
Passenger	Rebooking	-	Decision	Modeling	Challenge	

Solution	by	Edson	Tirelli	

	

Table	of	Contents	
	

Table	of	Contents	...	1	

Introduction	...	1	

Problem	statement	..	2	

Solution	..	2	

Input	Nodes	..	2	

Prioritized	Waiting	List	Decision	...	3	

Passenger	Priority	Business	Knowledge	Model	..	4	

Rebooked	Passengers	Decision	..	5	

Reassign	Next	Passenger	Business	Knowledge	Model	...	6	

Has	Capacity	Business	Knowledge	Model	..	8	

	

Introduction	
This	is	a	solution	to	the	DMN	Community	challenge	from	October/2016.	This	solution	is	strictly	based	on	
the	DMN	specification,	compliance	level	3.	It	can	be	executed	using	the	Drools	open	source	engine	
(www.drools.org)	and	it	can	be	imported	into	Trisotech’s	DMN	Modeler	for	editing/authoring	
(www.trisotech.com).	

	

Problem	statement	

	

	

Solution	
Following	the	DMN	standard,	the	high-level	solution	is	modelled	in	a	DRD	(Decision	Requirements	
Diagram)	that	is	presented	below.	Each	node	of	the	diagram	is	then	explained	in	the	following	pages.	

	

Input	Nodes	
This	problem	statement	defines	two	lists	of	input	data:	

• A	list	of	flights,	represented	by	the	“Flight	List”	input	node;	Each	flight	contains	all	the	flight	
attributes,	as	defined	in	the	problem	statement	(i.e.,	flight	number,	from,	to,	etc)	

• A	list	of	passengers,	represented	by	the	“Passenger	List”	input	node;	Each	passenger	contains	all	
the	passenger	attributes	as	defined	in	the	problem	statement	(i.e.,	name,	status,	etc)	

	

	

	

	

Prioritized	Waiting	List	Decision	
From	the	input	data,	the	first	decision	finds	the	list	of	passengers	from	cancelled	flights	and	sorts	them	
in	priority	order,	per	the	rules	provided	in	the	problem	statement.	This	decision	is	modelled	as	a	boxed	
context:	

Prioritized Waiting List

Cancelled Flights Flight List[Status = "cancelled"].Flight Number

Waiting List Passenger List[
 list contains(Cancelled Flights,
 Flight Number)
]

sort(Waiting List, passenger priority)

Passenger	Rebooking		
Decision	Requirements	Diagram	

	

Rebooked	
Passengers	

Prioritized	Waiting	
List	 passenger	priority	

reassign	next	passenger	 has	capacity	

Passenger	List	Flight	List	

The	first	entry	in	the	context	uses	a	filter	to	find	all	the	flights	for	which	the	status	is	“cancelled”	and	
for	each	of	those	flights	returns	its	“Flight number”.	The	result	is	a	list	of	“Flight Numbers”	
that	is	assigned	to	the	variable	“Cancelled Flights”.	

The	second	entry	in	the	context	also	uses	a	filter	to	find	all	the	passengers	that	were	booked	on	the	
cancelled	flights.	This	time,	the	filter	uses	a	FEEL	function	named	“list contains()”	that	returns	
true	if	the	list	passed	as	the	first	parameter	(“Cancelled Flights”	in	this	case)	contains	the	
element	passed	as	the	second	parameter	(“Flight Number”	in	this	case).	The	result	of	this	filter	will	
be	a	list	of	all	the	passengers	from	the	“Passenger	List”	that	were	booked	into	cancelled	flights,	
and	will	assign	that	list	to	the	variable	“Waiting	List”.	

The	final	box	in	the	boxed	context	is	called	result	box	and	contains	the	expression	that	will	be	evaluated	
to	produce	the	result	of	this	decision.	In	this	case,	it	is	a	call	to	another	FEEL	function	called	“sort()”.	
The	“sort()”	function	will	sort	the	“Waiting List”	based	on	the	“passenger	priority”	
criteria	(the	second	argument	to	the	function)	and	will	assign	the	resulting	sorted	list	to	the	decision	
(i.e.,	the	“Prioritized	Waiting	List”	variable).	The	“passenger	priority”	criteria	is	
modelled	as	a	Business	Knowledge	Model	and	explained	next.	

	

Passenger	Priority	Business	Knowledge	Model		
The	passenger	priority	for	flight	rebooking	is	defined	by	a	composite	criterion	as	per	the	problem	
statement.	Basically,	passengers	with	a	higher	status	have	priority	(“gold”	has	priority	over	“silver”	and	
“bronze”,	etc)	over	passengers	with	a	lower	status.	The	problem	statement	is	not	clear	on	what	happens	
if	two	passengers	have	the	same	status,	but	it	is	assumed	that	in	this	case,	the	passenger	with	a	higher	
mileage	will	have	priority.		

This	rule	can	be	modelled	in	several	ways,	including	FEEL	expressions,	decision	tables	or	a	combination	
of	both.		

In	this	case,	a	decision	table	is	used,	as	it	is	typically	considered	to	be	more	user	friendly.	It	is	modelled	
as	a	Business	Knowledge	Model	node	that	receives	two	passengers	as	parameters	and	returns	a	boolean	
result	of	“true”	if	passenger	1	has	priority	over	passenger	2,	or	false	otherwise.		

	

	

	

	

	

	

	

passenger priority

(Passenger1, Passenger2)

U Passenger1.Status Passenger2.Status Passenger1.Miles Passenger1 has
priority

 gold, silver,
bronze

gold, silver,
bronze

 true, false

1
gold

gold > Passenger2.Miles true

2 silver, bronze - true

3
silver

silver > Passenger2.Miles true

4 bronze - true

5 bronze bronze > Passenger2.Miles true

	

Rebooked	Passengers	Decision	
After	creating	a	prioritized	waiting	list	of	passengers,	the	“Rebooked	Passengers”	decision	reassign	the	
passengers	to	new	flights,	depending	on	availability.	It	does	that	by	invoking	the	Business	Knowledge	
Model	“reassign	next	passenger”.	

The	decision	itself	then	returns	a	list	of	all	the	reassigned	passengers	as	the	solution	for	the	problem.		

Rebooked Passengers

reassign next passenger

Waiting List Prioritized Waiting List

Reassigned Passengers
List

[]

Flights Flight List

	

The	parameters	should	be	self-explanatory,	except	maybe	the	“Reassigned	Passengers	List”.	This	is	a	list	
of	all	the	passengers	already	reassigned.	On	the	first	invocation,	it	starts	empty,	as	one	can	see	above.	
The	empty	square	brackets	(“[]”)	is	the	FEEL	representation	for	an	empty	list.		

	

Reassign	Next	Passenger	Business	Knowledge	Model	
The	Business	Knowledge	Model	“reassign next passenger”	is	a	recursive	function	that	will	
reassign	all	the	passengers	in	the	waiting	list	one	by	one.	It	is	implemented	as	a	boxed	context	for	
simplicity,	and	the	explanation	to	each	entry	can	be	found	after	the	diagram:	

reassign next passenger

(Waiting List, Reassigned Passengers List, Flights)

Next Passenger Waiting List[1]

Original Flight Flights[Flight Number = Next Passenger.Flight Number][1]

Best Alternate Flight Flights[From = Original Flight.From and
 To = Original Flight.To and
 Departure > Original Flight.Departure and
 Status = "scheduled" and
 has capacity(item, Reassigned Passengers List)
][1]

Reassigned Passenger Name Next Passenger.Name
Status Next Passenger.Status
Miles Next Passenger.Miles
Flight Number Best Alternate Flight.Flight Number

Remaining Waiting
List

remove(Waiting List, 1)

Updated Reassigned
Passenger List

append(Reassigned Passengers List, Reassigned Passenger)

if
 count(Remaining Waiting List) > 0
then
 reassign next passenger(Remaining Waiting List,
 Updated Reassigned Passengers List,
 Flights)
else
 Updated Reassigned Passengers List

	

The	BKM	receives	3	parameters	when	it	is	invoked:	

• Waiting	List:	the	current	list	of	passengers	waiting	for	reassignment	to	a	new	flight	
• Reassigned	Passengers	List:	the	list	of	passengers	already	reassigned	
• Flights:	the	list	of	all	available	flights	

The	BKM	evaluates	the	following	context	entries	in	order:	

• Next	Passenger:	retrieves	the	next	passenger	to	be	assigned.	It	is	the	first	passenger	in	the	
waiting	list.	

• Original	Flight:	retrieves	the	original	flight	the	passenger	was	booked	into	by	filtering	the	
Flights	list	and	finding	the	flight	whose	Flight Number	is	the	same	as	the	Flight
Number	of	the	passenger.	A	filter	on	a	list	returns	a	new	list,	so	the	use	of	[1]	in	the	expression	
ensures	that	the	result	is	a	single	element,	not	a	list.	

• Best	Alternate	Flight:	finds	the	best	alternate	flight	to	assign	the	passenger	to,	based	on	the	
rules	defined	in	the	use	case.	I.e.:		

o the	new	flight	must	depart	from	the	same	location:		
§ From = Original Flight.From	

o the	new	flight	must	arrive	at	the	same	location:	
§ To = Original Flight.To	

o the	new	flight	must	depart	after	the	original	flight	was	scheduled	to	depart	
§ Departure > Original Flight.Departure	

o the	new	flight	must	be	scheduled	(i.e.,	not	cancelled)	
§ Status = "scheduled"	

o the	new	flight	must	have	a	free	seat	for	the	new	passenger.	This	condition	is	checked	by	
invoking	the	“has capacity()”	function	(see	its	documentation	in	the	next	section	
for	details),	passing	the	flight	as	the	first	parameter	and	the	already	reassigned	
passengers	list	as	the	second	parameter.	It	returns	true	if	the	flight	still	has	a	free	seat	
for	the	new	passenger,	or	false	if	it	is	already	full.	

§ has capacity(item, Reassigned Passengers List)	
• Reassigned	Passenger:	creates	a	new	record	for	the	passenger	with	its	new	flight	number.	In	

case	no	flight	was	found	matching	the	requirements	in	the	previous	entry,	a	null	value	is	set	on	
the	Flight	Number	attribute.	

• Remaining	Waiting	List:	calculates	the	remaining	waiting	list	by	removing	the	passenger	that	
was	just	reassigned	from	the	original	waiting	list.	

• Updated	Reassigned	Passengers	List:	updates	the	reassigned	passengers	list	by	appending	the	
passenger	that	was	just	reassigned.	

• Result:	finally,	the	result	box	checks	if	the	“Remaining Waiting List”	is	not	empty,	in	
which	case	it	calls	the	“reassign	next passenger()”	function	again	to	reassign	the	next	
passenger	in	the	“Remaining	Waiting	List”.	Otherwise,	if	the	list	is	empty,	it	just	returns	
“Updated	Reassigned	Passengers	List”	as	the	result	of	the	invocation.	

	

	

	

	

	

Has	Capacity	Business	Knowledge	Model	
The	“has capacity”	BKM	is	a	simple	function	that	checks	if	there	are	still	free	seats	on	a	flight,	
considering	all	the	passengers	that	were	already	reassigned	to	that	flight.		

It	receives	2	parameters:	the	flight	to	check	and	a	list	of	all	rebooked	passengers.	It	compares	the	flight	
remaining	capacity	with	the	number	of	passengers	in	the	“rebooked	list”	already	assigned	to	this	flight.	
It	returns	true	if	there	are	still	free	seats	or	false	otherwise.	

has capacity

(flight, rebooked list)

flight.Capacity > count(rebooked list[Flight Number = flight.Flight Number])

	

