Drools Expert User Guide

Version 6.0.0.CR1

by The JBoss Drools team [http://www.jboss.org/drools/team.html]

http://www.jboss.org/drools/team.html
http://www.jboss.org/drools/team.html

I a4 o To 1T o 10 Y o PSP 1
1.1. Artificial INtEIlIgENCE e et 1
O Iy [1) (] Y/ 1
1.1.2. Knowledge Representation and ReasONiNgcooveieviiiieiiiiineeiiiiieeeeiien, 2
1.1.3. Rule Engines and Production Rule Systems (PRS)cccooveviiiiiiiiiiiineeennnn, 3
1.1.4. Hybrid Reasoning Systems (HRS)c..iiiiiiiiiiiiiiie e 5
L1.0.5. EXPEIT SYSIBIMS ouiiiiiiiii ittt 8
1.1.6. Recommended REAINGccuuuiiiiiiiieiiiii et 9

1.2. Why usSe a RUIE ENQINE? ...t e e e e e 12
1.2.1. Advantages of @ RUle ENQINEcoouuiiiiiiiiiieii e 13
1.2.2. When should you use a Rule ENQINE?cccooiiiiiiiiiiiiicin e 14
1.2.3. When not to use a Rule ENGINeooiiiiiiiiiiiiicc e 15
1.2.4. Scripting or Process ENQINESuoviiiiiiiiiiiii e e 15
1.2.5. Strong and LOOSE COUPING ...covvuiiiiiiiiiieiiii et 16

1.3. Rete AlGOTtNM .o 16
A © T = U o = PPN 23
N T I g ST 2 7 1T PP 23
2.1.1. Stateless KNowledge SESSIONcccuuiiiiiiiiiiiiiii e 23
2.1.2. Stateful KNnowledge SESSIONcccevniiiiiiiiiii e 26
2.1.3. Methods VErsuUS RUIESiiiiiiiiiici e 31
N I S O (o =R = (o 11 X S PPP 32

A 111 (=1 1= o o = PPN 33
2.2.1. BUuS Pass EXampPlec.ooiiiiiiii e 33

2.3. Truth Maintenance with Logical ODJECLScooeiiiiiiiiiiii e 35
P B O Y= V= PSP 35

2.4. Decision Tables in Spreadsheetscoiiiiiiiiiiiiii e 40
2.4.1. When to Use DecCision Tablesccovuiiiiiiiiiiiiciiee e 41
D © Y= Y1 PP 41
2.4.3. How Decision Tables WOrKcooiuiiiiiiiiiiiiieece e 43
2.4.4. Spreadsheet SYNTAXiviiiiiiiiiiii e 46
2.4.5. Creating and integrating Spreadsheet based Decision Tables 55
2.4.6. Managing Business Rules in Decision Tablescccooiiiiviiiinieiiiiinienen, 56
2.4.7. RUlE TEMPIALEScoviiiiiii i e e e e e 57

2.5, TEMPIALES ..ot 59
2.5.1. The Rule Template Filec.ooiiiiiiii e 60
2.5.2. EXpanding @ TeMPIALEuuiiiiiiiieiiii e 61
2.5.3. EXAMPIE oot 63

2.6. More on building and deployingooceeeiiieiii e 66
2.6.1. Knowledge Base by Configuration Using Changesetsccccocevveevinnnnnn. 66
2.6.2. KNOWIEAQE AGENT ...ttt eeaans 67

2 G o T T 11 o 70
T N o L =T 1= o o] = 73
G 700 I = Y01 o L1 Vo N 73

Drools Expert User Guide

3.1.1. BUIldING USING COUEuiiiiiiiiiiiii et e 73
3.1.2. Building Using Configuration and the ChangeSet XMLcccooevvnennnnn. 78
3.1.3. Changing the Default Build Result SevVerityccciiiiiiiiniiiiiinecennnn, 81

G 37 I 11 o] [0/ T [82
3.2.1. KnowledgePackage and Knowledge Definitionscccooovieiiviinneiininnnnn. 82
3.2.2. KNOWIEAQEBASEuuiiiiieiiii et e e e e e e e 83
3.2.3. In-Process Building and Deploymentcoooeuiiiieiiiiinieiiiieee e 85
3.2.4. Building and Deployment in Separate ProCessSesccooevvvevviieiiineeennnennn. 86
3.2.5. StatefulknowledgeSessions and KnowledgeBase Modifications 87
3.2.6. KNOWIEAGEAGENTeiiiiii e e e e e e eans 87

.30 RUNNING ettt e e e e e eaaans 90
3.3.1. KNOWIEAQEBASEvuiiiiiiiiii e e e 90
3.3.2. StatefulKNOWIEAGESESSIONcccviiiiiiiii et 91
3.3.3. KNOWIEAGERUNLIME ...ouiiiii i e e e e 91
.30 AGENAA .o 99
3.3.5. EVENE MOGEI ..oeiiiiiii e 103
3.3.6. KNowledgeRUNIMELOGUET ... ccieuriiiiiiii et 106
3.3.7. StatelessKnowledgeSesSioNcc.uvviiiiiiiiiiiiiii e 106
3.3.8. Commands and the CommMAandEXECULONccceuuieiiiiiieriiiineeeeiiieeeenns 110
3.3.9. Marshallingccouiiiiiiiiii e 118
3.3.10. Persistence and TranSacCtioNSovveeviiiiiiiieeiire e 120
G0 0 I B (o T F= R @ 1o 1 122

4. Rule Language REFEIENCE ... oo 125
@ Y= TP 125
A0, A TUIE FIlE e 125
4.1.2. What Makes @ TUIEuuiiiiiii e e 126

4.2, KEYWOIUS ...ttt e e et e e ettt e ettt r e ettt r e e ettt r e e e eabreeeanbnreaee 126
G T O] 101 11T 01 T PSPPI 128
4.3.1. Single i@ COMMEBNTuiiiiiie e 128
4.3.2. MUIti-liN@ COMMENE ...\t 129

4.4, EITOr MESSAUEScevuiiitieiti ettt et ettt e et et e e e e e 129
4.4.1. Message fOrmatlc..iiiiiiiiii e 129
4.4.2. Error Messages DeSCHPHONvviiiiiiiiiiiiiieecei e 130
4.4.3. Other MESSATES ...vuiitiieiiii it e et et e e e e e e e e e e e et e e st a e e e aaaaees 134

A5, PACKAGE ... 134
TNt N 11 41 0o) o PPN 135
A.5.2. GIODAI ..ee e 136

T 1 T 1o 1 o PP 137
4.7, TYPE DECIATALIONciiiii et eaaans 138
4.7.1. DeClaring NEW TYPES ..couuuiiiieeiiieeiie et e e e e et e e e e e e e e e e eanaeeees 139
4.7.2. Declaring Metadataloeiieuiiiiiiii e 141
4.7.3. Declaring Metadata for EXIStiNg TYPES ...uvvvviiiiiieiiiieiiii e e eee e e 145
4.7.4. Parametrized constructors for declared typesccccoveviiiniiiiiiinieiiiinnn. 146
4.7.5. NON Typesafe ClaSSEScicivuiiiiiieiiii e e e 146

4.7.6. Accessing Declared Types from the Application Codecccceeeevennnnnn. 146

4.7.7. Type Declaration 'eXtends'ccocvuiiiiiiiiiiiiieii e 148
0 T I -V £ PPN 149

4.8, RUIE oo s 152
4.8.1. RUle ALHIDULES ..oveieee e 153
4.8.2. TIMers and Calendarsovieiiiiiiieeii e 157
4.8.3. Left Hand Side (When) SYNTaXooveiiiiiiiiiiiiiieciiieeceie e 158
4.8.4. The Right Hand Side (then)ooiiiiiiii e 209
4.8.5. A Note on Auto-boxing and Primitive TYPESccoeviiiiiiiiiiiiiiiiieeeeie, 212

e O =T oYU 212
4.10. Domain SPECIfic LANQUAGES ... cceeuriieiiiiiieeeeiii et e et e e ees 215
4.10.1. WHeN t0 USE @ DSL ..uuiiiiiiiiiiiiiii ettt e e e e e 215
O S T =T] [t P 216
4.10.3. Adding Constraints t0 FaCtScccoviiiiiiiiiiiiie e 218
4.10.4. Developing @ DSL ..o 220
4.10.5. DSL and DSLR REfErENCEviiviiiiiiiiiiiieeie e 220
4.11. XML RUIE LANQUAGE ...ttt ettt ettt e e e e e e e enees 224
4.11.1. Legacy Drools 2.x XML rule formatccoeveviieiiiiiiiiiieeie e, 224
4.11.2. WHen t0 USE XML ..euniiiiiiiiiee et eees 224
4.11.3. The XML fOIMALciiiiiiieiiiii e e eeei e 225
4.11.4. Legacy Drools 2.x XML rule formatccoouiiiiiiiiniiiiiecc e 230
4.11.5. Automatic transforming between formats (XML and DRL) 230

5. The Java Rule ENgine API (JSR4) ... 231
Lo I T 1 £ To 11Tt o) o ISP 231
B.2. HOW TO USE .ottt ettt e e e e e e e anas 231
5.2.1. Building and Registering RUIEEXECUtIONSELScccvvviiviiiiiiieiiiiecieeenn, 231
5.2.2. Using Stateful and Stateless RUIESESSIONScevvvvieiiiiiiiiiieiiieeeinns 233

5.3 REFEIEBINCES ...t 235
6. The RUIE IDE (ECHIPSE) .eettiiiiiiiiei ittt ettt e e e et eeeeaa e eees 237
6.1, FEAtUreS OULIINEcoeeiiiiieiii e et e et e e e e e e anan s 238
6.2. DrooIS RUNLIMES ...eeiiiiiii et e e e e ean s 239
6.2.1. Defining a Drools RUNLIMEcoiiiiiiiiii e 239
6.2.2. Selecting a runtime for your Drools projectocoeeviiieiiiinieieiiiineeenennn. 243

6.3. Creating a RUIE ProjeCtciiiiii e 245
6.4. Creating a New Rule and WiIzardscoooieiiiiiiiiiinie e 248
6.5. Textual RUIE EITOroiiiiiiiieiiiii e e e 249
LSRN I o o S =Y S 251
6.6.1. The Working MemOry VIEWccouuiiiiiieiiiiieiiii e ee e e e e e e e e 251
6.6.2. The AQENTA VIBWuuniiiiiiii i 252
6.6.3. The Global Data VIEWoiiiiiiiiiiiiiiie e 252
6.6.4. The AUt VIBW ...iiiiiiii e e e e e ean s 253

6.7. Domain SPeCific LANQUAGEScivieiiii i e e e e e e eeaas 255
6.7.1. Editing [ANQUAGES .. .ccovinieiiiiiieeee e 255

6.8, ThEe REIE VIBW ..ottt e et e e e aa e e e enens 256

Drools Expert User Guide

6.9. Large DRL FlES ..ot 257
6.10. DebUGQING RUIEScouiiii e 258
6.10.1. Creating Breakpointsccoeuuiiiiiiiiiecii e 259
6.10.2. Debugging RUIESccouiiiiii e 259
B.11. PreferEenCeSoieeiiii e e 262
0 == 111 o] =P 265
7.1. Getting the EXAMPIESccoouiiiiiiiiee e 265
7.2, HEHO WO .o e e 265
7.3, StAte EXAMPIE oo 271
7.3.1. Understanding the State EXampleccocoiiiiiiiiiiiiin e, 271

7.4, FibONACCi EXAMPIE ...ooiiiiiii e 278
AT = =T a1 To TR WV o] 1T | 285
7.6. Pricing Rule Decision Table EXample ... 299
7.6.1. Executing the exampleccoooiiiiiiiiii 299
7.6.2. The decision tableccoooiiiiii 300

T7.7. Pet StOre EXAMPIE ...covniiiiiiiii e e 302
7.8. Honest Politician EXampleoooiiiii e 314
7.9. SUAOKU EXAMPIE oeeiiiiii e e 318
7.9.1. SUAOKU OVEIVIEWuiiiieiiiieeie et e e e e e e e e e e e e e e eanaees 319
7.9.2. Running the EXample ..o 319
7.9.3. Java Source and RUIES OVEIVIEWcveiuiiiiiiiiiiiiiiieee e 323
7.9.4. Sudoku Validator Rules (validate.drl)ccoooiiiiiiiiiiii e 324
7.9.5. Sudoku Solving Rules (SUdOKU.AIT)cooeiiiiiiiiii e, 325
7.00. NUMDBDEE GUESS ...uuiiiiiiiiieeiiii ettt e et e e et e e e et e e e et e e aeannns 326
7.11. Conway's Game OFf Lifecviiiiiiii e 333
T.02, PONQ ittt 340
7.13. Adventures With DIOOIScoouiiiiiiii e e 341
714, WUMPUS WO ..o e e 342
7.15. Miss Manners and Benchmarkingcoooooiiiiiiiiiiiii e 345
4% 700 I [11 o To [o 1T o I P 346
7.15.2. 1N depth DISCUSSIONeieeiiiieeiiii ettt e ettt ettt e et e e e ere e eees 349
7.15.3. OULPUL SUMIMATY ...iuiiiiiiie e e e 355

Vi

Drools

Expert

viii

Chapter 1.

Chapter 1. Introduction

1.1. Artificial Intelligence

1.1.1. A Little History

Over the last few decades artificial intelligence (Al) became an unpopular term, with
the well-known "Al Winter" [http://en.wikipedia.org/wiki/Al_winter]. There were large boasts
from scientists and engineers looking for funding, which never lived up to expectations,
resulting in many failed projects. Thinking Machines Corporation [http://en.wikipedia.org/wiki/
Thinking_Machines_Corporation] and the 5th Generation Computer [http://en.wikipedia.org/wiki/
Fifth-generation_computer] (5GP) project probably exemplify best the problems at the time.

Thinking Machines Corporation was one of the leading Al firms in 1990, it had sales of nearly $65
million. Here is a quote from its brochure:

“Some day we will build a thinking machine. It will be a truly intelligent machine. One that can see
and hear and speak. A machine that will be proud of us.”

Yet 5 years later it filed for bankruptcy protection under Chapter 11. The site inc.com has
a fascinating article titled "The Rise and Fall of Thinking Machines" [http://www.inc.com/
magazine/19950915/2622.html]. The article covers the growth of the industry and how a cosy
relationship with Thinking Machines and DARPA [http://en.wikipedia.org/wikiiDARPA] over-
heated the market, to the point of collapse. It explains how and why commerce moved away from
Al and towards more practical number-crunching super computers.

The 5th Generation Computer project was a USD 400 million project in Japan to build a next
generation computer. Valves (or Tubes) was the first generation, transistors the second, integrated
circuits the third and finally microprocessors was the fourth. The fifth was intended to be a machine
capable of effective Artificial Intelligence. This project spurred an "arms" race with the UK and USA,
that caused much of the Al bubble. The 5GP would provide massive multi-cpu parallel processing
hardware along with powerful knowledge representation and reasoning software via Prolog; a
type of expert system. By 1992 the project was considered a failure and cancelled. It was the
largest and most visible commercial venture for Prolog, and many of the failures are pinned on
the problems of trying to run a logic based programming language concurrently on multi CPU
hardware with effective results. Some believe that the failure of the 5GP project tainted Prolog and
resigned it academia, see "Whatever Happened to Prolog” [http://www.dvorak.org/blog/whatever-
happened-to-prolog/] by John C. Dvorak.

However while research funding dried up and the term Al became less used, many green shoots
where planted and continued more quietly under discipline specific names: cognitive systems,
machine learning, intelligent systems, knowledge representation and reasoning. Offshoots of
these then made their way into commercial systems, such as expert systems in the Business
Rules Management System (BRMS) market.

http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://www.inc.com/magazine/19950915/2622.html
http://www.inc.com/magazine/19950915/2622.html
http://www.inc.com/magazine/19950915/2622.html
http://en.wikipedia.org/wiki/DARPA
http://en.wikipedia.org/wiki/DARPA
http://www.dvorak.org/blog/whatever-happened-to-prolog/
http://www.dvorak.org/blog/whatever-happened-to-prolog/
http://www.dvorak.org/blog/whatever-happened-to-prolog/

Chapter 1. Introduction

Imperative, system based languages, languages such as C, C++, Java and C#/.Net have
dominated the last 20 years, enabled by the practicality of the languages and ability to run
with good performance on commodity hardware. However many believe there is renaissance
underway in the field of Al, spurred by advances in hardware capabilities and Al research. In
2005 Heather Havenstein authored "Spring comes to Al winter" [http://www.computerworld.com/
s/article/99691/Spring_comes_to_Al_winter] which outlines a case for this resurgence, which she
refers to as a spring. Norvig and Russel dedicate several pages to what factors allowed the
industry to over come it's problems and the research that came about as a result:

“Recent years have seen a revolution in both the content and the methodology of work in artificial
intelligence. It is now more common to build on existing theories than to propose brand-new ones,
to base claims on rigorous theorems or hard experimental evidence rather than on intuition, and
to show relevance to real-world applications rather than toy examples.” (Artificial Intelligence: A
Modern Approach.)

Computer vision, neural networks, machine learning and knowledge representation and reasoning
(KRR) have made great strides towards becoming practical in commercial environments. For
example, vision-based systems can now fully map out and navigate their environments with
strong recognition skills. As a result we now have self-driving cars about to enter the commercial
market. Ontological research, based around description logic, has provided very rich semantics to
represent our world. Algorithms such as the tableaux algorithm have made it possible to effectively
use those rich semantics in large complex ontologies. Early KRR systems, like Prolog in 5GP,
were dogged by the limited semantic capabilities and memory restrictions on the size of those
ontologies.

1.1.2. Knowledge Representation and Reasoning

In A Little History talks about Al as a broader subject and touches on Knowledge Representation
and Reasoning (KRR) and also Expert Systems, I'll come back to Expert Systems later.

KRR is about how we represent our knowledge in symbolic form, i.e. how we describe something.
Reasoning is about how we go about the act of thinking using this knowledge. System based
object-oriented languages, like C++, Java and C#, have data definitions called classes for
describing the composition and behaviour of modeled entities. In Java we call exemplars of these
described things beans or instances. However those classification systems are limited to ensure
computational efficiency. Over the years researchers have developed increasingly sophisticated
ways to represent our world. Many of you may already have heard of OWL (Web Ontology
Language). There is always a gap between what can be theoretically represented and what can be
used computationally in practically timely manner, which is why OWL has different sub-languages
from Lite to Full. It is not believed that any reasoning system can support OWL Full. Although
each year algorithmic advances try to narrow that gap and improve the expressiveness available
to reasoning engines.

There are also many approaches to how these systems go about thinking. You may have heard
discussions comparing the merits of forward chaining, which is reactive and data driven, with
backward chaining, which is passive and query driven. Many other types of reasoning techniques

http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter
http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter
http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter

Rule Engines and Production Rule Systems (PRS)

exist, each of which enlarges the scope of the problems we can tackle declaratively. To list just a
few: imperfect reasoning (fuzzy logic, certainty factors), defeasible logic, belief systems, temporal
reasoning and correlation. You don't need to understand all these terms to understand and use
Drools. They are just there to give an idea of the range of scope of research topics, which is
actually far more extensive, and continues to grow as researchers push new boundaries.

KRR is often referred to as the core of Artificial Intelligence. Even when using biological
approaches like neural networks, which model the brain and are more about pattern recognition
than thinking, they still build on KRR theory. My first endeavours with Drools were engineering
oriented, as | had no formal training or understanding of KRR. Learning KRR has allowed me to
get a much wider theoretical background. Allowing me to better understand both what I've done
and where I'm going, as it underpins nearly all of the theoretical side to our Drools R&D. It really
is a vast and fascinating subject that will pay dividends for those who take the time to learn. |
know it did and still does for me. Bracham and Levesque have written a seminal piece of work,
called "Knowledge Representation and Reasoning” that is a must read for anyone wanting to build
strong foundations. | would also recommend the Russel and Norvig book "Artificial Intelligence,
a modern approach” which also covers KRR.

1.1.3. Rule Engines and Production Rule Systems (PRS)

We've now covered a brief history of Al and learnt that the core of Al is formed around KRR.
We've shown than KRR is vast and fascinating subject which forms the bulk of the theory driving
Drools R&D.

The rule engine is the computer program that delivers KRR functionality to the developer. At a
high level it has three components:

« Ontology
* Rules
e Data

As previously mentioned the ontology is the representation model we use for our "things". It could
use records or Java classes or full-blown OWL based ontologies. The rules perform the reasoning,
i.e., they facilitate "thinking". The distinction between rules and ontologies blurs a little with OWL
based ontologies, whose richness is rule based.

The term "rules engine" is quite ambiguous in that it can be any system that uses rules, in any form,
that can be applied to data to produce outcomes. This includes simple systems like form validation
and dynamic expression engines. The book "How to Build a Business Rules Engine" (2004) by
Malcolm Chisholm exemplifies this ambiguity. The book is actually about how to build and alter a
database schema to hold validation rules. The book then shows how to generate VB code from
those validation rules to validate data entry. While perfectly valid, this is very different to what we
are talking about.

Chapter 1. Introduction

Drools started life as a specific type of rule engine called a Production Rule System (PRS) and was
based around the Rete algorithm (usually pronounced as two syllables, e.g., REH-te or RAY-tay).
The Rete algorithm, developed by Charles Forgy in 1974, forms the brain of a Production Rule
System and is able to scale to a large number of rules and facts. A Production Rule is a two-part
structure: the engine matches facts and data against Production Rules - also called Productions
or just Rules - to infer conclusions which result in actions.

when

<condi ti ons>
t hen

<actions>;

The process of matching the new or existing facts against Production Rules is called pattern
matching, which is performed by the inference engine. Actions execute in response to changes
in data, like a database trigger; we say this is a data driven approach to reasoning. The actions
themselves can change data, which in turn could match against other rules causing them to fire;
this is referred to asforward chaining

Drools implements and extends the Rete algorithm;. The Drools Rete implementation is called
ReteOO, signifying that Drools has an enhanced and optimized implementation of the Rete
algorithm for object oriented systems. Our more recent work goes well beyond Rete. Other
Rete based engines also have marketing terms for their proprietary enhancements to Rete, like
RetePlus and Rete Ill. The most common enhancements are covered in "Production Matching for
Large Learning Systems" (1995) by Robert B. Doorenbos' thesis, which presents Rete/UL. A PRS
using another algorithm called "Leaps” used to be provided as well, but was retired as it became
unmaintained. The good news is that our research is close to producing an algorithm that merges
the benefits of Leaps with Rete.

The Rules are stored in the Production Memory and the facts that the Inference Engine matches
against are kept in the Working Memory. Facts are asserted into the Working Memory where they
may then be modified or retracted. A system with a large number of rules and facts may result in
many rules being true for the same fact assertion; these rules are said to be in conflict. The Agenda
manages the execution order of these conflicting rules using a Conflict Resolution strategy.

Hybrid Reasoning Systems (HRS)

Inference Engine
{Rete0O0 / Leaps)

Pattern

ﬁ-
Matcher

mory

les)

Agenda

Figure 1.1. High-level View of a Production Rule System

1.1.4. Hybrid Reasoning Systems (HRS)

You may have read discussions comparing the merits of forward chaining (reactive and data
driven) or backward chaining(passive query). Here is a quick explanation of these two main types
of reasoning.

Forward chaining is "data-driven" and thus reactionary, with facts being asserted into working
memory, which results in one or more rules being concurrently true and scheduled for execution
by the Agenda. In short, we start with a fact, it propagates through the rules, and we end in a
conclusion.

Chapter 1. Introduction

Fule
Base ““-.I
A Detarmine
- possible rules to
.-'f fire
Working '
Memory
Conflict Set
L 4
Conflict
. Rule Selact ,
| Fire Rule |~| . Resolution
Found Rule to Fire Strategy
Mo Fule
Found
¥
—Exit If specified by rule s

Figure 1.2. Forward Chaining

Backward chaining is "goal-driven”, meaning that we start with a conclusion which the engine
tries to satisfy. If it can't, then it searches for conclusions that it can satisfy. These are known as
subgoals, that will help satisfy some unknown part of the current goal. It continues this process
until either the initial conclusion is proven or there are no more subgoals. Prolog is an example
of a Backward Chaining engine. Drools can also do backward chaining, which we refer to as
derivation queries.

Hybrid Reasoning Systems (HRS)

retums trua?

Rule
Base “~1
l'-.\ Examine working memaory
e _| and goals to see if goals Working
e . are “"known’” true in Memmory
{ knowledge base
|
Gaal J
I 9
@
=]
£la
2l Retum Do goals
i o True ™ yes match?
R
Al
|2 |
g |= |
8|2 |
3|5 |
m —
| B | Retum
=] F=1 Palee [~ —————1 Mo
a False .
= | (retum false to recursive procedurs)
w |
|
| Detarmine next possible
For each rule | rules to fire by checking
condition, recursively 1 conclusions and goals
backchain with
condition as goal.
Conflict
Fiﬂl:d Resolution
Strategy
Mo Rule
Found
¥ Exit

All rec$

One or maore goals failed, Check next matching rule

als found to be true, axist, retuming true true

L

Figure 1.3. Backward Chaining

Chapter 1. Introduction

Historically you would have to make a choice between systems like OPS5 (forward) or Prolog
(backward). Nowadays many modern systems provide both types of reasoning capabilities. There
are also many other types of reasoning techniques, each of which enlarges the scope of the
problems we can tackle declaratively. To list just a few: imperfect reasoning (fuzzy logic, certainty
factors), defeasible logic, belief systems, temporal reasoning and correlation. Modern systems
are merging these capabilities, and others not listed, to create hybrid reasoning systems (HRS).

While Drools started out as a PRS, 5.x introduced Prolog style backward chaining reasoning
as well as some functional programming styles. For this reason we now prefer the term Hybrid
Reasoning System when describing Drools.

Drools currently provides crisp reasoning, but imperfect reasoning is almost ready. Initially this
will be imperfect reasoning with fuzzy logic; later we'll add support for other types of uncertainty.
Work is also under way to bring OWL based ontological reasoning, which will integrate with our
traits system. We also continue to improve our functional programming capabilities.

1.1.5. Expert Systems

You will often hear the terms expert systems used to refer to production rule systems or Prolog-
like systems. While this is normally acceptable, it's technically incorrect as these are frameworks
to build expert systems with, rather than expert systems themselves. It becomes an expert system
once there is an ontological model to represent the domain and there are facilities for knowledge
acquisition and explanation.

Mycin is the most famous expert system, built during the 70s. It is still heavily covered in academic
literature, such as the recommended book "Expert Systems" by Peter Jackson.

Recommended Reading

Dendral

1970s @@
[Teiresias]f: Emycin] [WM J
[Wheeze] [Clot]
1;805 [Neomycin] [Oncocin}

Figure 1.4. Early History of Expert Systems

1.1.6. Recommended Reading

General Al, KRR and Expert System Books

For those wanting to get a strong theoretical background in KRR and expert systems, I'd strongly
recommend the following books. "Atrtificial Intelligence: A Modern Approach” is a must have, for
anyone's bookshelf.

* Introduction to Expert Systems

» Peter Jackson

» Expert Systems: Principles and Programming

Chapter 1. Introduction

» Joseph C. Giarratano, Gary D. Riley

» Knowledge Representation and Reasoning

* Ronald J. Brachman, Hector J. Levesque

« Artificial Intelligence : A Modern Approach.

» Stuart Russell and Peter Norvig

"~ Expert Systems

EXPERT BRI

| Feler bchrea |

KNOWLEDGE Artificial Inteligence
REPRESENTATION pireleindovien

AND REASONING

Frmald |. Brachman
Hector . Levesque -

itilacel Tl |||.:-r|' o

- I JETRTS % Alisdere Npgrrua
—— st H"" = = vl Lia

Figure 1.5. Recommended Reading

10

Recommended Reading

Papers

Here are some recommended papers that cover interesting areas in rule engine research:

* Production Matching for Large Learning Systems: Rete/UL (1993)
* Robert B. Doorenbos
» Advances In Rete Pattern Matching

e Marshall Schor, Timothy P. Daly, Ho Soo Lee, Beth R. Tibbitts (AAAI 1986)

Collection-Oriented Match
e Anurag Acharya and Milind Tambe (1993)
* The Leaps Algorithm

« Don Batery (1990)

Gator: An Optimized Discrimination Network for Active Database Rule Condition Testing
e Eric Hanson , Mohammed S. Hasan (1993)
Drools Books

There are currently three Drools books, all from Packt Publishing.

» JBoss Drools Business Rules
» Paul Brown

» Drools JBoss Rules 5.0 Developers Guide
+ Michali Bali

» Drools Developer's Cookbook

* Lucas Amador

11

Chapter 1. Introduction

JBoss Drools Business Rules Drools JBoss Rules 3.0
Developer's Guide

Drools Developer's
Cookbook

Lucas Amador IPACRY 12
Figure 1.6. Recommended Reading

1.2. Why use a Rule Engine?

Some frequently asked questions:

1. When should you use a rule engine?

2. What advantage does a rule engine have over hand coded "if...then" approaches?

12

Advantages of a Rule Engine

3. Why should you use a rule engine instead of a scripting framework, like BeanShell?

We will attempt to address these questions below.

1.2.1. Advantages of a Rule Engine

« Declarative Programming
Rule engines allow you to say "What to do", not "How to do it".

The key advantage of this point is that using rules can make it easy to express solutions to
difficult problems and consequently have those solutions verified. Rules are much easier to
read than code.

Rule systems are capable of solving very, very hard problems, providing an explanation of how
the solution was arrived at and why each "decision" along the way was made (not so easy with
other of Al systems like neural networks or the human brain - | have no idea why | scratched
the side of the car).

* Logic and Data Separation

Your data is in your domain objects, the logic is in the rules. This is fundamentally breaking the
OO coupling of data and logic, which can be an advantage or a disadvantage depending on
your point of view. The upshot is that the logic can be much easier to maintain when there are
changes in the future, as the logic is all laid out in rules. This can be especially true if the logic
is cross-domain or multi-domain logic. Instead of the logic being spread across many domain
objects or controllers, it can all be organized in one or more discrete rules files.

» Speed and Scalability

The Rete algorithm,the Leaps algorithm, and their descendants such as Drools' ReteOO,
provide very efficient ways of matching rule patterns to your domain object data. These are
especially efficient when you have datasets that change in small portions as the rule engine
can remember past matches. These algorithms are battle-proven.

 Centralization of Knowledge

By using rules, you create a repository of knowledge (a knowledge base) which is executable.
This means it's a single point of truth, for business policy, for instance. Ideally rules are so
readable that they can also serve as documentation.

* Tool Integration

Tools such as Eclipse (and in future, Web based user interfaces) provide ways to edit and
manage rules and get immediate feedback, validation and content assistance. Auditing and
debugging tools are also available.

» Explanation Facility

13

Chapter 1. Introduction

Rule systems effectively provide an "explanation facility" by being able to log the decisions made
by the rule engine along with why the decisions were made.

* Understandable Rules

By creating object models and, optionally, Domain Specific Languages that model your problem
domain you can set yourself up to write rules that are very close to natural language. They lend
themselves to logic that is understandable to, possibly nontechnical, domain experts as they
are expressed in their language, with all the program plumbing, the technical know-how being
hidden away in the usual code.

1.2.2. When should you use a Rule Engine?

The shortest answer to this is "when there is no satisfactory traditional programming approach to
solve the problem.". Given that short answer, some more explanation is required. The reason why
there is no "traditional" approach is possibly one of the following:

« The problem is just too fiddly for traditional code.
The problem may not be complex, but you can't see a non-fragile way of building a solution for it.
« The problem is beyond any obvious algorithmic solution.

It is a complex problem to solve, there are no obvious traditional solutions, or basically the
problem isn't fully understood.

» The logic changes often

The logic itself may even be simple but the rules change quite often. In many organizations
software releases are few and far between and pluggable rules can help provide the "agility”
that is needed and expected in a reasonably safe way.

» Domain experts (or business analysts) are readily available, but are nontechnical.

Domain experts often possess a wealth of knowledge about business rules and processes. They
typically are nontechnical, but can be very logical. Rules can allow them to express the logic in
their own terms. Of course, they still have to think critically and be capable of logical thinking.
Many people in nontechnical positions do not have training in formal logic, so be careful as you
work with them: by codifying business knowledge in rules, you will often expose holes in the
way the business rules and processes are currently understood.

If rules are a new technology for your project teams, the overhead in getting going must be factored
in. It is not a trivial technology, but this document tries to make it easier to understand.

Typically in a modern OO application you would use a rule engine to contain key parts of your
business logic, especially the really messy parts. This is an inversion of the OO concept of

14

When not to use a Rule Engine

encapsulating all the logic inside your objects. This is not to say that you throw out OO practices,
on the contrary in any real world application, business logic is just one part of the application.
If you ever notice lots of conditional statements such as "if* and "switch", an overabundance of
strategy patterns and other messy logic in your code that just doesn't feel right: that would be a
place for rules. If there is some such logic and you keep coming back to fix it, either because you
got it wrong, or the logic or your understanding changes: think about using rules. If you are faced
with tough problems for which there are no algorithms or patterns: consider using rules.

Rules could be used embedded in your application or perhaps as a service. Often a rule engine
works best as "stateful" component, being an integral part of an application. However, there have
been successful cases of creating reusable rule services which are stateless.

For your organization it is important to decide about the process you will use for updating rules in
systems that are in production. The options are many, but different organizations have different
requirements. Frequently, rules maintenance is out of the control of the application vendors or
project developers.

1.2.3. When not to use a Rule Engine

To quote a Drools mailing list regular:

It seems to me that in the excitement of working with rules engines, that people
forget that a rules engine is only one piece of a complex application or solution.
Rules engines are not really intended to handle workflow or process executions
nor are workflow engines or process management tools designed to do rules. Use
the right tool for the job. Sure, a pair of pliers can be used as a hammering tool
in a pinch, but that's not what it's designed for.

—Dave Hamu

As rule engines are dynamic (dynamic in the sense that the rules can be stored and managed
and updated as data), they are often looked at as a solution to the problem of deploying software.
(Most IT departments seem to exist for the purpose of preventing software being rolled out.) If this
is the reason you wish to use a rule engine, be aware that rule engines work best when you are
able to write declarative rules. As an alternative, you can consider data-driven designs (lookup
tables), or script processing engines where the scripts are managed in a database and are able
to be updated on the fly.

1.2.4. Scripting or Process Engines

Hopefully the preceding sections have explained when you may want to use a rule engine.

Alternatives are script-based engines that provide the drive for "changes on the fly", and there
are many such solutions.

Alternatively Process Engines (also capable of workflow) such as jBPM allow you to graphically
(or programmatically) describe steps in a process. Those steps can also involve decision points

15

Chapter 1. Introduction

which are in themselves a simple rule. Process engines and rules often can work nicely together,
so they are not mutually exclusive.

One key point to note with rule engines is that some rule engines are really scripting engines.
The downside of scripting engines is that you are tightly coupling your application to the scripts. If
they are rules, you are effectively calling rules directly and this may cause more difficulty in future
maintenance, as they tend to grow in complexity over time. The upside of scripting engines is that
they can be easier to implement initially, producing results quickly, and are conceptually simpler
for imperative programmers.

Many people have also implemented data-driven systems successfully in the past (where there
are control tables that store meta-data that changes your applications behavior) - these can work
well when the control can remain very limited. However, they can quickly grow out of control if
extended too much (such that only the original creators can change the applications behavior) or
they cause the application to stagnate as they are too inflexible.

1.2.5. Strong and Loose Coupling

No doubt you have heard terms like "tight coupling" and "loose coupling” in systems design.
Generally people assert that "loose" or "weak" coupling is preferable in design terms, due to the
added flexibility it affords. Similarly, you can have "strongly coupled" and "weakly coupled" rules.
Strongly coupled in this sense means that one rule "firing" will clearly result in another rule firing,
and so on; in other words, there is a clear (probably obvious) chain of logic. If your rules are all
strongly coupled, the chances are that the will turn out to be inflexible, and, more significantly, that
a rule engine is an overkill. A clear chain can be hard coded, or implemented using a Decision
Tree. This is not to say that strong coupling is inherently bad, but it is a point to keep in mind
when considering a rule engine and the way you capture the rules. "Loosely" coupled rules should
result in a system that allows rules to be changed, removed and added without requiring changes
to other, unrelated rules.

1.3. Rete Algorithm

The Rete algorithm was invented by Dr. Charles Forgy and documented in his PhD thesis in
1978-79. A simplified version of the paper was published in 1982 (http://citeseer.ist.psu.edu/
context/505087/0). The latin word "rete" means "net" or "network". The Rete algorithm can be
broken into 2 parts: rule compilation and runtime execution.

The compilation algorithm describes how the Rules in the Production Memory are processed to
generate an efficient discrimination network. In non-technical terms, a discrimination network is
used to filter data as it propagates through the network. The nodes at the top of the network would
have many matches, and as we go down the network, there would be fewer matches. At the very
bottom of the network are the terminal nodes. In Dr. Forgy's 1982 paper, he described 4 basic
nodes: root, 1-input, 2-input and terminal.

16

http://citeseer.ist.psu.edu/context/505087/0
http://citeseer.ist.psu.edu/context/505087/0

Rete Algorithm

ObjectTypeNode ReteMode

AlphaNode

JoinNode
LeftinputAdapterNode

{ \ MotMode
EvalNode

NN X

TerminalNode

Figure 1.7. Rete Nodes

The root node is where all objects enter the network. From there, it immediately goes to the
ObjectTypeNode. The purpose of the ObjectTypeNode is to make sure the engine doesn't do
more work than it needs to. For example, say we have 2 objects: Account and Order. If the rule
engine tried to evaluate every single node against every object, it would waste a lot of cycles. To
make things efficient, the engine should only pass the object to the nodes that match the object
type. The easiest way to do this is to create an ObjectTypeNode and have all 1-input and 2-input
nodes descend from it. This way, if an application asserts a new Account, it won't propagate to
the nodes for the Order object. In Drools when an object is asserted it retrieves a list of valid
ObjectTypesNodes via a lookup in a HashMap from the object's Class; if this list doesn't exist
it scans all the ObjectTypeNodes finding valid matches which it caches in the list. This enables
Drools to match against any Class type that matches with an i nst anceof check.

17

Chapter 1. Introduction

ReteNode

Cheese T~ Person

-.f..

Figure 1.8. ObjectTypeNodes

ObjectTypeNodes can propagate to AlphaNodes, LeftinputAdapterNodes and BetaNodes.
AlphaNodes are used to evaluate literal conditions. Although the 1982 paper only covers equality
conditions, many RETE implementations support other operations. For example, Account . nane
== "M Trout" is a literal condition. When a rule has multiple literal conditions for a single object
type, they are linked together. This means that if an application asserts an Account object, it must
first satisfy the first literal condition before it can proceed to the next AlphaNode. In Dr. Forgy's
paper, he refers to these as IntraElement conditions. The following diagram shows the AlphaNode
combinations for Cheese(name == "cheddar", strength == "strong"):

Cheese

name == “cheddar”

strength == "strong

Figure 1.9. AlphaNodes

18

Rete Algorithm

Drools extends Rete by optimizing the propagation from ObjectTypeNode to AlphaNode using
hashing. Each time an AlphaNode is added to an ObjectTypeNode it adds the literal value as a key
to the HashMap with the AlphaNode as the value. When a new instance enters the ObjectType
node, rather than propagating to each AlphaNode, it can instead retrieve the correct AlphaNode
from the HashMap,thereby avoiding unnecessary literal checks.

There are two two-input nodes, JoinNode and NotNode, and both are types of BetaNodes.
BetaNodes are used to compare 2 objects, and their fields, to each other. The objects may be the
same or different types. By convention we refer to the two inputs as left and right. The left input for
a BetaNode is generally a list of objects; in Drools this is a Tuple. The right input is a single object.
Two Nodes can be used to implement 'exists' checks. BetaNodes also have memory. The left
input is called the Beta Memory and remembers all incoming tuples. The right input is called the
Alpha Memory and remembers all incoming objects. Drools extends Rete by performing indexing
on the BetaNodes. For instance, if we know that a BetaNode is performing a check on a String
field, as each object enters we can do a hash lookup on that String value. This means when facts
enter from the opposite side, instead of iterating over all the facts to find valid joins, we do a lookup
returning potentially valid candidates. At any point a valid join is found the Tuple is joined with the
Object; which is referred to as a partial match; and then propagated to the next node.

19

Chapter 1. Introduction
Cheese Person

name == "cheddar’

Person. favouriteCheese ==
Cheese.name

Figure 1.10. JoinNode
To enable the first Object, in the above case Cheese, to enter the network we use a

LeftinputNodeAdapter - this takes an Object as an input and propagates a single Object Tuple.

Terminal nodes are used to indicate a single rule having matched all its conditions; at this point we
say the rule has a full match. A rule with an 'or' conditional disjunctive connective results in subrule
generation for each possible logically branch; thus one rule can have multiple terminal nodes.

Drools also performs node sharing. Many rules repeat the same patterns, and node sharing allows
us to collapse those patterns so that they don't have to be re-evaluated for every single instance.

The following two rules share the first pattern, but not the last:

rul e
when

nane == "cheddar")
== $cheddar)

Cheese($cheddar :
$person : Person(favouriteCheese

20

Rete Algorithm

t hen
Systemout.println($person.getNane() + " |ikes cheddar");
end
rul e
when
Cheese($cheddar : name == "cheddar")
$person : Person(favouriteCheese != $cheddar)
t hen

Systemout. println($person.getNanme() + " does not |ike cheddar")
end

As you can see below, the compiled Rete network shows that the alpha node is shared, but the
beta nodes are not. Each beta node has its own TerminalNode. Had the second pattern been the
same it would have also been shared.

21

Chapter 1. Introduction

Person

name == “cheddar”

Person. favouriteCheese == |
Cheese.name |
|

/

System.out.printin{ person.getName() + " likes cheddar")
/
)
/S
o
o~

—

Ferson.favouriteCheesea =
Cheesa.name

Figure 1.11. Node Sharing

System.out.printin{ person.getName() + " does not like
cheddar")

Chapter 2.

Chapter 2. User Guide

2.1. The Basics

2.1.1. Stateless Knowledge Session

So where do we get started? There are so many use cases and so much functionality in a
rule engine such as Drools that it becomes beguiling. Have no fear my intrepid adventurer, the
complexity is layered and you can ease yourself into with simple use cases.

Stateless session, not utilising inference, forms the simplest use case. A stateless session can be
called like a function passing it some data and then receiving some results back. Some common
use cases for stateless sessions are, but not limited to:

 Validation
« Is this person eligible for a mortgage?
 Calculation
« Compute a mortgage premium.
* Routing and Filtering
* Filter incoming messages, such as emails, into folders.
» Send incoming messages to a destination.
So let's start with a very simple example using a driving license application.
public class Applicant {
private String nane;
private int age;

private bool ean vali d;
/1 getter and setter nethods here

Now that we have our data model we can write our first rule. We assume that the application uses
rules to reject invalid applications. As this is a simple validation use case we will add a single rule
to disqualify any applicant younger than 18.

package com conpany. | icense

rule "Is of valid age"

23

Chapter 2. User Guide

when

$a : Applicant(age < 18)
t hen

$a.setValid(false);
end

To make the engine aware of data, so it can be processed against the rules, we have to insert
the data, much like with a database. When the Applicant instance is inserted into the engine it
is evaluated against the constraints of the rules, in this case just two constraints for one rule.
We say two because the type Applicant is the first object type constraint, and age < 18 is the
second field constraint. An object type constraint plus its zero or more field constraints is referred
to as a pattern. When an inserted instance satisfies both the object type constraint and all the field
constraints, it is said to be matched. The $a is a binding variable which permits us to reference the
matched object in the consequence. There its properties can be updated. The dollar character ('$")
is optional, but it helps to differentiate variable names from field names. The process of matching
patterns against the inserted data is, not surprisingly, often referred to as pattern matching.

Let's assume that the rules are in the same folder as the classes, so we can use the classpath
resource loader to build our first Know edgeBase. A Knowledge Base is what we call our
collection of compiled definitions, such as rules and processes, which are compiled using the
Knowl edgeBui | der . Both the KnowledgeBuilder and KnowledgeBase can be created from the
factories KnowledgeBuilderFactory and KnowledgeBaseFactory.

Know edgeBui | der kbuil der = Knowl edgeBui | der Fact ory. newkKnow edgeBui | der () ;
kbui | der. add(ResourceFact ory. newCl assPat hResource("licenseApplication.drl",
getd ass()), ResourceType.DRL);
if (kbuilder.hasErrors()) {
Systemerr.println(kbuilder.getErrors().toString());
}
Know edgeBase kbase = Know edgeBaseFact ory. newknow edgeBase() ;
kbase. addkKnow edgePackages(kbuil der. get Know edgePackages());

The above code snippet looks on the classpath for the | i censeAppl i cation. dr! file, using the
method newC assPat hResour ce() . The resource type is DRL, short for "Drools Rule Language".
Once the DRL file has been added we can check the Knowledge Builder object for any errors.
If there are no errors, we can add the resulting packages to our Knowledge Base. Now we are
ready to build our session and execute against some data:

St at el essKnowl edgeSessi on ksessi on = kbase. newSt at el essknow edgeSessi on() ;
Appl i cant applicant = new Applicant("M John Smith", 16);

assertTrue(applicant.isValid());

ksessi on. execute(applicant);

assert Fal se(applicant.isValid());

24

Stateless Knowledge Session

The preceding code executes the data against the rules. Since the applicant is under the age of
18, the application is marked as invalid.

So far we've only used a single instance, but what if we want to use more than one? We can
execute against any object implementing Iterable, such as a collection. Let's add another class
called Appl i cat i on, which has the date of the application, and we'll also move the boolean valid
field to the Appl i cati on class.

public class Applicant {
private String name;
private int age;
/1l getter and setter nethods here

public class Application {
private Date dateAppli ed;
private bool ean valid;
/1 getter and setter nethods here

We can also add another rule to validate that the application was made within a period of time.

package com conpany. | icense

rule "Is of valid age"
when
Applicant(age < 18)
$a : Application()
t hen
$a.setValid(false);
end

rule "Application was made this year"
when
$a : Application(dateApplied > "01-jan-2009")
t hen
$a.setVal id(false)
end

Unfortunately a Java elements does not implement the It er abl e interface, so we have to use
the JDK converter method Arrays. asLi st (...). The code shown below executes against an
iterable list, where all collection elements are inserted before any matched rules are fired.

St at el essknowl edgeSessi on ksessi on = kbase. newSt at el essknow edgeSessi on() ;

25

Chapter 2. User Guide

Applicant applicant = new Applicant("M John Snmith", 16);

Application application = new Application();

assertTrue(application.isValid());

ksessi on. execute(Arrays. asList(new Cbject[] { application, applicant }));
assertFal se(application.isValid());

The two execute methods execut e(Chj ect object) and execute(lterable objects) are
actually convenience methods for the interface Bat chExecutor's method execut e(Command
conmand) .

A ConmmandFactory is used to create commands, so that the following is equivalent to
execute(lterable it):

ksessi on. execut e(CommandFact ory. newi nsertlterabl e(new Object[] { application, applicant }))

Batch Executor and Command Factory are particularly useful when working with multiple
Commands and with output identifiers for obtaining results.

Li st <Conmand> cnds = new ArraylLi st <Command>();

cnds. add(CommandFactory. newl nsert(new Person("M John Smith"), "nmrSmith");

cmds. add(CommandFact ory. newl nsert(new Person("M John Doe"), "nrDoe");

Bat chExecuti onResults results = ksessi on. execut e(ComandFact ory. newBat chExecution(cnds));
assert Equal s(new Person("M John Smith"), results.getValue("nrSmth"));

ComandFact ory supports many other Commands that can be used in the Bat chExecut or like
St art Process, Query, and Set G obal .

2.1.2. Stateful Knowledge Session

Stateful Sessions are longer lived and allow iterative changes over time. Some common use cases
for Stateful Sessions are, but not limited to:
* Monitoring
» Stock market monitoring and analysis for semi-automatic buying.
» Diagnostics
 Fault finding, medical diagnostics
 Logistics
» Parcel tracking and delivery provisioning

e Compliance

26

Stateful Knowledge Session

* Validation of legality for market trades.

In contrast to a Stateless Session, the di spose() method must be called afterwards to ensure
there are no memory leaks, as the Knowledge Base contains references to Stateful Knowledge
Sessions when they are created. St at ef ul Knowl edgeSessi on also supports the Bat chExecut or
interface, like St at el essKnow edgeSessi on, the only difference being that the FireAl | Rul es
command is not automatically called at the end for a Stateful Session.

We illustrate the monitoring use case with an example for raising a fire alarm. Using just four
classes, we represent rooms in a house, each of which has one sprinkler. If a fire starts in a room,
we represent that with a single Fi r e instance.

public class Room {
private String name
/] getter and setter nethods here

}

public class Sprinkler {
private Room room
private bool ean on;
/1l getter and setter nethods here

}

public class Fire {
private Room room
/1l getter and setter nethods here

}

public class Al arm{

}

In the previous section on Stateless Sessions the concepts of inserting and matching against data
were introduced. That example assumed that only a single instance of each object type was ever
inserted and thus only used literal constraints. However, a house has many rooms, so rules must
express relationships between objects, such as a sprinkler being in a certain room. This is best
done by using a binding variable as a constraint in a pattern. This "join" process results in what
is called cross products, which are covered in the next section.

When a fire occurs an instance of the Fi r e class is created, for that room, and inserted into the
session. The rule uses a hinding on the r oomfield of the Fi re object to constrain matching to
the sprinkler for that room, which is currently off. When this rule fires and the consequence is
executed the sprinkler is turned on.

rule "When there is a fire turn on the sprinkler"
when

Fire($room: room

$sprinkler : Sprinkler(room== $room on == false)
t hen

27

Chapter 2. User Guide

nodi fy($sprinkler) { setOn(true) };
Systemout.println("Turn on the sprinkler for room" + $room get Nane());
end

Whereas the Stateless Session uses standard Java syntax to modify a field, in the above rule
we use the nodi fy statement, which acts as a sort of "with" statement. It may contain a series
of comma separated Java expressions, i.e., calls to setters of the object selected by the nodi fy
statement's control expression. This modifies the data, and makes the engine aware of those
changes so it can reason over them once more. This process is called inference, and it's essential
for the working of a Stateful Session. Stateless Sessions typically do not use inference, so the
engine does not need to be aware of changes to data. Inference can also be turned off explicitly
by using the sequential mode.

So far we have rules that tell us when matching data exists, but what about when it does not exist?
How do we determine that a fire has been extinguished, i.e., that there isn't a Fi r e object any
more? Previously the constraints have been sentences according to Propositional Logic, where
the engine is constraining against individual instances. Drools also has support for First Order
Logic that allows you to look at sets of data. A pattern under the keyword not matches when
something does not exist. The rule given below turns the sprinkler off as soon as the fire in that
room has disappeared.

rule "When the fire is gone turn off the sprinkler"

when
$room : Roon()
$sprinkler : Sprinkler(room== $room on == true)
not Fire(room == $room)

t hen

nodi fy($sprinkler) { setOn(false) };
Systemout.println("Turn off the sprinkler for room" + $room get Nane());
end

While there is one sprinkler per room, there is just a single alarm for the building. An Al ar mobject
is created when a fire occurs, but only one Al ar mis needed for the entire building, no matter how
many fires occur. Previously not was introduced to match the absence of a fact; now we use its
complement exi st s which matches for one or more instances of some category.

rule "Rai se the al arm when we have one or nore fires”
when
exists Fire()
t hen
insert(new Alarm());
Systemout.println("Raise the alarm');
end

28

Stateful Knowledge Session

Likewise, when there are no fires we want to remove the alarm, so the not keyword can be used
again.

rule "Cancel the alarmwhen all the fires have gone"
when
not Fire()
$alarm: Alarm)
t hen
retract($alarm);
Systemout.println("Cancel the alarnt);
end

Finally there is a general health status message that is printed when the application first starts
and after the alarm is removed and all sprinklers have been turned off.

rule "Status output when things are ok"
when
not Al arn()
not Sprinkler(on == true)
t hen
Systemout.println("Everything is ok");
end

The above rules should be placed in a single DRL file and saved to some directory on the classpath
and using the file name fireAl arm drl, as in the Stateless Session example. We can then build
a Knowledge Base, as before, just using the new name fireAl arm drl . The difference is that
this time we create a Stateful Session from the Knowledge Base, whereas before we created a
Stateless Session.

Know edgeBui | der kbuil der = Know edgeBui | der Fact ory. newKnow edgeBui | der () ;
kbui | der. add(Resour ceFactory. newCl assPat hResource("fireAlarmdrl", getC ass()),
Resour ceType. DRL);
if (kbuilder.hasErrors()) {
Systemerr.println(kbuilder.getErrors().toString());

}
kbase. addKnow edgePackages(kbuil der. get Know edgePackages());

St at ef ul Knowl edgeSessi on ksessi on = kbase. newSt at ef ul Knowl edgeSessi on() ;

With the session created it is now possible to iteratively work with it over time. Four Roomobjects
are created and inserted, as well as one Spri nkl er object for each room. At this point the engine
has done all of its matching, but no rules have fired yet. Calling ksessi on. fi reAl | Rul es() allows
the matched rules to fire, but without a fire that will just produce the health message.

29

Chapter 2. User Guide

String[] names = new String[]{"kitchen", "bedroont, "office", "livingroon};
Map<Stri ng, Roon® name2room = new HashMap<Stri ng, Roon®();
for(String nanme: names){

Room room = new Roon(nane);

name2r oom put (nane, room);

ksession.insert(room);

Sprinkl er sprinkler = new Sprinkler(room);

ksession.insert(sprinkler);

ksession.fireA |l Rul es();

> Everything is ok

We now create two fires and insert them; this time a reference is kept for the returned Fact Handl e.
A Fact Handle is an internal engine reference to the inserted instance and allows instances to be
retracted or modified at a later point in time. With the fires now in the engine, oncefi r eAl | Rul es()
is called, the alarm is raised and the respective sprinklers are turned on.

Fire kitchenFire = new Fire(nane2room get("kitchen"
Fire officeFire = new Fire(name2roomget("office")

DE

)
)
Fact Handl e ki tchenFireHandl e = ksession.insert(kitchenFire);

Fact Handl e of fi ceFi reHandl e = ksession.insert(officeFire);

ksession.fireAl | Rul es();

> Raise the alarm
> Turn on the sprinkler for roomkitchen
> Turn on the sprinkler for roomoffice

After a while the fires will be put out and the Fi r e instances are retracted. This results in the
sprinklers being turned off, the alarm being cancelled, and eventually the health message is printed
again.

ksession.retract(kitchenFireHandl e);
ksession.retract(officeFireHandl e);

ksession.fireA | Rul es();

30

Methods versus Rules

Cancel the alarm
Turn off the sprinkler for roomoffice
Turn off the sprinkler for roomkitchen
Everything is ok

vV V V V

Everyone still with me? That wasn't so hard and already I'm hoping you can start to see the value
and power of a declarative rule system.

2.1.3. Methods versus Rules

People often confuse methods and rules, and new rule users regular ask, "How do | call a rule?"
After the last section, you are now feeling like a rule expert and the answer to that is obvious, but
let's summarize the differences nonetheless.

public void hell owrl d(Person person) {
if (person.getName().equal s("Chuck")) {
Systemout.printin("Hello Chuck");

Methods are called directly.
» Specific instances are passed.

« One call results in a single execution.

rule "Hello World"

when
Person(name == "Chuck")

t hen
Systemout.println("Hello Chuck");
end

» Rules execute by matching against any data as long it is inserted into the engine.
* Rules can never be called directly.
 Specific instances cannot be passed to a rule.

» Depending on the matches, a rule may fire once or several times, or not at all.

31

Chapter 2. User Guide

2.1.4. Cross Products

Earlier the term "cross product" was mentioned, which is the result of a join. Imagine for a moment
that the data from the fire alarm example were used in combination with the following rule where
there ar no field constraints:

rul e
when

$room : Room()

$sprinkler : Sprinkler()
t hen

Systemout.printlin("room" + $room get Name() +

" sprinkler:" + $sprinkler.getRoom().getNanme());

end

In SQL terms this would be like doing sel ect * from Room Sprinkl er and every row in the
Room table would be joined with every row in the Sprinkler table resulting in the following output:

roomoffice sprinkler:office

room of fi ce sprinkler:kitchen
room of fice sprinkler:livingroom
room of fi ce sprinkl er: bedroom
room kit chen sprinkler:office
room kit chen sprinkl er:kitchen
room ki tchen sprinkler:|ivingroom
room ki t chen spri nkl er: bedroom
room | ivingroom sprinkler:office
room | i vi ngroom spri nkl er: ki tchen
room | i vi ngroom sprinkl er:|ivingroom
room | i vi ngroom spri nkl er: bedroom
room bedr oom sprinkl er: of fice
room bedr oom spri nkl er: ki tchen
room bedroom sprinkl er:1ivi ngroom
room bedr oom spri nkl er : bedr oom

These cross products can obviously become huge, and they may very well contain spurious data.
The size of cross products is often the source of performance problems for new rule authors. From
this it can be seen that it's always desirable to constrain the cross products, which is done with
the variable constraint.

rul e
when
$room : Room()
$sprinkler : Sprinkler(room== $room)

32

Inference

t hen
Systemout.println("room" + $room get Nane() +
" sprinkler:" + $sprinkler.getRoon().getNanme());
end

This results in just four rows of data, with the correct Sprinkler for each Room. In SQL (actually
HQL) the corresponding query would be sel ect * from Room Sprinkler where Room ==

Spri nkl er.room

roomof fice sprinkler:office
room ki t chen sprinkl er:kitchen

room | i vi ngroom sprinkler:|ivingroom
room bedr oom spri nkl er: bedr oom

2.2. Inference

2.2.1. Bus Pass Example

Inference has a bad name these days, as something not relevant to business use cases and
just too complicated to be useful. It is true that contrived and complicated examples occur with
inference, but that should not detract from the fact that simple and useful ones exist too. But more
than this, correct use of inference can crate more agile and less error prone businesses with easier
to maintain software.

So what is inference? Something is inferred when we gain knowledge of something from using
previous knowledge. For example, given a Person fact with an age field and a rule that provides
age policy control, we can infer whether a Person is an adult or a child and act on this.

rule "Infer Adult"

when

$p : Person(age >= 18)
t hen

insert(new IsAdult($p))
end

due to the preceding rule, every Person who is 18 or over will have an instance of IsAdult inserted
for them. This fact is special in that it is known as a relation. We can use this inferred relation
in any rule:

$p : Person()
I sAdul t (person == $p)

33

Chapter 2. User Guide

So now we know what inference is, and have a basic example, how does this facilitate good rule
design and maintenance?

Let's take a government department that are responsible for issuing ID cards when children
become adults, henceforth referred to as ID department. They might have a decision table that
includes logic like this, which says when an adult living in London is 18 or over, issue the card:

able L ~{g 8
CONDITION CONDITION SCTIOMN
p ¢ Person
kocation 208 == 51 EsueldCard! 517
Select Person Select Adults Issue ID Card
Issue ID Card to Adules Londan 18

However the ID department does not set the policy on who an adult is. That's done at a central
government level. If the central government were to change that age to 21, this would initiate a
change management process. Someone would have to liaise with the ID department and make
sure their systems are updated, in time for the law going live.

This change management process and communication between departments is not ideal for an
agile environment, and change becomes costly and error prone. Also the card department is
managing more information than it needs to be aware of with its "monolithic" approach to rules
management which is "leaking" information better placed elsewhere. By this | mean that it doesn't
care what explicit "age >= 18" information determines whether someone is an adult, only that they
are an adult.

In contrast to this, let's pursue an approach where we split (de-couple) the authoring
responsibilities, so that both the central government and the ID department maintain their own
rules.

It's the central government's job to determine who is an adult. If they change the law they just
update their central repository with the new rules, which others use:

CONDITION ACTION
p i Person
age == 51 insert] 51)
Adult Age Policy Add Adult Relation
Infer Adult 13
new [sAdult(p)

The IsAdult fact, as discussed previously, is inferred from the policy rules. It encapsulates the
seemingly arbitrary piece of logic "age >= 18" and provides semantic abstractions for its meaning.

34

Truth Maintenance with Logical Objects

Now if anyone uses the above rules, they no longer need to be aware of explicit information that
determines whether someone is an adult or not. They can just use the inferred fact:

aD|e 1 =gt
CONDITION CONDITION ACTION
p : Person Isfdult
location person == $1 issweldCand] %1]
Select Person Select Adults Issue ID Card
Issue ID Card to Adults London p

While the example is very minimal and trivial it illustrates some important points. We started with a
monolithic and leaky approach to our knowledge engineering. We created a single decision table
that had all possible information in it and that leaks information from central government that the
ID department did not care about and did not want to manage.

We first de-coupled the knowledge process so each department was responsible for only what it
needed to know. We then encapsulated this leaky knowledge using an inferred fact IsAdult. The
use of the term IsAdult also gave a semantic abstraction to the previously arbitrary logic "age >=
18"

So a general rule of thumb when doing your knowledge engineering is:

* Bad
» Monolithic
* Leaky
» Good
» De-couple knowledge responsibilities
» Encapsulate knowledge

» Provide semantic abstractions for those encapsulations
2.3. Truth Maintenance with Logical Objects

2.3.1. Overview

After regular inserts you have to retract facts explicitly. With logical assertions, the fact that was
asserted will be automatically retracted when the conditions that asserted it in the first place are
no longer true. Actually, it's even cleverer then that, because it will be retracted only if there isn't
any single condition that supports the logical assertion.

35

Chapter 2. User Guide

Normal insertions are said to be stated, i.e., just like the intuitive meaning of "stating a fact" implies.
Using a HashMap and a counter, we track how many times a particular equality is stated; this
means we count how many different instances are equal.

When we logically insert an object during a RHS execution we are said to justify it, and it is
considered to be justified by the firing rule. For each logical insertion there can only be one equal
object, and each subsequent equal logical insertion increases the justification counter for this
logical assertion. A justification is removed by the LHS of the creating rule becoming untrue, and
the counter is decreased accordingly. As soon as we have no more justifications the logical object
is automatically retracted.

If we try to logically insert an object when there is an equal stated object, this will fail and return
null. If we state an object that has an existing equal object that is justified we override the Fact;
how this override works depends on the configuration setting WM BEHAVI OR_PRESERVE. When the
property is set to discard we use the existing handle and replace the existing instance with the
new Object, which is the default behavior; otherwise we override it to stated but we create an
new Fact Handl e.

This can be confusing on a first read, so hopefully the flow charts below help. When it says that it
returns a new Fact Handl e, this also indicates the Obj ect was propagated through the network.

36

Overview

Is there an
existing Equal
Object?

Return new
FactHandle

yes

Return new

FactHandle

JUSTIFIED

Crerride JUSTIFIED,
and set to STATED,
set existing handle to
fhe new Ohject,

Discard Logical
Assertion?

no

!

yes

Is the Ofject
STATED or

JUSTIFED?

Return existing

STATED FactHandle.

JUSTIFIED

Override JUSTIFIED
and set to STATED,
resnove justifications
and retum existing
FactHandle

Cwemide JUSTIFIED
and set to STATED,
remove justifications
and return existing
FactHandle

Figure 2.1. Stated Insertion

37

Chapter 2. User Guide

Add first
justification and

Is there an
existing Equal

return mews Ghjact?

FactHandle

yES

Can't Justify a
STATED fact,
return null. JUSTIFE?

JUSTIFIED

Add first
justification and

retuUrm e
FactHandle

Figure 2.2. Logical Insertion

[oes the Object
already exist?

yes

Can't Justify a

& the Object

STATED o STATED 2:' Lf;: iiﬁfg
JUSTIFED? FaciHandle,

JUSTIFIED

Add additional
justification and

return existing
FactHandle

2.3.1.1. Bus Pass Example With Inference and TMS

The previous example was issuing ID cards to over 18s, in this example we now issue bus passes,

either a child or adult pass.

rule "lssue Child Bus Pass" when
$p : Person(age < 16)
t hen
i nsert (new Chil dBusPass($p));
end

rule "lIssue Adult Bus Pass" when
$p : Person(age >= 16)

t hen
i nsert (new Adul t BusPass($p));

38

Overview

end

As before the above example is considered monolithic, leaky and providing poor separation of
concerns.

As before we can provide a more robust application with a separation of concerns using inference.
Notice this time we don't just insert the inferred object, we use "insertLogical":

rule "Infer Child" when

$p : Person(age < 16)
t hen

i nsertLogical (new IsChild($p))
end
rule "Infer Adult" when

$p : Person(age >= 16)
t hen

i nsertLogical (new IsAdult($p))
end

A "insertLogical" is part of the Drools Truth Maintenance System (TMS). Here the fact is logically
inserted, this fact is dependant on the truth of the "when" clause. It means that when the rule
becomes false the fact is automatically retracted. This works particularly well as the two rules are
mutually exclusive. So in the above rules if the person is under 16 it inserts an IsChild fact, once
the person is 16 or over the IsChild fact is automatically retracted and the IsAdult fact inserted.

We can now bring back in the code to issue the passes, these two can also be logically inserted,
as the TMS supports chaining of logical insertions for a cascading set of retracts.

rule "lIssue Child Bus Pass" when
$p : Person()
I sChild(person == $p)
t hen
i nsert Logi cal (new Chi | dBusPass($p))
end

rule "lIssue Adult Bus Pass" when
$p : Person(age >= 16)
I sAdul t (person =$p)
t hen
i nsert Logi cal (new Adul t BusPass($p));
end

Now when the person changes from being 15 to 16, not only is the IsChild fact automatically
retracted, so is the person's ChildBusPass fact. For bonus points we can combine this with the

39

Chapter 2. User Guide

‘not' conditional element to handle notifications, in this situation a request for the returning of the
pass. So when the TMS automatically retracts the ChildBusPass object, this rule triggers and
sends a request to the person:

rule "Return Chil dBusPass Request "when
$p : Person()
not (Chi |l dBusPass(person == $p))
t hen
request Chi | dBusPass($p);
end

2.3.1.2. Lazy Truth Maintenance

You no longer need to enable or disable truth maintenance, via the kbase configuration. It is
now handled automatically and turned on only when needed. This was done along with the code
changes so that all entry points use the same code, previous to this the default entry point and
named entry points used different code, to avoid TMS overhead for event processing.

2.3.1.3. Important note: Equality for Java objects

It is important to note that for Truth Maintenance (and logical assertions) to work at all, your
Fact objects (which may be JavaBeans) must override equals and hashCode methods (from
java.lang.Object) correctly. As the truth maintenance system needs to know when two different
physical objects are equal in value, both equals and hashCode must be overridden correctly, as
per the Java standard.

Two objects are equal if and only if their equals methods return true for each other and if their
hashCode methods return the same values. See the Java API for more details (but do keep in
mind you MUST override both equals and hashCode).

TMS behaviour is not affected by theruntime configuration of Identity vs Equality, TMS is always
equality.

2.4. Decision Tables in Spreadsheets

Decision tables are a "precise yet compact” (ref. Wikipedia) way of representing conditional logic,
and are well suited to business level rules.

Drools supports managing rules in a spreadsheet format. Supported formats are Excel (XLS),
and CSV, which means that a variety of spreadsheet programs (such as Microsoft Excel,
OpenOffice.org Calc amongst others) can be utilized. It is expected that web based decision table
editors will be included in a near future release.

Decision tables are an old concept (in software terms) but have proven useful over the years. Very
briefly speaking, in Drools decision tables are a way to generate rules driven from the data entered

40

When to Use Decision Tables

into a spreadsheet. All the usual features of a spreadsheet for data capture and manipulation can
be taken advantage of.

2.4.1. When to Use Decision Tables

Consider decision tables as a course of action if rules exist that can be expressed as rule templates
and data: each row of a decision table provides data that is combined with a template to generate
arule.

Many businesses already use spreadsheets for managing data, calculations, etc. If you are happy
to continue this way, you can also manage your business rules this way. This also assumes you are
happy to manage packages of rules in . x| s or . csv files. Decision tables are not recommended
for rules that do not follow a set of templates, or where there are a small number of rules (or if there
is a dislike towards software like Excel or OpenOffice.org). They are ideal in the sense that there
can be control over what parameters of rules can be edited, without exposing the rules directly.

Decision tables also provide a degree of insulation from the underlying object model.

2.4.2. Overview

Here are some examples of real world decision tables (slightly edited to protect the innocent).

@ Microsoft Excel - TeamAllocationExample_TYPICAL_EXAMPLE.xls g@
E‘ﬂ File Edit View Insert Format Tools Data Window Help Typeaquestionforhep = - & x
g v = = 5 .0 i [3 - A~ B
;Lz];Tahoma ~ 7 v|I H|==ﬁ|$ % s <0 By v A
B17 - # Catastrophic Claim
] ™
T B | C | D | E
£
Type of New Claim Is case catastrophic Allocation code Claim 1
16
17 Catastrophic Claim v
New Claim with previous Accident num 2
18
Previous Open claim 1 P
19
20 Dependency Claim [
21 Dependency Claim 3
22 Interstate Claim A
23 Interstate Claim 1]
24 Interstate Claim M |
o5 Interstate Claim 5 5 _v |
M 4 » w[\Tables, Lsts / < »
Ready NUM

41

Chapter 2. User Guide

mer Allocate to Team Stop processing Log reason
Team Red)]]
Stop processing The claim was catastrophic
i'f TeamaAllocationExample_TYPICAL_EXAMPLE - OpenOffice.org Calc Q@
File Edit View Insert Format Tools Data Window Help x
BrslaREBSRIVE LBRF SHH Sy BMOorpEQ @
i byd |Tahoma v |7 v~ BT U =|=|== b%sn W EEO-9 A
B17 v f = = |Catastruph|c Claim
:'| A
2
1lz] B [[[p) [E F [G [
4 8
4
16 Type of New Claim 1Is case catastrophic Allocation code Claim Type | Insurance Class |Date of accident is after Da
17 Catastrophic Claim v
18 lew Claim with previous Accident| 2
19 Previous Open claim 1 P
20 Dependency Claim 8
21 Dependency Claim 9
22 Interstate Claim A
23 Interstate Claim D
24 Interstate Claim N
25 Interstate Claim s
26 Interstate Claim T il
', Tables / Lists / ¢ >
Sheet1/2 PageStyle_Tables 100% STD Sum=0

In the above examples, the technical aspects of the decision table have been collapsed away
(using a standard spreadsheet feature).

The rules start from row 17, with each row resulting in a rule. The conditions are in columns C, D,
E, etc., the actions being off-screen. The values in the cells are quite simple, and their meaning
is indicated by the headers in Row 16. Column B is just a description. It is customary to use color
to make it obvious what the different areas of the table mean.

Note

Note that although the decision tables look like they process top down, this is not
necessarily the case. Ideally, rules are authored without regard for the order of
rows, simply because this makes maintenance easier, as rows will not need to be
shifted around all the time.

As each row is a rule, the same principles apply. As the rule engine processes the facts, any rules
that match may fire. (Some people are confused by this. It is possible to clear the agenda when a

42

How Decision Tables Work

rule fires and simulate a very simple decision table where only the first match effects an action.)
Also note that you can have multiple tables on one spreadsheet. This way, rules can be grouped
where they share common templates, yet at the end of the day they are all combined into one rule
package. Decision tables are essentially a tool to generate DRL rules automatically.

1 I 2 [3 | 4 | 5 I B

Module
RuleSet Control Cajas[1]

1.validarAperturaCaja (Caja, Registro Estado Sucursal, Transacdon)

Prioridades de

ID_Caso de Uso| Caso de Uso Identificadores de las Reglas las Reghs Nombres de las Reglas Descripciones
1
Esta Regla tiene por Mision Validar que la sucursal de k
se encuentre abierta
ValidarAperturaCajasucursal
1 2000 P] Trabaja sobre la Caja que se intenta abrir, la Sucurs:

Abiert: .
era corresponde a esa caja y la Transaccion de Ca;

L] apertura

Esta Regla tiene por Mision Validar que en la sucursal
caja se encuentre abierta para la misma fecha de ape
ValdarAperturaCajaMismaFe |de la caja.

2 2000

cha Trabaja sobre la Caja que se intenta abrir, la Sucursz
corresponde a esa caja y la Transaccion de Ca
i apertura
6
7
[l 2.validarCierreCajasSucursal(Registro Estado Sucursal, TransaccionCaja)
ID_Caso de Uso| Caso de Uso Identificadores de las Reglas Pns;u:::;fsde Nombres de las Reglas Descripciones
2
Esta Regla tiene por Misidn Valdar que al moment
C_PRSC_503 efectuarse el Clerre Conta?le de una sucursal de FOI
C_PRSC_504 1 1000 ValidarCierreCajassucursal todas las Cajas de esta (iftima se encuentren en E
C_PRSC 513 Cerrado, es decir la Fecha de Cierre de Caja debe ser

a la Fecha de cierre de la entidad Registro_Cierre_Suc

3.validarTransaccionCaja(Caja, Transacdon_Caja)

RuleTable[3] ValidarTransaccdonCaja(CajaVO caja, MovimientoCajaVO movimientoCaja)
ID_Casode Uso Caso de Uso Identificador Nombre

2.4.3. How Decision Tables Work

The key point to keep in mind is that in a decision table each row is a rule, and each column in
that row is either a condition or action for that rule.

. Ta
11z B | c | D | E | F | G
Type of New Claim Is case catastrophic Allocation code Insurance Class Date of accident is after
16
Catastrophic Claim
17 ¥
New Claim with previous Accident num z
I
Each row results in a rule
. L
7
)
21 Dependency Claim
22 Interstate Claim
23 Interstate Claim
24 Interstate Claim
95 Interstate Claim i 4
M 4 » »]\Tables Lists / | < 2l

The spreadsheet looks for the RuleTable keyword to indicate the start of a rule table (both the
starting row and column). Other keywords are also used to define other package level attributes
(covered later). It is important to keep the keywords in one column. By convention the second
column ("B") is used for this, but it can be any column (convention is to leave a margin on the
left for notes). In the following diagram, C is actually the column where it starts. Everything to the
left of this is ignored.

43

Chapter 2. User Guide

If we expand the hidden sections, it starts to make more sense how it works; note the keywords
in column C.

IntegrationExampleTest — OpenOffice.org Calc

File Edit View |Insert Format Tools Data Window Help X
. . 3
B-elia FEES TY KB 2 @b 2 [
B (Tahoma [AEE EEEEE duews s @6
G17 -] fo 2 = |
Al2| B | c | D E [[=
Fi
8
ﬂ) RulaSet Some business rules
10 mp ort org.drools.decisiontable. Cheese, org.drools. decfl |
L= | s |
2
- [15 RuleTable Cheesetans | |
14 CONDITION COMDITION ACTION [
15 Person Cheese list
16
(descriptions) ange [ty pe add(Fparam”)
17 Case Persons age Cheese type Log |
18 o1 guy 42 stilton 0ld man stilton
19 Young guy
21 cheddar Young man cheddar
20
_'_I 21 hariahle; java.util List list]
22 =1
E] L
Tables { Lists 1] 4] [I |
Sheet 1/ 2 PageStyle_Tables 100% STD Sum=0 Average=

Now the hidden magic which makes it work can be seen. The RuleSet keyword indicates the name
to be used in the rule package that will encompass all the rules. This name is optional, using a
default, but it must have the RuleSet keyword in the cell immediately to the right.

The other keywords visible in Column C are Import and Sequential which will be covered later. The
RuleTable keyword is important as it indicates that a chunk of rules will follow, based on some rule
templates. After the RuleTable keyword there is a name, used to prefix the names of the generated
rules. The sheet name and row numbers are appended to guarantee unique rule names.

Warning

The RuleTable name combined with the sheet name must be unique across all
spreadsheet files in the same KnowledgeBase. If that's not the case, some rules
might have the same name and only 1 of them will be applied. To show such
ignored rules, raise the severity of such rule name conflicts.

The column of RuleTable indicates the column in which the rules start; columns to the left are
ignored.

44

How Decision Tables Work

@ Note
In general the keywords make up name-value pairs.

Referring to row 14 (the row immediately after RuleTable), the keywords CONDITION and
ACTION indicate that the data in the columns below are for either the LHS or the RHS parts of a
rule. There are other attributes on the rule which can also be optionally set this way.

Row 15 contains declarations of ObjectTypes. The content in this row is optional, but if this option
is not in use, the row must be left blank; however this option is usually found to be quite useful.
When using this row, the values in the cells below (row 16) become constraints on that object type.
In the above case, it generates Per son(age=="42") and Cheese(type=="stilton"), where 42
and "stilton" come from row 18. In the above example, the "=="is implicit; if just a field name is
given the translator assumes that it is to generate an exact match.

@ Note
An ObjectType declaration can span columns (via merged cells), meaning that all
columns below the merged range are to be combined into one set of constraints
within a single pattern matching a single fact at a time, as opposed to non-merged
cells containing the same ObjectType, but resulting in different patterns, potentially
matching different or identical facts.

Row 16 contains the rule templates themselves. They can use the "$param" placeholder to
indicate where data from the cells below should be interpolated. (For multiple insertions, use "$1",
"$2", etc., indicating parameters from a comma-separated list in a cell below.) Row 17 is ignored;
it may contain textual descriptions of the column'’s purpose.

Rows 18 and 19 show data, which will be combined (interpolated) with the templates in row 15, to
generate rules. If a cell contains no data, then its template is ignored. (This would mean that some
condition or action does not apply for that rule row.) Rule rows are read until there is a blank row.
Multiple RuleTables can exist in a sheet. Row 20 contains another keyword, and a value. The row
positions of keywords like this do not matter (most people put them at the top) but their column
should be the same one where the RuleTable or RuleSet keywords should appear. In our case
column C has been chosen to be significant, but any other column could be used instead.

In the above example, rules would be rendered like the following (as it uses the "ObjectType" row):

//row 18
rul e "Cheese_fans_18"
when

Per son(age=="42")
Cheese(type=="stilton")
t hen

45

Chapter 2. User Guide

list.add("A d man stilton");
end

@ Note
The constraints age=="42" and type=="stilton" are interpreted as single
constraints, to be added to the respective ObjectType in the cell above. If the cells
above were spanned, then there could be multiple constraints on one "column®.

Warning

Very large decision tables may have very large memory requirements.

2.4.4. Spreadsheet Syntax

2.4.4.1. Spreadsheet Structure

There are two types of rectangular areas defining data that is used for generating a DRL file. One,
marked by a cell labelled Rul eSet , defines all DRL items except rules. The other one may occur
repeatedly and is to the right and below a cell whose contents begin with Rul eTabl e. These areas
represent the actual decision tables, each area resulting in a set of rules of similar structure.

A Rule Set area may contain cell pairs, one below the Rul eSet cell and containing a keyword
designating the kind of value contained in the other one that follows in the same row.

The columns of a Rule Table area define patterns and constraints for the left hand sides of the
rules derived from it, actions for the consequences of the rules, and the values of individual rule
attributes. Thus, a Rule Table area should contain one or more columns, both for conditions and
actions, and an arbitrary selection of columns for rule attributes, at most one column for each of
these. The first four rows following the row with the cell marked with Rul eTabl e are earmarked
as header area, mostly used for the definition of code to construct the rules. It is any additional
row below these four header rows that spawns another rule, with its data providing for variations
in the code defined in the Rule Table header.

All keywords are case insensitive.

Only the first worksheet is examined for decision tables.

2.4.4.2. Rule Set Entries

Entries in a Rule Set area may define DRL constructs (except rules), and specify rule attributes.
While entries for constructs may be used repeatedly, each rule attribute may be given at most
once, and it applies to all rules unless it is overruled by the same attribute being defined within
the Rule Table area.

46

Spreadsheet Syntax

Entries must be given in a vertically stacked sequence of cell pairs. The first one contains a
keyword and the one to its right the value, as shown in the table below. This sequence of cell
pairs may be interrupted by blank rows or even a Rule Table, as long as the column marked by
Rul eSet is upheld as the one containing the keyword.

Table 2.1. Entries in the Rule Set area

Keyword Value Usage

RuleSet The package name for the Must be First entry.
generated DRL file. Optional,
the defaultisrul e_t abl e.

Sequential "true" or "false". If "true", then Optional, at most once. If
salience is used to ensure that omitted, no firing order is
rules fire from the top down. imposed.

EscapeQuotes "true" or "false". If "true", then Optional, at most once. If

guotation marks are escaped omitted, quotation marks are
so that they appear literally in escaped.

the DRL.

Import A comma-separated list of Optional, may be used
Java classes to import. repeatedly.

Variables Declarations of DRL globals, Optional, may be used

i.e., a type followed by a repeatedly.
variable name. Multiple global

definitions must be separated

with a comma.

Functions One or more function Optional, may be used
definitions, according to DRL repeatedly.
syntax.

Queries One or more query definitions, Optional, may be used
according to DRL syntax. repeatedly.

Declare One or more declarative types, Optional, may be used
according to DRL syntax. repeatedly.

Warning

In some locales, MS Office, LibreOffice and OpenOffice will encode a double quoth
" differently, which will cause a compilation error. The difference is often hard to
see. For example: “ A” will fail, but " A" will work.

For defining rule attributes that apply to all rules in the generated DRL file you can use any of the
entries in the following table. Notice, however, that the proper keyword must be used. Also, each
of these attributes may be used only once.

47

Chapter 2. User Guide

Table 2.2. Rule attribute entries in the Rule Set area

Keyword
PRIORITY

Initial

P

Value

An integer defining the
"salience" value for the
rule. Overridden by the
"Sequential” flag.

DURATION

A long integer value defining
the "duration" value for the
rule.

TIMER

A timer definition. See "Timers
and Calendars".

CALENDARS

NO-LOOP

LOCK-ON-ACTIVE

AUTO-FOCUS

A calendars definition. See
"Timers and Calendars".

A Boolean value. "true"
inhibits looping of rules due
to changes made by its
conseqguence.

A Boolean value. "true" inhibits
additional activations of all
rules with this flag set within
the same ruleflow or agenda
group.

A Boolean value. "true" for a
rule within an agenda group
causes activations of the rule
to automatically give the focus
to the group.

ACTIVATION-GROUP

A string identifying an
activation (or XOR) group.
Only one rule within an
activation group will fire, i.e.,
the first one to fire cancels any
existing activations of other
rules within the same group.

AGENDA-GROUP

A string identifying an agenda
group, which has to be
activated by giving it the
"focus”, which is one way of
controlling the flow between
groups of rules.

48

Spreadsheet Syntax

Keyword Initial Value
RULEFLOW-GROUP R A string identifying a rule-flow
group.

2.4.4.3. Rule Tables

All Rule Tables begin with a cell containing "RuleTable", optionally followed by a string within the
same cell. The string is used as the initial part of the name for all rules derived from this Rule
Table, with the row number appended for distinction. (This automatic naming can be overridden
by using a NAME column.) All other cells defining rules of this Rule Table are below and to the
right of this cell.

The next row defines the column type, with each column resulting in a part of the condition or
the consequence, or providing some rule attribute, the rule name or a comment. The table below
shows which column headers are available; additional columns may be used according to the table
showing rule attribute entries given in the preceding section. Note that each attribute column may
be used at most once. For a column header, either use the keyword or any other word beginning
with the letter given in the "Initial" column of these tables.

Table 2.3. Column Headers in the Rule Table

Keyword Initial Value Usage

NAME N Provides the name At mostone column
for the rule generated
from that row. The
default is constructed
from the text following
the RuleTable tag and
the row number.

DESCRIPTION I A text, resulting in a At most one column
comment within the
generated rule.

CONDITION C Code snippet and At least one per rule
interpolated values table
for constructing a
constraint within a
pattern in a condition.

ACTION A Code snippet and At least one per rule
interpolated values for table
constructing an action
for the consequence
of the rule.

METADATA @ Code snippet and Optional, any number
interpolated values of columns

49

Chapter 2. User Guide

Keyword Initial Value Usage
for constructing a
metadata entry for the
rule.

Given a column headed CONDITION, the cells in successive lines result in a conditional element.

e Text in the first cell below CONDITION develops into a pattern for the rule condition, with
the snippet in the next line becoming a constraint. If the cell is merged with one or more
neighbours, a single pattern with multiple constraints is formed: all constraints are combined
into a parenthesized list and appended to the text in this cell. The cell may be left blank, which
means that the code snippet in the next row must result in a valid conditional element on its own.

To include a pattern without constraints, you can write the pattern in front of the text for another
pattern.

The pattern may be written with or without an empty pair of parentheses. A "from" clause may
be appended to the pattern.

If the pattern ends with "eval", code snippets are supposed to produce boolean expressions for
inclusion into a pair of parentheses after "eval".

» Text in the second cell below CONDITION is processed in two steps.

1. The code snippet in this cell is modified by interpolating values from cells farther down in
the column. If you want to create a constraint consisting of a comparison using "==" with
the value from the cells below, the field selector alone is sufficient. Any other comparison
operator must be specified as the last item within the snippet, and the value from the cells
below is appended. For all other constraint forms, you must mark the position for including
the contents of a cell with the symbol $par am Multiple insertions are possible by using the
symbols $1, $2, etc., and a comma-separated list of values in the cells below.

A text according to the pattern f or al | (delimiter) { snippet} is expanded by repeating the
snippet once for each of the values of the comma-separated list of values in each of the cells
below, inserting the value in place of the symbol $ and by joining these expansions by the
given delimiter. Note that the forall construct may be surrounded by other text.

2. If the cell in the preceding row is not empty, the completed code snippet is added to the
conditional element from that cell. A pair of parentheses is provided automatically, as well as
a separating comma if multiple constraints are added to a pattern in a merged cell.

If the cell above is empty, the interpolated result is used as is.

e Textin the third cell below CONDITION is for documentation only. It should be used to indicate
the column's purpose to a human reader.

« From the fourth row on, non-blank entries provide data for interpolation as described above. A
blank cell results in the omission of the conditional element or constraint for this rule.

50

Spreadsheet Syntax

Given a column headed ACTION, the cells in successive lines result in an action statement.

« Textin the first cell below ACTION is optional. If present, it is interpreted as an object reference.
« Textin the second cell below ACTION is processed in two steps.

1. The code snippet in this cell is modified by interpolating values from cells farther down in the
column. For a singular insertion, mark the position for including the contents of a cell with
the symbol $par am Multiple insertions are possible by using the symbols $1, $2, etc., and a
comma-separated list of values in the cells below.

A method call without interpolation can be achieved by a text without any marker symbols.
In this case, use any non-blank entry in a row below to include the statement.

The forall construct is available here, too.

2. If the first cell is not empty, its text, followed by a period, the text in the second cell and a
terminating semicolon are stringed together, resulting in a method call which is added as an
action statement for the consequence.

If the cell above is empty, the interpolated result is used as is.

» Text in the third cell below ACTION is for documentation only. It should be used to indicate the
column's purpose to a human reader.

« From the fourth row on, non-blank entries provide data for interpolation as described above. A
blank cell results in the omission of the action statement for this rule.

: Note
i

Using $1 instead of $par amworks in most cases, but it will fail if the replacement
text contains a comma: then, only the part preceding the first comma is inserted.
Use this "abbreviation" judiciously.

Given a column headed METADATA, the cells in successive lines result in a metadata annotation
for the generated rules.

» Text in the first cell below METADATA is ignored.

« Textin the second cell below METADATA is subject to interpolation, as described above, using
values from the cells in the rule rows. The metadata marker character @is prefixed automatically,
and thus it should not be included in the text for this cell.

« Textin the third cell below METADATA is for documentation only. It should be used to indicate
the column's purpose to a human reader.

51

Chapter 2. User Guide

« From the fourth row on, non-blank entries provide data for interpolation as described above. A
blank cell results in the omission of the metadata annotation for this rule.

2.4.4.4. Examples

The various interpolations are illustrated in the following example.

Example 2.1. Interpolating cell data
If the template is Foo(bar == $paran) and the cell is 42, then the result is Foo(bar == 42).

If the template is Foo(bar < $1, baz == $2) and the cell contains 42, 43, the result will be
Foo(bar < 42, baz ==43).

The template foral | (&) {bar != $} with a cell containing 42, 43 results in bar !'= 42 &&
bar != 43.

The next example demonstrates the joint effect of a cell defining the pattern type and the code
snippet below it.

RuleTable Cheese fans
15 [Person
16
lage ¥pe
17 Persons age Cheese type
18 ;
42 stilton
15
21 cheddar

This spreadsheet section shows how the Per son type declaration spans 2 columns, and thus both
constraints will appear as Person(age == ..., type == ...). Since only the field names are
present in the snippet, they imply an equality test.

In the following example the marker symbol $par amis used.

52

Spreadsheet Syntax

[CONDITION
Person

_|pge=="§param’

Persons age

42
The result of this column is the pattern Per son(age == "42")). You may have noticed that the
marker and the operator "==" are redundant.

The next example illustrates that a trailing insertion marker can be omitted.

[CONDITION 1
Person

Persons age

42

Here, appending the value from the cell is implied, resulting in Per son(age < "42")).

You can provide the definition of a binding variable, as in the example below. .

53

Chapter 2. User Guide

W

c: Cheese

type

Cheese type

stilton

Here, the result is c: Cheese(type == "stilton"). Note that the quotes are provided
automatically. Actually, anything can be placed in the object type row. Apart from the definition of
a binding variable, it could also be an additional pattern that is to be inserted literally.

A simple construction of an action statement with the insertion of a single value is shown below.

ACTION

list.add("$ param®);

Log

Old man stilton

The cell below the ACTION header is left blank. Using this style, anything can be placed in
the consequence, not just a single method call. (The same technique is applicable within a
CONDITION column as well.)

Below is a comprehensive example, showing the use of various column headers. It is not an error
to have no value below a column header (as in the NO-LOOP column): here, the attribute will not
be applied in any of the rules.

54

Creating and integrating Spreadsheet based Decision Tables

1

2 org acme insurance base
3 import impart org.acme.insurance.base.Approve, import org.acme.insurance base. Driver
4 Package org.acme.insurance. base
[
7
8

org.acme.insurance base

RuleTahle Otd Driver)

CONDITION CONDITION RULEFLOW-GROUP NO-LOOP ACTION ACTION

Sdriver: Driver

9 iptions) ficenceYears priorClaims insertinew Apprave("Sparam"l);

10hase T ek b

1L d guy 30 1 risk asssssment Safe and matura ©ld driver Approved

And, finally, here is an example of Import, Variables and Functions.

[Control Cajas[1]

Import foo.Bar, bar.Baz

Variables Parameters parametros, RulesResult resultado,
EvalDate fecha

Functions function boolean isRango(int iValor, int iRangoInicio, T

int iRangoFinal) {
if (iRangolnicio <= iValor && iValor <= iRangoFinal)
return true;
return false;

¥

function boolean isIgualTipo(TipoVO tipoVO, int
p_ftipo, boolean isMNull) {

if (tipovO == null)

return isMull;

return tipoV0.getSecuendia().intValue() == p_tipo;
¥

Multiple package names within the same cell must be separated by a comma. Also, the pairs of
type and variable names must be comma-separated. Functions, however, must be written as they
appear in a DRL file. This should appear in the same column as the "RuleSet" keyword; it could
be above, between or below all the rule rows.

@ Note
It may be more convenient to use Import, Variables, Functions and Queries
repeatedly rather than packing several definitions into a single cell.

2.4.5. Creating and integrating Spreadsheet based Decision
Tables

The API to use spreadsheet based decision tables is in the drools-decisiontables module. There
is really only one class to look at: Spreadsheet Conpi | er. This class will take spreadsheets in
various formats, and generate rules in DRL (which you can then use in the normal way). The
Spr eadsheet Conpi | er can just be used to generate partial rule files if it is wished, and assemble

55

Chapter 2. User Guide

it into a complete rule package after the fact (this allows the separation of technical and non-
technical aspects of the rules if needed).

To get started, a sample spreadsheet can be used as a base. Alternatively, if the plug-in is being
used (Rule Workbench IDE), the wizard can generate a spreadsheet from a template (to edit it an
xls compatible spreadsheet editor will need to be used).

‘*'fv :ﬁ;v@v%v étﬂ’@’

| New Rule Project d
New Rule resource

MNew Domain Specific Language
New Decision Table

1 N s

2.4.6. Managing Business Rules in Decision Tables

2.4.6.1. Workflow and Collaboration

Spreadsheets are well established business tools (in use for over 25 years). Decision tables lend
themselves to close collaboration between IT and domain experts, while making the business
rules clear to business analysts, it is an ideal separation of concerns.

Typically, the whole process of authoring rules (coming up with a new decision table) would be
something like:

1. Business analyst takes a template decision table (from a repository, or from IT)

2. Decision table business language descriptions are entered in the table(s)

3. Decision table rules (rows) are entered (roughly)

4. Decision table is handed to a technical resource, who maps the business language
(descriptions) to scripts (this may involve software development of course, if it is a new
application or data model)

5. Technical person hands back and reviews the modifications with the business analyst.

6. The business analyst can continue editing the rule rows as needed (moving columns around
is also fine etc).

7. In parallel, the technical person can develop test cases for the rules (liaising with business
analysts) as these test cases can be used to verify rules and rule changes once the system
is running.

2.4.6.2. Using spreadsheet features

Features of applications like Excel can be used to provide assistance in entering data into
spreadsheets, such as validating fields. Lists that are stored in other worksheets can be used to
provide valid lists of values for cells, like in the following diagram.

56

Rule Templates

3
w
A ~
—n -
—N L
—5 |
T
—y -
_w —
— v‘_

Some applications provide a limited ability to keep a history of changes, but it is recommended to
use an alternative means of revision control. When changes are being made to rules over time,
older versions are archived (many open source solutions exist for this, such as Subversion or Git).

2.4.7. Rule Templates

Related to decision tables (but not necessarily requiring a spreadsheet) are "Rule Templates” (in
the drools-templates module). These use any tabular data source as a source of rule data -
populating a template to generate many rules. This can allow both for more flexible spreadsheets,
but also rules in existing databases for instance (at the cost of developing the template up front
to generate the rules).

With Rule Templates the data is separated from the rule and there are no restrictions on which
part of the rule is data-driven. So whilst you can do everything you could do in decision tables
you can also do the following:

 store your data in a database (or any other format)

conditionally generate rules based on the values in the data
« use data for any part of your rules (e.g. condition operator, class name, property name)
« run different templates over the same data

As an example, a more classic decision table is shown, but without any hidden rows for the rule
meta data (so the spreadsheet only contains the raw data to generate the rules).

Ccase Persons age Cheese type Log
old
il] 42 stilton Qld man stilton
Y oung guy
21 cheddar ¥oung man cheddar

57

Chapter 2. User Guide

See the Exanpl eCheese. x| s in the examples download for the above spreadsheet.

If this was a regular decision table there would be hidden rows before row 1 and between rows
1 and 2 containing rule metadata. With rule templates the data is completely separate from the
rules. This has two handy consequences - you can apply multiple rule templates to the same data
and your data is not tied to your rules at all. So what does the template look like?

1 tenplate header

2 age

3 type

4 |og

5

6 package org.drool s. exanpl es. t enpl at es;
7

8 global java.util.List list;

9

10 tenpl ate "cheesef ans"

11

12 rul e "Cheese fans_@row. r omNunber}"
13 when

14 Person(age == @ age})

15 Cheese(type == "@type}")

16 then

17 list.add("@!og}");

18 end

19

20 end tenpl ate

Annotations to the preceding program listing:

Line 1: All rule templates start with t enpl at e header.

« Lines 2-4: Following the header is the list of columns in the order they appear in the data. In
this case we are calling the first column age, the second t ype and the third | og.

 Line 5: An empty line signifies the end of the column definitions.

 Lines 6-9: Standard rule header text. This is standard rule DRL and will appear at the top of the
generated DRL. Put the package statement and any imports and global and function definitions
into this section.

e Line 10: The keyword t enpl at e signals the start of a rule template. There can be more than
one template in a template file, but each template should have a unique name.

e Lines 11-18: The rule template - see below for details.

 Line 20: The keywords end t enpl at e signify the end of the template.

58

Templates

The rule templates rely on MVEL to do substitution using the syntax @{token_name}. There is
currently one built-in expression, @{row.rowNumber} which gives a unique number for each row of
data and enables you to generate unique rule names. For each row of data a rule will be generated
with the values in the data substituted for the tokens in the template. With the example data above
the following rule file would be generated:

package org. drool s. exanpl es. t enpl at es;
gl obal java.util.List list;

rul e "Cheese fans_1"

when
Person(age == 42)
Cheese(type == "stilton")
t hen
list.add("A d man stilton");
end

rul e "Cheese fans_2"

when

Per son(age == 21)

Cheese(type == "cheddar")
t hen

|'ist.add("Young man cheddar");
end

The code to run this is simple:

Deci si onTabl eConfi gurati on dtabl econfiguration =
Know edgeBui | der Fact ory. newDeci si onTabl eConfi guration();
dt abl econfi gurati on. set | nput Type(Deci si onTabl el nput Type. XLS);

Know edgeBui | der kbui | der = Know edgeBui | der Fact ory. newkKnow edgeBui | der () ;
kbui | der. add(ResourceFact ory. newCl assPat hResour ce(get Spreadsheet Nane()
getd ass()),

Resour ceType. DTABLE,
dt abl econfiguration);

2.5. Templates

If you discover that you have a group of rules following the same arrangement of patterns,
constraints and actions on the RHS, differing only in constants or names for objects or fields, you

59

Chapter 2. User Guide

might think of employing Drools's rule template feature for generating the actual rules. You would
write a rule template file, containing the textual skeleton of your rule and use the Drools template
compiler in combination with a collection of objects providing the actual values for the "flesh” of
the rules for their instantiation.

The mechanism is very similar to what a macro processor does. The major advantage proffered by
template expansion is that it's nicely integrated in the overall handling of Knowledge Resources.

Caution

This is an experimental feature. In particular, the API is subject to change.

2.5.1. The Rule Template File

A rule template file begins with a header defining the placeholders, or formal template parameters
for the strings that are to be inserted during instantiation. After the first line, which invariably
contains t enpl at e header, you should write a number of lines, each of which contains a single
parameter name.

Example 2.2. Rule template file: template header

tenpl at e header
par anet er - nanme- 1

par anet er - nane- n

The template header is followed by the text that is to be replicated and interpolated with the actual
parameters. It may begin with a package statement, followed by some additional lines. These may
be sectioned into one or more templates, each of them between a pair of matching t enpl at e and
end t enpl at e statements. The t enpl at e takes an argument, which puts a name to the template.
The name can be a simple unquoted name or an arbitrary string enclosed in double quotes. The
template text between these lines may contain one or more rules, constituting the "raw material"
for the expansion.

Example 2.3. Rule template file: templates

tenpl at e header
par anet er - nanme- 1

par anet er - nane- n

60

Expanding a Template

package ... /1 optional
header text /1 optional
tenpl ate tenpl at e- nanme

/1 tenpl ate text

end tenpl ate

The resulting text will begin with the package line and the header text following it, if present. Then,
each template text will be expanded individually, yielding one set of rules for each of the actual
parameter sets. Therefore, the structure of the template sections affect the order of the generated
rules, since the generator iterates over the sections and then over the set of actual parameters.

Any interpolation takes place between a pair of t enpl at e and end t enpl at e statements, when
this template is expanded. The template text is scanned for occurrences of parameter expansions
written according to:

@ par anet er - nane}

The name between '@{' and '} should be one of the parameter names defined in the template
header. The substitution is effected anywhere, even within string literals.

An important parameter is available without having to be included in the data source providing
the actual values. The parameter substitution @ r ow. r owNunber} expands to the integers 0, 1, 2,
etc., providing a unique distinction for the instantiation derived from a parameter set. You would
use this as part of each rule name, because, without this precaution, there would be duplicate rule
names. (You are, of course, free to use your own identification included as an extra parameter.)

2.5.2. Expanding a Template

To expand a template, you must prepare a data source. This can be a spreadsheet, as explained
in the previous section. Here, we'll concentrate on expansion driven by Java objects. There
are two straightforward ways of supplying values for a fixed set of names: Java objects, in the
JavaBeans style, and Maps. Both of them can be arranged in a Col | ect i on, whose elements will
be processed during the expansion, resulting in an instantiation for each element.

2.5.2.1. Instantiation from Java Objects

You may use a Java object that provides getter methods corresponding to all of the parameter
names of your template file. If, for instance, you have defined a header

tenpl at e header

61

Chapter 2. User Guide

type
limt
wor d

the following Java class could be used:

public class Parantet {
Il ..

public ParanSet(String t, int |, boolean w) {
/...

}

public String getType(){...}

public int getLimt(){...}

public boolean iswrd(){...}

Although interpolation is pure text manipulation, the actual values supplied may be of any type, just
as long as this type provides areasonable t oSt ri ng() method. (For simple types, the eponymous
static method of the related class from j ava. | ang is used.)

Assuming that we have created a Col | ect i on<Par antet > for a template file t enpl ate. drl , we
can now proceed to request its expansion.

Col | ecti on<Par anSet > paranBSets = new ArraylLi st <Par anSet >() ;
/'l popul at e paranftet s
par anBSet s. add(new Par antet ("Foo", 42, true));
paranSet s. add(new ParanBet("Bar", 13, false));
oj ect Dat aConpi | er converter = new Obj ect Dat aConpi |l er () ;
| nput Stream t enpl at eStream =

this.getd ass().get ResourceAsStream "tenplate.drl”);
String drl = converter.conpile(objs, tenplateStream);

The resulting string contains the expanded rules text. You could write it to a file and proceed as
usual, but it's also possible to feed this to a Knowl edgeBui | der and continue with the resulting
Knowledge Packages.

Knowl edgeBase ki eBaseMbdel = Know edgeBaseFact ory. newknow edgeBase() ;

Know edgeBui | der kBui |l der = Knowl edgeBui | der Fact ory. newkKnow edgeBui | der () ;
Reader rdr = new StringReader(drl);

kBui | der. add(Resour ceFact ory. newReader Resource(rdr), ResourceType.DRL);
i f(kBuilder.hasErrors()){

62

Example

I/
throw new ||| egal St at eException("DRL errors");

}
ki eBaseMbdel . addKnow edgePackages(kBui |l der. get Knowl edgePackages());

2.5.2.2. Instantiation from Maps

A Map that provides the values for substituting template parameters should have a (string) key
set matching all of the parameter names. Again, values could be from any class, as long as they
provide a good t oSt ri ng() method. The expansion would use the same approach, just differing
in the way the map collection is composed.

Col | ecti on<Map<Stri ng, Cbj ect >> par amvaps = new ArraylLi st <Map<Stri ng, Obj ect >>();
/'l popul at e paramivaps
Obj ect Dat aConpi | er converter = new Obj ect Dat aConpi |l er();
| nput Stream t enpl at eStream =
this.getd ass().get ResourceAsStream “"tenplate.drl”);
String drl = converter.conpile(objs, tenplateStream);

2.5.3. Example

The following example illustrates template expansion. It is based on simple objects of class I t em
containing a couple of integer fields and an enumfield of type I t enCode.

public class Item{
Il
public Item(String n, int p, int w, ItenCode ¢){...}

public String getNane() {...}

public int getWight() {...}
public int getPrice() {...}
public ItenCode getCode() {...}

}

public enum I tenCode {
LOCK,
STOCK,
BARREL ;

The rule template contains a single rule. Notice that the field name for the range test is a parameter,
which enables us to instantiate the template for different fields.

63

Chapter 2. User Guide

tenpl at e header
field
| ower

upper
codes

package range
templ ate "i nRange”
rule "is in range @row. rowNunber}"
when
Item($nane : nane, $v : @field} >= @lower} & & <= @upper}, $code
code @ codes})

t hen

Systemout.printin("ltem " + $name + " @field} in range: " + $v + "
code: " + $code);
end

end tenpl ate

The next code snippet is from the application, where several parameter sets have to be set up.
First, there is class Par anBet , for storing a set of actual parameters.

public class ParanBet {
Il ..
private EnunBet<l|temCode> codeSet ;

public ParanSet(String f, int |, int u, EnunBet<|tenCode> cs){...}

public String getField() { return field; }
public int getLower() { return |ower; }
public int getUpper() { return upper; }

public String getCodes(){
StringBuil der sb = new StringBuilder();
String conn = "";
for(lItenCode ic: codeSet)({
sb. append(conn).append(" == ItenCode.").append(ic);
conn =" ||";

}

return sh.toString()

64

Example

Note that the method get Codes() does returns the Enunset <I t enCode> field value as a Stri ng
value representing a multiple restriction, i.e., a test for one out of a list of values.

The task of expanding a template, passing the resulting DRL text to a Knowledge Builder and
adding the resulting Knowledge Packages to a Knowledge Base is generic. The utility class
Expander takes care of this, using a Knowledge Base, the | nput St r eamwith the rule template
and the collection of parameter sets.

public class Expander {

public void expand(Know edgeBase ki eBaseModel, InputStreamis, Collection<?> act)
throws Exception {
bj ect Dat aConpi | er converter = new Obj ect Dat aConpi |l er () ;
String drl = converter.conpile(act, is);

Know edgeBui | der kBui |l der = Know edgeBui | der Fact ory. newKnow edgeBui | der () ;
Reader rdr = new StringReader(drl);
kBui | der . add(Resour ceFact ory. newReader Resource(rdr), ResourceType.DRL);
i f(kBuilder.hasErrors()){
for(Know edgeBuil derError err: kBuilder.getErrors()){
Systemerr.printin(err.toString());
}

throw new ||| egal St at eException("DRL errors");

}
ki eBaseMbdel . addKnow edgePackages(kBui | der. get Knowl edgePackages());

We are now all set to prepare the Knowledge Base with some generated rules. First, we define
several parameter sets, constructed as Par anBet objects, and add them to a Li st, which is
passed to the expand method shown above. Then we launch a stateful session, insert afew |t em
and watch what happens.

Col | ecti on<Parantet> cfl = new Arrayli st <ParanSet >();
cfl.add(new ParanSet ("weight", 10, 99, EnunSet.of (ItemCode. LOCK, |tenCode. STOCK)));
cfl.add(new Parantet ("price", 10, 50, Enuntet.of(ItenCode. BARREL)));

Know edgeBase ki eBaseMbdel = Know edgeBaseFact ory. newkKnow edgeBase() ;
Expander ex = new Expander();

I nput Stream dis = new Fil el nput Strean(new File("rangeTenp.drl"));
ex. expand(ki eBaseMddel , dis, cfl);

St at ef ul Knowl edgeSessi on sessi on = ki eBaseModel . newsSt at ef ul Knowl edgeSessi on() ;
session.insert(new ltem("A", 130, 42, ltenCode.LOCK));

65

Chapter 2. User Guide

session.insert(new Iten("B", 44, 100, ItenCode. STOCK))
session.insert(new Iten("C', 123, 180, ItenCode. BARREL));
session.insert(new ltenm("D', 85, 9, ltenCode. LOCK));

session.fireAl |l Rul es();

Notice that the two resulting rules deal with different fields, one with an item's weight, the other
one with its price. - Below is the output.

Item E price in range: 25 code: BARREL
Item A weight in range: 42 code: LOCK

2.6. More on building and deploying

2.6.1. Knowledge Base by Configuration Using Changesets

So far, the programmatic API has been used to build a Knowledge Base. Quite often it's more
desirable to do this via configuration. To facilitate this, Drools supports the "Changeset” feature.
The file changeset . xm contains a list of resources, and it may also point recursively to another
changeset XML file. Currently there is no XML schema for the changeset XML, but we hope to
add one soon. A few examples will be shown to give you the gist of things. A resource approach is
employed that uses a prefix to indicate the protocol. All the protocols provided by j ava. net . URL,
such as "file" and "http", are supported, as well as an additional "classpath”. Currently the type
attribute must always be specified for a resource, as it is not inferred from the file name extension.
Here is a simple example that points to a http location for some rules.

<change-set xm ns="http://drools. org/drool s-5.0/ change-set"'
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena- i nst ance’
xs: schemalLocation="http://drool s. org/drool s-5. 0/ change-

set http://anonsvn. j boss. org/ repos/ | abs/| abs/j bossrul es/trunk/drool s-api/src/
mai n/ resour ces/ change-set-1.0. 0. xsd" >

<add>

<resource source="'http: org/domain/nyrules.drl' type='DRL'" />
</ add>
</ change- set >

To use the above XML, the code is almost identical as before, except we change the resource
type to CHANGE_SET.

Knowl edgeBui | der kbuil der = Knowl edgeBui | der Fact ory. newkKnow edgeBui | der () ;

kbui | der. add(Resour ceFact ory. newCl asspat hResour ce("nyChangeSet.xm ", getd ass()

66

Knowledge Agent

Resour ceType. CHANGE_SET) ;
if (kbuilder.hasErrors()) {
Systemerr.println(builder.getErrors().toString());

Changesets can include any number of resources, and they even support additional configuration
information, which currently is only needed for decision tables. The example below is expanded
to load the rules from a http URL location, and an Excel decision table from the classpath.

<change-set xm ns="http://drool s. org/drool s-5. 0/ change-set"'
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena- i nst ance’
xs:schemalLocati on="http://drool s. org/drool s-5. 0/ change-
set.xsd http://anonsvn.jboss. org/repos/|abs/| abs/jbossrul es/trunk/drool s-api/
src/ mai n/ resour ces/ change-set-1.0.0. xsd' >
<add>
<resource source='http:org/domain/nyrules.drl' type='"DRL'" />
<resource sour ce=' cl asspat h: dat a/
I nt egr ati onExanpl eTest. xl s' type="DTABLE">
<deci si ont abl e-conf input-type="XLS" worksheet - nane="Tabl es_2" />
</ resource>
</ add>
</ change- set >

It is also possible to specify a directory, to add the contents of that directory. It is expected that all
the files are of the specified type, since type is not yet inferred from the file name extensions.

<change-set xm ns='http://drools.org/drool s-5. 0/ change- set"'
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena- i nst ance'
xs: schemalLocati on='"http://drool s. org/drool s-5. 0/ change-

set.xsd http://anonsvn.] boss. org/repos/|abs/| abs/jbossrul es/trunk/drool s-api/
src/ mai n/ resour ces/ change-set-1.0.0. xsd'" >

<add>

<resource source='file://nyfolder/' type='DRL' />
</ add>
</ change- set >

2.6.2. Knowledge Agent

The Knowledge Agent provides automatic loading, caching and re-loading of resources and is
configured from a properties files. The Knowledge Agent can update or rebuild this Knowledge
Base as the resources it uses are changed. The strategy for this is determined by the configuration
given to the factory, but it is typically pull-based using regular polling. We hope to add push-based
updates and rebuilds in future versions.

67

Chapter 2. User Guide

Know edgeAgent kagent = Know edgeAgent Fact ory. newKnow edgeAgent ("M/Agent");
kagent . appl yChangeSet (Resour ceFactory. newUr | Resource(url));
Knowl edgeBase kbase = kagent. get Know edgeBase();

A Knowl edgeAgent object will continuously scan all the added resources, using a default polling
interval of 60 seconds and, when some last modification date is updated, it will applied the
changes into the cached Knowledge Base using the new resources. Note that the previous
Know edgeBase reference will still exist and you'll have to call get Know edgeBase() to access
the newly built Knowl edgeBase. If a directory is specified as part of the change set, the entire
contents of that directory will be scanned for changes. The way modifications are applied depends
on drool s. agent . newl nst ance property present in the KnowledgeAgentConfiguration object
passed to the agent.

For polling to occur, the polling and notifier services must be started:

Resour ceFact ory. get Resour ceChangeNot i fi er Service().start();
Resour ceFact ory. get Resour ceChangeScanner Servi ce().start();

2.6.2.1. Knowledge Agent and Custom ClassLoaders

Because Knowledge Agent could scan and process remote resources, it could ends up failing
when compiling or executing rules, queries, functions, etc. that use classes outside the agent's
classloader. If this is your case, you could take 2 approach: use a custom classloader for agent's
kbuilder or force the agent to use the same classloader that its kbase has.

2.6.2.1.1. Custom ClassLoaders from KnowledgeBuilder

Knowledge Agent uses KnowledgeBuilder internally in order to compile managed resources.
If you need to pass custom configuration to these compilers you could pass a
KnowledgeBuilderConfiguration object to KnowledgeAgentFactory.newKnowledgeAgent(). This
object will be used in every builder the agent creates. Using a KnowledgeBuilderConfiguration
you can specify a custom classloader.

Important

The usage of a KnowledgeBuilder to specify the CL the agent must use is
discouraged. See the next section for the best solution to this problem.

Warning

If the agent is handling binary resources (packages), then using a
KnowledgeBuilder to specify the CL that must be used will not work. In this case

68

Knowledge Agent

the only solution is to pass a kbase that uses the custom CL. See next section for

more details.

2.6.2.1.2. Reuse KnowledgeBase ClassLoader

Most of the times, the classloader you want to use in the compilation process of remote resources
is the same needed in the agent's kbase, so the rules could be executed. If you want to use
this approach, you will need to setup the desired ClassLoader to the agent kbase and use the
"drools.agent.useKBaseClassLoaderForCompiling" property of KnowledgeAgentConfiguration
object.

This approach lets you modify agent's kbuilder classloader in runtime by modifying the classloader
the agent's kbase uses. This will serve also when not using incremental change set processing
(see the section below). When the kbase is recreated its configuration is reused, so the classloader
is maintained.

Knowl edgeBaseConfi gurati on kbaseConfig =
Know edgeBaseFact ory. newkKnow edgeBaseConfi guration(nul |, custonC assLoader);
Know edgeBase kbase =
Knowl edgeBaseFact ory. newknow edgeBase(kbaseConfig); //kbase w th custom

cl assl oader

Knowl edgeAgent Confi gurati on aconf =
Knowl edgeAgent Fact ory. newknowl edgeAgent Confi guration();

aconf . set Property("drool s. agent. newi nstance", "false"); //increnental change set

processi ng enabl ed
aconf . set Property("drool s. agent. useKBaseCl assLoader For Conpi | i ng", "true");
Knowl edgeAgent kagent = Know edgeAgent Fact ory. newkKnow edgeAgent (

"test agent", kbase, aconf);

2.6.2.2. Incremental Change Set Processing

Knowledge Agent can process change sets in two different ways: recreating the knowledge base
every time a new change set is processed or applying the change set in the cached knowledge
base without destroying it. This behavior is controlled by the "newlinstance" property of the
KnowledgeAgentConfiguration object passed to the Agent's constructor.

When "newlnstance" is set to true (the default value), the agent will destroy the cached Knowledge
Base it contains and populate a new one containing the change set modifications. When
"newlnstance” is set to "false" change sets are applied directly to the cached Knowledge Base.
The rule that were not modified in the change sets' resources are not replaced in the Knowledge
Base, the modified or deleted rules are modified or deleted from the cached Knowledge Base.
Functions, Queries and Definition Types are always replaced in the cached Knowledge Base
whether they are modified or not.

The following code snippet creates a new Knowledge Agent with its "newlnstance" property set
to false

69

Chapter 2. User Guide

Knowl edgeAgent Confi gurati on aconf = Know edgeAgent Fact ory. newkKnowl edgeAgent Confi guration();

aconf . set Property("drool s. agent. newl nstance", "false");
Knowl edgeAgent kagent = Knowl edgeAgent Fact ory. newknowl edgeAgent ("t est
agent", null, aconf);

2.6.2.3. Remote HTTP resource caching

A note on remote HTTP Url Resources: if your knowledge agent is "pulling” resources from a
http(s) URL, then you might rightly be concerned if that resource (remote web server) suddenly
disappears. To survive a restart when a resource is no longer available remotely (eg the remote
server is being restarted) then you can set a System Property: drools.resource.urlcache to a
directory that has write permissions for the application: the Knowledge Agent will cache copies of
the remote resources in that local directory.

For example, using the java command line: -Ddrools.resource.urlcache=/users/someone/
KnowledgeCache - will keep local copies of the resources (rules, packages etc) in that directory,
for the agent to use should it be restarted (when a remote resource becomes available, and is
updated, it will automatically update the local cache copy).

2.7. Logging

One way to illuminate the black box that is a rule engine, is to play with the logging level.

Everything is logged to SLF4J [http://www.slf4j.org/], which is a simple logging facade that
can delegate any log to Logback, Apache Commons Logging, Log4j or java.util.logging. Add a
dependency to the logging adaptor for your logging framework of choice. If you're not using any
logging framework yet, you can use Logback by adding this Maven dependency:

<dependency>
<gr oupl d>ch. qos. | ogback</ gr oupl d>
<artifactld>l ogback-classic</artifactld>
<ver si on>1. x</ ver si on>

</ dependency>

@ Note
If you're developing for an ultra light environment, use sl f 4j - nop or sl f 4 - si npl e
instead.

Configure the logging level on the package or g. dr ool s. For example:

In Logback, configure it in your | ogback. xm file:

70

http://www.slf4j.org/
http://www.slf4j.org/

Logging

<confi gurati on>

<l ogger name="org.drool s" |evel ="debug"/>

<confi guration>

In Log4J, configure it in your | og4j . xm file:

<l og4j:configuration xm ns:|og4j ="http://]akarta.apache.org/l og4j/">

<cat egory nane="org. drool s">

<priority val ue="debug" />
</ cat egory>

</l og4j: configuration>

71

72

Chapter 3.

Chapter 3. APl Reference

3.1. Building

org.drools.builder

RuleBuilder ProcessBuilder

KnowledgeBuilder

ResourceConfiguration

DecisionTableConfiguration JaxbConfiguration

KnowledgeBuilderResult CompositeKnowledgeBuilder

KnowledgeBuilderError

KnowledgeBuilderConfiguration KnowledgeBuilderErrors
KnowledgeBuilderFactoryService KnowledgeBuilderResults
KnowledgeBuilderFactory ResourceType

DecisionTablelnputType ResultSeverity

yWorks UML Doclet

Figure 3.1. org.drools.core.builder

3.1.1. Building Using Code

The KnowledgeBuilder is responsible for taking source files, such as a DRL file or an Excel file,
and turning them into a Knowledge Package of rule and process definitions which a Knowledge
Base can consume. An object of the class Resour ceType indicates the type of resource the builder
is being asked to process.

The Resour ceFact ory provides capabilities to load resources from a number of sources, such
as a java.io.Reader, the classpath, a URL, a java.io.File, or a byte elements. Binary files, such

73

Chapter 3. API Reference

as decision tables (Excel's' .xIs files), should not be passed in with Reader, which is only suitable
for text based resources.

org.drools.builder

ProcessBuilder | | RuleBuilder

org.drools.builder java.util

KnowledgeBuilder Collection<E>

. add{Resource, ResourceType) : void
. add{Resource, ResourceType, ResourceConfiguration) : void

“ batch() : CompositeKnowledgeBuilder org.drools
‘. getErrors() : KnowledgeBuildererrors
. getknowledgeFPackages() : Collection<=KnowledgePackage= KnowledgeBase

. getResults(ResultSeventy...) : KnowledgeBuilderResults
. hastErrors() : boolean

. hasAesults(ResultSeverity...) : boolean org.drools.builder
. newKnowledgeBase(] : KnowledgeBase
% undo() : void CompositeKnowledgeBuilder

KnowledgeBuilderErrors
KnowledgeBuilderResults
ResourceConfiguration
ResourceType

ResultSeverity

org.drools.io

Resource

yWaorks UML Doclet

Figure 3.2. KnowledgeBuilder

The KnowledgeBuilder is created using the KnowledgeBuilderFactory.

74

Building Using Code

java.lang
Object
org.drools.builder org.drools.builder com.sun.tools.xjc
KnowledgeBuilderFactoryService KnowledgeBuilderFactory Options

“ KnowledgeBuilderFactory()
% newDecisionTableConfiguration() : DecisionTableConfiguration

% newjaxbConfiguration(Options, String) : JaxbConfiguration java.lang

“ newknowledgeBuilder() : KnowledgeBuilder

% newknowledgeBuilder(knowledgeBuilderConfiguration) : KnowledgeBuilder ClassLoader
* newknowledgeBuilder(kKnowledgeBase) : KnowledgeBuilder -

“ newknowledgeBuilder(knowledgeBase, KnowledgeBuilderConfiguration) : KnowledgeBuilder String

* newknowledgeBuilderConfiguration() : KnowledgeBuilderConfiguration
“ newknowledgeBuilderConfiguration(Properties, ClassLoader...) : KnowledgeBuilderConfiguration

jawva.util

Properties

org.drools

KnowledgeBase

org.drools.builder
DecisionTableConfiguration
JaxbConfiguration
KnowledgeBuilder

KnowledgeBuilderConfiguration

yWorks UML Doclet

Figure 3.3. KnowledgeBuilderFactory

A KnowledgeBuilder can be created using the default configuration.

Example 3.1. Creating a new KnowledgeBuilder

Knowl edgeBui | der kbuil der = Knowl edgeBui | der Fact ory. newkKnow edgeBui | der () ;

A configuration can be created using the Know edgeBui | der Fact ory. This allows the behavior
of the Knowledge Builder to be modified. The most common usage is to provide a custom class
loader so that the Know edgeBui | der object can resolve classes that are not in the default
classpath. The first parameter is for properties and is optional, i.e., it may be left null, in which
case the default options will be used. The options parameter can be used for things like changing
the dialect or registering new accumulator functions.

Example 3.2. Creating a new KnowledgeBuilder with a custom ClassLoader

Knowl edgeBui | der Confi gurati on kbuil der Conf = Know edgeBui | der Fact ory. newkKnow edgeBui | der Confi gt
Know edgeBui | der kbuil der = Know edgeBui | der Fact ory. newkKnow edgeBui | der (kbui | der Conf) ;

Resources of any type can be added iteratively. Below, a DRL file is added. The Knowledge Builder
can handle multiple namespaces, so you can combine resources regardless of their namespace.

75

Chapter 3. APl Reference

Example 3.3. Adding DRL Resources

kbui | der. add(ResourceFactory. newri | eResource("/project/nyrules.drl"),
Resour ceType. DRL) ;

It is a best practice to check the compilation results after each resource addition. The
KnowledgeBuilder can report compilation results of 3 different severities: ERROR, WARNING and
INFO.

An ERROR indicates that the compilation of the resource failed. You should not add more
resources or retrieve the Knowledge Packages if there are errors. get Know edgePackages()
returns an empty list if there are errors.

WARNING and INFO results can be ignored, but are available for inspection nonetheless.

To check and retrieve the build results for a list of severities, the KnowledgeBuilder API offers a
couple of methods:

Example 3.4. KnowledgeBuilder result inspection methods

/**
* Return the know edge builder results for the listed severities.
* @param severities
* @eturn
*/
Knowl edgeBui | der Resul ts get Resul t s(Resul t Severity... severities);

/**
* Checks if the builder generated any results of the |isted severities
* @param severities
* @eturn
*/
bool ean hasResul t s(Resul t Severity... severities ;

The KnowledgeBuilder API also has two helper methods to inspect for errors only: hasError s()
and getErrors():

Example 3.5. Validating

i f(kbuilder.hasErrors()) {
Systemout. println(kbuilder.getErrors());
return;

76

Building Using Code

When all the resources have been added and there are no errors the collection of Knowledge
Packages can be retrieved. It is a java.util.Collection because there is one KnowledgePackage
per package namespace. These Knowledge Packages are serializable and often used as a unit
of deployment.

Example 3.6. Getting the KnowledgePackages

Col | ect i on<Know edgePackage> kpkgs = kbui |l der. get Knowl edgePackages();

The final example puts it all together.

Example 3.7. Putting it all together

Know edgeBui | der kbui | der = Know edgeBui | der Fact ory. newKnowl edgeBui | der () ;
i f(kbuilder.hasErrors()) {

Systemout. println(kbuilder.getErrors());

return;

Know edgeBui | der kbui | der = Know edgeBui | der Fact ory. newKnow edgeBui | der () ;

kbui | der. add(ResourceFactory. newFi | eResource("/project/nyrulesl.drl"),
Resour ceType. DRL) ;

kbui | der. add(ResourceFactory. newFi | eResource("/project/nyrules2.drl"),
Resour ceType. DRL) ;

i f(kbuilder.hasErrors()) {
Systemout. println(kbuilder.getErrors());
return;

Col | ect i on<Know edgePackage> kpkgs = kbui | der. get Knowl edgePackages();

The KnowledgeBuilder also has a batch mode, with a fluent interface, that allows to build multiple
DRLs at once as in the following example:

Example 3.8. Using KnowledgeBuilder in batch mode

Know edgeBui | der kbui | der = Know edgeBui | der Fact ory. newkKnow edgeBui | der () ;
kbui | der. bat ch()

. add(Resour ceFact ory. newFi | eResour ce("/ project/
nmyrul esl.drl"), ResourceType.DRL)
.add(Resour ceFact ory. newri | eResour ce("/ project/

nyrul es2.drl"), ResourceType.DRL)

77

Chapter 3. API Reference

.add(Resour ceFact ory. newri | eResour ce("/ project/
nytypesl.drl"), ResourceType.DRL)
.build();

In this way it is no longer necessary to build the DRL files in the right order (e.g., first the DRLs
containing the type declarations and then the ones with the rules using them) and it will also be
possible to have circular references among them.

Moreover, the KnowledgeBuilder (regardless if you are using the batch mode or not) also allows
to discard what has been added with the last DRL(s) build. This can be useful to recover from
having added an erroneous DRL to the KnowledgeBuilder, as shown below.

Example 3.9. Discard the build of the last added DRL

kbui | der. add(Resour ceFact ory. newFi | eResour ce("/ project/
wrong.drl"), ResourceType.DRL)
if (kbuilder.hasErrors()) {

kbui | der. undo() ;

3.1.2. Building Using Configuration and the ChangeSet XML

Instead of adding the resources to create definitions programmatically it is also possible to do it by
configuration, via the ChangeSet XML. The simple XML file supports three elements: add, remove,
and modify, each of which has a sequence of <resource> subelements defining a configuration
entity. The following XML schema is not normative and intended for illustration only.

Example 3.10. XML Schema for ChangeSet XML (not normative)

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns="http://drool s. org/drool s-5. 0/ change-set"
tar get Nanespace="http://drool s. org/ drool s-5. 0/ change-set ">

<xs:el ement name="change-set" type="ChangeSet"/>

<xs: conpl exType nane="ChangeSet ">
<xs: choi ce maxCccur s="unbounded" >
<xs: el ement name="add" type="Qperation"/>
<xs:el ement name="renove" type="Cperation"/>
<xs: el ement name="nodi fy" type="Qperation"/>
</ xs: choi ce>
</ xs: conmpl exType>

78

Building Using Configuration and the ChangeSet XML

<xs: conpl exType nanme="Cperation">
<Xs:sequence>
<xs:el ement name="resource" type="Resource"
maxCccur s="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>

<xs:conpl exType name="Resource" >
<Xs:sequence>

<xs:el ement name="deci si ont abl e-conf" type="DecTabConf"
m nCccurs="0"/>
</ xs: sequence>

<xs:attribute nane="source" type="xs:string"/>
<xs:attribute nane="type" type="Resour ceType"/ >
</ xs: conpl exType>

<xs:conpl exType nanme="DecTabConf">
<xs:attribute nane="input-type" t ype="DecTabl npType"/ >
<xs:attribute nane="worksheet-nanme" type="xs:string"
use="optional "/ >
</ xs: conpl exType>

<xs: si npl eType name="ResourceType" >
<xs:restriction base="xs:string">
<xs:enumneration val ue="DRL"/ >
<xs:enuneration val ue="XDRL"/ >
<xs:enuneration val ue="DSL"/>
<xs:enuneration val ue="DSLR"'/ >
<xs: enumneration val ue="DRF"/ >
<xs:enumneration val ue="DTABLE"/ >
<xs:enuneration val ue="PKG'/ >
<xs:enuneration val ue="BRL"/ >
<xs:enumeration val ue="CHANGE_SET"/ >
</xs:restriction>
</ xs: si nmpl eType>

<xs: si npl eType nane="DecTabl npType" >
<xs:restriction base="xs:string">
<xs:enumeration val ue="XLS"/>
<xs:enumeration val ue="CsV'/>
</xs:restriction>
</ xs: si npl eType>

</ xs: schena>

79

Chapter 3. API Reference

Currently only the add element is supported, but the others will be implemented to support iterative
changes. The following example loads a single DRL file.

Example 3.11. Simple ChangeSet XML

<change-set xm ns="http://drool s. org/drool s-5. 0/ change-set"'
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance'
xs: schemalLocati on="http://drool s. org/drool s-5. 0/ change-
set.xsd http://anonsvn.jboss. org/repos/|abs/| abs/jbossrul es/trunk/drool s-api/
src/ mai n/ resour ces/ change-set-1.0.0. xsd'" >
<add>
<resource source='file:/project/nyrules.drl' type="DRL' />
</ add>
</ change- set >

Notice the fi | e: prefix, which signifies the protocol for the resource. The Change Set supports
all the protocols provided by java.net.URL, such as "file" and "http", as well as an additional
"classpath”. Currently the type attribute must always be specified for a resource, as itis notinferred
from the file name extension. Using the ClassPath resource loader in Java allows you to specify
the Class Loader to be used to locate the resource but this is not possible from XML. Instead, the
Class Loader will default to the one used by the Knowledge Builder unless the ChangeSet XML
is itself loaded by the ClassPath resource, in which case it will use the Class Loader specified
for that resource.

Currently you still need to use the API to load that ChangeSet, but we will add support for
containers such as Spring in the future, so that the process of creating a Knowledge Base can be
done completely by XML configuration. Loading resources using an XML file couldn't be simpler,
as it's just another resource type.

Example 3.12. Loading the ChangeSet XML

kbui | der. add(ResourceFactory. newlUr| Resource(url), ResourceType. CHANGE_SET);

Change Sets can include any number of resources, and they even support additional configuration
information, which currently is only needed for decision tables. Below, the example is expanded
to load rules via HTTP from a URL location, and an Excel decision table from the classpath.

Example 3.13. ChangeSet XML with resource configuration

<change-set xm ns="http://drool s. org/drool s-5.0/ change-set"'
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena- i nst ance'

80

Changing the Default Build Result Severity

xs: schemalLocati on=" http://drool s.org/drool s-5. 0/ change-
set.xsd http://anonsvn.jboss. org/repos/|abs/| abs/jbossrul es/trunk/drool s-api/
src/ mai n/ resour ces/ change-set-1.0.0. xsd" >
<add>
<resource source='http:org/domain/nyrules.drl' type='"DRL'" />
<resource sour ce=' cl asspat h: dat a/
I nt egr ati onExanpl eTest. xlI s' type="DTABLE">
<deci si ont abl e-conf input-type="XLS" wor ksheet - nane="Tabl es_2" />
</ resource>
</ add>
</ change- set >

The Change Set is especially useful when working with a Knowledge Agent, as it allows for change
notification and automatic rebuilding of the Knowledge Base, which is covered in more detail in
the section on the Knowledge Agent, under Deploying.

Directories can also be specified, to add all resources in that folder. Currently it is expected that
all resources in that folder are of the same type. If you use the Knowledge Agent it will provide a
continous scanning for added, modified or removed resources and rebuild the cached Knowledge
Base. The KnowledgeAgent provides more information on this.

Example 3.14. ChangeSet XML which adds a directory's contents

<change-set xm ns="http://drool s. org/drool s-5.0/ change-set"'
xm ns: xs="http://ww.w3. org/ 2001/ XM_Schema- i nst ance
xs: schenmalLocati on="http://drool s. org/drool s-5. 0/ change-

set.xsd http://anonsvn.boss. org/repos/|abs/| abs/jbossrul es/trunk/drool s-api/
src/ mai n/ resour ces/ change-set-1.0.0. xsd'" >

<add>

<resource source='file:/projects/ myproject/myrules' type='DRL' />

</ add>

</ change- set >

3.1.3. Changing the Default Build Result Severity

In some cases, it is possible to change the default severity of a type of build result. For instance,
when a new rule with the same name of an existing rule is added to a package, the default behavior
is to replace the old rule by the new rule and report it as an INFO. This is probably ideal for most
use cases, but in some deployments the user might want to prevent the rule update and report
it as an error.

Changing the default severity for a result type is configured like any other option in Drools and can
be done by API calls, system properties or configuration files. As of this version, Drools supports
configurable result severity for rule updates and function updates. To configure it using system
properties or configuration files, the user has to use the following properties:

81

Chapter 3. API Reference

Example 3.15. Setting the severity using properties

I/l sets the severity of rule updates

drool s. kbui | der. severity. duplicateRul e = <I NFO WARNI NG ERROR>

/] sets the severity of function updates

drool s. kbui | der. severity. duplicateFunction = <I NFQ WARNI NG ERROR>

To configure it through the API:

Example 3.16. Setting the severity using the API

Know edgeBui | der Confi gurati on kbconf = ...

/] sets the severity of rule updates to error

kbconf . set Opti KB(i | der SeverityQpti on. gétfool s. kbui | der. severity. duplicateRul e",
Resul t Severity. ERROR));

/] sets the severity of function updates to error

kbconf . set OpKBonk der Severi t yOpti on” debt6l s. kbui | der. severity. dupli cat eFuncti on",
Resul t Severity. ERROR));

3.2. Deploying

3.2.1. KnowledgePackage and Knowledge Definitions

A Knowledge Package is a collection of Knowledge Definitions, such as rules and processes. Itis
created by the Knowledge Builder, as described in the chapter "Building". Knowledge Packages
are self-contained and serializable, and they currently form the basic deployment unit.

82

KnowledgeBase

org.drools.definition

KnowledgePackage

“w getFactTypes() : Collection=FactType=>
% getFunctionNames() : Collection=5String >
. getGlobalVariables() : Collection=Global=>
% getName() : String

“ getProcesses() : Collection=Frocess=

. getQuenes() : Collection=Query=>

“ getRules() : Collection=Rule>

yWorks UML Doclet

Figure 3.4. KnowledgePackage

java.lang

String

java.util

Collection<E>

Knowledge Packages are added to the Knowledge Base. However, a Knowledge Package
instance cannot be reused once it's added to the Knowledge Base. If you need to add it to another
Knowledge Base, try serializing it first and using the "cloned" result. We hope to fix this limitation

in future versions of Drools.

3.2.2. KnowledgeBase

The Knowledge Base is a repository of all the application's knowledge definitions. It may contain
rules, processes, functions, and type models. The Knowledge Base itself does not contain
instance data, known as facts; instead, sessions are created from the Knowledge Base into which
data can be inserted and where process instances may be started. Creating the Knowledge Base
can be heavy, whereas session creation is very light, so it is recommended that Knowledge Bases

be cached where possible to allow for repeated session creation.

83

Chapter 3. API Reference

org.drools.event.knowledgebase

KnowledgeBaseEventManager

org.drools

KnowledgeBase
% addKnowledgePackages(Collection<KnowledgePackage=) : void
“ getEntryPointids() : Set<=5String=
% getFactType(String, String) : FactType
< getknowledgePackage(String) : KnowledgePackage
“ getknowledgePackages() : Collection<=KnowledgePackage=
. getProcess{String) : Process
% getProcesses() : Collection<Process>
% getQuery(String, String) : Query
“ getRule(String, String) : Rule
getStatefulknowledgeSessions() : Collection=StatefulknowledgeSession=
newStatefulknowledgeSession() : StatefulknowledgeSession
newStatefulknowledgeSession(Knowledge SessionConfiguration, Environment) : StatefulKnowledge Session
newStatelessKnowledgeSession() : StatelessKnowledgeSession
newstatelessknowledge Session(KnowledgeSessionConfiguration) : StatelessknowledgeSession
removeFunction(String, String) : void
removeknowledgePackage(String) : void
removeProcess(String) : void
removeQuery(String. String) : void
removeRule(String. String) : void

¢

s LSO OO OY

yWorks UML Doclet

Figure 3.5. KnowledgeBase

jawa.lang

String

java.util

Collection<E>

Set<E>

org.drools.definition

KnowledgePackage

org.drools.definition.process

Process

org.drools.definition.rule
Query

Rule

org.drools.definition.type

FactType

org.drools.runtime

Environment
KnowledgeSessionConfiguration
StatefulKnowledgeSession

StatelessKknowledgeSession

A Know edgeBase object is also serializable, and some people may prefer to build and then store
a Knowl edgeBase, treating it also as a unit of deployment, instead of the Knowledge Packages.

The KnowledgeBase is created using the KnowledgeBaseFactory.

84

In-Process Building and Deployment

java.lang
Object
org.drools org.drools java.lang
KnowledgeBaseFactoryService KnowledgeBaseFactory Classloader

“ KnowledgeBaseFactory()

% newEnvironment() : Environment

% newknowledgeBase() : KnowledgeBase

% newknowledgeBase(String) : KnowledgeBase
* newknowledgeBase(5tring, KnowledgeBaseConfiguration) : KnowledgeBase Java. util
% newknowledgeBase(KnowledgeBaseConfiguration) : KnowledgeBase

% newknowledgeBaseConfiguration() : KnowledgeBaseConfiguration

% newknowledgeBaseConfiguration(Properties, ClassLoader...) : KnowledgeBaseConfiguration
% newknowledgeSessionConfiguration(} : KnowledgeSessionConfiguration

% newknowledgeSessionConfiguration(Properties) : KnowledgeSessionConfiguration org.drools
% setknowledgeBaseServiceFactory(KnowledgeBaseFactoryService) : void

String

Properties

KnowledgeBase

KnowledgeBaseConfiguration

org.drools.runtime

Environment

KnowledgeSessionConfiguration

yWorks UML Doclet

Figure 3.6. KnowledgeBaseFactory

A KnowledgeBase can be created using the default configuration.

Example 3.17. Creating a new KnowledgeBase

Know edgeBase kbase = Know edgeBaseFact ory. newknow edgeBase() ;

If a custom class loader was used with the Knowl edgeBui | der to resolve types not in the default
class loader, then that must also be set on the Know edgeBase. The technique for this is the same
as with the Knowl edgeBui | der.

Example 3.18. Creating a new KnowledgeBase with a custom ClassLoader

Knowl edgeBaseConfi gurati on kbaseConf =
Know edgeBaseFact ory. cr eat eKnowl edgeBaseConfi guration(null, cl);
Knowl edgeBase kbase = Know edgeBaseFact ory. newknow edgeBase(kbaseConf);

3.2.3. In-Process Building and Deployment

This is the simplest form of deployment. It compiles the knowledge definitions and adds them to the
Knowledge Base in the same JVM. This approach requires drools-core.jar and drools-compiler.jar
to be on the classpath.

85

Chapter 3. API Reference

Example 3.19. Add KnowledgePackages to a KnowledgeBase

Col | ect i on<Know edgePackage> kpkgs = kbui |l der. get Knowl edgePackages();

Knowl edgeBase kbase = Know edgeBaseFact ory. newknow edgeBase() ;
kbase. addKnow edgePackages(kpkgs);

Note that the addKnow edgePackages(kpkgs) method can be called iteratively to add additional
knowledge.

3.2.4. Building and Deployment in Separate Processes

Both the Know edgeBase and the Know edgePackage are units of deployment and serializable.
This means you can have one machine do any necessary building, requiring drool s-
conpi | er. j ar, and have another machine deploy and execute everything, needing only dr ool s-

core.jar.

Although serialization is standard Java, we present an example of how one machine might write
out the deployment unit and how another machine might read in and use that deployment unit.

Example 3.20. Writing the KnowledgePackage to an OutputStream

hj ect Qut put St ream out = new Cbj ect Qut put Stream new Fil eQutput Strean(fileNane));
out.witeQoject(kpkgs);
out. cl ose();

Example 3.21. Reading the KnowledgePackage from an InputStream

oj ectlnput Streamin = new oj ect | nput Strean(new Fil el nputStrean(fileNarme));
[l The input stream m ght contain an individual
/| package or a collection.
@uppr essWar ni ngs("unchecked")
Col | ecti on<Know edgePackage> kpkgs =
()in.readObj ect (Col |l ecti on<know edgePackage>);
in.close();

Knowl edgeBase kbase = Know edgeBaseFact ory. newknow edgeBase() ;

kbase. addKnow edgePackages(kpkgs);

The Know edgeBase is also serializable and some people may prefer to build and then store the
Knowl edgeBase itself, instead of the Knowledge Packages.

86

StatefulknowledgeSessions and KnowledgeBase Modifications

Drools Guvnor, our server side management system, uses this deployment approach. After
Guvnor has compiled and published serialized Knowledge Packages on a URL, Drools can use
the URL resource type to load them.

3.2.5. StatefulknowledgeSessions and KnowledgeBase
Modifications

Stateful Knowledge Sessions will be discussed in more detail in section "Running”. The
Know edgeBase creates and returns St at ef ul Knowl edgeSessi on objects, and it may optionally
keep references to those. When Know edgeBase modifications occur those modifications are
applied against the data in the sessions. This reference is a weak reference and it is also optional,
which is controlled by a boolean flag.

3.2.6. KnowledgeAgent

The Know egeAgent provides automatic loading, caching and re-loading of resources and is
configured from a properties files. The Knowledge Agent can update or rebuild this Knowlege
Base as the resources it uses are changed. The strategy for this is determined by the configuration
given to the factory, but it is typically pull-based using regular polling. We hope to add push-based
updates and rebuilds in future versions. The Knowledge Agent will continuously scan all the added
resources, using a default polling interval of 60 seconds. If their date of the last modification is
updated it will rebuild the cached Knowledge Base using the new resources.

org.drools.agent java.lang

KnowledgeAgent String

“ addEventListener(KnowledgeAgentEventListener) : void
“ applyChangeSet{ChangeSet) : void

. applyChangeSet(Resource) : void org.drools

. dispose() : void

. getknowledgeBase() : KnowledgeBase ChangeSet

“ getName() : String

. monitorResourceChangeEvents(boolean) : void KnowledgeBase

“ newStatelessknowledgeSession() ; StatelessknowledgeSession

“ newStatelessknowledgeSession(Knowledge SessionConfiguration) : StatelessKnowledgeSession
 removeEventlListener(KnowledgeAgentEventListener) : void

“ setSystemEventlistener(SystemEventListener) : void

SystemEventListener

org.drools.event.knowledgeagent

KnowledgeAgentEventListener

org.drools.io

Resource

org.drools.runtime

KnowledgeSessionConfiguration

StatelessKnowledgeSession

yWorks UML Doclet

Figure 3.7. KnowledgeAgent

87

Chapter 3. APl Reference

The Knowl egeBui | der is created using a Know edgeBui | der Fact ory object. The agent must
specify a name, which is used in the log files to associate a log entry with the corresponding agent.

Example 3.22. Creating the KnowledgeAgent

Knowl edgeAgent kagent = Know edgeAgent Fact ory. newkKnow edgeAgent (" M/Agent");

java.lang

Object
java.lang org.drools.agent java.util
String KnowledgeAgentFactory Properties
PROVIDER _CLASS NAME PROPERTY MAME : String
“ KnowledgeAgentFactory()
org.drools.agent % newknowledgeAgent(String) : kKnowledgeAgent org.drools
= % newKnowledgeAgent(String, KnowledgeAgentConfiguration) : KnowledgeAgent
KnowledgeAgentProvider “ newKnowledgeAgent(String, KnowledgeBase) : KnowledgeAgent KnowledgeBase

% newknowledgeAgent(String, KnowledgeBase, KnowledgeAgentConfiguration) : KnowledgeAgent

% newknowledgeAgent(String, KnowledgeBase, KnowledgeAgentConfiguration, KnowledgeBuilderConfiguration) : KnowledgeAgent

% newknowledgeAgentConfiguration() : KnowledgeAgentConfiguration org.drools.agent
% newkn| tConfiguration(Properties) : Kr tConfiguration

KnowledgeAgent

KnowledgeAgentConfiguration

org.drools.builder

KnowledgeBuilderConfiguration

yWorks UML Doclet

Figure 3.8. KnowledgeAgentFactory

The following example constructs an agent that will build a new KnowledgeBase from the specified
ChangeSet. (See section "Building" for more details on the ChangeSet format.) Note that the
method can be called iteratively to add new resources over time. The Knowledge Agent polls
the resources added from the ChangeSet every 60 seconds, the default interval, to see if they
are updated. Whenever changes are found it will construct a new Knowledge Base or apply the
modifications to the existing Knowledge Base according to its configuration. If the change set
specifies a resource that is a directory its contents will be scanned for changes, too.

Example 3.23. Writing the KnowledgePackage to an OutputStream

Knowl edgeAgent kagent = Know edgeAgent Fact ory. newkKnow edgeAgent ("M/Agent");
kagent . appl yChangeSet (Resour ceFactory. newlr| Resource(url));
Knowl edgeBase kbase = kagent. get Know edgeBase();

Resource scanning is not on by default, it's a service and must be started, and the same is true
for notification. Both can be done via the ResourceFactory.

Example 3.24. Starting the Scanning and Notification Services

Resour ceFact ory. get Resour ceChangeNot i fi erService().start();

88

KnowledgeAgent

Resour ceFact ory. get Resour ceChangeScanner Servi ce().start();

The default resource scanning period may be changed via the Resour ceChangeScanner Ser vi ce.
A suitably updated Resour ceChangeScanner Confi gur ati on object is passed to the service's
confi gure() method, which allows for the service to be reconfigured on demand.

Example 3.25. Changing the Scanning Intervals

Resour ceChangeScanner Conf i gurati on sconf =
Resour ceFact ory. get Resour ceChangeScanner Ser vi ce() . newResour ceChangeScanner Conf i gurati on();
/1 Set the disk scanning interval to 30s, default is 60s.
sconf.set Property("drools.resource.scanner.interval", "30");
Resour ceFact ory. get Resour ceChangeScanner Servi ce() . confi gure(sconf);

Knowledge Agents can take an empty Knowledge Base or a populated one. If a populated
Knowledge Base is provided, the Knowledge Agent will run an iterator from Knowledge Base
and subscribe to the resources that it finds. While it is possible for the Knowledge Builder to
build all resources found in a directory, that information is lost by the Knowledge Builder so
that those directories will not be continuously scanned. Only directories specified as part of the
appl yChangeSet (Resour ce) method are monitored.

One of the advantages of providing Know edgeBase as the starting point is that you can
provide it with a Know edgeBaseConf i gur ati on. When resource changes are detected and a
new Know edgeBase object is instantiated, it will use the Know edgeBaseConfi gurati on of the
previous Know edgeBase object.

Example 3.26. Using an existing KnowledgeBase

Knowl edgeBaseConfi gurati on kbaseConf =

Know edgeBaseFact ory. cr eat eKnowl edgeBaseConfi guration(null, cl);
Knowl edgeBase kbase Know edgeBaseFact ory. newKnow edgeBase(kbaseConf);
/1 Popul ate kbase with resources here.

Know edgeAgent kagent =
Knowl edgeAgent Fact ory. newkKnowl edgeAgent (" M/Agent", kbase);
Knowl edgeBase kbase = kagent. get Know edgeBase();

In the above example get Knowl edgeBase() will return the same provided kbase instance until
resource changes are detected and a new Knowledge Base is built. When the new Knowledge
Base is built, it will be done with the Know edgeBaseConfi gur ati on that was provided to the
previous Know edgeBase.

As mentioned previously, a ChangeSet XML can specify a directory and all of its contents will
be added. If this ChangeSet XML is used with the appl yChangeSet () method it will also add

89

Chapter 3. API Reference

any directories to the scanning process. When the directory scan detects an additional file, it will
be added to the Knowledge Base; any removed file is removed from the Knowledge Base, and
modified files will be removed from the Knowledge Base.

Example 3.27. ChangeSet XML which adds a directories contents

<change-set xm ns='http://drools.org/drool s-5.0/change-set"
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena- i nst ance'
xs: schemalLocation=" http://drool s.org/drool s-5. 0/ change- set. xsd" >
<add>
<resource source='file:/projects/nyproject/nyrules' type='PKG />
</ add>
</ change- set >

Note that for the resource type PKG the drools-compiler dependency is not needed as the
Knowledge Agent is able to handle those with just drools-core.

The Know edgeAgent Configuration can be used to modify a Knowledge Agent's default
behavior. You could use this to load the resources from a directory, while inhibiting the continuous
scan for changes of that directory.

Example 3.28. Change the Scanning Behavior

Knowl edgeBase kbase = Know edgeBaseFact ory. newknow edgeBase() ;

Knowl edgeAgent Confi guration kaconf =
Knowl edgeAgent Fact ory. newknowl edgeAgent Confi guati on();
/1 Do not scan directories, just files.
kaconf . set Property("drool s.agent.scanDirectories", "false");
Knowl edgeAgent kagent =
Knowl edgeAgent Fact ory. newknowl edgeAgent ("test agent", kaconf);

Previously we mentioned Drools Guvnor and how it can build and publish serialized Knowledge
Packages on a URL, and that the ChangeSet XML can handle URLs and Packages. Taken
together, this forms an importanty deployment scenario for the Knowledge Agent.

3.3. Running

3.3.1. KnowledgeBase

The Know edgeBase is a repository of all the application's knowledge definitions. It will contain
rules, processes, functions, and type models. The Knowledge Base itself does not contain data;
instead, sessions are created from the Know edgeBase into which data can be inserted and from

90

StatefulKnowledgeSession

which process instances may be started. Creating the Know edgeBase can be heavy, whereas
session creation is very light, so it is recommended that KnowledgeBases be cached where
possible to allow for repeated session creation.

Example 3.29. Creating a new KnowledgeBase

Knowl edgeBase kbase = Know edgeBaseFact ory. newknow edgeBase() ;

3.3.2. StatefulKnowledgeSession

The St at ef ul Knowl edgeSessi on stores and executes on the runtime data. It is created from the
Know edgeBase.

org.drools.runtime org.drools.runtime.process org.drools.runtime.rule

CommandExecutor | | KnowledgeRuntime StatefulProcessSession StatefulRuleSession

org.drools.runtime

StatefulKnowledgeSession

% dispose() : void
% getid() :int

yWorks UML Doclet

Figure 3.9. StatefulKnowledgeSession

Example 3.30. Create a StatefulKnowledgeSession from a KnowledgeBase

St at ef ul Knowl edgeSessi on ksessi on = kbase. newSt at ef ul Knowl edgeSessi on() ;

3.3.3. KnowledgeRuntime

3.3.3.1. WorkingMemoryEntryPoint

The vor ki ngMenor yEnt r yPoi nt provides the methods around inserting, updating and retrieving
facts. The term "entry point" is related to the fact that we have multiple partitions in a Working
Memory and you can choose which one you are inserting into, although this use case is aimed at
event processing and covered in more detail in the Fusion manual. Most rule based applications
will work with the default entry point alone.

The Know edgeRunt i ne interface provides the main interaction with the engine. It is available
in rule consequences and process actions. In this manual the focus is on the methods and
interfaces related to rules, and the methods pertaining to processes will be ignored for now.

91

Chapter 3. APl Reference

But you'll notice that the Knowl edgeRunt i me inherits methods from both the Wor ki ngMenory and
the ProcessRunti ne, thereby providing a unified APl to work with processes and rules. When
working with rules, three interfaces form the Know edgeRunt i me: Wr ki ngMenor yEnt r yPoi nt ,
Wor ki ngMenor y and the Know edgeRunt i ne itself.

org.drools.runtime.rule java.lang

WorkingMemoryEntryPoint Object

“ getEntryPointid() : String

% getFactCount() . long

“ getFactHandle(Object) : FactHandle

% getFactHandles() : <T extends FactHandle=> Collection<T extends FactHandle>
“ getFactHandles(Objectfilter) : <T extends FactHandle> Collection<T extends FactHandle> java.util
% getObjectiFactHandle) : Object

“ getObjects() : Collection=0bject>

“ getObjects(ObjectFilter) : Collection=0bject>
< Insert(Object) : FactHandle

“. retract(FactHandle) : void org.drools.runtime
“ update(FactHandle, Object) : void

String

Collection<E=>

ObjectFilter

org.drools.runtime.rule

FactHandle

yWorks UML Doclet

Figure 3.10. WorkingMemoryEntryPoint

3.3.3.1.1. Insertion

Insertion is the act of teling the WweérkingMenory about a fact, which you do by
ksessi on. i nsert (your Qbj ect), for example. When you insert a fact, it is examined for matches
against the rules. This means all of the work for deciding about firing or not firing a rule is done
during insertion; no rule, however, is executed until you call fi r eAl | Rul es(), which you call after
you have finished inserting your facts. It is a common misunderstanding for people to think the
condition evaluation happens when you call fi reAl | Rul es() . Expert systems typically use the
term assert or assertion to refer to facts made available to the system. However, due to "assert"
being a keyword in most languages, we have decided to use the i nsert keyword; however, expect
to hear the two terms used interchangeably.

When an Object is inserted it returns a Fact Handl e. This Fact Handl e is the token used to
represent your inserted object within the Wor ki ngMenory. It is also used for interactions with the
Wor ki ngMenor y when you wish to retract or modify an object.

Cheese stilton = new Cheese("stilton");
Fact Handl e stiltonHandl e = ksession.insert(stilton);

As mentioned in the Knowledge Base section, a Working Memory may operate in two assertion
modes, i.e., equality or identity, with identity being the default.

92

KnowledgeRuntime

Identity means that the Working Memory uses an | dent i t yHashMap to store all asserted objects.
New instance assertions always result in the return of new Fact Handl e, but if an instance is
asserted again then it returns the original fact handle, i.e., it ignores repeated insertions for the
same object.

Equality means that the Working Memory uses a HashMap to store all asserted objects. An object
instance assertion will only return a new Fact Handl e if the inserted object is not equal (according
to its equal method) to an already existing fact.

3.3.3.1.2. Retraction

Retraction is the removal of a fact from Working Memory, which means that it will no longer track
and match that fact, and any rules that are activated and dependent on that fact will be cancelled.
Note that it is possible to have rules that depend on the nonexistence of a fact, in which case
retracting a fact may cause a rule to activate. (See the not and exi sts keywords.) Retraction
may be done using the Fact Handl e that was returned by the insert call. On the right hand side of
arule the retract statement is used, which works with a simple object reference.

Cheese stilton = new Cheese("stilton");
Fact Handl e stiltonHandl e = ksession.insert(stilton);

ksession.retract(stiltonHandl e);

3.3.3.1.3. Update

The Rule Engine must be notified of modified facts, so that they can be reprocessed. You must
use the updat e() method to notify the Wor ki ngMenor y of changed objects for those objects that
are not able to notify the Wor ki ngMenory themselves. Notice that updat e() always takes the
modified object as a second parameter, which allows you to specify new instances for immutable
objects. On the right hand side of a rule the nodi fy statement is recommended, as it makes the
changes and notifies the engine in a single statement. Alternatively, after changing a fact object's
field values through calls of setter methods you must invoke updat e immediately, event before
changing another fact, or you will cause problems with the indexing within the rule engine. The
modify statement avoids this problem.

Cheese stilton = new Cheese("stilton");
Fact Handl e stiltonHandl e = wor ki ngMenory.insert(stilton);

stilton.setPrice(100);
wor ki ngMenory. update(stiltonHandle, stilton);

93

Chapter 3. API Reference

3.3.3.2. WorkingMemory

The WorkingMemory provides access to the Agenda, permits query executions, and lets you
access named Entry Points.

org.drools.runtime.rule

WorkingMemoryEntryPoint

org.drools.runtime.rule java.lang

WorkingMemory Object

. getaAgenda() : Agenda

“ getQueryResults(String, Object...) : QueryResults

“ getWorkingMemoryEntryPoint(String) : WorkingMemoryEntryFoint
 getWorkingMemoryEntryPoints() : Collection=? extends WorkingMemoryEntryPoint=
& halt() : void java.util
% openliveQuery(String, Object{], iewChangedEventListener) : LiveQuery

String

Collection<E=>

org.drools.runtime.rule

Agenda

LiveQuery

QueryResults
ViewChangedEventListener

WorkingMemoryEntryPoint

yWorks UML Doclet

Figure 3.11. WorkingMemory

3.3.3.2.1. Query

Queries are used to retrieve fact sets based on patterns, as they are used in rules. Patterns may
make use of optional parameters. Queries can be defined in the Knowledge Base, from where
they are called up to return the matching results. While iterating over the result collection, any
identifier bound in the query can be used to access the corresponding fact or fact field by calling
the get method with the binding variable's name as its argument. If the binding refers to a fact
object, its FactHandle can be retrieved by calling get Fact Handl e, again with the variable's name
as the parameter.

94

KnowledgeRuntime

java.lang

lterable=QueryResultsRow=>

org.drools.runtime.rule java.lang

QueryResults String

& getidentifiers() : Stringl]
“ Iterator() : iterator<QueryResultsRow=>
& sizef) :int java.util

lterator<E=

yWorks UML Doclet

Figure 3.12. QueryResults

org.drools.runtime.rule

Row

org.drools.runtime.rule

QueryResultsRow

yWorks UML Doclet

Figure 3.13. QueryResultsRow

95

Chapter 3. API Reference

Example 3.31. Simple Query Example

QueryResults results =

ksessi on. get QueryResults("ny query", new Cbject[] { "string" });
for (QueryResultsRow row : results) {

Systemout. println(row get("varName"));

3.3.3.2.2. Live Queries

Invoking queries and processing the results by iterating over the returned set is not a good way
to monitor changes over time.

To alleviate this, Drools provides Live Queries, which have a listener attached instead of returning
an iterable result set. These live queries stay open by creating a view and publishing change
events for the contents of this view. To activate, you start your query with parameters and listen
to changes in the resulting view. The di spose method terminates the query and discontinues this
reactive scenario.

Example 3.32. Implementing ViewChangedEventListener

final List updated = new ArraylList();
final List removed = new ArraylList();
final List added = new Arraylist();

Vi ewChangedEvent Li stener |istener = new Vi ewChangedEventLi stener() {
public void rowlJpdat ed(Row row) {
updat ed. add(row. get("$price"));
}

public void rowRenoved(Row row) {
renoved. add(row. get("$price"));

}

public void rowAdded(Row row) {
added. add(row. get("$price"));
}
15

/1 Open the LiveQuery
Li veQuery query = ksession. openLi veQuery("cheeses",
new Ooject[] { "cheddar", "stilton" },
listener);

96

KnowledgeRuntime

query. di spose() // calling dispose to termnate the live query

A Drools blog article contains an example of Glazed Lists integration for live queries:

http://blog.athico.com/2010/07/glazed-lists-examples-for-drools-live.html

3.3.3.3. KnowledgeRuntime

The Know edgeRunt i me provides further methods that are applicable to both rules and processes,
such as setting globals and registering channels. ("Exit point" is an obsolete synonym for
"channel".)

org.drools.event org.drools.runtime.process org.drools.runtime.rule
KnowledgeRuntimeEventManager ProcessRuntime WorkingMemory
org.drools.runtime java.lang
KnowledgeRuntime Object

“ getCalendars() : Calendars

“ getChannels() : Map=<String. Channel> String

% getEnvironment() : Environment

“ getGlobal(String) : Object

“ getGlabals() : Globals java. util

. getknowledgeBase() : KnowledgeBase

. getSessionClock() : <T extends SessionClock= T Map<K, V>
“ getSessionConfiguration(] : KnowledgeSessionConfiguration

“ registerChannel(String, Channel) : void

% registerExitPoint(String, ExitPoint) : void org.drools
«. setGlobal(String, Object) : void

% unregisterChannel(String) : void KnowledgeBase
& unregisterExitPoint(String) : void

org.drools.runtime

Calendars
Channel
Environment
ExitPoint
Globals

KnowledgeSessionConfiguration

yWorks UML Doclet

Figure 3.14. KnowledgeRuntime

3.3.3.3.1. Globals

Globals are named objects that are made visible to the rule engine, but in a way that is
fundamentally different from the one for facts: changes in the object backing a global do not trigger

97

http://blog.athico.com/2010/07/glazed-lists-examples-for-drools-live.html

Chapter 3. API Reference

reevaluation of rules. Still, globals are useful for providing static information, as an object offering
services that are used in the RHS of a rule, or as a means to return objects from the rule engine.
When you use a global on the LHS of a rule, make sure it is immutable, or, at least, don't expect
changes to have any effect on the behavior of your rules.

A global must be declared in a rules file, and then it needs to be backed up with a Java object.
gl obal java.util.List |ist

With the Knowledge Base now aware of the global identifier and its type, it is now possible to call
ksessi on. set d obal () with the global's name and an object, for any session, to associate the
object with the global. Failure to declare the global type and identifier in DRL code will result in
an exception being thrown from this call.

List list = new ArrayList();
ksession.setd obal ("list", list);

Make sure to set any global before it is used in the evaluation of a rule. Failure to do so results
in a Nul | Poi nt er Except i on.

3.3.3.4. StatefulRuleSession

The St at ef ul Rul eSessi on is inherited by the St at ef ul Know edgeSessi on and provides the rule
related methods that are relevant from outside of the engine.

org.drools.runtime.rule org.drools.runtime.rule

StatefulRuleSession AgendaFilter

4 fireAllRules() : int

% fireAlliRules(int) : int

“ fireAllRules(AgendaFilter) : int

% fireAliRules(AgendafFilter, int) : int
% fireUntilHalt() : void

“ fireUntilHalt{AgendaFilter) : void

yWorks UML Doclet

Figure 3.15. StatefulRuleSession

98

Agenda

3.3.3.4.1. Agenda Filters

org.drools.runtime.rule org.drools.runtime.rule

AgendaFilter Activation

“. accept(Activation) : boolean

yWorks UML Doclet

Figure 3.16. AgendaFilters

AgendaFi | t er objects are optional implementations of the filter interface which are used to allow
or deny the firing of an activation. What you filter on is entirely up to the implementation. Drools 4.0
used to supply some out of the box filters, which have not be exposed in drools 5.0 knowledge-
api, but they are simple to implement and the Drools 4.0 code base can be referred to.

To use a filter specify it while calling fi reAl | Rul es() . The following example permits only rules
ending in the string " Test " . All others will be filtered out.

ksession.fireA |l Rul es(new Rul eNaneEndsW t hAgendaFilter("Test"));

3.3.4. Agenda

The Agenda is a Rete feature. During actions on the Wor ki ngMenor y, rules may become fully
matched and eligible for execution; a single Working Memory Action can result in multiple eligible
rules. When a rule is fully matched an Activation is created, referencing the rule and the matched
facts, and placed onto the Agenda. The Agenda controls the execution order of these Activations
using a Conflict Resolution strategy.

The engine cycles repeatedly through two phases:

1. Working Memory Actions. This is where most of the work takes place, either in the
Consequence (the RHS itself) or the main Java application process. Once the Consequence
has finished or the main Java application process calls fi reAl | Rul es() the engine switches
to the Agenda Evaluation phase.

2. Agenda Evaluation. This attempts to select a rule to fire. If no rule is found it exits, otherwise it
fires the found rule, switching the phase back to Working Memory Actions.

99

Chapter 3. API Reference

. Working Memory Action ™

Determine
possible rules to
fire

Fire Rule |«

Figure 3.17. Two Phase Execution

" Agenda Evaluation

L
Ruls
Faund Select

%tﬂ Fire:

Mo Rule
Found

axit

The process repeats until the agenda is clear, in which case control returns to the calling
application. When Working Memory Actions are taking place, no rules are being fired.

org.drools.runtime.rule

. clear() : void

Agenda

% getActivationGroup(String) : ActivationGroup
% getdgendaGroup(String) : AgendaGroup
“ getRuleFlowGroup(Sining) : RuleFlowGroup

java.lang

———————— | ActivationGroup |

________ | AgendaGroup |

-------- | RuleFlowGroup |

yWorks UML Doclet

Figure 3.18. Agenda

100

org.drools.runtime.rule

Agenda

3.3.4.1. Conflict Resolution

Conflict resolution is required when there are multiple rules on the agenda. (The basics to this are
covered in chapter "Quick Start".) As firing a rule may have side effects on the working memory,
the rule engine needs to know in what order the rules should fire (for instance, firing ruleA may
cause ruleB to be removed from the agenda).

The default conflict resolution strategies employed by Drools are: Salience and LIFO (last in, first
out).

The most visible one is salience (or priority), in which case a user can specify that a certain rule
has a higher priority (by giving it a higher number) than other rules. In that case, the rule with
higher salience will be preferred. LIFO priorities are based on the assigned Working Memory
Action counter value, with all rules created during the same action receiving the same value. The
execution order of a set of firings with the same priority value is arbitrary.

As a general rule, it is a good idea not to count on rules firing in any particular order, and to
author the rules without worrying about a "flow". However when a flow is needed a humber of
possibilities exist, including but not limited to: agenda groups, rule flow groups, activation groups,
control/semaphore facts. These are discussed in later sections.

Drools 4.0 supported custom conflict resolution strategies; while this capability still exists in Drools
it has not yet been exposed to the end user via knowledge-api in Drools 5.0.

3.3.4.2. AgendaGroup

org.drools.runtime.rule java.lang

AgendaGroup String

% clear() : void
“ getName() : String
% setFocus() : void

yWorks UML Doclet

Figure 3.19. AgendaGroup

Agenda groups are a way to partition rules (activations, actually) on the agenda. At any one time,
only one group has "focus” which means that activations for rules in that group only will take effect.
You can also have rules with "auto focus" which means that the focus is taken for its agenda group
when that rule's conditions are true.

Agenda groups are known as "modules" in CLIPS terminology. While it best to design rules that do
not need control flow, this is not always possible. Agenda groups provide a handy way to create

101

Chapter 3. APl Reference

a "flow" between grouped rules. You can switch the group which has focus either from within the
rule engine, or via the API. If your rules have a clear need for multiple "phases"” or "sequences"
of processing, consider using agenda-groups for this purpose.

Each time set Focus() is called it pushes that Agenda Group onto a stack. When the focus group
is empty it is popped from the stack and the focus group that is now on top evaluates. An Agenda
Group can appear in multiple locations on the stack. The default Agenda Group is "MAIN", with all
rules which do not specify an Agenda Group being in this group. It is also always the first group
on the stack, given focus initially, by default.

ksessi on. get Agenda() . get AgendaG oup("G oup A").setFocus();

3.3.4.3. ActivationGroup

org.drools.runtime.rule java.lang

ActivationGroup String

« clear(} : void
% getName() : String

yWorks UML Doclet

Figure 3.20. ActivationGroup

An activation group is a set of rules bound together by the same "activation-group" rule attribute. In
this group only one rule can fire, and after that rule has fired all the other rules are cancelled from
the agenda. The cl ear () method can be called at any time, which cancels all of the activations
before one has had a chance to fire.

ksessi on. get Agenda() . get Acti vati onG oup("G oup B").clear();

102

Event Model

3.3.4.4. RuleFlowGroup

org.drools.runtime.rule java.lang

RuleFlowGroup String

“ clear() : void
% getName() : String

yWorks UML Doclet

Figure 3.21. RuleFlowGroup

A rule flow group is a group of rules associated by the "ruleflow-group” rule attribute. These
rules can only fire when the group is activate. The group itself can only become active when
the elaboration of the ruleflow diagram reaches the node representing the group. Here too, the
cl ear () method can be called at any time to cancels all activations still remaining on the Agenda.

ksessi on. get Agenda() . get Rul eFl owG oup("Goup C').clear();

3.3.5. Event Model

The event package provides means to be notified of rule engine events, including rules firing,
objects being asserted, etc. This allows you, for instance, to separate logging and auditing
activities from the main part of your application (and the rules).

The Know egeRunt i mneEvent Manager interface is implemented by the Know edgeRunt i me which
provides two interfaces, Wr ki ngMenor yEvent Manager and ProcessEvent Manager . We will only
cover the Wor ki ngMenor yEvent Manager here.

103

Chapter 3. APl Reference

org.drools.event.process org.drools.event.rule
ProcessEventManager WorkingMemoryEventManager
org.drools.event

KnowledgeRuntimeEventManager

yWorks UML Doclet

Figure 3.22. KnowledgeRuntimeEventManager

The Wor ki ngMenor yEvent Manager allows for listeners to be added and removed, so that events

for the working memory and the agenda can be listened to.

org.drools.event.rule

WorkingMemoryEventManager

< addEventlistener(AgendaEventlistener) : void

% addEventlistener(WorkingMemoryEventlistener) : void

. getdgendaEventListeners() : Collection=AgendaEventlistenar=

« getWorkingMemoryEventListeners() : Collection<=WorkingMemoryEventListener=
. removeEventListener(AgendaEventListaner) ; void

% removeEventlistener{WorkingMemoryEventListener) : void

yWorks UML Doclet

Figure 3.23. WorkingMemoryEventManager

jawva.util

Collection=E>

org.drools.event.rule

AgendaEventListener

WorkingMemoryEventListener

The following code snippet shows how a simple agenda listener is declared and attached to a

session. It will print activations after they have fired.

Example 3.33. Adding an AgendaEventListener

ksessi on. addEvent Li st ener (new Def aul t AgendaEvent Li stener () {

public void afterMatchFired(AfterActivationFiredEvent event) {

super . after Mat chFired(event);
Systemout.println(event);

1),

104

Event Model

Drools also provides DebugWér ki ngMenor yEvent Li st ener and DebugAgendaEvent Li st ener
which implement each method with a debug print statement. To print all Working Memory events,
you add a listener like this:

Example 3.34. Creating a new KnowledgeBuilder

ksessi on. addEvent Li st ener (new DebugWor ki ngMenor yEvent Li stener ());

All emitted events implement the Knowl egeRunt i meEvent interface which can be used to retrieve
the actual Knowl egeRunt i ne the event originated from.

org.drools.event org.drools.runtime

KnowledgeRuntimeEvent KnowledgeRuntime
“ getknowledgeRuntime(] . KnowledgeRuntime

yWorks UML Doclet

Figure 3.24. KnowlegeRuntimeEvent

The events currently supported are:

ActivationCreatedEvent

 ActivationCancelledEvent
» BeforeActivationFiredEvent
* AfterActivationFiredEvent
» AgendaGroupPushedEvent
* AgendaGroupPoppedEvent
» ObjectinsertEvent

« ObjectRetractedEvent

* ObjectUpdatedEvent

» ProcessCompletedEvent

* ProcessNodeleftEvent

105

Chapter 3. API Reference

» ProcessNodeTriggeredEvent

¢ ProcessStartEvent

3.3.6. KnowledgeRuntimeLogger

The KnowledgeRuntimeLogger uses the comprehensive event system in Drools to create an audit
log that can be used to log the execution of an application for later inspection, using tools such

as the Eclipse audit viewer.

java.lang

Object

org.drools.logger org.drools.logger

KnowledgeRuntimelLoggerFactoryService KnowledgeRuntimeLoggerFactory
“ KnowledgeRuntimeLoggerFactory()
* newConsoleLogger(knowledgeRuntimeEventManager) : KnowledgeRuntimelogger
% newFileLogger(KnowledgeRuntimeEventManager, String) : KnowledgeRuntimeLogger
% newThreadedFileLogger(knowledgeRuntimeEventManager, String, int) : KnowledgeRuntimelogger

yWorks UML Doclet

Figure 3.25. KnowledgeRuntimeLoggerFactory

Example 3.35. FileLogger

Know edgeRunt i neLogger |ogger =

java.lang

String

org.drools.event

KnowledgeRuntimeEventManager

org.drools.logger

KnowledgeRuntimeLogger

Know edgeRunt i neLogger Fact ory. newri | eLogger (ksession, "logdir/nylogfile");

| ogger.cl ose();

3.3.7. StatelessknowledgeSession

The St at el esskKnow edgeSessi on wraps the St at ef ul Knowl edgeSessi on, instead of extending
it. Its main focus is on decision service type scenarios. It avoids the need to call di spose().
Stateless sessions do not support iterative insertions and the method call fireAl | Rul es()
from Java code; the act of calling execute() is a single-shot method that will internally
instantiate a St at ef ul Know edgeSessi on, add all the user data and execute user commands, call
fireAl I Rul es(), and then call di spose() . While the main way to work with this class is via the
Bat chExecut i on (a subinterface of Command) as supported by the ConmmandExecut or interface,
two convenience methods are provided for when simple object insertion is all that's required. The

CommandExecut or and Bat chExecut i on are talked about in detail in their own section.

106

StatelessKnowledgeSession

org.drools.event org.drools.runtime org.drools.runtime,process org.drools.runtime,rule
KnowledgeRuntimeEventManager CommandExecutor StatelessProcessSession StatelessRuleSession
org.drools.runtjme java.lang
StatelessKnowledgeSession Object

. getGlobals() : Globals -
 setGlobal(String, Object) : void String

org.drools.runtime

Globals

yWorks UML Doclet

Figure 3.26. StatelessKnowledgeSession

Our simple example shows a stateless session executing a given collection of Java objects using
the convenience API. It will iterate the collection, inserting each element in turn.

Example 3.36. Simple StatelessKknowledgeSession execution with a
Collection

Knowl edgeBui | der kbuil der = Knowl edgeBui | der Fact ory. newkKnow edgeBui | der () ;
kbui | der. add(ResourceFactory. newri | eSyst enResource(fileNanme), ResourceType.DRL);
i f (kbuilder.hasErrors()) {
Systemout. println(kbuilder.getErrors());
} else {
Know edgeBase kbase = Know edgeBaseFact ory. newknow edgeBase() ;
kbase. addKnow edgePackages(kbuil der. get Know edgePackages());
St at el essKnowl edgeSessi on ksessi on = kbase. newSt at el essknow edgeSessi on() ;
ksessi on. execute(collection);

If this was done as a single Command it would be as follows:

Example 3.37. Simple StatelessKnowledgeSession execution with
InsertElements Command

ksessi on. execut e(CommandFact ory. newl nsert El ements(coll ection));

If you wanted to insert the collection itself, and the collection's individual elements, then
CommandFact ory. newl nsert (col | ecti on) would do the job.

Methods of the CommandFact or y create the supported commands, all of which can be marshalled
using XStream and the Bat chExecut i onHel per . Bat chExecut i onHel per provides details on the

107

Chapter 3. API Reference

XML format as well as how to use Drools Pipeline to automate the marshalling of Bat chExecut i on
and Execut i onResul ts.

St at el essknow edgeSessi on supports globals, scoped in a number of ways. I'll cover the non-
command way first, as commands are scoped to a specific execution call. Globals can be resolved
in three ways.

* The Stateless Knowledge Session method get @ obal s() returns a Globals instance which
provides access to the session's globals. These are shared for all execution calls. Exercise
caution regarding mutable globals because execution calls can be executing simultaneously in
different threads.

Example 3.38. Session scoped global

St at el essknowl edgeSessi on ksessi on = kbase. newSt at el essKnow edgeSessi on() ;

/1l Set a gl obal hbnSession, that can be used for DB interactions in the rules.
ksessi on. set d obal ("hbnSessi on", hibernateSession);

/| Execute while being able to resolve the "hbnSession" identifier.

ksessi on. execute(collection);

e Using a delegate is another way of global resolution. Assigning a value to a global (with
set @ obal (String, Object)) results in the value being stored in an internal collection
mapping identifiers to values. Identifiers in this internal collection will have priority over any
supplied delegate. Only if an identifier cannot be found in this internal collection, the delegate
global (if any) will be used.

» The third way of resolving globals is to have execution scoped globals. Here, a Cormand to set
a global is passed to the CommandExecut or .

The CommandExecut or interface also offers the ability to export data via "out" parameters. Inserted
facts, globals and query results can all be returned.

Example 3.39. Out identifiers

/1 Set up a list of commands

Li st cnds = new ArraylList();

cnds. add(ConmandFact ory. newSet d obal ("list1", new ArrayList(), true));
cmds. add(CommandFact ory. newl nsert(new Person("jon", 102), "person"));
cnmds. add(CommandFact ory. newQuery("Get Peopl e" "get People");

/'l Execute the I|ist
ExecutionResults results =
ksessi on. execut e(CommandFact ory. newBat chExecution(cnds));

108

StatelessknowledgeSession

/'l Retrieve the Arrayli st

results.getValue("listl");

/1l Retrieve the inserted Person fact

resul ts. getVal ue("person");

/'l Retrieve the query as a QueryResults instance.
results.getValue("Get People");

3.3.7.1. Sequential Mode

With Rete you have a stateful session where objects can be asserted and modified over time,
and where rules can also be added and removed. Now what happens if we assume a stateless
session, where after the initial data set no more data can be asserted or modified and rules cannot
be added or removed? Certainly it won't be necessary to re-evaluate rules, and the engine will
be able to operate in a simplified way.

1. Order the Rules by salience and position in the ruleset (by setting a sequence attribute on the
rule terminal node).

2. Create an elements, one element for each possible rule activation; element position indicates
firing order.

3. Turn off all node memories, except the right-input Object memory.

4. Disconnect the Left Input Adapter Node propagation, and let the Object plus the Node be
referenced in a Command object, which is added to a list on the Working Memory for later
execution.

5. Assert all objects, and, when all assertions are finished and thus right-input node memories are
populated, check the Command list and execute each in turn.

6. Allresulting Activations should be placed in the elements, based upon the determined sequence
number of the Rule. Record the first and last populated elements, to reduce the iteration range.

7. lterate the elements of Activations, executing populated element in turn.

8. If we have a maximum number of allowed rule executions, we can exit our network evaluations
early to fire all the rules in the elements.

The Lef t | nput Adapt er Node no longer creates a Tuple, adding the Object, and then propagate
the Tuple — instead a Command object is created and added to a list in the Working Memaory.
This Command object holds a reference to the Left | nput Adapt er Node and the propagated
object. This stops any left-input propagations at insertion time, so that we know that a right-
input propagation will never need to attempt a join with the left-inputs (removing the need for left-
input memory). All nodes have their memory turned off, including the left-input Tuple memory
but excluding the right-input object memory, which means that the only node remembering an
insertion propagation is the right-input object memory. Once all the assertions are finished and all

109

Chapter 3. APl Reference

right-input memories populated, we can then iterate the list of Lef t | nput Adat per Node Command
objects calling each in turn. They will propagate down the network attempting to join with the right-
input objects, but they won't be remembered in the left input as we know there will be no further
object assertions and thus propagations into the right-input memory.

There is no longer an Agenda, with a priority queue to schedule the Tuples; instead, there is simply
an elements for the number of rules. The sequence number of the Rul eTer i nal Node indicates
the element within the elements where to place the Activation. Once all Command objects have
finished we can iterate our elements, checking each element in turn, and firing the Activations
if they exist. To improve performance, we remember the first and the last populated cell in the
elements. The network is constructed, with each Rul eTer ni nal Node being given a sequence
number based on a salience number and its order of being added to the network.

Typically the right-input node memories are Hash Maps, for fast object retraction; here, as we
know there will be no object retractions, we can use a list when the values of the object are not
indexed. For larger numbers of objects indexed Hash Maps provide a performance increase; if
we know an object type has only a few instances, indexing is probably not advantageous, and
a list can be used.

Sequential mode can only be used with a Stateless Session and is off by default. To turn it on,
either call Rul eBaseConfi gurati on. set Sequenti al (true), or set the rulebase configuration
property drool s. sequential to true. Sequential mode can fall back to a dynamic agenda
by calling set Sequenti al Agenda with Sequenti al Agenda. DYNAM C. You may also set the
"drools.sequential.agenda" property to "sequential” or "dynamic".

3.3.8. Commands and the CommandExecutor

Drools has the concept of stateful or stateless sessions. We've already covered stateful sessions,
which use the standard working memory that can be worked with iteratively over time. Stateless
is a one-off execution of a working memory with a provided data set. It may return some results,
with the session being disposed at the end, prohibiting further iterative interactions. You can think
of stateless as treating a rule engine like a function call with optional return results.

In Drools 4 we supported these two paradigms but the way the user interacted with them
was different. StatelessSession used an execute(...) method which would insert a collection of
objects as facts. StatefulSession didn't have this method, and insert used the more traditional
i nsert(...) method. The other issue was that the StatelessSession did not return any results,
so that users themselves had to map globals to get results, and it wasn't possible to do anything
besides inserting objects; users could not start processes or execute queries.

Drools 5.0 addresses all of these issues and more. The foundation for this is the CommandExecut or
interface, which both the stateful and stateless interfaces extend, creating consistency and
Executi onResul t s:

110

Commands and the CommandExecutor

org.drools.runtime

CommandExecutor

W execute(Command<T=) : <T=>T

yWorks UML Doclet

Figure 3.27. CommandExecutor

org.drools.runtime

ExecutionResults

% getFactHandle(5tring) : Object
“w getidentifiers() : Collection=String =
W getValue(String) : Object

yWorks UML Doclet

Figure 3.28. ExecutionResults

org.drools.command

Command<T>

java.lang

Object

String

java.util

Collection<E>

The CommandFact or y allows for commands to be executed on those sessions, the only difference
being that the Stateless Knowledge Session executes fireAl | Rul es() at the end before

disposing the session. The currently supported commands are:

 FireAllRules
* GetGlobal
» SetGlobal
« InsertObject

* InsertElements

e Query

111

Chapter 3. APl Reference

« StartProcess
« BatchExecution

I nsert Obj ect will insert a single object, with an optional "out" identifier. | nsert El enent s will
iterate an Iterable, inserting each of the elements. What this means is that a Stateless Knowledge
Session is no longer limited to just inserting objects, it can now start processes or execute queries,
and do this in any order.

Example 3.40. Insert Command

St at el essknowl edgeSessi on ksessi on = kbase. newSt at el essknow edgeSessi on() ;
Executi onResults bresults =

ksessi on. execut e(CommandFact ory. newl nsert(new Cheese("stilton"), "stilton_id"));
Stilton stilton = bresults.getValue("stilton_id");

The execute method always returns an Execut i onResul t s instance, which allows access to any
command results if they specify an out identifier such as the "stilton_id" above.

Example 3.41. InsertElements Command

St at el essknowl edgeSessi on ksessi on = kbase. newSt at el essknow edgeSessi on() ;
Conmand cnd = CommandFact ory. newl nsert El enents(Arrays. asList(Object[] {
new Cheese("stilton"),
new Cheese("brie"),
new Cheese("cheddar"),

1),

ExecutionResults bresults = ksessi on. execute(cnmd);

The execute method only allows for a single command. That's where Bat chExecut i on comes
in, which represents a composite command, created from a list of commands. Now, execute will
iterate over the list and execute each command in turn. This means you can insert some objects,
start a process, call fireAllRules and execute a query, all in a single execute(...) call, which
is quite powerful.

As mentioned previosly, the Stateless Knowledge Session will execute fireAllRul es()
automatically at the end. However the keen-eyed reader probably has already noticed the
Fi reAl | Rul es command and wondered how that works with a StatelessKnowledgeSession. The
Fi reAl | Rul es command is allowed, and using it will disable the automatic execution at the end;
think of using it as a sort of manual override function.

Commands support out identifiers. Any command that has an out identifier set on it will add its
results to the returned ExecutionResults instance. Let's look at a simple example to see how this
works.

112

Commands and the CommandExecutor

Example 3.42. BatchExecution Command

St at el essknowl edgeSessi on ksessi on = kbase. newSt at el essknow edgeSessi on() ;

Li st cnds = new ArraylList();

cnds. add(CommandFact ory. newl nsert Obj ect (new Cheese("stilton", 1), "stilton"));

cmds. add(CommandFact ory. newSt art Process("process cheeses"));

cmds. add(CommandFact ory. newQuery("cheeses"));

ExecutionResults bresults = ksessi on. execut e(CommuandFact ory. newBat chExecution(cnds));
Cheese stilton = (Cheese) bresults.getValue("stilton")

QueryResults gresults = (QueryResults) bresults.getValue("cheeses");

In the above example multiple commands are executed, two of which populate the
Execut i onResul t s. The query command defaults to use the same identifier as the query name,
but it can also be mapped to a different identifier.

A custom XStream marshaller can be used with the Drools Pipeline to achieve XML scripting,
which is perfect for services. Here are two simple XML samples, one for the BatchExecution and
one for the Execut i onResul t s.

Example 3.43. Simple BatchExecution XML

<bat ch- execut i on>
<insert out-identifier="outStilton'>
<or g. drool s. conpi | er. Cheese>
<type>stilton</type>
<pri ce>25</price>
<ol dPri ce>0</ ol dPri ce>
</ org.drool s. conpi |l er. Cheese>
</insert>
</ bat ch- executi on>

Example 3.44. Simple ExecutionResults XML

<execution-resul t s>
<result identifier="outStilton' >
<org. drool s. conpi |l er. Cheese>
<type>stilton</type>
<ol dPri ce>25</ ol dPri ce>
<price>30</price>
</ org. drool s. conpi | er. Cheese>
</result>
</ execution-results>

113

Chapter 3. API Reference

Spring and Camel, covered in the integrations book, facilitate declarative services.

Example 3.45. BatchExecution Marshalled to XML

<bat ch- executi on>

<insert out-identifier="stilton">

<or g. drool s. conpi | er. Cheese>
<type>stilton</type>
<price>1</price>
<ol dPri ce>0</ ol dPri ce>
</ org.drool s. conpi |l er. Cheese>
</insert>
<query out-identifier=" cheeses2
<string>stilton</string>
<string>cheddar </ string>
</ query>
</ bat ch- executi on>

nane=' cheesesW t hPar ans' >

The CommandExecut or returns an Executi onResul t s, and this is handled by the pipeline code
shippet as well. A similar output for the <batch-execution> XML sample above would be:

Example 3.46. ExecutionResults Marshalled to XML

<execution-resul t s>
<result identifier="stilton">
<org. drool s. conpi |l er. Cheese>
<type>stilton</type>
<price>2</price>
</ org. drool s. conpi | er. Cheese>
</result>
<result identifier=' cheeses2' >
<query-resul ts>
<identifiers>

<identifier>cheese</identifier>

</identifiers>
<r ow>

<org. drool s. conpi |l er. Cheese>

<t ype>cheddar </t ype>
<price>2</price>
<ol dPri ce>0</ ol dPri ce>

</ org. drool s. conpi | er. Cheese>

</ row>
<r ow>

<org. drool s. conpi |l er. Cheese>

<t ype>cheddar </t ype>
<price>1</price>

114

Commands and the CommandExecutor

<ol dPri ce>0</ ol dPri ce>
</ org.drool s. conpil er. Cheese>
</ row>
</ query-resul t s>
</result>
</ execution-resul ts>

The Bat chExecut i onHel per provides a configured XStream instance to support the marshalling
of Batch Executions, where the resulting XML can be used as a message format, as shown above.
Configured converters only exist for the commands supported via the Command Factory. The
user may add other converters for their user objects. This is very useful for scripting stateless or
stateful knowledge sessions, especially when services are involved.

There is currently no XML schema to support schema validation. The basic format is outlined here,
and the drools-pipeline module has an illustrative unit test in the XSt r eanBat chExecut i onTest
unit test. The root element is <batch-execution> and it can contain zero or more commands
elements.

Example 3.47. Root XML element

<bat ch- execut i on>

</ bat ch- execut i on>

This contains a list of elements that represent commands, the supported commands is limited
to those Commands provided by the Command Factory. The most basic of these is the <insert>

element, which inserts objects. The contents of the insert element is the user object, as dictated
by XStream.

Example 3.48. Insert

<bat ch- executi on>

<insert>
.<!-- any user object -->
</insert>

</ bat ch- executi on>

The insert element features an "out-identifier" attribute, demanding that the inserted object will
also be returned as part of the result payload.

Example 3.49. Insert with Out Identifier Command

<bat ch- executi on>

115

Chapter 3. API Reference

<insert out-identifier=" userVar'>

</insert>
</ bat ch- executi on>

It's also possible to insert a collection of objects using the <insert-elements> element. This
command does not support an out-identifier. The or g. donai n. User d ass is just an illustrative
user object that XStream would serialize.

Example 3.50. Insert Elements command

<bat ch- executi on>
<i nsert-el enent s>
<or g. domai n. User Cl ass>

</ or g. donmai n. User Cl ass>
<or g. domai n. User Cl ass>

</ org. domai n. User Cl ass>
<or g. domai n. User Cl ass>

</ or g. donmi n. User Cl ass>
</insert-el enent s>
</ bat ch- executi on>

Next, there is the <set - gl obal > element, which sets a global for the session.

Example 3.51. Insert Elements command

<bat ch- executi on>
<set-global identifier="userVar'>
<or g. domai n. User Cl ass>

</ org. donmai n. User Cl ass>
</ set - gl obal >
</ bat ch- execut i on>

<set - gl obal > also supports two other optional attributes, out and out -i denti fi er. A true value
for the boolean out will add the global to the <bat ch- executi on-resul t s> payload, using the
name from the i denti fi er attribute. out -i denti fi er works like out but additionally allows you
to override the identifier used in the <bat ch- execut i on-resul t s> payload.

116

Commands and the CommandExecutor

Example 3.52. Set Global Command

<bat ch- execut i on>
<set-global identifier="userVarl out='true' >
<or g. domai n. User Cl ass>

</ org. domai n. User Cl ass>

</ set - gl obal >

<set-global identifier="userVar2' out-identifier="alternativeUserVar2'>
<or g. domai n. User Cl ass>

</ or g. donai n. User Cl ass>
</ set - gl obal >
</ bat ch- execut i on>

There is also a <get - gl obal > element, without contents, with just an out -i denti fi er attribute.
(There is no need for an out attribute because retrieving the value is the sole purpose of a <get -
gl obal > element.

Example 3.53. Get Global Command

<bat ch- executi on>

<get-global identifier="userVarl />

<get-global identifier="userVar2' out-identifier="alternativeUserVar2'/>
</ bat ch- execut i on>

While the out attribute is useful in returning specific instances as a result payload, we often wish to
run actual queries. Both parameter and parameterless queries are supported. The name attribute
is the name of the query to be called, and the out -i denti fi er is the identifier to be used for the
query results in the <execut i on-r esul t s> payload.

Example 3.54. Query Command

<bat ch- executi on>
<query out-identifier="cheeses' nane='cheeses'/>
<query out-identifier="cheeses2' nane='cheesesWthParans' >
<string>stilton</string>
<string>cheddar</string>
</ query>
</ bat ch- execut i on>

The <start-process> command accepts optional parameters. Other process related methods
will be added later, like interacting with work items.

117

Chapter 3. API Reference

Example 3.55. Start Process Command

<bat ch- executi on>
<startProcess processld="org.drools.actions'>
<paraneter identifier="person' >
<org. drool s. Test Vari abl e>
<nanme>John Doe</ nane>
</ org. drool s. Test Vari abl e>
</ par anet er >
</startProcess>
</ bat ch- execut i on

Example 3.56. Sighal Event Command

<si gnal -event process-instance-id="1" event-type=" WEvent'>
<string>MyVal ue</string>
</ si gnal - event >

Example 3.57. Complete Work Item Command

<conmpl ete-work-itemid="" + workltemgetld() + "' >
<result identifier= Result'>
<string>SomeC her String</string>
</result>
</ conpl et e-wor k-itenr

Example 3.58. Abort Work Item Command

<abort-work-itemid='21" />

Support for more commands will be added over time.
3.3.9. Marshalling

The Mar shal | er Fact ory is used to marshal and unmarshal Stateful Knowledge Sessions.

118

Marshalling

java.lang
Object
org.drools.marshalling org.drools.marshalling java.lang
MarshallerProvider MarshallerFactory String

“ MarshallerFactory()
% newClassFilterAcceptor(String[]) : ObjectMarshallingStrategyscceptor

% newldentityMarshallingStrategy() : ObjectMarshallingStrateg; org.drools

% newldentityMarshallingStrategy(ObjectMarshallingStrategyAcceptor) : ObjectMarshallingStrateg

% newMarshaller(knowledgeBase) : Marshaller KnowledgeBase

% newMarshaller(knowledgeBase, ObjectMarshallingStrategyl]) : Marshaller

% newsSerializeMarshallingStrategy() : ObjectMarshallingStrateg

% newSerializeMarshallingStrategy(ObjectMarshallingStrategyAcceptor) : ObjectMarshallingStrateg org.drools.marshalling
Marshaller

ObjectMarshallingStrategy

ObjectMarshallingStrategyAcceptor

yWorks UML Doclet

Figure 3.29. MarshallerFactory

At the simplest the Mar shal | er Fact ory can be used as follows:

Example 3.59. Simple Marshaller Example

/'l ksession is the Stateful Know edgeSessi on

/1l kbase is the Know edgeBase

Byt eArr ayQut put St r eam baos = new Byt eArrayCQut put Streamn() ;

Mar shal | er marshal |l er = Marshal | er Fact ory. newMar shal | er (kbase);
mar shal | er. marshal | (baos, ksession);

baos. cl ose();

However, with marshalling you need more flexibilty when dealing with referenced
user data. To achieve this we have the ObjectMarshallingStrategy interface.
Two implementations are provided, but users can implement their own. The two
supplied strategies are | dent i t yMar shal | i ngStrat egy and Seri al i zeMar shal | i ngSt r at egy.
Seri al i zeMar shal | i ngSt r at egy is the default, as used in the example above, and it just calls the
Seri al i zabl e or Ext er nal i zabl e methods on a userinstance. | denti t yMar shal | i ngSt r at egy
instead creates an integer id for each user object and stores them in a Map, while the id is written to
the stream. When unmarshalling it accesses the | dent i t yMar shal | i ngSt r at egy map to retrieve
the instance. This means that if you use the | denti t yMar shal | i ngSt r at egy, it is stateful for the
life of the Marshaller instance and will create ids and keep references to all objects that it attempts
to marshal. Below is he code to use an Identity Marshalling Strategy.

Example 3.60. IdentityMarshallingStrategy

Byt eArrayCQut put Stream baos = new Byt eArrayQut put Stream();
bj ect Marshal | i ngStrategy ons = Marshal | er Fact ory. new denti tyMarshal | i ngStrat egy()
Mar shal | er marshal l er =

Mar shal | er Fact ory. newivar shal | er (kbase, new Chject Marshal i ngStrategy[]{ ons });

119

Chapter 3. APl Reference

mar shal | er. marshal | (baos, ksession);
baos. cl ose();

For added flexability we can't assume that a single strategy is suitable. Therefore we have added
the obj ect Marshal | i ngStrat egyAccept or interface that each Object Marshalling Strategy
contains. The Marshaller has a chain of strategies, and when it attempts to read or write a user
object it iterates the strategies asking if they accept responsability for marshalling the user object.
One of the provided implementations is Cl assFi | t er Accept or . This allows strings and wild cards
to be used to match class names. The default is "™.*", so in the above example the Identity
Marshalling Strategy is used which has a default "*.*" acceptor.

Assuming that we want to serialize all classes except for one given package, where we will use
identity lookup, we could do the following:

Example 3.61. IdentityMarshallingStrategy with Acceptor

Byt eArrayCQut put Stream baos = new Byt eArrayQut put Stream();
Chj ect Marshal | i ngSt rat egyAccept or identityAcceptor =

Mar shal | er Fact ory. newCl assFi | ter Acceptor(new String[] { "org.donmain. pkgl.*" });
hj ect Marshal i ngStrategy identityStrategy =

Mar shal | er Fact ory. newl dentityMarshal | i ngStrategy(identityAcceptor);
Chj ect Marshal I i ngStrategy sns = Marshal | er Factory. newSeri al i zeMarshal | i ngStrat egy();
Marshal | er marshal l er =

Mar shal | er Fact ory. newiar shal | er (kbase,

new bj ect Marshal lingStrategy[]{ identityStrategy, sms });

mar shal | er. marshal | (baos, ksession);
baos. cl ose();

Note that the acceptance checking order is in the natural order of the supplied elements.

Also note that if you are using scheduled activations (i.e. some of your rules use
timers or calendars) they are marshallable only if, before you use it, you configure your
StatefulKnowledgeSession to use a trackable timer job factory manager as it follows:

Example 3.62. Configuring a trackable timer job factory manager
Know edgeSessi onConfi gurati on ksconf = Know edgeBaseFact ory. newkKnow edgeSessi onConfi guration();

ksconf. set Opti on(Ti mer JobFact oryOpti on. get ("trackabl e"));
St at ef ul Knowl edgeSessi on ksessi on = kbase. newSt at ef ul Knowl edgeSessi on(ksconf, null);

3.3.10. Persistence and Transactions

Longterm out of the box persistence with Java Persistence API (JPA) is possible with Drools.
You will need to have some implementation of the Java Transaction APl (JTA) installed. For

120

Persistence and Transactions

development purposes we recommend the Bitronix Transaction Manager, as it's simple to set up
and works embedded, but for production use JBoss Transactions is recommended.

Example 3.63. Simple example using transactions

Envi ronment env = Knowl edgeBaseFact ory. newEnvi r onnent () ;
env. set (Envi ronnent Name. ENTI TY_MANAGER _FACTORY,

Persi st ence. creat eEnti t yManager Factory("enf-nane"));
env. set (Envi ronment Nanme. TRANSACTI ON_MANAGER,

Transact i onManager Ser vi ces. get Tr ansact i onManager ());

/'l Know edgeSessi onConfiguration may be null, and a default will be used
St at ef ul Knowl edgeSessi on ksession =

JPAKnow edgeSer vi ce. newsSt at ef ul Knowl edgeSessi on(kbase, null, env);
int sessionld = ksession.getld();

User Transaction ut =
(User Transaction) new Initial Context ().l ookup("java:conp/UserTransaction");
ut . begi n();
ksession.insert(datal);
ksession.insert(data2);
ksession. startProcess("processl");
ut.comit();

To use a JPA, the Environment must be set with both the EntityManager Factory and the
Transact i onManager . If rollback occurs the ksession state is also rolled back, so you can continue
to use it after a rollback. To load a previously persisted Stateful Knowledge Session you'll need
the id, as shown below:

Example 3.64. Loading a StatefulKnowledgeSession

St at ef ul Knowl edgeSessi on ksessi on =
JPAKnow edgeSer vi ce. | oadSt at ef ul Know edgeSessi on(sessionld, kbase, null, env);

To enable persistence several classes must be added to your persistence.xml, as in the example
below:

Example 3.65. Configuring JPA

<persi stence-unit nanme="org.drool s. persistence.jpa" transaction-type="JTA">
<provi der >or g. hi ber nat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j dbc/ Bi t r oni xJTADat aSour ce</ | t a- dat a- sour ce>
<cl ass>or g. drool s. persi st ence. sessi on. Sessi onl nf o</ cl ass>
<cl ass>or g. drool s. persi st ence. processi nst ance. Processl| nst ancel nf o</ cl ass>

121

Chapter 3. API Reference

<cl ass>org. drool s. persi st ence. processi nst ance. Processl| nst anceEvent | nf o</
cl ass>
<cl ass>or g. drool s. persi st ence. processi nst ance. Wr kl t em nf o</ cl ass>
<properties>

<property nanme="hi bernate.dial ect" val ue="org. hi bernate.dial ect.H2Di al ect"/>

<property name="hi bernate. max_fetch_depth" val ue="3"/>
<property nane="hi bernat e. hbnRddl . aut 0" val ue="update" />
<property nanme="hi bernate. show sql" val ue="true" />
<property name="hi bernate.transaction. manager _| ookup_cl ass"
val ue="org. hi bernate. transacti on. BTMIr ansact i onManager Lookup" />
</ properties>
</ persi stence-uni t>

The jdbc JTA data source would have to be configured first. Bitronix provides a number of ways
of doing this, and its documentation should be contsulted for details. For a quick start, here is the
programmatic approach:

Example 3.66. Configuring JTA DataSource

Pool i ngDat aSour ce ds = new Pool i ngDat aSour ce() ;
ds. set Uni queNanme("j dbc/ Bi troni xJTADat aSour ce");
ds. set G assNane("org. h2.j dbcx. JdbcDat aSour ce");
ds. set MaxPool Si ze(3);

ds. set Al | owLocal Transacti ons(true);

ds.getDriverProperties().put("user", "sa");
ds.getDriverProperties().put("password", "sasa");

ds. getDriverProperties().put("URL", "jdbc:h2: mem nydb");
ds.init();

Bitronix also provides a simple embedded JNDI service, ideal for testing. To use it add a
jndi.properties file to your META-INF and add the following line to it:

Example 3.67. INDI properties

java.nam ng.factory.initial=bitronix.tmjndi.Bitronixlnitial ContextFactory

3.3.11. Drools Clips

Drools Clips is an alpha level research project to provide a Clips like front end ot Drools. As of
Drools 5.2 this module as stopped working, we will try and fix for 5.3.

122

Drools Clips

Deftemplates are working, the knowledge base handles multiple hame spaces and you can
attach the knowledge base to the session for interactive building, to provide a more "shell" like
environment suitable for Clips.

« deftemplate

 defrule

« deffunction

 and/or/not/exists/test conditional elements

« Literal, Variable, Return Value and Predicate field constarints

[2 problems | @ Javadoc @Declaration 4" search | %5 Debug | Bl Conscle 52 Ex 5§|EIE| = B-rg5- =08
Clipsshell [Java Application] C:javaljdkl 5. 0_10binijavaw,. exe (27 Jun 2008 03:56:31)
Lrools> (import org.drools.Cheese)
Drools> (deftenplate Ferson
(=lot name
[Lype 3tring))
[slot age
[Cype 3tring))
(slot location
[type 3tring) |
[2lot cheese
[Lype 3tring))
I
Droolsy> (deffunction max (& b)) (if (> *a& 7b) then (return *a] else (return b)) | |
Drools> (defrule sendsomecheese
(Person (name ?name)] (age personboge) (cheese PcheeseType)] (location "londeon™))
[Cheese (type YcheeseType] (price ?cheesePrices: (edq (mwax personbge YcheesePrice)] YcheesePrice) 1
=

(printout £ "send some " YcheeseType " ™ to MO" Pnatoe)
I
Drools> (assert (Person (namwe mark) (location "london™) (cheese "cheddar™) (age 25) 1)
Drools> (assert [(Cheese [type "cheddar™) (price 300)1)

Lroolss> (run)
send some cheddar to mark
DIrools:s

This project is very early stages and in need of love. If you want to help, open up eclipse import api,
core, compiler and clips and you should be good to go. The unit tests should be self explanatory.

123

124

Chapter 4.

Chapter 4. Rule Language
Reference

4.1. Overview

Drools has a "native" rule language. This format is very light in terms of punctuation, and supports
natural and domain specific languages via "expanders" that allow the language to morph to your
problem domain. This chapter is mostly concerted with this native rule format. The diagrams used
to present the syntax are known as "railroad" diagrams, and they are basically flow charts for the
language terms. The technically very keen may also refer to DRL. g which is the Antlr3 grammar
for the rule language. If you use the Rule Workbench, a lot of the rule structure is done for you with
content assistance, for example, type "ru" and press ctrl+space, and it will build the rule structure
for you.

4.1.1. A rulefile

A rule file is typically a file with a .drl extension. In a DRL file you can have multiple rules, queries
and functions, as well as some resource declarations like imports, globals and attributes that
are assigned and used by your rules and queries. However, you are also able to spread your
rules across multiple rule files (in that case, the extension .rule is suggested, but not required) -
spreading rules across files can help with managing large numbers of rules. A DRL file is simply
a text file.

The overall structure of a rule file is:

Example 4.1. Rules file

package package- nane

i mports

gl obal s

functions

queries

rul es

The order in which the elements are declared is not important, except for the package name that,

if declared, must be the first element in the rules file. All elements are optional, so you will use
only those you need. We will discuss each of them in the following sections.

125

Chapter 4. Rule Language Refe...

4.1.2. What makes arule

For the inpatients, just as an early view, a rule has the following rough structure:

rul e "nane"
attributes
when
LHS
t hen
RHS
end

It's really that simple. Mostly punctuation is not needed, even the double quotes for "name" are
optional, as are newlines. Attributes are simple (always optional) hints to how the rule should
behave. LHS is the conditional parts of the rule, which follows a certain syntax which is covered
below. RHS is basically a block that allows dialect specific semantic code to be executed.

It is important to note that white space is not important, except in the case of domain specific
languages, where lines are processed one by one and spaces may be significant to the domain
language.

4.2. Keywords

Drools 5 introduces the concept of hard and soft keywords.

Hard keywords are reserved, you cannot use any hard keyword when naming your domain objects,
properties, methods, functions and other elements that are used in the rule text.

Here is the list of hard keywords that must be avoided as identifiers when writing rules:

e true
e fal se
e nul

Soft keywords are just recognized in their context, enabling you to use these words in any other
place if you wish, although, it is still recommended to avoid them, to avoid confusions, if possible.
Here is a list of the soft keywords:

* | ock-on-active
e date-effective

e date-expires

126

Keywords

no-| oop

aut o- f ocus

activation-group

agenda- gr oup

rul ef | ow group

entry- poi nt

duration

package

i mport

di al ect

sal i ence

enabl ed

attributes

rule

ext end

when

then

tenpl ate

query

decl are

function

gl obal

eval

not

or

127

Chapter 4. Rule Language Refe...

e and

e exists
e forall

e accumulate
 collect
» from

* action
e reverse
* result
* end

e over

e init

Of course, you can have these (hard and soft) words as part of a method name in camel case,
like notSomething() or accumulateSomething() - there are no issues with that scenario.

Although the 3 hard keywords above are unlikely to be used in your existing domain models, if
you absolutely need to use them as identifiers instead of keywords, the DRL language provides
the ability to escape hard keywords on rule text. To escape a word, simply enclose it in grave
accents, like this:

Hol i day("true == "yes") // please note that Drools will resolve that reference
to the nethod Holiday.isTrue()

4.3. Comments

Comments are sections of text that are ignored by the rule engine. They are stripped out when
they are encountered, except inside semantic code blocks, like the RHS of a rule.

4.3.1. Single line comment

To create single line comments, you can use '//'. The parser will ignore anything in the line after
the comment symbol. Example:

rule "Testing Coments"

128

Multi-line comment

when

/Il this is a single |line coment

eval (true) // this is a comment in the same |line of a pattern
t hen

/Il this is a comment inside a semantic code bl ock
end

A Warning

Drools also supports for backward compatibility the use of '#' for single line
comments, but this is deprecated and will be removed in future releases.

4.3.2. Multi-line comment

O—»[™]—-[fext]—-[s l—bO

Figure 4.1. Multi-line comment

Multi-line comments are used to comment blocks of text, both in and outside semantic code blocks.
Example:

rule "Test Multi-line Comments"
when
/* this is a multi-line conment
in the left hand side of a rule */
eval (true)
t hen
/* and this is a multi-line coment
in the right hand side of a rule */
end

4.4. Error Messages

Drools 5 introduces standardized error messages. This standardization aims to help users to find
and resolve problems in a easier and faster way. In this section you will learn how to identify and
interpret those error messages, and you will also receive some tips on how to solve the problems
associated with them.

4.4.1. Message format

The standardization includes the error message format and to better explain this format, let's use
the following example:

129

Chapter 4. Rule Language Refe...

[ERR 101] Line &:35% no viable alternative at input)" in rule “test rule® in pattern WorkerPerformanceContext

1st 2nd

Block Block 3rd Block 4th Block 5th Block

Figure 4.2. Error Message Format
1st Block: This area identifies the error code.
2nd Block: Line and column information.

3rd Block: Some text describing the problem.

4th Block: This is the first context. Usually indicates the rule, function, template or query where
the error occurred. This block is not mandatory.

5th Block: Identifies the pattern where the error occurred. This block is hot mandatory.
4.4.2. Error Messages Description

4.4.2.1.101: No viable alternative

Indicates the most common errors, where the parser came to a decision point but couldn't identify
an alternative. Here are some examples:

Example 4.2.

rul e one
when
exi sts Foo()
exits Bar ()
t hen
end

N2 B®PE

The above example generates this message:

* [ERR 101] Line 4:4 no viable alternative at input 'exits’ in rule one

At first glance this seems to be valid syntax, but it is not (exits != exists). Let's take a look at next
example:

Example 4.3.

1: package org. drool s. exanpl es;
2: rule

3: when

4: oj ect ()

5X t hen

130

Error Messages Description

6: Systemout.println("A RHS");
7: end

Now the above code generates this message:

* [ERR 101] Line 3:2 no viable alternative at input "WHEN"

This message means that the parser encountered the token WHEN, actually a hard keyword, but
it's in the wrong place since the the rule name is missing.

The error "no viable alternative" also occurs when you make a simple lexical mistake. Here is a
sample of a lexical problem:

Example 4.4.

1: rule sinple_rule

2: when

3: St udent (nanme == "Andy)
4 t hen

5: end

The above code misses to close the quotes and because of this the parser generates this error
message:

* [ERR 101] Line 0:-1 no viable alternative at input '<eof>" in rule simple_rule in pattern Student

@ Note
Usually the Line and Column information are accurate, but in some cases (like
unclosed quotes), the parser generates a 0:-1 position. In this case you should
check whether you didn't forget to close quotes, apostrophes or parentheses.

4.4.2.2. 102: Mismatched input

This error indicates that the parser was looking for a particular symbol that it didn't #nd at the
current input position. Here are some samples:

Example 4.5.

1: rule sinple_rule
: when
3: foo3 : Bar(

131

Chapter 4. Rule Language Refe...

The above example generates this message:

* [ERR 102] Line 0:-1 mismatched input '<eof>' expecting)" in rule simple_rule in pattern Bar

To fix this problem, it is necessary to complete the rule statement.

The following code generates more than one error message:

Example 4.6.

1: package org. drool s. exanpl es;

2:

3: rule "Avoid NPE on wong syntax"

4: when

5: not (Cheese((type == "stilton", price == 10) || (type == "brie",
price == 15)) from $cheeseLi st)

6: t hen

7: Systemout. println("OK");

8: end

These are the errors associated with this source:

* [ERR 102] Line 5:36 mismatched input '," expecting ')' in rule "Avoid NPE on wrong syntax" in
pattern Cheese

* [ERR 101] Line 5:57 no viable alternative at input 'type' in rule "Avoid NPE on wrong syntax"

* [ERR 102] Line 5:106 mismatched input *)' expecting 'then'in rule "Avoid NPE on wrong syntax"

Note that the second problem is related to the first. To fix it, just replace the commas (’,") by AND
operator ('&&").

Error Messages Description

4.4.2.3. 103: Failed predicate

A validating semantic predicate evaluated to false. Usually these semantic predicates are used to
identify soft keywords. This sample shows exactly this situation:

Example 4.7.
package nesti ng;
di al ect "nvel "

1

2

3

4: inport org.drools.conpiler.Person
5: inport org.drools.conpiler.Address
6

7

8

9

f dsf dsf ds

: rule "test sonething"
10: when

11: p: Person(nane=="M chael ")
12: t hen

13: p. name = "ot her";

14: System out. println(p. nane);
15: end

With this sample, we get this error message:

* [ERR 103] Line 7.0 rule ‘rule_key' failed predicate:
{(validateldentifierKey(DroolsSoftKeywords.RULE))}? in rule

The fdsfdsfds text is invalid and the parser couldn't identify it as the soft keyword r ul e.

@ Note
This error is very similar to 102: Mismatched input, but usually involves soft
keywords.

4.4.2.4. 104: Trailing semi-colon not allowed

This error is associated with the eval clause, where its expression may not be terminated with
a semicolon. Check this example:

Example 4.8.

1: rule sinple_rule
when

133

Chapter 4. Rule Language Refe...

3: eval (abc();)
4: t hen
5: end

Due to the trailing semicolon within eval, we get this error message:

* [ERR 104] Line 3:4 trailing semi-colon not allowed in rule simple_rule

This problem is simple to fix: just remove the semi-colon.

4.4.2.5. 105: Early Exit

The recognizer came to a subrule in the grammar that must match an alternative at least once,
but the subrule did not match anything. Simply put: the parser has entered a branch from where
there is no way out. This example illustrates it:

Example 4.9.

1. tenplate test_error
2. aa s 11;
3: end

This is the message associated to the above sample:

* [ERR 105] Line 2:2 required (...)+ loop did not match anything at input 'aa' in template test_error

To fix this problem it is necessary to remove the numeric value as it is neither a valid data type
which might begin a new template slot nor a possible start for any other rule file construct.

4.4.3. Other Messages

Any other message means that something bad has happened, so please contact the development
team.

4.5. Package

A package is a collection of rules and other related constructs, such as imports and globals. The
package members are typically related to each other - perhaps HR rules, for instance. A package
represents a namespace, which ideally is kept unique for a given grouping of rules. The package
name itself is the namespace, and is not related to files or folders in any way.

It is possible to assemble rules from multiple rule sources, and have one top level package
configuration that all the rules are kept under (when the rules are assembled). Although, it is not
possible to merge into the same package resources declared under different names. A single

134

import

Rulebase may, however, contain multiple packages built on it. A common structure is to have
all the rules for a package in the same file as the package declaration (so that is it entirely self-
contained).

The following railroad diagram shows all the components that may make up a package. Note that
a package must have a namespace and be declared using standard Java conventions for package
names; i.e., no spaces, unlike rule names which allow spaces. In terms of the order of elements,
they can appear in any order in the rule file, with the exception of the package statement, which
must be at the top of the file. In all cases, the semicolons are optional.

O— | ..

oo)—{romespoes }-——

function 4
- I
query
[|
!l
EOF .

Figure 4.3. package

Notice that any rule attribute (as described the section Rule Attributes) may also be written at
package level, superseding the attribute's default value. The modified default may still be replaced
by an attribute setting within a rule.

4.5.1. import

'
7 ¥ “

Ot)+ J—— L0

Figure 4.4. import

135

Chapter 4. Rule Language Refe...

Import statements work like import statements in Java. You need to specify the fully qualified paths
and type names for any objects you want to use in the rules. Drools automatically imports classes
from the Java package of the same name, and also from the package j ava. | ang.

4.5.2. global

o
O*['glnbal'_] b[class }.[m]J LO

Figure 4.5. global

With gl obal you define global variables. They are used to make application objects available
to the rules. Typically, they are used to provide data or services that the rules use, especially
application services used in rule consequences, and to return data from the rules, like logs or
values added in rule consequences, or for the rules to interact with the application, doing callbacks.
Globals are not inserted into the Working Memory, and therefore a global should never be used to
establish conditions in rules except when it has a constantimmutable value. The engine cannot be
notified about value changes of globals and does not track their changes. Incorrect use of globals
in constraints may yield surprising results - surprising in a bad way.

If multiple packages declare globals with the same identifier they must be of the same type and
all of them will reference the same global value.

In order to use globals you must:

1. Declare your global variable in your rules file and use it in rules. Example:

gl obal java.util.List nmyd obal List;

rule "Using a gl obal"
when
eval (true)
t hen
nmyd obal Li st.add("Hello World");
end

2. Set the global value on your working memory. It is a best practice to set all global values before
asserting any fact to the working memory. Example:

List list = new ArrayList();
Wor ki ngMenmory wm = rul ebase. newsSt at ef ul Sessi on();
wm set d obal ("nyd obal List", list);

136

Function

Note that these are just named instances of objects that you pass in from your application to
the working memory. This means you can pass in any object you want; you could pass in a
service locator, or perhaps a service itself. With the new f r omelement it is now common to pass
a Hibernate session as a global, to allow f r omto pull data from a named Hibernate query.

One example may be an instance of a Email service. In your integration code that is calling the
rule engine, you obtain your emailService object, and then set it in the working memory. In the
DRL, you declare that you have a global of type EmailService, and give it the name "email". Then
in your rule consequences, you can use things like email.sendSMS(number, message).

Globals are not designed to share data between rules and they should never be used for that
purpose. Rules always reason and react to the working memory state, so if you want to pass data
from rule to rule, assert the data as facts into the working memory.

It is strongly discouraged to set or change a global value from inside your rules. We recommend
to you always set the value from your application using the working memory interface.

4.6. Function

|
Ceon—amnn |
"a...[namfr'] {0) »[Pﬂfﬂ"’*SH'l'-] &
|

Figure 4.6. function

Functions are a way to put semantic code in your rule source file, as opposed to in normal Java
classes. They can't do anything more than what you can do with helper classes. (In fact, the
compiler generates the helper class for you behind the scenes.) The main advantage of using
functions in a rule is that you can keep the logic all in one place, and you can change the functions
as needed (which can be a good or a bad thing). Functions are most useful for invoking actions
on the consequence (t hen) part of a rule, especially if that particular action is used over and over
again, perhaps with only differing parameters for each rule.

A typical function declaration looks like:

function String hello(String nane) {

137

Chapter 4. Rule Language Refe...

return "Hello "+nane+"!";

Note that the f unct i on keyword is used, even though its not really part of Java. Parameters to
the function are defined as for a method, and you don't have to have parameters if they are not
needed. The return type is defined just like in a regular method.

Alternatively, you could use a static method in a helper class, e.g., Foo. hel | o() . Drools supports
the use of function imports, so all you would need to do is:

i mport function ny. package. Foo. hel |l o

Irrespective of the way the function is defined or imported, you use a function by calling it by its
name, in the consequence or inside a semantic code block. Example:

rule "using a static function"
when
eval (true)
t hen
Systemout.println(hello("Bob"));
end

4.7. Type Declaration

O S G S G
I

Figure 4.7. meta_data

138

O

Declaring New Types

—-[‘declars’]—-[name

.
F o Rt
I |

I

rmata_data

Figure 4.8. type_declaration

Type declarations have two main goals in the rules engine: to allow the declaration of new types,
and to allow the declaration of metadata for types.

Declaring new types: Drools works out of the box with plain Java objects as facts. Sometimes,
however, users may want to define the model directly to the rules engine, without worrying about
creating models in a lower level language like Java. At other times, there is a domain model
already built, but eventually the user wants or needs to complement this model with additional
entities that are used mainly during the reasoning process.

Declaring metadata: facts may have meta information associated to them. Examples of meta
information include any kind of data that is not represented by the fact attributes and is consistent
among all instances of that fact type. This meta information may be queried at runtime by the
engine and used in the reasoning process.

4.7.1. Declaring New Types

To declare a new type, all you need to do is use the keyword decl ar e, followed by the list of fields,
and the keyword end. A new fact must have a list of fields, otherwise the engine will look for an
existing fact class in the classpath and raise an error if not found.

139

Chapter 4. Rule Language Refe...

Example 4.10. Declaring a new fact type: Address

decl are Address
nunber : int
streetName : String
city : String

end

The previous example declares a new fact type called Addr ess. This fact type will have three
attributes: nunber, street Nane and ci ty. Each attribute has a type that can be any valid Java
type, including any other class created by the user or even other fact types previously declared.

For instance, we may want to declare another fact type Per son:

Example 4.11. declaring a new fact type: Person

decl are Person
name : String
dateOBirth : java.util.Date
address : Address

end

As we can see on the previous example, dat eOf Bi rt h is of type j ava. uti | . Dat e, from the Java
API, while addr ess is of the previously defined fact type Address.

You may avoid having to write the fully qualified name of a class every time you write it by using
the i nport clause, as previously discussed.

Example 4.12. Avoiding the need to use fully qualified class names by using
import

i mport java.util.Date

decl are Person
name : String
dateOBirth : Date
address : Address
end

When you declare a new fact type, Drools will, at compile time, generate bytecode that implements
a Java class representing the fact type. The generated Java class will be a one-to-one Java Bean
mapping of the type definition. So, for the previous example, the generated Java class would be:

140

Declaring Metadata

Example 4.13. generated Java class for the previous Person fact type
declaration

public class Person inplenents Serializable {
private String name;
private java.util.Date dateOfBirth
private Address address;

[/ enpty constructor
public Person() {...}

/1 constructor with all fields
public Person(String name, Date dateO'Birth, Address address) {...}

/1 if keys are defined, constructor with keys
public Person(...keys...) {...}

/'l getters and setters
/'l equal s/ hashCode
/1 toString

Since the generated class is a simple Java class, it can be used transparently in the rules, like
any other fact.

Example 4.14. Using the declared types in rules

rule "Using a decl ared Type"
when
$p : Person(nanme == "Bob")
t hen
/1 Insert Mark, who is Bob's nate.
Person mark = new Person();
mar k. set Nane(" Mar k") ;
insert(mark);
end

4.7.2. Declaring Metadata

Metadata may be assigned to several different constructions in Drools: fact types, fact attributes
and rules. Drools uses the at sign ('@") to introduce metadata, and it always uses the form:

@ret adat a_key(netadata_val ue)

141

Chapter 4. Rule Language Refe...

The parenthesized metadata_value is optional.

For instance, if you want to declare a metadata attribute like aut hor, whose value is Bob, you
could simply write:

Example 4.15. Declaring a metadata attribute

@ut hor (Bob)

Drools allows the declaration of any arbitrary metadata attribute, but some will have special
meaning to the engine, while others are simply available for querying at runtime. Drools allows the
declaration of metadata both for fact types and for fact attributes. Any metadata that is declared
before the attributes of a fact type are assigned to the fact type, while metadata declared after an
attribute are assigned to that particular attribute.

Example 4.16. Declaring metadata attributes for fact types and attributes

import java.util.Date

decl are Person
@ut hor (Bob)
@lat ef Creation(01- Feb-2009)

name : String @ey @maxLength(30)
dateOBirth : Date
address : Address

end

In the previous example, there are two metadata items declared for the fact type (@ut hor and
@lat eOXF Cr eat i on) and two more defined for the name attribute (@ey and @raxLengt h). Please
note that the @ey metadata has no required value, and so the parentheses and the value were
omitted.:

@position can be used to declare the position of a field, overriding the default declared order. This
is used for positional constraints in patterns.

decl are Cheese
name : String @osition(1l)
shop : String @osition(2)
price : int @osition(0)
end

142

Declaring Metadata

4.7.2.1. Predefined class level annotations

Some annotations have predefined semantics that are interpreted by the engine. The following is
a list of some of these predefined annotations and their meaning.

4.7.2.1.1. @role(<fact | event>)
See Drools Fusion documentation for details.
4.7.2.1.2. @typesafe(<boolean>)

By default all type declarations are compiled with type safety enabled; @typesafe(false) provides
a means to override this behaviour by permitting a fall-back, to type unsafe evaluation where all
constraints are generated as MVEL constraints and executed dynamically. This can be important
when dealing with collections that do not have any generics or mixed type collections.

4.7.2.1.3. @timestamp(<attribute name>)
See Drools Fusion documentation for details.
4.7.2.1.4. @duration(<attribute name>)
See Drools Fusion documentation for details.
4.7.2.1.5. @expires(<time interval>)

See Drools Fusion documentation for details.
4.7.2.1.6. @propertyChangeSupport

Facts that implement support for property changes as defined in the Javabean(tm) spec, now can
be annotated so that the engine register itself to listen for changes on fact properties. The boolean
parameter that was used in the insert() method in the Drools 4 API is deprecated and does not
exist in the drools-api module.

Example 4.17. @propertyChangeSupport

decl are Person
@r oper t yChangeSupport
end

4.7.2.1.7. @propertyReactive
Make this type property reactive. See Fine grained property change listeners section for details.
4.7.2.2. Predefined attribute level annotations

As noted before, Drools also supports annotations in type attributes. Here is a list of predefined
attribute annotations.

143

Chapter 4. Rule Language Refe...

4.7.2.2.1. @key

Declaring an attribute as a key attribute has 2 major effects on generated types:

1. The attribute will be used as a key identifier for the type, and as so, the generated class
will implement the equals() and hashCode() methods taking the attribute into account when
comparing instances of this type.

2. Drools will generate a constructor using all the key attributes as parameters.
For instance:

Example 4.18. example of @key declarations for atype

decl are Person
firstName : String @key
| ast Nane : String @key
age : int

end

For the previous example, Drools will generate equals() and hashCode() methods that will check
the firstName and lastName attributes to determine if two instances of Person are equal to each
other, but will not check the age attribute. It will also generate a constructor taking firstName and
lastName as parameters, allowing one to create instances with a code like this:

Example 4.19. creating an instance using the key constructor

Person person = new Person("John", "Doe");

4.7.2.2.2. @position

Patterns support positional arguments on type declarations.

Positional arguments are ones where you don't need to specify the field name, as the position
maps to a known named field. i.e. Person(name =="mark") can be rewritten as Person("mark";).
The semicolon '} is important so that the engine knows that everything before it is a positional
argument. Otherwise we might assume it was a boolean expression, which is how it could be
interpreted after the semicolon. You can mix positional and named arguments on a pattern by
using the semicolon ;' to separate them. Any variables used in a positional that have not yet been
bound will be bound to the field that maps to that position.

decl are Cheese
name : String
shop : String

144

Declaring Metadata for Existing Types

price : int
end

The default order is the declared order, but this can be overridden using @position

decl are Cheese
nane : String @osition(1)
shop : String @osition(2)
price : int @osition(0)
end

The @Position annotation, in the org.drools.definition.type package, can be used to annotate
original pojos on the classpath. Currently only fields on classes can be annotated. Inheritance of
classes is supported, but not interfaces of methods yet.

Example patterns, with two constraints and a binding. Remember semicolon ';' is used to
differentiate the positional section from the named argument section. Variables and literals and
expressions using just literals are supported in positional arguments, but not variables.

Cheese("stilton", "Cheese Shop", p;)

Cheese("stilton", "Cheese Shop"; p : price)

Cheese("stilton"; shop == "Cheese Shop", p : price)

Cheese(name == "stilton"; shop == "Cheese Shop", p : price)

4.7.3. Declaring Metadata for Existing Types

Drools allows the declaration of metadata attributes for existing types in the same way as when
declaring metadata attributes for new fact types. The only difference is that there are no fields
in that declaration.

For instance, if there is a class org.drools.examples.Person, and one wants to declare metadata
for it, it's possible to write the following code:

Example 4.20. Declaring metadata for an existing type

i nport org.drools. exanpl es. Person

decl are Person

@ut hor (Bob)

@lat e Creati on(01- Feb-2009)
end

145

Chapter 4. Rule Language Refe...

Instead of using the import, it is also possible to reference the class by its fully qualified name,
but since the class will also be referenced in the rules, it is usually shorter to add the import and
use the short class name everywhere.

Example 4.21. Declaring metadata using the fully qualified class name

decl are org. drool s. exanpl es. Per son
@ut hor (Bob)
@lat ek Creation(01- Feb-2009)
end

4.7.4. Parametrized constructors for declared types

Generate constructors with parameters for declared types.

Example: for a declared type like the following:

decl are Person
firstName : String @key
| ast Nane : String @key
age : int

end

The compiler will implicitly generate 3 constructors: one without parameters, one with the @key
fields, and one with all fields.

Person() // parameterless constructor
Person(String firstNane, String |astName)
Person(String firstNane, String |astNanme, int age)

4.7.5. Non Typesafe Classes

@typesafe(<boolean>) has been added to type declarations. By default all type declarations are
compiled with type safety enabled; @typesafe(false) provides a means to override this behaviour
by permitting a fall-back, to type unsafe evaluation where all constraints are generated as MVEL
constraints and executed dynamically. This can be important when dealing with collections that
do not have any generics or mixed type collections.

4.7.6. Accessing Declared Types from the Application Code

Declared types are usually used inside rules files, while Java models are used when sharing the
model between rules and applications. Although, sometimes, the application may need to access

146

Accessing Declared Types from the Application Code

and handle facts from the declared types, especially when the application is wrapping the rules
engine and providing higher level, domain specific user interfaces for rules management.

In such cases, the generated classes can be handled as usual with the Java Reflection API, but,
as we know, that usually requires a lot of work for small results. Therefore, Drools provides a
simplified API for the most common fact handling the application may want to do.

The first important thing to realize is that a declared fact will belong to the package
where it was declared. So, for instance, in the example below, Person will belong to the
or g. dr ool s. exanpl es package, and so the fully qualified name of the generated class will be
org. drool s. exanpl es. Person.

Example 4.22. Declaring a type in the org.drools.examples package

package org. drool s. exanpl es
import java.util.Date

decl are Person
name : String
dateOfBirth : Date
address : Address
end

Declared types, as discussed previously, are generated at knowledge base compilation time, i.e.,
the application will only have access to them at application run time. Therefore, these classes are
not available for direct reference from the application.

Drools then provides an interface through which users can handle declared types from the
application code: or g. dr ool s. defi ni ti on. t ype. Fact Type. Through this interface, the user can
instantiate, read and write fields in the declared fact types.

Example 4.23. Handling declared fact types through the API

/1l get a reference to a knowl edge base with a decl ared type:
Knowl edgeBase kbase = ...

/1 get the decl ared Fact Type
Fact Type personType = kbase. get Fact Type("org. drool s. exanpl es",
"Person");

/1 handl e the type as necessary:
/'l create instances:

Chj ect bob = personType. new nstance();

/] set attributes val ues

147

Chapter 4. Rule Language Refe...

per sonType. set (bob,
"nane",
"Bob");

personType. set (bob

age",
42);

/1 insert fact into a session

St at ef ul Know edgeSessi on ksession = ...
ksession.insert(bob);
ksession.fireA | Rul es();

/'l read attributes
String nane = personType.get(bob, "nane");
int age = personType.get(bob, "age");

The API also includes other helpful methods, like setting all the attributes at once, reading values
from a Map, or reading all attributes at once, into a Map.

Although the API is similar to Java reflection (yet much simpler to use), it does not use reflection
underneath, relying on much more performant accessors implemented with generated bytecode.

4.7.7. Type Declaration 'extends’

Type declarations now support 'extends' keyword for inheritance

In order to extend a type declared in Java by a DRL declared subtype, repeat the supertype in
a declare statement without any fields.

i mport org. peopl e. Person

decl are Person
end

decl are Student extends Person
school : String
end

decl are LongTer nSt udent extends Student
years : int
course : String

end

148

Traits

4.7.8. Traits

The same fact may have multiple dynamic types which do not fit naturally in a class hierarchy.
Traits allow to model this very common scenario. A trait is an interface that can be applied (and
eventually removed) to an individual object at runtime. To create a trait out of an interface, one
has to add a @format(trait) annotation to its declaration in DRL as in the following example:

decl are Gol denCust oner
@ormat (trait)

/] fields will map to getters/setters
code : String

bal ance : long

di scount : int

maxExpense : | ong

end

In order to apply a trait to an object, we provide the new don keyword, which can be used as
simply as this:

when

$c : Custoner()
t hen

Gol denCust omer gc = don($c, Custoner.class);
end

when a core object dons a trait, a proxy class is created on the fly (one such class will be generated
lazily for each core/trait class combination). The proxy instance, which wraps the core object and
implements the trait interface, is inserted automatically and will possibly activate other rules. An
immediate advantage of declaring and using interfaces, getting the implementation proxy for free
from the engine, is that multiple inheritance hierarchies can be exploited when writing rules. The
core classes, however, need not implement any of those interfaces statically, also facilitating the
use of legacy classes as cores. In fact, any object can don a trait. For efficiency reasons, however,
one can add the @Traitable annotation to a declared bean class to reduce the amount of glue
code that the compiler will have to generate. This is optional and will not change the behavior
of the engine:

decl are Cust oner

@raitable
code : String
bal ance : |ong

end

149

Chapter 4. Rule Language Refe...

The only connection between core classes and trait interfaces is at the proxy level, a trait is not
specifically tied to a core class. This means that the same trait can be applied to totally different
objects. For this reason, the trait does not transparently expose the fields of its core object. So,
when writing a rule using a trait interface, only the fields of the interface will be available, as usual.
However, any field in the interface that corresponds to a core object field, will be mapped by the
proxy class:

when

$o0: Orderltem($p : price, $code : custCode)

$c: Col denCust ormer (code == $code, $a : bal ance, $d: discount)
t hen

$c. setBal ance($a - $p*$d);
end

In this case, the code and balance would be read from the underlying Customer object. Likewise,
the setAccount will modify the underlying object, preserving a strongly typed access to the data
structures. Now, one might wonder what happens when a core class does NOT provide the
implementation for a field defined in an interface. We call hard fields those trait fields which are also
core fields and thus readily available, while we define soft those fields which are NOT provided
by the core class. Hidden fields, instead, are fields in the core class not exposed by the interface.

So, while hard field management is intuitive, there remains the problem of soft and hidden fields.
The solution we have adopted is to use a two-part proxy. Internally, proxies are formed by a proper
proxy and a wrapper. The former implements the interface, while the latter manages the core
object fields, implementing a name/value map to supports soft fields. The proxy, then, uses both
the core object and the map wrapper to implement the interface, as needed. So, you can write:

when
$sc : Col denCustomer($c : code, // hard getter
$nmaxExpense : maxExpense > 1000 // soft getter

)

t hen
$sc.setDiscount(...); // soft setter
end

The wrapper, then, provides a looser form of typing when writing rules. However, it has also other
uses. The wrapper is specific to the object it wraps, regardless of how many traits have been
attached to an object: all the proxies on the same object will share the same wrapper. Secondly, the
wrapper also contains a back-reference to all proxies attached to the wrapped object, effectively
allowing traits to see each other. To this end, we have provided the new iSA operator:

$sc : Gol denCust oner ($maxExpense : maxExpense > 1000,
this isA "SeniorCustoner"

150

Traits

Eventually, the business logic may require that a trait is removed from a wrapped object. To this
end, we provide two options. The first is a "logical don", which will result in a logical insertion of
the proxy resulting from the traiting operation:

t hen
don($x, // core object
Custoner.class, // trait class
true // optional flag for |ogical insertion

The second is the use of the shed keyword, which causes the retraction of the proxy corresponding
to the given argument type:

t hen
Thing t = shed($x, Col denCustoner.class)

This operation returns another proxy implementing the org.drools.core.factmodel.traits.Thing
interface, where the getFields() and getCore() methods are defined. Internally, in fact, all declared
traits are generated to extend this interface (in addition to any others specified). This allows to
preserve the wrapper with the soft fields which would otherwise be lost.

151

Chapter 4. Rule Language Refe...

4.8. Rule

O
‘ATl) e]_)

o
!

(::

o LHS |

Figure 4.9. rule

A rule specifies that when a particular set of conditions occur, specified in the Left Hand Side
(LHS), then do what queryis specified as a list of actions in the Right Hand Side (RHS). A common
question from users is "Why use when instead of if?" "When" was chosen over "if" because "if"
is normally part of a procedural execution flow, where, at a specific point in time, a condition is
to be checked. In contrast, "when" indicates that the condition evaluation is not tied to a specific
evaluation sequence or point in time, but that it happens continually, at any time during the life
time of the engine; whenever the condition is met, the actions are executed.

A rule must have a name, unique within its rule package. If you define a rule twice in the same
DRL it produces an error while loading. If you add a DRL that includes a rule name already in the
package, it replaces the previous rule. If a rule name is to have spaces, then it will need to be
enclosed in double quotes (it is best to always use double quotes).

Attributes - described below - are optional. They are best written one per line.

The LHS of the rule follows the when keyword (ideally on a new line), similarly the RHS follows
the t hen keyword (again, ideally on a newline). The rule is terminated by the keyword end. Rules
cannot be nested.

152

Rule Attributes

Example 4.24. Rule Syntax Overview

rule "<name>"
<attri but e>*

when

<condi ti onal el enent>*
t hen

<action>*
end

Example 4.25. A simple rule

rule "Approve if not rejected"
sal i ence -100
agenda- group "approval "
when
not Rejection()
p : Policy(approved == fal se, policyState:status)
exi sts Driver(age > 25)
Process(status == policyState)
t hen
| og(" APPROVED: due to no objections.")
p. set Approved(true);
end

4.8.1. Rule Attributes

Rule attributes provide a declarative way to influence the behavior of the rule. Some are quite
simple, while others are part of complex subsystems such as ruleflow. To get the most from Drools
you should make sure you have a proper understanding of each attribute.

153

Chapter 4. Rule Language Refe...

() 'no-loop’ value

—{ 'lock-on-active’ |——
—{ ‘agenda-group’ | —
o ‘audfocus’ |
— “ruleflow-group” |
—y ‘activation-group’ }—
— ‘dialect |
— 'date-effective’ ||
—{ ‘date-expires’ |
— ‘enabled’ |~
—.[“duration”]—.[duration-value (ms)]—

Figure 4.10. rule attributes

no- | oop
default value: f al se

type: Boolean

When a rule's consequence modifies a fact it may cause the rule to activate again, causing

an infinite loop. Setting no-loop to true will skip the creation of another Activation for the rule
with the current set of facts.

rul ef | ow group
default value: N/A

type: String

Ruleflow is a Drools feature that lets you exercise control over the firing of rules. Rules that
are assembled by the same ruleflow-group identifier fire only when their group is active.

154

Rule Attributes

| ock-on-active
default value: f al se

type: Boolean

Whenever a ruleflow-group becomes active or an agenda-group receives the focus, any rule
within that group that has lock-on-active set to true will not be activated any more; irrespective
of the origin of the update, the activation of a matching rule is discarded. This is a stronger
version of no-loop, because the change could now be caused not only by the rule itself. It's
ideal for calculation rules where you have a number of rules that modify a fact and you don't
want any rule re-matching and firing again. Only when the ruleflow-group is no longer active or
the agenda-group loses the focus those rules with lock-on-active set to true become eligible
again for their activations to be placed onto the agenda.

sal i ence
default value: 0

type: integer

Each rule has an integer salience attribute which defaults to zero and can be negative or
positive. Salience is a form of priority where rules with higher salience values are given higher
priority when ordered in the Activation queue.

Drools also supports dynamic salience where you can use an expression involving bound
variables.

Example 4.26. Dynamic Salience

rule "Fire in rank order 1,2,.."
sal i ence(-$rank)
when
El enent ($rank : rank,...)
t hen

end

agenda- gr oup
default value: MAIN

type: String

Agenda groups allow the user to partition the Agenda providing more execution control. Only
rules in the agenda group that has acquired the focus are allowed to fire.

aut o- f ocus
default value: f al se

type: Boolean

155

Chapter 4. Rule Language Refe...

When a rule is activated where the aut o- f ocus value is true and the rule's agenda group
does not have focus yet, then it is given focus, allowing the rule to potentially fire.

activation-group
default value: N/A

type: String

Rules that belong to the same activation-group, identified by this attribute's string value, will
only fire exclusively. More precisely, the first rule in an activation-group to fire will cancel all
pending activations of all rules in the group, i.e., stop them from firing.

Note: This used to be called Xor group, but technically it's not quite an Xor. You may still hear
people mention Xor group; just swap that term in your mind with activation-group.

di al ect
default value: as specified by the package

type: String
possible values: "java" or "mvel"

The dialect species the language to be used for any code expressions in the LHS or the RHS
code block. Currently two dialects are available, Java and MVEL. While the dialect can be
specified at the package level, this attribute allows the package definition to be overridden
for arule.

date-effective
default value: N/A

type: String, containing a date and time definition
A rule can only activate if the current date and time is after date-effective attribute.

dat e- expires
default value: N/A

type: String, containing a date and time definition
A rule cannot activate if the current date and time is after the date-expires attribute.

duration
default value: no default value

type: long

The duration dictates that the rule will fire after a specified duration, if it is still true.

Example 4.27. Some attribute examples

rule "ny rule"

156

Timers and Calendars

sal i ence 42
agenda- group "nunber 1"
when ...

4.8.2. Timers and Calendars

Rules now support both interval and cron based timers, which replace the now deprecated duration
attribute.

Example 4.28. Sample timer attribute uses
timer (int: <initial delay> <repeat interval >?)
timer (int: 30s)

tinmer (int: 30s 5m)

timer (cron: <cron expression>)

timer (cron:* 0/15 * * * 2)

Interval (indicated by "int:") timers follow the semantics of java.util. Timer objects, with an initial
delay and an optional repeat interval. Cron (indicated by "cron:") timers follow standard Unix cron
expressions:

Example 4.29. A Cron Example

rule "Send SMS every 15 m nutes”
timer (cron:* 0/15 * * * ?)

when

$a : Alarn(on == true)
t hen

channel s["sns"].insert(new Sns($a. nobil eNunber, "The alarmis still on");
end

A rule controlled by a timer becomes active when it matches, and once for each individual match.
Its consequence is executed repeatedly, according to the timer's settings. This stops as soon as
the condition doesn't match any more.

Consequences are executed even after control returns from a call to fireUntilHalt. Moreover, the
Engine remains reactive to any changes made to the Working Memory. For instance, removing
a fact that was involved in triggering the timer rule's execution causes the repeated execution to
terminate, or inserting a fact so that some rule matches will cause that rule to fire. But the Engine
is not continually active, only after a rule fires, for whatever reason. Thus, reactions to an insertion
done asynchronously will not happen until the next execution of a timer-controlled rule.

Disposing a session puts an end to all timer activity.

157

Chapter 4. Rule Language Refe...

Calendars are used to control when rules can fire. The Calendar API is modelled on Quartz [http://
www.quartz-scheduler.org/]:

Example 4.30. Adapting a Quartz Calendar

Cal endar weekDayCal = QuartzHel per. quartzCal endar Adapt er (org. quartz. Cal endar quartzCal)

Calendars are registered with the StatefulKnowledgeSession:

Example 4.31. Registering a Calendar

ksessi on. get Cal endars().set("weekday", weekDayCal);

They can be used in conjunction with normal rules and rules including timers. The rule attribute
"calendars" may contain one or more comma-separated calendar names written as string literals.

Example 4.32. Using Calendars and Timers together

rul e "weekdays are high priority"

cal endars "weekday"

timer (int:0 1h)
when

Al arm()
t hen

send("priority high - we have an alarn#);

end

rule "weekend are low priority"
cal endars "weekend"
timer (int:0 4h)
when
Al arm()

t hen
send("priority low - we have an alarn#);
end

4.8.3. Left Hand Side (when) syntax

4.8.3.1. What is the Left Hand Side?

The Left Hand Side (LHS) is a common name for the conditional part of the rule. It consists of zero
or more Conditional Elements. If the LHS is empty, it will be considered as a condition element
that is always true and it will be activated once, when a new WorkingMemory session is created.

158

http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/

Left Hand Side (when) syntax

O { c:}-rrﬂ'ﬁra'un;fEn'arr?&nt _]—"l O

Figure 4.11. Left Hand Side

Example 4.33. Rule without a Conditional Element

rule "no CEs"
when

Il empty
t hen

/1 actions (executed once)
end

/1l The above rule is internally rewitten as

rule "eval (true)"

when
eval (true)
t hen
/1 actions (executed once)
end

Conditional elements work on one or more patterns (which are described below). The most
common conditional element is "and" . Therefore it is implicit when you have multiple patterns in
the LHS of a rule that are not connected in any way:

Example 4.34. Implicit and

rule "2 unconnected patterns"
when
Patternl()
Patt ern2()
t hen
/'l actions
end

/1l The above rule is internally rewitten as

rule "2 and connected patterns"
when
Patternl()
and Pattern2()
t hen
/'l actions

159

Chapter 4. Rule Language Refe...

‘ end

/1 Conpile error
$person : (Person(name == "Roneo") and Person(nanme == "Juliet"))

4.8.3.2. Pattern (conditional element)

4.8.3.2.1. What is a pattern?

A pattern element is the most important Conditional Element. It can potentially match on each fact
that is inserted in the working memory.

A pattern contains of zero or more constraints and has an optional pattern binding. The railroad
diagram below shows the syntax for this.

O))i)— ()T)—O

Figure 4.12. Pattern

In its simplest form, with no constraints, a pattern matches against a fact of the given type. In
the following case the type is Cheese, which means that the pattern will match against all Per son
objects in the Working Memory:

Per son()

The type need not be the actual class of some fact object. Patterns may refer to superclasses or
even interfaces, thereby potentially matching facts from many different classes.

oject() // matches all objects in the working nmenory

Inside of the pattern parenthesis is where all the action happens: it defines the constraints for that
pattern. For example, with a age related constraint:

160

Left Hand Side (when) syntax

Person(age == 100)

@ Note
For backwards compatibility reasons it's allowed to suffix patterns with the ;
character. But it is not recommended to do that.

4.8.3.2.2. Pattern binding

For referring to the matched object, use a pattern binding variable such as $p.

Example 4.35. Pattern with a binding variable

rule ...
when
$p : Person()
t hen
Systemout.println("Person " + $p);
end

The prefixed dollar symbol ($) is just a convention; it can be useful in complex rules where it helps
to easily differentiate between variables and fields, but it is not mandatory.

4.8.3.3. Constraint (part of a pattern)

4.8.3.3.1. What is a constraint?

A constraint is an expression that returns t r ue or f al se. This example has a constraint that states
5 is smaller than 6:

Person(5 <6) // just an exanple, as constraints like this would be usel ess
in a real pattern

In essence, it's a Java expression with some enhancements (such as property access) and a few
differences (such as equal s() semantics for ==). Let's take a deeper look.

4.8.3.3.2. Property access on Java Beans (POJO's)

Any bean property can be used directly. A bean property is exposed using a standard Java bean
getter: a method get MyProperty() (ori sM/Property() for a primitive boolean) which takes no
arguments and return something. For example: the age property is written as age in DRL instead
of the getter get Age() :

161

Chapter 4. Rule Language Refe...

Person(age == 50)
// this is the sane as:

Per son(get Age() == 50)

Drools uses the standard JDK | nt r ospect or class to do this mapping, so it follows the standard
Java bean specification.

@ Note

We recommend using property access (age) over using getters explicitly
(get Age()) because of performance enhancements through field indexing.

Warning

Property accessors must not change the state of the object in a way that may
effect the rules. Remember that the rule engine effectively caches the results of its
matching in between invocations to make it faster.

To solve this latter case, insert a fact that wraps the current date into working
memory and update that fact between fi r eAl | Rul es as needed.

E] Note

The following fallback applies: if the getter of a property cannot be found, the
compiler will resort to using the property name as a method name and without
arguments:

162

Left Hand Side (when) syntax

Person(age == 50)

I/ 1f Person.get Age() does not exists, this falls back to:
Person(age() == 50)

Nested property access is also supported:

Per son(address. houseNurmber == 50)

[/ this is the same as:
Per son(get Address().get HouseNunber () == 50)

Nested properties are also indexed.

Warning

In a stateful session, care should be taken when using nested accessors as the
Working Memory is not aware of any of the nested values, and does not know when
they change. Either consider them immutable while any of their parent references
are inserted into the Working Memory. Or, instead, if you wish to modify a nested
value you should mark all of the outer facts as updated. In the above example,
when the houseNunber changes, any Per son with that Addr ess must be marked
as updated.

4.8.3.3.3. Java expression

You can use any Java expression that returns a bool ean as a constraint inside the parentheses of
a pattern. Java expressions can be mixed with other expression enhancements, such as property
access:

Person(age == 50)

It is possible to change the evaluation priority by using parentheses, as in any logic or
mathematical expression:

Person(age > 100 && (age %10 == 0))

It is possible to reuse Java methods:

163

Chapter 4. Rule Language Refe...

Person(Math.round(weight / (height * height)) < 25.0)

Warning

As for property accessors, methods must not change the state of the object in a
way that may affect the rules. Any method executed on a fact in the LHS should
be a read only method.

Warning

The state of a fact should not change between rule invocations (unless those facts
are marked as updated to the working memory on every change):

Normal Java operator precedence applies, see the operator precedence list below.

Important
All operators have normal Java semantics except for == and ! =.

The == operator has null-safe equal s() semantics:

The ! = operator has null-safe ! equal s() semantics:

164

Left Hand Side (when) syntax

Type coercion is always attempted if the field and the value are of different types; exceptions will
be thrown if a bad coercion is attempted. For instance, if "ten" is provided as a string in a numeric
evaluator, an exception is thrown, whereas "10" would coerce to a numeric 10. Coercion is always
in favor of the field type and not the value type:

Person(age == "10") // "10" is coerced to 10

4.8.3.3.4. Comma separated AND

The comma character (', ') is used to separate constraint groups. It has implicit AND connective
semantics.

/'l Person is at |east 50 and weighs at |east 80 kg
Person(age > 50, weight > 80)

/1l Person is at |least 50, weighs at least 80 kg and is taller than 2 neter.
Person(age > 50, weight > 80, height > 2)

The comma (,) operator cannot be embedded in a composite constraint expression, such as
parentheses:

Person((age > 50, weight >80) || height >2) // Do NOT do this: conpile error

/1l Use this instead
Person((age > 50 & weight > 80) || height > 2)

165

Chapter 4. Rule Language Refe...

4.8.3.3.5. Binding variables

A property can be bound to a variable:

/1l 2 persons of the same age
Person($firstAge : age) // binding
Person(age == $firstAge) // constraint expression

The prefixed dollar symbol ($) is just a convention; it can be useful in complex rules where it helps
to easily differentiate between variables and fields.

@ Note
For backwards compatibility reasons, It's allowed (but not recommended) to mix a
constraint binding and constraint expressions as such:

/1 Not recomended
Person($age : age * 2 < 100)

/'l Recommended (separates bindings and constrai nt expressions)
Person(age * 2 < 100, $age : age)

Bound variable restrictions using the operator == provide for very fast execution as it use hash
indexing to improve performance.

4.8.3.3.6. Unification

Drools does not allow bindings to the same declaration. However this is an important aspect to
derivation query unification. While positional arguments are always processed with unification
a special unification symbol, "=', was introduced for named arguments named arguments. The
following "unifies" the age argument across two people.

Person($age :
Person($age :

age)
age)

In essence unification will declare a binding for the first occurrence and constrain to the same
value of the bound field for sequence occurrences.

4.8.3.3.7. Special literal support

Besides normal Java literals (including Java 5 enums), this literal is also supported:

166

Left Hand Side (when) syntax

4.8.3.3.7.1. Date literal

The date format dd- nmm yyyy is supported by default. You can customize this by providing an
alternative date format mask as the System property named dr ool s. dat ef or mat . If more control
is required, use a restriction.

Example 4.36. Date Literal Restriction

Cheese(bestBefore < "27-Cct-2009")

4.8.3.3.8. List and Map access

It's possible to directly access a Li st value by index:

/1 Same as chil dList(0).getAge() == 18
Person(childList[0].age == 18)

It's also possible to directly access a Map value by key:

/] Same as credential Map.get("jsmth").isValid()
Person(credential Map["jsmith"].valid)

4.8.3.3.9. Abbreviated combined relation condition

This allows you to place more than one restriction on a field using the restriction connectives &&
or | | . Grouping via parentheses is permitted, resulting in a recursive syntax pattern.

— restriclion |——
O— B& |l c =0
——{ restriction Group | ——
Figure 4.13. Abbreviated combined relation condition
O} (msiazon) {71)—O

Figure 4.14. Abbreviated combined relation condition with parentheses

/1 Sinple abbreviated conbined relation condition using a single &&

167

Chapter 4. Rule Language Refe...

Person(age > 30 && < 40)

/1 Conpl ex abbrevi ated conbi ned rel ati on using groupi ngs
Person(age ((> 30 && < 40) ||
(> 20 && < 25)))

/1 M xing abbrevi ated conbined relation with constraint connectives
Person(age > 30 && < 40 || location == "|ondon")

4.8.3.3.10. Special DRL operators

| = | ' | ==t | ==t 1= | 'contains' | 'not contains' |
‘memberct | ‘ot memberct’ | ‘'matches” | “not matches'

Figure 4.15. Operators

Coercion to the correct value for the evaluator and the field will be attempted.
4.8.3.3.10.1. The operators < <= > >=

These operators can be used on properties with natural ordering. For example, for Date fields, <
means before, for St ri ng fields, it means alphabetically lower.

Person(firstNanme < $ot her First Name)

Person(birthDate < $otherBirthDate)

Only applies on Conpar abl e properties.
4.8.3.3.10.2. The operator mat ches

Matches a field against any valid Java Regular Expression. Typically that regexp is a string literal,
but variables that resolve to a valid regexp are also allowed.

Example 4.37. Regular Expression Constraint

Cheese(type nmatches "(Buffal o) ?\\S*Mzarella")

168

Left Hand Side (when) syntax

@ Note
Like in Java, regular expressions written as string literals need to escape '\ ".

Only applies on St ri ng properties. Using mat ches againstanul | value always evaluates to false.
4.8.3.3.10.3. The operator not mat ches

The operator returns true if the String does not match the regular expression. The same rules
apply as for the mat ches operator. Example:

Example 4.38. Regular Expression Constraint
Cheese(type not matches " (Bufful o) ?\\S*Mzarella")

Only applies on Stri ng properties. Using not mat ches against a nul | value always evaluates
to true.

4.8.3.3.10.4. The operator cont ai ns

The operator cont ai ns is used to check whether a field that is a Collection or elements contains
the specified value.

Example 4.39. Contains with Collections

CheeseCount er (cheeses contains "stilton") // contains with a String literal
CheeseCount er (cheeses contains $var) // contains with a variable

Only applies on Col | ect i on properties.

4.8.3.3.10.5. The operator not cont ai ns

The operator not cont ai ns is used to check whether a field that is a Collection or elements does
not contain the specified value.

Example 4.40. Literal Constraint with Collections

CheeseCount er (cheeses not contains "cheddar") // not contains with a String
literal
CheeseCount er (cheeses not contains $var) // not contains with a variable

Only applies on Col | ecti on properties.

169

Chapter 4. Rule Language Refe...

@ Note
For backward compatibility, the excl udes operator is supported
as a synonym for not cont ai ns.

4.8.3.3.10.6. The operator menber Of

The operator menber O is used to check whether a field is a member of a collection or elements;
that collection must be a variable.

Example 4.41. Literal Constraint with Collections
CheeseCount er (cheese nenber O $mat ur eCheeses)

4.8.3.3.10.7. The operator not nmerber Of

The operator not nmenber O is used to check whether a field is not a member of a collection or
elements; that collection must be a variable.

Example 4.42. Literal Constraint with Collections
CheeseCount er (cheese not nenber & $mat ur eCheeses)

4.8.3.3.10.8. The operator soundsl i ke

This operator is similar to mat ches, but it checks whether a word has almost the same sound
(using English pronunciation) as the given value. This is based on the Soundex algorithm (see
http://en.w ki pedi a. or g/ wi ki / Soundex).

Example 4.43. Test with soundslike

/1 match cheese "fubar" or "foobar"
Cheese(nane soundsli ke 'foobar')

4.8.3.3.10.9. The operator str

This operator str is used to check whether a field that is a Stri ng starts with or ends with a
certain value. It can also be used to check the length of the String.

Message(routingVal ue str[startsWth] "R1")

170

O

Left Hand Side (when) syntax

Message(routingVal ue str[endsWth] "R2")

Message(routingValue str[length] 17)

4.8.3.3.10.10. The operators i n and not in (compound value restriction)

The compound value restriction is used where there is more than one possible value to match.
Currently only the i n and not i n evaluators support this. The second operand of this operator
must be a comma-separated list of values, enclosed in parentheses. Values may be given as
variables, literals, return values or qualified identifiers. Both evaluators are actually syntactic sugar,
internally rewritten as a list of multiple restrictions using the operators ! = and ==.

|
Citmotn)0 = |
(oo}
- ,
| qualifiedidentifier | _,

-{ quaﬁmﬂﬂdaﬂnﬁer}arf

y

Figure 4.16. compoundValueRestriction

Example 4.44. Compound Restriction using "in"

Person($cheese : favouriteCheese)
Cheese(type in ("stilton", "cheddar", $cheese))

4.8.3.3.11. Inline eval operator (deprecated)

‘wvall’ EXOESSIon y

Figure 4.17. Inline Eval Expression

An inline eval constraint can use any valid dialect expression as long as it results to a primitive
boolean. The expression must be constant over time. Any previously bound variable, from the
current or previous pattern, can be used; autovivification is also used to auto-create field binding
variables. When an identifier is found that is not a current variable, the builder looks to see if the

171

Chapter 4. Rule Language Refe...

identifier is a field on the current object type, if it is, the field binding is auto-created as a variable
of the same name. This is called autovivification of field variables inside of inline eval's.

This example will find all male-female pairs where the male is 2 years older than the female; the
variable age is auto-created in the second pattern by the autovivification process.

Example 4.45. Return Value operator
Person(girl Age : age, sex = "F")

Person(eval (age == girlAge + 2), sex ='M) // eval() is actually obsolete
in this exanple

@ Note
Inline eval's are effectively obsolete as their inner syntax is now directly supported.
It's recommended not to use them. Simply write the expression without wrapping
eval() around it.

4.8.3.3.12. Operator precedence

The operators are evaluated in this precedence:

Table 4.1. Operator precedence

Operator type Operators Notes
(nested) property access . Not normal Java semantics
List/Map access [1 Not normal Java semantics
constraint binding : Not normal Java semantics
multiplicative *| %
additive + -
shift << >> >>>
relational < ><=>=i nst anceof
equality === Does not use normal

Java (not) same semantics:
uses (not) equals semantics
instead.

non-short circuiting AND &

non-short circuiting exclusive | »
OR

non-short circuiting inclusive
OR

172

Left Hand Side (when) syntax

Operator type Operators Notes
logical AND &&
logical OR |
ternary ?
Comma separated AND , Not normal Java semantics

4.8.3.4. Positional Arguments

Patterns now support positional arguments on type declarations.

Positional arguments are ones where you don't need to specify the field name, as the position
maps to a known named field. i.e. Person(name == "mark") can be rewritten as Person("mark";).
The semicolon ';' is important so that the engine knows that everything before it is a positional
argument. Otherwise we might assume it was a boolean expression, which is how it could be
interpreted after the semicolon. You can mix positional and named arguments on a pattern by
using the semicolon ;' to separate them. Any variables used in a positional that have not yet been
bound will be bound to the field that maps to that position.

decl are Cheese
name : String
shop : String
price : int
end

Example patterns, with two constraints and a binding. Remember semicolon ';' is used to
differentiate the positional section from the named argument section. Variables and literals and
expressions using just literals are supported in positional arguments, but not variables. Positional
arguments are always resolved using unification.

Cheese("stilton", "Cheese Shop", p;)

Cheese("stilton", "Cheese Shop"; p : price)

Cheese("stilton"; shop == "Cheese Shop", p : price)

Cheese(name == "stilton"; shop == "Cheese Shop", p : price)

Positional arguments that are given a previously declared binding will constrain against that using
unification; these are referred to as input arguments. If the binding does not yet exist, it will create
the declaration binding it to the field represented by the position argument; these are referred to
as output arguments.

4.8.3.5. Fine grained property change listeners

When you call modify() (see the modify statement section) on a given object it will trigger a
revaluation of all patterns of the matching object type in the knowledge base. This can can lead

173

Chapter 4. Rule Language Refe...

to unwanted and useless evaluations and in the worst cases to infinite recursions. The only
workaround to avoid it was to split up your objects into smaller ones having a 1 to 1 relationship
with the original object.

This feature allows the pattern matching to only react to modification of properties actually
constrained or bound inside of a given pattern. That will help with performance and recursion and
avoid artificial object splitting.

By default this feature is off in order to make the behavior of the rule engine backward compatible
with the former releases. When you want to activate it on a specific bean you have to annotate it
with @propertyReactive. This annotation works both on drl type declarations:

decl are Person
@r opertyReacti ve
firstName : String
| astNane : String
end

and on Java classes:

@r opertyReacti ve
public static class Person {
private String firstNane;
private String | astNane;

}

In this way, for instance, if you have a rule like the following:

rule "Every person naned Mario is a male" when

$person : Person(firstNane == "Mari 0")
t hen
nodi fy ($person) { setMale(true) }
end

you won't have to add the no-loop attribute to it in order to avoid an infinite recursion because the
engine recognizes that the pattern matching is done on the 'firstName' property while the RHS of
the rule modifies the 'male’ one. Note that this feature does not work for update(), and this is one of
the reasons why we promote modify() since it encapsulates the field changes within the statement.
Moreover, on Java classes, you can also annotate any method to say that its invocation actually
modifies other properties. For instance in the former Person class you could have a method like:

@npdifies({ "firstNane", "lastName" })

174

Left Hand Side (when) syntax

public void set Nane(String name) {
String[] nanmes = nane.split("\\s");
this.firstNanme = nanes[0];
this. |l ast Nane = nanes[1];

}

That means that if a rule has a RHS like the following:

nodi fy($person) { set Nane("Mario Fusco") }

it will correctly recognize that the values of both properties ‘firstName' and 'lastName' could
have potentially been modified and act accordingly, not missing of reevaluating the patterns
constrained on them. At the moment the usage of @Modifies is not allowed on fields but only on
methods. This is coherent with the most common scenario where the @Modifies will be used for
methods that are not related with a class field as in the Person.setName() in the former example.
Also note that @Modifies is not transitive, meaning that if another method internally invokes
the Person.setName() one it won't be enough to annotate it with @Modifies({ "name" }), but it
is necessary to use @Modifies({ "firstName", "lastName" }) even on it. Very likely @Modifies
transitivity will be implemented in the next release.

For what regards nested accessors, the engine will be notified only for top level fields. In other
words a pattern matching like:

Person (address.city.nane == "London)

will be revaluated only for modification of the 'address' property of a Person object. In the same
way the constraints analysis is currently strictly limited to what there is inside a pattern. Another
example could help to clarify this. An LHS like the following:

$p : Person()
Car (owner = $p.nane)

will not listen on modifications of the person’'s name, while this one will do:

Person($nanme : nane)
Car (owner = $nane)

To overcome this problem it is possible to annotate a pattern with @watch as it follows:

175

Chapter 4. Rule Language Refe...

$p : Person() @watch (name)
Car (owner = $p.nane)

Indeed, annotating a pattern with @watch allows you to modify the inferred set of properties for
which that pattern will react. Note that the properties named in the @watch annotation are actually
added to the ones automatically inferred, but it is also possible to explicitly exclude one or more
of them prepending their name with a ! and to make the pattern to listen for all or none of the
properties of the type used in the pattern respectively with the wildcrds * and !'*. So, for example,
you can annotate a pattern in the LHS of a rule like:

/1 listens for changes on both firstNanme (inferred) and | astNane
Person(firstNane == $expectedFirstNane) @watch(|astNane)

Il listens for all the properties of the Person bean
Person(firstNanme == $expectedFirstNane) @watch(*)

/1 listens for changes on | astNane and explicitly exclude firstName
Person(firstNanme == $expect edFirst Name) @watch(| ast Nane, !firstNane)

/Il listens for changes on all the properties except the age one
Person(firstNane == $expectedFirstNane) @watch(*, !age)

Since doesn't make sense to use this annotation on a pattern using a type not annotated with
@PropertyReactive the rule compiler will raise a compilation error if you try to do so. Also the
duplicated usage of the same property in @watch (for example like in: @watch(firstName, !
firstName)) will end up in a compilation error. In a next release we will make the automatic
detection of the properties to be listened smarter by doing analysis even outside of the pattern.

It also possible to enable this feature by default on all the types of your model or to completely
disallow it by using on option of the KnowledgeBuilderConfiguration. In particular this new
PropertySpecificOption can have one of the following 3 values:

- DISABLED => the feature is turned off and all the other related annotations
are just ignored
- ALLONED => this is the default behavior: types are not property
reacti ve unl ess they are not annotated with @UropertySpecific
- ALWAYS => all types are property reactive by default

So, for example, to have a KnowledgeBuilder generating property reactive types by default you
could do:

176

Left Hand Side (when) syntax

Knowl edgeBui | der Confi gurati on config =
Know edgeBui | der Fact ory. newKnow edgeBui | der Confi guration();
config.set Option(PropertySpecificOption. ALVWAYS);
Knowl edgeBui | der kbui | der
Know edgeBui | der Fact ory. newKnow edgeBui | der (confi g);

In this last case it will be possible to disable the property reactivity feature on a specific type by
annotating it with @ClassReactive.

4.8.3.6. Basic conditional elements

4.8.3.6.1. Conditional Element and

The Conditional Element "and" is used to group other Conditional Elements into a logical
conjunction. Drools supports both prefix and and infix and.

. CE . .)

O

Figure 4.18. infixAnd

Traditional infix and is supported:

/i nfixAnd
Cheese(cheeseType : type) and Person(favouriteCheese == cheeseType)

Explicit grouping with parentheses is also supported:

//infixAnd with grouping
(Cheese(cheeseType : type) and
(Person(favouriteCheese == cheeseType) or
Person(favouriteCheese == cheeseType))

@ Note
The symbol && (as an alternative to and) is deprecated. But it is still supported in
the syntax for backwards compatibility.

177

Chapter 4. Rule Language Refe...

Figure 4.19. prefixAnd

Prefix and is also supported:

(and Cheese(cheeseType : type)
Person(favouriteCheese == cheeseType))

The root element of the LHS is an implicit prefix and and doesn't need to be specified:

Example 4.46. implicit root prefixAnd

when

Cheese(cheeseType : type)

Person(favouriteCheese == cheeseType)
t hen

4.8.3.6.2. Conditional Element or

The Conditional Element or is used to group other Conditional Elements into a logical disjunction.
Drools supports both prefix or and infix or .

s o G M e Ga

O

Figure 4.20. infixOr

Traditional infix or is supported:

/1infixOr
Cheese(cheeseType : type) or Person(favouriteCheese == cheeseType)

Explicit grouping with parentheses is also supported:

/1infixOr with grouping
(Cheese(cheeseType : type) or
(Person(favouriteCheese == cheeseType) and

178

Left Hand Side (when) syntax

Person(favouriteCheese == cheeseType))

—
OfI aws & -@—o

Figure 4.21. prefixOr

Prefix or is also supported:

(or Person(sex == "f", age > 60)
Person(sex == "', age > 65)

The Conditional Element or also allows for optional pattern binding. This means that each resulting
subrule will bind its pattern to the pattern binding. Each pattern must be bound separately, using
eponymous variables:

pensioner : (Person(sex == "f", age > 60) or Person(sex == "nl', age > 65))
(or pensioner : Person(sex == "f", age > 60)
pensioner : Person(sex == "ni, age > 65))

179

Chapter 4. Rule Language Refe...

Since the conditional element or results in multiple subrule generation, one for each possible
logically outcome, the example above would result in the internal generation of two rules. These
two rules work independently within the Working Memory, which means both can match, activate
and fire - there is no shortcutting.

The best way to think of the conditional element or is as a shortcut for generating two or more
similar rules. When you think of it that way, it's clear that for a single rule there could be multiple
activations if two or more terms of the disjunction are true.

4.8.3.6.3. Conditional Element not

bl el
mnditlnnalElemm] : SNg'

Figure 4.22. not

The CE not is first order logic's non-existential quantifier and checks for the non-existence of
something in the Working Memory. Think of "not" as meaning "there must be none of...".

The keyword not may be followed by parentheses around the CEs that it applies to. In the simplest
case of a single pattern (like below) you may optionally omit the parentheses.

Example 4.47. No Busses

not Bus()

Example 4.48. No red Busses

/1 Brackets are optional:

not Bus(color == "red")
/| Brackets are optional:
not (Bus(color == "red", nunber == 42))

/1l "not" with nested infix and - two patterns,
/'l brackets are requires:
not (Bus(color == "red") and

Bus(col or == "blue"))

180

Left Hand Side (when) syntax

4.8.3.6.4. Conditional Element exi sts

(O—o{(exists |~ {conditionalElement) 0

Figure 4.23. exists

The CE exi st s is first order logic's existential quantifier and checks for the existence of something
in the Working Memory. Think of "exists" as meaning "there is at least one..". It is different from
just having the pattern on its own, which is more like saying "for each one of...". If you use exi st s
with a pattern, the rule will only activate at most once, regardless of how much data there is in
working memory that matches the condition inside of the exi st s pattern. Since only the existence
matters, no bindings will be established.

The keyword exi st s must be followed by parentheses around the CEs that it applies to. In the
simplest case of a single pattern (like below) you may omit the parentheses.

Example 4.49. At least one Bus

exi sts Bus()

Example 4.50. At least one red Bus

exi sts Bus(color == "red")
/'l brackets are optional:
exists (Bus(color == "red", nunber == 42))

/] "exists" with nested infix and,

/'l brackets are required:

exists (Bus(color == "red") and
Bus(col or == "blue"))

4.8.3.7. Advanced conditional elements

4.8.3.7.1. Conditional Element foral I

O—{fomr)—{T)— o o - O

Figure 4.24. forall

The Conditional Element forall completes the First Order Logic support in Drools. The
Conditional Element f or al | evaluates to true when all facts that match the first pattern match all
the remaining patterns. Example:

181

Chapter 4. Rule Language Refe...

rule "Al'l English buses are red"

when
forall ($bus : Bus(type == '"english')
Bus(this == $bus, color = 'red))
t hen
/1 all English buses are red
end

In the above rule, we "select" all Bus objects whose type is "english". Then, for each fact that
matches this pattern we evaluate the following patterns and if they match, the forall CE will
evaluate to true.

To state that all facts of a given type in the working memory must match a set of constraints,
foral | can be written with a single pattern for simplicity. Example:

Example 4.51. Single Pattern Forall

rule "All Buses are Red"

when

forall(Bus(color == "red))
t hen

I/ all Bus facts are red
end

Another example shows multiple patterns inside the foral | :

Example 4.52. Multi-Pattern Forall

rul e

when
forall ($enp : Enpl oyee()

Heal t hCare(enpl oyee == $enp)

Dent al Care(enpl oyee == $enp)

all enpl oyees have health and dental care prograns"

t hen
/1 all enployees have health and dental care
end

Forall can be nested inside other CEs. For instance, f oral | can be used inside a not CE. Note
that only single patterns have optional parentheses, so that with a nested foral | parentheses
must be used:

182

Left Hand Side (when) syntax

Example 4.53. Combining Forall with Not CE

rule "not all enpl oyees have health and dental care"
when
not (forall($enp : Enpl oyee()
Heal t hCar e(enpl oyee == $enp)
Dent al Care(enpl oyee == $enp))

t hen
/1l not all enployees have health and dental care
end

As a side note, foral | (p1 p2 p3...) is equivalent to writing:
not (pl and not (and p2 p3...))

Also, it is important to note that f or al | is a scope delimiter. Therefore, it can use any previously
bound variable, but no variable bound inside it will be available for use outside of it.

4.8.3.7.2. Conditional Element from

O o O

Figure 4.25. from

The Conditional Element f r omenables users to specify an arbitrary source for data to be matched
by LHS patterns. This allows the engine to reason over data not in the Working Memory. The
data source could be a sub-field on a bound variable or the results of a method call. It is a
powerful construction that allows out of the box integration with other application components
and frameworks. One common example is the integration with data retrieved on-demand from
databases using hibernate named queries.

The expression used to define the object source is any expression that follows regular MVEL
syntax. Therefore, it allows you to easily use object property navigation, execute method calls and
access maps and collections elements.

Here is a simple example of reasoning and binding on another pattern sub-field:

rule "validate zi pcode"
when

Per son($personAddress : address)

Addr ess(zi pcode == "23920W) from $per sonAddr ess
t hen

183

Chapter 4. Rule Language Refe...

/1 zip code is ok
end

With all the flexibility from the new expressiveness in the Drools engine you can slice and dice this
problem many ways. This is the same but shows how you can use a graph notation with the ‘from':

rule "validate zi pcode"
when
$p : Person()
$a : Address(zipcode == "23920W) from $p. address
t hen
/1 zip code is ok
end

Previous examples were evaluations using a single pattern. The CE fromalso support object
sources that return a collection of objects. In that case, f romwill iterate over all objects in the
collection and try to match each of them individually. For instance, if we want a rule that applies
10% discount to each item in an order, we could do:

rule "apply 10%di scount to all itens over US$ 100,00 in an order"
when
$order : Order()
$item : Oderltem value > 100) from $order.itens
t hen
/1 apply discount to $item
end

The above example will cause the rule to fire once for each item whose value is greater than 100
for each given order.

You must take caution, however, when using f r om especially in conjunction with the | ock- on-
act i ve rule attribute as it may produce unexpected results. Consider the example provided earlier,
but now slightly modified as follows:

rule "Assign people in North Carolina (NC) to sales region 1"
rul efl ow-group "test"
| ock-on-active true
when
$p : Person()
$a : Address(state == "NC') from $p. address
t hen
nmodi fy ($p) {} // Assign person to sales region 1 in a nodify block
end

184

Left Hand Side (when) syntax

rule "Apply a discount to people in the city of Raleigh”
rul efl ow-group "test"”
| ock-on-active true
when
$p : Person()
$a : Address(city == "Raleigh") from $p. addr ess
t hen
nmodi fy ($p) {} // Apply discount to person in a nodify bl ock
end

In the above example, persons in Raleigh, NC should be assigned to sales region 1 and receive
a discount; i.e., you would expect both rules to activate and fire. Instead you will find that only
the second rule fires.

If you were to turn on the audit log, you would also see that when the second rule fires, it
deactivates the first rule. Since the rule attribute | ock- on- act i ve prevents a rule from creating
new activations when a set of facts change, the first rule fails to reactivate. Though the set of facts
have not changed, the use of f romreturns a new fact for all intents and purposes each time it
is evaluated.

First, it's important to review why you would use the above pattern. You may have many rules
across different rule-flow groups. When rules modify working memory and other rules downstream
of your RuleFlow (in different rule-flow groups) need to be reevaluated, the use of nodify is
critical. You don't, however, want other rules in the same rule-flow group to place activations on
one another recursively. In this case, the no- | oop attribute is ineffective, as it would only prevent
a rule from activating itself recursively. Hence, you resort to | ock- on- acti ve.

There are several ways to address this issue:

« Avoid the use of fr omwhen you can assert all facts into working memory or use nested object
references in your constraint expressions (shown below).

» Place the variable assigned used in the modify block as the last sentence in your condition
(LHS).

« Avoid the use of | ock- on- acti ve when you can explicitly manage how rules within the same
rule-flow group place activations on one another (explained below).

The preferred solution is to minimize use of f r omwhen you can assert all your facts into working
memory directly. In the example above, both the Person and Address instance can be asserted
into working memory. In this case, because the graph is fairly simple, an even easier solution is
to modify your rules as follows:

rule "Assign people in North Carolina (NC) to sales region 1"
rul efl ow-group "test"

185

Chapter 4. Rule Language Refe...

| ock-on-active true
when
$p : Person(address.state == "NC')
t hen
modi fy ($p) {} // Assign person to sales region 1 in a nodify bl ock
end

rule "Apply a discount to people in the city of Ral eigh”
rul efl ow-group "test"
| ock-on-active true
when
$p : Person(address.city == "Ral eigh")
t hen
nmodi fy ($p) {} //Apply discount to person in a nodify bl ock
end

Now, you will find that both rules fire as expected. However, it is not always possible to access
nested facts as above. Consider an example where a Person holds one or more Addresses and
you wish to use an existential quantifier to match people with at least one address that meets
certain conditions. In this case, you would have to resort to the use of f romto reason over the

collection.

There are several ways to use f r omto achieve this and not all of them exhibit an issue with the use
of | ock-on- act i ve. For example, the following use of f r omcauses both rules to fire as expected:

rule "Assign people in North Carolina (NC) to sales region 1"
rul efl ow-group "test"
| ock-on-active true
when
$p : Person($addresses : addresses)
exi sts (Address(state == "NC') from $addresses)
t hen
nmodi fy ($p) {} // Assign person to sales region 1 in a nodify bl ock
end

rule "Apply a discount to people in the city of Raleigh”
rul efl ow-group "test"
| ock-on-active true
when
$p : Person($addresses : addresses)
exists (Address(city == "Ral ei gh") from $addresses)
t hen
nodi fy ($p) {} // Apply discount to person in a nodify block
end

However, the following slightly different approach does exhibit the problem:

186

Left Hand Side (when) syntax

rule "Assign people in North Carolina (NC) to sales region 1"
rul efl ow-group "test”
| ock-on-active true
when

$assessment : Assessnent ()

$p : Person()

$addresses : List() from $p. addresses

exists (Address(state == "NC') from $addresses)
t hen

nodi fy ($assessnent) {} // Mdify assessnent in a nodify bl ock
end

rule "Apply a discount to people in the city of Raleigh”
rul efl ow-group "test”
| ock-on-active true
when

$assessnment : Assessnent ()

$p : Person()

$addresses : List() from $p. addresses

exists (Address(city == "Ral eigh") from $addresses)
t hen

nodi fy ($assessnent) {} // Mdify assessnent in a nodify bl ock
end

In the above example, the $addresses variable is returned from the use of f rom The example
also introduces a new object, assessment, to highlight one possible solution in this case. If the
$assessment variable assigned in the condition (LHS) is moved to the last condition in each rule,
both rules fire as expected.

Though the above examples demonstrate how to combine the use of f r omwith | ock- on- acti ve
where no loss of rule activations occurs, they carry the drawback of placing a dependency on the
order of conditions on the LHS. In addition, the solutions present greater complexity for the rule
author in terms of keeping track of which conditions may create issues.

A better alternative is to assert more facts into working memory. In this case, a person's addresses
may be asserted into working memory and the use of f r omwould not be necessary.

There are cases, however, where asserting all data into working memory is not practical and we
need to find other solutions. Another option is to reevaluate the need for | ock- on-acti ve. An
alternative to | ock- on- acti ve is to directly manage how rules within the same rule-flow group
activate one another by including conditions in each rule that prevent rules from activating each
other recursively when working memory is modified. For example, in the case above where a
discount is applied to citizens of Raleigh, a condition may be added to the rule that checks whether
the discount has already been applied. If so, the rule does not activate.

187

Chapter 4. Rule Language Refe...

4.8.3.7.3. Conditional Element col I ect

pattemn
|
|
o S g W o W g & |
: collect A
' accurmulata 4

Figure 4.26. collect

The Conditional Element col | ect allows rules to reason over a collection of objects obtained
from the given source or from the working memory. In First Oder Logic terms this is the cardinality
guantifier. A simple example:

import java.util.ArraylLi st

rule "Raise priority if systemhas nore than 3 pendi ng al arns"
when

$system : Systen()

$alarnms : ArraylList(size >= 3)

fromcollect(Al arn(system== $system status == 'pending))

t hen

/!l Raise priority, because system $system has

/1 3 or nore alarms pendi ng. The pending al arns

/1 are $al arns.
end

In the above example, the rule will look for all pending alarms in the working memory for each
given system and group them in ArrayLists. If 3 or more alarms are found for a given system,
the rule will fire.

The result pattern of collect can be any concrete class that implements the
java.util. Col | ecti on interface and provides a default no-arg public constructor. This means
that you can use Java collections like ArrayList, LinkedList, HashSet, etc., or your own class, as
long as it implements the j ava. util. Col | ecti on interface and provide a default no-arg public
constructor.

Both source and result patterns can be constrained as any other pattern.

Variables bound before the col | ect CE are in the scope of both source and result patterns
and therefore you can use them to constrain both your source and result patterns. But note that
col I ect is a scope delimiter for bindings, so that any binding made inside of it is not available
for use outside of it.

188

Left Hand Side (when) syntax

Collect accepts nested f r omCEs. The following example is a valid use of "collect":

i mport java.util.LinkedList;

rule "Send a nessage to all nothers”

when

$town : Town(nane == 'Paris')

$not hers : LinkedLi st ()

fromcollect(Person(gender == 'F, children > 0)
from $t own. get Peopl e()
)

t hen

// send a nessage to all nothers
end

4.8.3.7.4. Conditional Element accunul ate

O—b[paftem]—b[“from']—>[‘accumulate’ H
|

A

accumulateFunction]—

Figure 4.27. accumulate

The Conditional Element accumul at e is a more flexible and powerful form of col | ect, in the
sense that it can be used to do what col | ect does and also achieve results that the CE col | ect
is not capable of doing. Basically, what it does is that it allows a rule to iterate over a collection of
objects, executing custom actions for each of the elements, and at the end it returns a result object.

Accumulate supports both the use of pre-defined accumulate functions, or the use of inline custom
code. Inline custom code should be avoided though, as it is harder for rule authors to maintain,
and frequently leads to code duplication. Accumulate functions are easier to test and reuse.

189

Chapter 4. Rule Language Refe...

The Accumulate CE also supports multiple different syntaxes. The preferred syntax is the top level
accumulate, as noted bellow, but all other syntaxes are supported for backward compatibility.

4.8.3.7.4.1. Accumulate CE (preferred syntax)

The top level accumulate syntax is the most compact and flexible syntax. The simplified syntax
is as follows:

accumul at e(<source pattern>; <functions> [;<constraints>])

For instance, a rule to calculate the minimum, maximum and average temperature reading for a
given sensor and that raises an alarm if the minimum temperature is under 20C degrees and the
average is over 70C degrees could be written in the following way, using Accumulate:

rule "Raise al arnt

when
$s : Sensor ()
accurmul at e(Readi ng(sensor == $s, $tenp : tenperature);
$min : mn($temp),
$max : max($temp),
$avg : average($temp);
$min < 20, $avg > 70)
t hen

// raise the alarm
end

In the above example, min, max and average are Accumulate Functions and will calculate the
minimum, maximum and average temperature values over all the readings for each sensor.

Drools ships with several built-in accumulate functions, including:

e average
* min

* max

e count

e sum
 collectList
« collectSet

These common functions accept any expression as input. For instance, if someone wants to
calculate the average profit on all items of an order, a rule could be written using the average
function:

190

Left Hand Side (when) syntax

rule "Average profit”

when
$order : Order()
accunul ate(Orderlten(order == $order, $cost : cost, $price : price);
$avgProfit : average(1 - $cost / $price))
t hen

/'l average profit for $order is $avgProfit
end

Accumulate Functions are all pluggable. That means that if needed, custom, domain specific
functions can easily be added to the engine and rules can start to use them without any
restrictions. To implement a new Accumulate Function all one needs to do is to create a
Java class that implements the org. drool s. core. runti me. rul e. TypedAccunul at eFuncti on
interface and add a line to the configuration file or set a system property to let the engine know
about the new function. As an example of an Accumulate Function implementation, the following
is the implementation of the aver age function:

/**
* An inplenentation of an accumnul at or capabl e of cal cul ati ng average val ues
*/
public class AverageAccumnul at eFunction inplenents org.drools.core.runtime.rul e. TypedAccunul at ef

public void readExternal (Qojectlnput in) throws | CException, C assNotFoundException {

public void witeExternal (Obj ectQutput out) throws |IOException {

public static class AverageData inplenents Externalizable {
public int count = O;
public double total = 0;

public AverageData() {}

public void readExternal (Qojectlnput in) throws | CException, C assNotFoundException {
count = in.readlnt();
t ot al = in.readDoubl e();

public void witeExternal (ObjectQutput out) throws | CException {
out.witelnt(count);
out.witeDouble(total);

191

Chapter 4. Rule Language Refe...

/* (non-Javadoc)
* @ee org.drool s. base. accunul at ors. Accunul at eFunct i on#cr eat eCont ext ()
*/
public Serializable createContext() {
return new Aver ageDat a();

/* (non-Javadoc)
& Gee
org. drool s. core. base. accunul at ors. Accunul at eFuncti on#i ni t (j ava. | ang. Obj ect)

*/
public void init(Serializable context) throws Exception {

Aver ageDat a data = (AverageData) context;

dat a. count = 0;

data.total = O;

}
/* (non-Javadoc)
2 @ee
j ava. | ang. Obj ect)
*/
public void accurul ate(Seri al i zabl e cont ext,
oj ect val ue) {
Aver ageDat a data = (AverageData) context;
dat a. count ++
data.total += ((Nunber) val ue). doubl eVal ue();
}
/* (non-Javadoc)
2 @ee
j ava. | ang. Obj ect)
*/
public void reverse(Serializable context,
bj ect val ue) throws Exception {
Aver ageDat a data = (AverageData) context;
dat a. count - -;
data.total -= ((Nunber) val ue). doubl eVval ue();
}
/* (non-Javadoc)
2 @ee

org. drool s. core. base. accunul at ors. Accurmul at eFunct i on#get Resul t (j ava. | ang. Obj ect)
*/
public Object getResult(Serializable context) throws Exception {
Aver ageDat a data = (AverageData) context;

192

Left Hand Side (when) syntax

return new Doubl e(data.count == 0 ? 0 : data.total / data.count);

/* (non-Javadoc)
2 @ee
org. drool s. core. base. accunul at ors. Accunul at eFunct i on#support sRever se()
*/
publ i ¢ bool ean supportsReverse() {
return true;

/**

* }

S

public dass< ? > getResultType() {
return Nunber. cl ass;

The code for the function is very simple, as we could expect, as all the "dirty" integration work is
done by the engine. Finally, to plug the function into the engine, we added it to the configuration file:

drool s. accurul at e. functi on. aver age =
org. drool s. core. base. accunul at ors. Aver ageAccunul at eFuncti on

Here, ‘"drools.accumulate.function." is a prefix that must always be used,
"average" is how the function will be used in the rule file, and
"org.drools.core.base.accumulators.AverageAccumulateFunction” is the fully qualified name of
the class that implements the function behavior.

4.8.3.7.4.2. Alternate Syntax: single function with return type

The accumulate syntax evolved over time with the goal of becoming more compact and
expressive. Nevertheless, Drools still supports previous syntaxes for backward compatibility
purposes.

In case the rule is using a single accumulate function on a given accumulate, the author may
add a pattern for the result object and use the "from" keyword to link it to the accumulate result.
Example: a rule to apply a 10% discount on orders over $100 could be written in the following way:

rule "Apply 10% di scount to orders over US$ 100, 00"
when
$order : Order()
$total : Nunber(doubl eval ue > 100)
fromaccunul ate(Orderlten(order == $order, $value : value),

193

Chapter 4. Rule Language Refe...

sun($value))
t hen
apply discount to $order
end

In the above example, the accumulate element is using only one function (sum), and so, the rules
author opted to explicitly write a pattern for the result type of the accumulate function (Number)
and write the constraints inside it. There are no problems in using this syntax over the compact
syntax presented before, except that is is a bit more verbose. Also note that it is not allowed to
use both the return type and the functions binding in the same accumulate statement.

4.8.3.7.4.3. Accumulate with inline custom code

Warning

The use of accumulate with inline custom code is not a good practice for several
reasons, including difficulties on maintaining and testing rules that use them, as
well as the inability of reusing that code. Implementing your own accumulate
functions is very simple and straightforward, they are easy to unit test and to use.
This form of accumulate is supported for backward compatibility only.

Another possible syntax for the accumulate is to define inline custom code, instead of using
accumulate functions. As noted on the previous warned, this is discouraged though for the stated
reasons.

The general syntax of the accumul at e CE with inline custom code is:

<result pattern> from accunul ate(<source pattern>
init(<init code>),
action(<action code>),
reverse(<reverse code>),
result(<result expression>))

The meaning of each of the elements is the following:

« <source pattern>: the source pattern is a regular pattern that the engine will try to match against
each of the source objects.

* <init code>: this is a semantic block of code in the selected dialect that will be executed once
for each tuple, before iterating over the source objects.

» <action code>: this is a semantic block of code in the selected dialect that will be executed for
each of the source objects.

194

Left Hand Side (when) syntax

» <reverse code>: this is an optional semantic block of code in the selected dialect that if present
will be executed for each source object that no longer matches the source pattern. The objective
of this code block is to undo any calculation done in the <action code> block, so that the engine
can do decremental calculation when a source object is modified or retracted, hugely improving
performance of these operations.

« <result expression>: this is a semantic expression in the selected dialect that is executed after
all source objects are iterated.

« <result pattern>: this is a regular pattern that the engine tries to match against the object
returned from the <result expression>. If it matches, the accumul at e conditional element
evaluates to true and the engine proceeds with the evaluation of the next CE in the rule. If it
does not matches, the accunul at e CE evaluates to false and the engine stops evaluating CEs
for that rule.

It is easier to understand if we look at an example:

rule "Apply 10% di scount to orders over US$ 100, 00"
when
$order : Order()
$total : Number(doubl eVal ue > 100)
fromaccunmul ate(Orderlten{ order == $order, $value : value),
init(double total = 0;),
action(total += $value;),
reverse(total -= $value;),
result(total))
t hen
apply discount to $order
end

In the above example, for each Order in the Working Memory, the engine will execute the init
code initializing the total variable to zero. Then it will iterate over all O der | t emobjects for that
order, executing the action for each one (in the example, it will sum the value of all items into
the total variable). After iterating over all Or der | t emobjects, it will return the value corresponding
to the result expression (in the above example, the value of variable t ot al). Finally, the engine
will try to match the result with the Nunber pattern, and if the double value is greater than 100,
the rule will fire.

The example used Java as the semantic dialect, and as such, note that the usage of the semicolon
as statement delimiter is mandatory in the init, action and reverse code blocks. The result is an
expression and, as such, it does not admit ';". If the user uses any other dialect, he must comply
to that dialect's specific syntax.

As mentioned before, the reverse code is optional, but it is strongly recommended that the user
writes it in order to benefit from the improved performance on update and retract.

195

Chapter 4. Rule Language Refe...

The accunul at e CE can be used to execute any action on source objects. The following example
instantiates and populates a custom object:

rul e "Accunul at e usi ng cust om obj ects”

when
$person : Person($likes : likes)
$cheesery : Cheesery(total Amount > 100)
fromaccumul ate($cheese : Cheese(type == $likes),
init(Cheesery cheesery = new Cheesery();),
action(cheesery. addCheese($cheese);),
reverse(cheesery.renpveCheese($cheese);),
result(cheesery));
t hen
/1 do sonething
end

4.8.3.8. Conditional Element eval

‘eval’ i EXDreason 8l

Figure 4.28. eval

The conditional element eval is essentially a catch-all which allows any semantic code (that
returns a primitive boolean) to be executed. This code can refer to variables that were bound in the
LHS of the rule, and functions in the rule package. Overuse of eval reduces the declarativeness
of your rules and can result in a poorly performing engine. While eval can be used anywhere in
the patterns, the best practice is to add it as the last conditional element in the LHS of a rule.

Evals cannot be indexed and thus are not as efficient as Field Constraints. However this makes
them ideal for being used when functions return values that change over time, which is not allowed
within Field Constraints.

For folks who are familiar with Drools 2.x lineage, the old Drools parameter and condition tags are
equivalent to binding a variable to an appropriate type, and then using it in an eval node.

pl : Paraneter()
p2 : Paraneter()
eval (pl.getList().containsKey(p2.getlten()))

pl : Paraneter()

p2 : Paraneter()

// call function isValid in the LHS
eval (isvValid(pl, p2))

196

Left Hand Side (when) syntax

4.8.3.9. Railroad diagrams
AcounmlateAction

Eo o Y-

AccumulateClause

1 AccumubieFunction |-

AccumulateFunction

— O

[O ~®

Acounmlatenit
COIOR
AcounmlasteResuli

AccumulateReverse

&0

AccumulateSieps

'@”-0"'

- — :,_-' o

©

—| Accumubite Reverse]—
~|.F|.n:u11.nhl:]ni |=| Accumulbiie Action |— ‘*—l.ﬁ.n:mnhi.-]!:ml |

Accumulations

©

o emifies }@1 AccumabieFuncon |-

hddilin:%ll
®,

2
O

197

Chapter 4. Rule Language Refe...

Annotation

O O

" l-| Tdemifer |>®;| Vahe }-l /

AurayC reatorF est
OO =
COE=O

ArrayInitializer

—
]
-

®

HHOCEEEOE0E

BindingPattern

xﬁ
©
ol
G)_l_

ST

198

Left Hand Side (when) syntax

Block
o0
BooleanLiteral
&

CompilationUnit

(oorage) [Quimaime |- - T [|

Conditional And

Conditional Element Accunmlate

(Gemumtate) () { Comimmiion |J0"_@_

Conditional ElementExists
=]
e S
Conditional ElementForal |
E Q- =] O
Conditional ElementNod
= o=

199

Chapter 4. Rule Language Refe...

Conditional Element
i ,{m_-r_.:} :‘l.a-IBa'l:ImgP:ﬂ:m |71.
@) (O} (o)
() (O B ()
= o Y
(O fEmne 10D

Conditional Expr

-OE=0E=]

:|Em:1i:‘m1:rﬁq: |,_,

Conditional OrExpr
@
- @ -
0
©
PR S
O

Conditional Or
Constraints

H:"’|1 Condiiom OrExpe |-| {D \ H;"’I‘i CondioralrExpr | L

200

Left Hand Side (when) syntax

Created Mame

Dhigit
ExplicitGenericinvocationSuffix

[(mper)| SupecSuifix |-
‘-I]d.-rli:l':l:r ngmm: |-

ExplicitCenericinyocation

{ FonWikdcardType Argaments | { Asgumenss |-

Exponent
Q2 L

ExpressionList
Expression

Field

h:,-{amgmrﬂpnu HEp'l:mm |—L

a

= |)®-iQmJﬂ'rd]’~hrrm |_,' L

—-@-lc'-:ﬂiimlﬁq: |—h|.|'|.rl1-:h.bcl1 I: —@—

-

—

201

Chapter 4. Rule Language Refe...

Fraction

(—) :“

FromAcooumulsteClause

{fm}l AccumubieC o |

FromClamse

A £rom }{ CondiiomaieExge |+

FunctionDefinition

) N e e)

Cilohal Definition

{gluhnl}=| Type H Ickereifier |
[dentifierSuffix

Import Definition

[nlincMapEspr

O EF=1oE= O

202

Left Hand Side (when) syntax

MonWildcard TypeArguments

O
G)_..)@\

OrRestriction

—{(avex) Idemifier |-O»{ Idemifier |-® [

203

Chapter 4. Rule Language Refe...

Parameters

-| Explic it neric ImvocationSuffix |-_

{this) { Argmers: |
.
(muper)| SuperSuffin |
(e H{ Croonr |
"L PrimiveType ®@ }{(class
(. H{class

204

Left Hand Side (when) syntax

PrimitiveType

Qualified Name

e
=1

ueryDefinition
=)
(uery H{ Swingld [{ QuenyOptions |- “ ()
CueryDplions
[P

205

Chapter 4. Rule Language Refe...

Relational Operator

RuleAttributes

- e

RuleAttribute

206

Left Hand Side (when) syntax

RuleDefinition

o}

{"“l‘“ Siringld H Rk Oiptions |>~ '-=| ThenPari |>
RuleOptions
~A(extends H Swmgld |- [Amnomasion | xm
Selactor

(O (per) [Srpersre |

RingleRestriction

,| Rehtionai0perator H ShiftExpr }

[ore== 1O

Q

Stringld

207

Chapter 4. Rule Language Refe...

TypeArpuments

— @
O ==l ©

TypeArgument
Typelkefinition

(o) [O T - —

TypeOpdions

0.0;

,.-i Primitive Type I
- f

"
AF—. 0.0

UnaryExprMotPlusMinus

o
' @-i:—@ ®

208

The Right Hand Side (then)

UnaryExpr

UnaryFxpr

@ CondiamiCr

4.8.4. The Right Hand Side (then)

4.8.4.1. Usage

The Right Hand Side (RHS) is a common name for the consequence or action part of the rule;
this part should contain a list of actions to be executed. It is bad practice to use imperative or
conditional code in the RHS of a rule; as a rule should be atomic in nature - "when this, then
do this", not "when this, maybe do this". The RHS part of a rule should also be kept small, thus
keeping it declarative and readable. If you find you need imperative and/or conditional code in the
RHS, then maybe you should be breaking that rule down into multiple rules. The main purpose
of the RHS is to insert, retractor modify working memory data. To assist with that there are a few
convenience methods you can use to modify working memory; without having to first reference
a working memory instance.

updat e(object, handle) ; will tell the engine that an object has changed (one that has been bound
to something on the LHS) and rules may need to be reconsidered.

updat e(object) ; can also be used; here the Knowledge Helper will look up the facthandle for you,
via an identity check, for the passed object. (Note that if you provide Property Change Listeners
to your Java beans that you are inserting into the engine, you can avoid the need to call updat e()
when the object changes.). After a fact's field values have changed you must call update before

209

Chapter 4. Rule Language Refe...

changing another fact, or you will cause problems with the indexing within the rule engine. The
modify keyword avoids this problem.

i nsert (new Something()); will place a new object of your creation into the Working Memory.

i nsert Logi cal (new Something()); is similar to insert, but the object will be automatically
retracted when there are no more facts to support the truth of the currently firing rule.

retract (handle) ; removes an object from Working Memory.

These convenience methods are basically macros that provide short cuts to the Know edgeHel per
instance that lets you access your Working Memory from rules files. The predefined variable
drool s of type Know edgeHel per lets you call several other useful methods. (Refer to the
Knowl edgeHel per interface documentation for more advanced operations).

The call drool s. hal t () terminates rule execution immediately. This is required for returning
control to the point whence the current session was put to work with fi reUnti | Hal t ().

e Methods i nsert (Obj ect 0), update(Chject o) andretract(Object o) can be called on
dr ool s as well, but due to their frequent use they can be called without the object reference.

e drool s. get Wr ki ngMenor y() returns the Wor ki ngMenor y object.
e drool s. set Focus(String s) sets the focus to the specified agenda group.
e drool s. get Rul e(). get Nane(), called from a rule's RHS, returns the name of the rule.

e drool s. get Tupl e() returns the Tuple that matches the currently executing rule, and
drool s. get Acti vati on() delivers the corresponding Activation. (These calls are useful for
logging and debugging purposes.)

The full Knowledge Runtime API is exposed through another predefined variable, kcont ext,
of type Know edgeCont ext. Its method get Know edgeRunti me() delivers an object of type
Knowl edgeRunt i e, which, in turn, provides access to a wealth of methods, many of which are
quite useful for coding RHS logic.

e The call kcont ext . get Knowl edgeRunt i ne() . hal t () terminates rule execution immediately.

» The accessor get Agenda() returns a reference to this session's Agenda, which in turn provides
access to the various rule groups: activation groups, agenda groups, and rule flow groups. A
fairly common paradigm is the activation of some agenda group, which could be done with the
lengthy call:

/'l give focus to the agenda group C eanUp
kcont ext . get Knowl edgeRunti ne() . get Agenda() . get AgendaG oup("Cl eanUp"). set Focus();

210

The Right Hand Side (then)

(You can achieve the same using dr ool s. set Focus(" C eanUp").)

e To run a query, you call get Quer yResul t s(Stri ng query), whereupon you may process the
results, as explained in section “Query”.

« A set of methods dealing with event management lets you, among other things, add and remove
event listeners for the Working Memory and the Agenda.

* Methodget Knowl edgeBase() returns the Know edgeBase object, the backbone of all the
Knowledge in your system, and the originator of the current session.

* You can manage globals with set d obal (...), getd obal (...) and get d obal s().

« Method get Envi ronnent () returns the runtime's Envi ronment which works much like what
you know as your operating system's environment.

4.8.4.2. The nodi fy Statement

This language extension provides a structured approach to fact updates. It combines the update
operation with a number of setter calls to change the object's fields. This is the syntax schema
for the nodi f y statement:

nmodi fy (<fact-expression>) {
<expression> [, <expression>]*

The parenthesized <fact-expression> must yield a fact object reference. The expression list in
the block should consist of setter calls for the given object, to be written without the usual object
reference, which is automatically prepended by the compiler.

The example illustrates a simple fact modification.

Example 4.54. A modify statement

rule "nodify stilton”
when
$stilton : Cheese(type == "stilton")
t hen
nodi fy($stilton){
setPrice(20),
set Age("overripe")

end

The advantages in using the modify statment are particularly clear when used in conjuction with
fine grained property change listeners. See the corresponding section for more details.

211

Chapter 4. Rule Language Refe...

4.8.5. A Note on Auto-boxing and Primitive Types

Drools attempts to preserve numbers in their primitive or object wrapper form, so a variable bound
to an int primitive when used in a code block or expression will no longer need manual unboxing;
unlike Drools 3.0 where all primitives were autoboxed, requiring manual unboxing. A variable
bound to an object wrapper will remain as an object; the existing JDK 1.5 and JDK 5 rules to
handle auto-boxing and unboxing apply in this case. When evaluating field constraints, the system
attempts to coerce one of the values into a comparable format; so a primitive is comparable to
an object wrapper.

4.9. Query

O~|

- Cauey }—(mame }~—{(T)

e L s I8 e
| |

Figure 4.29. query

A query is a simple way to search the working memory for facts that match the stated conditions.
Therefore, it contains only the structure of the LHS of a rule, so that you specify neither "when"
nor "then". A query has an optional set of parameters, each of which can be optionally typed. If
the type is not given, the type Object is assumed. The engine will attempt to coerce the values
as needed. Query names are global to the KnowledgeBase; so do not add queries of the same
name to different packages for the same RuleBase.

To return the results use ksessi on. get Quer yResul t s("nane"), where "name" is the query's
name. This returns a list of query results, which allow you to retrieve the objects that matched
the query.

The first example presents a simple query for all the people over the age of 30. The second one,
using parameters, combines the age limit with a location.

212

Query

Example 4.55. Query People over the age of 30

query "people over the age of 30"
person : Person(age > 30)
end

Example 4.56. Query People over the age of x, and who liveiny

query "people over the age of x" (int x, String y)
person : Person(age > x, location ==y)
end

We iterate over the returned QueryResults using a standard "for" loop. Each element is a
QueryResultsRow which we can use to access each of the columns in the tuple. These columns
can be accessed by bound declaration name or index position.

Example 4.57. Query People over the age of 30

QueryResults results = ksessi on. get QueryResul ts("peopl e over the age of 30");
Systemout.println("we have " + results.size() +" people over the age of 30");

Systemout.println("These people are are over 30:");

for (QueryResultsRow row : results) {
Person person = (Person) row. get("person");
Systemout . println(person.getName() + "\n");

Support for positional syntax has been added for more compact code. By default the declared
type order in the type declaration matches the argument position. But it possible to override these
using the @position annotation. This allows patterns to be used with positional arguments, instead
of the more verbose named arguments.

decl are Cheese
name : String @osition(1l)
shop : String @osition(2)
price : int @osition(0)
end

The @Position annotation, in the org.drools.definition.type package, can be used to annotate
original pojos on the classpath. Currently only fields on classes can be annotated. Inheritance of

213

Chapter 4. Rule Language Refe...

classes is supported, but not interfaces or methods. The isContainedin query below demonstrates
the use of positional arguments in a pattern; Locati on(x, y;) instead of Location(thing ==
X, location ==y).

Queries can now call other queries, this combined with optional query arguments provides
derivation query style backward chaining. Positional and named syntax is supported for
arguments. It is also possible to mix both positional and named, but positional must come first,
separated by a semi colon. Literal expressions can be passed as query arguments, but at this
stage you cannot mix expressions with variables. Here is an example of a query that calls another
guery. Note that 'z here will always be an 'out’ variable. The '?' symbol means the query is pull only,
once the results are returned you will not receive further results as the underlying data changes.

decl are Locati on
thing : String
location : String
end

query isContainedln(String x, Stringy)
Location(x, y;)
or
(Location(z, y;) and ?isContainedl n(x, z;))
end

As previously mentioned you can use live "open" queries to reactively receive changes over time
from the query results, as the underlying data it queries against changes. Notice the "look" rule
calls the query without using '?".

query isContainedln(String x, Stringy)
Location(x, vy;)
or
(Location(z, y;) and isContainedln(x, z;))
end

rul e | ook when

Person($I : likes)
i sContainedln($I, 'office';)
t hen
insertLogical ($ '"is in the office');

end

Drools supports unification for derivation queries, in short this means that arguments are optional.
It is possible to call queries from java leaving arguments unspecified using the static field
org.drools.core.runtime.rule.Variable.v - note you must use 'v' and not an alternative instance of
Variable. These are referred to as 'out' arguments. Note that the query itself does not declare at

214

Domain Specific Languages

compile time whether an argument is in or an out, this can be defined purely at runtime on each
use. The following example will return all objects contained in the office.

results = ksessi on. get QueryResul ts("isContai nedln*, new Gbject[] { Variable.v,
"office" });
| = new ArrayList<List<String>>();
for (QueryResultsRowr : results) {
|.add(Arrays.asList(new String[] { (String) r.get("x"), (String)

r.get("y") }));
}

The algorithm uses stacks to handle recursion, so the method stack will not blow up.

The following is not yet supported:

« List and Map unification
» Variables for the fields of facts

» Expression unification - pred(X, X+ 1, X*Y /7)

4.10. Domain Specific Languages

Domain Specific Languages (or DSLs) are a way of creating a rule language that is dedicated to
your problem domain. A set of DSL definitions consists of transformations from DSL "sentences"
to DRL constructs, which lets you use of all the underlying rule language and engine features.
Given a DSL, you write rules in DSL rule (or DSLR) files, which will be translated into DRL files.

DSL and DSLR files are plain text files, and you can use any text editor to create and modify them.
But there are also DSL and DSLR editors, both in the IDE as well as in the web based BRMS,
and you can use those as well, although they may not provide you with the full DSL functionality.

4.10.1. When to Use a DSL

DSLs can serve as a layer of separation between rule authoring (and rule authors) and the
technical intricacies resulting from the modelling of domain object and the rule engine's native
language and methods. If your rules need to be read and validated by domain experts (such as
business analysts, for instance) who are not programmers, you should consider using a DSL; it
hides implementation details and focuses on the rule logic proper. DSL sentences can also act as
"templates"” for conditional elements and consequence actions that are used repeatedly in your
rules, possibly with minor variations. You may define DSL sentences as being mapped to these
repeated phrases, with parameters providing a means for accommodating those variations.

DSLs have no impact on the rule engine at runtime, they are just a compile time feature, requiring
a special parser and transformer.

215

Chapter 4. Rule Language Refe...

4.10.2. DSL Basics

The Drools DSL mechanism allows you to customise conditional expressions and consequence
actions. A global substitution mechanism ("keyword") is also available.

Example 4.58. Example DSL mapping

[when] Sonet hing i s {col our}=Sonet hi ng(col our=="{col our}")

In the preceding example, [when] indicates the scope of the expression, i.e., whether it is valid
for the LHS or the RHS of a rule. The part after the bracketed keyword is the expression that you
use in the rule; typically a natural language expression, but it doesn't have to be. The part to the
right of the equal sign ("=") is the mapping of the expression into the rule language. The form of
this string depends on its destination, RHS or LHS. If it is for the LHS, then it ought to be a term
according to the regular LHS syntax; if it is for the RHS then it might be a Java statement.

Whenever the DSL parser matches a line from the rule file written in the DSL with an expression in
the DSL definition, it performs three steps of string manipulation. First, it extracts the string values
appearing where the expression contains variable names in braces (here: {col our}). Then, the
values obtained from these captures are then interpolated wherever that name, again enclosed
in braces, occurs on the right hand side of the mapping. Finally, the interpolated string replaces
whatever was matched by the entire expression in the line of the DSL rule file.

Note that the expressions (i.e., the strings on the left hand side of the equal sign) are used as
regular expressions in a pattern matching operation against a line of the DSL rule file, matching all
or part of a line. This means you can use (for instance) a '?' to indicate that the preceding character
is optional. One good reason to use this is to overcome variations in natural language phrases of
your DSL. But, given that these expressions are regular expression patterns, this also means that
all "magic" characters of Java's pattern syntax have to be escaped with a preceding backslash ('\').

Itis important to note that the compiler transforms DSL rule files line by line. In the above example,
all the text after "Something is " to the end of the line is captured as the replacement value for
"{colour}", and this is used for interpolating the target string. This may not be exactly what you
want. For instance, when you intend to merge different DSL expressions to generate a composite
DRL pattern, you need to transform a DSLR line in several independent operations. The best way
to achieve this is to ensure that the captures are surrounded by characteristic text - words or even
single characters. As a result, the matching operation done by the parser plucks out a substring
from somewhere within the line. In the example below, quotes are used as distinctive characters.
Note that the characters that surround the capture are not included during interpolation, just the
contents between them.

As a rule of thumb, use quotes for textual data that a rule editor may want to enter. You can also
enclose the capture with words to ensure that the text is correctly matched. Both is illustrated by
the following example. Note that a single line such as Sonething is "green" and another
sol i d thi ng is now correctly expanded.

216

DSL Basics

Example 4.59. Example with quotes

[when] somet hing is "{col our}"=Sonet hi ng(col our=="{col our}")
[when] anot her {state} thing=CQ herThing(state=="{state}"

It is a good idea to avoid punctuation (other than quotes or apostrophes) in your DSL expressions
as much as possible. The main reason is that punctuation is easy to forget for rule authors
using your DSL. Another reason is that parentheses, the period and the question mark are magic
characters, requiring escaping in the DSL definition.

In a DSL mapping, the braces "{" and "}" should only be used to enclose a variable definition or
reference, resulting in a capture. If they should occur literally, either in the expression or within the
replacement text on the right hand side, they must be escaped with a preceding backslash ("\"):

[then] do something= if (foo) \{ doSonething(); \}

@ Note
If braces "{" and "}" should appear in the replacement string of a DSL definition,
escape them with a backslash ('\").

Example 4.60. Examples of DSL mapping entries

This is a conment to be ignored.

[when] There is a person with nane of "{nane}"=Person(nane=="{nane}")

[when] Person is at |east {age} years old and lives in "{location}"=
Person(age >= {age}, location=="{location}")

[then] Log "{nmessage}"=Systemout.println("{message}");

[when] And = and

Given the above DSL examples, the following examples show the expansion of various DSLR
snippets:

Example 4.61. Examples of DSL expansions

There is a person with name of "Kitty"
==> Person(name="Kitty")

Person is at |east 42 years old and lives in "Atlanta"
==> Person(age >= 42, |ocation="Atlanta")

217

Chapter 4. Rule Language Refe...

Log "boo"

==> Systemout. println("boo");
There is a person with nane of "Bob" and Person is at |east 30 years old and
lives in "Uah"

==> Per son(nane="Bob") and Person(age >= 30, |ocation="Utah")

@ Note
Don't forget that if you are capturing plain text from a DSL rule line and want to
use it as a string literal in the expansion, you must provide the quotes on the right
hand side of the mapping.

You can chain DSL expressions together on one line, as long as it is clear to the parser where
one ends and the next one begins and where the text representing a parameter ends. (Otherwise
you risk getting all the text until the end of the line as a parameter value.) The DSL expressions
are tried, one after the other, according to their order in the DSL definition file. After any match,
all remaining DSL expressions are investigated, too.

The resulting DRL text may consist of more than one line. Line ends are in the replacement text
are written as \ n.

4.10.3. Adding Constraints to Facts

A common requirement when writing rule conditions is to be able to add an arbitrary combination
of constraints to a pattern. Given that a fact type may have many fields, having to provide an
individual DSL statement for each combination would be plain folly.

The DSL facility allows you to add constraints to a pattern by a simple convention: if your DSL

expression starts with a hyphen (minus character, "-") it is assumed to be a field constraint and,
consequently, is is added to the last pattern line preceding it.

For an example, lets take look at class Cheese, with the following fields: type, price, age and
country. We can express some LHS condition in normal DRL like the following

Cheese(age < 5, price == 20, type=="stilton", country=="ch")

The DSL definitions given below result in three DSL phrases which may be used to create any
combination of constraint involving these fields.

[when] There is a Cheese w t h=Cheese()

[when] - age is | ess than {age}=age<{age}

[when] - type is '{type}' =type=='{type}’

[when] - country equal to '{country}'=country=="{country}’

218

Adding Constraints to Facts

You can then write rules with conditions like the following:

There is a Cheese with
- age is less than 42
- type is "stilton'

The parser will pick up a line beginning with "-" and add it as a constraint to the preceding pattern,
inserting a comma when it is required. For the preceding example, the resulting DRL is:

Cheese(age<42, type=='stilton')

Combining all all numeric fields with all relational operators (according to the DSL expression "age
is less than..." in the preceding example) produces an unwieldy amount of DSL entries. But you
can define DSL phrases for the various operators and even a generic expression that handles
any field constraint, as shown below. (Notice that the expression definition contains a regular
expression in addition to the variable name.)

[when][]is | ess than or equal to=<=
[when][]is less than=<

[when][]is greater than or equal to=>=
[when][]is greater than=>

[when][]is equal to===

[when] [] equal s===

[when][] There is a Cheese w t h=Cheese()

[when][]- {field:\w*} {operator} {value:\d*}={field} {operator} {value}

Given these DSL definitions, you can write rules with conditions such as:

There is a Cheese with
- age is less than 42
- rating is greater than 50
- type equals 'stilton'

In this specific case, a phrase such as "is less than" is replaced by <, and then the line matches
the last DSL entry. This removes the hyphen, but the final result is still added as a constraint to
the preceding pattern. After processing all of the lines, the resulting DRL text is:

Cheese(age<42, rating > 50, type=="stilton")

219

Chapter 4. Rule Language Refe...

@ Note

The order of the entries in the DSL is important if separate DSL expressions are
intended to match the same line, one after the other.

4.10.4. Developing a DSL

A good way to get started is to write representative samples of the rules your application requires,
and to test them as you develop. This will provide you with a stable framework of conditional
elements and their constraints. Rules, both in DRL and in DSLR, refer to entities according to
the data model representing the application data that should be subject to the reasoning process
defined in rules. Notice that writing rules is generally easier if most of the data model's types are
facts.

Given an initial set of rules, it should be possible to identify recurring or similar code snippets and
to mark variable parts as parameters. This provides reliable leads as to what might be a handy
DSL entry. Also, make sure you have a full grasp of the jargon the domain experts are using, and
base your DSL phrases on this vocabulary.

You may postpone implementation decisions concerning conditions and actions during this first
design phase by leaving certain conditional elements and actions in their DRL form by prefixing a
line with a greater sign (">"). (This is also handy for inserting debugging statements.)

During the next development phase, you should find that the DSL configuration stabilizes pretty
quickly. New rules can be written by reusing the existing DSL definitions, or by adding a parameter
to an existing condition or consequence entry.

Try to keep the number of DSL entries small. Using parameters lets you apply the same DSL
sentence for similar rule patterns or constraints. But do not exaggerate: authors using the DSL
should still be able to identify DSL phrases by some fixed text.

4.10.5. DSL and DSLR Reference

A DSL file is a text file in a line-oriented format. Its entries are used for transforming a DSLR file
into a file according to DRL syntax.

A line starting with "#" or "//" (with or without preceding white space) is treated as a comment.
A comment line starting with "#/" is scanned for words requesting a debug option, see below.

« Any line starting with an opening bracket ("[") is assumed to be the first line of a DSL entry
definition.

« Any other line is appended to the preceding DSL entry definition, with the line end replaced
by a space.

220

DSL and DSLR Reference

A DSL entry consists of the following four parts:

e A scope definition, written as one of the keywords "when" or "condition", "then" or
"consequence", "*" and "keyword", enclosed in brackets ("[" and "]"). This indicates whether the
DSL entry is valid for the condition or the consequence of a rule, or both. A scope indication
of "keyword" means that the entry has global significance, i.e., it is recognized anywhere in a

DSLR file.

» Atype definition, written as a Java class hame, enclosed in brackets. This part is optional unless
the the next part begins with an opening bracket. An empty pair of brackets is valid, too.

« A DSL expression consists of a (Java) regular expression, with any number of embedded
variable definitions, terminated by an equal sign ("="). A variable definition is enclosed in braces
("{" and "}"). It consists of a variable name and two optional attachments, separated by colons
(":"). If there is one attachment, it is a regular expression for matching text that is to be assigned
to the variable; if there are two attachments, the first one is a hint for the GUI editor and the
second one the regular expression.

Note that all characters that are "magic" in regular expressions must be escaped with a
preceding backslash ("\") if they should occur literally within the expression.

« The remaining part of the line after the delimiting equal sign is the replacement text for any
DSLR text matching the regular expression. It may contain variable references, i.e., a variable
name enclosed in braces. Optionally, the variable name may be followed by an exclamation
mark ("!") and a transformation function, see below.

Note that braces ("{" and "}") must be escaped with a preceding backslash ("\") if they should
occur literally within the replacement string.

Debugging of DSL expansion can be turned on, selectively, by using a comment line starting with
"#/" which may contain one or more words from the table presented below. The resulting output
is written to standard output.

Table 4.2. Debug options for DSL expansion

Word Description

result Prints the resulting DRL text, with line numbers.

steps Prints each expansion step of condition and
consequence lines.

keyword Dumps the internal representation of all DSL
entries with scope "keyword".

when Dumps the internal representation of all DSL
entries with scope "when" or "*".

then Dumps the internal representation of all DSL
entries with scope "then" or "*".

221

Chapter 4. Rule Language Refe...

Word Description

‘ usage Displays a usage statistic of all DSL entries. ‘

Below are some sample DSL definitions, with comments describing the language features they
illustrate.

Conment: DSL exanpl es
#/ debug: display result and usage

keyword definition: replaces "regula" by "rule"
[keyword] []regul a=rul e

conditional elenent: "T" or "t", "a" or "an", convert matched word
[when][]1[Tt]here is an? {entity:\wt}=
${entityllc}: {entitylucfirst} ()

consequence statement: convert matched word, literal braces
[then][]update {entity:\w+}=nodify(${entity!lc})\{ \}

The transformation of a DSLR file proceeds as follows:

1. The text is read into memory.

2. Each of the "keyword" entries is applied to the entire text. First, the regular expression from the
keyword definition is modified by replacing white space sequences with a pattern matching any
number of white space characters, and by replacing variable definitions with a capture made
from the regular expression provided with the definition, or with the default (".*?"). Then, the
DSLR text is searched exhaustively for occurrences of strings matching the modified regular
expression. Substrings of a matching string corresponding to variable captures are extracted
and replace variable references in the corresponding replacement text, and this text replaces
the matching string in the DSLR text.

3. Sections of the DSLR text between "when" and "then", and "then" and "end", respectively, are
located and processed in a uniform manner, line by line, as described below.

For a line, each DSL entry pertaining to the line's section is taken in turn, in the order it appears
in the DSL file. Its regular expression part is modified: white space is replaced by a pattern
matching any number of white space characters; variable definitions with a regular expression
are replaced by a capture with this regular expression, its default being ".*?". If the resulting
regular expression matches all or part of the line, the matched part is replaced by the suitably
modified replacement text.

Modification of the replacement text is done by replacing variable references with the text
corresponding to the regular expression capture. This text may be modified according to the
string transformation function given in the variable reference; see below for details.

222

DSL and DSLR Reference

If there is a variable reference naming a variable that is not defined in the same entry, the
expander substitutes a value bound to a variable of that name, provided it was defined in one
of the preceding lines of the current rule.

4. If a DSLR line in a condition is written with a leading hyphen, the expanded result is inserted
into the last line, which should contain a pattern CE, i.e., a type name followed by a pair of
parentheses. if this pair is empty, the expanded line (which should contain a valid constraint)

is simply inserted, otherwise a comma (",") is inserted beforehand.

If a DSLR line in a consequence is written with a leading hyphen, the expanded result is inserted
into the last line, which should contain a "modify" statement, ending in a pair of braces ("{" and
"I. If this pair is empty, the expanded line (which should contain a valid method call) is simply

inserted, otherwise a comma (",") is inserted beforehand.

@ Note

It is currently not possible to use a line with a leading hyphen to insert text into
other conditional element forms (e.g., "accumulate") or it may only work for the first
insertion (e.g., "eval").

All string transformation functions are described in the following table.

Table 4.3. String transformation functions

NETNE Description

uc Converts all letters to upper case.
Ic Converts all letters to lower case.
ucfirst Converts the first letter to upper case, and all

other letters to lower case.

num Extracts all digits and "-" from the string. If the
last two digits in the original string are preceded

by "." or ",", a decimal period is inserted in the
corresponding position.

a?blc Compares the string with string a, and if they
are equal, replaces it with b, otherwise with c.
But ¢ can be another triplet a, b, c, so that the
entire structure is, in fact, a translation table.

The following DSL examples show how to use string transformation functions.

definitions for conditions
[when][] There is an? {entity}=${entity!lc}: {entitylucfirst}()

223

Chapter 4. Rule Language Refe...

[when][]- with an? {attr} greater than {amount}={attr} <= {anount!nun}
[when][]1- with a {what} {attr}={attr} {what! positive?>0/negati ve?%t;0/zero?==0/
ERROR}

A file containing a DSL definition is customarily given the extension . dsl . It is passed to the
Knowledge Builder with Resour ceType. DSL. For a file using DSL definition, the extension . dsl r
should be used. The Knowledge Builder expects Resour ceType. DSLR. The IDE, however, relies
on file extensions to correctly recognize and work with your rules file.

The DSL must be passed to the Knowledge Builder ahead of any rules file using the DSL.

Know edgeBui | der kBui |l der = new Know edgeBui | der () ;

Resource dsl = ResourceFactory. newCl assPat hResource(dsl Path, getd ass());
kBui | der. add(dsl, ResourceType.DSL);

Resource dslr = ResourceFactory. newC assPat hResource(dslrPath, getd ass());
kBui | der. add(dslr, ResourceType.DSLR);

For parsing and expanding a DSLR file the DSL configuration is read and supplied to the parser.
Thus, the parser can "recognize" the DSL expressions and transform them into native rule
language expressions.

4.11. XML Rule Language

A Warning

The XML rule language has not been updated to support functionality introduced
in Drools 5.x and is consider a deprecated feature.

As an option, Drools also supports a "native” rule language as an alternative to DRL. This allows
you to capture and manage your rules as XML data. Just like the non-XML DRL format, the XML
format is parsed into the internal "AST" representation - as fast as possible (using a SAX parser).
There is no external transformation step required.

4.11.1. Legacy Drools 2.x XML rule format

The Drools 2.x legacy XML format is no longer supported by Drools XML parser

4.11.2. When to use XML

There are several scenarios that XML is desirable. However, we recommend that it is not a default
choice, as XML is not readily human readable (unless you like headaches) and can create visually
bloated rules.

224

The XML format

If you do want to edit XML by hand, use a good schema aware editor that provides nice hierarchical
views of the XML, ideally visually (commercial tools like XMLSpy, Oxygen etc are good, but cost
money, but then so do headache tablets).

Other scenarios where you may want to use the XML format are if you have a tool that generates
rules from some input (programmatically generated rules), or perhaps interchange from another
rule language, or from another tool that emits XML (using XSLT you can easily transform between
XML formats). Note you can always generate normal DRL as well.

Alternatively you may be embedding Drools in a product that already uses XML for configuration,
so you would like the rules to be in an XML format. You may be creating your own rule language
on XML - note that you can always use the AST objects directly to create your own rule language
as well (the options are many, due to the open architecture).

4.11.3. The XML format

A full W3C standards (XMLSchema) compliant XSD is provided that describes the XML language,
which will not be repeated here verbatim. A summary of the language follows.

Example 4.62. A rule in XML

<?xm version="1.0" encodi ng="UTF- 8" ?>

<package nane="com sanpl e"
xm ns="http://drool s. org/drool s-5. 0"
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xs: schemalLocati on="http://drool s. org/drool s-5.0 drool s-5.0. xsd">

<i nport nanme="java.util.HashMap" />

<i nport name="org.drools.*" />

<gl obal identifier="x" type="com sanple.X" />

<gl obal identifier="yada" type="com sanpl e. Yada" />

<function return-type="voi d" nanme="myFunc">
<paraneter identifier="foo" type="Bar" />
<paraneter identifier="bada" type="Bing" />

<body>
Systemout.println("hello world");
</ body>

</function>

<rul e name="si nple_rul e">

<rul e-attribute nane="sal i ence" val ue="10" />

<rul e-attribute name="no-| oop" val ue="true" />

<rul e-attribute name="agenda-group" val ue="agenda-group" />

<rul e-attribute name="activation-group" val ue="activation-group" />

225

Chapter 4. Rule Language Refe...

<l hs>
<pattern identifier="foo2" object-type="Bar" >
<or-constraint-connective>
<and- const rai nt - connecti ve>
<field-constraint field-nane="a">
<or-restriction-connective>
<and-restriction-connective>
<literal -restriction eval uator=">" val ue="60" />
<literal-restriction evaluator="<" value="70" />
</and-restriction-connective>
<and-restriction-connective>
<literal -restriction eval uator="<" val ue="50" />
<literal-restriction eval uator=">" val ue="55" />
</and-restriction-connective>
</or-restriction-connective>
</fiel d-constraint>

<field-constraint field-nane="a3">
<literal -restriction eval uator="==" val ue="bl ack" />
</fiel d-constraint>
</ and- constrai nt-connecti ve>

<and- constrai nt-connective>
<field-constraint field-nane="a">
<literal-restriction eval uator="==" val ue="40" />
</field-constraint>

<field-constraint field-nane="a3">
<literal-restriction eval uator="==" val ue="pi nk" />
</field-constraint>
</ and- constrai nt - connect i ve>

<and- constrai nt - connecti ve>
<field-constraint field-name="a">
<literal-restriction eval uator="==" val ue="12"/>
</fiel d-constraint>

<field-constraint field-name="a3">
<or-restriction-connective>
<literal-restriction eval uator="==" val ue="yel |l ow'/ >
<literal -restriction eval uator="==" val ue="bl ue" />
</or-restriction-connective>

</field-constraint>
</ and- constrai nt -connective>
</ or-constraint-connective>
</ pattern>

<not >

226

The XML format

<pattern object-type="Person">
<field-constraint field-nane="1ikes">
<variabl e-restriction evaluator="==" identifier="type"/>
</field-constraint>
</ pattern>

<exi st s>
<pattern object-type="Person">
<field-constraint field-nane="1ikes">
<vari abl e-restriction evaluator="==" identifier="type"/>
</field-constraint>
</ pattern>
</ exi st s>
</ not >

<or-condi ti onal - el emrent >
<pattern identifier="foo3" object-type="Bar" >
<field-constraint field-nane="a">
<or-restriction-connective>
<literal-restriction eval uator="==" val ue="3" />
<literal-restriction eval uator="==" val ue="4" />
</or-restriction-connective>
</field-constraint>
<field-constraint field-name="a3">
<literal-restriction eval uator="==" val ue="hel |l 0" />
</field-constraint>
<field-constraint field-name="a4">
<literal -restriction eval uator="==" value="null" />
</field-constraint>
</ pattern>

<pattern identifier="foo4" object-type="Bar" >
<field-binding field-name="a" identifier="a4" />
<field-constraint field-nane="a">
<literal -restriction evaluator="!=" val ue="4" />
<literal-restriction evaluator="!=" val ue="5" />
</field-constraint>
</ pattern>
</ or-conditional -el enent >

<pattern identifier="foo5" object-type="Bar" >
<field-constraint field-nane="b">
<or-restriction-connective>
<return-val ue-restriction evaluator="==" >a4 + 1</return-
val ue-restriction>
<variabl e-restriction evaluator=">" identifier="a4" />
<qualified-identifier-restriction eval uator="==">
org.drool s. conpi | er. Bar. BAR_ENUM VALUE

</qualified-identifier-restriction>

227

Chapter 4. Rule Language Refe...

</or-restriction-connective>
</field-constraint>
</ pattern>

<pattern identifier="foo6" object-type="Bar" >
<field-binding field-nane="a" identifier="a4" />
<field-constraint field-nane="b">
<literal -restriction eval uator="==" val ue="6" />
</field-constraint>
</ pattern>
</l hs>
<r hs>
if (a==Db) {
assert(foo3);
} else {
retract(foo4d);
}
Systemout.printin(a4);
</rhs>
</rul e>

</ package>

In the preceding XML text you will see the typical XML element, the package declaration, imports,
globals, functions, and the rule itself. Most of the elements are self explanatory if you have some
understanding of the Drools features.

The i nport elements import the types you wish to use in the rule.
The gl obal elements define global objects that can be referred to in the rules.

The f uncti on contains a function declaration, for a function to be used in the rules. You have to
specify a return type, a uniqgue name and parameters, in the body goes a snippet of code.

The rule is discussed below.

Example 4.63. Detail of rule element

<rul e name="sinple_rul e">

<rul e-attribute nanme="salience" val ue="10" />

<rul e-attribute nane="no-I| oop" val ue="true" />

<rul e-attribute name="agenda-group" val ue="agenda-group" />

<rul e-attribute name="activation-group" val ue="activation-group" />

<| hs>
<pattern identifier="cheese" object-type="Cheese">
<frome
<accunmul at e>

228

The XML format

<pattern object-type="Person"></pattern>
<init>
int total = O;
<finit>
<action>
total += $cheese.getPrice();
</ action>
<resul t >
new I nteger(total));
</result>
</ accunul at e>
</frone
</ pattern>

<pattern identifier="max" object-type="Nunber">
<frome
<accunul at e>
<pattern identifier="cheese" object-type="Cheese"></pattern>
<external -function eval uat or ="nmax" expression="$price"/>
</ accunul at e>
</frone
</ pattern>
</l hs>
<r hs>
listl. add($cheese);
</ rhs>
</rul e>

In the above detail of the rule we see that the rule has LHS and RHS (conditions and consequence)
sections. The RHS is simple, itis just a block of semantic code that will be executed when the rule
is activated. The LHS is slightly more complicated as it contains nested elements for conditional
elements, constraints and restrictions.

A key element of the LHS is the Pattern element. This allows you to specify a type (class) and
perhaps bind a variable to an instance of that class. Nested under the pattern object are constraints
and restrictions that have to be met. The Predicate and Return Value constraints allow Java
expressions to be embedded.

That leaves the conditional elements, not, exists, and, or etc. They work like their DRL
counterparts. Elements that are nested under and an "and" element are logically "anded" together.
Likewise with "or" (and you can nest things further). "Exists" and "Not" work around patterns, to
check for the existence or nonexistence of a fact meeting the pattern's constraints.

The Eval element allows the execution of a valid snippet of Java code - as long as it evaluates to a
boolean (do not end it with a semi-colon, as it is just a fragment) - this can include calling a function.
The Eval is less efficient than the columns, as the rule engine has to evaluate it each time, but it
is a "catch all" feature for when you can express what you need to do with Column constraints.

229

Chapter 4. Rule Language Refe...

4.11.4. Legacy Drools 2.x XML rule format

The Drools 2.x legacy XML format is no longer supported by Drools XML parser

4.11.5. Automatic transforming between formats (XML and DRL)

Drools comes with some utility classes to transform between formats. This works by parsing the
rules from the source format into the AST, and then "dumping" out to the appropriate target format.
This allows you, for example, to write rules in DRL, and when needed, export to XML if necessary
at some point in the future.

The classes to look at if you need to do this are:

Xm Dunper - for exporting XMW.
Dr| Dunper - for exporting DRL.
Drl Parser - reading DRL.

Xm PackageReader - reading XM.

Using combinatio