <<

The page has errors and
therefore marked as incomple
The wizard cannot be finishe

B R

From Entry Point:

Over sliding window: — None — ~|

<- Previous | Mext -> | Cancel |

Figure 16.36. Example of an incomplete Fact definition

492

Defining a web based decision table

16.4.3.2.4. Add Constraints page

This page allows field constraints on the Fact types you have chosen to use in the decision table
to be defined. Fact types chosen on the previous Wizard page are listed in the right-hand listbox.
Selecting a Fact type by clicking on it will result in a list of available fields being shown in the middle
listbox together with an option to create a predicate that do not require a specific field. Fields can
be added to the pattern's constraints by clicking on the field and then the ">>" button. Fields can
be removed from the pattern definition by clicking on the Condition in the right-hand listbox and
then the "<<" button. All fields need to have a column header and operator. Incomplete fields will
be highlighted and a warning message displayed. You will be unable to finish your definition until
all warnings have been resolved.

Guided Decision Table Wizard

% Summary
of
W
o
W

s
W

Add Constraints

% Add Actions to insert Facts

/ Columns to expand

Define constraints on the Facts\Patterns fields.

Add Fact Patterns

Available patterns Available fields Conditions

Add Actions to update Facts tc : TelephoneCall this [Date of call] dateOfCall

duration : Whole number (intege

caller : Text

callee : Text =
telephoneMumber : Text <<
dateOfCall : Date

[New Predicate]

— e
Calculation type: @ Literal value O Formula
Column header (description): Date of call
Operator: after =G |
(optional) value list: @

Default value:

<- Previous | Mext -> | Cancel | Finish |

Figure 16.37. Add Constraints page

16.4.3.2.5. Add Actions to update facts page

Fact types that have been defined can be updated in the consequence, or action, part of a rule.
This page allows such actions to be defined. Fact types added to the decision table definition are
listed in the left-hand listbox. Selecting a Fact type by clicking on it will result in a list of available
fields being shown in the middle listbox. Fields that need to be updated by the rule can be added
by selecting an available field and pressing the ">>" button. Fields can be removed similarly by
clicking on a chosen field and then the "<<" button. All actions require a column header. Any
incomplete actions will be highlighted and a warning message displayed. You will be unable to
finish your definition until all warnings have been resolved.

493

Chapter 16. Authoring Assets

Guided Decision Table Wizard

p duration : Whole number (intege
7 Add Actions to insert Facts (integ

caller : Text

 Summary Define actions to set the fields on bound Facts\Patterns.

%/ Add Fact Pattermns

+/ Add Constraints Avalable patterns Available fields Chosen fields

«/ Add Actions to update Facts | tc I TelephoneCall this [Who called] caller
&

&

/' Columns to expand

callee : Text =
telephoneMumber : Text <<
dateOfCall : Date

— e
Column header (description): Who called
(optional) value list: @

Default value:

O Update engine with changes: @

<- Previous | Mext -> | Cancel | Finish |

Figure 16.38. Add Actions to update facts page

16.4.3.2.6. Add Actions to insert facts page

Actions can also be defined to insert new Facts into the Rule Engine. A list of Fact types available
in your model are listed in the left-hand listbox. Select those you wish to include in your decision
table definition by clicking on them and pressing the ">>" button between the left most listbox
and that titled "Chosen patterns". Removal is a similar process whereby a chosen pattern can be
selected and removed by pressing the "<<" button. Selection of a chosen pattern presents the
user with a list of available fields. Fields that need to have values set by the action can be added
by selecting them and pressing the ">>" button between the "Available fields" and "Chosen fields"
listbox. Removal is a similar process as already described. New Facts need to be bound to a
variable and have a column heading specified. Incomplete Facts and\or fields will be highlighted
and a warning message displayed. You will be unable to finish your definition until all warnings
have been resolved.

494

Defining a web based decision table

Guided Decision Table Wizard

Summary

/' Add Fact Patterns

/' Add Constraints

/' Add Actions to update Facts
/' Add Actions to insert Facts

/' Columns to expand

Define actions to insert new Facts\Patterns.

Available patterns

ArrayList
Cheese

Collection

List =
TelephoneCall <<

Binding: ¢

O Logically assert a fact - the fact will be retracted when the supporting evidence is removed. @

Column header (description): Cheese
(optional) value list:

Default value:

<- Previous | Mext -> | Cancel | Finish |

Figure 16.39. Add Actions to insert facts page

*

Chosen patterns

c : Cheese

6]

16.4.3.2.7. Columns to expand page

*

[

Available fields
this
fl: Text

f2: Text
f3: Text

Chosen fields

[Cheese] f1

This page controls how the decision table, based upon Conditions defined on the prior pages,
will be created. Condition columns defined with an optional list of permitted values can be used
to create rows in the decision table. Where a number of Condition columns have been defined
with lists of permitted values the resulting table will contain a row for every combination of values;
i.e. the decision table will be in expanded form. By default all Condition columns defined with
value lists will be included in the expansion however you are able to select a sub-set of columns
if so required. This can be accomplished by unticking the "Fully expand" checkbox and adding
columns to the right-hand listbox. If no expansion is required untick the "Fully expand" checkbox
and ensure zero columns are added to the right-hand listbox.

495

Chapter 16. Authoring Assets

Guided Decision Table Wizard
+/ Summary
+/ Add Fact Patterns

% Add Constraints

Define the columns from which the generated table will be expanded.

O Fully expand the table, including all columns.

«/ Add Actions to update Facts Available columns Chosen columns
+/ Add Actions to insert Facts [Who called] caller
«/ Columns to expand

<- Previous | Next -> | Cancel | Finish |

Figure 16.40. Columns to expand page

Guided Decision Table Wizard
+/ Summary

+/ Add Fact Patterns

%+ Add Constraints

+/ Add Actions to update Facts
+/ Add Actions to insert Facts

%/ Columns to expand

Define constraints on the Facts\Patterns fields.

Available patterns Available fields Conditions

tc : TelephoneCall this [Date of call] dateOfCall
duration : Whole number (intege [Who called] caller
caller : Text

Calculation type:

callee : Text ﬂ Jﬁ
telephoneMumber : Text <<

dateOfCall : Date

[New Predicate]

© Literal value O Formula

Column header (description): Who called *

Operator: equal to d

(optional) value li

Default value:

<- Previous | Mext -> | Cancel | Finish |

. |Rod,Jane,Freddie €y,

Figure 16.41. Example of a Condition column with optional values defined

496

Rule definition

=| Decision table

= Condition columns

8 ;/Date of call
8 #Who called

=7 MNew column

Action columns

(options)
. Dateofcal @ Whocaled |
i # Description TelephoneCall [t
dateCfCall [== caller [==
+ =(1 Rod
CE - | Jane
g B3 . Freddie

Figure 16.42. Example of adecision table generated with expanded columns

16.4.4. Rule definition

This section allows individual rules to be defined using the columns defined earlier.

Rows can be appended to the end of the table by selecting the "Add Row" button. Rows can also
be inserted by clicking the "+" icon beside an existing row. The "-" icon can be used to delete rows.

497

Chapter 16. Authoring Assets

] min-age max-age palicy type make model Premium
HTH # Description Applicant [Sa] Policy [Sp] Wehicle [$v] 3p
age [==] age [<] type [—=] make [=] model [—=] premium
g B2 1 18 25 TPFT BMW 318i 1000
g B2 2 18 25 COMP BMW 318i 1500
g B2 3 18 25 TPFT BMW M3 2000
g B 4 18 25 COMP BMW M3 2500
g B[5 18 25 TPFT Audi Ad 1500
g 2| 6 18 25 COMP Audi A4 2000
g BT 18 25 TPFT Audi RE8 2500
g B2 8 18 25 COMP Audi RE8 3000

Add row... | Otherwise ‘ Analyze... ‘ Audit log |

Figure 16.43. Rule definition

16.4.5. Audit Log

An audit log has been added to the web-guided Decision Table editor to track additions, deletions
and modifications.

By default the audit log is not configured to record any events, however, users can easily select
the events in which they are interested.

The audit log is persisted whenever the asset is checked in.

498

Audit Log

Audit log

Events being logged.:
"~ Column deleted.[] Column updated | Row inserted. [| Row deleted. [Column inserted.

Mo entries.

1-10f0 M4 W M W

© Ok

Figure 16.44. An empty audit log

Once the capture of events has been enabled all susbsequent operations are recorded. Users
are able to perform the following:-

» Record an explanatory note beside each event.

« Delete an event from the log. Event details remain in the underlying repository.

499

Chapter 16. Authoring Assets

Audit log

Events being logged:
) Column deleted.® Column updated | Row inserted. [] Row deleted. [Column inserted.

Column updated. S ———
On 04-Nov-2013 11:45:28 by admin. S
Updated Condition column 'deposit’

Columns Updated

Field name: Default value:
Old value:
Mew Value:

Field name: Header
Old value: amount min
MNew Value: deposit

Field name: Field:
Old value: amount
MNew Value: deposit

1-1of1 W4 KW H W

© 0ok

Figure 16.45. Example of audit events

16.5. Spreadsheet decision tables

Multiple rules can be stored in a spreadsheet. Each row in the spreadsheet is a rule, and each
column is either a condition, an action, or an option. The Drools Expert section of this document
discusses spreadsheet decision tables in more detail.

500

Scorecards

Create new Decision Table (Spreadsheet)

*Resource Name [|]

Location default://master@uf-

playground/mortgages/src/main/resources/org/mortgages

| Choose File .H':' file chosen

Cancel

Figure 16.46. Spreadsheet decision table

To use a spreadsheet, you upload an XLS file. To create a new decision table: launch the new
"Decision Table (Spreadsheet)" wizard, you will get an option to upload one.

16.6. Scorecards

A scorecard is a graphical representation of a formula used to calculate an overall score. A
scorecard can be used to predict the likelihood or probability of a certain outcome. Drools now
supports additive scorecards. An additive scorecard calculates an overall score by adding all
partial scores assigned to individual rule conditions.

Additionally, Drools Scorecards will allows for reason codes to be set, which help in identifying
the specific rules (buckets) that have contributed to the overall score. Drools Scorecards will be
based on the PMML 4.1 Standard.

The New Iltem menu now allows for creation of scorecard assets.

501

Chapter 16. Authoring Assets

—| Scorecard (sc-wge-5)

—I Setup Parameters

Facts Resultant Score Field Initial Score

CustcmerE customerScore : double IZ| 20 @
Use Reason Codes Resultant Reason Codes Field Reason Codes Algorithm Baseline Score

false none E 0.0

—| Characteristics

Mew Characteristic

Name CustAgeScore Remave Characteristic Add Attribute

Fact Characteristic Baseline Score Reason Code
Customer customerAge - int

Operator Value Partial Score Reason Code Actions
= E 0 10 Remove
»=< [x] 140 20 Remave
>=.< [r] 40,60 25 Remave
== E 60 30 Remave

Figure 16.47. Scorecard Asset - Guided Editor

The above image shows a scorecard with one characteristic. Each scorecard consists of two
sections (a) Setup Parameters (b) Characteristic Section

16.6.1. (a) Setup Parameters

The setup section consits of parameters that define the overall behaviour of this scorecard.

1. Facts: This dropdown shows a list of facts that are visible for this asset.

2. Resultant Score Field: Shows a list of fields from the selected fact. Only fields of type 'double’
are shown. If this dropdown is empty double check your fact model. The final calculated score
will be stored in this field.

3. Initial Score: Numeric Text Field to capture the initial score. The generated rules will initialize
the 'Resultant Score Field' with this score and then is added to the overall score whenever
partial scores are summed up.

4. Use Reason Codes: Boolean indicator to compute reason codes along with the final score.
Selecting Yes/No in this field will enable/disable the 'Resultant Reason Codes Field', 'Reason
Code Algorithm' and the 'Baseline Score' field.

5. Resultant Reason Codes Field: Shows a list of fields from the selected fact. Only fields of type
‘java.util.List' are shown. This collection will hold the reason codes selected by this scorecard.

6. Reason Code Algorithm: May be "none", "pointsAbove" or "pointsBelow", describing how
reason codes shall be ranked, relative to the baseline score of each Characteristic, or as set
at the top-level scorecard.

502

(b) Characteristics

7. Baseline Score: A single value to use as the baseline comparison score for all characteristics,
when determining reason code ranking. Alternatively, unique baseline scores may be
set for each individual Characteristic as shown below. This value is required only when
UseReasonCodes is "true" and baselineScore is not given for each Characteristic.

E] Note
If UseReasonCodes is "true", then BaselineScore must be defined at the Scorecard
level or for each Characteristic, and ReasonCode must be provided for each
Characteristic or for each of its input Attributes. If UseReasonCodes is "false", then
baselineScore and reasonCode are not required.

16.6.2. (b) Characteristics

On Clicking the 'New Characteristic' button, a new empty characteristic editor is added to the
scorecard. Defines the point allocation strategy for each scorecard characteristic (hnumeric or
categorical). Each scorecard characteristic is assigned a single partial score which is used to
compute the overall score. The overall score is simply the sum of all partial scores. Partial scores
are assumed to be continuous values of type "double”.

16.6.2.1. Creating Characterstics

Every scorecard must have at least one characteristic

Name Remove Characteristic | Add Attribute |

Fact Characteristic Baseline Score Reason Code

Figure 16.48. New Characteristic

1. Name: Descriptive name for this characteristic. For informational reasons only.

2. Remove Charteristic: Will remove this characteristic from the scorecard after a confirmation
dialog is shown.

3. Add Attribute: Will add a line entry for an attribute (bin).

4. Fact: Select the class which will be evaluated for calculating the partial score.

5. Characteristic: Shows the list of fields from the selected Fact. Only fields of type "String", "int",
"double", "boolean” are shown.

503

Chapter 16. Authoring Assets

6. Baseline Score: Sets the characteristic's baseline score against which to compare the actual
partial score when determining the ranking of reason codes. This value is required when
useReasonCodes attribute is "true" and baselineScore is not defined in element Scorecard.
Whenever baselineScore is defined for a Characteristic, it takes precedence over the
baselineScore value defined in element Scorecard.

7. Reason Code: Contains the characteristic's reason code, usually associated with an adverse
decision.

16.6.2.2. Creating Attributes

On Clicking the 'New Attribute' button, a new empty attribute editor. In scorecard models, all the
elements defining the Attributes for a particular Characteristic must all reference a single field.

Operator Value Partial Score Reason Code Actions

=] X

Figure 16.49. New Attribute

1. Operator: The condition upon which the mapping between input attribute and partial score
takes place. The operator dropdown will show different values depending on the datatype of
the selected Field.

a. DataType Strings: "=", "in".
b. DataType Integers: "=", ">", "<" ">=" "<=" "> <" ">= <" ">= <=" "> .<=",
c. DataType Boolean: "true", "false".
Refer to the next sub-section (values) for more details.
2. Value: Basis the operator selected the value specified can either be a single value or a set of

values separated by comma (","). The value field is disabled for operator type boolean.

Table 16.1. Operators / Values

Data Type Operator Value Remarks
String = Single Value will look for an exact
match
String in Comma Separated The operator 'in'
Values (a,b,c,...) indicates an

evaluation to TRUE
if the field value
is contained in the
comma separated list
of values

Boolean is true N/A Value Field is
uneditable (readonly)

504

Test Scenario

Data Type

Boolean

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Operator Value

is false N/A

= Single Value

> Single Value

< Single Value

>= Single Value

<= Single Value

>.< Comma Separated
Values (a,b)

>=, < Comma Separated
Values (a,b)

>=,.<= Comma Separated
Values (a,b)

>.<= Comma Separated
Values (a,b)

Remarks

Value Field is
uneditable (readonly)

Equals Operator

Greator Than
Operator

Less Than Operator

Greater than or equal
To

Less than or equal To

(Greater than Value
'‘a) and (less than
value 'b")

(Greater than or
equal to Value 'a’) and
(less than value 'b")

(Greater than or
equal to Value 'a") and
(less than or equal to
value 'b")

(Greater than Value
'a’) and (less than or
equal to value 'b")

3. Partial Score: Defines the score points awarded to the Attribute.

4. Reason Code: Defines the attribute's reason code. If the reasonCode attribute is used in this
level, it takes precedence over the ReasonCode associated with the Characteristic element.

5. Actions: Delete this attribute. Prompts the user for confirmation.

g

Note

If Use Reason Codes is "true", then Baseline Score must be defined at the
Scorecard level or for each Characteristic, and Reason Code must be provided
for each Characteristic or for each of its input Attributes. If Use Reason Codes is
"false", then BaselineScore and ReasonCode are not required.

16.7. Test Scenario

Test Scenarios are used to validate that rules and knowledge base work as expected. When the
knowledge base evolves, Test Scenarios guard against regression.

505

Chapter 16. Authoring Assets

U berFl re Explore - New - Project ~ Repository -
Project Explorer o Test Scenario [Good credit history only] Save Delete | Rename | Copy

demo ~ uf-playground ~ mortgages ~ g | R seenario

qPGI'\-‘EI-I
B <defaults Insert LoanApplicationapp] B

E org approved: false T e
= mortgages g
Insert IncomeSourcefincomeSource] g
Add afield
Insert Applicant(a] 2
creditRating:; OK A=]

% DRL g

lf‘PC-'lLL METHOD
(5 DOMAIN SPECIFIC LANGUAGE DEFINITION Add input data and expectations here.

qu}‘:PECT= & Use real date and time v
(5 ENUMERATION DEFINITION - — -

LoanApplication ‘app’ has values:, =
ved| equals alse
/GUIDED DECISION TABLE I approved; equals v [fals Tpe
More...

¥ GUIDED RULE . " "
(configuration)

& (globals)
& GUIDED RULE (WITH DSL)

JAVA SOURCE FILES

[V TEST SCENARIO
Are they old enough
Good credit history only
MNINJAS
Mo bankruptcies

Pricing low end ~ .
Test Scenario

All rules may fire r

Config Metadata All Test Scenarios

Figure 16.50. Example Test Scenario

Given section lists the facts needed for the behaviour. Expect section lists the expected changes
and actions done by the behaviour. Given facts are passed for the Test Scenario before execution.
During the rule execution, changes in the knowledge base are recorded. After the execution
ends the recorded actions, existing facts in the knowledge base and knowledge base output is

compared against the expectations.

506

Test Scenario

Figure 16.51. Example Test Scenario after execution

Test Scenario [Good credit history only | Save | Delete | Rename | Copy % | ~
Fun scenario =
_%GIVEN
Insert 'LoanApplication'[app] =)
approved: false ¥ a
=}
Insert IncomeSourcefincomeSource]l g
Add afield
Insert Applicant(a) a
creditRating: Ok L =]
=|
_%CALL METHOD 3
Add input data and expectations here.
#EXPECT= &Y Use real date and time T
LoanApplication ‘app' has values:, =]
approved:| equals ¥ false a8
More...
(configuration) All rules may fire
_%(globals]
Test Scenario Config Metadata All Test Scenarios]
(4] BDE
Reporting x -
Success B
Text

507

Chapter 16. Authoring Assets

16.7.1. Given Section

Mew input x
e New input

Insert a new fact: Applicant jFact name: Add
Modify an existing fact: 2 j Add
Retract an existing fact: a j Add
Activate rule flow group Add

Figure 16.52. Given popup

* Insert a new fact - Adds a new fact that will be inserted into the knowledge base before
execution.

» Modify an existing fact - Allows editing a fact between knowledge base executions.
» Delete an existing fact - Allows removing facts between executions.

 Activate rule flow group - Allows rules from a rule flow group to be tested, by activating the
group in advance.

16.7.2. Expect Section

New expectation o
g New expectation
Rule: (show list) | OK |

Fact value: & j Add |
Any fact that matches: Applicant j Add |

S M EE A LR O -

Figure 16.53. Expect popup

* Rule - Validate that a certain rule fired.
* Fact value - Validate fact values for a fact created in the Given section.

« Any fact that matches - Validate that there is at least one fact in the knowledge base with the
specified field values.

508

Global Section

16.7.3. Global Section

New global ﬁ
b New global

Global: ilogoer | Add |

Figure 16.54. Global popup

» Global - Validate that the global field values.

16.7.4. New Input Section

New input o ‘
ke Mew input |
Call a method on an existing fact:fa "l Add |

Figure 16.55. New Input popup
« Call method on an existing fact - Call a method from a fact in the beginning of the rule execution.
16.8. Functions

Functions are another asset type. They are NOT rules, and should only be used when necessary.
The function editor is a textual editor. Functions

-
function <returmnType= funcName(<args here=) |

/lcode goes in here...

Figure 16.56. Function

509

Chapter 16. Authoring Assets

16.9. DSL editor

The DSL editor allows DSL Sentences to be authored. The reader should take time to explore
DSL features in the Drools Expert documentation; as the syntax in Drools Workbench's DSL Editor
is identical. The normal syntax is extended to provide "hints" to control how the DSL variable is
rendered and validated within the user-interface.

The following "hints" are supported:-

« {<varName>:<regular expression>}

This will render a text field in place of the DSL variable when the DSL Sentence is used in the
guided editor. The content of the text field will be validated against the regular expression.

» {<varName>:ENUM:<factType.fieldName>}

This will render an enumeration in place of the DSL variable when the DSL Sentence is used
in the guided editor. <factType.fieldName> binds the enumeration to the model Fact and Field
enumeration definition. This could be either a "Drools Workbench enumeration” (i.e. defined
within the Workbench) or a Java enumeration (i.e. defined in a model POJO JAR file).

» {<varName>:DATE:<dateFormat>}

This will render a Date selector in place of the DSL variable when the DSL Sentence is used
in the guided editor.

» {<varName>:BOOLEAN:<[checked | unchecked]>}

This will render a dropdown selector in place of the DSL variable, providing boolean choices,
when the DSL Sentence is used in the guided editor.

» {<varName>:CF:<factType.fieldName>}

This will render a button that will allow you to set the value of this variable using a Custom
Form. In order to use this feature, a Working-Set containing a Custom Form Configuration for
factType.fieldName must be active. If there is no such Working-Set, a simple text box is used
(just like a regular variable).

For more information, please read more about Working-Sets and Custom Form Configurations.

510

Data enumerations (drop down list configurations)

File Edit Source

Attributes | Edit

[when]When the credit rating is {rating:ENUM:Applicant.creditRating} = applicant:Applicant(creditRating=="{rating}")
[when]When the applicant dates 1s after {dos:DATE:default} = applicant:Applicant(applicationDate>"{dos}")

[when]When the applicant approval is {bool:BOOLEAN:checked} = applicant:Applicant (approved=={bool})

[when]When the ages is less than {num:1?7[0-9]?[0-9]} = applicant:Applicant(age<{num})

[then] Approve the loan = applicant.setApproved(true);

[then]Set applicant name to {name} = applicant.setName("{name}");

Figure 16.57. DSL rule

16.10. Data enumerations (drop down list
configurations)

Data enumerations are an optional asset type that technical folk can configure to provide drop
down lists for the guided editor. These are stored and edited just like any other asset, and apply
to the package that they belong to.

The contents of an enum config are a mapping of Fact.field to a list of values to be used in a
drop down. That list can either be literal, or use a utility class (which you put on the classpath) to
load a list of strings. The strings are either a value to be shown on a drop down, or a mapping
from the code value (what ends up used in the rule) and a display value (see the example below,

using the '=").
Enum Editor [credit ratings] Save Delete Rerame Copy Valdate % @~
Add enum
Fact Field Context
= Applicant creditRating [AA, "OK!, "Sub prime]
= Ferson age [20',25",'30","35

Figure 16.58. Data enumeration

In the above diagram - the "MM" indicates a value that will be used in the rule, yet "Mini Mal" will
be displayed in the GUI.

Getting data lists from external data sources: It is possible to have Drools Workbench call a piece
of code which will load a list of Strings. To do this, you will need a bit of code that returns a

511

Chapter 16. Authoring Assets

java.util.List (of String's) to be on the classpath of Drools Workbench. Instead of specifying
a list of values in Drools Workbench itself - the code can return the list of Strings (you can use the
"=" inside the strings if you want to use a different display value to the rule value, as normal). For
example, in the 'Person.age’ line above, you could change it to:

Ferson age (new com.yourco.DataHelper()).getListOfAges()

Figure 16.59.

This assumes you have a class called "DataHelper" which has a method "getListOfAges()" which
returns a List of strings (and is on the classpath). You can of course mix these "dynamic"
enumerations with fixed lists. You could for example load from a database using JDBC. The data
enumerations are loaded the first time you use the guided editor in a session. If you have any
guided editor sessions open - you will need to close and then open the rule to see the change.

16.10.1. Advanced enumeration concepts

There are a few other advanced things you can do with data enumerations.

Drop down lists that depend on field values: Lets imagine a simple fact model, we have a class
called Vehicle, which has 2 fields: "engineType" and "fuelType". We want to have a choice for the
"engineType" of "Petrol" or "Diesel". Now, obviously the choice type for fuel must be dependent on
the engine type (so for Petrol we have ULP and PULP, and for Diesel we have BIO and NORMAL).
We can express this dependency in an enumeration as:

Wehicle engineType ['Petrol’, Diesel"]

Wehicle fuelType[engineType = Petrol] ["JLF', 'PULP"]

Wehicle fuelType[engineType = Diesel] ['BIO, MORMAL']
Figure 16.60.

This shows how it is possible to make the choices dependent on other field values. Note that once
you pick the engineType, the choice list for the fuelType will be determined.

Loading enums programmatically: In some cases, people may want to load their enumeration data
entirely from external data source (such as a relational database). To do this, you can implement
a class that returns a Map. The key of the map is a string (which is the Fact.field name as shown
above), and the value is aj ava. uti | . Li st of Strings.

public class Sanpl eDat aSource2 {

public Map<String>, List<String> |oadData() ({
Map data = new HashMap();

512

Technical rules (DRL)

List d = new ArrayList();
d. add("val uel");

d. add("val ue2");

data. put("Fact.field", d);

return data;

And in the enumeration in the BRMS, you put:
=(new Sanpl eDat aSource2()) .| oadDat a()

The "=" tells it to load the data by executing your code.

Mode advanced enumerations: In the above cases, the values in the lists are calculated up front.
This is fine for relatively static data, or small amounts of data. Imagine a scenario where you have
lists of countries, each country has a list of states, each state has a list of localities, each locality
has a list of streets and so on... You can see how this is a lot of data, and it can not be loaded up.
The lists should be loaded dependent on what country was selected etc...

Well the above can be addressed in the following fashion:

Fact field[dependentFieldl, dependentField2] (new com.yourco.DataHelper()) .getListOfAges("@{dependentFieldl}’, "@{dependentField2}")

Figure 16.61.

Similar to above, but note that we have just specified what fields are needed, and also on the
right of the ":" there are quotes around the expression. This expression will then be evaluated,
only when needed, substituting the values from the fields specified. This means you can use the
field values from the GUI to drive a database query, and drill down into data etc. When the drop
down is loaded, or the rule loaded, it will refresh the list based on the fields. 'dependentFieldl’
and 'dependentField2' are names of fields on the 'Fact' type - these are used to calculate the list
of values which will be shown in a drop down if values for the “field".

16.11. Technical rules (DRL)

Technical (DRL) rules are stored as text - they can be managed in Drools Workbench. A DRL
can either be a whole chunk of rules, or an individual rule. if its an individual rule, no package
statement or imports are required (in fact, you can skip the "rule" statement altogether, just use
"when" and "then" to mark the condition and action sections respectively). Normally you would
use the IDE to edit raw DRL files, since it has all the advanced tooling and content assistance and
debugging. However, there are times when a rule may have to deal with something fairly technical

513

Chapter 16. Authoring Assets

in a package in Drools Workbench. In any typical package of rules, you generally have a need for
some "technical rules" - you can mix and match all the rule types together of course.

package org.mortgages
rule 'Dummy rule’
salience 100 // This can short circuit any processing

when

a : Approve()

p : Folicy()
then

p.setApproved(true);

System.out.printin{ "AFFROVED: " + a.getﬁeasnn{}h;
end

Figure 16.62. DRL technical rule

514

Chapter 17.

Chapter 17. Workbench Integration

17.1. REST

REST API calls to Knowledge Store allow you to manage the Knowledge Store content and
manipulate the static data in the repositories of the Knowledge Store. The calls are asynchronous,
that is, they continue their execution after the call was performed as a job. The job ID is returned
by every calls to allow after the REST API call was performed to request the job status and verify
whether the job finished successfully. Parameters of these calls are provided in the form of JSON
entities.

When using Java code to interface with the REST API, the classes used in
POST operations or otherwise returned by various operations can be found in the
(org. ki e. wor kbench. servi ces:) ki e- wb- conmon- ser vi ces JAR. All of the classes mentioned
below can be found in the or g. ki e. wor kbench. common. servi ces. shar ed. r est package in that
JAR.

17.1.1. Job calls

Every Knowledge Store REST call returns its job ID after it was sent. This is necessary as the
calls are asynchronous and you need to be able to reference the job to check its status as it goes
through its lifecycle. During its lifecycle, a job can have the following statuses:
* ACCEPTED: the job was accepted and is being processed
* BAD_REQUEST: the request was not accepted as it contained incorrect content
e RESOURCE_NOT_EXI ST: the requested resource (path) does not exist
* DUPLI CATE_RESOURCE: the resource already exists
e SERVER ERROR: an error on the server occurred
* SUCCESS: the job finished successfully
e FAI L: the job failed
« DENI ED: the job was denied
e GONE: the job ID could not be found
A job can be GONE in the following cases:
» The job was explicitly removed

» The job finished and has been deleted from the status cache (the job is removed from status
cache after the cache has reached its maximum capacity)

515

Chapter 17. Workbench Integration

The

The job never existed

following j ob calls are provided:

[GET] /j obs/ {j obl D}

Returns the job status

Returns a JobResul t instance

Example 17.1. An example (formatted) response body to the get job call
on arepository clone request

{
"status":" SUCCESS",
"jodld":"1377770574783- 27",
"result":"Alias: testlnstall AndDepl oyProject, Scheme: git, Ui: git://
test | nstal | AndDepl oyProj ect ",
"l ast Modi fied": 1377770578194, "det ai | edResul t": nul |

[DELETE] /| obs/ {j obl D}

Removes the job: If the job is not yet being processed, this will remove the job from the job
queue. However, this will not cancel or stop an ongoing job

Returns a JobResul t instance

17.1.2. Repository calls

Repository calls are calls to the Knowledge Store that allow you to manage its Git repositories

and

The

[GE

their projects.

following r eposi t ori es calls are provided:

T]/repositories

Gets information about the repositories in the Knowledge Store

Returns a Col |l ecti on<Map<String, String>> or Coll ection<RepositoryRequest>
instance, depending on the JSON serialization library being used. The keys used in the
Map<St ri ng, String>instance match the fields in the Reposi t or yRequest class

Example 17.2. An example (formatted) response body to the get
repositories call

516

Repository calls

"name": "wb- assets",
"description":"generic assets",
"user Nane": nul |,
"password": nul |,
"request Type": nul |,
"gitURL":"qgit://bpns-assets”
b
{
"nanme":"| oanProj ect"”,
"description":"Loan processes and rul es",
"user Nane": nul | ,
"password": nul |,
"request Type": nul |,
"gitURL":"git://| oansProject"

[POST]/repositories
Creates a new empty repository or a new repository cloned from an existing (git) repository

Consumes a Reposi t or yRequest instance

Returns a Cr eat eOr O oneReposi t or yRequest instance

Example 17.3. An example (formatted) response body to the create
repositories call

{
"name": " new proj ect-repo"”,
"description":"repo for ny new project",
"user Nanme": nul |, "password": nul |,
"request Type": " new',
"gi tURL": nul |

}

[DELETE] / reposi tori es/{repositoryNane}
Removes the repository from the Knowledge Store

Returns a RenoveReposi t or yRequest instance

[POST]/repositories/{repositoryNanme}/projects/
Creates a project in the repository

Consumes an Ent i ty instance

Returns a Cr eat ePr oj ect Request instance

517

Chapter 17. Workbench Integration

Example 17.4. An example (formatted) request body that defines the
project to be created

"name": " nmyProject",
"description": "ny project”

17.1.3. Organizational unit calls

Organizational unit calls are calls to the Knowledge Store that allow you to manage its
organizational units, so as to organize the connected Git repositories.

The following or gani zat i onal Uni t s calls are provided:

[POST]/ organi zati onal units
Creates an organizational unit in the Knowledge Store

Consumes an Or gani zat i onal Uni t instance

Returns a Cr eat eOr gani zat i onal Uni t Request instance

Example 17.5. An example (formatted) request body defining a new
organizational unit to be created

{
"nane":"testgroup",
"description":"",
"owner":"tester",
"repositories":["test GoupRepository"]
}
[POST] / organi zati onal uni t s/ {organi zati onal Uni t Nane}/ reposi tori es/

{repositoryNane}
Adds the repository to the organizational unit

Returns a AddReposi t or yToOr gani zat i onal Uni t Request instance

[DELETE] / organi zat i onal uni t s/ {organi zati onal Uni t Nane}/ repositories/
{repositoryNane}
Removes the repository from the organizational unit

Returns a RenoveReposi t or yFr onOr gani zat i onal Uni t Request instance

518

Maven calls

17.1.4. Maven calls

Maven calls are calls to a Project in the Knowledge Store that allow you compile and deploy the
Project resources.

The following maven calls are provided:
[POST] /repositories/{repositoryNanme}/projects/{project Nane}/ maven/ conpi |l e
Compiles the project (equivalent to nvn conpi | e)

Consumes a Bui | dConfi g instance. While this must be supplied, it's not needed for the
operation and may be left blank.

Returns a Conpi | ePr oj ect Request instance

[POST]/repositories/{repositoryName}/projects/{projectNane}/ maven/inst al |
Installs the project (equivalent to nvn install)

Consumes a Bui | dConfi g instance. While this must be supplied, it's not needed for the
operation and may be left blank.

Returns a | nst al | Proj ect Request instance

[POST] /repositories/{repositoryNanme}/projects/{project Nane}/ maven/t est
Compiles the project runs a test as part of compilation

Consumes a Bui | dConf i g instance
Returns a Test Pr oj ect Request instance

[POST] /repositories/{repositoryName}/projects/{projectNane}/ maven/ depl oy
Deploys the project (equivalent to mvn depl oy)

Consumes a Bui | dConfi g instance. While this must be supplied, it's not needed for the
operation and may be left blank.

Returns a Depl oyPr oj ect Request instance

519

520

Chapter 18.

Chapter 18. Workbench High
Availability

18.1.1. VFS clustering

The VFS repositories (usually git repositories) stores all the assets (such as rules, decision tables,
process definitions, forms, etc). If that VFS resides on each local server, then it must be kept in
sync between all servers of a cluster.

Use Apache Zookeeper [http://zookeeper.apache.org/] and Apache Helix [http://
helix.incubator.apache.org/] to accomplish this. Zookeeper glues all the parts together. Helix is
the cluster management component that registers all cluster details (nodes, resources and the
cluster itself). Uberfire (on top of which Workbench is build) uses those 2 components to provide
VFS clustering.

To create a VFS cluster:
1. Download Apache Zookeeper [http://zookeeper.apache.org/] and Apache Helix [http://
helix.incubator.apache.org/].
2. Install both:
a. Unzip Zookeeper into a directory ($ZOOKEEPER_HOME).
b. In $ZOOKEEPER_HOME, copy zoo_sanpl e. conf to zoo. conf
c. Edit zoo. conf . Adjust the settings if needed. Usually only these 2 properties are relevant:
the directory where the snapshot is stored.
dat abi r =/ t np/ zookeeper
the port at which the clients will connect
clientPort=2181
d. Unzip Helix into a directory ($HELI X_HOVE).
3. Configure the cluster in Zookeeper:

a. Go to its bi n directory:
$ cd $ZOOKEEPER_HOVE/ bi n

b. Start the Zookeeper server:

521

http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/

Chapter 18. Workbench High Av...

C.

$ sudo ./zkServer.sh start

If the server fails to start, verify that the dat aDi r (as specified in zoo. conf) is accessible.

To review Zookeeper's activities, open zookeeper . out :

$ cat $ZOOKEEPER HOVE/ bi n/ zookeeper . out

4. Configure the cluster in Helix:

a. Go to its bi n directory:

$ cd $HELI X HOVE/ bi n

. Create the cluster:

$./helix-adm n.sh --zkSvr |ocal host: 2181 --addd uster kie-cluster

The zkSvr value must match the used Zookeeper server. The cluster name (ki e- cl ust er)
can be changed as needed.

. Add nodes to the cluster:

Node 1

$./ helix-admi n.sh --zkSvr | ocal host: 2181 - - addNode ki e-cl uster
nodeOne: 12345

Node 2

$./ heli x-adm n. sh --zkSvr | ocal host: 2181 - - addNode ki e-cl uster

nodeTwo: 12346

Usually the number of nodes a in cluster equal the number of application servers in the
cluster. The node names (nodeOne: 12345 , ...) can be changed as needed.

522

VFES clustering

@ Note

nodeOne: 12345 is the unique identifier of the node, which will be referenced
later on when configuring application servers. It is not a host and port number,
but instead it is used to uniquely identify the logical node.

d. Add resources to the cluster:

$./helix-adnmin.sh --zkSvr |ocal host: 2181 --addResource kie-cluster vfs-
repo 1 Leader St andby AUTO_REBALANCE

The resource name (vf s- r epo) can be changed as needed.

e. Rebalance the cluster to initialize it:

$./helix-adm n.sh --zkSvr | ocal host: 2181 --rebal ance ki e-cl uster vfs-repo 2

f. Start the Helix controller to manage the cluster:

$./run-helix-controller.sh --zkSvr |ocal host:2181 --cluster Kkie-cluster
2>&1 > /tnp/controller.log &

5. Configure the security domain correctly on the application server. For example on WildFly and
JBoss EAP:

a. Edit the file $IBCSS_HOVE/ domai n/ confi gur ati on/ domai n. xni .

For simplicity sake, presume we use the default domain configuration which uses the profile
ful | that defines two server nodes as part of mai n- ser ver - gr oup.

b. Locate the profile f ul | and add a new security domain by copying the other security domain
already defined there by default:

<security-donmai n name="ki e-ide" cache-type="default">
<aut henti cati on>
<l ogi n- nodul e code="Renoti ng" flag="optional ">
<nmodul e- opti on nane="passwor d- st acki ng" val ue="useFi rst Pass"/>
</l ogi n- nodul e>
<l ogi n- modul e code="Real nDirect" flag="required">
<modul e- opti on nane="password- st acki ng" val ue="useFi r st Pass"/>
</l ogi n- modul e>

523

Chapter 18. Workbench High Av...

</ aut henti cati on>
</ security-domai n>

Important

The security-domain name is a magic value.

6. Configure the system properties for the cluster on the application server. For example on
WildFly and JBoss EAP:

a.

b.

Edit the file $JBOSS_HOME/ domai n/ confi gur ati on/ host . xni .

Locate the XML elements server that belong to the mai n-server-group and add the
necessary system property.

For example for nodeOne:

<system properties>
<property nane="j boss. node. nane" val ue="nodeOne" boot-tine="fal se"/>
<property name="org.uberfire.nio.git.dir" value="/tnp/ki e/ nodeone" boot -
tine="fal se"/>
<property name="org.uberfire.netadata.index.dir" val ue="/tnp/ ki e/
nodeone" boot-tinme="fal se"/>
<property name="org.uberfire.cluster.id" value="kie-cluster" boot-
tine="fal se"/>
<property nane="org.uberfire.cluster.zk" value="local host:2181" boot-
time="fal se"/>
<property name="org. uberfire.cluster.local.id" val ue="nodeOne_12345" boot -
tine="fal se"/>
<property nane="org.uberfire.cluster.vfs.lock"” value="vfs-repo" boot-
time="fal se"/>
<l-- If you're running both nodes on the same machine: -->
<property nane="org.uberfire.nio.git.daenon.port" value="9418" boot-
tine="fal se"/>
</ system properties>

And for nodeTwo:

<syst em properties>
<property nane="j boss. node. nane" val ue="nodeTwo" boot-tine="fal se"/>
<property nane="org.uberfire.nio.git.dir" value="/tnp/kie/nodetw" boot -
tine="fal se"/>
<property nanme="org.uberfire. nmetadata.index.dir" val ue="/tnp/ ki e/
nodet wo" boot-time="fal se"/>

524

jBPM clustering

<property name="org.uberfire.cluster.id" value="kie-cluster" boot-

tine="fal se"/>
<property nane="org.uberfire.cluster.zk" value="I|ocal host:2181" boot -
time="fal se"/>
<property name="org. uberfire.cluster.local.id" val ue="nodeTwo_12346" boot -

tine="fal se"/>
<property nane="org.uberfire.cluster.vfs.lock"” value="vfs-repo" boot-
time="fal se"/>
<l-- |f you're running both nodes on the same machine: -->
<property nane="org.uberfire.nio.git.daenon.port" value="9419" boot-
time="fal se"/>
</ system properties>

Make sure the cluster, node and resource names match those configured in Helix.

18.1.2. jBPM clustering

In addition to the information above, jBPM clustering requires additional configuration. See this
blog post [http://mswiderski.blogspot.com.br/2013/06/clustering-in-jopm-v6.html] to configure the
database etc correctly.

525

http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html
http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html
http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html

526

Part VI. Drools Examples

Examples to help you learn Drools

Chapter 19.

Chapter 19. Examples

19.1. Getting the Examples

Make sure the Drools Eclipse plugin is installed, which needs the Graphical Editing Framework
(GEF) dependency installed first. Then download and extract the drools-examples zip file, which
includes an already created Eclipse project. Import that project into a new Eclipse workspace. The
rules all have example classes that execute the rules. If you want to try the examples in another
project (or another IDE) then you will need to set up the dependencies by hand, of course. Many,
but not all of the examples are documented below, enjoy!

Some examples require Java 1.6 to run.

19.2. Hello World

Name: Hello World

Mai n cl ass: org.drool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e
Modul e: dr ool s- exanpl es

Type: Java application

Rules file: Hellowrld.drl

bj ective: denpnstrate basic rules in use

The "Hello World" example shows a simple application using rules, written both using the MVEL
and the Java dialects.

This example demonstrates how to create and use a Ki eSessi on. Also, audit logging and debug
outputs are shown, which is omitted from other examples as it's all very similar.

The following code snippet shows how the session is created with only 3 lines of code.

Example 19.1. HelloWorld: Creating the KieSession

Ki eServices ks = Ki eServices. Factory. get(); 9
Ki eCont ai ner kc = ks. get Ki eCl asspat hCont ai ner () ; 2]
Ki eSessi on ksession = kc. newKi eSessi on(" Hel | oWor | dKS") ; 3

Obtains the Ki eSer vi ces factory. This is the main interface applications use to interact with
the engine.

M Creates a Ki eContainer from the project classpath. This will look for a / META-1 NF/
kmodul e. xm file to configure and instantiate the Ki eMbdul e into the Ki eCont ai ner .

A Creates a session based on the named "HelloWorldKS" session configuration.

Drools has an event model that exposes much of what's happening internally. Two default debug
listeners are supplied, DebugAgendaEvent Li st ener and DebugWér ki ngMenor yEvent Li st ener

529

Chapter 19. Examples

which print out debug event information to the System err stream displayed in the Console
window. Adding listeners to a Session is trivial, as shown in the next snippet. The
Ki eRunt i meLogger provides execution auditing, the result of which can be viewed in a graphical
viewer. The logger is actually a specialised implementation built on the Agenda and Rul eRunt i ne
listeners. When the engine has finished executing, | ogger. cl ose() must be called.

Most of the examples use the Audit logging features of Drools to record execution flow for later
inspection.

Example 19.2. HelloWorld: Event logging and Auditing

/1 The application can also setup |listeners
ksessi on. addEvent Li st ener (new DebugAgendaEvent Li stener());
ksessi on. addEvent Li st ener (new DebugRul eRunt i neEvent Li stener ());

/'l To setup a file based audit |ogger, uncoment the next |ine
/1 Ki eRuntinmeLogger |ogger = ks.getlLoggers().newrilelLogger(ksession,
“./helloworld");

/1 To setup a ThreadedFil eLogger, so that the audit view reflects
events whil st debuggi ng,
/1 uncoment the next |ine
/
/ Ki eRunti neLogger | ogger = ks. getLoggers().newThreadedFi | eLogger(ksession, "./
hel | owor | d", 1000);

The single class used in this example is very simple. It has two fields: the message, which is a
St ri ng and the status which can be one of the two integers HELLO or GOODBYE.

Example 19.3. HelloWorld example: Message Class

public static class Message {

public static final int HELLO = O;
public static final int GOODBYE = 1;
private String nessage;
private int st at us;

A single Message object is created with the message text "Hello World" and the status HELLOand
then inserted into the engine, at which point fi reAl | Rul es() is executed.

530

Hello World

Example 19.4. HelloWorld: Execution

/1 The application can insert facts into the session
final Message message = new Message();

message. set Message("Hello World");

nessage. set St at us(Message. HELLO) ;

ksession.insert(nmessage);

/1 and fire the rules

ksession.fireA |l Rul es();

To execute the example as a Java application:

1. Open the class or g. dr ool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e in your Eclipse IDE
2. Right-click the class and select "Run as..." and then "Java application"

If we put a breakpoint on the fi reAl | Rul es() method and select the ksessi on variable, we can
see that the "Hello World" rule is already activate on the Agenda.

—
a3 g - drools c/main/java/org/drools/ IdExample.java - Eclipse SDK MI=ES]
File Edit Source Refactor MNavigate Search Project Run Window Help

i > O Q- | & 9~ Lo =1) orools &’ java

%5 Debug 2% »] 3 @ ¥ = 0| ®-variables ¥ . % Breakpoints % B ¥ T0
= {J HelloWorldExample (1) [Drools Applic ation] Name Value
< @¥ org.drools.examples HelloWorldExample at localhost:45096
= o Thread [main] (Suspended (breakpoint at line 63 in HelloWorldExal b o logger KnowledgeRuntimelLoggerProviderl
= HelloWorldExample main(5tring[]) line: 63 b o message HelloWorldExample$Message (id=!|»
| MNotBackedUp/trikkola/tools/dkl.5.0_15/injava (Dec 10, 2008 2:53:¢ (] D

org.drools. impl.S5tatefulknowledgeSessionImpl@b70648

] Djje)

[¥] HelloworldExample java 5 = 8 | g outline £ =08
: KnowledgeHuntimeLogger Logger = KnowledgeHuntimelLoggerractory [« LR w6 T
.newFileLogger(ksession, “log/helloworld”); m B w W w

org.drools examples

final Message message = new Message(); . N
message. setMessage(“Hello World"); b ‘= import declarations
message. setStatus(Message. HELLO); - G.Helmwdexample

ksession. insert(message);] M main(stringl 1)
¥ main(String

ksession.TireAllRules(); I @°Message

Lo

logger.close();
[|
I Console & Tasks © b =

L

(]

= a MAIN[nofocus]= BinaryHeapQueueAgendaGroup (id=2144)
= a [0]= Activation
P & ruleName= "Hello World* (id=2151)
P a m= HelloWordExample$Message (id=55)
P & message= "Hello World* (id=2157)

Figure 19.1. Hello World: fireAllRules Agenda View

531

Chapter 19. Examples

The application print outs go to to System out while the debug listener print outs go to

Systemerr.

Example 19.5. HelloWorld: System.out in the Console window

Hello World
Goodbye cruel world

Example 19.6. HelloWorld: System.err in the Console window

==>[ActivationCreated(0): rule=Hello Wrld;

tuple=[fid: 1:1:0rg.drool s. exanpl es.

$Message@ 7cec96] |
[Obj ectlnsert ed:

$Message@ 7cec96] ;

obj ect =or g. drool s. exanpl es.

$Message@ 7cec96]
[Bef oreActivationFired: rule=Hello Wrl d;

tuple=[fid: 1:1:0rg.drool s. exanpl es.

$Message@7cec96] |
==>[Acti vationCreated(4): rul e=CGood Bye;

tupl e=[fid: 1:2: org. drool s. exanpl es.

$Message@7cec96] |
[oj ect Updat ed:

$Message@ 7cec96] ;

ol d_obj ect =or g. dr ool s. exanpl es.
$Message@ 7cec96;

new_obj ect =or g. dr ool s. exanpl es.
$Message@ 7cec96]

[AfterActivationFired(0): rule=Hello Wrld]
[Bef oreActivationFired: rul e=Good Bye;

tupl e=[fid: 1: 2: org. drool s. exanpl es.

$Message@7cec96]]
[AfterActivationFired(4): rul e=Good Bye]

hel | owor | d.

hel | owor | d.

hel | owor | d.

hel | owor | d.

hel | owor | d.

hel | owor | d.

hel | owor | d.

Hel | oWor | dExanpl e

Hel | oWor | dExanpl e

Hel | oWor | dExanpl e

Hel | oWor | dExanpl e

Hel | oWor | dExanpl e

Hel | oWor | dExanpl e

Hel | owor | dExanpl e

The actual rules are inside the file src/ mai n/ resour ces/ or g/ dr ool s/ exanpl es/ hel | owor | d/

Hel | oWor | d. drl :

Example 19.7. HelloWorld: rule "Hello World"

rule "Hello World"
di al ect "nvel "

532

Hello World

when
m : Message(status == Message. HELLO, nessage : nessage)
t hen
System out. println(nessage);
modify (m) { message = "Coodbye cruel world",
status = Message. GOODBYE };
end

The LHS (after when) section of the rule states that it will be activated for each Message object
inserted into the Rule Runtime whose status is Message. HELLO. Besides that, two variable
bindings are created: the variable message is bound to the nessage attribute and the variable m
is bound to the matched Message object itself.

The RHS (after t hen) or consequence part of the rule is written using the MVEL expression
language, as declared by the rule's attribute di al ect . After printing the content of the bound
variable nessage to System out, the rule changes the values of the nmessage and stat us
attributes of the Message object bound to m This is done using MVEL's nodi f y statement, which
allows you to apply a block of assignments in one statement, with the engine being automatically
notified of the changes at the end of the block.

It is possible to set a breakpoint into the DRL, on the nodi fy call, and inspect the Agenda view
again during the execution of the rule's consequence. This time we start the execution via "Debug
As" and "Drools application" and not by running a "Java application":

1. Open the class or g. dr ool s. exanpl es. Hel | oWor | d in your Eclipse IDE.
2. Right-click the class and select "Debug as..." and then "Drools application”.

Now we can see that the other rule "Good Bye", which uses the Java dialect, is activated and
placed on the Agenda.

533

Chapter 19. Examples

4] HelloworldExample, java '-'_I' Hellobworld.drl X

“rule "Hello World'™
dialect "nrrel™

when
1 : Message | status == Message.HELLO, message | wessadge)
then
@ dystem.out.println| message):
modify [m) { mwessage = "Goodbyte cruel world™,
> status = Message.FO0DEYE I
end

“rule "Good Bye™
dialect "Jjava’™

when

Message | status == Message.00DEYE, message | messade)
then

dystem.out.println(message):
end

Text Editor | Rete Tree

Console | Tasks "D &genda Yiew 28 Audit View | Global Data View | Rules View | Working Memory YWiew | LRt

= & MAIM[Focus]= BinaryHeapQueueAgendaGroup (id=1530)
[= & [0]= Activation
& ruleMame= "Good Bye"
& message="Goodbyte croel warld"

Figure 19.2. Hello World: rule "Hello World" Agenda View

The "Good Bye" rule, which specifies the "java" dialect, is similar to the "Hello World" rule except
that it matches Message objects whose status is Message. GOODBYE.

Example 19.8. HelloWorld: rule "Good Bye"

rule "Good Bye"
di al ect "java"
when
Message(status == Message. GOODBYE, message : nessage)
t hen
Systemout. println(nessage);
end

534

State Example

The Java code that instantiates the Ki eRunt i neLogger creates an audit log file that can be loaded
into the Audit view. The Audit view is used in many of the examples to demonstrate the example
execution flow. In the view screen shot below we can see that the object is inserted, which creates
an activation for the "Hello World" rule; the activation is then executed which updates the Message
object causing the "Good Bye" rule to activate; finally the "Good Bye" rule also executes. Selecting
an event in the Audit view highlights the origin event in green; therefore the "Activation created"
event is highlighted in green as the origin of the "Activation executed" event.

Problems Javadoc Dedlaration Console | Agenda iew "_I' Sodic View X Global Data Yiew | Fules View | working Memory Yiew | Properties

[=I ™ Object inserted (1): org.drools.examples, HelloWorldExanplegMessage@ba1 76d
=r Activation created: Rule Hello World m=arg.drools. examples HelloWorldE xample$Message@bd 1 76d(1); message=Hello Warld(1)
= 4 Activation executed: Rule Hello Warld m=org.drools, exarmples, HelloWorldExample$Message@bs1 76d(1); message=Hello Warld(1)
=] Ohject updated (1): org.drools.examples HelloWorldE xample$Message@bd1 76d

Figure 19.3. Hello World: Audit View

19.3. State Example

This example is implemented in two different versions to demonstrate different ways of
implementing the same basic behavior: forward chaining, i.e., the ability the engine has to
evaluate, activate and fire rules in sequence, based on changes on the facts in the Working
Memory.

19.3.1. Understanding the State Example

Narme: State Exanple

Mai n cl ass: org.drool s. exanpl es. st at e. St at eExanpl eUsi ngSal i ence

Modul e: dr ool s- exanpl es

Type: Java application

Rul es file: StateExanpleUsingSalience.drl

bj ective: Denpbnstrates basic rule use and Conflict Resolution for rule
firing priority.

Each State class has fields for its name and its current state (see the class
org. drool s. exanpl es. st at e. St at e). The two possible states for each objects are:

* NOTRUN

* FI NI SHED

Example 19.9. State Class

public class State {
public static final int NOTRUN = O;

535

Chapter 19. Examples

public static final int FIN SHED = 1,

private final PropertyChangeSupport changes =
new PropertyChangeSupport(this);

private String nane;
private int st at e;

setters and getters go here...

Ignoring the Pr oper t yChangeSuppor t , which will be explained later, we see the creation of four
St at e objects named A, B, C and D. Initially their states are set to NOTRUN, which is default for the
used constructor. Each instance is asserted in turn into the Session and then fireAl | Rul es()
is called.

Example 19.10. Salience State: Execution

final State
final State
final State
final State

= new State("
new State("
= new State("
= new St at e(

o O T 9
I
QqQ®@>
R e

ksession.insert(
ksession.insert(
ksession.insert(
ksession.insert(

o O T 9
~— — — ~—

ksession.fireA |l Rul es();

ksessi on. di spose(); /
/| Stateful rule session nust always be di sposed when finished

To execute the application:

1. Open the class or g. dr ool s. exanpl es. st at e. St at eExanpl eUsi ngSal i ence in your Eclipse
IDE.

2. Right-click the class and select "Run as..." and then "Java application"

You will see the following output in the Eclipse console window:

Example 19.11. Salience State: Console Output

A finished

536

Understanding the State Example

B fini shed
C finished
D fini shed

There are four rules in total. First, the Boot st r ap rule fires, setting A to state FI NI SHED, which
then causes B to change its state to FI Nl SHED. C and D are both dependent on B, causing a
conflict which is resolved by the salience values. Let's look at the way this was executed.

The best way to understand what is happening is to use the Audit Logging feature to graphically
see the results of each operation. To view the Audit log generated by a run of this example:

1. If the Audit View is not visible, click on "Window" and then select "Show View", then "Other..."
and "Drools" and finally "Audit View".

2. In the "Audit View" click the "Open Log" button and select the file "<drools-examples-dir>/log/
state.log".

After that, the "Audit view" will look like the following screenshot:

Problems | Javadoc | Declaration| Search | Console | Bytecode | Tasks | History | ¢ b g o 5 T O

~ Object asserted (1): AINOTRUN]
=» Activation created: Rule Bootstrap a=A[NOTRUN](1)
Object asserted (2): BINOTRUN]
Object asserted (3): C[NOTRUN]
Object asserted (4): D[NOTRUN]
=~ # Activation executed: Rule Bootstrap a=A[NOTRUN](1)
i Object modified (1): A[FINISHED]
= Activation created: Rule A to B b=B[NOTRUN](2)
—~ & Activation executed: Rule A to B b=B[NOTRUN](2)
= Object modified (2): B[FINISHED]
=> Activation created: Rule B to C c=C[NOTRUN](3) co nﬂ | Ct
= Activation created: Rule B to D d=D[NOTRUN](4)
—~ & Activation executed: Rule B to C c=C[NOTRUN](3)
Object medified (3): C[FINISHED]
=~ # Activation executed: Rule B to D d=D[NOTRUN](4)
Object modified (4): D[FINISHED]

Figure 19.4. Salience State Example Audit View

Reading the log in the "Audit View", top to bottom, we see every action and the corresponding
changes in the Working Memory. This way we observe that the assertion of the State object A
in the state NOTRUN activates the Boot st r ap rule, while the assertions of the other St at e objects
have no immediate effect.

537

Chapter 19. Examples

Example 19.12. Salience State: Rule "Bootstrap”

rul e Bootstrap
when
a: State(nane == "A", state == State. NOTRUN)
t hen
Systemout.println(a.getNane() + " finished");
a.setState(State.FINI SHED);
end

The execution of rule Bootstrap changes the state of A to FI NI SHED, which, in turn, activates rule
"Ato B".

Example 19.13. Salience State: Rule "A to B"

rule "Ato B"
when
State(name == "A"', state == State.FI Nl SHED)
b : State(name == "B", state == State. NOTRUN)
t hen
Systemout . println(b.getNane() + " finished");
b.setState(State.FlI N SHED);
end

The execution of rule "A to B" changes the state of B to FI NI SHED, which activates both, rules "B
to C" and "B to D", placing their Activations onto the Agenda. From this moment on, both rules
may fire and, therefore, they are said to be "in conflict". The conflict resolution strategy allows the
engine's Agenda to decide which rule to fire. As rule "B to C" has the higher salience value (10
versus the default salience value of 0), it fires first, modifying object C to state FI Nl SHED. The
Audit view shown above reflects the modification of the St at e object in the rule "A to B", which
results in two activations being in conflict. The Agenda view can also be used to investigate the
state of the Agenda, with debug points being placed in the rules themselves and the Agenda view
opened. The screen shot below shows the breakpoint in the rule "A to B" and the state of the
Agenda with the two conflicting rules.

538

Understanding the State Example

|I| StakeExamplel)singSalience. java (1:] StateExampleUsingSalience drl 232

rule "4 to ET
when

otate name == "AL", state == State.FINIZHED)

b : State(nsme == "EBE", ztate == 3tate.NOTEUIN)
then
Syvstem.out.printlnib.getlName ()

- b.zet3tate| State.FINISHED)
® end

+ " finished™):

rule "E to C"
galience 10
when
State lname == "E",

state == 3tate.FINIZHED)

C @ Atate(nasane == "CT, gtate == State. .NOTEUN)
then

Svstem.out.printlnic.getiame ()

+ " finished™ j:
c.setitate | State.FINISHED):

end

Texk Editar | Rete Tree

Console | Tasks 'ui' Agenda View X

audit view | Glabal Data Yiew | Rules Yiew | Warking Memaory Yiew

iMalM[focus]= BinarvHeapQueueagendaGroup (id=1392):
=l & [0]= Activation
#- & ruleMame= "B ko "
=l & c=State (id=1408)
& FINISHED=1
& NOTRUN= 0
- o changes= PropertyChangesupport (id=1433)
- @ name="C"
E state=0
=l & [1]= Activation
+- & ruleMame= "B ko D"
=l & c=State {id=1406)
& FINISHED= 1
& NOTRUN= D
= o changes= PropertyvChangeSupport (id=1433)
- @ name="C"
B sktate=0

Figure 19.5. State Example Agenda View

539

Chapter 19. Examples

Example 19.14. Salience State: Rule "B to C"

rule "Bto C
sal i ence 10
when
State(nane == "B", state == State.FI N SHED)
c : State(nane == "C', state == State. NOTRUN)
t hen
Systemout.println(c.getName() + " finished");
c.setState(State.FI NI SHED);
end

Rule "B to D" fires last, modifying object D to state FI NI SHED.

Example 19.15. Salience State: Rule "B to D"

rule "Bto D'
when
State(nanme == "B", state == State.FI N SHED)
d : State(nane == "D', state == State. NOTRUN)
t hen
Systemout. println(d.getNane() + " finished");
d.setState(State.FI NI SHED);
end

There are no more rules to execute and so the engine stops.

Another notable concept in this example is the use of dynamic facts, based on
Pr oper t yChangelLi st ener objects. As described in the documentation, in order for the engine
to see and react to changes of fact properties, the application must tell the engine that changes
occurred. This can be done explicitly in the rules by using the nodi fy statement, or implicitly
by letting the engine know that the facts implement PropertyChangeSupport as defined by
the JavaBeans specification. This example demonstrates how to use Pr opert yChangeSupport
to avoid the need for explicit nodify statements in the rules. To make use of this
feature, ensure that your facts implement PropertyChangeSupport, the same way the class
org. drool s. exanpl e. St at e does, and use the following code in the rules file to configure the
engine to listen for property changes on those facts:

Example 19.16. Declaring a Dynamic Fact

declare type State
@r oper t yChangeSupport
end

540

Understanding the State Example

When using Pr oper t yChangelLi st ener objects, each setter must implement a little extra code for
the notification. Here is the setter for st at e in the class or g. dr ool s. exanpl es:

Example 19.17. Setter Example with PropertyChangeSupport

public void setState(final int newState) {
int oldState = this.state;
this.state = newStat e;
t hi s. changes. firePropertyChange("state",
ol dSt at e,
newState);

There are another class in this example: St at eExanpl eUsi ngAgendaG oup. It executes from A to
B to C to D, as just shown, but St at eExanpl eUsi ngAgendaG oup uses agenda-groups to control
the rule conflict and which one fires first.

Agenda groups are a way to partition the Agenda into groups and to control which groups can
execute. By default, all rules are in the agenda group "MAIN". The "agenda-group" attribute lets
you specify a different agenda group for the rule. Initially, a Working Memory has its focus on the
Agenda group "MAIN". A group's rules will only fire when the group receives the focus. This can be
achieved either ny using the method by set Focus() or the rule attribute aut o- f ocus. "auto-focus"
means that the rule automatically sets the focus to its agenda group when the rule is matched and
activated. It is this "auto-focus" that enables rule "B to C" to fire before "B to D".

Example 19.18. Agenda Group State Example: Rule "B to C"

rule "Bto C
agenda-group "B to C'
auto-focus true
when
State(name == "B", state == State.FI Nl SHED)
c : State(nane == "C', state == State. NOTRUN)
t hen
Systemout.println(c.getName() + " finished");
c.setState(State.FI NI SHED);
kcont ext . get Know edgeRunt i me() . get Agenda() . get AgendaGroup("B to
D').set Focus();
end

The rule "B to C" calls set Focus() on the agenda group "B to D", allowing its active rules to fire,
which allows the rule "B to D" to fire.

541

Chapter 19. Examples

Example 19.19. Agenda Group State Example: Rule "B to D"

rule "Bto D'
agenda-group "B to D
when
State(nane == "B", state == State.FI N SHED)
d: State(nane == "D', state == State. NOTRUN)
t hen
Systemout. println(d.getName() + " finished");
d.setState(State.FI NI SHED);
end

19.4. Fibonacci Example

Name: Fi bonacci
Mai n cl ass: org.drool s. exanpl es. fi bonacci . Fi bonacci Exanpl e
Mbdul e: dr ool s-exanpl es
Type: Java application
Rul es file: Fibonacci.drl
bj ective: Denpbnstrates Recursion,
the CE not and cross product natching

The Fibonacci Numbers (see http://en.wikipedia.org/wiki/Fibonacci_number) discovered by
Leonardo of Pisa (see http://en.wikipedia.org/wiki/Fibonacci) is a sequence that starts with 0 and
1. The next Fibonacci number is obtained by adding the two preceding Fibonacci numbers. The
Fibonacci sequence begins with 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584, 4181, 6765, 10946,... The Fibonacci Example demonstrates recursion and conflict
resolution with salience values.

The single fact class Fi bonacci is used in this example. It has two fields, sequence and value.
The sequence field is used to indicate the position of the object in the Fibonacci number sequence.
The value field shows the value of that Fibonacci object for that sequence position, using -1 to
indicate a value that still needs to be computed.

Example 19.20. Fibonacci Class

public static class Fibonacci ({
private int sequence;
private |ong val ue;

public Fibonacci(final int sequence) {
t hi s. sequence = sequence;
this.value = -1;

542

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Fibonacci

Fibonacci Example

setters and getters go here...

Execute the example:

1. Open the class or g. dr ool s. exanpl es. fi bonacci . Fi bonacci Exanpl e in your Eclipse IDE.
2. Right-click the class and select "Run as..." and then "Java application"

Eclipse shows the following output in its console window (with "...snip..." indicating lines that were
removed to save space):

Example 19.21. Fibonacci Example: Console Output

recurse for 50
recurse for 49
recurse for 48
recurse for 47
...snip...

recurse for
recurse for
recurse for
recurse for

N W b~ O

.snip...
47 == 2971215073
48 == 4807526976
49 == 7778742049
50 == 12586269025

To kick this off from Java we only insert a single Fibonacci object, with a sequence field of 50.
A recursive rule is then used to insert the other 49 Fi bonacci objects. This example doesn't
use PropertyChangeSupport . It uses the MVEL dialect, which means we can use the nodi fy
keyword, which allows a block setter action which also notifies the engine of changes.

Example 19.22. Fibonacci Example: Execution

ksession.insert(new Fi bonacci(50));
ksession.fireA |l Rul es();

543

Chapter 19. Examples

The rule Recurse is very simple. It matches each asserted Fi bonacci object with a value of -1,
creating and asserting a new Fi bonacci object with a sequence of one less than the currently
matched object. Each time a Fibonacci object is added while the one with a sequence field equal
to 1 does not exist, the rule re-matches and fires again. The not conditional element is used to
stop the rule's matching once we have all 50 Fibonacci objects in memory. The rule also has a
salience value, because we need to have all 50 Fi bonacci objects asserted before we execute
the Bootstrap rule.

Example 19.23. Fibonacci Example: Rule "Recurse"

rul e Recurse
sal i ence 10
when
f : Fibonacci (value == -1)
not (Fibonacci (sequence == 1))
t hen
i nsert(new Fi bonacci (f.sequence - 1));
Systemout.println("recurse for " + f.sequence);
end

The Audit view shows the original assertion of the Fi bonacci object with a sequence field of 50,
done from Java code. From there on, the Audit view shows the continual recursion of the rule,
where each asserted Fi bonacci object causes the Recurse rule to become activated and to fire
again.

544

Fibonacci Example

Problems Jlavadoc | Declaration | Search | Console | Error Log | Hisbory: ‘i' audit Yiew X Properties

= ™ Object asserted (1) FibonacciiS0/-1)

= Ackivation created: Rule Recurse F=Fibonacci(S0-13(1)
Activation executed: Rule Recurse F=Fibonacci{50)-1301)

B Ohject asserked (2] Fibonacci{49)-1]

=

R

&ckivation executed: Rule Recurse F=Fibonaceil 49)-13(2)
B Ohbject asserked (30 Fibonacci{43)-1)

=r fckivation created: Rule Recurse F=Fibonacci{4d/-11(3)
Activation executed: Rule Recurse F=Fibonaccil 43)-13(3)
B Ohbject asserked (4): Fibonacci{47)-1)

= Activation created: Rule Recurse F=Fibonaccif47/-13{4)
Activation executed; Rule Recurse F=Fibonacci(47)-13(4)
B Object asserked (5): Fibonacci{46)-1)

=r Ackivation created: Rule Recurse F=Fibonacci{46/-13(5)
Activation executed; Rule Recurse F=Fibonaccil 46)-13(5)
B Ohject asserked (6): Fibonacci{45)-1]

= Ackivation created: Rule Recurse F=Fibonacci{45-13(A)
= 4 Ackivation executed: Rule Recurse F=Fibonacci(45)-1&)
[=]- ™ Ohject asserted (7Y Fibonacci{44)-1]
= Ackivation created: Rule Recurse F=Fibonacci{44,-13(7)

] | o
b4 o4 O

[
- 4

Figure 19.6. Fibonacci Example: "Recurse" Audit View 1

When a Fi bonacci object with a sequence field of 2 is asserted the "Bootstrap" rule is matched
and activated along with the "Recurse” rule. Note the multi-restriction on field sequence, testing
for equality with 1 or 2.

Example 19.24. Fibonacci Example: Rule "Bootstrap”

rul e Bootstrap

when

f : Fibonacci(sequence == 1 || == 2, value == -1) // multi-restriction
t hen

modify (f){ value =1 };

Systemout.println(f.sequence + " == " + f.value);

end

At this point the Agenda looks as shown below. However, the "Bootstrap"” rule does not fire
because the "Recurse" rule has a higher salience.

545

Chapter 19. Examples

= & [0]= Activation

& ruleMame= "Recurse"

& [=FibonacciExample$Fibonacci (id=1413)
= & [1]= &ctivation

& ruleMame= "Bootstrap"

& f=FibonacciExamplefFibonacci (id=1413)

Figure 19.7. Fibonacci Example: "Recurse" Agenda View 1

When a Fi bonacci object with a sequence of 1 is asserted the Bootstrap rule is matched again,
causing two activations for this rule. Note that the "Recurse” rule does not match and activate
because the not conditional element stops the rule's matching as soon as a Fi bonacci object
with a sequence of 1 exists.

546

Fibonacci Example

"_I' Agenda YWiew X Global Data Yiew Rules View Working Mernory Yiew

= & MAIN[focus]= BinaryHeapQueuehgendaGroup (id=1402)
= & [0]= Activation

& ruleMame= "Bootstrap"

& [=FibonaccExample$Fibonacc (id=1445)

[1]= Activation

& ruleMame= "Bootskrap"

& f=FibonaccExamplefFibonacc (id=1413)

E--E

BB

Figure 19.8. Fibonacci Example: "Recurse" Agenda View 2

Once we have two Fi bonacci objects with values not equal to -1 the "Calculate” rule is able
to match. It was the "Bootstrap" rule that set the objects with sequence 1 and 2 to values of
1. At this point we have 50 Fibonacci objects in the Working Memory. Now we need to select
a suitable triple to calculate each of their values in turn. Using three Fibonacci patterns in a
rule without field constraints to confine the possible cross products would result in 50x49x48
possible combinations, leading to about 125,000 possible rule firings, most of them incorrect. The
"Calculate" rule uses field constraints to correctly constraint the thee Fibonacci patterns in the
correct order; this technique is called cross product matching. The first pattern finds any Fibonacci
with a value = -1 and binds both the pattern and the field. The second Fibonacci does this, too,
but it adds an additional field constraint to ensure that its sequence is greater by one than the
Fibonacci bound to f 1. When this rule fires for the first time, we know that only sequences 1
and 2 have values of 1, and the two constraints ensure that f 1 references sequence 1 and f 2
references sequence 2. The final pattern finds the Fibonacci with a value equal to -1 and with a
sequence one greater than f 2. At this point, we have three Fi bonacci objects correctly selected

from the available cross products, and we can calculate the value for the third Fi bonacci object
that's bound to f 3.

547

Chapter 19. Examples

Example 19.25. Fibonacci Example: Rule "Calculate"

rule Calcul ate

end

when

/1 Bind f1 and si

fl1 : Fibonacci(sl1 : sequence, value !=-1)

// Bind f2 and v2; refer to bound variable sl

f2 : Fibonacci (sequence == (s1 + 1), v2 : value !=-1)

/1 Bind f3 and s3; alternative reference of f2.sequence

f3 : Fibonacci(s3 : sequence == (f2.sequence + 1), value == -1)

t hen

/'l Note the various referencing techniques.
modify (f3) { value = fl1.value + v2 };
Systemout.printin(s3 + " ==" + f3.value);

The nodi fy statement updated the value of the Fi bonacci object bound to f 3. This means we
now have another new Fibonacci object with a value not equal to -1, which allows the "Calculate"
rule to rematch and calculate the next Fibonacci number. The Audit view below shows how the
firing of the last "Bootstrap" modifies the Fi bonacci object, enabling the "Calculate” rule to match,
which then modifies another Fibonacci object allowing the "Calculate" rule to match again. This
continues till the value is set for all Fi bonacci objects.

548

Banking Tutorial

Problems | Javadoc | Declaration | Search | Console | Error Log | History '-i,' Audic View

Activation cancelled

Activation cancelled

Activation cancelled

Activation cancelled

LTI T T T T A TR A TR N TR R TR

Activation cancelled:
Activation cancelled:

Activation cancelled:

Activation cancelled:
Activation cancelled:
Activation cancelled:
Activation cancelled:

Activation cancelled:
Activation cancelled:
Activation cancelled:

: Rule Recurse F=Fibonacci{33/-1)(13)

Rule Recurse F=Fibonacci(4/-1{47)
Rule Recurse F=Fibonacci(37/-1)(14)

: Rule Recurse F=Fibonaccif2z/-1)(29)

Rule Recurse F=Fibonacci{S0/-13(1}

: Rule Recurse F=Fibonacci{10/-1)(41}

Rule Recurse F=Fibonacci{19/-11(32)
Rule Recurse F=Fibonaccif17/-1){34)
Rule Recurse F=Fibonacci{3/-13(48)

Rule Recurse F=Fibonacci{35/-13(16)

1 Rule Recurse F=FibonacciiZ0/-13(31)

Rule Recurse F=Fibonacci(g/-1){43)
Rule Recurse F=Fibonacci(z1/-13(300
Rule Recurse F=Fibonacci{36/-1315)

Properties

= 4 Activation executed: Rule Bootstrap F=Fibonacci(z/-1){49)
Object modified (49): Fibonacci(z/1)
= Ackivation created: Rule Calculate F2=Fibonaccifzf13(49); F1=Fibonacci{1/13{50); s1=1(50); s3=3(458); F3=Fibonacci(3/-13{45)
—|-- 4 Activation executed: Rule Caloulate F2=Fibonaccit2)1(49); Fi=Fibonacci1/1)(50); s1=1({50) s3=3(43); F3=Fibonacci(3/-1){43)

= Cbject modified {48): Fibonacci(3/2)

= Activation created: Rule Calculate F2=Fibonacci{3/23(48); Fl=Fibonacc(2/1)(49); s1=2(49); s3=4(47); F3=Fibonacci(4/-11{47)

—|- 4 Activation executed: Rule Calculate F2=Fibonaccif3/2)045); F1=Fibonacci{2/1)(49); s1=2(49); s3=4(47); F3=Fibonacci(4/-1)(47)
Ohject madified (47): Fibonacci(4/3)
= Activation created: Rule Calculate F2=Fibonacci{4/3)47); F1=Fibonacci{3/2){48); s1=3(48); s3=5(48); F3=Fibonacci(S/-1){4&)
= 4 Activation executed: Rule Calculate F2=Fibonaccit4)3(47); Fl=Fibonacci3/2)(45); s1=3(48); s3=5(48); f3=Fbonacci{S/-1){46)
Ohbject modified (46): Fibonacci(s/5)
= Ackivation created: Rule Calculate F2=FibonaccifS/5)(4a); F1=Fibonacci{4/3)(47); s1=4(47); s3=0(45); F3=Fibonacci(g/-13{45)
—|-- 4 Activation executed: Rule Caloulate F2=FibonaccilS)5(46); Fl=Fibonacci{4/3(47); s1=4(47); s3=6(45); Fa=Fibonacci(a/-1){45)
Object modified (45): Fibonacci(6/a)

Figure 19.9. Fibonacci Example: "Bootstrap” Audit View

19.5. Banking Tutorial

Name: Banki ngTut ori al

Mai n cl ass: org.drool s.tutorial s. banki ng. Banki ngExanpl esApp. j ava

Modul e: dr ool s- exanpl es

Type: Java application

Rules file: org.drools.tutorials.banking.*.drl

bj ective: Denpbnstrate pattern natching, basic sorting and cal cul ation
rul es.

This tutorial demonstrates the process of developing a complete personal banking application to
handle credits and debits on multiple accounts. It uses a set of design patterns that have been
created for the process.

The class Rul eRunner is a simple harness to execute one or more DRL files against a set of data.
It compiles the Packages and creates the Knowledge Base for each execution, allowing us to
easily execute each scenario and inspect the outputs. In reality this is not a good solution for a

549

Chapter 19. Examples

production system, where the Knowledge Base should be built just once and cached, but for the
purposes of this tutorial it shall suffice.

Example 19.26. Banking Tutorial: RuleRunner

public class Rul eRunner {

public Rul eRunner () {
}

public void runRules(String[] rules,
oj ect[] facts) throws Exception {

Knowl edgeBase kbase = Know edgeBaseFact ory. newknow edgeBase() ;
Know edgeBui | der kbuil der = Know edgeBui | der Fact ory. newKnow edgeBui | der () ;

for (int i =0; i <rules.length; i++) {
String ruleFile = rules[i];
Systemout.println("Loading file: " + ruleFile);

kbui | der. add(Resour ceFactory. newCl assPat hResource(rul eFil e,
Rul eRunner. cl ass),
Resour ceType. DRL);

Col | ecti on<Know edgePackage> pkgs = kbui | der. get Know edgePackages() ;
kbase. addKnow edgePackages(pkgs);
St at ef ul Knowl edgeSessi on ksessi on = kbase. newSt at ef ul Know edgeSessi on() ;

for (int i =0; i < facts.length; i++) {
hj ect fact = facts[i];
Systemout.println("lInserting fact: " + fact);

ksession.insert(fact);

ksession.fireA | Rul es();

The first of our sample Java classes loads and executes a single DRL file, Exanpl e. dr |, but
without inserting any data.

Example 19.27. Banking Tutorial : Java Examplel

public class Exanplel {
public static void main(String[] args) throws Exception {
new Rul eRunner (). runRul es(new String[] { "Exanplel.drl" },

550

Banking Tutorial

new oject[0]);

The first simple rule to execute has a single eval condition that will always be true, so that this
rule will match and fire, once, after the start.

Example 19.28. Banking Tutorial: Rule in Examplel.drl

rule "Rule 01"
when
eval (1==1)
t hen
Systemout.println("Rule 01 Wrks");
end

The output for the rule is below, showing that the rule matches and executes the single print
statement.

Example 19.29. Banking Tutorial: Output of Examplel.java

Loading file: Exanplel.drl
Rul e 01 Works

The next step is to assert some simple facts and print them out.

Example 19.30. Banking Tutorial: Java Example2

public class Exanple2 {
public static void main(String[] args) throws Exception {
Nunber[] numbers = new Nunber[] {wap(3), wap(l), wap(4), wap(l), wap(5)};
new Rul eRunner (). runRul es(new String[] { "Exanple2.drl" },
nunbers);

private static Integer wap(int i) {
return new Integer(i);

551

Chapter 19. Examples

This doesn't use any specific facts but instead asserts a set of j ava. | ang. | nt eger objects. This
is not considered "best practice" as a number is not a useful fact, but we use it here to demonstrate
basic techniques before more complexity is added.

Now we will create a simple rule to print out these numbers.

Example 19.31. Banking Tutorial: Rule in Example2.drl

rule "Rule 02"
when
Nunmber (- $i nt Val ue : intVal ue)
t hen
Systemout.println("Nunber found with value: " + $intValue);
end

Once again, this rule does nothing special. It identifies any facts that are Nunber objects and prints
out the values. Notice the use of the abstract class Nunber : we inserted I nt eger objects but we
now look for any kind of number. The pattern matching engine is able to match interfaces and
superclasses of asserted objects.

The output shows the DRL being loaded, the facts inserted and then the matched and fired rules.
We can see that each inserted number is matched and fired and thus printed.

Example 19.32. Banking Tutorial: Output of Example2.java

Loadi ng file: Exanple2.drl
Inserting fact: 3
Inserting fact: 1
Inserting fact: 4
Inserting fact: 1
Inserting fact: 5
Number found with val ue
Number found with val ue
Number found with val ue:
Nunmber found with val ue:
Number found with val ue

Wk, A~ O

There are certainly many better ways to sort numbers than using rules, but since we will need to
apply some cashflows in date order when we start looking at banking rules we'll develop simple
rule based sorting technique.

Example 19.33. Banking Tutorial: Example3.java

public class Exanple3 {

552

Banking Tutorial

public static void main(String[] args) throws Exception {
Nunmber[] nunmbers = new Nunber[] {wap(3), wap(l), wap(4), wap(l), wap(5)};
new Rul eRunner (). runRul es(new String[] { "Exanple3.drl" },
nunbers);

private static Integer wap(int i) {
return new I nteger(i);

Again we insert our | nt eger objects, but this time the rule is slightly different:

Example 19.34. Banking Tutorial: Rule in Example3.drl

rule "Rule 03"
when
$nunber : Nunber ()
not Nunber (intValue < $nunber.intVal ue)
t hen
System out. println("Nunber found with value: " + $nunber.intValue());
retract ($nunber)
end

The first line of the rule identifies a Nunber and extracts the value. The second line ensures that
there does not exist a smaller number than the one found by the first pattern. We might expect
to match only one number - the smallest in the set. However, the retraction of the number after it
has been printed means that the smallest number has been removed, revealing the next smallest
number, and so on.

The resulting output shows that the numbers are now sorted numerically.

Example 19.35. Banking Tutorial: Output of Example3.java

Loadi ng file: Exanple3.drl
Inserting fact: 3
Inserting fact: 1
Inserting fact: 4
Inserting fact: 1
Inserting fact: 5
Number found with val ue
Number found with val ue
Nunmber found with val ue
Nunmber found with val ue

I N

553

Chapter 19. Examples

Nunmber found with value: 5

We are ready to start moving towards our personal accounting rules. The first step is to create
a Cashf | owobject.

Example 19.36. Banking Tutorial: Class Cashflow

public class Cashflow {
private Date dat e;
private doubl e amount;

public Cashflow() {
}

public Cashfl ow(Date date, double anopunt) {
this.date = date;
thi s. anmount = anount;

public Date getDate() {
return date;

public void setDate(Date date) {
this.date = date;

publi ¢ doubl e get Amount () {
return anmount;

public void set Amount (doubl e anmount) {
thi s. anmount = anount;

public String toString() {
return "Cashfl o date=" + date + ",amount=" + amount + "]";

Class Cashf | owhas two simple attributes, a date and an amount. (Note that using the type doubl e
for monetary units is generally not a good idea because floating point numbers cannot represent
most numbers accurately.) There is also an overloaded constructor to set the values, and a method
toString to print a cashflow. The Java code of Exanpl e4. j ava inserts five Cashflow objects,
with varying dates and amounts.

554

Banking Tutorial

Example 19.37. Banking Tutorial: Example4.java

public class Exanple4 {
public static void main(String[] args) throws Exception {
oj ect[] cashflows = {

new Cashfl owm new Si npl eDat e("01/01/2007"), 300.00),
new Cashfl owm new Si npl eDat e("05/01/2007"), 100.00),
new Cashfl ow new Si npl eDat e("11/01/2007"), 500.00),
new Cashfl owm new Si npl eDat e("07/01/2007"), 800.00),
new Cashfl owm new Si npl eDat e("02/01/2007"), 400.00),

be

new Rul eRunner ().runRul es(new String[] { "Exanple4.drl" },
cashflows);

The convenience class Si npl eDat e extends j ava. uti | . Dat e, providing a constructor taking a
String as input and defining a date format. The code is listed below

Example 19.38. Banking Tutorial: Class SimpleDate

public class SinpleDate extends Date {
private static final SinpleDateFormat format = new Sinpl eDat eFor mat ("dd/
MW yyyy");

public SinpleDate(String datestr) throws Exception {
set Ti me(format. parse(datestr).getTinme());

Now, let’s look at Exanpl e4. dr| to see how we print the sorted Cashf | ow objects:

Example 19.39. Banking Tutorial: Rule in Example4.drl

rule "Rule 04"
when
$cashfl ow : Cashflow $date : date, $anpunt : anount)
not Cashflow(date < $date)
t hen
Systemout. println("Cashflow "+$date+" :: "+$%anount);
retract ($cashfl ow);
end

555

Chapter 19. Examples

Here, we identify a Cashf | ow and extract the date and the amount. In the second line of the rule
we ensure that there is no Cashflow with an earlier date than the one found. In the consequence,
we print the Cashf | ow that satisfies the rule and then retract it, making way for the next earliest
Cashf | ow. So, the output we generate is:

Example 19.40. Banking Tutorial: Output of Example4.java

Loadi ng file: Exanple4.drl

Inserting fact: Cashfl ow date=Mon Jan 01 00: 00: 00 GMI' 2007, anount =300. 0]
Inserting fact: Cashflow date=Fri Jan 05 00: 00: 00 GMI' 2007, amount =100. 0]
Inserting fact: Cashfl ow date=Thu Jan 11 00: 00: 00 GMI' 2007, anpunt =500. 0]
Inserting fact: Cashfl ow date=Sun Jan 07 00: 00: 00 GMI' 2007, anmount =800. 0]
Inserting fact: Cashfl ow date=Tue Jan 02 00: 00: 00 GMI' 2007, anmount =400. 0]
Cashfl ow. Mon Jan 01 00: 00: 00 GVIr 2007 :: 300.0

Cashfl ow. Tue Jan 02 00: 00: 00 GMI 2007 :: 400.0

Cashflow. Fri Jan 05 00: 00: 00 GMI 2007 :: 100.0

Cashfl ow. Sun Jan 07 00: 00: 00 GMI 2007 :: 800.0

Cashfl ow. Thu Jan 11 00: 00: 00 GVIr 2007 :: 500.0

Next, we extend our Cashf | ow, resulting in a TypedCashf | ow which can be a credit or a debit
operation. (Normally, we would just add this to the Cashf | owtype, but we use extension to keep
the previous version of the class intact.)

Example 19.41. Banking Tutorial: Class TypedCashflow

public class TypedCashfl ow ext ends Cashfl ow {
public static final int CREDIT = 0;
public static final int DEBIT 1;

private int type;

public TypedCashflow) {
}

public TypedCashfl owm Date date, int type, double anount) {
super (date, amount);
this.type = type;

public int getType() {
return type;

public void set Type(int type) {
this.type = type;

556

Banking Tutorial

public String toString() {
return "TypedCashfl ow date=" + getDate() +
",type=" + (type == CREDIT ? "Credit" : "Debit") +
",amount =" + get Amount () + "]";

There are lots of ways to improve this code, but for the sake of the example this will do.

Now let's create Example5, a class for running our code.

Example 19.42. Banking Tutorial: Example5.java

public class Exanple5 {
public static void main(String[] args) throws Exception {
oj ect[] cashflows = {

new TypedCashfl ow(new Si npl eDat e(" 01/ 01/ 2007"),
TypedCashfl ow. CREDI T, 300. 00),

new TypedCashf | ow(new Si npl eDat e(" 05/ 01/ 2007"),
TypedCashf | ow. CREDI T, 100. 00),

new TypedCashfl ow(new Si npl eDat e("11/01/2007"),
TypedCashfl ow. CREDI T, 500. 00),

new TypedCashfl ow(new Si npl eDat e(" 07/ 01/ 2007"),
TypedCashf | ow. DEBI T, 800. 00),

new TypedCashfl ow(new Si npl eDat e(" 02/ 01/ 2007"),
TypedCashf | ow. DEBI T, 400. 00),

be

new Rul eRunner (). runRul es(new String[] { "Exanple5.drl" },
cashflows);

Here, we simply create a set of Cashf | ow objects which are either credit or debit operations. We
supply them and Exanpl e5. dr| to the RuleEngine.

Now, let’'s look at a rule printing the sorted Cashf | ow objects.

Example 19.43. Banking Tutorial: Rule in Example5.drl

rule "Rul e 05"
when
$cashfl ow : TypedCashfl ow($date : date,
$anmpunt : anount,
type == TypedCashfl ow. CREDI T)

557

Chapter 19. Examples

not TypedCashfl ow(date < $date,
type == TypedCashfl ow. CREDI T)
t hen
Systemout.println("Credit: "+$%date+" :: "+$anount);
retract ($cashfl ow);
end

Here, we identify a Cashf | ow fact with a type of CREDI T and extract the date and the amount. In
the second line of the rule we ensure that there is no Cashf | ow of the same type with an earlier
date than the one found. In the consequence, we print the cashflow satisfying the patterns and
then retract it, making way for the next earliest cashflow of type CREDI T.

So, the output we generate is

Example 19.44. Banking Tutorial: Output of Example5.java

Loadi ng file: Exanple5.drl

Inserting fact: TypedCashfl owf date=Mon Jan 01 00: 00: 00 GMI
2007, t ype=Credi t, anobunt =300. 0]

Inserting fact: TypedCashfl owf date=Fri Jan 05 00: 00: 00 GMI
2007, t ype=Credi t, amobunt =100. 0]

Inserting fact: TypedCashfl owf date=Thu Jan 11 00: 00: 00 GMI
2007, t ype=Credi t, anobunt =500. 0]

Inserting fact: TypedCashfl owf date=Sun Jan 07 00: 00: 00 GMT
2007, t ype=Debi t , ambunt =800. 0]

Inserting fact: TypedCashfl owf date=Tue Jan 02 00: 00: 00 GMI
2007, t ype=Debi t , anbunt =400. 0]

Credit: Mn Jan 01 00: 00: 00 GMI 2007 :: 300.0

Credit: Fri Jan 05 00:00: 00 GMIr 2007 :: 100.0

Credit: Thu Jan 11 00: 00: 00 GMI 2007 :: 500.0

Continuing our banking exercise, we are now going to process both credits and debits on two bank
accounts, calculating the account balance. In order to do this, we create two separate Account
objects and inject them into the Cashf | ows objects before passing them to the Rule Engine. The
reason for this is to provide easy access to the correct account without having to resort to helper
classes. Let’s take a look at the Account class first. This is a simple Java object with an account
number and balance:

Example 19.45. Banking Tutorial: Class Account

public class Account {
private |ong account No;
private doubl e bal ance = 0;

public Account () {
}

558

Banking Tutorial

publ i ¢ Account (I ong account No) {
t hi s. account No = account No;

public I ong get Account No() {
return account No;

public void set Account No(l ong account No) {
t hi s. account No = account No;

publ i ¢ doubl e get Bal ance() {
return bal ance;

public void setBal ance(doubl e bal ance) {
t hi s. bal ance = bal ance;

public String toString() {
return "Account[" + "account No=" + accountNo + ", bal ance=" + bal ance + "]";

Now let's extend our TypedCashf | ow, resulting in Al | ocat edCashf | ow, to include an Account
reference.

Example 19.46. Banking Tutorial: Class AllocatedCashflow

public class AllocatedCashfl ow extends TypedCashfl ow {

private Account account;

public AllocatedCashflow() {
}

public All ocat edCashfl ow(Account account, Date date, int type, doubl e amount) {
super(date, type, anount);
thi s.account = account;

publ i ¢ Account getAccount () {
return account;

public void set Account (Account account) {

559

Chapter 19. Examples

thi s.account = account;

public String toString() {
return "All ocat edCashflow" +
"account =" + account +
",date=" + getDate() +
",type=" + (getType() == CREDIT ? "Credit" : "Debit") +
",amount =" + getAmount() + "]";

The Java code of Exanpl e5. j ava creates two Account objects and passes one of them into each
cashflow, in the constructor call.

Example 19.47. Banking Tutorial: Example5.java

public class Exanpl e6 {
public static void main(String[] args) throws Exception {
Account accl = new Account(1);
Account acc2 = new Account (2);

oj ect[] cashflows = {

new Al | ocat edCashfl ow(accl, new Si npl eDat e("01/01/2007"),
TypedCashf | ow. CREDI T, 300. 00),

new Al | ocat edCashfl ow(accl, new Si npl eDat e(" 05/ 02/ 2007"),
TypedCashf |l ow. CREDI T, 100. 00),

new Al | ocat edCashfl ow(acc2, new Si npl eDat e("11/03/2007"),
TypedCashf | ow. CREDI T, 500. 00),

new Al | ocat edCashfl ow(accl, new Si npl eDat e("07/02/2007"),
TypedCashfl ow. DEBI T, 800. 00),

new Al | ocat edCashfl ow(acc2, new Si npl eDat e(" 02/ 03/ 2007"),
TypedCashf |l ow. DEBI T, 400. 00),

new Al | ocat edCashfl ow(accl, new Si npl eDat e(" 01/ 04/2007"),
TypedCashf |l ow. CREDI T, 200. 00),

new Al | ocat edCashfl ow(accl, new Si npl eDat e(" 05/ 04/ 2007"),
TypedCashf | ow. CREDI T, 300. 00),

new Al | ocat edCashfl ow(acc2, new Si npl eDat e(" 11/ 05/2007"),
TypedCashf | ow. CREDI T, 700. 00),

new Al | ocat edCashfl ow(accl, new Si npl eDat e(" 07/ 05/ 2007"),
TypedCashfl ow. DEBI T, 900. 00),

new Al | ocat edCashfl ow(acc2, new Si npl eDat e(" 02/ 05/ 2007"),
TypedCashf | ow. DEBI T, 100. 00)

new Rul eRunner ().runRul es(new String[] { "Exanple6.drl" },
cashflows);

560

Banking Tutorial

Now, let’s look at the rule in Exanpl e6. dr| to see how we apply each cashflow in date order and

calculate

Exampl

rule "Ru
when

t hen

end

rule "Ru
when

t hen

end

and print the balance.

e 19.48. Banking Tutorial: Rule in Example6.drl

le 06 - Credit"

$cashfl ow : All ocat edCashfl om $account : account,

$date : date,

$anmount : anount,

type == TypedCashfl ow. CREDI T)
not Al | ocatedCashfl ow(account == $account, date < $date)

Systemout.printin("Credit: " + $date + " :: " + $ampunt);
$account . set Bal ance($account . get Bal ance() +$anmpunt) ;
Systemout. println("Account: " + $account.get Account No() +

" - new bal ance: " + $account. getBal ance());
retract ($cashfl ow);

le 06 - Debit"

$cashflow : All ocat edCashfl om{ $account : account,
$date : date,
$anount : anount,
type == TypedCashfl ow. DEBI T)
not Al |l ocat edCashfl ow(account == $account, date < $date)

Systemout.println("Debit: " + $date + " :: " + $anount);
$account . set Bal ance($account . get Bal ance() - $anount);
Systemout. println("Account: " + $account.get AccountNo() +

' - new bal ance: " + $account. getBal ance());
retract ($cashfl ow);

Although we have separate rules for credits and debits, but we do not specify a type when checking
for earlier cashflows. This is so that all cashflows are applied in date order, regardless of the
cashflow type. In the conditions we identify the account to work with, and in the consequences
we update it with the cashflow amount.

561

Chapter 19. Examples

Example 19.49. Banking Tutorial: Output of Example6.java

Loadi ng file: Exanple6.drl
I nserting

Al | ocat edCashf | oW account =Account [account No=1, bal ance=0.

00: 00: 00 GV 2007, t ype=Cr edi t, anbunt =300. 0]
Inserting

Al | ocat edCashf | owf account =Account [account No=1, bal ance=0.

00: 00: 00 GV 2007, t ype=Cr edi t, anmount =100. 0]
I nserting

Al | ocat edCashf | owf account =Account [account No=2, bal ance=0.

00: 00: 00 GV 2007, t ype=Credi t, anmount =500. 0]
I nserting

Al | ocat edCashf | oW account =Account [account No=1, bal ance=0.

00: 00: 00 GVIr 2007, t ype=Debi t , anpunt =800. 0]
I nserting

Al | ocat edCashf | oW account =Account [account No=2, bal ance=0.

00: 00: 00 GMI 2007, t ype=Debi t, anount =400. 0]
Inserting

Al | ocat edCashf | owf account =Account [account No=1, bal ance=0.

00: 00: 00 BST 2007, t ype=Credi t, anmount =200. 0]
I nserting

Al | ocat edCashf | owf account =Account [account No=1, bal ance=0.

00: 00: 00 BST 2007, t ype=Credit, amount =300. 0]
I nserting

Al | ocat edCashf | oW account =Account [account No=2, bal ance=0.

00: 00: 00 BST 2007, t ype=Credit, amount =700. 0]
I nserting

Al | ocat edCashf | oW account =Account [account No=1, bal ance=0.

00: 00: 00 BST 2007, t ype=Debi t, anount =900. 0]
Inserting

Al | ocat edCashf | owf account =Account [account No=2, bal ance=0.

00: 00: 00 BST 2007, t ype=Debi t, anpunt =100. 0]
Debit: Fri Mar 02 00: 00: 00 GMI 2007 :: 400.0
Account: 2 - new bal ance: -400.0
Credit: Sun Mar 11 00:00: 00 GVI 2007 :: 500.0
Account: 2 - new bal ance: 100.0
Debit: Wed May 02 00: 00: 00 BST 2007 :: 100.0
Account: 2 - new bal ance: 0.0
Credit: Fri My 11 00: 00: 00 BST 2007 :: 700.0
Account: 2 - new bal ance: 700.0
Credit: Mon Jan 01 00:00: 00 GVIr 2007 :: 300.0
Account: 1 - new bal ance: 300.0
Credit: Mon Feb 05 00:00: 00 GVMI 2007 :: 100.0
Account: 1 - new bal ance: 400.0
Debit: Wed Feb 07 00: 00: 00 GMI 2007 :: 800.0
Account: 1 - new bal ance: -400.0
Credit: Sun Apr 01 00: 00:00 BST 2007 :: 200.0

0], dat e=Mbn

0], dat e=Mbn

0], dat e=Sun

0], dat e=\\d

0], dat e=Fri

0], dat e=Sun

0], dat e=Thu

0], dat e=Fri

0], dat e=Mbn

0], dat e=\\d

fact:

Jan

fact:

Feb

fact:

fact:

Feb

fact:

fact:

Apr

fact:

Apr

fact:

May

fact:

May

fact:

May

01

05

11

07

02

01

05

11

07

02

562

Pricing Rule Decision Table Example

Account: 1 - new bal ance: -200.0

Credit: Thu Apr 05 00:00: 00 BST 2007 :: 300.0
Account: 1 - new bal ance: 100.0

Debit: Mon May 07 00: 00: 00 BST 2007 :: 900.0
Account: 1 - new bal ance: -800.0

19.6. Pricing Rule Decision Table Example

The Pricing Rule decision table demonstrates the use of a decision table in a spreadsheet, in
Excel's XLS format, in calculating the retail cost of an insurance policy. The purpose of the provide
set of rules is to calculate a base price and a discount for a car driver applying for a specific policy.
The driver's age, history and the policy type all contribute to what the basic premium is, and an
additional chunk of rules deals with refining this with a discount percentage.

Name: Exanple Policy Pricing

Mai n cl ass: org.drool s. exanpl es. deci si ont abl e. Pri ci ngRul eDTExanpl e
Modul e: dr ool s- exanpl es

Type: Java application

Rules file: ExanplePolicyPricing.xls

hj ective: denpbnstrate spreadsheet-based deci si on tabl es.

19.6.1. Executing the example

Open the file Prici ngRul eDTExanpl e. j ava and execute it as a Java application. It should
produce the following output in the Console window:

Cheapest possible
BASE PRICE I'S: 120
DI SCOUNT IS: 20

The code to execute the example follows the usual pattern. The rules are loaded, the facts inserted
and a Stateless Session is created. What is different is how the rules are added.

Deci si onTabl eConfi gurati on dtabl econfiguration =
Know edgeBui | der Fact ory. newDeci si onTabl eConfi guration();
dt abl econfi gurati on. setl nput Type(Deci si onTabl el nput Type. XLS);

Know edgeBui | der kbuil der = Know edgeBui | der Fact ory. newKnow edgeBui | der () ;

Resource x|l sRes = ResourceFactory. newd assPat hResour ce("Exanpl ePol i cyPri ci ng. xI s",
getd ass());
kbui | der. add(x| sRes,
Resour ceType. DTABLE,

563

Chapter 19. Examples

dt abl econfiguration);
Note the use of the DecisionTabl eConfiguration object. Its input type is set to
Deci si onTabl el nput Type. XLS. If you use the BRMS, all this is of course taken care of for you.

There are two fact types used in this example, Dri ver and Pol i cy. Both are used with their default
values. The Dri ver is 30 years old, has had no prior claims and currently has a risk profile of LOW
The Pol i cy being applied for is COWPREHENSI VE, and it has not yet been approved.

19.6.2. The decision table

In this decision table, each row is a rule, and each column is a condition or an action.

RuleTable P”ﬁlnﬂ bracket|
CONDITION ConDITIoN ConDITIoN [CONDITION ACTION ACTION
|Driver policy: Policy |

age >= §1, age <= §2 ocalionRskProfie pricrClaims type

Age Bracket Location risk profile Number of prior claims Policy type applying for Base § AUD Record Reason

Figure 19.10. Decision table configuration

Referring to the spreadsheet show above, we have the Rul eSet declaration, which provides the
package name. There are also other optional items you can have here, such as Vvari abl es for
global variables, and | npor t s for importing classes. In this case, the namespace of the rules is
the same as the fact classes we are using, so we can omit it.

Moving further down, we can see the Rul eTabl e declaration. The name after this (Pricing bracket)
is used as the prefix for all the generated rules. Below that, we have "CONDITION or ACTION",
indicating the purpose of the column, i.e., whether it forms part of the condition or the consequence
of the rule that will be generated.

You can see that there is a driver, his data spanned across three cells, which means that the
template expressions below it apply to that fact. We observe the driver's age range (which
uses $1 and $2 with comma-separated values), | ocati onRi skProfil e, and pri or d ai ns in the
respective columns. In the action columns, we are set the policy base price and log a message.

564

The decision table

B C D E F G H
g Base pricing rules Age Bracket Location risk profile Number of prior claims Palicy type applying for Base § AUD Record Reason
10
Low 1 COMPREHENSIVE 450
1
MED FIRE_THEFT 200 Priors not relevant
12
Young safe packa: 18, 24
" pe o MED o COMPREHENSIVE 300
13
Low FIRE_THEFT 150
14
b, - SRS e e e
15
18,24 MED 1 COMPREHENSIVE o
16 Young risk
16.24 HIGH 0 COMPREHENSIVE 700 Location risk
17
s e S Ea i Ll e
18
25,30 o COMPREHENSIVE 120 Cheapest possible
19
25.30 1 COMPREHENSIVE 300
Mature drivers
20
25,30 2 COMPREHENSIVE 580
2
2535 F] L I
== TRESA il Sl Lk

Figure 19.11. Base price calculation

In the preceding spreadsheet section, there are broad category brackets, indicated by the
comment in the leftmost column. As we know the details of our drivers and their policies, we can
tell (with a bit of thought) that they should match row number 18, as they have no prior accidents,
and are 30 years old. This gives us a base price of 120.

29 Promotional discount rules Age Bracket Number of pricr claims Policy type applying for Discount %
30 18,24 L COMFREHENSIVE 1
Ky
18,24 0 FIRE_THEFT Z
32 Rewards for safe drivers 2530 1 COMPREHENSIVE 5
33
25,30 Z COMFREHENSIVE 1
34
FERL : SSUCEELENEICE
el H

Figure 19.12. Discount calculation

The above section contains the conditions for the discount we might grant our driver. The discount
results from the Age bracket, the number of prior claims, and the policy type. In our case, the driver
is 30, with no prior claims, and is applying for a COVPREHENSI VE policy, which means we can give
a discount of 20%. Note that this is actually a separate table, but in the same worksheet, so that
different templates apply.

It is important to note that decision tables generate rules. This means they aren't simply top-down
logic, but more a means to capture data resulting in rules. This is a subtle difference that confuses

565

Chapter 19. Examples

some people. The evaluation of the rules is not necessarily in the given order, since all the normal
mechanics of the rule engine still apply.

19.7. Pet Store Example

Nanme: Pet Store

Mai n cl ass: org. drool s. exanpl es. pet st or e. Pet St or eExanpl e

Modul e: dr ool s- exanpl es

Type: Java application

Rules file: PetStore.drl

hj ective: Denpnstrate use of Agenda G oups, dobal Variables and integration
with a GUJ,

i ncludi ng cal |l backs fromwi thin the rules

The Pet Store example shows how to integrate Rules with a GUI, in this case a Swing based
desktop application. Within the rules file, it demonstrates how to use Agenda groups and auto-
focus to control which of a set of rules is allowed to fire at any given time. It also illustrates the
mixing of the Java and MVEL dialects within the rules, the use of accumulate functions and the
way of calling Java functions from within the ruleset.

All of the Java code is contained in one file, Pet St ore. j ava, defining the following principal
classes (in addition to several classes to handle Swing Events):

 Pet st or e contains the mai n() method that we will look at shortly.

» Pet St or eUl is responsible for creating and displaying the Swing based GUI. It contains several
smaller classes, mainly for responding to various GUI events such as mouse button clicks.

e Tabl eMbdel holds the table data. Think of it as a JavaBean that extends the Swing class
Abstract Tabl eMbdel .

» Checkout Cal | back allows the GUI to interact with the Rules.

* O der show keeps the items that we wish to buy.

* Pur chase stores details of the order and the products we are buying.

e Product is a JavaBean holding details of the product available for purchase, and its price.

Much of the Java code is either plain JavaBeans or Swing-based. Only a few Swing-related points
will be discussed in this section, but a good tutorial about Swing components can be found at
Sun's Swing website, in http://java.sun.com/docs/books/tutorial/uiswing/.

The pieces of Java code in Pet st or e. j ava that relate to rules and facts are shown below.

Example 19.50. Creating the PetStore KieContainer in PetStore.main

/'l KieServices is the factory for all KIE services

566

http://java.sun.com/docs/books/tutorial/uiswing/

Pet Store Example

Ki eServi ces ks = KieServices. Factory. get();

/1 Fromthe kie services, a container is created fromthe classpath
Ki eCont ai ner kc = ks. get Ki eCl asspat hCont ai ner () ;

/1l Create the stock.

Vect or <Product > stock = new Vect or <Pr oduct >();
st ock. add(new Product("Gold Fish", 5));

st ock. add(new Product("Fish Tank", 25));
st ock. add(new Product("Fish Food", 2));

/1 A callback is responsible for populating the
/1 Working Menory and for firing all rules.
Pet StoreUl ui = new Pet StoreU (stock,
new Checkout Cal | back(kc));
ui . creat eAndShowCUl () ;

The code shown above create a Ki eCont ai ner from the classpath and based on the definitions
in the knmodul e. xm file. Unlike other examples where the facts are asserted and fired straight
away, this example defers this step to later. The way it does this is via the second last line where
a Pet St or eUl object is created using a constructor accepting the Vect or object st ock collecting
our products, and an instance of the Checkout Cal | back class containing the Rule Base that we
have just loaded.

The Java code that fires the rules is within the Checkout Cal | Back. checkout () method. This is
triggered (eventually) when the Checkout button is pressed by the user.

Example 19.51. Firing the Rules - extract from CheckoutCallBack.checkout()
public String checkout (JFrame frame, List<Product> itens) {

Order order = new Order();

/1l lterate through |ist and add to cart

for (Product p: items) {

order. addl ten{ new Purchase(order, p));

/1 Add the JFrane to the ApplicationData to allow for user interaction

/1l Fromthe container, a session is created based on

[l its definition and configuration in the META-INF/ knmodul e. xml file

Ki eSessi on ksessi on = kcont ai ner. newKi eSessi on(" Pet St or eKS") ;

ksession.setd obal ("frane", frane);
ksession. set @ obal ("textArea", this.output);

ksession.insert(new Product("Gold Fish", 5));

567

Chapter 19. Examples

ksession.insert(new Product("Fish Tank", 25));
ksession.insert(new Product("Fish Food", 2));

ksession.insert(new Product("Fish Food Sample", 0));

ksession.insert(order);
ksession.fireA | Rul es();

/1 Return the state of the cart
return order.toString();

Two items get passed into this method. One is the handle to the JFrane Swing component
surrounding the output text frame, at the bottom of the GUI. The second is a list of order items;
this comes from the Tabl eMbdel storing the information from the "Table" area at the top right
section of the GUI.

The for loop transforms the list of order items coming from the GUI into the Or der JavaBean, also
contained in the file Pet St or e. j ava. Note that it would be possible to refer to the Swing dataset
directly within the rules, but it is better coding practice to do it this way, using simple Java objects.
It means that we are not tied to Swing if we wanted to transform the sample into a Web application.

It is important to note that all state in this example is stored in the Swing components, and that
the rules are effectively stateless. Each time the "Checkout" button is pressed, this code copies
the contents of the Swing Tabl eModel into the Session's Working Memory.

Within this code, there are nine calls to the Ki eSession. The first of these creates a new
Ki eSessi on from the Ki eCont ai ner . Remember that we passed in this Ki eCont ai ner when we
created the Checkout Cal | Back class inthe mai n() method. The next two calls pass in two objects
that we will hold as global variables in the rules: the Swing text area and the Swing frame used
for writing messages.

More inserts put information on products into the Ki eSessi on, as well as the order list. The final
call is the standard fi r eAl | Rul es() . Next, we look at what this method causes to happen within
the rules file.

Example 19.52. Package, Imports, Globals and Dialect: extract from
PetStore.drl

package org. drool s. exanpl es

i mport org.kie.api.runtime.Ki eRuntine

i nport org.drools. exanpl es. pet st or e. Pet St or eExanpl e. Or der

i mport org.drool s. exanpl es. pet st or e. Pet St or eExanpl e. Pur chase
i mport org.drool s. exanpl es. pet st or e. Pet St or eExanpl e. Product
import java.util.ArraylLi st

568

Pet Store Example

i mport javax.sw ng. JOpti onPane;
i mport javax.sw ng. JFrane

gl obal JFrane frane
gl obal javax.sw ng.JText Area textArea

The first part of file Pet St or e. dr| contains the standard package and import statements to make
various Java classes available to the rules. New to us are the two globals f r ane and t ext Ar ea.
They hold references to the Swing components JFr ane and JText Ar ea components that were
previously passed on by the Java code calling the set @ obal () method. Unlike variables in rules,
which expire as soon as the rule has fired, global variables retain their value for the lifetime of
the Session.

The next extract from the file Pet St ore. drl contains two functions that are referenced by the
rules that we will look at shortly.

Example 19.53. Java Functions in the Rules: extract from PetStore.drl

function void doCheckout (JFrane franme, KieRuntinme krt) {
Coj ect[] options = {"Yes",
"No"}:

int n = JOpti onPane. showOpti onDi al og(frane,
"Wul d you |like to checkout?",
JOpt i onPane. YES_NO_OPTI ON,
JOpt i onPane. QUESTI ON_MESSAGE,
nul |,
opti ons,
options[0]);

if (n==0) {
krt.get Agenda() . get AgendaG oup("checkout").setFocus();

function bool ean requireTank(JFrane frame, KieRuntine krt, Order order, Product fishTank, int t
oj ect[] options = {"VYes",
n ’\bn};

int n = JOptionPane. showOpti onDi al og(frane,
"Woul d you like to buy a
tank for your " + total + " fish?",
"Purchase Suggestion",
JOpt i onPane. YES_NO_OPTI ON,
JOpt i onPane. QUESTI ON_MESSAGE,

569

Chapter 19. Examples

nul |,
opti ons,
options[0]);

System out. print("SUGGESTION: Wuld you like to buy a tank for your "
+ total + " fish? - ");

if (n==0) {
Purchase purchase = new Purchase(order, fishTank);
krt.insert(purchase);
order. addl ten{ purchase);
Systemout.println("Yes");
} else {
Systemout. printin("No");
}

return true;

Having these functions in the rules file just makes the Pet Store example more compact. In
real life you probably have the functions in a file of their own, within the same rules package,
or as a static method on a standard Java class, and import them, using i mrport function
ny. package. Foo. hel | o.

The purpose of these two functions is:

« doCheckout () displays a dialog asking users whether they wish to checkout. If they do, focus
is set to the checkout agenda-group, allowing rules in that group to (potentially) fire.

* requireTank() displays a dialog asking users whether they wish to buy a tank. If so, a new
fish tank Pr oduct is added to the order list in Working Memory.

We'll see the rules that call these functions later on. The next set of examples are from the Pet
Store rules themselves. The first extract is the one that happens to fire first, partly because it has
the aut o- f ocus attribute set to true.

Example 19.54. Putting items into working memory: extract from
PetStore.drl

/Il Insert each itemin the shopping cart into the Wrking Menory
/Il Insert each itemin the shopping cart into the Wrking Menory
rule "Expl ode Cart"

agenda-group "init"

aut o-focus true

sal ience 10

di al ect "java"
when

570

Pet Store Example

$order : Order(grossTotal == -1)
$item: Purchase() from $Sorder.itens
t hen
insert($item);
kcont ext . get Know edgeRunt i nme() . get Agenda() . get AgendaG oup("show

itens").setFocus();

kcont ext . get Know edgeRunt i me() . get Agenda() . get AgendaG oup("eval uate"). set Focus();
end

This rule matches against all orders that do not yet have their gr ossTot al calculated . It loops
for each purchase item in that order. Some parts of the "Explode Cart" rule should be familiar:
the rule name, the salience (suggesting the order for the rules being fired) and the dialect set to
"java". There are three new features:

* agenda-group "init" defines the name of the agenda group. In this case, there is only one
rule in the group. However, neither the Java code nor a rule consequence sets the focus to this
group, and therefore it relies on the next attribute for its chance to fire.

e auto-focus t rue ensures that this rule, while being the only rule in the agenda group, gets a
chance to fire when fi reAl | Rul es() is called from the Java code.

e kcontext....setFocus() setsthe focustothe"showitens" and"eval uat e" agenda groups
in turn, permitting their rules to fire. In practice, we loop through all items on the order, inserting
them into memory, then firing the other rules after each insert.

The next two listings show the rules within the " show i t ens" and eval uat e agenda groups. We
look at them in the order that they are called.

Example 19.55. Show Items in the GUI - extract from PetStore.drl

rul e "Show Itens"
agenda- group "show itens"
di al ect "nvel"
when
$order : Order()
$p : Purchase(order == S$order)
t hen
t ext Area. append($p. product + "\n");
end

The "show itenms" agenda-group has only one rule, called "Show Items" (note the difference
in case). For each purchase on the order currently in the Working Memory (or Session), it logs
details to the text area at the bottom of the GUI. The t ext Ar ea variable used to do this is one of
the global variables we looked at earlier.

571

Chapter 19. Examples

The eval uat e Agenda group also gains focus from the " Expl ode Cart" rule listed previously.
This Agenda group has two rules, " Free Fi sh Food Sanpl e" and " Suggest Tank", shown below.

Example 19.56. Evaluate Agenda Group: extract from PetStore.drl

/!l Free Fish Food sanple when we buy a Gold Fish if we haven't already bought
/1 Fish Food and don't already have a Fi sh Food Sanple
rule "Free Fish Food Sanple"

agenda- group "eval uate"

di al ect "nvel "

when

$order : Order()

not ($p : Product(name == "Fi sh Food") &anp; &np; Purchase(product == $p))

not ($p : Product(name == "Fi sh Food Sanpl e") &anp; &np; Purchase(product
==$%p))

exists ($p : Product(name == "CGold Fish") &anp; &np; Purchase(product
==$p))

$fi shFoodSanpl e : Product(name == "Fi sh Food Sanple");
t hen

Systemout.println("Adding free Fish Food Sanple to cart");
purchase = new Purchase($order, $fishFoodSanple);
i nsert(purchase);
$order. addl ten(purchase);
end

/'l Suggest a tank if we have bought nore than 5 gold fish and don't already
have one
rul e "Suggest Tank"
agenda- group "eval uate"
di al ect "java"
when
$order : Order()
not ($p : Product(name == "Fi sh Tank") &anp; &np; Purchase(product == $p))

ArrayList($total : size > 5) from collect(Purchase(product.name ==
"Gold Fish"))

$fishTank : Product(name == "Fi sh Tank")
t hen

requi reTank(frane, kcontext.getKieRuntine(), $order, $fishTank, $total);
end

The rule "Free Fi sh Food Sanpl e" will only fire if

« we don't already have any fish food, and
« we don't already have a free fish food sample, and

+ we do have a Gold Fish in our order.

572

Pet Store Example

If the rule does fire, it creates a new product (Fish Food Sample), and adds it to the order in
Working Memory.

The rule " Suggest Tank" will only fire if

« we don't already have a Fish Tank in our order, and
* we do have more than 5 Gold Fish Products in our order.

If the rule does fire, it calls the r equi r eTank() function that we looked at earlier (showing a Dialog
to the user, and adding a Tank to the order / working memory if confirmed). When calling the
requireTank() function the rule passes the global frame variable so that the function has a handle
to the Swing GUIL.

The next rule we look at is "do checkout".

Example 19.57. Doing the Checkout - extract (6) from PetStore.drl

rule "do checkout"
di al ect "java"
when
t hen
doCheckout (frame, kcontext.getKieRuntine());
end

The rule "do checkout" has no agenda group set and no auto-focus attribute. As such, is is
deemed part of the default (MAIN) agenda group. This group gets focus by default when all the
rules in agenda-groups that explicitly had focus set to them have run their course.

There is no LHS to the rule, so the RHS will always call the doCheckout () function. When calling
the doCheckout () function, the rule passes the global f r ame variable to give the function a handle
to the Swing GUI. As we saw earlier, the doCheckout () function shows a confirmation dialog to
the user. If confirmed, the function sets the focus to the checkout agenda-group, allowing the next
lot of rules to fire.

Example 19.58. Checkout Rules: extract from PetStore.drl

rule "G oss Total "
agenda- group "checkout"
di al ect "nvel "
when
$order : Order(grossTotal == -1)
Nurber (total : doubl eVal ue)
from accunul at e(Purchase($price : product.price), sum $price))

573

Chapter 19. Examples

t hen

nodi fy($order) { grossTotal = total };

t ext Area. append("\ngross total =" + total + "\n");
end

rule "Apply 5% Di scount”
agenda- group "checkout"
di al ect "nvel "

when

$order : Order(grossTotal >= 10 &anp; &anp; & t; 20)
t hen

$or der. di scount edTotal = $order.grossTotal * 0.95

t ext Area. append("di scountedTotal total =" + $order.discountedTotal + "\n");
end

rule "Apply 10% Di scount"
agenda- group "checkout"
di al ect "nvel "

when

$order : Order(grossTotal >= 20)
t hen

$order. di scount edTotal = S$order.grossTotal * 0.90

t ext Area. append("di scountedTotal total =" + $order.discountedTotal + "\n")
end

There are three rules in the checkout agenda-group:

 If we haven't already calculated the gross total, G oss Tot al accumulates the product prices
into a total, puts this total into the session, and displays it via the Swing JText Ar ea, using the
t ext Ar ea global variable yet again.

« If our gross total is between 10 and 20, " Appl y 5% Di scount " calculates the discounted total
and adds it to the session and displays it in the text area.

« If our gross total is not less than 20, "Apply 10% Di scount" calculates the discounted total
and adds it to the session and displays it in the text area.

Now that we've run through what happens in the code, let's have a look at what happens when
we actually run the code. The file Pet St or e. j ava contains a mai n() method, so that it can be run
as a standard Java application, either from the command line or via the IDE. This assumes you
have your classpath set correctly. (See the start of the examples section for more information.)

The first screen that we see is the Pet Store Demo. It has a list of available products (top left),
an empty list of selected products (top right), checkout and reset buttons (middle) and an empty
system messages area (bottom).

574

Pet Store Example

n.lé Pet Store Demo

List Table
Gold Fish 5.0 MName | Price
Fish Tank 25.0
Fish Food 2.0
Checkout || Reset |

[»

1

Figure 19.13. PetStore Demo just after Launch

To get to this point, the following things have happened:

1. The mai n() method has run and loaded the Rule Base but not yet fired the rules. So far, this
is the only code in connection with rules that has been run.

2. Anew Pet St or eUl object has been created and given a handle to the Rule Base, for later use.

3. Various Swing components do their stuff, and the above screen is shown and waits for user
input.

Clicking on various products from the list might give you a screen similar to the one below.

575

Chapter 19. Examples

List Table
old Fish 5.0 B Frice

Fish Tank 25, Gold Fish 50

Fish Food 2.0 Gold Fish 5.0
Gald Fish 5.0
Gold Fish 50
Gold Fish 50
Gold Fish 50

Checkout || Reset |

[»

1

Figure 19.14. PetStore Demo with Products Selected

Note that no rules code has been fired here. This is only Swing code, listening for mouse click
events, and adding some selected product to the Tabl eMbdel object for display in the top right
hand section. (As an aside, note that this is a classic use of the Model View Controller design
pattern).

Itis only when we press the "Checkout" button that we fire our business rules, in roughly the same
order that we walked through the code earlier.

1. Method CheckQut Cal | Back. checkout () is called (eventually) by the Swing class waiting for
the click on the "Checkout" button. This inserts the data from the Tabl eModel object (top right
hand side of the GUI), and inserts it into the Session's Working Memory. It then fires the rules.

2. The "Expl ode Cart" rule is the first to fire, given that it has aut o- f ocus set to true. It loops
through all the products in the cart, ensures that the products are in the Working Memory, and
then gives the "Show Itens" and Eval uati on agenda groups a chance to fire. The rules in
these groups add the contents of the cart to the text area (at the bottom of the window), decide
whether or not to give us free fish food, and to ask us whether we want to buy a fish tank. This
is shown in the figure below.

576

Pet Store Example

Purchase Suggestion &J

IE' ‘Would you like to buy a tank for your 6 fish?

Figure 19.15. Do we want to buy a fish tank?

1. The Do Checkout rule is the next to fire as it (a) No other agenda group currently has focus
and (b) it is part of the default (MAIN) agenda group. It always calls the doCheckout() function
which displays a 'Would you like to Checkout?' Dialog Box.

2. The doCheckout () function sets the focus to the checkout agenda-group, giving the rules in
that group the option to fire.

3. The rules in the the checkout agenda-group display the contents of the cart and apply the
appropriate discount.

4. Swing then waits for user input to either checkout more products (and to cause the rules to fire
again), or to close the GUI - see the figure below.

577

Chapter 19. Examples

| £ | Pet Store Demo

List Table
Gold Fish 5.0 Mame Price
Fish Tank 25.0 Gold Fish 5.0
Fish Food 2.0 Cold Fish 5.0
Gold Fish 5.0
Gold Fish 5.0
Gold Fish 5.0
Gold Fish 5.0
Checkout || Reset |
| |Fish Food Sample 0.0 - |
Gold Fish 5.0
Gold Fish 5.0
Gold Fish 5.0
Gold Fish 5.0
Gold Fish 5.0
Fish Tank 25.0
Gold Fish 5.0

gross total=55.0
discountedTotal total=49.5

1

Figure 19.16. Petstore Demo after all rules have fired.

We could add more System.out calls to demonstrate this flow of events. The output, as it currently
appears in the Console window, is given in the listing below.

Example 19.59. Console (System.out) from running the PetStore GUI

Addi ng free Fish Food Sanple to cart
SUGGESTI ON: Wul d you like to buy a tank for your 6 fish? - Yes

19.8. Honest Politician Example

Nane: Honest Politician

Mai n cl ass: org. drool s. exanpl es. honest politici an. Honest Pol i ti ci anExanpl e
Modul e: dr ool s- exanpl es

Type: Java application

Rul es file: HonestPoliticianExanple.drl

578

Honest Politician Example

ohjective: Illustrate the concept of "truth maintenance" based on the | ogical
insertion of facts

The Honest Politician example demonstrates truth maintenance with logical assertions. The basic
premise is that an object can only exist while a statementis true. A rule's consequence can logically
insert an object with the i nsert Logi cal () method. This means the object will only remain in the
Working Memory as long as the rule that logically inserted it remains true. When the rule is no
longer true the object is automatically retracted.

In this example there is the class Pol i ti ci an, with a name and a boolean value for being honest.
Four politicians with honest state set to true are inserted.

Example 19.60. Class Politician

public class Politician {
private String nane;
private bool ean honest;

Example 19.61. Honest Politician: Execution

Politician blair = new Politician("blair", true);
Politician bush = new Politician("bush", true);
Politician chirac = new Politician("chirac", true);
Politician schroder = new Politician("schroder", true);

ksession.insert(blair);
ksession.insert(bush);
ksession.insert(chirac);
ksession.insert(schroder);

ksession.fireAl |l Rul es();
The Console window output shows that, while there is at least one honest politician, democracy

lives. However, as each politician is in turn corrupted by an evil corporation, so that all politicians
become dishonest, democracy is dead.

Example 19.62. Honest Politician: Console Output

Hurrah!!! Denocracy Lives
I"man evil corporation and | have corrupted schroder
I'man evil corporation and | have corrupted chirac

579

Chapter 19. Examples

I'man evil corporation and | have corrupted bush
I"man evil corporation and | have corrupted blair
We are all Dooned!!! Denobcracy is Dead

As soon as there is at least one honest politician in the Working Memory a new Hope object is
logically asserted. This object will only exist while there is at least one honest politician. As soon
as all politicians are dishonest, the Hope object will be automatically retracted. This rule is given
a salience of 10 to ensure that it fires before any other rule, as at this stage the "Hope is Dead"
rule is actually true.

Example 19.63. Honest Politician: Rule "We have an honest politician”

rule "We have an honest Politician"
salience 10
when
exists(Politician(honest == true))
t hen
i nsertLogi cal (new Hope());
end

As soon as a Hope object exists the "Hope Lives" rule matches and fires. It has a salience of 10
so that it takes priority over "Corrupt the Honest".

Example 19.64. Honest Politician: Rule "Hope Lives"

rul e "Hope Lives"
sal i ence 10
when
exi sts(Hope())
t hen
Systemout.println("Hurrah!!! Denocracy Lives");
end

Now that there is hope and we have, at the start, four honest politicians, we have four activations
for this rule, all in conflict. They will fire in turn, corrupting each politician so that they are no longer
honest. When all four politicians have been corrupted we have no politicians with the property
honest == true. Thus, the rule "We have an honest Politician" is no longer true and the object
it logical inserted (due to the last execution of new Hope()) is automatically retracted.

Example 19.65. Honest Politician: Rule "Corrupt the Honest"

rule "Corrupt the Honest"
when

580

Honest Politician Example

politician : Politician(honest == true)
exi sts(Hope())
t hen
Systemout.println("I'm an evil corporation and | have corrupted "

+ politician.getNanme());
nodify (politician) { honest = false };
end

With the Hope object being automatically retracted, via the truth maintenance system, the
conditional element not applied to Hope is no longer true so that the following rule will match and
fire.

Example 19.66. Honest Politician: Rule "Hope is Dead"

rule "Hope is Dead"
when
not (Hope())
t hen
Systemout.printin("We are all Doonmed!!! Denobcracy is Dead")
end

Let's take a look at the Audit trail for this application:

581

Chapter 19. Examples

Problems | Javadoc | Declaration | Search | Console | Error Log | History '.'_',' Audit Properties

= Object inserted {13: org. drools.examples HonestPoliticianE xamplefPolitician@c0f L ec
= Activation created: Fule We have an honest Politician
=* Ackivation created: Rule Hope is Dead
Object inserted (2): org, drools, examples HonestPoliticianExample$Politician@ L FF9zfs
Dbject inserted (3): org, drools, examples HonestPoliticianEx ample$Politician@asosf
Object inserted (4): org, drools, examples HonestPoliticianExample$Politiciani@ 1 7ha3af

= -4 Activation executed: Rule We have an honest Politician

= Object inserted (5): arg.drools.examples, HonestPaliticianExamplefHope@ad255c
= Activation created: Fule Hope Lives
A Activation cancelled: Rule Hope is Dead
= Activation created: Rule Corrupt the Honest politician=org, drools. examples, HonestPoliticianEx amplegPolitician@s 505 (3)
=* Ackivation created: Rule Corrupt the Honest politician=org. drools. examples. HonestPoliticianExamplegPalitician@o0f 1ec(1)
=r Ackivation created: Rule Corrupt the Honest politician=org. drools. examples. HonestPoliticianExampletPalitician@ 1 7ha3ai<)
= Ackivation created: Rule Corrupt the Honest politician=org. drools. examples. HonestPoliticianExamplegPaliticiani@ FFOEFSE2)

Activation executed: Rule Hope Lives

Activation execuked: Rule Corrupt the Honest palitician=org, drools, examples. HonestPaliticianE xample$Palitician@ 1 7ha3af(4)
Obiject updated (4): org.drools, examples, HonestPoliticianEx amplefPoliticiar@ 1 Tba3af

—| -4 Activation executed: Rule Corrupk the Honest politician=org. droals, ezamples . HonestPoliticianE xamplegPolitician@as0sF(3)
Object updated {33 org.drocls, examples, HonestPaliticianEx ample fPalitician@sS0sF

Activation execuked: Rule Corrupt the Honest palitician=org, drools, examples. HonestPaliticianE xample$Palitician@ 1 FF92FS5(2)
Object updated (2): org.droals. examples.HonestPaliticianExample$Politician@ L FFIZFS
Activation executed: Rule Corrupt the Honest: palitician=arqg. droals. examples . Honest PaliticianE xample$Palitician@c0f 1ec(1)
Ohiject updated (1) org.drools, examples. HonestPoliticianExamplefPoliticiani@cf 1 ec
= m fal removed (50 org.drools

amples, HonestPoliticianExampledHop S50

=r Ackivation created: Rule Hope is Dead
Activation executed: Rule Hope is Dead

Figure 19.17. Honest Politician Example Audit View

The moment we insert the first politician we have two activations. The rule "We have an honest
Politician" is activated only once for the first inserted politician because it uses an exists
conditional element, which matches once for any number. The rule "Hope is Dead" is also activated
at this stage, because we have not yet inserted the Hope object. Rule "We have an honest
Politician" fires first, as it has a higher salience than "Hope is Dead", which inserts the Hope object.
(That action is highlighted green.) The insertion of the Hope object activates "Hope Lives" and de-
activates "Hope is Dead"; it also activates "Corrupt the Honest" for each inserted honest politician.
Rule "Hope Lives" executes, printing "Hurrah!!! Democracy Lives". Then, for each politician, rule
"Corrupt the Honest" fires, printing "I'm an evil corporation and | have corrupted X", where X is the
name of the politician, and modifies the politician's honest value to false. When the last honest
politician is corrupted, Hope is automatically retracted, by the truth maintenance system, as shown
by the blue highlighted area. The green highlighted area shows the origin of the currently selected
blue highlighted area. Once the Hope fact is retracted, "Hope is dead" activates and fires printing
"We are all Doomed!!! Democracy is Dead".

19.9. Sudoku Example

Nanme: Sudoku

Mai n cl ass: org. drool s. exanpl es. sudoku. SudokuExanpl e
Type: Java application

Rul es file: sudoku.drl, validate.drl

582

Sudoku Overview

hj ective: Denpnstrates the solving of logic problens, and conplex pattern
mat chi ng.

This example demonstrates how Drools can be used to find a solution in a large potential solution
space based on a number of constraints. We use the popular puzzle of Sudoku. This example
also shows how Drools can be integrated into a graphical interface and how callbacks can be used
to interact with a running Drools rules engine in order to update the graphical interface based on
changes in the Working Memory at runtime.

19.9.1. Sudoku Overview

Sudoku is a logic-based number placement puzzle. The objective is to fill a 9x9 grid so that each
column, each row, and each of the nine 3x3 zones contains the digits from 1 to 9, once, and only
once.

The puzzle setter provides a partially completed grid and the puzzle solver's task is to complete
the grid with these constraints.

The general strategy to solve the problem is to ensure that when you insert a new number it should
be unique in its particular 3x3 zone, row and column.

See Wikipedia [http://en.wikipedia.org/wiki/Sudoku] for a more detailed description.

19.9.2. Running the Example

Download and install drools-examples as described above and then execute java
or g. drool s. exanpl es. Dr ool sExanpl esApp and click on "SudokuExample".

The window contains an empty grid, but the program comes with a number of grids stored internally
which can be loaded and solved. Click on "File", then "Samples" and select "Simple" to load one
of the examples. Note that all buttons are disabled until a grid is loaded.

583

http://en.wikipedia.org/wiki/Sudoku
http://en.wikipedia.org/wiki/Sudoku

Chapter 19. Examples

(B Drools Sudoku Example ==
File |
Samples } Simple
Open... Medium
Exit Hard 1
Hard 2
Hard 3
Hard 4
!DELIBERATELY BROKEM!
Solve Step Dump

Figure 19.18. Initial screen

Loading the "Simple" example fills the grid according to the puzzle's initial state.

584

Running the Example

P Drools Sudo Xample

56 974

%

Ul
~NUIN| O B0
N OO OY

O W
O ~d= U100 W

ouls 0ONO
(o) (e
(o)] (oo Jr =1 Ne
LY O WU

4 9 3 5

Solve Step Dump

Figure 19.19. After loading "Simple"

Click on the "Solve" button and the Drools-based engine will fill out the remaining values, and the
buttons are inactive once more.

585

Chapter 19. Examples

N OY U — 00|~ O W|z
B ~J W[N O 0o U

O 00 |UTW NN B O
~NUTN WO & 000
= WO 00 UTH|IWOIN N
0L OINONIWUTE
W= HEIN 00O IUTINIO
UTN OO J WO = &
G O = &~ U1jco WIN)

Figure 19.20. "Simple" Solved

Alternatively, you may click on the "Step" button to see the next digit found by the rule set. The
Console window will display detailed information about the rules which are executing to solve the
step in a human readable form. Some examples of these messages are presented below.

single 8 at [0, 1]

colum elimnation due to [1,2]: renmove 9 from[4, 2]

hi dden single 9 at [1, 2]

row elimnation due to [2,8]: renove 7 from][2,4]
renove 6 from[3,8] due to naked pair at [3,2] and [3,7]
hi dden pair in row at [4,6] and [4,4]

Click on the "Dump" button to see the state of the grid, with cells showing either the established
value or the remaining possibilitiescandidates.

Col: O Col: 1 Col: 2 Col: 3 Col: 4 Col: 5
Col: 6 Col: 7 Col: 8
Row O: 24 79 2 456 4567 9 2356 9 ---5--- ---1---
3 679 ---8--- 4 67
Row 1: 12 79 ---8--- 1 67 9 23 6 9 --- 4 --- 23 67 1
3 67 9 3 679 ---5---

586

Running the Example

Row 2: 1 4 7 9 1 456 -2 3 ---
=== 2 === 4679 1 4 67
Row 3: 1234 12345 1 45
5 78 45 7 cee @ oo
Row 4: --- 6 --- --- 7 --- 5
5 8 ---1--- ---3---
Row 5: --- 8 --- 12 45 1 45
567 4567 2 4 67
Row 6: 1 3 7 13 6 oo @ aoco
=== 4 o=== 3567 9 1 678
Row 7: --- 5 --- 1346 1 4 678
3 678 --- 2 --- 1 678
Row 8: 34 cee ® c=c 46 8
3 56 8 3 56 6 8

56 89

12 5 8

78 5678

--- 2 578

5 ceo §oco-
== 2 57

8 3 56 8

e 346 8 1
--- 23456 8

Now, let us load a Sudoku grid that is deliberately invalid. Click on "File", "Samples" and "!
DELIBERATELY BROKEN!". Note that this grid starts with some issues, for example the value

5 appears twice in the first row.

ﬁ, Jroo
File

6 7 |5

5 2,

=N

wo
-

Solve

Step

Dump

Figure 19.21. Broken initial state

A few simple rules perform a sanity check, right after loading a grid. In this case, the following

messages are printed on standard output:

587

Chapter 19. Examples

cell [0,8]: 5 has a duplicate in row 0
cell [0,0]: 5 has a duplicate in row O
cell [6,0]: 8 has a duplicate in col O
cell [4,0]: 8 has a duplicate in col O
Val i dati on conpl ete

Nevertheless, click on the "Solve" button to apply the solving rules to this invalid grid. This will not
complete; some cells remain empty.

{, Jroo ndoki = D1E

NP oo 00 [NoYUE
WOV NI|BA N0
UINRINO (W

O WIN =00 UTN
OdEB OUII= 00 W
00 = U1|OY WO N B~
N O = U100 WO
~0U1 00dOY| =IO
OO N |NBU

Figure 19.22. Broken "solved" state

The solving functionality has been achieved by the use of rules that implement standard solving
techniques. They are based on the sets of values that are still candidates for a cell. If, for instance,
such a set contains a single value, then this is the value for the cell. A little less obvious is the single
occurrence of a value in one of the groups of nine cells. The rules detecting these situations insert
a fact of type Setting with the solution value for some specific cell. This fact causes the elimination
of this value from all other cells in any of the groups the cell belongs to. Finally, it is retracted.

Other rules merely reduce the permissible values for some cells. Rules "naked pair”, "hidden pair

in row", "hidden pair in column" and "hidden pair in square" merely eliminate possibilities but do
not establish solutions. More sophisticated eliminations are done by "X-wings in rows", "X-wings

in columns", "intersection removal row" and "intersection removal column".

588

Java Source and Rules Overview

19.9.3. Java Source and Rules Overview

The Java source code can be found in the /src/main/java/org/drools/examples/sudoku directory,
with the two DRL files defining the rules located in the /src/main/rules/org/drools/examples/sudoku
directory.

The package or g. dr ool s. exanpl es. sudoku. swi ng contains a set of classes which implement
a framework for Sudoku puzzles. Note that this package does not have any dependencies on
the Drools libraries. SudokuGri dMbdel defines an interface which can be implemented to store a
Sudoku puzzle as a 9x9 grid of Cel | objects. SudokuG i dVi ewis a Swing component which can
visualize any implementation of SudokuGri dMbdel . SudokuG i dEvent and SudokuG i dLi st ener
are used to communicate state changes between the model and the view: events are fired when
a cell's value is resolved or changed. If you are familiar with the model-view-controller patterns in
other Swing components such as JTabl e then this pattern should be familiar. SudokuG i dSanpl es
provides a number of partially filled Sudoku puzzles for demonstration purposes.

Package org. drool s. exanpl es. sudoku. rul es contains a utility class with a method for
compiling DRL files.

The package org. drool s. exanpl es. sudoku contains a set of classes implementing the
elementary Cel | object and its various aggregations: the Cel | Fil e subtypes Cel | Row and
Cel | Col as well as Cel | Sgr, all of which are subtypes of Cel | Group. It's interesting to note that
Cel | and Cel | Gr oup are subclasses of Set O Ni ne, which provides a property f r ee with the type
Set <I nt eger >. For a Cel | it represents the individual candidate set; for a Cel | Gr oup the set is
the union of all candidate sets of its cells, or, simply, the set of digits that still need to be allocated.

With 81 Cel | and 27 Cel | G oup objects and the linkage provided by the Cel | properties cel | Row,
cel I Col and cel | Sqr and the Cel | G- oup property cel | s, a list of Cel | objects, it is possible to
write rules that detect the specific situations that permit the allocation of a value to a cell or the
elimination of a value from some candidate set.

An object of class Set ti ng is used for triggering the operations that accompany the allocation of
a value: its removal from the candidate sets of sibling cells and associated cell groups. Moreover,
the presence of a Set ti ng fact is used in all rules that should detect a new situation; this is to
avoid reactions to inconsistent intermediary states.

An object of class St eppi ng is used in a low priority rule to execute an emergency halt when
a "Step" does not terminate regularly. This indicates that the puzzle cannot be solved by the
program.

The class org. drool s. exanpl es. sudoku. SudokuExanpl e implements a Java application
combining the components described.

19.9.4. Sudoku Validator Rules (validate.drl)

Validation rules detect duplicate numbers in cell groups. They are combined in an agenda group
which enables us to activate them, explicitly, after loading a puzzle.

589

Chapter 19. Examples

The three rules "duplicate in cell..." are very similar. The first pattern locates a cell with an allocated
value. The second pattern pulls in any of the three cell groups the cell belongs to. The final pattern
would find a cell (other than the first one) with the same value as the first cell and in the same
row, column or square, respectively.

Rule "terminate group" fires last. It prints a message and calls halt.

19.9.5. Sudoku Solving Rules (sudoku.drl)

There are three types of rules in this file: one group handles the allocation of a number to a cell,
another group detects feasible allocations, and the third group eliminates values from candidate
sets.

Rules "set a value", "eliminate a value from Cell" and "retract setting" depend on the presence of a
Set t i ng object. The first rule handles the assignment to the cell and the operations for removing
the value from the "free" sets of the cell's three groups. Also, it decrements a counter that, when
zero, returns control to the Java application that has called fireuntil Hal t (). The purpose of
rule "eliminate a value from Cell" is to reduce the candidate lists of all cells that are related to the
newly assigned cell. Finally, when all eliminations have been made, rule "retract setting" retracts
the triggering Set t i ng fact.

There are just two rules that detect a situation where an allocation of a number to a cell is possible.
Rule "single" fires for a Cel | with a candidate set containing a single number. Rule "hidden single"
fires when there is no cell with a single candidate but when there is a cell containing a candidate
but this candidate is absent from all other cells in one of the three groups the cell belongs to. Both
rules create and insert a Set t i ng fact.

Rules from the largest group of rules implement, singly or in groups of two or three, various solving
techniques, as they are employed when solving Sudoku puzzles manually.

Rule "naked pair" detects identical candidate sets of size 2 in two cells of a group; these two
values may be removed from all other candidate sets of that group.

A similar idea motivates the three rules "hidden pair in..."; here, the rules look for a subset of two
numbers in exactly two cells of a group, with neither value occurring in any of the other cells of this
group. This, then, means that all other candidates can be eliminated from the two cells harbouring
the hidden pair.

A pair of rules deals with "X-wings" in rows and columns. When there are only two possible
cells for a value in each of two different rows (or columns) and these candidates lie also in the
same columns (or rows), then all other candidates for this value in the columns (or rows) can be
eliminated. If you follow the pattern sequence in one of these rules, you will see how the conditions
that are conveniently expressed by words such as "same" or "only" result in patterns with suitable
constraints or prefixed with "not".

The rule pair "intersection removal..." is based on the restricted occurrence of some number within
one square, either in a single row or in a single column. This means that this number must be in

590

Number Guess

one of those two or three cells of the row or column; hence it can be removed from the candidate
sets of all other cells of the group. The pattern establishes the restricted occurrence and then fires
for each cell outside the square and within the same cell file.

These rules are sufficient for many but certainly not for all Sudoku puzzles. To solve very difficult
grids, the rule set would need to be extended with more complex rules. (Ultimately, there are
puzzles that cannot be solved except by trial and error.)

19.10. Number Guess

Name: Nunber Cuess

Mai n cl ass: org. drool s. exanpl es. nunber guess. Nunber GuessExanpl e

Modul e: dr ool sj bpm i ntegration-exanples (Note: this is in a different downl oad,
the drool sjbpmintegrati on downl oad.)

Type: Java application

Rul es file: NunberCuess. drl

bj ective: Denpbnstrate use of Rule Flow to organi se Rules

The "Number Guess" example shows the use of Rule Flow, a way of controlling the order in which
rules are fired. It uses widely understood workflow diagrams for defining the order in which groups
of rules will be executed.

Example 19.67. Creating the Number Guess RuleBase:
NumberGuessExample.main() - part 1

final Know edgeBuil der kbuil der = Know edgeBui | der Fact ory. newKnow edgeBui | der () ;
kbui | der. add(Resour ceFactory. newCl assPat hResour ce("Nunber Guess. drl ",
Shoppi ngExanpl e. cl ass),
Resour ceType. DRL);
kbui | der. add(Resour ceFactory. newCl assPat hResour ce("Nunber Guess.rf",
Shoppi ngExanpl e. cl ass),
Resour ceType. DRF);

final Know edgeBase kbase = Know edgeBaseFact ory. newknow edgeBase() ;
kbase. addKnow edgePackages(kbuil der. get Know edgePackages());

The creation of the package and the loading of the rules (using the add() method) is the same as
the previous examples. There is an additional line to add the Rule Flow (Nunber Guess. r f), which
provides the option of specifying different rule flows for the same Knowledge Base. Otherwise,
the Knowledge Base is created in the same manner as before.

5901

Chapter 19. Examples

Example 19.68. Starting the RuleFlow: NumberGuessExample.main() - part
2

final Stateful Know edgeSessi on ksessi on = kbase. newSt at ef ul Knowl edgeSessi on() ;

Knowl edgeRunti neLogger | ogger =
Know edgeRunt i neLogger Fact ory. newFi | eLogger (ksessi on, "I og/ nunber guess");

ksession.insert(new GameRul es(100, 5));
ksession.insert(new RandomNunber ());
ksession.insert(new Ganme());

ksessi on. start Process("Nunmber Guess");
ksession.fireA |l Rul es();

| ogger. cl ose();

ksessi on. di spose();

Once we have a Knowledge Base, we can use it to obtain a Stateful Session. Into our session
we insert our facts, i.e., standard Java objects. (For simplicity, in this sample, these classes are
all contained within our Nunber GuessExanpl e. j ava file. Class GameRul es provides the maximum
range and the number of guesses allowed. Class RandomNunber automatically generates a
number between 0 and 100 and makes it available to our rules, by insertion via the get Val ue()
method. Class Gane keeps track of the guesses we have made before, and their number.

Note that before we call the standard fireAl | Rul es() method, we also start the process that
we loaded earlier, via the st art Process() method. We'll learn where to obtain the parameter we
pass ("Number Guess", i.e., the identifier of the rule flow) when we talk about the rule flow file and
the graphical Rule Flow Editor below.

Before we finish the discussion of our Java code, we note that in some real-life application we
would examine the final state of the objects. (Here, we could retrieve the number of guesses, to
add it to a high score table.) For this example we are content to ensure that the Working Memory
session is cleared by calling the di spose() method.

592

Number Guess

h Select

=

i Marquee

— Connection Creation

[Components -»
3 Start

End

) RuleFlowaroup

= split

>+ Join

(7) Milestone

=2 SubFlow

£k Action

{f} Guess Correct Mo mare Guesses

Guess incorrect

Figure 19.23. RuleFlow for the NumberGuess Example

If you open the Nunber Guess. rf file in the Drools IDE (provided you have the JBoss Rules
extensions installed correctly in Eclipse) you should see the above diagram, similar to a standard
flowchart. Its icons are similar (but not exactly the same) as in the JBoss jBPM workflow product.
Should you wish to edit the diagram, a menu of available components should be available to the
left of the diagram in the IDE, which is called the palette. This diagram is saved in XML, an (almost)
human readable format, using XStream.

If it is not already open, ensure that the Properties View is visible in the IDE. It can be opened by
clicking "Window", then "Show View" and "Other", where you can select the "Properties” view. If
you do this before you select any item on the rule flow (or click on the blank space in the rule flow)
you should be presented with the following set of properties.

[£! Problems [[2. Declaration € Progress | 4" Search | & Console | =l Properties 2 I=:=> =
Property Value

Id MNumber Guess

Name Number Guess

Router Layout Shortest Path

Version

Figure 19.24. Properties for the Number Guess Rule Flow

Keep an eye on the Properties View as we progress through the example's rule flow, as it presents
valuable information. In this case, it provides us with the identification of the Rule Flow Process
that we used in our earlier code snippet, when we called sessi on. st art Process().

In the "Number Guess" Rule Flow we encounter several node types, many of them identified by
an icon.

593

Chapter 19. Examples

« The Start node (white arrow in a green circle) and the End node (red box) mark beginning and
end of the rule flow.

* A Rule Flow Group box (yellow, without an icon) represents a Rule Flow Groups defined in our
rules (DRL) file that we will look at later. For example, when the flow reaches the Rule Flow
Group "Too High", only those rules marked with an attribute of r ul ef | ow group " Too Hi gh"
can potentially fire.

 Action nodes (yellow, cog-shaped icon) perform standard Java method calls. Most action nodes
in this example call Syst em out . pri ntl n(), indicating the program's progress to the user.

 Split and Join Nodes (blue ovals, no icon) such as "Guess Correct?" and "More guesses Join"
mark places where the flow of control can split, according to various conditions, and rejoin,
respectively

* Arrows indicate the flow between the various nodes.

The various nodes in combination with the rules make the Number Guess game work. For
example, the "Guess" Rule Flow Group allows only the rule "Get user Guess" to fire, because only
that rule has a matching attribute of r ul ef I ow gr oup " Guess".

Example 19.69. A Rule firing only at a specific point in the Rule Flow:
NumberGuess.drl

rule "Get user CGuess"
rul efl ow group " CGuess”
no- | oop
when
$r : RandomNunber ()
rules : GaneRules(allowed : all owedGuesses)
gane : Gane(guessCount < allowed)
not (Quess())
t hen
System out. println("You have " + (rul es. al | onedGuesses - gane. guessCount)
+ " out of " + rules.allowdGuesses
+ " guesses |l eft.\nPl ease enter your guess fromO to "
+ rul es. maxRange);
br = new BufferedReader(new | nput St reanReader(Systemin));
i = br.readLine();
modi fy (game) { guessCount = gane.guessCount + 1 }
insert(new GQuess(i));
end

The rest of this rule is fairly standard. The LHS section (after when) of the rule states that it will
be activated for each RandomNunber object inserted into the Working Memory where guessCount
is less than al | onedGuesses from the GaneRul es object and where the user has not guessed
the correct number.

594

Number Guess

The RHS section (or consequence, after t hen) prints a message to the user and then awaits
user input from Syst em i n. After obtaining this input (the r eadLi ne() method call blocks until
the return key is pressed) it modifies the guess count and inserts the new guess, making both
available to the Working Memory.

The rest of the rules file is fairly standard: the package declares the dialect as MVEL, and various
Java classes are imported. In total, there are five rules in this file:

1. Get User Guess, the Rule we examined above.

2. A Rule to record the highest guess.

3. A Rule to record the lowest guess.

4. A Rule to inspect the guess and retract it from memory if incorrect.
5. A Rule that naotifies the user that all guesses have been used up.

One point of integration between the standard Rules and the RuleFlow is via the r ul ef | ow gr oup
attribute on the rules, as discussed above. A second point of integration between the rules (.drl) file
and the Rules Flow .rf files is that the Split Nodes (the blue ovals) can use values in the Working
Memory (as updated by the rules) to decide which flow of action to take. To see how this works,
click on the "Guess Correct Node"; then within the Properties View, open the Constraints Editor
by clicking the button at the right that appears once you click on the "Constraints" property line.
You should see something similar to the diagram below.

@ Edit Constraints

To node Guess Correct: correct
To node Too Low: too low

To node Too High: too high

Bk

Edit

Edit

OK | | Cancel

—

Figure 19.25. Edit Constraints for the "Guess Correct" Node

Click on the "Edit" button beside "To node Too High" and you'll see a dialog like the one below.
The values in the "Textual Editor" window follow the standard rule format for the LHS and can

595

Chapter 19. Examples

refer to objects in Working Memory. The consequence (RHS) is that the flow of control follows
this node (i.e., "To node Too High") if the LHS expression evaluates to true.

@ Constraint editor

Name: too high
Prionity: 1

] Always true

Textual Editor

l RandomMNumber{ randomValue : value) &&
Guess(value = randomValue)

{ OK J ‘ Cancel

Figure 19.26. Constraint Editor for the "Guess Correct” Node: value too high

Since the file Nunber Guess. j ava contains a mai n() method, it can be run as a standard Java
application, either from the command line or via the IDE. A typical game might result in the
interaction below. The numbers in bold are typed in by the user.

Example 19.70. Example Console output where the Number Guess Example
beat the human!

You have 5 out of 5 guesses left.

Pl ease enter your guess fromO to 100
50

Your guess was too high

You have 4 out of 5 guesses left.

Pl ease enter your guess fromO to 100
25

596

Number Guess

Your guess was too |ow
You have 3 out of 5 guesses left.
Pl ease enter your guess fromO to 100

37

Your guess was too |ow
You have 2 out of 5 guesses left.
Pl ease enter your guess fromO to 100

44

Your guess was too |ow
You have 1 out of 5 guesses left.
Pl ease enter your guess fromO to 100

47

Your guess was too | ow
You have no nore guesses
The correct guess was 48

A summary of what is happening in this sample is:

. The mai n() method of Nunber GuessExanpl e. j ava loads a Rule Base, creates a Stateful

Session and inserts Ganme, GaneRul es and RandomNunber (containing the target number)
objects into it. The method also sets the process flow we are going to use, and fires all rules.
Control passes to the Rule Flow.

. File Nunber Guess. r f, the Rule Flow, begins at the "Start" node.
. Control passes (via the "More guesses" join node) to the Guess node.

. At the Guess node, the appropriate Rule Flow Group ("Get user Guess") is enabled. In this

case the Rule "Guess" (in the Nunber Guess. dr | file) is triggered. This rule displays a message
to the user, takes the response, and puts it into Working Memory. Flow passes to the next Rule
Flow Node.

. At the next node, "Guess Correct", constraints inspect the current session and decide which

path to take.

If the guess in step 4 was too high or too low, flow proceeds along a path which has an action
node with normal Java code printing a suitable message and a Rule Flow Group causing a
highest guess or lowest guess rule to be triggered. Flow passes from these nodes to step 6.

If the guess in step 4 was right, we proceed along the path towards the end of the Rule Flow.
Before we get there, an action node with normal Java code prints a statement "you guessed
correctly”. There is a join node here (just before the Rule Flow end) so that our no-more-guesses
path (step 7) can also terminate the Rule Flow.

. Control passes as per the Rule Flow via a join node, a guess incorrect Rule Flow Group

(triggering a rule to retract a guess from Working Memory) onto the "More guesses" decision
node.

597

Chapter 19. Examples

7. The "More guesses" decision node (on the right hand side of the rule flow) uses constraints,
again looking at values that the rules have put into the working memory, to decide if we have
more guesses and if so, goto step 3. If not, we proceed to the end of the rule flow, via a Rule
Flow Group that triggers a rule stating "you have no more guesses".

8. The loop over steps 3 to 7 continues until the number is guessed correctly, or we run out of
guesses.

19.11. Conway's Game Of Life

Nanme: Conway's Gane OF Life
Mai n cl ass: org.drool s. exanpl es. conway. ConwayAgendaG oupRun
org. drool s. exanpl es. conway. ConwayRul eFl owG oupRun
Modul e: dr ool sj bpm i ntegration-exanples (Note: this is in a different downl oad,
the drool sjbpmintegrati on downl oad.)
Type: Java application
Rules file: conway-rul efl ow. drl conway-agendagroup. drl
hj ective: Denpbnstrates 'accunulate', 'collect' and 'froni

Conway's Game Of Life, described in http://en.wikipedia.org/wiki/Conway's_Game_of Life and in
http://www.math.com/students/wonders/life/life.html, is a famous cellular automaton conceived in
the early 1970's by the mathematician John Conway. While the system is well known as "Conway's
Game Of Life", it really isn't a game at all. Conway's system is more like a simulation of a form of
life. Don't be intimidated. The system is terribly simple and terribly interesting. Math and Computer
Science students alike have marvelled over Conway's system for more than 30 years now. The
application presented here is a Swing-based implementation of Conway's Game of Life. The
rules that govern the system are implemented as business rules using Drools. This document will
explain the rules that drive the simulation and discuss the Drools parts of the implementation.

We'll first introduce the grid view, shown below, designed for the visualisation of the game, showing
the "arena" where the life simulation takes place. Initially the grid is empty, meaning that there are
no live cells in the system. Each cell is either alive or dead, with live cells showing a green ball.
Preselected patterns of live cells can be chosen from the "Pattern” drop-down list. Alternatively,
individual cells can be doubled-clicked to toggle them between live and dead. It's important to
understand that each cell is related to its neighboring cells, which is fundamental for the game's
rules. Neighbors include not only cells to the left, right, top and bottom but also cells that are
connected diagonally, so that each cell has a total of 8 neighbors. Exceptions are the four corner
cells which have only three neighbors, and the cells along the four border, with five neighbors each.

598

http://en.wikipedia.org/wiki/Conway's_Game_of_Life
http://www.math.com/students/wonders/life/life.html

Conway's Game Of Life

i Conway's Game OF Life = |EI[5|

Conway's Game Of Life

Conway's Game Of Life is a cellular automaton originally
conceived by John Conway in the early 1970°s. This particular
implemenation happens to use the Drools Java Rules Engine
to impose the "business rules" that constrain the game.

Select a predefined patte_rn from the list below or use the mouse
to interactively define a starting orid by clicking on cells in
the grid to bring them to life.

Click the "Next Generation™ button to iterate through generations
one at a time or click the "Start™ button to let the system evolve
itself.

I I I
10 10 10 1 1 N |—|_|_|_|—|

1 Il S0
EEEEEEEEEEE patem: | 7|
"I | FI'—I EElEEEEEREE

I——I I—I—I I—I—I HEEEEEE
0 1 5 1 55 11 51 5

I e 5 6 S S [Y S 3
B I—I—I [I—I—I [I—I—I || I—I—I [I—I—I {11 | HER D D || galait || S

Figure 19.27. Conway's Game of Life: Starting a new game

So what are the basic rules that govern this game? Its goal is to show the development of a
population, generation by generation. Each generation results from the preceding one, based on
the simultaneous evaluation of all cells. This is the simple set of rules that govern what the next
generation will look like:

« If alive cell has fewer than 2 live neighbors, it dies of loneliness.
« If alive cell has more than 3 live neighbors, it dies from overcrowding.
« If a dead cell has exactly 3 live neighbors, it comes to life.

That is all there is to it. Any cell that doesn't meet any of those criteria is left as is for the next
generation. With those simple rules in mind, go back and play with the system a little bit more and
step through some generations, one at a time, and notice these rules taking their effect.

The screenshot below shows an example generation, with a number of live cells. Don't worry about
matching the exact patterns represented in the screen shot. Just get some groups of cells added
to the grid. Once you have groups of live cells in the grid, or select a pre-designed pattern, click
the "Next Generation" button and notice what happens. Some of the live cells are killed (the green
ball disappears) and some dead cells come to life (a green ball appears). Step through several
generations and see if you notice any patterns. If you click on the "Start" button, the system will
evolve itself so you don't need to click the "Next Generation" button over and over. Play with the
system a little and then come back here for more details of how the application works.

599

Chapter 19. Examples

i Conway's Game OF Life ;Iglil

Conway's Game Of Life

Conway's Game Of Life is a cellular automaton originally
conceived by John Conway in the early 1970°s. This particular
implemenation happens to use the Drools Java Rules Engine
to impose the "business rules" that constrain the game.

Select a predefined patte_rn from the list below or use the mouse
to interactively define a starting orid by clicking on cells in
the grid to bring them to life.

Click the "Next Generation™ button to iterate through generations

one at a time or click the “Start" button to let the system evolve
itself.

Pattern : =

| Next Generation || Start || Clear

Figure 19.28. Conway's Game of Life: A running game

Now lets delve into the code. As this is an advanced example we'll assume that by now you
know your way around the Drools framework and are able to connect the presented highlight,
so that we'll just focus at a high level overview. The example has two ways to execute, one way
uses Agenda Groups to manage execution flow, and the other one uses Rule Flow Groups to
manage execution flow. These two versions are implemented in ConwayAgendaG oupRun and
ConwayRul eFl owGr oupRun, respectively. Here, we'll discuss the Rule Flow version, as it's what
most people will use.

All the Cel | objects are inserted into the Session and the rules in the r ul ef | ow gr oup "register
neighbor" are allowed to execute by the Rule Flow process. This group of four rules creates
Nei ghbor relations between some cell and its northeastern, northern, northwestern and western
neighbors. This relation is bidirectional, which takes care of the other four directions. Border cells
don't need any special treatment - they simply won't be paired with neighboring cells where there
isn't any. By the time all activations have fired for these rules, all cells are related to all their
neighboring cells.

Example 19.71. Conway's Game of Life: Register Cell Neighbour relations

rule "register north east”
rul efl owgroup "regi ster nei ghbor"

when

$cell: Cell($row : row, $col : col)

$northEast : Cell(row == ($row - 1), col == (S$col + 1))
t hen

i nsert(new Nei ghbor($cell, $northEast));

i nsert(new Nei ghbor($northEast, $cell));
end

600

Conway's Game Of Life

rule "register north"
rul efl ow- group "regi ster nei ghbor"
when
$cell: Cell($row : row, $col : col)
$north : Cell(row == ($row - 1), col == $col)
t hen
i nsert(new Nei ghbor($cell, $north));
i nsert(new Nei ghbor($north, $cell));
end

rule "register north west"
rul ef| ow-group "regi ster nei ghbor"

when

$cell: Cell($row : row, $col : col)

$northwest : Cell(row == ($row- 1), col ==($col - 1))
t hen

i nsert(new Nei ghbor($cell, $northwst));
i nsert(new Nei ghbor($northWest, $cell));
end

rule "register west"
rul efl ow- group "regi ster nei ghbor"
when
$cell: Cell($row: row, $col : col)
$west : Cell(row == $row, col == ($col - 1))
t hen
i nsert(new Nei ghbor($cell, $west));
i nsert(new Nei ghbor ($west, $cell));
end

Once all the cells are inserted, some Java code applies the pattern to the grid, setting certain
cells to Live. Then, when the user clicks "Start" or "Next Generation”, it executes the "Generation”
ruleflow. This ruleflow is responsible for the management of all changes of cells in each generation
cycle.

601

Chapter 19. Examples

[:3 Select

F=1
L Margquee

—+ Zonnection Creation
|~ Compaonents *
i Start

End

() RuleFlowGraup

2 split

=+ Join

(7) Mileskone

= SubFlow

{@} Ackion

2 start

Figure 19.29. Conway's Game of Life: rule flow "Generation™"

calculate
evaluate

reset calculate

End

Conway's Game Of Life

The rule flow process first enters the "evaluate" group, which means that any active rule in the
group can fire. The rules in this group apply the Game-of-Life rules discussed in the beginning of
the example, determining the cells to be killed and the ones to be given life. We use the "phase”
attribute to drive the reasoning of the Cell by specific groups of rules; typically the phase is tied
to a Rule Flow Group in the Rule Flow process definition. Notice that it doesn't actually change
the state of any Cel | objectss at this point; this is because it's evaluating the grid in turn and it
must complete the full evaluation until those changes can be applied. To achieve this, it sets the
cell to a "phase" which is either Phase. KI LL or Phase. Bl RTH, used later to control actions applied

to the Cel I object.

Example 19.72. Conway's Game of Life: Evaluate Cells with state changes

rule "Kill The Lonely"
rul efl ow group "eval uate”
no- | oop
when
[l Alive cell has fewer than 2 |ive nei ghbors
theCell: Cell(liveNeighbors < 2, cell State == Cell State. LI VE
phase == Phase. EVALUATE)
t hen
nmodi fy(theCell){
set Phase(Phase. KILL);
}

end

rule "Kill The Overcrowded"
rul efl ow group "eval uate”
no- | oop
when
/! Alive cell has nore than 3 |ive nei ghbors
theCell: Cell(liveNeighbors > 3, cell State == Cell State. LI VE
phase == Phase. EVALUATE)
t hen
nodi fy(theCell){
set Phase(Phase. KILL);
}

end

rule "Gve Birth"
rul ef | owgroup "eval uate"

no- | oop
when
// A dead cell has 3 live neighbors
theCell: Cell(liveNeighbors == 3, cell State == Cel | St at e. DEAD,
phase == Phase. EVALUATE)
t hen

modi fy(theCel |){

603

Chapter 19. Examples

t heCel | . set Phase(Phase. BIRTH);

end

Once all Cel | objectsinthe grid have been evaluated, we first clear any calculation activations that
occurred from any previous data changes. This is done via the "reset calculate" rule, which clears
any activations in the "calculate" group. We then enter a split in the rule flow which allows any
activations in both the "kill* and the "birth" group to fire. These rules are responsible for applying
the state change.

Example 19.73. Conway's Game of Life: Apply the state changes

rule "reset calcul ate"
rul efl ow-group "reset cal cul ate”

when

t hen
Wor ki ngMenory wm = dr ool s. get Wor ki ngMenory();
wm cl ear Rul eFl owGr oup("cal cul ate");

end
rule "kill"
rul efl ow-group "kill"
no- | oop
when
theCell: Cell(phase == Phase.KILL)
t hen

modi fy(theCell){
setCel | State(Cell State. DEAD),
set Phase(Phase. DONE);

}
end
rule "birth"
rul efl ow-group "birth"
no- | oop
when
theCell: Cell(phase == Phase. Bl RTH)
t hen

nodi fy(theCell){
setCell State(Cell State.LIVE),
set Phase(Phase. DONE);

end

At this stage, a number of Cel | objects have been modified with the state changed to either LI VE
or DEAD. Now we get to see the power of the Nei ghbor facts defining the cell relations. When

604

Pong

a cell becomes live or dead, we use the Nei ghbor relation to iterate over all surrounding cells,
increasing or decreasing the | i veNei ghbor count. Any cell that has its count changed is also
set to to the EVALUATE phase, to make sure it is included in the reasoning during the evaluation
stage of the Rule Flow Process. Notice that we don't have to do any iteration ourselves; simply
by applying the relations in the rules we make the rule engine do all the hard work for us, with a
minimal amount of code. Once the live count has been determined and set for all cells, the Rule
Flow Process comes to and end. If the user has initially clicked the "Start" button, the engine will
restart the rule flow; otherwise the user may request another generation.

Example 19.74. Conway's Game of Life: Evaluate cells with state changes

rule "Cal cul ate Live"
rul ef | owgroup "cal cul ate”
| ock-on-active
when
theCell: Cell(cellState == Cell State. LI VE)
Nei ghbor (cell == theCell, $neighbor : neighbor)
t hen
nmodi fy($nei ghbor){
set Li veNei ghbor s($nei ghbor. get Li veNei ghbors() + 1),
set Phase(Phase. EVALUATE);
}

end

rule "Cal cul ate Dead"
rul ef | ow-group "cal cul ate"
| ock-on-active
when
theCell: Cell(cell State == Cel | State. DEAD)
Nei ghbor (cell == theCell, $neighbor : neighbor)
t hen
modi fy($nei ghbor){
set Li veNei ghbor s($nei ghbor. get Li veNei ghbors() - 1),
set Phase(Phase. EVALUATE);

end

19.12. Pong

A Conversion for the classic game Pong. Use the keys A, Z and K, M. The ball should get faster
after each bounce.

Name: Exanpl e Pong
Mai n cl ass: org.drool s. ganes. pong. PongMai n

605

Chapter 19. Examples

Figure 19.30. Pong Screenshot

19.13. Adventures with Drools

Based on the Adventure in Prolog, over at the Amzi website, http://www.amzi.com/
AdventurelnProlog/, we started to work on a text adventure game for Drools. They are ideal as
they can start off simple and build in complexity and size over time, they also demonstrate key
aspects of declarative relational programming.

Nanme: Exanpl e Text Adventure
Mai n cl ass: org. drool s. ganes. advent ur e. Text Advent ur e

You can view the 8 minute demonstration and introduction for the example at http:/
downloads.jboss.org/drools/videos/text-adventures.swf

606

http://www.amzi.com/AdventureInProlog/
http://www.amzi.com/AdventureInProlog/
http://downloads.jboss.org/drools/videos/text-adventures.swf
http://downloads.jboss.org/drools/videos/text-adventures.swf

Wumpus World

Global Events : Qutput

‘ou have entered the Room(id=3, name=kitchen)

;| [You are in the Room(id=3, name=kitchen)

[53 'ou can see [ltem(id=12, name=cucumber, fixed=false)]

%| |available exits are [Room(id=2, name=bhasement), Room(id=8, name=ground floor
3| Inaliway)i

~| i| [ou have entered the Roomi(id=2, name=basement)
Local Events | [You have picked up the ltem(id=14, name=mace, fixed=false)

CharacterSelectedEvent(character=Character(id=11, [=] = L |
name=hero)) =
[EnterEvent(character=Character{ id=11, name=hero), 5
room=Room(id=3, name=kitchen)) Character
ExitEvent(character=Character(id=11, name=hero), Z; Character(id=11, 0) ‘v| property value
room=Room(id=8, name=ground floor hallway) } : strength 100
EnterEvent(character=Character(id=11, name=hero }, LE health 100
room=Room(id=2, name=basement) } T :5 coiins 100
ExitEvent(character=Character(id=11, name=hero), H speed 100
room=Room(id=3, name=kitchen) } 4 mana 100
PickupEvent(character=Character(id=11, name=hero), B
thing=Iltem(id=14, name=mace, fixed=false))

[;| Commands

H Move ltems Eits
= 3 Character(id=10, name=monster) Roomi id=3, name=kitchen }
Pick Up
Inventory 7| Drop
Item(id=14, name=mace, fixed=false) b
Look

Figure 19.31. Pong Screenshot

19.14. Wumpus World

Name: Exanpl e Winpus Wrld
Mai n cl ass: org. drool s. ganes. wunpus. WinpusWor | dMai n

Wumpus World is an Al example covered in the book "Artificial Intelligence : A Modern Approach”.
When the game first starts all the cells are greyed out. As you walk around they become visible.
The cave has pits, a wumpus and gold. When you are next to a pit you will feel a breeze, when
you are next to the wumpus you will smell a stench and see glitter when next to gold. The sensor
icons are shown above the move buttons. If you walk into a pit or the wumpus, you die. A more
detailed overview of Wumpus World can be found at http://www.cis.temple.edu/~giorgio/cis587/
readings/wumpus.shtml. A 20 minute video showing how the game is created and works is at http://
www.youtube.com/watch?v=4CvjKqUOEzM. [http://www.youtube.com/watch?v=4CvjKqUOEzM]

607

http://www.cis.temple.edu/~giorgio/cis587/readings/wumpus.shtml
http://www.cis.temple.edu/~giorgio/cis587/readings/wumpus.shtml
http://www.youtube.com/watch?v=4CvjKqUOEzM
http://www.youtube.com/watch?v=4CvjKqUOEzM
http://www.youtube.com/watch?v=4CvjKqUOEzM

Chapter 19. Examples

\.

J

Figure 19.32. Wumpus World

International
Edition

Artificial Intelligence

A MODERN APPROACH

Third Edition

Stuart Russell
Peter Norvig

Artificial Intelligence

PEARSON Pet A Modern Aj
— — NUI’\fiQ Third Edition

Stuart
Russell

608

Wumpus World

|£| Display image - o=k
START | CAVE? | [] []
|
. @
Uy o0
v WL L1
Figure 19.33. Cave Screenshot
Cell Hero Wumpus Pitt GO'_d
int row int row int row int row int row
Int col Int col Int col Int col Int col
é AV 4 N
~BREEZEZ STENCH ~/GoLp \ \”
\ J \\ J \.

Figure 19.34. Signals Screenshot

609

Chapter 19. Examples

rule "Smell Stench" when

$s @ Sensors()
th : Heraof)
Wumpus (row == (Sh.row + 1}, col == $h.col) or
Wumpus(row == (Sh.row - 1), col == Sh.col) or
Wumpus(row == $h.row, col == {($h.cecl + 1)) or
Wumpus(row == $h.row, col == {$h.cocl - 1))
then

insertLogical({ new SmellStench());
$s.amellStench = true;
end

Figure 19.35. Smell Stench

rule "Move Up" when

fmc : MoveCommand(move == Mowe.UP)

$h : Hero()

$c : Cell{row == (Sh.row + 1), col == Sh.col)
then

modify($h) { row = $h.row + 1 };
fc.setHidden(false);
retract ($mc);

end

rule "Wumpus Death™ when
fg : GameData()
fh : Hero()
Wumpus(row == Sh.row, col == Sh.col)
then
$g.wumpusDeath = true;
end

Figure 19.36. Move Up, Wumpus Collision

19.15. Miss Manners and Benchmarking

Nane: M ss Manners

Mai n cl ass: org. drool s. benchmar k. manner s. Manner sBenchmar k
Modul e: dr ool s- exanpl es

Type: Java application

610

Introduction

Rules file: manners.drl
bj ecti ve: Advanced wal kt hrough on the Manners benchmark, covers Depth conflict
resol ution in depth.

19.15.1. Introduction

Miss Manners is throwing a party and, being a good host, she wants to arrange good seating. Her
initial design arranges everyone in male-female pairs, but then she worries about people have
things to talk about. What is a good host to do? She decides to note the hobby of each guest so
she can then arrange guests not only pairing them according to alternating sex but also ensuring
that a guest has someone with a common hobby, at least on one side.

Figure 19.37. Miss Manners' Guests

19.15.1.1. BenchMarking

Five benchmarks were established in the 1991 paper "Effects of Database Size on Rule System
Performance: Five Case Studies" by David Brant, Timothy Grose, Bernie Lofaso and Daniel P.
Miranker:

611

Chapter 19. Examples

* Manners uses a depth-first search approach to determine the seating arrangements alternating
women and men and ensuring one common hobby for neighbors.

« Waltz establishes a three-dimensional interpretation of a line drawing by line labeling by
constraint propagation.

« WaltzDB is a more general version of Waltz, supporting junctions of more than three lines and
using a database.

« ARP is aroute planner for a robotic air vehicle using the A* search algorithm to achieve minimal
cost.

« Weaver VLSI router for channels and boxes using a black-board technique.

Manners has become the de facto rule engine benchmark. Its behavior, however, is now well
known and many engines optimize for this, thus negating its usefulness as a benchmark which
is why Waltz is becoming more favorable. These five benchmarks are also published at the
University of Texas http://www.cs.utexas.edu/ftp/pub/ops5-benchmark-suite/.

19.15.1.2. Miss Manners Execution Flow

After the first seating arrangement has been assigned, a depth-first recursion occurs which
repeatedly assigns correct seating arrangements until the last seat is assigned. Manners uses a
Cont ext instance to control execution flow. The activity diagram is partitioned to show the relation
of the rule execution to the current Cont ext state.

612

http://www.cs.utexas.edu/ftp/pub/ops5-benchmark-suite/

Introduction

START UP

ASSIGN SEATS

MAK PATH

CHECK DONE

Assign First Seat

%-| Assign Seat I

Make Path
o)

)

Path Dane

k

Are We Done Yet? '—

PRINT RESULTS

Has the last seat
bean assigned?

%@asull&

Figure 19.38. Manners Activity Diagram

19.15.1.3. The Data and Results

Before going deeper into the rules, let's first take a look at the asserted data and the resulting
seating arrangement. The data is a simple set of five guests who should be arranged so that sexes
alternate and neighbors have a common hobby.

The Data

The data is given in OPS5 syntax, with a parenthesized list of name and value pairs for each
attribute. Each person has only one hobby.

(guest (name n1) (sex m) (hobby h1))
(guest (name n2) (sex f) (hobby h1))
(guest (name n2) (sex f) (hobby h3))
(guest (name n3) (sex m) (hobby h3))
(guest (name n4) (sex m) (hobby h1))
(guest (name n4) (sex f) (hobby h2))

613

Chapter 19. Examples

(guest (name n4) (sex f) (hobby h3))
(guest (name n5) (sex f) (hobby h2))
(guest (name nb) (sex f) (hobby h1))
(last_seat (seat 5))

The Results

Each line of the results list is printed per execution of the "Assign Seat" rule. They key bit to
notice is that each line has a "pid" value one greater than the last. (The significance of this will be
explained in the discussion of the rule "Assign Seating".) The "Is", "rs", "In" and "rn" refer to the left
and right seat and neighbor's name, respectively. The actual implementation uses longer attribute

names (e.g., | ef t Guest Name, but here we'll stick to the notation from the original implementation.

[Seating id=1, pid=0, done=true, Is=1, In=n5, rs=1, rn=n5]

[Seating id=2, pid=1, done=false, Is=1, In=n5, rs=2, rn=n4]
[Seating id=3, pid=2, done=false, Is=2, In=n4, rs=3, rn=n3]
[Seating id=4, pid=3, done=false, Is=3, rn=n3, rs=4, rn=n2]
[Seating id=5, pid=4, done=false, Is=4, In=n2, rs=5, rn=n1]

19.15.2. In depth Discussion

19.15.2.1. Cheating

Manners has been designed to exercise cross product joins and Agenda activities. Many people
not understanding this tweak the example to achieve better performance, making their port of the
Manners benchmark pointless. Known cheats or porting errors for Miss Manners are:

« Using arrays for a guests hobbies, instead of asserting each one as a single fact massively
reduces the cross products.

« Altering the sequence of data can also reduce the amount of matching, increasing execution
speed.

« It's possible to change the not Conditional Element so that the test algorithm only uses the
"first-best-match", which is, basically, transforming the test algorithm to backward chaining. The
results are only comparable to other backward chaining rule engines or ports of Manners.

« Removing the context so the rule engine matches the guests and seats prematurely. A proper
port will prevent facts from matching using the context start.

« It's possible to prevent the rule engine from performing combinatorial pattern matching.

« If no facts are retracted in the reasoning cycle, as a result of the not CE, the port is incorrect.

19.15.2.2. Conflict Resolution

The Manners benchmark was written for OPS5 which has two conflict resolution strategies, LEX
and MEA. LEX is a chain of several strategies including salience, recency and complexity. The

614

In depth Discussion

recency part of the strategy drives the depth first (LIFO) firing order. The CLIPS manual documents
the Recency strategy as follows:

Every fact and instance is marked internally with a "time tag" to indicate its relative
recency with respect to every other fact and instance in the system. The pattern
entities associated with each rule activation are sorted in descending order for
determining placement. An activation with a more recent pattern entity is placed
before activations with less recent pattern entities. To determine the placement
order of two activations, compare the sorted time tags of the two activations one
by one starting with the largest time tags. The comparison should continue until
one activation’s time tag is greater than the other activation’s corresponding time
tag. The activation with the greater time tag is placed before the other activation
on the agenda. If one activation has more pattern entities than the other activation
and the compared time tags are all identical, then the activation with more time
tags is placed before the other activation on the agenda.

—CLIPS Reference Manual

However Jess and CLIPS both use the Depth strategy, which is simpler and lighter, which Drools
also adopted. The CLIPS manual documents the Depth strategy as:

Newly activated rules are placed above all rules of the same salience. For
example, given that fact-a activates rule-1 and rule-2 and fact-b activates rule-3
and rule-4, then if fact-a is asserted before fact-b, rule-3 and rule-4 will be above
rule-1 and rule-2 on the agenda. However, the position of rule-1 relative to rule-2
and rule-3 relative to rule-4 will be arbitrary.

—CLIPS Reference Manual

The initial Drools implementation for the Depth strategy would not work for Manners without the
use of salience on the "make_path" rule. The CLIPS support team had this to say:

The default conflict resolution strategy for CLIPS, Depth, is different than the
default conflict resolution strategy used by OPS5. Therefore if you directly
translate an OPS5 program to CLIPS, but use the default depth conflict resolution
strategy, you're only likely to get the correct behavior by coincidence. The LEX
and MEA conflict resolution strategies are provided in CLIPS to allow you to
quickly convert and correctly run an OPS5 program in CLIPS.

—Clips Support Forum

Investigation into the CLIPS code reveals there is undocumented functionality in the Depth
strategy. There is an accumulated time tag used in this strategy; it's not an extensively fact by
fact comparison as in the recency strategy, it simply adds the total of all the time tags for each
activation and compares.

19.15.2.3. Rule "assignFirstSeat"

Once the context is changed to START_UP, activations are created for all asserted guest. Because
all activations are created as the result of a single Working Memory action, they all have the same

615

Chapter 19. Examples

Activation time tag. The last asserted Guest object would have a higher fact time tag, and its
Activation would fire because it has the highest accumulated fact time tag. The execution order in
this rule has little importance, but has a big impact in the rule "Assign Seat". The activation fires
and asserts the first Seat i ng arrangement and a Pat h, and then sets the Cont ext attribute st at e
to create an activation for rule f i ndSeat i ng.

rul e assi gnFirst Seat
when
context : Context(state == Context.START_UP)
guest : CQuest ()
count : Count ()
t hen
String guest Name = guest.get Nanme();

Seating seating =
new Seating(count.getValue(), 1, true, 1, guestName, 1, guestNane);

insert(seating);

Path path = new Pat h(count.getValue(), 1, guestNane);
insert(path);

nodi fy(count) { setValue (count.getValue() + 1) }
Systemout.println("assign first seat : " + seating +" : " + path);

nodi fy(context) {
set St at e(Cont ext . ASSI GN_SEATS)

end

19.15.2.4. Rule "findSeating"

This rule determines each of the Seat i ng arrangements. The rule creates cross product solutions
for all asserted Seat i ng arrangements against all the asserted guests except against itself or any
already assigned chosen solutions.

rul e findSeating

when
context : Context(state == Context.ASSI GN_SEATS)
$s : Seating(pathDone == true)
$g1 : Cuest(nane == $s.right Guest Namre)
$g2 . Quest(sex != $gl.sex, hobby == $gl1. hobby)
count : Count ()

not (Path(id == $s.id, guestNane == $g2. nane))

616

In depth Discussion

not (Chosen(id == $s.id, guestNane == $g2. nane, hobby == $gl. hobby))
t hen

int rightSeat = $s.getRi ghtSeat();

int seatld = $s.getld();

i nt countValue = count. getVal ue();

Seating seating =
new Seating(countVal ue, seatld, false, rightSeat,
$s. get Ri ght Guest Nane(), rightSeat + 1, $g2.getNane());
insert(seating);

Path path = new Path(countValue, rightSeat + 1, $g2.getNanme());
insert(path);

Chosen chosen = new Chosen(seatld, $g2.getNane(), $gl.get Hobby());
insert(chosen);

Systemerr.println("find seating : " + seating + " : " + path +
" + chosen);

modi fy(count) {setValue(countValue + 1)}
nodi fy(context) {setState(Context.MAKE PATH)}
end

However, as can be seen from the printed results shown earlier, it is essential that only the Seat i ng
with the highest pi d cross product be chosen. How can this be possible if we have activations, of
the same time tag, for nearly all existing Seat i ng and Guest objects? For example, on the third
iteration of f i ndSeat i ng the produced activations will be as shown below. Remember, this is from
a very small data set, and with larger data sets there would be many more possible activated
Seat i ng solutions, with multiple solutions per pi d:

=>[ActivationCreated(35): rule=findSeating

[fid:19:33]:[Seating id=3, pid=2, done=true, Is=2, In=n4, rs=3, rn=n3]
[fid:4:4]:[Guest name=n3, sex=m, hobbies=h3]

[fid:3:3]:[Guest name=n2, sex=f, hobbies=h3]

=>[ActivationCreated(35): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, Is=1, In=n5, rs=2, rn=n4]
[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]

[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]

=>[ActivationCreated(35): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, Is=1, In=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

617

Chapter 19. Examples

The creation of all these redundant activations might seem pointless, but it must be remembered
that Manners is not about good rule design; it's purposefully designed as a bad ruleset to fully
stress-test the cross product matching process and the Agenda, which this clearly does. Notice
that each activation has the same time tag of 35, as they were all activated by the change in the
Cont ext object to ASSI GN_SEATS. With OPS5 and LEX it would correctly fire the activation with
the Seat i ng asserted last. With Depth, the accumulated fact time tag ensures that the activation
with the last asserted Seat i ng fires.

19.15.2.5. Rules "makePath" and "pathDone"

Rule nakePat h must always fire before pat hDone. A Pat h object is asserted for each Seati ng
arrangement, up to the last asserted Seat i ng. Notice that the conditions in pat hDone are a subset
of those in nakePat h - so how do we ensure that makePat h fires first?

rul e nakePat h
when
Context (state == Context. MAKE_PATH)
Seating(seatingld:id, seatingPid:pid, pathDone == false)
Path(id == seatingPid, pathCuestNane: guest Nane, pathSeat:seat)
not Path(id == seatingld, guestNane == pat hGuest Nane)
t hen
insert(new Path(seatingld, pathSeat, pathGuestNane));
end

rul e pat hDone
when
context : Context(state == Context.MAKE PATH)
seating : Seating(pathDone == fal se)
t hen
nodi fy(seating) {setPathDone(true)}

nmodi fy(context) {setState(Context.CHECK DONE)}
end

618

In depth Discussion

Make Path

Context

Path Done
Seating Path

state==MAKE_PATH

pathDone==true |

||II

modify Seating(pathDone = true)

Path

!

Path.id==Seating.pid |
Path.name=S5eating.In ,f'll
|llIIII

X

Path.id==Seating.id
Path.name=Seating.In

assert Path{ id=Seating.id,
name=Seating.ln,

seat=Path.seat)

ObjectTypeNode
Figure 19.39. Rete Diagram

. AlphaNade
m LeftinputAdapterNode

JainMode

MotMNode

AR
/O

Chapter 19. Examples

Both rules end up on the Agenda in conflict and with identical activation time tags. However, the
accumulate fact time tag is greater for "Make Path" so it gets priority.

19.15.2.6. Rules "continue" and "areWeDone"

Rule ar eWeDone only activates when the last seat is assigned, at which point both rules will be
activated. For the same reason that nakePat h always wins over pat h Done, ar eWeDone will take
priority over rule cont i nue.

rul e areWeDone
when
context : Context(state == Context.CHECK DONE)
Last Seat (| ast Seat: seat)
Seating(rightSeat == | ast Seat)
t hen
nmodi fy(context) {setState(Context. PRI NT_RESULTS)}
end

rule continue
when
context : Context(state == Context.CHECK DONE)
t hen
nodi fy(context) {setState(Context.ASSI GN _SEATS)}
end

19.15.3. Output Summary

Assign First seat
=>[fid:13:13]:[Seating id=1, pid=0, done=true, Is=1, In=n5, rs=1, rn=n5]
=>[fid:14:14]:[Path id=1, seat=1, guest=n5]

==>[ActivationCreated(16): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, Is=1, In=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

==>[ActivationCreated(16): rule=findSeating

[fid:13:13]:[Seating id=1 , pid=0, done=true, Is=1, In=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]*

Assign Seating
=>[fid:15:17] :[Seating id=2 , pid=1 , done=false, Is=1, lg=n5, rs=2, rn=n4]

620

Output Summary

=>[fid:16:18]:[Path id=2, seat=2, guest=n4]
=>[fid:17:19]:[Chosen id=1, name=n4, hobbies=h1]

=>[ActivationCreated(21): rule=makePath
[fid:15:17] : [Seating id=2, pid=1, done=false, Is=1, In=n5, rs=2, rn=n4]
[fid:14:14] : [Path id=1, seat=1, guest=n5]*

==>[ActivationCreated(21): rule=pathDone
[Seating id=2, pid=1, done=false, Is=1, In=n5, rs=2, rn=n4]*

Make Path
=>[fid:18:22:[Path id=2, seat=1, guest=n5]]

Path Done

Continue Process

=>[ActivationCreated(25): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, Is=1, In=n5, rs=2, rn=n4]
[fid:7:7]:[Guest name=n4, sex=f, hobbies=h3]

[fid:4:4] : [Guest name=n3, sex=m, hobbies=h3]*

=>[ActivationCreated(25): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, Is=1, In=n5, rs=2, rn=n4]
[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]

[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1], [fid:12:20] : [Count value=3]

=>[ActivationCreated(25): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, Is=1, In=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

Assign Seating

=>[fid:19:26]:[Seating id=3, pid=2, done=false, Is=2, Inn4, rs=3, rn=n3]]
=>[fid:20:27]:[Path id=3, seat=3, guest=n3]]

=>[fid:21:28]:[Chosen id=2, name=n3, hobbies=h3}]

=>[ActivationCreated(30): rule=makePath
[fid:19:26]:[Seating id=3, pid=2, done=false, Is=2, In=n4, rs=3, rn=n3]
[fid:18:22]:[Path id=2, seat=1, guest=n5]*

=>[ActivationCreated(30): rule=makePath
[fid:19:26]:[Seating id=3, pid=2, done=false, Is=2, In=n4, rs=3, rn=n3]
[fid:16:18]:[Path id=2, seat=2, guest=n4]*

621

Chapter 19. Examples

=>[ActivationCreated(30): rule=done
[fid:19:26]:[Seating id=3, pid=2, done=false, Is=2, In=n4, rs=3, rn=n3]*

Make Path
=>[fid:22:31]:[Path id=3, seat=1, guest=n5]

Make Path
=>[fid:23:32] [Path id=3, seat=2, guest=n4]

Path Done

Continue Processing

=>[ActivationCreated(35): rule=findSeating

[fid:19:33]:[Seating id=3, pid=2, done=true, Is=2, In=n4, rs=3, rn=n3]
[fid:4:4]:[Guest name=n3, sex=m, hobbies=h3]

[fid:3:3]:[Guest name=n2, sex=f, hobbies=h3], [fid:12:29]*

=>[ActivationCreated(35): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, Is=1, In=n5, rs=2, rn=n4]
[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]

[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]

=>[ActivationCreated(35): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, Is=1, In=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1], [fid:1:1] : [Guest name=n1, sex=m,
hobbies=h1]

Assign Seating

=>[fid:24:36]:[Seating id=4, pid=3, done=false, Is=3, In=n3, rs=4, rn=n2]]
=>[fid:25:37]:[Path id=4, seat=4, guest=n2]]

=>[fid:26:38]:[Chosen id=3, name=n2, hobbies=h3]

==>[ActivationCreated(40): rule=makePath
[fid:24:36]:[Seating id=4, pid=3, done=false, Is=3, In=n3, rs=4, rn=n2]
[fid:23:32]:[Path id=3, seat=2, guest=n4]*

==>[ActivationCreated(40): rule=makePath
[fid:24:36]:[Seating id=4, pid=3, done=false, Is=3, In=n3, rs=4, rn=n2]
[fid:20:27]:[Path id=3, seat=3, guest=n3]*

=>[ActivationCreated(40): rule=makePath
[fid:24:36]:[Seating id=4, pid=3, done=false, Is=3, In=n3, rs=4, rn=n2]
[fid:22:31]:[Path id=3, seat=1, guest=n5]*

622

Output Summary

=>[ActivationCreated(40): rule=done
[fid:24:36]:[Seating id=4, pid=3, done=false, Is=3, In=n3, rs=4, rn=n2]*

Make Path
=>fid:27:41:[Path id=4, seat=2, guest=n4]

Make Path
=>fid:28:42]:[Path id=4, seat=1, guest=n5]]

Make Path
=>fid:29:43]:[Path id=4, seat=3, guest=n3]]

Path Done

Continue Processing

=>[ActivationCreated(46): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, Is=1, In=n5, rs=2, rn=n4]
[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1], [fid:2:2]

[Guest name=n2, sex=f, hobbies=h1]

=>[ActivationCreated(46): rule=findSeating

[fid:24:44]:[Seating id=4, pid=3, done=true, Is=3, In=n3, rs=4, rn=n2]
[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]*

=>[ActivationCreated(46): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, Is=1, In=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

Assign Seating

=>[fid:30:47]:[Seating id=5, pid=4, done=false, Is=4, In=n2, rs=5, rn=n1]
=>[fid:31:48]:[Path id=5, seat=5, guest=n1]

=>[fid:32:49]:[Chosen id=4, name=n1, hobbies=h1]

623

624

	Drools Documentation
	Table of Contents
	
	Part I. Welcome
	Chapter 1. Introduction
	1.1. Introduction
	1.2. Getting Involved
	1.2.1. Sign up to jboss.org
	1.2.2. Sign the Contributor Agreement
	1.2.3. Submitting issues via JIRA
	1.2.4. Fork GitHub
	1.2.5. Writing Tests
	1.2.6. Commit with Correct Conventions
	1.2.7. Submit Pull Requests

	1.3. Installation and Setup (Core and IDE)
	1.3.1. Installing and using
	1.3.1.1. Dependencies and JARs
	1.3.1.2. Use with Maven, Gradle, Ivy, Buildr or Ant
	1.3.1.3. Runtime
	1.3.1.4. Installing IDE (Rule Workbench)
	1.3.1.4.1. Installing GEF (a required dependency)
	1.3.1.4.2. Installing GEF from zip file
	1.3.1.4.3. Installing Drools plug-in from zip file
	1.3.1.4.4. Drools Runtimes
	1.3.1.4.4.1. Defining a Drools runtime
	1.3.1.4.4.2. Selecting a runtime for your Drools project

	1.3.2. Building from source
	1.3.2.1. Getting the sources
	1.3.2.2. Building the sources

	1.3.3. Eclipse
	1.3.3.1. Importing Eclipse Projects

	Chapter 2. Release Notes
	2.1. New and Noteworthy in KIE API 6.0.0
	2.1.1. New KIE name
	2.1.2. Maven aligned projects and modules and Maven Deployment
	2.1.3. Configuration and convention based projects
	2.1.4. KieBase Inclusion
	2.1.5. KieModules, KieContainer and KIE-CI
	2.1.6. KieScanner
	2.1.7. Hierarchical ClassLoader
	2.1.8. Legacy API Adapter
	2.1.9. KIE Documentation

	2.2. What is New and Noteworthy in Drools 6.0.0
	2.2.1. PHREAK - Lazy rule matching algorithm
	2.2.2. Automatically firing timed rule in passive mode
	2.2.3. Expression Timers
	2.2.4. RuleFowGroup and AgendaGroups are merged

	2.3. New and Noteworthy in KIE Workbench 6.0.0
	2.4. New and Noteworthy in Integration 6.0.0
	2.4.1. CDI
	2.4.2. Spring
	2.4.3. Aries Blueprints
	2.4.4. OSGi Ready

	Chapter 3. Compatibility matrix

	Part II. KIE
	Chapter 4. KIE
	4.1. Overview
	4.1.1. Anatomy of Projects
	4.1.2. Lifecycles

	4.2. Build, Deploy, Utilize and Run
	4.2.1. Introduction
	4.2.2. Building
	4.2.2.1. Creating and building a Kie Project
	4.2.2.2. The kmodule.xml file
	4.2.2.3. Building with Maven
	4.2.2.4. Defining a KieModule programmatically
	4.2.2.5. Changing the Default Build Result Severity

	4.2.3. Deploying
	4.2.3.1. KieBase
	4.2.3.2. KieSessions and KieBase Modifications
	4.2.3.3. KieScanner

	4.2.4. Running
	4.2.4.1. KieBase
	4.2.4.2. KieSession
	4.2.4.3. KieRuntime
	4.2.4.3.1. KieRuntime
	4.2.4.3.1.1. Globals

	4.2.4.4. Event Model
	4.2.4.5. KieRuntimeLogger
	4.2.4.6. Commands and the CommandExecutor
	4.2.4.7. StatelessKieSession
	4.2.4.8. Marshalling
	4.2.4.9. Persistence and Transactions

	4.2.5. Build, Deploy and Utilize Examples
	4.2.5.1. Default KieSession
	4.2.5.2. Named KieSession
	4.2.5.3. KieBase Inheritence
	4.2.5.4. Multiple KieBases
	4.2.5.5. KieContainer from KieRepository
	4.2.5.6. Default KieSession from File
	4.2.5.7. Named KieSession from File
	4.2.5.8. KieModule with Dependant KieModule
	4.2.5.9. Programmaticaly build a Simple KieModule with Defaults
	4.2.5.10. Programmaticaly build a KieModule using Meta Models

	4.3. Security
	4.3.1. Security Manager
	4.3.1.1. How to define a KIE Policy

	Part III. Drools Runtime and Language
	Chapter 5. Hybrid Reasoning
	5.1. Artificial Intelligence
	5.1.1. A Little History
	5.1.2. Knowledge Representation and Reasoning
	5.1.3. Rule Engines and Production Rule Systems (PRS)
	5.1.4. Hybrid Reasoning Systems (HRS)
	5.1.5. Expert Systems
	5.1.6. Recommended Reading

	5.2. Rete Algorithm
	5.3. ReteOO Algorithm
	5.4. PHREAK Algorithm

	Chapter 6. User Guide
	6.1. The Basics
	6.1.1. Stateless Knowledge Session
	6.1.2. Stateful Knowledge Session
	6.1.3. Methods versus Rules
	6.1.4. Cross Products

	6.2. Execution Control
	6.2.1. Agenda
	6.2.2. Rule Matches and Conflict Sets.
	6.2.2.1. Cashflow Example
	6.2.2.2. Conflict Resolution
	6.2.2.3. Salience
	6.2.2.4. Agenda Groups
	6.2.2.5. Rule Flow

	6.3. Inference
	6.3.1. Bus Pass Example

	6.4. Truth Maintenance with Logical Objects
	6.4.1. Overview
	6.4.1.1. Bus Pass Example With Inference and TMS
	6.4.1.2. Important note: Equality for Java objects

	6.5. Decision Tables in Spreadsheets
	6.5.1. When to Use Decision Tables
	6.5.2. Overview
	6.5.3. How Decision Tables Work
	6.5.4. Spreadsheet Syntax
	6.5.4.1. Spreadsheet Structure
	6.5.4.2. Rule Set Entries
	6.5.4.3. Rule Tables
	6.5.4.4. Examples

	6.5.5. Creating and integrating Spreadsheet based Decision Tables
	6.5.6. Managing Business Rules in Decision Tables
	6.5.6.1. Workflow and Collaboration
	6.5.6.2. Using spreadsheet features

	6.5.7. Rule Templates

	6.6. Logging

	Chapter 7. Rule Language Reference
	7.1. Overview
	7.1.1. A rule file
	7.1.2. What makes a rule

	7.2. Keywords
	7.3. Comments
	7.3.1. Single line comment
	7.3.2. Multi-line comment

	7.4. Error Messages
	7.4.1. Message format
	7.4.2. Error Messages Description
	7.4.2.1. 101: No viable alternative
	7.4.2.2. 102: Mismatched input
	7.4.2.3. 103: Failed predicate
	7.4.2.4. 104: Trailing semi-colon not allowed
	7.4.2.5. 105: Early Exit

	7.4.3. Other Messages

	7.5. Package
	7.5.1. import
	7.5.2. global

	7.6. Function
	7.7. Type Declaration
	7.7.1. Declaring New Types
	7.7.2. Declaring Metadata
	7.7.2.1. Predefined class level annotations
	7.7.2.1.1. @role(<fact | event>)
	7.7.2.1.2. @typesafe(<boolean>)
	7.7.2.1.3. @timestamp(<attribute name>)
	7.7.2.1.4. @duration(<attribute name>)
	7.7.2.1.5. @expires(<time interval>)
	7.7.2.1.6. @propertyChangeSupport
	7.7.2.1.7. @propertyReactive

	7.7.2.2. Predefined attribute level annotations
	7.7.2.2.1. @key
	7.7.2.2.2. @position

	7.7.3. Declaring Metadata for Existing Types
	7.7.4. Parametrized constructors for declared types
	7.7.5. Non Typesafe Classes
	7.7.6. Accessing Declared Types from the Application Code
	7.7.7. Type Declaration 'extends'
	7.7.8. Traits
	7.7.8.1. Cascading traits

	7.8. Rule
	7.8.1. Rule Attributes
	7.8.2. Timers and Calendars
	7.8.3. Left Hand Side (when) syntax
	7.8.3.1. What is the Left Hand Side?
	7.8.3.2. Pattern (conditional element)
	7.8.3.2.1. What is a pattern?
	7.8.3.2.2. Pattern binding

	7.8.3.3. Constraint (part of a pattern)
	7.8.3.3.1. What is a constraint?
	7.8.3.3.2. Property access on Java Beans (POJO's)
	7.8.3.3.3. Java expression
	7.8.3.3.4. Comma separated AND
	7.8.3.3.5. Binding variables
	7.8.3.3.6. Unification
	7.8.3.3.7. Grouped accessors for nested objects
	7.8.3.3.8. Inline casts and coercion
	7.8.3.3.9. Special literal support
	7.8.3.3.9.1. Date literal

	7.8.3.3.10. List and Map access
	7.8.3.3.11. Abbreviated combined relation condition
	7.8.3.3.12. Special DRL operators
	7.8.3.3.12.1. The operators < <= > >=
	7.8.3.3.12.2. Null-safe dereferencing operator
	7.8.3.3.12.3. The operator matches
	7.8.3.3.12.4. The operator not matches
	7.8.3.3.12.5. The operator contains
	7.8.3.3.12.6. The operator not contains
	7.8.3.3.12.7. The operator memberOf
	7.8.3.3.12.8. The operator not memberOf
	7.8.3.3.12.9. The operator soundslike
	7.8.3.3.12.10. The operator str
	7.8.3.3.12.11. The operators in and not in (compound value restriction)

	7.8.3.3.13. Inline eval operator (deprecated)
	7.8.3.3.14. Operator precedence

	7.8.3.4. Positional Arguments
	7.8.3.5. Fine grained property change listeners
	7.8.3.6. Basic conditional elements
	7.8.3.6.1. Conditional Element and
	7.8.3.6.2. Conditional Element or
	7.8.3.6.3. Conditional Element not
	7.8.3.6.4. Conditional Element exists

	7.8.3.7. Advanced conditional elements
	7.8.3.7.1. Conditional Element forall
	7.8.3.7.2. Conditional Element from
	7.8.3.7.3. Conditional Element collect
	7.8.3.7.4. Conditional Element accumulate
	7.8.3.7.4.1. Accumulate CE (preferred syntax)
	7.8.3.7.4.2. Alternate Syntax: single function with return type
	7.8.3.7.4.3. Accumulate with inline custom code

	7.8.3.8. Conditional Element eval
	7.8.3.9. Railroad diagrams

	7.8.4. The Right Hand Side (then)
	7.8.4.1. Usage
	7.8.4.2. The modify Statement

	7.8.5. Conditional named consequences
	7.8.6. A Note on Auto-boxing and Primitive Types

	7.9. Query
	7.10. Domain Specific Languages
	7.10.1. When to Use a DSL
	7.10.2. DSL Basics
	7.10.3. Adding Constraints to Facts
	7.10.4. Developing a DSL
	7.10.5. DSL and DSLR Reference

	Chapter 8. Complex Event Processing
	8.1. Complex Event Processing
	8.2. Drools Fusion
	8.3. Event Semantics
	8.4. Event Processing Modes
	8.4.1. Cloud Mode
	8.4.2. Stream Mode
	8.4.2.1. Role of Session Clock in Stream mode
	8.4.2.2. Negative Patterns in Stream Mode

	8.5. Session Clock
	8.5.1. Available Clock Implementations
	8.5.1.1. Real Time Clock
	8.5.1.2. Pseudo Clock

	8.6. Sliding Windows
	8.6.1. Sliding Time Windows
	8.6.2. Sliding Length Windows

	8.7. Streams Support
	8.7.1. Declaring and Using Entry Points

	8.8. Memory Management for Events
	8.8.1. Explicit expiration offset
	8.8.2. Inferred expiration offset

	8.9. Temporal Reasoning
	8.9.1. Temporal Operators
	8.9.1.1. After
	8.9.1.2. Before
	8.9.1.3. Coincides
	8.9.1.4. During
	8.9.1.5. Finishes
	8.9.1.6. Finished By
	8.9.1.7. Includes
	8.9.1.8. Meets
	8.9.1.9. Met By
	8.9.1.10. Overlaps
	8.9.1.11. Overlapped By
	8.9.1.12. Starts
	8.9.1.13. Started By

	Part IV. Drools Integration
	Chapter 9. Drools Commands
	9.1. API
	9.1.1. XStream
	9.1.2. JSON
	9.1.3. JAXB
	9.1.3.1. Using an XSD file to define the model
	9.1.3.2. Using a POJO model

	9.2. Commands supported
	9.2.1. BatchExecutionCommand
	9.2.2. InsertObjectCommand
	9.2.3. RetractCommand
	9.2.4. ModifyCommand
	9.2.5. GetObjectCommand
	9.2.6. InsertElementsCommand
	9.2.7. FireAllRulesCommand
	9.2.8. StartProcessCommand
	9.2.9. SignalEventCommand
	9.2.10. CompleteWorkItemCommand
	9.2.11. AbortWorkItemCommand
	9.2.12. QueryCommand
	9.2.13. SetGlobalCommand
	9.2.14. GetGlobalCommand
	9.2.15. GetObjectsCommand

	Chapter 10. CDI
	10.1. Introduction
	10.2. Annotations
	10.2.1. @KRealaseId
	10.2.2. @KContainer
	10.2.3. @KBase
	10.2.4. @KSession for KieSession
	10.2.5. @KSession for StatelessKieSession

	10.3. API Example Comparison

	Chapter 11. Integration with Spring
	11.1. Important Changes for Drools 6.0
	11.2. Integration with Drools Expert
	11.2.1. KieModule
	11.2.2. KieBase
	11.2.2.1. <kie:kbase>'s parameters as attributes:
	11.2.2.2. A kbase tag can contain only the following tags as children.
	11.2.2.3. <kie:kbase>'s definition example

	11.2.3. IMPORTANT NOTE
	11.2.4. KieSessions
	11.2.4.1. <kie:ksession>'s parameters as attributes:

	11.2.5. Event Listeners
	11.2.5.1. Defining Stand alone Listeners:
	11.2.5.1.1. Attributes:
	11.2.5.1.2. Nested Elements:
	11.2.5.1.3. Empty Tag : Declaration with no 'ref' and without a nested bean
	11.2.5.1.4. Mix and Match of different declaration styles
	11.2.5.1.5. Defining multiple listeners of the same type

	11.2.5.2. Defining a Group of listeners:
	11.2.5.2.1. Attributes:
	11.2.5.2.2. Nested Elements:
	11.2.5.2.3. Example:

	11.2.6. Loggers
	11.2.6.1. Defining a console logger:
	11.2.6.2. Defining a file logger:
	11.2.6.2.1. Closing a FileLogger

	11.2.7. Defining Batch Commands
	11.2.8. Persistence

	11.3. Integration with jBPM Human Task
	11.3.1. How to configure Spring with jBPM Human task

	Chapter 12. Apache Camel Integration
	12.1. Camel

	Chapter 13. Drools Camel Server
	13.1. Introduction
	13.2. Deployment
	13.3. Configuration
	13.3.1. REST/Camel Services configuration
	13.3.1.1. RESTful service endpoint creation
	13.3.1.2. Camel Kie Policy & Context creation
	13.3.1.3. Knowledge Services configuration
	13.3.1.4. Test

	Chapter 14. JMX monitoring with RHQ/JON
	14.1. Introduction
	14.1.1. Enabling JMX monitoring in a Drools application
	14.1.2. Installing and running the RHQ/JON plugin

	Part V. Drools Workbench
	Chapter 15. Workbench
	15.1. Installation
	15.1.1. War installation
	15.1.2. Workbench data
	15.1.3. System properties

	15.2. Quick Start
	15.2.1. Add repository
	15.2.2. Add project
	15.2.3. Define Data Model
	15.2.4. Define Rule
	15.2.5. Build and Deploy

	15.3. Configuration
	15.3.1. User management
	15.3.2. Roles
	15.3.2.1. Admin
	15.3.2.2. Analyst
	15.3.2.3. Developer
	15.3.2.4. Business user
	15.3.2.5. Manager/Viewer-only User

	15.3.3. Command line config tool
	15.3.3.1. Modes
	15.3.3.2. Available Commands
	15.3.3.3. How to use

	15.4. Administration
	15.4.1. Administration overview
	15.4.2. Organizational unit
	15.4.3. VFS repository

	15.5. Introduction
	15.5.1. Log in and log out
	15.5.2. Home screen
	15.5.3. Workbench concepts
	15.5.4. Initial layout

	15.6. Changing the layout
	15.6.1. Resizing
	15.6.2. Repositioning

	15.7. Authoring
	15.7.1. Artifact Repository
	15.7.2. Asset Editor
	15.7.3. Project Explorer
	15.7.3.1. Initial view
	15.7.3.2. Different views
	15.7.3.2.1. Project View examples
	15.7.3.2.2. Repository View examples

	15.7.4. Project Editor
	15.7.4.1. Build & Deploy
	15.7.4.2. Project Settings
	15.7.4.2.1. Project General Settings
	15.7.4.2.2. Dependencies
	15.7.4.2.3. Metadata

	15.7.4.3. Knowledge Base Settings
	15.7.4.3.1. Knowledge bases and sessions
	15.7.4.3.1.1. Knowledge base list
	15.7.4.3.1.2. Knowledge base properties
	15.7.4.3.1.3. Knowledge sessions

	15.7.4.3.2. Metadata

	15.7.4.4. Imports
	15.7.4.4.1. Import Suggestions
	15.7.4.4.2. Metadata

	15.7.5. Validation
	15.7.5.1. Problem Panel
	15.7.5.2. On demand validation

	15.7.6. Data Modeller
	15.7.6.1. First steps to create a data model
	15.7.6.2. Entities
	15.7.6.3. Properties & relationships
	15.7.6.4. Additional options
	15.7.6.4.1. Additional entity properties ("Data object tab")
	15.7.6.4.2. Additional field properties ("Field tab")

	15.7.6.5. Generate data model code.
	15.7.6.6. Using external models
	15.7.6.6.1. Dependency to a JAR file in local M2 repository
	15.7.6.6.1.1. Open the Project Editor for current project and select the Dependencies view.
	15.7.6.6.1.2. Click on the "Add" button to add a new dependency line.
	15.7.6.6.1.3. Complete the GAV for the JAR file already installed in local M2 repository.
	15.7.6.6.1.4. Save the project to update its dependencies.

	15.7.6.6.2. Dependency to a JAR file in current "Guvnor M2 repository".
	15.7.6.6.2.1. Open the Maven Artifact Repository editor.
	15.7.6.6.2.2. Browse your local file system and select the JAR file to be uploaded using the Browse button.
	15.7.6.6.2.3. Upload the file using the Upload button.
	15.7.6.6.2.4. Guvnor M2 repository files.
	15.7.6.6.2.5. Provide a GAV for the uploaded file (optional).
	15.7.6.6.2.6. Add dependency from repository.

	15.7.6.6.3. Using the external objects

	15.7.6.7. External changes to models
	15.7.6.7.1. No changes have been undertaken through the application
	15.7.6.7.2. Changes have been undertaken through the application

	15.7.7. Categories Editor
	15.7.7.1. Launching the Categories Editor
	15.7.7.2. Managing Categories
	15.7.7.3. Adding Categories to assets

	Chapter 16. Authoring Assets
	16.1. Creating a package
	16.1.1. Empty package

	16.2. Business rules with the guided editor
	16.2.1. Parts of the Guided Rule Editor
	16.2.2. The "WHEN" (left-hand side) of a Rule
	16.2.2.1. Adding Patterns
	16.2.2.2. Adding constraints

	16.2.3. The "THEN" (right-hand side) of a Rule
	16.2.4. Optional attributes
	16.2.4.1. Salience

	16.2.5. Pattern/Action toolbar
	16.2.6. User driven drop down lists
	16.2.7. Augmenting with DSL sentences
	16.2.8. A more complex example:

	16.3. Templates of assets/rules
	16.3.1. Creating a rule template
	16.3.2. Define the template
	16.3.3. Defining the template data
	16.3.3.1. Cell merging
	16.3.3.2. Cell grouping

	16.3.4. Generated DRL

	16.4. Guided decision tables (web based)
	16.4.1. Types of decision table
	16.4.1.1. Extended Entry
	16.4.1.2. Limited Entry

	16.4.2. Main components\concepts
	16.4.2.1. Navigation
	16.4.2.2. Cell merging
	16.4.2.3. Cell grouping
	16.4.2.4. Operation of "otherwise"
	16.4.2.5. Re-arranging columns

	16.4.3. Defining a web based decision table
	16.4.3.1. Manual creation
	16.4.3.1.1. Column configuration
	16.4.3.1.1.1. Utility columns
	16.4.3.1.1.2. Adding columns
	16.4.3.1.1.3. Simple column types
	16.4.3.1.1.3.1. Metadata
	16.4.3.1.1.3.2. Attributes
	16.4.3.1.1.3.3. Simple Condition
	16.4.3.1.1.3.4. Set the value of a field
	16.4.3.1.1.3.5. Set the value of a field on a new fact
	16.4.3.1.1.3.6. Delete an existing fact

	16.4.3.1.1.4. Advanced column types
	16.4.3.1.1.4.1. Condition BRL fragments
	16.4.3.1.1.4.2. Execute a Work Item
	16.4.3.1.1.4.3. Set the value of a field with a Work Item parameter
	16.4.3.1.1.4.4. Set the value of a field on a new Fact with a Work Item parameter
	16.4.3.1.1.4.5. Action BRL fragment

	16.4.3.2. Using a Wizard
	16.4.3.2.1. Selecting the wizard
	16.4.3.2.2. Summary page
	16.4.3.2.3. Add Fact Patterns page
	16.4.3.2.4. Add Constraints page
	16.4.3.2.5. Add Actions to update facts page
	16.4.3.2.6. Add Actions to insert facts page
	16.4.3.2.7. Columns to expand page

	16.4.4. Rule definition
	16.4.5. Audit Log

	16.5. Spreadsheet decision tables
	16.6. Scorecards
	16.6.1. (a) Setup Parameters
	16.6.2. (b) Characteristics
	16.6.2.1. Creating Characterstics
	16.6.2.2. Creating Attributes

	16.7. Test Scenario
	16.7.1. Given Section
	16.7.2. Expect Section
	16.7.3. Global Section
	16.7.4. New Input Section

	16.8. Functions
	16.9. DSL editor
	16.10. Data enumerations (drop down list configurations)
	16.10.1. Advanced enumeration concepts

	16.11. Technical rules (DRL)

	Chapter 17. Workbench Integration
	17.1. REST
	17.1.1. Job calls
	17.1.2. Repository calls
	17.1.3. Organizational unit calls
	17.1.4. Maven calls

	Chapter 18. Workbench High Availability
	18.1.
	18.1.1. VFS clustering
	18.1.2. jBPM clustering

	Part VI. Drools Examples
	Chapter 19. Examples
	19.1. Getting the Examples
	19.2. Hello World
	19.3. State Example
	19.3.1. Understanding the State Example

	19.4. Fibonacci Example
	19.5. Banking Tutorial
	19.6. Pricing Rule Decision Table Example
	19.6.1. Executing the example
	19.6.2. The decision table

	19.7. Pet Store Example
	19.8. Honest Politician Example
	19.9. Sudoku Example
	19.9.1. Sudoku Overview
	19.9.2. Running the Example
	19.9.3. Java Source and Rules Overview
	19.9.4. Sudoku Validator Rules (validate.drl)
	19.9.5. Sudoku Solving Rules (sudoku.drl)

	19.10. Number Guess
	19.11. Conway's Game Of Life
	19.12. Pong
	19.13. Adventures with Drools
	19.14. Wumpus World
	19.15. Miss Manners and Benchmarking
	19.15.1. Introduction
	19.15.1.1. BenchMarking
	19.15.1.2. Miss Manners Execution Flow
	19.15.1.3. The Data and Results

	19.15.2. In depth Discussion
	19.15.2.1. Cheating
	19.15.2.2. Conflict Resolution
	19.15.2.3. Rule "assignFirstSeat"
	19.15.2.4. Rule "findSeating"
	19.15.2.5. Rules "makePath" and "pathDone"
	19.15.2.6. Rules "continue" and "areWeDone"

	19.15.3. Output Summary

