
Frequently Asked Questions
The {brandname} community



Table of Contents
1. Project questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

1.1. What is {brandname}? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

1.2. What would I use {brandname} for? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

1.3. How is {brandname} related to JBoss Cache? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

1.4. What version of Java does {brandname} need to run? Does {brandname} need an application

server to run?

 3

1.5. Will there be a POJO Cache replacement in {brandname}?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

1.6. How come {brandname}'s first release is 4.0.0?  This sounds weird! . . . . . . . . . . . . . . . . . . . . . . .  4

1.7. How is this related to JSR 107, the JCACHE specification? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

1.8. Can I use {brandname} with Hibernate? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

2. Technical questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

2.1. General questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

2.1.1. What APIs does {brandname} offer? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

2.1.2. Which JVMs (JDKs) does {brandname} work with? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

2.1.3. Does {brandname} store data by value or by reference? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

2.1.4. Can I use {brandname} with Groovy? What about Jython, Clojure, JRuby or Scala etc.? . .  6

2.2. Cache Loader and Cache Store questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

2.2.1. Cache loaders and cache stores - what’s the difference?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

2.2.2. Are modifications to asynchronous cache stores coalesced or aggregated? . . . . . . . . . . . . .  7

2.2.3. What does the passivation flag do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

2.2.4. What if I get IOException "Unsupported protocol version 48" with

JdbcStringBasedCacheStore?

 7

2.2.5. Is there any way I can boost cache store’s performance?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

2.3. How to speed up {brandname}? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

2.4. Locking and Transaction questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

2.4.1. Does {brandname} support distributed eager locking?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

2.4.2. How does {brandname} support explicit eager locking? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

2.4.3. What isolation levels does {brandname} support?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

2.4.4. When using Atomikos transaction manager, distributed caches are not distributing data,

what is the problem?

 9

2.5. Eviction and Expiration questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

2.5.1. Expiration does not work, what is the problem? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

2.6. Cache Manager questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

2.6.1. Can I create caches using different cache modes using the same cache manager? . . . . . . .  9

2.6.2. Can transactions span different Cache instances from the same cache manager? . . . . . .  10

2.6.3. How does multi-tenancy work?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

2.6.4. {brandname} allows me to create several Caches from a single CacheManager.  Are there

any reasons to create separate CacheManagers?

 10



2.7. Cache Mode questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

2.7.1. What is the difference between a replicated cache and a distributed cache?. . . . . . . . . . .  10

2.7.2. Does DIST support both synchronous and asynchronous communications? . . . . . . . . . . .  10

2.7.3. I notice that when using DIST, the cache does a remote get before a write command. Why

is this?

 11

2.7.4. I use a clustered cache. I want the guarantees of synchronous replication with the

parallelism of asynchronous replication. What can I do?

 11

2.7.5. What is the L1 cache? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

2.7.6. What consistency guarantees do I have with different Asynchronous processing settings

?

 12

2.7.7. Grouping API vs Key Affinity Service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

2.8. Listener questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

2.8.1. In a cache entry modified listener, can the modified value be retrieved via Cache.get()

when isPre=false?

 13

2.8.2. When annotating a method with CacheEntryCreated, how do I retrieve the value of the

cache entry added?

 13

2.8.3. What is the difference between classes in

org.infinispan.notifications.cachelistener.filter vs org.infinispan.filter?

 13

2.9. IaaS/Cloud Infrastructure questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

2.9.1. How do you make {brandname} send replication traffic over a specific network when

you don’t know the IP address?

 13

2.10. Demo questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

2.10.1. When using the GUI Demo, I’ve just put an entry in the cache with lifespan of -1. Why do

I see it as having a lifespan of 60,000?

 14

2.11. Logging questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

2.11.1. How can I enable logging? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

2.12. Third Party Container questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

2.12.1. Can I use {brandname} on Google App Engine for Java? . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

2.12.2. When running on Glassfish or Apache, creating a cache throws an exception saying

"Unable to construct a GlobalComponentRegistry", what is it wrong?

 15

2.13. Marshalling and Unmarshalling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

2.13.1. Best practices implementing java.io.Externalizable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

2.13.2. Does {brandname} support storing Non-Serializable objects? . . . . . . . . . . . . . . . . . . . . . . .  15

2.13.3. Do Externalizer implementations need to access internal Externalizer

implementations?

 15

2.13.4. During state transfer, the state receiver logs an EOFException when applying state

saying "Read past end of file". Should I worry about this?

 16

2.13.5. How do I get more information on marshalling and unmarshalling exceptions? . . . . . .  19

2.13.6. Why am I getting invalid data passed to readExternal? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

2.14. Tuning questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

2.14.1. When running {brandname} under load, I see RejectedExecutionException, how can I  19



fix it?

2.15. JNDI questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

2.15.1. Can I bind Cache or CacheManager to JNDI? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

2.16. Hibernate 2nd Level Cache questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

2.16.1. Can I use {brandname} as a remote JPA or Hibernate second level cache? . . . . . . . . . . .  20

2.16.2. Is it possible to use the {brandname} 2nd level cache outside of a J2EE server, and if so

how do I set up the transaction manager lookup?

 20

2.16.3. What are the pitfalls of not using a non-JTA transaction factory such as

JDBCTransactionFactory with Hibernate when {brandname} is used as 2nd level cache

provider?

 20

2.17. Cache Server questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

2.17.1. After running a Hot Rod server for a while, I get a NullPointerException in

HotRodEncoder.getTopologyResponse(), how can I get around it?

 21

2.17.2. Is there a way to do a Bulk Get on a remote cache? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

2.17.3. What is the startServer.sh script used for? What is the startServer.bat script used for?  21

2.18. Debugging questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

2.18.1. How can I get {brandname} to show the full byte array? The log only shows partial

contents of byte arrays…

 21

2.19. Clustering Transport questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

2.19.1. How do I retrieve the clustering physical address? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

2.20. Security questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

2.20.1. Using Kerberos with the IBM JDK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22



Welcome to {brandname}'s Frequently Asked Questions document. We hope you
find the answers to your queries here, however if you don’t, we encourage you
to connect with the {brandname} community and ask any questions you may
have on the {brandname} User Forums.

1

http://www.infinispan.org/community


Chapter 1. Project questions

1.1. What is {brandname}?
{brandname} is an open source data grid platform. It exposes a JSR-107 compatible Cache interface
(which in turn extends java.util.Map) in which you can store objects. While {brandname} can be
run in local mode, its real value is in distributed mode where caches cluster together and expose a
large memory heap. Distributed mode is more powerful than simple replication since each data
entry is spread out only to a fixed number of replicas thus providing resilience to server failures as
well as scalability since the work done to store each entry is constant in relation to a cluster size.

So, why would you use it? {brandname} offers:

• Massive heap and high availability - If you have 100 blade servers, and each node has 2GB of
space to dedicate to a replicated cache, you end up with 2 GB of total data. Every server is just a
copy. On the other hand, with a distributed grid - assuming you want 1 copy per data item - you
get a 100 GB memory backed virtual heap that is efficiently accessible from anywhere in the
grid. If a server fails, the grid simply creates new copies of the lost data, and puts them on other
servers. Applications looking for ultimate performance are no longer forced to delegate the
majority of their data lookups to a large single database server - a bottleneck that exists in over
80% of enterprise applications! 

• Scalability - Since data is evenly distributed there is essentially no major limit to the size of the
grid, except group communication on the network - which is minimised to just discovery of new
nodes. All data access patterns use peer-to-peer communication where nodes directly speak to
each other, which scales very well. {brandname} does not require entire infrastructure
shutdown to allow scaling up or down. Simply add/remove machines to your cluster without
incurring any down-time. 

• Data distribution - {brandname} uses consistent hash algorithm to determine where keys should
be located in the cluster. Consistent hashing allows for cheap, fast and above all, deterministic
location of keys with no need for further metadata or network traffic. The goal of data
distribution is to maintain enough copies of state in the cluster so it can be durable and fault
tolerant, but not too many copies to prevent {brandname} from being scalable.

• Persistence - {brandname} exposes a CacheStore interface, and several high-performance
implementations - including JDBC cache stores, filesystem-based cache stores, Amazon S3 cache
stores, etc. CacheStores can be used for "warm starts", or simply to ensure data in the grid
survives complete grid restarts, or even to overflow to disk if you really do run out of memory.

• Language bindings (PHP, Python, Ruby, C, etc.) - {brandname} offers support for both the
popular memcached protocol - with existing clients for almost every popular programming
language - as well as an optimised {brandname}-specific protocol called Hot Rod. This means
that {brandname} is not just useful to Java. Any major website or application that wants to take
advantage of a fast data grid will be able to do so.

• Management -  When you start thinking about running a grid on several hundred servers,
management is no longer an extra, it becomes a necessity. Since version 8.0, {brandname}
bundles a management console.

• Support for Compute Grids - {brandname} 5 adds the ability to pass a Runnable around the grid.

2

http://jcp.org/en/jsr/detail?id=107
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/Cache.html


This allows you to push complex processing towards the server where data is local, and pull
back results using a Future. This map/reduce style paradigm is common in applications where a
large amount of data is needed to compute relatively small results.

Also see this page on the {brandname} website.

1.2. What would I use {brandname} for?
Most people use {brandname} for one of two reasons. Firstly, as a distributed cache. Putting
{brandname} in front of your database, disk-based NoSQL store or any part of your system that is a
bottleneck can greatly help improve performance. Often, a simple cache isn’t enough - for example
if your application is clustered and cache coherency is important to data consistency. A distributed
cache can greatly help here.

The other major use-case is as a NoSQL data store. In addition to being in memory, {brandname}
can also persist data to a more permanent store. We call this a cache store. Cache stores are
pluggable, you can easily write your own, and many already exist for you to use.

A less common use case is adding clusterability and high availability to frameworks. Since
{brandname} exposes a distributed data structure, frameworks and libraries that also need to be
clustered can easily achieve this by embedding {brandname} and delegating all state management
to {brandname}. This way, any framework can easily be clustered by letting {brandname} do all the
heavy lifting.

1.3. How is {brandname} related to JBoss Cache?
Certain design ideas and indeed some code have been borrowed from JBoss Cache 3.x, however
JBoss Cache is in no way a dependency.  {brandname} is a complete, separate and standalone
project. Some may consider this a fork, but the people behind {brandname} and JBoss Cache see it
as an evolution, since all future effort will be on {brandname} and not JBoss Cache.

1.4. What version of Java does {brandname} need to
run? Does {brandname} need an application server to
run?
All that is needed is a Java 8 compatible JVM. An application server is not a requirement.

1.5. Will there be a POJO Cache replacement in
{brandname}?
Yes, and this is called Hibernate OGM .

3

http://www.infinispan.org/about
http://www.jboss.org/jbosscache/
http://hibernate.org/ogm/


1.6. How come {brandname}'s first release is 4.0.0? 
This sounds weird!
We didn’t want to release {brandname} as a 1.0, as in all fairness it is not a virgin codebase. A lot of
the code, designs and ideas in {brandname} are from JBoss Cache, and has been tried and tested,
proven in high stress environments. {brandname} should thus be viewed as a mature and stable
platform and not a new, experimental one.

1.7. How is this related to JSR 107, the JCACHE
specification?
{brandname} core engineers are on the JSR 107 expert group and starting with version 7.0.0,
{brandname} provides a certified compatible implementation of version 1.0.0 of the specification.

Have a look at Using {brandname} as a JSR107 (JCache) provider for details.

1.8. Can I use {brandname} with Hibernate?
Yes, you can combine one or more of these integrations in the same application:

• Using {brandname} as a database replacement: using Hibernate OGM you can replace the
RDBMS and store your entities and relations directly in {brandname}, interacting with it
through the well known JPA 2.1 interface, with some limitations in the query capabilities.
Hibernate OGM also automates mapping, encoding and decoding of JPA entities to Protobuf. For
more details see Hibernate OGM .

• Caching database access: Hibernate can cache frequently loaded entities and queries in
{brandname}, taking advantage of state of the art eviction algorithms, and clustering if needed
but it provides a good performance boost in non-clustered deployments too. See Using
{brandname} as JPA/Hibernate Second Level Cache Provider for details on how to do this.

• Storing Lucene indexes: When using Hibernate Search to provide full-text capabilities to your
Hibernate/JPA enabled application, you need to store an Apache Lucene index separately from
the database. You can store the index in {brandname}: this is ideal for clustered applications
since it’s otherwise tricky to share the index with correct locking on shared file systems, but is
an interesting option for non-clustered deployments as well as it can combine the benefits of in-
memory performance with reliability and write-through to any CacheStore supported by
{brandname}.

• Using full-text queries on {brandname}: If you liked the powerful full-text and data mining
capabilities of Hibernate Search, but don’t need JPA or a database, you can use the indexing and
query engine only: the {brandname} Query module reuses Hibernate Search internally,
depending on some Hibernate libraries but exposing the Search capabilities only. See Querying
{brandname} .

• A combination of multiple such integrations: you can use Hibernate OGM as an interface to
perform CRUD operations on some {brandname} caches configured for resiliency, while also
activating Hibernate 2nd level caching using some different caches configured for high
performance read mostly access, and also use Hibernate Search to index your domain model

4

http://jcp.org/en/jsr/detail?id=107
../user_guide/user_guide.html#using_infinispan_as_a_jsr107_jcache_provider
http://hibernate.org/ogm/
../user_guide/user_guide.html#using_infinispan_as_jpa_hibernate_second_level_cache_provider
../user_guide/user_guide.html#using_infinispan_as_jpa_hibernate_second_level_cache_provider
../user_guide/user_guide.html#querying_infinispan
../user_guide/user_guide.html#querying_infinispan


while storing the indexes in {brandname} itself.

5



Chapter 2. Technical questions

2.1. General questions

2.1.1. What APIs does {brandname} offer?

{brandname}'s primary API - org.infinispan.Cache - extends java.util.concurrent.ConcurrentMap
and closely resembles javax.cache.Cache from JSR 107. This is the most performant API to use, and
should be used for all new projects.

2.1.2. Which JVMs (JDKs) does {brandname} work with?

{brandname} is developed and primarily tested against Oracle Java SE 8. It should work with most
Java SE 8 implementations, including those from IBM, HP, Apple, Oracle, and OpenJDK.

2.1.3. Does {brandname} store data by value or by reference?

By default, {brandname} stores data by reference. So once clients store some data, clients can still
modify entries via original object references. This means that since client references are valid,
clients can make changes to entries in the cache using those references, but these modifications are
only local and you still need to call one of the cache’s put/replace… methods in order for changes to
replicate.

Obviously, allowing clients to modify cache contents directly, without any cache invocation, has
some risks and that’s why {brandname} offers the possibility to store data by value instead. The
way store-by-value is enabled is by enabling {brandname} to store data in binary format and
forcing it to do these binary transformations eagerly.

The reason {brandname} stores data by-reference instead of by-value is performance. Storing data
by reference is quicker than doing it by value because it does not have the penalty of having to
transform keys and values into their binary format.

2.1.4. Can I use {brandname} with Groovy? What about Jython, Clojure,
JRuby or Scala etc.?

While we haven’t extensively tested {brandname} on anything other than Java, there is no reason
why it cannot be used in any other environment that sits atop a JVM. We encourage you to try, and
we’d love to hear your experiences on using {brandname} from other JVM languages.

2.2. Cache Loader and Cache Store questions

2.2.1. Cache loaders and cache stores - what’s the difference?

Please read Persistence for information about the persistence SPI.

6

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/Cache.html
http://jcp.org/en/jsr/detail?id=107
../user_guide/user_guide.html#store_as_binary
../user_guide/user_guide.html#persistence


2.2.2. Are modifications to asynchronous cache stores coalesced or
aggregated?

Modifications are coalesced or aggregated for the interval that the modification processor thread is
currently applying. This means that while changes are being queued, if multiple modifications are
made to the same key, only the key’s last state will be applied, hence reducing the number of calls to
the cache store.

2.2.3. What does the passivation flag do?

Passivation is a mode of storing entries in the cache store only when they are evicted from memory.
The benefit of this approach is to prevent a lot of expensive writes to the cache store if an entry is
hot (frequently used) and hence not evicted from memory. The reverse process, known as
activation, occurs when a thread attempts to access an entry which is not in memory but is in the
store (i.e., a passivated entry). Activation involves loading the entry into memory, and then
removing it from the cache store. With passivation enabled, the cache uses the cache store as an
overflow tank, akin to swapping memory pages to disk in virtual memory implementations in
operating systems.

If passivation is disabled, the cache store behaves as a write-through (or write-behind if
asynchronous) cache, where all entries in memory are also maintained in the cache store. The
effect of this is that the cache store will always contain a superset of what is in memory.

2.2.4. What if I get IOException "Unsupported protocol version 48" with
JdbcStringBasedCacheStore?

You have probably set your data column type to VARCHAR, CLOB or something similar, but it should be
BLOB/VARBINARY. Even though it’s called JdbcStringBasedCacheStore, only the keys are required to be
strings; the values can be anything, so they need to be stored in a binary column. See the
setDataColumnType javadoc for more details.

2.2.5. Is there any way I can boost cache store’s performance?

If, for put operations, you don’t need the previous values existing in the cache/store then the
following optimisation can be made:

 cache.getAdvancedCache().withFlags(Flag.SKIP_CACHE_LOAD).put(key, value);

Note that in this case the value returned by cache.put() is not reliable. This optimization skips a
cache store read and can have very significant performance improvement effects.

For more information, check out our Performance Guide.

 More flags are described at Per-Invocation Flags

7

http://en.wikipedia.org/wiki/Paging
http://en.wikipedia.org/wiki/Virtual_memory
../glossary/glossary.html#write_through
../glossary/glossary.html#write_behind
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/loaders/jdbc/AbstractNonDelegatingJdbcCacheStoreConfig.html#setDataColumnType%28java.lang.String%29
../performance_guide/performance_guide.html
../user_guide/user_guide.html#invocation_flags


2.3. How to speed up {brandname}?
Have a look at our Performance Guide.

2.4. Locking and Transaction questions

2.4.1. Does {brandname} support distributed eager locking?

Yes it does. By default, transactions are optimistic, and locks are only acquired during the prepare
phase. However, {brandname} can be configured to lock cache keys eagerly, by using the
pessimistic locking mode:

   ConfigurationBuilder builder = new ConfigurationBuilder();
   builder.transaction().lockingMode(LockingMode.PESSIMISTIC);

With pessimistic locking, {brandname} will implicitly acquire locks when a transaction modifies
one or more keys:

   tm.begin()
   cache.put(K,V)    // acquire cluster-wide lock on K
   cache.put(K2,V2)  // acquire cluster-wide lock on K2
   cache.put(K,V5)   // no-op, we already own cluster wide lock for K
   tm.commit()       // releases locks

2.4.2. How does {brandname} support explicit eager locking?

When the cache is configured with pessimistic locking, the lock(K…) method allows cache users to
explicitly lock set of cache keys eagerly during a transaction. Lock call attempts to lock specified
cache keys on the proper lock owners and it either succeeds or fails. All locks are released during
commit or rollback phase.

   tm.begin()
   cache.getAdvancedCache().lock(K)  // acquire cluster-wide lock on K
   cache.put(K,V5)                   // guaranteed to succeed
   tm.commit()                       // releases locks

2.4.3. What isolation levels does {brandname} support?

{brandname} only supports the isolation levels READ_COMMITTED and REPEATABLE_READ. Note
that exact definition of these levels may differ from traditional database definitions.

The default isolation mode is READ_COMMITTED. We consider READ_COMMITTED to be good
enough for most applications and hence its use as a default.

8

../performance_guide/performance_guide.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/AdvancedCache.html#lock-K…-
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/AdvancedCache.html#lock-K…-
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/AdvancedCache.html#lock-K…-
../glossary/glossary.html#read_committed
../glossary/glossary.html#repeatable_read


2.4.4. When using Atomikos transaction manager, distributed caches are
not distributing data, what is the problem?

For efficiency reasons, Atomikos transaction manager commits transactions in a separate thread to
the thread making the cache operations and until 4.2.1.CR1, {brandname} had problems with this
type of scenarios and resulted on distributed caches not sending data to other nodes (see ISPN-927
for more details). Please note that replicated, invalidated or local caches would work fine. It’s only
distributed caches that would suffer this problem.

There’re two ways to get around this issue, either:

1. Upgrade to {brandname} 4.2.1.CR2 or higher where the issue has been fixed.

2. If using {brandname} 4.2.1.CR1 or earlier, configure Atomikos so that
com.atomikos.icatch.threaded_2pc is set to false . This results in commits happening in the same
thread that made the cache operations.

2.5. Eviction and Expiration questions

2.5.1. Expiration does not work, what is the problem?

Multiple cache operations such as put() can take a lifespan as parameter which defines the time
when the entry should be expired. If you have no eviction configured and and you let this time
expire, it can look as {brandname} has not removed the entry. For example, the JMX stats such as
number of entries might not updated or the persistent store associated with {brandname} might
still contain the entry. To understand what’s happening, it’s important to note that {brandname}
has marked the entry as expired but has not actually removed it. Removal of expired entries
happens in one of 2 ways:

1. You try and do a get() or containsKey() for that entry.  The entry is then detected as expired and
is removed.

2. You have enabled eviction and an eviction thread wakes up periodically and purges expired
entries.

If you have not enabled (2), or your eviction thread wakeup interval is large and you probe jconsole
before the eviction thread kicks in, you will still see the expired entry. You can be assured that if
you tried to retrieve the entry via a get() or containsKey() though, you won’t see the entry (and the
entry will be removed).

2.6. Cache Manager questions

2.6.1. Can I create caches using different cache modes using the same cache
manager?

Yes.  You can create caches using different cache modes, both synchronous and asynchronous,
using the same cache manager.

9

https://issues.jboss.org/browse/ISPN-927
http://www.atomikos.com/Documentation/JtaProperties
http://www.atomikos.com/Documentation/JtaProperties
http://www.atomikos.com/Documentation/JtaProperties
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/commons/api/BasicCache.html#put-K-V-long-java.util.concurrent.TimeUnit-


2.6.2. Can transactions span different Cache instances from the same cache
manager?

Yes.  Each cache behaves as a separate, standalone JTA resource.  Internally though, components
may be shared as an optimization but this in no way affects how the caches interact with a JTA
manager.

2.6.3. How does multi-tenancy work?

Multi-tenancy is achieved by namespacing. A single {brandname} cluster can have several named
caches (attached to the same CacheManager), and different named caches can have duplicate keys.
So this is, in effect, multi-tenancy for your key/value store.

2.6.4. {brandname} allows me to create several Caches from a single
CacheManager.  Are there any reasons to create separate CacheManagers?

As far as possible, internal components are shared between Cache instances.  Notably, RPC and
networking components are shared.  If you need caches that have different network characteristics
- such as one cache using TCP while another uses UDP - we recommend you create these using
different cache managers.

2.7. Cache Mode questions

2.7.1. What is the difference between a replicated cache and a distributed
cache?

Distribution is a new cache mode in {brandname}, in addition to replication and invalidation.  In a
replicated cache all nodes in a cluster hold all keys i.e. if a key exists on one node, it will also exist
on all other nodes.  In a distributed cache, a number of copies are maintained to provide
redundancy and fault tolerance, however this is typically far fewer than the number of nodes in the
cluster. A distributed cache provides a far greater degree of scalability than a replicated cache. 

A distributed cache is also able to transparently locate keys across a cluster, and provides an L1
cache for fast local read access of state that is stored remotely.  You can read more in the relevant
User Guide chapter.

2.7.2. Does DIST support both synchronous and asynchronous
communications?

Officially, no.  And unofficially, yes.  Here’s the logic. For certain public API methods to have
meaningful return values (i.e., to stick to the interface contracts), if you are using DIST ,
synchronized communications are necessary. For example, you have 3 caches in a cluster, A, B and
C.  Key K maps to A and B.  On C, you perform an operation that requires a return value e.g.,
Cache.remove(K) .  For this to work, the call needs to be forwarded to A and B synchronously, and
would have to wait for the result from either A or B to return to the caller.  If communications were
asynchronous, the return values cannot be guaranteed to be useful - even though the operation
would behave as expected.

10

../user_guide/user_guide.html


Now unofficially, we will add a configuration option to allow you to set your cache mode to DIST
and use asynchronous communications, but this would be an additional configuration option
(perhaps something like break_api_contracts ) so that users are aware of what they are getting into.

2.7.3. I notice that when using DIST, the cache does a remote get before a
write command. Why is this?

Certain methods, such as Cache.put() , are supposed to return the previous value associated with
the specified key according to the java.util.Map contract. If this is performed on an instance that
does not own the key in question and the key is not in L1 cache, the only way to reliably provide
this return value is to do a remote GET before the put. This GET is always sync (regardless of
whether the cache is configured to be sync or async) since we need to wait for that return value.

Isn’t that expensive? How can I optimize this away?

It isn’t as expensive as it sounds. A remote GET, although sync, will not wait for all responses. It will
accept the first valid response and move on, thus making its performance has no relation to cluster
size.

If you feel your code has no need for these return values, then this can be disabled completely (by
specifying the <unsafe unreliableReturnValues="true" /> configuration element for a cache-wide
setting or the Flag.SKIP_REMOTE_LOOKUP for a per-invocation setting). Note that while this will not
impair cache operations and accurate functioning of all public methods is still maintained.
However, it will break the java.util.Map interface contract by providing unreliable and inaccurate
return values to certain methods, so you would need to be certain that your code does not use these
return values for anything useful.

2.7.4. I use a clustered cache. I want the guarantees of synchronous
replication with the parallelism of asynchronous replication. What can I
do?

{brandname} offers a new async API to provide just this. These async methods return Future which
can be queried, causing the thread to block till you get a confirmation that any network calls
succeeded. You can read more about it .

2.7.5. What is the L1 cache?

An L1 cache (disabled by default) only exists if you set your cache mode to distribution.  An L1
cache prevents unnecessary remote fetching of entries mapped to remote caches by storing them
locally for a short time after the first time they are accessed.  By default, entries in L1 have a
lifespan of 60,000 milliseconds (though you can configure how long L1 entries are cached for).  L1
entries are also invalidated when the entry is changed elsewhere in the cluster so you are sure you
don’t have stale entries cached in L1.  Caches with L1 enabled will consult the L1 cache before
fetching an entry from a remote cache.

11

http://infinispan.blogspot.com/2009/05/whats-so-cool-about-asynchronous-api.html


2.7.6. What consistency guarantees do I have with different Asynchronous
processing settings ?

There are 3 main configuration settings (modes of usage) that affect the behaviour of {brandname}
in terms of Asynchronous processing, summarized in the following table:

Config / Mode of usage Description

API Usage of Asynchronous API , i.e. methods of the
Cache interface like e.g. putAsync(key, val)

Replication Configuring a clustered cache to replicate data
asychronously. In {brandname} XML
configuration this is done by using <sync> or
<async> sub-elements under <clustering>
element.

Switching to asynchronous mode in each of these areas causes loss of some consistency guarantees.
The known problems are summarised here:

API Replication Marshalling Consistency problems

Sync Sync Sync  

Sync Async Sync 1 - Cache entry is
replicated with a delay
or not at all in case of
network error. 2 - Node
where the operation
originated won’t be
notified about errors
that happened on
network or on the
receiving side.

Sync Async Async 1, 2 3 - Calling order of
sync API method might
not be preserved –
depends on which
operation finishes
marshalling first in the
asyncExecutor 4 -
Replication of put
operation can be
applied on different
nodes in different
order – this may result
in inconsistent values

Async Sync Sync 3

Async Async Sync 1, 2, 3

Async Async Async 1, 2, 3, 4

12

../user_guide/user_guide.html#asynchronous_api
http://docs.jboss.org/infinispan/5.1/configdocs/urn_infinispan_config_5.1/complexType/configuration.clustering.html


2.7.7. Grouping API vs Key Affinity Service

The key affinity (for keys generated with the Key Affinity Service ) might be lost during topology
changes. E.g. if k1 maps to node N1 and another node is added to the system, k1 can me migrated to
N2 (affinity is lost). With grouping API you have the guarantee that the same node (you don’t
know/control which node) hosts all the data from the same group even after topology changes.

2.8. Listener questions

2.8.1. In a cache entry modified listener, can the modified value be
retrieved via Cache.get() when isPre=false?

No, it cannot. Use CacheEntryModifiedEvent.getValue() to retrieve the value of the entry that was
modified.

2.8.2. When annotating a method with CacheEntryCreated, how do I
retrieve the value of the cache entry added?

Use CacheEntryCreatedEvent.getValue() to retrieve the value of the entry.

2.8.3. What is the difference between classes in
org.infinispan.notifications.cachelistener.filter vs org.infinispan.filter?

Inside these packages you’ll find classes that facilitate filtering and data conversion. The difference
is that classes in org.infinispan.filter are used for filtering and conversion in multiple areas, such
as cache loaders, entry iterators,…etc, whereas classes in
org.infinispan.notifications.cachelistener.filter are purely used for listener event filtering, and
provide more information than similarly named classes in org.infinispan.filter. More specifically,
remote listener event filtering and conversion require CacheEventFilter and CacheEventConverter
instances located in org.infinispan.notifications.cachelistener.filter package to be used.

2.9. IaaS/Cloud Infrastructure questions

2.9.1. How do you make {brandname} send replication traffic over a specific
network when you don’t know the IP address?

Some cloud providers charge you less for traffic over internal IP addresses compared to public IP
addresses, in fact, some cloud providers do not even charge a thing for traffic over the internal
network (i.e. GoGrid). In these circumstances, it’s really advantageous to configure {brandname} in
such way that replication traffic is sent via the internal network. The problem though is that quite
often you don’t know which internal IP address you’ll be assigned (unless you use elastic IPs and
dyndns.org), so how do you configure {brandname} to cope with those situations?

JGroups, which is the underlying group communication library to interconnect {brandname}
instances, has come up with a way to enable users to bind to a type of address rather than to a
specific IP address. So now you can configure bind_addr property in JGroups configuration file, or
the -Djgroups.bind_addr system property to a keyword rather than a dotted decimal or symbolic IP

13

../user_guide/user_guide.html#key_affinity_service
../user_guide/user_guide.html#the_grouping_api


address:

• GLOBAL : pick a public IP address. You want to avoid this for replication traffic

• SITE_LOCAL : use a private IP address, e.g. 192.168.x.x. This avoids charges for bandwidth from
GoGrid, for example

• LINK_LOCAL : use a 169.x.x.x, 254.0.0.0 address. I’ve never used this, but this would be for
traffic only within 1 box

• NON_LOOPBACK : use the first address found on an interface (which is up), which is not a
127.x.x.x address

2.10. Demo questions

2.10.1. When using the GUI Demo, I’ve just put an entry in the cache with
lifespan of -1. Why do I see it as having a lifespan of 60,000?

This is probably a L1 caching event.  When you put an entry in the cache, the entry is mapped to
specific nodes in a cluster using a consistent hashing algorithm.  This means that key K could map
on to caches A and B (or however many owners you have configured).  If you happen to have done
the cache.put(K, V) on cache C , however, K still maps to A and B (and will be added to caches A and
B with their proper lifespans), but it will also be put in cache C’s L1 cache.

2.11. Logging questions

2.11.1. How can I enable logging?

By default {brandname} uses JBoss Logging 3.0 as logging framework. JBoss Logging acts as a
delegator to either JBoss Log Manager, Apache Log4j, Slf4j or JDK Logging. The way it chooses
which logging provider to delegate to is by:

1. checking whether the JBoss Log Manager is configured (e.g. {brandname} is running in JBoss
Application Server 7) and if it is, using it

2. otherwise, checking if Apache Log4j is in the classpath (JBoss Logging checks if the classes
org.apache.log4j.LogManager and org.apache.log4j.Hierarchy are available) and if it is, using it

3. otherwise, checking if LogBack in the classpath (JBoss Logging checks if the class
ch.qos.logback.classic.Logger is available) and if it is, using it

4. finally, if none of the above are available, using JDK logging

You can use this log4j2.xml as base for any {brandname} related logging, and you can pass it to
your system via system parameter (e.g., -Dlog4j.configurationFile=file:/path/to/log4j2.xml).

2.12. Third Party Container questions

2.12.1. Can I use {brandname} on Google App Engine for Java?

Not at this moment.  Due to GAE/J restricting classes that can be loaded, and restrictions around use

14

http://logging.apache.org/log4j/1.2/index.html
http://logback.qos.ch/
http://docs.oracle.com/javase/8/docs/technotes/guides/logging/overview.html
https://github.com/infinispan/infinispan/blob/master/core/src/test/resources/log4j2.xml


of threads, {brandname} will not work on GAE/J. However, we do plan to fix this - if you wish to
track the progress of {brandname} on GAE/J, have a look at ISPN-57 .

2.12.2. When running on Glassfish or Apache, creating a cache throws an
exception saying "Unable to construct a GlobalComponentRegistry", what is
it wrong?

It appears that this happens due to some classloading issue. A workaround that is know to work is
to call the following before creating the cache manager or container:

Thread.currentThread().setContextClassLoader(this.getClass().getClassLoader());

2.13. Marshalling and Unmarshalling

2.13.1. Best practices implementing java.io.Externalizable

If you decide to implement Externalizable interface, please make sure that the readExternal()
method is thread safe, otherwise you run the risk of potential getting corrupted data and
OutOfMemoryException , as seen in this forum post .

2.13.2. Does {brandname} support storing Non-Serializable objects?

See the User Guide’s chapter on marshalling for more information.

2.13.3. Do Externalizer implementations need to access internal
Externalizer implementations?

No, they don’t. Here’s an example of what should not be done:

15

https://jira.jboss.org/jira/browse/ISPN-57
https://docs.oracle.com/javase/8/docs/api/java/io/Externalizable.html
https://docs.oracle.com/javase/8/docs/api/java/io/Externalizable.html#readExternal(java.io.ObjectInput)
https://docs.oracle.com/javase/8/docs/api/java/lang/OutOfMemoryError.html
http://community.jboss.org/message/609296#609296
../user_guide/user_guide.html


public static class ABCMarshallingExternalizer implements AdvancedExternalizer
<ABCMarshalling> {
   @Override
   public void writeObject(ObjectOutput output, ABCMarshalling object) throws
IOException {
      MapExternalizer ma = new MapExternalizer();
      ma.writeObject(output, object.getMap());
   }

   @Override
   public ABCMarshalling readObject(ObjectInput input) throws IOException,
ClassNotFoundException {
      ABCMarshalling hi = new ABCMarshalling();
      MapExternalizer ma = new MapExternalizer();
      hi.setMap((ConcurrentHashMap<Long, Long>) ma.readObject(input));
      return hi;
   }

   ...
}

End user externalizers should not need to fiddle with {brandname} internal externalizer classes.
Instead, this code should have been written as:

public static class ABCMarshallingExternalizer implements AdvancedExternalizer
<ABCMarshalling> {
   @Override
   public void writeObject(ObjectOutput output, ABCMarshalling object) throws
IOException {
      output.writeObject(object.getMap());
   }

   @Override
   public ABCMarshalling readObject(ObjectInput input) throws IOException,
ClassNotFoundException {
      ABCMarshalling hi = new ABCMarshalling();
      hi.setMap((ConcurrentHashMap<Long, Long>) input.readObject());
      return hi;
   }

   ...
}

2.13.4. During state transfer, the state receiver logs an EOFException when
applying state saying "Read past end of file". Should I worry about this?

It depends on whether the state provider encountered an error or not when generating the state.
For example, sometimes the state provider might already be providing state to another node, so

16



when the node requests the state, the state generator might log:

2010-12-09 10:26:21,533 20267 ERROR
[org.infinispan.remoting.transport.jgroups.JGroupsTransport]
(STREAMING_STATE_TRANSFER-sender-1,{brandname}-Cluster,NodeJ-2368:) Caught while
responding to state transfer request
org.infinispan.statetransfer.StateTransferException:
java.util.concurrent.TimeoutException: Could not obtain exclusive processing lock
     at
org.infinispan.statetransfer.StateTransferManagerImpl.generateState(StateTransferManag
erImpl.java:175)
     at
org.infinispan.remoting.InboundInvocationHandlerImpl.generateState(InboundInvocationHa
ndlerImpl.java:119)
     at
org.infinispan.remoting.transport.jgroups.JGroupsTransport.getState(JGroupsTransport.j
ava:586)
     at
org.jgroups.blocks.MessageDispatcher$ProtocolAdapter.handleUpEvent(MessageDispatcher.j
ava:691)
     at
org.jgroups.blocks.MessageDispatcher$ProtocolAdapter.up(MessageDispatcher.java:772)
     at org.jgroups.JChannel.up(JChannel.java:1465)
     at org.jgroups.stack.ProtocolStack.up(ProtocolStack.java:954)
     at org.jgroups.protocols.pbcast.FLUSH.up(FLUSH.java:478)
     at
org.jgroups.protocols.pbcast.STREAMING_STATE_TRANSFER$StateProviderHandler.process(STR
EAMING_STATE_TRANSFER.java:653)
     at
org.jgroups.protocols.pbcast.STREAMING_STATE_TRANSFER$StateProviderThreadSpawner$1.run
(STREAMING_STATE_TRANSFER.java:582)
     at
java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886)
     at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908)
     at java.lang.Thread.run(Thread.java:680)
Caused by: java.util.concurrent.TimeoutException: Could not obtain exclusive
processing lock
     at
org.infinispan.remoting.transport.jgroups.JGroupsDistSync.acquireProcessingLock(JGroup
sDistSync.java:71)
     at
org.infinispan.statetransfer.StateTransferManagerImpl.generateTransactionLog(StateTran
sferManagerImpl.java:202)
     at
org.infinispan.statetransfer.StateTransferManagerImpl.generateState(StateTransferManag
erImpl.java:165)
     ... 12 more

This exception is basically saying that the state generator was not able to generate the transaction

17



log and so the output to which it was writing is closed. In this situation, it’s common to see the state
receiver log an EOFException , as shown below, when trying to read the transaction log because the
sender did not write the transaction log:

2010-12-09 10:26:21,535 20269 TRACE [org.infinispan.marshall.VersionAwareMarshaller]
(Incoming-2,{brandname}-Cluster,NodeI-38030:) Log exception reported
java.io.EOFException: Read past end of file
     at
org.jboss.marshalling.AbstractUnmarshaller.eofOnRead(AbstractUnmarshaller.java:184)
     at
org.jboss.marshalling.AbstractUnmarshaller.readUnsignedByteDirect(AbstractUnmarshaller
.java:319)
     at
org.jboss.marshalling.AbstractUnmarshaller.readUnsignedByte(AbstractUnmarshaller.java:
280)
     at
org.jboss.marshalling.river.RiverUnmarshaller.doReadObject(RiverUnmarshaller.java:207)
     at
org.jboss.marshalling.AbstractUnmarshaller.readObject(AbstractUnmarshaller.java:85)
     at
org.infinispan.marshall.jboss.GenericJBossMarshaller.objectFromObjectStream(GenericJBo
ssMarshaller.java:175)
     at
org.infinispan.marshall.VersionAwareMarshaller.objectFromObjectStream(VersionAwareMars
haller.java:184)
     at
org.infinispan.statetransfer.StateTransferManagerImpl.processCommitLog(StateTransferMa
nagerImpl.java:228)
     at
org.infinispan.statetransfer.StateTransferManagerImpl.applyTransactionLog(StateTransfe
rManagerImpl.java:250)
     at
org.infinispan.statetransfer.StateTransferManagerImpl.applyState(StateTransferManagerI
mpl.java:320)
     at
org.infinispan.remoting.InboundInvocationHandlerImpl.applyState(InboundInvocationHandl
erImpl.java:102)
     at
org.infinispan.remoting.transport.jgroups.JGroupsTransport.setState(JGroupsTransport.j
ava:603)
        ...

The current logic is for the state receiver to back off in these scenarios and retry after a few
seconds. Quite often, after the retry the state generator might have already finished dealing with
the other node and hence the state receiver will be able to fully receive the state.

18



2.13.5. How do I get more information on marshalling and unmarshalling
exceptions?

See the section on troubleshooting marshalling in the User Guide.

2.13.6. Why am I getting invalid data passed to readExternal?

If you are using Cache.putAsync() you may find your object is modified after serialization starts,
thus corrupting the datastream passed to readExternal . To solve this, make sure you synchronize
access to the object.


Read More

You can read more about this issue in this forum thread .

2.14. Tuning questions

2.14.1. When running {brandname} under load, I see
RejectedExecutionException, how can I fix it?

Internally {brandname} uses executors to do some processing asynchronously, so the first thing to
do is to figure out which of these executors is causing issues. For example, if you see a stacktrace
that looks like this, the problem is located in the asyncTransportExecutor :

java.util.concurrent.RejectedExecutionException
  at
java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecut
or.java:1759)
  at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:767)
  at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:658)
  at
java.util.concurrent.AbstractExecutorService.submit(AbstractExecutorService.java:92)
  at
org.infinispan.remoting.transport.jgroups.CommandAwareRpcDispatcher.invokeRemoteComman
ds(CommandAwareRpcDispatcher.java:117)
...

To solve this issue, you should try any of these options:

• Increase the maxThreads property in asyncTransportExecutor . At the time of writing, the
default value for this particular executor is 25.

• Define your own ExecutorFactory which creates an executor with a bigger queue. You can find
more information about different queueing strategies in ThreadPoolExecutor javadoc .

• Disable async marshalling (see the <async … > element for details). This would mean that an
executor is not used when replicating, so you will never have a RejectedExecutionException .
However this means each put() will take a little longer since marshalling will now happen on
the critical path. The RPC is still async though as the thread won’t wait for a response from the

19

../user_guide/user_guide.html
http://community.jboss.org/message/609040
http://docs.jboss.org/infinispan/5.0/apidocs/config.html#ce_global_asyncTransportExecutor
http://docs.jboss.org/infinispan/5.0/apidocs/config.html#ce_global_asyncTransportExecutor
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html
http://docs.jboss.org/infinispan/5.1/configdocs/urn_infinispan_config_5.1/complexType/configuration.clustering.async.html


recipient (fire-and-forget).

2.15. JNDI questions

2.15.1. Can I bind Cache or CacheManager to JNDI?

Cache or CacheManager can be bound to JNDI, but only to the java: namespace because they are
not designed to be exported outside the Java Virtual Machine. In other words, you shouldn’t expect
that you’ll be able to access them remotely by binding them to JNDI and downloading a remote
proxy to them because neither Cache nor CacheManager are serializable.

To find an example on how to bind Cache or CacheManager to the java: namespace, simply check
this unit test case .

2.16. Hibernate 2nd Level Cache questions

2.16.1. Can I use {brandname} as a remote JPA or Hibernate second level
cache?

See Remote {brandname} Caching section in Hibernate documentation.

2.16.2. Is it possible to use the {brandname} 2nd level cache outside of a
J2EE server, and if so how do I set up the transaction manager lookup?

The User Guide provides details on configuring a transaction manager outside of Java EE. The User
Guide also provides details on how to use Atomikos, JTOM and Bitronix.

2.16.3. What are the pitfalls of not using a non-JTA transaction factory such
as JDBCTransactionFactory with Hibernate when {brandname} is used as
2nd level cache provider?

The problem is that Hibernate will create a Transaction instance via java.sql.Connection and
{brandname} will create a transaction via whatever TransactionManager returned by
hibernate.transaction.manager_lookup_class . If hibernate.transaction.manager_lookup_class has
not been populated, it will default to the dummy transaction manager.

So, any work on the 2nd level cache will be done under a different transaction to the one used to
commit the stuff to the database via Hibernate. In other words, your operations on the database
and the 2LC are not treated as a single unit. Risks here include failures to update the 2LC leaving it
with stale data while the database committed data correctly.

2.17. Cache Server questions

20

https://github.com/infinispan/infinispan/blob/master/core/src/test/java/org/infinispan/jndi/BindingTest.java
https://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#caching-provider-infinispan-remote
../user_guide/user_guide.html#using_infinispan_as_jpa_hibernate_second_level_cache_provider
../user_guide/user_guide.html#implementing_standalone_jpa_jta_hibernate_application_outside_j2ee_server_using_infinispan_2nd_level_cache


2.17.1. After running a Hot Rod server for a while, I get a
NullPointerException in HotRodEncoder.getTopologyResponse(), how can I
get around it?

This is a bug (see ISPN-669 ) in the Hot Rod code where we didn’t specifically set the topology cache
to have no eviction and no expiration. So, if someone configured the default cache in the
{brandname} configuration file for Hot Rod with expiration or eviction, the topology cache would
end up having those capabilities and the topology view could after a while be removed from
memory. To get around this issue either:

• Avoid having expiration and eviction on for the default cache.

• Or, make sure you create a namedCache for ___hotRodTopologyCache with sync replication, state
transfer, no expiration and no eviction.

2.17.2. Is there a way to do a Bulk Get on a remote cache?

There’s no bulk get operation in Hot Rod, but the Java Hot Rod client has implemented via
RemoteCache the getAsync() operation, which returns a
org.infinispan.util.concurrent.NotifyingFuture (extends java.util.concurrent.Future). So, if you want
to retrieve multiple keys in parallel, just call multiple times getAsync() and when you need the
values, just call Future.get() , or attach a  FutureListener  to the NotifyingFuture to get notified when
the value is ready.

2.17.3. What is the startServer.sh script used for? What is the
startServer.bat script used for?

These scripts were used to start {brandname} server instances in earlier {brandname} versions, but
this is not the case any more since the {brandname} Server modules are built into a base
Wildfly/EAP instance, allowing all server modules to interact with other base services provided by
Wildfly/EAP, e.g. the web container for REST server. Check the dedicated {brandname} Server guide
to find out more on how to start it.

2.18. Debugging questions

2.18.1. How can I get {brandname} to show the full byte array? The log only
shows partial contents of byte arrays…

Since version 4.1, whenever {brandname} needs to print byte arrays to logs, these are partially
printed in order to avoid unnecessarily printing potentially big byte arrays. This happens in
situations where either, {brandname} caches have been configured with lazy deserialization, or
your running an Memcached or Hot Rod server. So in these cases, only the first 10 positions of the
byte array are shown in the logs. If you want {brandname} to show the full byte array in the logs,
simply pass the -Dinfinispan.arrays.debug=true system property at startup. In the future, this might
be controllable at runtime via a JMX call or similar.

Here’s an example of log message with a partially displayed byte array:

21

https://jira.jboss.org/browse/ISPN-669
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/util/concurrent/NotifyingFuture.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/util/concurrent/FutureListener.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/util/concurrent/FutureListener.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/util/concurrent/FutureListener.html


2010-04-14 15:46:09,342 TRACE [ReadCommittedEntry] (HotRodWorker-1-1) Updating entry
(key=CacheKey{data=ByteArray{size=19, hashCode=1b3278a,
array=[107, 45, 116, 101, 115, 116, 82, 101, 112, 108, ..]}}
removed=false valid=true changed=true created=true
value=CacheValue{data=ByteArray{size=19,
array=[118, 45, 116, 101, 115, 116, 82, 101, 112, 108, ..]},
version=281483566645249}]

And here’s a log message where the full byte array is shown:

2010-04-14 15:45:00,723 TRACE [ReadCommittedEntry] (Incoming-2,{brandname}-Cluster,eq-
6834) Updating entry
(key=CacheKey{data=ByteArray{size=19, hashCode=6cc2a4,
array=[107, 45, 116, 101, 115, 116, 82, 101, 112, 108, 105, 99, 97, 116, 101, 100, 80,
117, 116]}}
removed=false valid=true changed=true created=true
value=CacheValue{data=ByteArray{size=19,
array=[118, 45, 116, 101, 115, 116, 82, 101, 112, 108, 105, 99, 97, 116, 101, 100, 80,
117, 116]},
version=281483566645249}]

2.19. Clustering Transport questions

2.19.1. How do I retrieve the clustering physical address?

You can retrieve the physical address via
AdvancedCache.getRpcManager().getTransport().getPhysicalAddresses()

2.20. Security questions

2.20.1. Using Kerberos with the IBM JDK

When using Kerberos/GSSAPI authentication over Hot Rod, the IBM JDK implementation sometimes
fail to authenticate with the following exception:

com.ibm.security.krb5.KrbException, status code: 101
    message: Invalid option in ticket request
    at com.ibm.security.krb5.KrbTgsReq.<init>(KrbTgsReq.java:62)
    at com.ibm.security.krb5.KrbTgsReq.<init>(KrbTgsReq.java:145)
    at com.ibm.security.krb5.internal.k.b(k.java:179)
    at com.ibm.security.krb5.internal.k.a(k.java:215)

A possible workaround is to perform a login/logout/login on the LoginContext, before using the
Subject:

22

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/remoting/transport/Transport.html#getPhysicalAddresses


LoginContext lc = ...;
lc.login();
lc.logout();
lc = ...;
lc.login();
lc.getSubject();

23


	Frequently Asked Questions
	Table of Contents
	Chapter 1. Project questions
	1.1. What is {brandname}?
	1.2. What would I use {brandname} for?
	1.3. How is {brandname} related to JBoss Cache?
	1.4. What version of Java does {brandname} need to run? Does {brandname} need an application server to run?
	1.5. Will there be a POJO Cache replacement in {brandname}?
	1.6. How come {brandname}'s first release is 4.0.0?  This sounds weird!
	1.7. How is this related to JSR 107, the JCACHE specification?
	1.8. Can I use {brandname} with Hibernate?

	Chapter 2. Technical questions
	2.1. General questions
	2.1.1. What APIs does {brandname} offer?
	2.1.2. Which JVMs (JDKs) does {brandname} work with?
	2.1.3. Does {brandname} store data by value or by reference?
	2.1.4. Can I use {brandname} with Groovy? What about Jython, Clojure, JRuby or Scala etc.?

	2.2. Cache Loader and Cache Store questions
	2.2.1. Cache loaders and cache stores - what’s the difference?
	2.2.2. Are modifications to asynchronous cache stores coalesced or aggregated?
	2.2.3. What does the passivation flag do?
	2.2.4. What if I get IOException "Unsupported protocol version 48" with JdbcStringBasedCacheStore?
	2.2.5. Is there any way I can boost cache store’s performance?

	2.3. How to speed up {brandname}?
	2.4. Locking and Transaction questions
	2.4.1. Does {brandname} support distributed eager locking?
	2.4.2. How does {brandname} support explicit eager locking?
	2.4.3. What isolation levels does {brandname} support?
	2.4.4. When using Atomikos transaction manager, distributed caches are not distributing data, what is the problem?

	2.5. Eviction and Expiration questions
	2.5.1. Expiration does not work, what is the problem?

	2.6. Cache Manager questions
	2.6.1. Can I create caches using different cache modes using the same cache manager?
	2.6.2. Can transactions span different Cache instances from the same cache manager?
	2.6.3. How does multi-tenancy work?
	2.6.4. {brandname} allows me to create several Caches from a single CacheManager.  Are there any reasons to create separate CacheManagers?

	2.7. Cache Mode questions
	2.7.1. What is the difference between a replicated cache and a distributed cache?
	2.7.2. Does DIST support both synchronous and asynchronous communications?
	2.7.3. I notice that when using DIST, the cache does a remote get before a write command. Why is this?
	2.7.4. I use a clustered cache. I want the guarantees of synchronous replication with the parallelism of asynchronous replication. What can I do?
	2.7.5. What is the L1 cache?
	2.7.6. What consistency guarantees do I have with different Asynchronous processing settings ?
	2.7.7. Grouping API vs Key Affinity Service

	2.8. Listener questions
	2.8.1. In a cache entry modified listener, can the modified value be retrieved via Cache.get() when isPre=false?
	2.8.2. When annotating a method with CacheEntryCreated, how do I retrieve the value of the cache entry added?
	2.8.3. What is the difference between classes in org.infinispan.notifications.cachelistener.filter vs org.infinispan.filter?

	2.9. IaaS/Cloud Infrastructure questions
	2.9.1. How do you make {brandname} send replication traffic over a specific network when you don’t know the IP address?

	2.10. Demo questions
	2.10.1. When using the GUI Demo, I’ve just put an entry in the cache with lifespan of -1. Why do I see it as having a lifespan of 60,000?

	2.11. Logging questions
	2.11.1. How can I enable logging?

	2.12. Third Party Container questions
	2.12.1. Can I use {brandname} on Google App Engine for Java?
	2.12.2. When running on Glassfish or Apache, creating a cache throws an exception saying "Unable to construct a GlobalComponentRegistry", what is it wrong?

	2.13. Marshalling and Unmarshalling
	2.13.1. Best practices implementing java.io.Externalizable
	2.13.2. Does {brandname} support storing Non-Serializable objects?
	2.13.3. Do Externalizer implementations need to access internal Externalizer implementations?
	2.13.4. During state transfer, the state receiver logs an EOFException when applying state saying "Read past end of file". Should I worry about this?
	2.13.5. How do I get more information on marshalling and unmarshalling exceptions?
	2.13.6. Why am I getting invalid data passed to readExternal?

	2.14. Tuning questions
	2.14.1. When running {brandname} under load, I see RejectedExecutionException, how can I fix it?

	2.15. JNDI questions
	2.15.1. Can I bind Cache or CacheManager to JNDI?

	2.16. Hibernate 2nd Level Cache questions
	2.16.1. Can I use {brandname} as a remote JPA or Hibernate second level cache?
	2.16.2. Is it possible to use the {brandname} 2nd level cache outside of a J2EE server, and if so how do I set up the transaction manager lookup?
	2.16.3. What are the pitfalls of not using a non-JTA transaction factory such as JDBCTransactionFactory with Hibernate when {brandname} is used as 2nd level cache provider?

	2.17. Cache Server questions
	2.17.1. After running a Hot Rod server for a while, I get a NullPointerException in HotRodEncoder.getTopologyResponse(), how can I get around it?
	2.17.2. Is there a way to do a Bulk Get on a remote cache?
	2.17.3. What is the startServer.sh script used for? What is the startServer.bat script used for?

	2.18. Debugging questions
	2.18.1. How can I get {brandname} to show the full byte array? The log only shows partial contents of byte arrays…

	2.19. Clustering Transport questions
	2.19.1. How do I retrieve the clustering physical address?

	2.20. Security questions
	2.20.1. Using Kerberos with the IBM JDK



