
Embedding {brandname} 10.0

Table of Contents
1. Using {brandname} as an embedded cache in Java SE . 1

1.1. Creating a new {brandname} project . 1

1.1.1. Maven users . 1

1.1.2. Ant users . 1

1.2. Running {brandname} on a single node . 1

1.3. Use the default cache . 2

1.4. Use a custom cache. 3

2. Using {brandname} as an embedded data grid in Java SE. 5

2.1. Sharing JGroups channels . 5

2.2. Running {brandname} in a cluster. 5

2.2.1. Replicated mode . 5

2.2.2. Distributed mode. 6

2.3. clustered-cache quickstart architecture . 6

2.3.1. Logging changes to the cache. 6

2.3.2. What’s going on? . 7

2.4. Configuring the cluster . 8

2.4.1. Tweaking the cluster configuration for your network . 8

2.5. Configuring a replicated data-grid . 9

2.6. Configuring a distributed data-grid . 10

3. Executing code in the Grid. 11

3.1. Cluster Executor . 11

3.1.1. Filtering execution nodes . 11

3.1.2. Timeout . 12

3.1.3. Single Node Submission . 12

3.1.4. Example: PI Approximation . 13

4. Streams . 15

4.1. Common stream operations. 15

4.2. Key filtering . 15

4.3. Segment based filtering . 15

4.4. Local/Invalidation . 16

4.5. Example . 16

4.6. Distribution/Replication/Scattered . 16

4.6.1. Rehash Aware . 16

4.6.2. Serialization . 17

4.7. Parallel Computation . 19

4.8. Task timeout . 20

4.9. Injection . 20

4.10. Distributed Stream execution . 20

4.11. Key based rehash aware operators . 22

4.12. Intermediate operation exceptions . 22

4.13. Examples . 23

5. Locked Streams. 27

5.1. Locked Streams . 27

6. Running on Cloud Services . 28

6.1. Generic Discovery protocols . 28

6.1.1. TCPPing . 28

6.1.2. GossipRouter . 29

6.2. Amazon Web Services . 29

6.2.1. S3_PING . 29

6.2.2. JDBC_PING . 29

6.3. Microsoft Azure. 30

6.3.1. AZURE_PING. 30

6.4. Google Compute Engine . 30

6.4.1. GOOGLE_PING . 30

6.5. Kubernetes . 30

6.5.1. Kube_PING . 30

6.5.2. DNS_PING . 31

6.5.3. Using Kubernetes and OpenShift Rolling Updates . 31

6.5.4. Rolling upgrades with Kubernetes and OpenShift . 33

Chapter 1. Using {brandname} as an
embedded cache in Java SE
Running {brandname} in embedded mode is very easy. First, we’ll set up a project, and then we’ll
run {brandname}, and start adding data.


embedded-cache quickstart

All the code discussed in this tutorial is available in the embedded-cache
quickstart.

1.1. Creating a new {brandname} project
The only thing you need to set up {brandname} is add it’s dependencies to your project.

1.1.1. Maven users

If you are using Maven (or another build system like Gradle or Ivy which can use Maven
dependencies), then this is easy. Just add the following to the <dependencies> section of your pom.xml:

pom.xml

<dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-embedded</artifactId>
 <version>${version.infinispan}</version>
</dependency>

Replace ${version.infinispan} with the appropriate version of {brandname}.


Which version of {brandname} should I use?

We recommend using the latest stable version of {brandname}. All releases are
displayed on the downloads page.

Alternatively, you can use the POM from the quickstart that accompanies this tutorial.

1.1.2. Ant users

If you are using Ant, or another build system which doesn’t provide declarative dependency
management, then the {brandname} distribution zip contains a lib/ directory. Add the contents of
this to the build classpath.

1.2. Running {brandname} on a single node
In order to run {brandname}, we’re going to create a main() method in the Quickstart class.
{brandname} comes configured to run out of the box; once you have set up your dependencies, all

1

https://github.com/infinispan/infinispan-quickstart/tree/master/embedded-cache
https://github.com/infinispan/infinispan-quickstart/tree/master/embedded-cache
http://www.infinispan.org/download
https://raw.github.com/infinispan/infinispan-quickstart/master/embedded-cache/pom.xml

you need to do to start using {brandname} is to create a new cache manager and get a handle on
the default cache.

Quickstart.java

public class Quickstart {

 public static void main(String args[]) throws Exception {
 Cache<Object, Object> c = new DefaultCacheManager().getCache();
 }

}

We now need a way to run the main method! To run the Quickstart main class: If you are using
Maven:

$ mvn compile exec:java
-Dexec.mainClass="org.infinispan.quickstart.embeddedcache.Quickstart"

You should see {brandname} start up, and the version in use logged to the console.

Congratulations, you now have {brandname} running as a local cache!

1.3. Use the default cache
{brandname} exposes a Map-like, JSR-107-esque interface for accessing and mutating the data
stored in the cache. For example:

DefaultCacheQuickstart.java

// Add a entry
cache.put("key", "value");
// Validate the entry is now in the cache
assertEqual(1, cache.size());
assertTrue(cache.containsKey("key"));
// Remove the entry from the cache
Object v = cache.remove("key");
// Validate the entry is no longer in the cache
assertEqual("value", v);

{brandname} offers a thread-safe data-structure:

2

DefaultCacheQuickstart.java

// Add an entry with the key "key"
cache.put("key", "value");
// And replace it if missing
cache.putIfAbsent("key", "newValue");
// Validate that the new value was not added

By default entries are immortal but you can override this on a per-key basis and provide lifespans.

DefaultCacheQuickstart.java

//By default entries are immortal but we can override this on a per-key basis and
provide lifespans.
cache.put("key", "value", 5, SECONDS);
assertTrue(cache.containsKey("key"));
Thread.sleep(10000);

to run using maven:

$ mvn compile exec:java
-Dexec.mainClass="org.infinispan.quickstart.embeddedcache.DefaultCacheQuickstart"

1.4. Use a custom cache
Each cache in {brandname} can offer a different set of features (for example transaction support,
different replication modes or support for eviction), and you may want to use different caches for
different classes of data in your application. To get a custom cache, you need to register it with the
manager first:

CustomCacheQuickstart.java

public static void main(String args[]) throws Exception {
 EmbeddedCacheManager manager = new DefaultCacheManager();
 manager.defineConfiguration("custom-cache", new ConfigurationBuilder()
 .eviction().strategy(LIRS).maxEntries(10)
 .build());
 Cache<Object, Object> c = manager.getCache("custom-cache");
}

The example above uses {brandname}'s fluent configuration, which offers the ability to configure
your cache programmatically. However, should you prefer to use XML, then you may. We can create
an identical cache to the one created with a programmatic configuration:

To run using maven:

3

$ mvn compile exec:java
-Dexec.mainClass="org.infinispan.quickstart.embeddedcache.CustomCacheQuickstart"

infinispan.xml

<infinispan
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:infinispan:config:10.0
http://www.infinispan.org/schemas/infinispan-config-10.0.xsd"
 xmlns="urn:infinispan:config:10.0">

 <cache-container default-cache="default">
 <local-cache name="xml-configured-cache">
 <memory> <object size="100"/> </memory>
 </local-cache>
 </cache-container>

</infinispan>

We then need to load the configuration file, and use the programmatically defined cache:

XmlConfiguredCacheQuickstart.java

public static void main(String args[]) throws Exception {
 Cache<Object, Object> c = new DefaultCacheManager("infinispan.xml").getCache("xml-
configured-cache");
}

To run using maven:

$ mvn compile exec:java
-Dexec.mainClass="org.infinispan.quickstart.embeddedcache.XmlConfiguredCacheQuickstart
"

4

Chapter 2. Using {brandname} as an
embedded data grid in Java SE
Clustering {brandname} is simple. Under the covers, {brandname} uses JGroups as a network
transport, and JGroups handles all the hard work of forming a cluster.


clustered-cache quickstart

All the code discussed in this tutorial is available in the clustered-cache quickstart.

2.1. Sharing JGroups channels
By default all caches created from a single CacheManager share the same JGroups channel and
multiplex RPC messages over it. In this example caches 1, 2 and 3 all use the same JGroups channel.

EmbeddedCacheManager cm = new DefaultCacheManager("infinispan.xml");
Cache<Object, Object> replSyncCache = cm.getCache("replSyncCache");
Cache<Object, Object> replAsyncCache = cm.getCache("replAsyncCache");
Cache<Object, Object> invalidationSyncCache = cm.getCache("invalidationSyncCache");

2.2. Running {brandname} in a cluster
It is easy set up a clustered cache. This tutorial will show you how to create two nodes in different
processes on the same local machine. The quickstart follows the same structure as the embedded-
cache quickstart, using Maven to compile the project, and a main method to launch the node.

If you are following along with the quickstarts, you can try the examples out.

The quickstart defines two clustered caches, one in replication mode and one distribution mode.

2.2.1. Replicated mode

To run the example in replication mode, we need to launch two nodes from different consoles. For
the first node:

$ mvn exec:java -Djava.net.preferIPv4Stack=true -Djgroups.bind_addr=127.0.0.1
-Dexec.mainClass="org.infinispan.quickstart.clusteredcache.Node" -Dexec.args="A"

And for the second node:

$ mvn exec:java -Djava.net.preferIPv4Stack=true -Djgroups.bind_addr=127.0.0.1
-Dexec.mainClass="org.infinispan.quickstart.clusteredcache.Node" -Dexec.args="B"

Note: You need to set -Djava.net.preferIPv4Stack=true because the JGroups configuration uses IPv4

5

http://www.jgroups.org
https://github.com/infinispan/infinispan-quickstart/tree/master/clustered-cache

multicast address. Normally you should not need -Djgroups.bind_addr=127.0.0.1, but many wireless
routers do not relay IP multicast by default.

Each node will insert or update an entry every second, and it will log any changes.

2.2.2. Distributed mode

To run the example in distribution mode and see how entries are replicated to only two nodes, we
need to launch three nodes from different consoles. For the first node:

$ mvn compile exec:java -Djava.net.preferIPv4Stack=true
-Dexec.mainClass="org.infinispan.quickstart.clusteredcache.Node" -Dexec.args="-d A"

For the second node:

$ mvn compile exec:java -Djava.net.preferIPv4Stack=true
-Dexec.mainClass="org.infinispan.quickstart.clusteredcache.Node" -Dexec.args="-d B"

And for the third node:

$ mvn compile exec:java -Djava.net.preferIPv4Stack=true
-Dexec.mainClass="org.infinispan.quickstart.clusteredcache.Node" -Dexec.args="-d C"

The same as in replication mode, each node will insert or update an entry every second, and it will
log any changes. But unlike in replication mode, not every node will see every modification.

You can also see that each node holds a different set of entries by pressing Enter.

2.3. clustered-cache quickstart architecture

2.3.1. Logging changes to the cache

An easy way to see what is going on with your cache is to log mutated entries. An {brandname}
listener is notified of any mutations:

6

import org.infinispan.notifications.Listener;
import org.infinispan.notifications.cachelistener.annotation.*;
import org.infinispan.notifications.cachelistener.event.*;
import org.jboss.logging.Logger;

@Listener
public class LoggingListener {

 private BasicLogger log = BasicLogFactory.getLog(LoggingListener.class);

 @CacheEntryCreated
 public void observeAdd(CacheEntryCreatedEvent<String, String> event) {
 if (event.isPre())
 return;
 log.infof("Cache entry %s = %s added in cache %s", event.getKey(), event
.getValue(), event.getCache());
 }

 @CacheEntryModified
 public void observeUpdate(CacheEntryModifiedEvent<String, String> event) {
 if (event.isPre())
 return;
 log.infof("Cache entry %s = %s modified in cache %s", event.getKey(), event
.getValue(), event.getCache());
 }

 @CacheEntryRemoved
 public void observeRemove(CacheEntryRemovedEvent<String, String> event) {
 if (event.isPre())
 return;
 log.infof("Cache entry %s removed in cache %s", event.getKey(), event.getCache(
));
 }
}

Listeners methods are declared using annotations, and receive a payload which contains metadata
about the notification. Listeners are notified of any changes. Here, the listeners simply log any
entries added, modified, or removed.

2.3.2. What’s going on?

The example allows you to start two or more nodes, each of which are started in a separate process.
The node code is very simple, each node starts up, prints the local cache contents, registers a
listener that logs any changes, and starts storing entries of the form key-<counter> = <local

address>-counter.

State transfer

{brandname} automatically replicates the cache contents from the existing members to joining
members. This can be controlled in two ways:

7

• If you don’t want the getCache() call to block until the entire cache is transferred, you can
configure clustering.stateTransfer.awaitInitialTransfer = false. Note that cache.get(key) will
still return the correct value, even before the state transfer is finished.

• If it’s fast enough to re-create the cache entries from another source, you can disable state
transfer completely, by configuring clustering.stateTransfer.fetchInMemoryState = false.

2.4. Configuring the cluster
First, we need to ensure that the cache manager is cluster aware. {brandname} provides a default
configuration for a clustered cache manager:

GlobalConfigurationBuilder.getClusteredDefault().build()

2.4.1. Tweaking the cluster configuration for your network

Depending on your network setup, you may need to tweak your JGroups set up. JGroups is
configured via an XML file; the file to use can be specified via the GlobalConfiguration:

DefaultCacheManager cacheManager = new DefaultCacheManager(
 GlobalConfigurationBuilder.defaultClusteredBuilder()
 .transport().nodeName(nodeName).addProperty("configurationFile",
"jgroups.xml")
 .build()
);

The JGroups documentation provides extensive advice on getting JGroups working on your
network. If you are new to configuring JGroups, you may get a little lost, so you might want to try
tweaking these configuration parameters:

• Using the system property -Djgroups.bind_addr=127.0.0.1 causes JGroups to bind only to your
loopback interface, meaning any firewall you may have configured won’t get in the way. Very
useful for testing a cluster where all nodes are on one machine.

TODO - add more tips!

You can also configure the JGroups configuration to use in {brandname}'s XML configuration:

8

http://www.jgroups.org/manual/html/index.html

<infinispan>
 <jgroups>
 <stack-file name="external-file" path="jgroups.xml"/>
 </jgroups>
 <cache-container>
 <transport stack="external-file" />
 </cache-container>

 ...

</infinispan>

2.5. Configuring a replicated data-grid
In replicated mode, {brandname} will store every entry on every node in the grid. This offers high
durability and availability of data, but means the storage capacity is limited by the available heap
space on the node with least memory. The cache should be configured to work in replication mode
(either synchronous or asynchronous), and can otherwise be configured as normal. For example, if
you want to configure the cache programmatically:

cacheManager.defineConfiguration("repl", new ConfigurationBuilder()
 .clustering()
 .cacheMode(CacheMode.REPL_SYNC)
 .build()
);

You can configure an identical cache using XML:

infinispan-replication.xml

<infinispan>
 <jgroups/>
 <cache-container default-cache="repl">
 <transport/>
 <replicated-cache name="repl" mode="SYNC" />
 </cache-container>
</infinispan>

along with

private static EmbeddedCacheManager createCacheManagerFromXml() throws IOException {
 return new DefaultCacheManager("infinispan-replication.xml");
}

9

2.6. Configuring a distributed data-grid
In distributed mode, {brandname} will store every entry on a subset of the nodes in the grid (the
parameter numOwners controls how many owners each entry will have). Compared to replication,
distribution offers increased storage capacity, but with increased latency to access data from non-
owner nodes, and durability (data may be lost if all the owners are stopped in a short time interval).
Adjusting the number of owners allows you to obtain the trade off between space, durability, and
latency.

{brandname} also offers a topology aware consistent hash which will ensure that the owners of
entries are located in different data centers, racks, or physical machines, to offer improved
durability in case of node crashes or network outages.

The cache should be configured to work in distributed mode (either synchronous or asynchronous),
and can otherwise be configured as normal. For example, if you want to configure the cache
programmatically:

cacheManager.defineConfiguration("dist", new ConfigurationBuilder()
 .clustering()
 .cacheMode(CacheMode.DIST_SYNC)
 .hash().numOwners(2)
 .build()
);

You can configure an identical cache using XML:

infinispan-distribution.xml:

<infinispan>
 <jgroups/>
 <cache-container default-cache="repl">
 <transport/>
 <distributed-cache owners="2" mode="SYNC" />
 </cache-container>
</infinispan>

along with

private static EmbeddedCacheManager createCacheManagerFromXml() throws IOException {
 return new DefaultCacheManager("infinispan-distribution.xml");
}

10

Chapter 3. Executing code in the Grid
The main benefit of a Cache is the ability to very quickly lookup a value by its key, even across
machines. In fact this use alone is probably the reason many users use {brandname}. However
{brandname} can provide many more benefits that aren’t immediately apparent. Since
{brandname} is usually used in a cluster of machines we also have features available that can help
utilize the entire cluster for performing the user’s desired workload.


This section covers only executing code in the grid using an embedded cache, if
you are using a remote cache you should review details about executing code in
the remote grid.

3.1. Cluster Executor
Since you have a group of machines, it makes sense to leverage their combined computing power
for executing code on all of them them. The cache manager comes with a nice utility that allows
you to execute arbitrary code in the cluster. Note this feature requires no Cache to be used. This
Cluster Executor can be retrieved by calling executor() on the EmbeddedCacheManager. This executor is
retrievable in both clustered and non clustered configurations.


The ClusterExecutor is specifically designed for executing code where the code is
not reliant upon the data in a cache and is used instead as a way to help users to
execute code easily in the cluster.

This manager was built specifically using Java 8 and such has functional APIs in mind, thus all
methods take a functional inteface as an argument. Also since these arguments will be sent to other
nodes they need to be serializable. We even used a nice trick to ensure our lambdas are
immediately Serializable. That is by having the arguments implement both Serializable and the real
argument type (ie. Runnable or Function). The JRE will pick the most specific class when
determining which method to invoke, so in that case your lambdas will always be serializable. It is
also possible to use an Externalizer to possibly reduce message size further.

The manager by default will submit a given command to all nodes in the cluster including the node
where it was submitted from. You can control on which nodes the task is executed on by using the
filterTargets methods as is explained in the section.

3.1.1. Filtering execution nodes

It is possible to limit on which nodes the command will be ran. For example you may want to only
run a computation on machines in the same rack. Or you may want to perform an operation once
in the local site and again on a different site. A cluster executor can limit what nodes it sends
requests to at the scope of same or different machine, rack or site level.

11

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/manager/ClusterExecutor.html

SameRack.java

 EmbeddedCacheManager manager = ...;
 manager.executor().filterTargets(ClusterExecutionPolicy.SAME_RACK).submit(...)

To use this topology base filtering you must enable topology aware consistent hashing through
Server Hinting.

You can also filter using a predicate based on the Address of the node. This can also be optionally
combined with topology based filtering in the previous code snippet.

We also allow the target node to be chosen by any means using a Predicate that will filter out which
nodes can be considered for execution. Note this can also be combined with Topology filtering at
the same time to allow even more fine control of where you code is executed within the cluster.

Predicate.java

 EmbeddedCacheManager manager = ...;
 // Just filter
 manager.executor().filterTargets(a -> a.equals(..)).submit(...)
 // Filter only those in the desired topology
 manager.executor().filterTargets(ClusterExecutionPolicy.SAME_SITE, a -> a.equals(.
.)).submit(...)

3.1.2. Timeout

Cluster Executor allows for a timeout to be set per invocation. This defaults to the distributed sync
timeout as configured on the Transport Configuration. This timeout works in both a clustered and
non clustered cache manager. The executor may or may not interrupt the threads executing a task
when the timeout expires. However when the timeout occurs any Consumer or Future will be
completed passing back a TimeoutException. This value can be overridden by ivoking the timeout
method and supplying the desired duration.

3.1.3. Single Node Submission

Cluster Executor can also run in single node submission mode instead of submitting the command
to all nodes it will instead pick one of the nodes that would have normally received the command
and instead submit it it to only one. Each submission will possibly use a different node to execute
the task on. This can be very useful to use the ClusterExecutor as a java.util.concurrent.Executor
which you may have noticed that ClusterExecutor implements.

SingleNode.java

 EmbeddedCacheManager manager = ...;
 manager.executor().singleNodeSubmission().submit(...)

12

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/manager/ClusterExecutor.html#timeout-long-java.util.concurrent.TimeUnit-

Failover

When running in single node submission it may be desirable to also allow the Cluster Executor
handle cases where an exception occurred during the processing of a given command by retrying
the command again. When this occurs the Cluster Executor will choose a single node again to
resubmit the command to up to the desired number of failover attempts. Note the chosen node
could be any node that passes the topology or predicate check. Failover is enabled by invoking the
overridden singleNodeSubmission method. The given command will be resubmitted again to a
single node until either the command completes without exception or the total submission amount
is equal to the provided failover count.

3.1.4. Example: PI Approximation

This example shows how you can use the ClusterExecutor to estimate the value of PI.

Pi approximation can greatly benefit from parallel distributed execution via Cluster Executor.
Recall that area of the square is Sa = 4r2 and area of the circle is Ca=pi*r2. Substituting r2 from the
second equation into the first one it turns out that pi = 4 * Ca/Sa. Now, image that we can shoot very
large number of darts into a square; if we take ratio of darts that land inside a circle over a total
number of darts shot we will approximate Ca/Sa value. Since we know that pi = 4 * Ca/Sa we can
easily derive approximate value of pi. The more darts we shoot the better approximation we get. In
the example below we shoot 1 billion darts but instead of "shooting" them serially we parallelize
work of dart shooting across the entire {brandname} cluster. Note this will work in a cluster of 1
was well, but will be slower.

public class PiAppx {

 public static void main (String [] arg){
 EmbeddedCacheManager cacheManager = ..
 boolean isCluster = ..

 int numPoints = 1_000_000_000;
 int numServers = isCluster ? cacheManager.getMembers().size() : 1;
 int numberPerWorker = numPoints / numServers;

 ClusterExecutor clusterExecutor = cacheManager.executor();
 long start = System.currentTimeMillis();
 // We receive results concurrently - need to handle that
 AtomicLong countCircle = new AtomicLong();
 CompletableFuture<Void> fut = clusterExecutor.submitConsumer(m -> {
 int insideCircleCount = 0;
 for (int i = 0; i < numberPerWorker; i++) {
 double x = Math.random();
 double y = Math.random();
 if (insideCircle(x, y))
 insideCircleCount++;
 }
 return insideCircleCount;
 }, (address, count, throwable) -> {
 if (throwable != null) {

13

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/manager/ClusterExecutor.html#singleNodeSubmission-int-

 throwable.printStackTrace();
 System.out.println("Address: " + address + " encountered an error: " +
throwable);
 } else {
 countCircle.getAndAdd(count);
 }
 });
 fut.whenComplete((v, t) -> {
 // This is invoked after all nodes have responded with a value or exception
 if (t != null) {
 t.printStackTrace();
 System.out.println("Exception encountered while waiting:" + t);
 } else {
 double appxPi = 4.0 * countCircle.get() / numPoints;

 System.out.println("Distributed PI appx is " + appxPi +
 " using " + numServers + " node(s), completed in " + (System
.currentTimeMillis() - start) + " ms");
 }
 });

 // May have to sleep here to keep alive if no user threads left
 }

 private static boolean insideCircle(double x, double y) {
 return (Math.pow(x - 0.5, 2) + Math.pow(y - 0.5, 2))
 <= Math.pow(0.5, 2);
 }
}

14

Chapter 4. Streams
You may want to process a subset or all data in the cache to produce a result. This may bring
thoughts of Map Reduce. {brandname} allows the user to do something very similar but utilizes the
standard JRE APIs to do so. Java 8 introduced the concept of a Stream which allows functional-style
operations on collections rather than having to procedurally iterate over the data yourself. Stream
operations can be implemented in a fashion very similar to MapReduce. Streams, just like
MapReduce allow you to perform processing upon the entirety of your cache, possibly a very large
data set, but in an efficient way.


Streams are the preferred method when dealing with data that exists in the cache
because streams automatically adjust to cluster topology changes.

Also since we can control how the entries are iterated upon we can more efficiently perform the
operations in a cache that is distributed if you want it to perform all of the operations across the
cluster concurrently.

A stream is retrieved from the entrySet, keySet or values collections returned from the Cache by
invoking the stream or parallelStream methods.

4.1. Common stream operations
This section highlights various options that are present irrespective of what type of underlying
cache you are using.

4.2. Key filtering
It is possible to filter the stream so that it only operates upon a given subset of keys. This can be
done by invoking the filterKeys method on the CacheStream. This should always be used over a
Predicate filter and will be faster if the predicate was holding all keys.

If you are familiar with the AdvancedCache interface you may be wondering why you even use getAll
over this keyFilter. There are some small benefits (mostly smaller payloads) to using getAll if you
need the entries as is and need them all in memory in the local node. However if you need to do
processing on these elements a stream is recommended since you will get both distributed and
threaded parallelism for free.

4.3. Segment based filtering


This is an advanced feature and should only be used with deep knowledge of
{brandname} segment and hashing techniques. These segments based filtering can
be useful if you need to segment data into separate invocations. This can be useful
when integrating with other tools such as Apache Spark.

This option is only supported for replicated and distributed caches. This allows the user to operate
upon a subset of data at a time as determined by the KeyPartitioner. The segments can be filtered

15

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/Cache.html#entrySet--
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/Cache.html#keySet--
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/Cache.html#values--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#stream--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#parallelStream--
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/CacheStream.html#filterKeys-java.util.Set-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html?is-external=true#filter-java.util.function.Predicate-
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/AdvancedCache.html#getAll-java.util.Set-
http://spark.apache.org/
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/distribution/ch/KeyPartitioner.html

by invoking filterKeySegments method on the CacheStream. This is applied after the key filter but
before any intermediate operations are performed.

4.4. Local/Invalidation
A stream used with a local or invalidation cache can be used just the same way you would use a
stream on a regular collection. {brandname} handles all of the translations if necessary behind the
scenes and works with all of the more interesting options (ie. storeAsBinary and a cache loader).
Only data local to the node where the stream operation is performed will be used, for example
invalidation only uses local entries.

4.5. Example
The code below takes a cache and returns a map with all the cache entries whose values contain the
string "JBoss"

Map<Object, String> jbossValues = cache.entrySet().stream()
 .filter(e -> e.getValue().contains("JBoss"))
 .collect(Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));

4.6. Distribution/Replication/Scattered
This is where streams come into their stride. When a stream operation is performed it will send the
various intermediate and terminal operations to each node that has pertinent data. This allows
processing the intermediate values on the nodes owning the data, and only sending the final results
back to the originating nodes, improving performance.

4.6.1. Rehash Aware

Internally the data is segmented and each node only performs the operations upon the data it owns
as a primary owner. This allows for data to be processed evenly, assuming segments are granular
enough to provide for equal amounts of data on each node.

When you are utilizing a distributed cache, the data can be reshuffled between nodes when a new
node joins or leaves. Distributed Streams handle this reshuffling of data automatically so you don’t
have to worry about monitoring when nodes leave or join the cluster. Reshuffled entries may be
processed a second time, and we keep track of the processed entries at the key level or at the
segment level (depending on the terminal operation) to limit the amount of duplicate processing.

It is possible but highly discouraged to disable rehash awareness on the stream. This should only be
considered if your request can handle only seeing a subset of data if a rehash occurs. This can be
done by invoking CacheStream.disableRehashAware() The performance gain for most operations
when a rehash doesn’t occur is completely negligible. The only exceptions are for iterator and
forEach, which will use less memory, since they do not have to keep track of processed keys.

16

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/CacheStream.html#filterKeySegments-java.util.Set-
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/CacheStream.html#disableRehashAware--


Please rethink disabling rehash awareness unless you really know what you are
doing.

4.6.2. Serialization

Since the operations are sent across to other nodes they must be serializable by {brandname}
marshalling. This allows the operations to be sent to the other nodes.

The simplest way is to use a CacheStream instance and use a lambda just as you would normally.
{brandname} overrides all of the various Stream intermediate and terminal methods to take
Serializable versions of the arguments (ie. SerializableFunction, SerializablePredicate…) You can
find these methods at CacheStream. This relies on the spec to pick the most specific method as
defined here.

In our previous example we used a Collector to collect all the results into a Map. Unfortunately the
Collectors class doesn’t produce Serializable instances. Thus if you need to use these, there are two
ways to do so:

One option would be to use the CacheCollectors class which allows for a Supplier<Collector> to be
provided. This instance could then use the Collectors to supply a Collector which is not serialized.
You can read more details about how the collector peforms in a distributed fashion at distributed
execution.

Map<Object, String> jbossValues = cache.entrySet().stream()
 .filter(e -> e.getValue().contains("Jboss"))
 .collect(CacheCollectors.serializableCollector(() -> Collectors.toMap
(Map.Entry::getKey, Map.Entry::getValue)));

Alternatively, you can avoid the use of CacheCollectors and instead use the overloaded collect
methods that take Supplier<Collector>. These overloaded collect methods are only available via
CacheStream interface.

Map<Object, String> jbossValues = cache.entrySet().stream()
 .filter(e -> e.getValue().contains("Jboss"))
 .collect(() -> Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue)
);

If however you are not able to use the Cache and CacheStream interfaces you cannot utilize
Serializable arguments and you must instead cast the lambdas to be Serializable manually by
casting the lambda to multiple interfaces. It is not a pretty sight but it gets the job done.

Map<Object, String> jbossValues = map.entrySet().stream()
 .filter((Serializable & Predicate<Map.Entry<Object, String>>) e -> e
.getValue().contains("Jboss"))
 .collect(CacheCollectors.serializableCollector(() -> Collectors.toMap
(Map.Entry::getKey, Map.Entry::getValue)));

17

https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/stream/CacheStream.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.12.2.5
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/stream/CacheCollectors.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html
user_guide.html#distributed_stream_execution
user_guide.html#distributed_stream_execution
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/stream/CacheCollectors.html

The recommended and most performant way is to use an AdvancedExternalizer as this provides
the smallest payload. Unfortunately this means you cannot use lamdbas as advanced externalizers
require defining the class before hand.

You can use an advanced externalizer as shown below:

 Map<Object, String> jbossValues = cache.entrySet().stream()
 .filter(new ContainsFilter("Jboss"))
 .collect(() -> Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue)
);

 class ContainsFilter implements Predicate<Map.Entry<Object, String>> {
 private final String target;

 ContainsFilter(String target) {
 this.target = target;
 }

 @Override
 public boolean test(Map.Entry<Object, String> e) {
 return e.getValue().contains(target);
 }
 }

 class JbossFilterExternalizer implements AdvancedExternalizer<ContainsFilter> {

 @Override
 public Set<Class<? extends ContainsFilter>> getTypeClasses() {
 return Util.asSet(ContainsFilter.class);
 }

 @Override
 public Integer getId() {
 return CUSTOM_ID;
 }

 @Override
 public void writeObject(ObjectOutput output, ContainsFilter object) throws
IOException {
 output.writeUTF(object.target);
 }

 @Override
 public ContainsFilter readObject(ObjectInput input) throws IOException,
ClassNotFoundException {
 return new ContainsFilter(input.readUTF());
 }
 }

You could also use an advanced externalizer for the collector supplier to reduce the payload size

18

user_guide.html#advanced_externalizers

even further.

 Map<Object, String> jbossValues = cache.entrySet().stream()
 .filter(new ContainsFilter("Jboss"))
 .collect(ToMapCollectorSupplier.INSTANCE);

 class ToMapCollectorSupplier<K, U> implements Supplier<Collector<Map.Entry<K, U>, ?,
Map<K, U>>> {
 static final ToMapCollectorSupplier INSTANCE = new ToMapCollectorSupplier();

 private ToMapCollectorSupplier() { }

 @Override
 public Collector<Map.Entry<K, U>, ?, Map<K, U>> get() {
 return Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue);
 }
 }

 class ToMapCollectorSupplierExternalizer implements AdvancedExternalizer
<ToMapCollectorSupplier> {

 @Override
 public Set<Class<? extends ToMapCollectorSupplier>> getTypeClasses() {
 return Util.asSet(ToMapCollectorSupplier.class);
 }

 @Override
 public Integer getId() {
 return CUSTOM_ID;
 }

 @Override
 public void writeObject(ObjectOutput output, ToMapCollectorSupplier object)
throws IOException {
 }

 @Override
 public ToMapCollectorSupplier readObject(ObjectInput input) throws IOException,
ClassNotFoundException {
 return ToMapCollectorSupplier.INSTANCE;
 }
 }

4.7. Parallel Computation
Distributed streams by default try to parallelize as much as possible. It is possible for the end user
to control this and actually they always have to control one of the options. There are 2 ways these
streams are parallelized.

19

Local to each node When a stream is created from the cache collection the end user can choose
between invoking stream or parallelStream method. Depending on if the parallel stream was
picked will enable multiple threading for each node locally. Note that some operations like a rehash
aware iterator and forEach operations will always use a sequential stream locally. This could be
enhanced at some point to allow for parallel streams locally.

Users should be careful when using local parallelism as it requires having a large number of entries
or operations that are computationally expensive to be faster. Also it should be noted that if a user
uses a parallel stream with forEach that the action should not block as this would be executed on
the common pool, which is normally reserved for computation operations.

Remote requests When there are multiple nodes it may be desirable to control whether the remote
requests are all processed at the same time concurrently or one at a time. By default all terminal
operations except the iterator perform concurrent requests. The iterator, method to reduce overall
memory pressure on the local node, only performs sequential requests which actually performs
slightly better.

If a user wishes to change this default however they can do so by invoking the
sequentialDistribution or parallelDistribution methods on the CacheStream.

4.8. Task timeout
It is possible to set a timeout value for the operation requests. This timeout is used only for remote
requests timing out and it is on a per request basis. The former means the local execution will not
timeout and the latter means if you have a failover scenario as described above the subsequent
requests each have a new timeout. If no timeout is specified it uses the replication timeout as a
default timeout. You can set the timeout in your task by doing the following:

CacheStream<Object, String> stream = cache.entrySet().stream();
stream.timeout(1, TimeUnit.MINUTES);

For more information about this, please check the java doc in timeout javadoc.

4.9. Injection
The Stream has a terminal operation called forEach which allows for running some sort of side
effect operation on the data. In this case it may be desirable to get a reference to the Cache that is
backing this Stream. If your Consumer implements the CacheAware interface the injectCache method
be invoked before the accept method from the Consumer interface.

4.10. Distributed Stream execution
Distributed streams execution works in a fashion very similiar to map reduce. Except in this case
we are sending zero to many intermediate operations (map, filter etc.) and a single terminal
operation to the various nodes. The operation basically comes down to the following:

1. The desired segments are grouped by which node is the primary owner of the given segment

20

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#stream--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#parallelStream--
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/CacheStream.html#sequentialDistribution--
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/CacheStream.html#parallelDistribution--
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/CacheStream.html#timeout-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEach-java.util.function.Consumer-
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/stream/CacheAware.html

2. A request is generated to send to each remote node that contains the intermediate and terminal
operations including which segments it should process

a. The terminal operation will be performed locally if necessary

b. Each remote node will receive this request and run the operations and subsequently send
the response back

3. The local node will then gather the local response and remote responses together performing
any kind of reduction required by the operations themselves.

4. Final reduced response is then returned to the user

In most cases all operations are fully distributed, as in the operations are all fully applied on each
remote node and usually only the last operation or something related may be reapplied to reduce
the results from multiple nodes. One important note is that intermediate values do not actually
have to be serializable, it is the last value sent back that is the part desired (exceptions for various
operations will be highlighted below).

Terminal operator distributed result reductions The following paragraphs describe how the
distributed reductions work for the various terminal operators. Some of these are special in that an
intermediate value may be required to be serializable instead of the final result.

allMatch noneMatch anyMatch

The allMatch operation is ran on each node and then all the results are logically anded together
locally to get the appropriate value. The noneMatch and anyMatch operations use a logical or
instead. These methods also have early termination support, stopping remote and local
operations once the final result is known.

collect

The collect method is interesting in that it can do a few extra steps. The remote node performs
everything as normal except it doesn’t perform the final finisher upon the result and instead
sends back the fully combined results. The local thread then combines the remote and local
result into a value which is then finally finished. The key here to remember is that the final
value doesn’t have to be serializable but rather the values produced from the supplier and
combiner methods.

count

The count method just adds the numbers together from each node.

findAny findFirst

The findAny operation returns just the first value they find, whether it was from a remote node
or locally. Note this supports early termination in that once a value is found it will not process
others. Note the findFirst method is special since it requires a sorted intermediate operation,
which is detailed in the exceptions section.

max min

The max and min methods find the respective min or max value on each node then a final
reduction is performed locally to ensure only the min or max across all nodes is returned.

21

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#allMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#noneMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#anyMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect-java.util.stream.Collector-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#finisher--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#combiner--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#supplier--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#combiner--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#count--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#findAny--
user_guide.html#intermediate_operation_exceptions
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#max-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#min-java.util.Comparator-

reduce

The various reduce methods 1 , 2 , 3 will end up serializing the result as much as the
accumulator can do. Then it will accumulate the local and remote results together locally, before
combining if you have provided that. Note this means a value coming from the combiner doesn’t
have to be Serializable.

4.11. Key based rehash aware operators
The iterator, spliterator and forEach are unlike the other terminal operators in that the rehash
awareness has to keep track of what keys per segment have been processed instead of just
segments. This is to guarantee an exactly once (iterator & spliterator) or at least once behavior
(forEach) even under cluster membership changes.

The iterator and spliterator operators when invoked on a remote node will return back batches of
entries, where the next batch is only sent back after the last has been fully consumed. This batching
is done to limit how many entries are in memory at a given time. The user node will hold onto
which keys it has processed and when a given segment is completed it will release those keys from
memory. This is why sequential processing is preferred for the iterator method, so only a subset of
segment keys are held in memory at once, instead of from all nodes.

The forEach() method also returns batches, but it returns a batch of keys after it has finished
processing at least a batch worth of keys. This way the originating node can know what keys have
been processed already to reduce chances of processing the same entry again. Unfortunately this
means it is possible to have an at least once behavior when a node goes down unexpectedly. In this
case that node could have been processing a batch and not yet completed one and those entries that
were processed but not in a completed batch will be ran again when the rehash failure operation
occurs. Note that adding a node will not cause this issue as the rehash failover doesn’t occur until
all responses are received.

These operations batch sizes are both controlled by the same value which can be configured by
invoking distributedBatchSize method on the CacheStream. This value will default to the chunkSize
configured in state transfer. Unfortunately this value is a tradeoff with memory usage vs
performance vs at least once and your mileage may vary.

Using iterator with replicated and distributed caches

When a node is the primary or backup owner of all requested segments for a distributed stream,
{brandname} performs the iterator or spliterator terminal operations locally, which optimizes
performance as remote iterations are more resource intensive.

This optimization applies to both replicated and distributed caches. However, {brandname}
performs iterations remotely when using cache stores that are both shared and have write-behind
enabled. In this case performing the iterations remotely ensures consistency.

4.12. Intermediate operation exceptions
There are some intermediate operations that have special exceptions, these are skip, peek, sorted 1
2. & distinct. All of these methods have some sort of artificial iterator implanted in the stream

22

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-java.util.function.BinaryOperator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-T-java.util.function.BinaryOperator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-U-java.util.function.BiFunction-java.util.function.BinaryOperator-
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/CacheStream.html#iterator--
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/CacheStream.html#spliterator--
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/CacheStream.html#forEach-java.util.function.Consumer-
https://docs.jboss.org/infinispan/10.0/apidocs/org/infinispan/CacheStream.html#distributedBatchSize-int-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#skip-long-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#peek-java.util.function.Consumer-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#sorted-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#sorted--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#distinct--

processing to guarantee correctness, they are documented as below. Note this means these
operations may cause possibly severe performance degradation.

Skip

An artificial iterator is implanted up to the intermediate skip operation. Then results are
brought locally so it can skip the appropriate amount of elements.

Sorted

WARNING: This operation requires having all entries in memory on the local node. An artificial
iterator is implanted up to the intermediate sorted operation. All results are sorted locally. There
are possible plans to have a distributed sort which returns batches of elements, but this is not
yet implemented.

Distinct

WARNING: This operation requires having all or nearly all entries in memory on the local node.
Distinct is performed on each remote node and then an artificial iterator returns those distinct
values. Then finally all of those results have a distinct operation performed upon them.

The rest of the intermediate operations are fully distributed as one would expect.

4.13. Examples
Word Count

Word count is a classic, if overused, example of map/reduce paradigm. Assume we have a mapping
of key → sentence stored on {brandname} nodes. Key is a String, each sentence is also a String, and
we have to count occurrence of all words in all sentences available. The implementation of such a
distributed task could be defined as follows:

23

public class WordCountExample {

 /**
 * In this example replace c1 and c2 with
 * real Cache references
 *
 * @param args
 */
 public static void main(String[] args) {
 Cache<String, String> c1 = ...;
 Cache<String, String> c2 = ...;

 c1.put("1", "Hello world here I am");
 c2.put("2", "Infinispan rules the world");
 c1.put("3", "JUDCon is in Boston");
 c2.put("4", "JBoss World is in Boston as well");
 c1.put("12","JBoss Application Server");
 c2.put("15", "Hello world");
 c1.put("14", "Infinispan community");
 c2.put("15", "Hello world");

 c1.put("111", "Infinispan open source");
 c2.put("112", "Boston is close to Toronto");
 c1.put("113", "Toronto is a capital of Ontario");
 c2.put("114", "JUDCon is cool");
 c1.put("211", "JBoss World is awesome");
 c2.put("212", "JBoss rules");
 c1.put("213", "JBoss division of RedHat ");
 c2.put("214", "RedHat community");

 Map<String, Long> wordCountMap = c1.entrySet().parallelStream()
 .map(e -> e.getValue().split("\\s"))
 .flatMap(Arrays::stream)
 .collect(() -> Collectors.groupingBy(Function.identity(), Collectors.
counting()));
 }
}

In this case it is pretty simple to do the word count from the previous example.

However what if we want to find the most frequent word in the example? If you take a second to
think about this case you will realize you need to have all words counted and available locally first.
Thus we actually have a few options.

We could use a finisher on the collector, which is invoked on the user thread after all the results
have been collected. Some redundant lines have been removed from the previous example.

24

public class WordCountExample {
 public static void main(String[] args) {
 // Lines removed

 String mostFrequentWord = c1.entrySet().parallelStream()
 .map(e -> e.getValue().split("\\s"))
 .flatMap(Arrays::stream)
 .collect(() -> Collectors.collectingAndThen(
 Collectors.groupingBy(Function.identity(), Collectors.counting()),
 wordCountMap -> {
 String mostFrequent = null;
 long maxCount = 0;
 for (Map.Entry<String, Long> e : wordCountMap.entrySet()) {
 int count = e.getValue().intValue();
 if (count > maxCount) {
 maxCount = count;
 mostFrequent = e.getKey();
 }
 }
 return mostFrequent;
 }));

}

Unfortunately the last step is only going to be ran in a single thread, which if we have a lot of words
could be quite slow. Maybe there is another way to parallelize this with Streams.

We mentioned before we are in the local node after processing, so we could actually use a stream
on the map results. We can therefore use a parallel stream on the results.

public class WordFrequencyExample {
 public static void main(String[] args) {
 // Lines removed

 Map<String, Long> wordCount = c1.entrySet().parallelStream()
 .map(e -> e.getValue().split("\\s"))
 .flatMap(Arrays::stream)
 .collect(() -> Collectors.groupingBy(Function.identity(), Collectors
.counting()));
 Optional<Map.Entry<String, Long>> mostFrequent = wordCount.entrySet()
.parallelStream().reduce(
 (e1, e2) -> e1.getValue() > e2.getValue() ? e1 : e2);

This way you can still utilize all of the cores locally when calculating the most frequent element.

Remove specific entries

Distributed streams can also be used as a way to modify data where it lives. For example you may
want to remove all entries in your cache that contain a specific word.

25

public class RemoveBadWords {
 public static void main(String[] args) {
 // Lines removed
 String word = ..

 c1.entrySet().parallelStream()
 .filter(e -> e.getValue().contains(word))
 .forEach((c, e) -> c.remove(e.getKey());

If we carefully note what is serialized and what is not, we notice that only the word along with the
operations are serialized across to other nods as it is captured by the lambda. However the real
saving piece is that the cache operation is performed on the primary owner thus reducing the
amount of network traffic required to remove these values from the cache. The cache is not
captured by the lambda as we provide a special BiConsumer method override that when invoked
on each node passes the cache to the BiConsumer

One thing to keep in mind using the forEach command in this manner is that the underlying stream
obtains no locks. The cache remove operation will still obtain locks naturally, but the value could
have changed from what the stream saw. That means that the entry could have been changed after
the stream read it but the remove actually removed it.

We have specifically added a new variant which is called LockedStream.

Plenty of other examples

The Streams API is a JRE tool and there are lots of examples for using it. Just remember that your
operations need to be Serializable in some way.

26

Chapter 5. Locked Streams

5.1. Locked Streams
TODO: need to detail

27

Chapter 6. Running on Cloud Services
In order to turn on Cloud support for {brandname} library mode, one needs to add a new
dependency to the classpath:

Cloud support in library mode

<dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-cloud</artifactId>
 <version>${version.infinispan}</version>
</dependency>

Replace ${version.infinispan} with the appropriate version of {brandname}.

The above dependency adds infinispan-core to the classpath as well as some default
configurations.

6.1. Generic Discovery protocols
The main difference between running {brandname} in a private environment and a cloud provider
is that in the latter node discovery becomes a bit trickier because things like multicast don’t work.
To circumvent this you can use alternate JGroups PING protocols. Before delving into the cloud-
specific, lets look at some generic discovery protocols.

6.1.1. TCPPing

The TCPPing approach contains a static list of the IP address of each member of the cluster in the
JGroups configuration file. While this works it doesn’t really help when cluster nodes are
dynamically added to the cluster.

Sample TCPPing configuration

<config>
 <TCP bind_port="7800" />
 <TCPPING timeout="3000"
 initial_hosts=
"${jgroups.tcpping.initial_hosts:localhost[7800],localhost[7801]}"
 port_range="1"
 num_initial_members="3"/>
...
...
</config>

See JGroups TCPPING for more information about TCPPing.

28

http://community.jboss.org/wiki/JGroupsTCPPING

6.1.2. GossipRouter

Another approach is to have a central server (Gossip, which each node will be configured to
contact. This central server will tell each node in the cluster about each other node.

The address (ip:port) that the Gossip router is listening on can be injected into the JGroups
configuration used by {brandname}. To do this pass the gossip routers address as a system property
to the JVM e.g. -DGossipRouterAddress="10.10.2.4[12001]" and reference this property in the JGroups
configuration that {brandname} is using e.g.

Sample TCPGOSSIP configuration

<config>
 <TCP bind_port="7800" />
 <TCPGOSSIP timeout="3000" initial_hosts="${GossipRouterAddress}"
num_initial_members="3" />
...
...
</config>

More on Gossip Router @ http://www.jboss.org/community/wiki/JGroupsGossipRouter

6.2. Amazon Web Services
When running on Amazon Web Service (AWS) platform and similar cloud based environment you
can use the S3_PING protocol for discovery.

6.2.1. S3_PING

You can configure your JGroups instances to use a shared storage to exchange the details of the
cluster nodes. S3_PING allows Amazon S3 to be used as the shared storage. Be sure that you have
signed up for Amazon S3 as well as EC2 to use this method.

Sample S3PING configuration

<config>
 <TCP bind_port="7800" />
 <S3_PING
 secret_access_key="replace this with you secret access key"
 access_key="replace this with your access key"
 location="replace this with your S3 bucket location" />
</config>

6.2.2. JDBC_PING

A similar approach to S3_PING, but using a JDBC connection to a shared database. On EC2 that is
quite easy using Amazon RDS. See the JDBC_PING Wiki page for details.

29

http://community.jboss.org/docs/DOC-10890
http://community.jboss.org/wiki/JDBCPING

6.3. Microsoft Azure
{brandname} can be used on the Azure platform. Aside from using TCP_PING or GossipRouter,
there is an Azure-specific discovery protocol:

6.3.1. AZURE_PING

AZURE_PING uses a shared Azure Blob Storage to store discovery information. Configuration is as
follows:

<azure.AZURE_PING
 storage_account_name="replace this with your account name"
 storage_access_key="replace this with your access key"
 container="replace this with your container name"
/>

6.4. Google Compute Engine
{brandname} can be used on the Google Compute Engine (GCE) platform. Aside from using
TCP_PING or GossipRouter, there is a GCE-specific discovery protocol:

6.4.1. GOOGLE_PING

GOOGLE_PING uses Google Cloud Storage (GCS) to store information about the cluster members.

<protocol type="GOOGLE_PING">
 <property name="location">The name of the bucket</property>
 <property name="access_key">The access key</property>
 <property name="secret_access_key">The secret access key</property>
</protocol>

6.5. Kubernetes
{brandname} in Kubernetes environments, such as OKD or OpenShift, can use Kube_PING or
[DNS_PING] for cluster discovery.

6.5.1. Kube_PING

The JGroups Kube_PING protocol uses the following configuration:

30

#cloud_services_kube_ping
http://www.jgroups.org/manual4/index.html#_kube_ping

Example KUBE_PING configuration

<config>
 <TCP bind_addr="${match-interface:eth.*}" />
 <kubernetes.KUBE_PING />
...
...
</config>

The most important thing is to bind JGroups to eth0 interface, which is used by Docker containers
for network communication.

KUBE_PING protocol is configured by environmental variables (which should be available inside a
container). The most important thing is to set KUBERNETES_NAMESPACE to proper namespace. It might
be either hardcoded or populated via Kubernetes' Downward API.

Since KUBE_PING uses Kubernetes API for obtaining available Pods, OpenShift requires adding
additional privileges. Assuming that oc project -q returns current namespace and default is the
service account name, one needs to run:

Adding additional OpenShift privileges

oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default -n $(oc
project -q)

After performing all above steps, the clustering should be enabled and all Pods should
automatically form a cluster within a single namespace.

6.5.2. DNS_PING

The JGroups DNS_PING protocol uses the following configuration:

Example DNS_PING configuration

<stack name="dns-ping">
...
 <dns.DNS_PING
 dns_query="myservice.myproject.svc.cluster.local" />
...
</stack>

DNS_PING runs the specified query against the DNS server to get the list of cluster members.

For information about creating DNS entries for nodes in a cluster, see DNS for Services and Pods.

6.5.3. Using Kubernetes and OpenShift Rolling Updates

Since Pods in Kubernetes and OpenShift are immutable, the only way to alter the configuration is to
roll out a new deployment. There are several different strategies to do that but we suggest using

31

https://docs.docker.com/engine/userguide/networking/dockernetworks/
https://docs.docker.com/engine/userguide/networking/dockernetworks/
https://github.com/kubernetes/kubernetes/tree/release-1.0/docs/user-guide/downward-api
http://www.jgroups.org/manual4/index.html#_dns_ping
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/

Rolling Updates.

An example Deployment Configuration (Kubernetes uses very similar concept called Deployment)
looks like the following:

DeploymentConfiguration for Rolling Updates

- apiVersion: v1
 kind: DeploymentConfig
 metadata:
 name: infinispan-cluster
 spec:
 replicas: 3
 strategy:
 type: Rolling
 rollingParams:
 updatePeriodSeconds: 10
 intervalSeconds: 20
 timeoutSeconds: 600
 maxUnavailable: 1
 maxSurge: 1
 template:
 spec:
 containers:
 - args:
 - -Djboss.default.jgroups.stack=kubernetes
 image: jboss/infinispan-server:latest
 name: infinispan-server
 ports:
 - containerPort: 8181
 protocol: TCP
 - containerPort: 9990
 protocol: TCP
 - containerPort: 11211
 protocol: TCP
 - containerPort: 11222
 protocol: TCP
 - containerPort: 57600
 protocol: TCP
 - containerPort: 7600
 protocol: TCP
 - containerPort: 8080
 protocol: TCP
 env:
 - name: KUBERNETES_NAMESPACE
 valueFrom: {fieldRef: {apiVersion: v1, fieldPath: metadata.namespace}}
 terminationMessagePath: /dev/termination-log
 terminationGracePeriodSeconds: 90
 livenessProbe:
 exec:
 command:

32

https://docs.openshift.org/latest/dev_guide/deployments/deployment_strategies.html#when-to-use-a-rolling-deployment

 - /usr/local/bin/is_running.sh
 initialDelaySeconds: 10
 timeoutSeconds: 80
 periodSeconds: 60
 successThreshold: 1
 failureThreshold: 5
 readinessProbe:
 exec:
 command:
 - /usr/local/bin/is_healthy.sh
 initialDelaySeconds: 10
 timeoutSeconds: 40
 periodSeconds: 30
 successThreshold: 2
 failureThreshold: 5

It is also highly recommended to adjust the JGroups stack to discover new nodes (or leaves) more
quickly. One should at least adjust the value of FD_ALL timeout and adjust it to the longest GC Pause.

Other hints for tuning configuration parameters are:

• OpenShift should replace running nodes one by one. This can be achieved by adjusting
rollingParams (maxUnavailable: 1 and maxSurge: 1).

• Depending on the cluster size, one needs to adjust updatePeriodSeconds and intervalSeconds. The
bigger cluster size is, the bigger those values should be used.

• When using Initial State Transfer, the initialDelaySeconds value for both probes should be set to
higher value.

• During Initial State Transfer nodes might not respond to probes. The best results are achieved
with higher values of failureThreshold and successThreshold values.

6.5.4. Rolling upgrades with Kubernetes and OpenShift

Even though Rolling Upgrades and Rolling Update may sound similarly, they mean different things.
The Rolling Update is a process of replacing old Pods with new ones. In other words it is a process
of rolling out new version of an application. A typical example is a configuration change. Since Pods
are immutable, Kubernetes/OpenShift needs to replace them one by one in order to use the updated
configuration bits. On the other hand, Rolling Upgrade is a process of migrating data from one
{brandname} cluster to another one. A typical example is migrating from one version to another.

For both Kubernetes and OpenShift, the Rolling Upgrade procedure is almost the same. It is based
on a standard Rolling Upgrade procedure with small changes.

Key differences when upgrading using OpenShift/Kubernetes are:

• Depending on configuration, it is a good practice to use OpenShift Routes or Kubernetes Ingress
API to expose services to the clients. During the upgrade the Route (or Ingress) used by the
clients can be altered to point to the new cluster.

• Invoking CLI commands can be done by using Kubernetes (kubectl exec) or OpenShift clients
(oc exec). Here is an example: oc exec <POD_NAME> — '/opt/jboss/infinispan-server/bin/ispn-

33

https://docs.openshift.org/latest/dev_guide/deployments/deployment_strategies.html#rolling-strategy
https://docs.openshift.org/latest/architecture/core_concepts/routes.html
http://kubernetes.io/docs/user-guide/ingress
http://kubernetes.io/docs/user-guide/ingress

cli.sh' '-c' '--controller=$(hostname -i):9990' '/subsystem=datagrid-infinispan/cache-
container=clustered/distributed-cache=default:disconnect-source(migrator-name=hotrod)'

Key differences when upgrading using the library mode:

• Client application needs to expose JMX. It usually depends on application and environment type
but the easiest way to do it is to add the following switches into the Java boostrap script
-Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.port=<PORT>.

• Connecting to the JMX can be done by forwarding ports. With OpenShift this might be achieved
by using oc port-forward command whereas in Kubernetes by kubectl port-forward.

The last step in the Rolling Upgrade (removing a Remote Cache Store) needs to be performed
differently. We need to use Kubernetes/OpenShift Rolling update command and replace Pods
configuration with the one which does not contain Remote Cache Store.

A detailed instruction might be found in ISPN-6673 ticket.

34

http://kubernetes.io/docs/user-guide/rolling-updates/
https://issues.jboss.org/browse/ISPN-6673

	Embedding {brandname} 10.0
	Table of Contents
	Chapter 1. Using {brandname} as an embedded cache in Java SE
	1.1. Creating a new {brandname} project
	1.1.1. Maven users
	1.1.2. Ant users

	1.2. Running {brandname} on a single node
	1.3. Use the default cache
	1.4. Use a custom cache

	Chapter 2. Using {brandname} as an embedded data grid in Java SE
	2.1. Sharing JGroups channels
	2.2. Running {brandname} in a cluster
	2.2.1. Replicated mode
	2.2.2. Distributed mode

	2.3. clustered-cache quickstart architecture
	2.3.1. Logging changes to the cache
	2.3.2. What’s going on?

	2.4. Configuring the cluster
	2.4.1. Tweaking the cluster configuration for your network

	2.5. Configuring a replicated data-grid
	2.6. Configuring a distributed data-grid

	Chapter 3. Executing code in the Grid
	3.1. Cluster Executor
	3.1.1. Filtering execution nodes
	3.1.2. Timeout
	3.1.3. Single Node Submission
	3.1.4. Example: PI Approximation

	Chapter 4. Streams
	4.1. Common stream operations
	4.2. Key filtering
	4.3. Segment based filtering
	4.4. Local/Invalidation
	4.5. Example
	4.6. Distribution/Replication/Scattered
	4.6.1. Rehash Aware
	4.6.2. Serialization

	4.7. Parallel Computation
	4.8. Task timeout
	4.9. Injection
	4.10. Distributed Stream execution
	4.11. Key based rehash aware operators
	4.12. Intermediate operation exceptions
	4.13. Examples

	Chapter 5. Locked Streams
	5.1. Locked Streams

	Chapter 6. Running on Cloud Services
	6.1. Generic Discovery protocols
	6.1.1. TCPPing
	6.1.2. GossipRouter

	6.2. Amazon Web Services
	6.2.1. S3_PING
	6.2.2. JDBC_PING

	6.3. Microsoft Azure
	6.3.1. AZURE_PING

	6.4. Google Compute Engine
	6.4.1. GOOGLE_PING

	6.5. Kubernetes
	6.5.1. Kube_PING
	6.5.2. DNS_PING
	6.5.3. Using Kubernetes and OpenShift Rolling Updates
	6.5.4. Rolling upgrades with Kubernetes and OpenShift

