
Running {brandname} 10.0 Servers

Table of Contents
1. About the {brandname} Server. 1

1.1. Getting Started. 1

2. Operating modes . 2

2.1. Standalone mode . 2

2.2. Domain mode. 2

2.2.1. Host. 3

2.2.2. Domain Controller . 4

2.2.3. Server Group . 4

2.2.4. Server. 5

2.3. Example configurations . 5

3. Configuration . 6

3.1. JGroups subsystem configuration. 6

3.2. below is connection pooling config . 27

4. Shows how to interact with the REST api from ruby. 94

5. No special libraries, just standard net/http . 95

6. Setup basic auth . 97

7. putting data in. 98

8. getting data out . 99

Chapter 1. About the {brandname} Server
{brandname} Server is a standalone server which exposes any number of caches to clients over a
variety of protocols, including HotRod, Memcached and REST.

The server itself is built on top of the robust foundation provided by WildFly, therefore delegating
services such as management, configuration, datasources, transactions, logging, security to the
respective subsystems.

Because {brandname} Server is closely tied to the latest releases of {brandname} and JGroups, the
subsystems which control these components are different, in that they introduce new features and
change some existing ones (e.g. cross-site replication, etc).

For this reason, the configuration of these subsystems should use the {brandname} Server-specific
schema, although for most use-cases the configuration is interchangeable. See the Configuration
section for more information.

1.1. Getting Started
To get started using the server, download the {brandname} Server distribution, unpack it to a local
directory and launch it using the bin/standalone.sh or bin/standalone.bat scripts depending on your
platform. This will start a single-node server using the standalone/configuration/standalone.xml
configuration file, with four endpoints, one for each of the supported protocols. These endpoints
allow access to all of the caches configured in the {brandname} subsystem (apart from the
Memcached endpoint which, because of the protocol’s design, only allows access to a single cache).

1

Chapter 2. Operating modes
{brandname} Server, like WildFly, can be booted in two different modes: standalone and domain.

2.1. Standalone mode
For simple configurations, standalone mode is the easiest to start with. It allows both local and
clustered configurations, although we only really recommend it for running single nodes, since the
configuration, management and coordination of multiple nodes is up to the user’s responsibility.
For example, adding a cache to a cluster of standalone server, the user would need to configure
individually to all nodes. Note that the default standalone.xml configuration does not provide a
JGroups subsystem and therefore cannot work in clustered mode. To start standalone mode with an
alternative configuration file, use the -c command-line switch as follows:

bin/standalone.sh -c clustered.xml

If you start the server in clustered mode on multiple hosts, they should automatically discover each
other using UDP multicast and form a cluster. If you want to start multiple nodes on a single host,
start each one by specifying a port offset using the jboss.socket.binding.port-offset property
together with a unique jboss.node.name as follows:

bin/standalone.sh -Djboss.socket.binding.port-offset=100 -Djboss.node.name=nodeA

If, for some reason, you cannot use UDP multicast, you can use TCP discovery. Read the JGroups
Subsystem Configuration section below for details on how to configure TCP discovery.

2.2. Domain mode
Domain mode is the recommended way to run a cluster of servers, since they can all be managed
centrally from a single control point. The following diagram explains the topology of an example
domain configuration, with 4 server nodes (A1, A2, B1, B2) running on two physical hosts (A, B):

2

Host controller A

Host A

Server A1

Server A2

Host controller B

Host B

Server B1

Server B2

Domain controller

Server Group

Figure 1. Domain-mode

2.2.1. Host

Each "Host" box in the above diagram represents a physical or virtual host. A physical host can
contain zero, one or more server instances.

Host Controller

When the domain.sh or domain.bat script is run on a host, a process known as a Host Controller is
launched. The Host Controller is solely concerned with server management; it does not itself handle
{brandname} server workloads. The Host Controller is responsible for starting and stopping the
individual {brandname} server processes that run on its host, and interacts with the Domain
Controller to help manage them.

Each Host Controller by default reads its configuration from the domain/configuration/host.xml file
located in the {brandname} Server installation on its host’s filesystem. The host.xml file contains
configuration information that is specific to the particular host. Primarily:

• the listing of the names of the actual {brandname} Server instances that are meant to run off of
this installation.

• configuration of how the Host Controller is to contact the Domain Controller to register itself
and access the domain configuration. This may either be configuration of how to find and
contact a remote Domain Controller, or a configuration telling the Host Controller to itself act as
the Domain Controller.

• configuration of items that are specific to the local physical installation. For example, named
interface definitions declared in domain.xml (see below) can be mapped to an actual machine-
specific IP address in host.xml. Abstract path names in domain.xml can be mapped to actual

3

filesystem paths in host.xml.

2.2.2. Domain Controller

One Host Controller instance is configured to act as the central management point for the entire
domain, i.e. to be the Domain Controller. The primary responsibility of the Domain Controller is to
maintain the domain’s central management policy, to ensure all Host Controllers are aware of its
current contents, and to assist the Host Controllers in ensuring any running {brandname} server
instances are configured in accordance with this policy. This central management policy is stored
by default in the domain/configuration/domain.xml file in the {brandname} Server installation on
Domain Controller’s host’s filesystem.

A domain.xml file must be located in the domain/configuration directory of an installation that’s
meant to run the Domain Controller. It does not need to be present in installations that are not
meant to run a Domain Controller; i.e. those whose Host Controller is configured to contact a
remote Domain Controller. The presence of a domain.xml file on such a server does no harm.

The domain.xml file includes, among other things, the configuration of the various "profiles" that
{brandname} Server instances in the domain can be configured to run. A profile configuration
includes the detailed configuration of the various subsystems that comprise that profile (e.g. Cache
Containers and Caches, Endpoints, Security Realms, DataSources, etc). The domain configuration
also includes the definition of groups of sockets that those subsystems may open. The domain
configuration also includes the definition of "server groups".

2.2.3. Server Group

A server group is set of server instances that will be managed and configured as one. In a managed
domain each application server instance is a member of a server group. Even if the group only has
a single server, the server is still a member of a group. It is the responsibility of the Domain
Controller and the Host Controllers to ensure that all servers in a server group have a consistent
configuration. They should all be configured with the same profile and they should have the same
deployment content deployed. To keep things simple, ensure that all the nodes that you want to
belong to an {brandname} cluster are configured as servers of one server group.

The domain can have multiple server groups, i.e. multiple {brandname} clusters. Different server
groups can be configured with different profiles and deployments; for example in a domain with
different {brandname} Server clusters providing different services. Different server groups can
also run the same profile and have the same deployments.

An example server group definition is as follows:

<server-group name="main-server-group" profile="clustered">
 <socket-binding-group ref="standard-sockets"/>
</server-group>

A server-group configuration includes the following required attributes:

• name — the name of the server group

4

• profile — the name of the profile the servers in the group should run

In addition, the following optional elements are available:

• socket-binding-group — specifies the name of the default socket binding group to use on servers
in the group. Can be overridden on a per-server basis in host.xml. If not provided in the server-
group element, it must be provided for each server in host.xml.

• deployments — the deployment content that should be deployed on the servers in the group.

• system-properties — system properties that should be set on all servers in the group

• jvm — default jvm settings for all servers in the group. The Host Controller will merge these
settings with any provided in host.xml to derive the settings to use to launch the server’s JVM.
See JVM settings for further details.

2.2.4. Server

Each "Server" in the above diagram represents an actual {brandname} Server node. The server
runs in a separate JVM process from the Host Controller. The Host Controller is responsible for
launching that process. In a managed domain the end user cannot directly launch a server process
from the command line.

The Host Controller synthesizes the server’s configuration by combining elements from the domain
wide configuration (from domain.xml) and the host-specific configuration (from host.xml).

2.3. Example configurations
The server distribution also provides a set of example configuration files in the
docs/examples/configs (mostly using standalone mode) which illustrate a variety of possible
configurations and use-cases. To use them, just copy them to the standalone/configuration directory
and start the server using the following syntax:

bin/standalone.sh -c configuration_file_name.xml

For more information regarding the parameters supported by the startup scripts, refer to the
WildFly documentation on Command line parameters.

5

https://docs.jboss.org/author/display/WFLY11/Command+line+parameters

Chapter 3. Configuration
Since the server is based on the WildFly codebase, refer to the WildFly documentation, apart from
the JGroups, {brandname} and Endpoint subsytems.

3.1. JGroups subsystem configuration
The JGroups subsystem configures the network transport and is only required when clustering
multiple {brandname} Server nodes together.

The subsystem declaration is enclosed in the following XML element:

<subsystem xmlns="urn:infinispan:server:jgroups:9.2">
 <channels default="cluster">
 <channel name="cluster"/>
 </channels>
 <stacks default="${jboss.default.jgroups.stack:udp}">
 ...
 </stacks>
</subsystem>

Within the subsystem, you need to declare the stacks that you wish to use and name them. The
default-stack attribute in the subsystem declaration must point to one of the declared stacks. You
can switch stacks from the command-line using the jboss.default.jgroups.stack property:

bin/standalone.sh -c clustered.xml -Djboss.default.jgroups.stack=tcp

A stack declaration is composed of a transport, UDP or TCP, followed by a list of protocols. You can
tune protocols by adding properties as child elements with this format:

<property name="prop_name">prop_value</property>

Default stacks for {brandname} are as follows:

6

<stack name="udp">
 <transport type="UDP" socket-binding="jgroups-udp"/>
 <protocol type="PING"/>
 <protocol type="MERGE3"/>
 <protocol type="FD_SOCK" socket-binding="jgroups-udp-fd"/>
 <protocol type="FD_ALL"/>
 <protocol type="VERIFY_SUSPECT"/>
 <protocol type="pbcast.NAKACK2"/>
 <protocol type="UNICAST3"/>
 <protocol type="pbcast.STABLE"/>
 <protocol type="pbcast.GMS"/>
 <protocol type="UFC_NB"/>
 <protocol type="MFC_NB"/>
 <protocol type="FRAG3"/>
</stack>
<stack name="tcp">
 <transport type="TCP" socket-binding="jgroups-tcp"/>
 <protocol type="MPING" socket-binding="jgroups-mping"/>
 <protocol type="MERGE3"/>
 <protocol type="FD_SOCK" socket-binding="jgroups-tcp-fd"/>
 <protocol type="FD_ALL"/>
 <protocol type="VERIFY_SUSPECT"/>
 <protocol type="pbcast.NAKACK2">
 <property name="use_mcast_xmit">false</property>
 </protocol>
 <protocol type="UNICAST3"/>
 <protocol type="pbcast.STABLE"/>
 <protocol type="pbcast.GMS"/>
 <protocol type="MFC_NB"/>
 <protocol type="FRAG3"/>
</stack>

For some properties, {brandname} uses values other than the JGroups defaults to
tune performance. You should examine the following files to review the JGroups
configuration for {brandname}:

• Remote Client/Server Mode:

◦ jgroups-defaults.xml

◦ infinispan-jgroups.xml

• Library Mode:

◦ default-jgroups-tcp.xml

◦ default-jgroups-udp.xml

See JGroups Protocol documentation for more information about available
properties and default values.

The default TCP stack uses the MPING protocol for discovery, which uses UDP multicast. If you need
to use a different protocol, look at the JGroups Discovery Protocols . The following example stack

7

http://www.jgroups.org/manual/html/protlist.html
http://www.jgroups.org/manual/html/protlist.html#DiscoveryProtocols

configures the TCPPING discovery protocol with two initial hosts:

<stack name="tcp">
 <transport type="TCP" socket-binding="jgroups-tcp"/>
 <protocol type="TCPPING">
 <property name="initial_hosts">HostA[7800],HostB[7800]</property>
 </protocol>
 <protocol type="MERGE3"/>
 <protocol type="FD_SOCK" socket-binding="jgroups-tcp-fd"/>
 <protocol type="FD_ALL"/>
 <protocol type="VERIFY_SUSPECT"/>
 <protocol type="pbcast.NAKACK2">
 <property name="use_mcast_xmit">false</property>
 </protocol>
 <protocol type="UNICAST3"/>
 <protocol type="pbcast.STABLE"/>
 <protocol type="pbcast.GMS"/>
 <protocol type="UFC_NB"/>
 <protocol type="MFC_NB"/>
 <protocol type="FRAG3"/>
</stack>

The default configurations come with a variety of pre-configured stacks for different enviroments.
For example, the tcpgossip stack uses Gossip discovery:

<protocol type="TCPGOSSIP">
 <property name="initial_hosts">${jgroups.gossip.initial_hosts:}</property>
</protocol>

Use the s3 stack when running in Amazon AWS:

[source,xml,options="nowrap"]

<protocol type="org.jgroups.aws.s3.NATIVE_S3_PING" module="org.jgroups.aws.s3:ispn-10.0">
<property name="region_name">${jgroups.s3.region:}</property> <property
name="bucket_name">${jgroups.s3.bucket_name:}</property> <property
name="bucket_prefix">${jgroups.s3.bucket_prefix:}</property> </protocol>

Similarly, when using Google's Cloud Platform, use the +google+ stack:

[source,xml,options="nowrap",subs=attributes+]

<protocol type="GOOGLE_PING"> <property name="location">${jgroups.google.bucket:}</property>
<property name="access_key">${jgroups.google.access_key:}</property> <property
name="secret_access_key">${jgroups.google.secret_access_key:}</property> </protocol>

8

Use the +dns-ping+ stack to run {brandname} on Kubernetes environments such as OKD or
OpenShift:

[source,xml,options="nowrap",subs=attributes+]

<protocol type="dns.DNS_PING"> <property
name="dns_query">${jgroups.dns_ping.dns_query}</property> </protocol>

The value of the `dns_query` property is the DNS query that returns the cluster
members. See link:https://kubernetes.io/docs/concepts/services-networking/dns-pod-
service/[DNS for Services and Pods] for information about Kubernetes DNS naming.

=== Cluster authentication and authorization

The JGroups subsystem can be configured so that nodes need to authenticate each other
when joining / merging. The authentication uses SASL and integrates with the security
realms.

[source,xml,options="nowrap",subs=attributes+]

<management> <security-realms> … <security-realm name="ClusterRealm"> <authentication>
<properties path="cluster-users.properties" relative-to="jboss.server.config.dir"/> </authentication>
<authorization> <properties path="cluster-roles.properties" relative-to="jboss.server.config.dir"/>
</authorization> </security-realm> … </security-realms> </management>

<stack name="udp"> … <sasl mech="DIGEST-MD5" security-realm="ClusterRealm" cluster-
role="cluster"> <property name="client_name">node1</property> <property
name="client_password">password</property> </sasl> … </stack>

In the above example the nodes will use the +DIGEST-MD5+ mech to authenticate against
the +ClusterRealm+. In order to join, nodes need to have the +cluster+ role. If the
+cluster-role+ attribute is not specified it defaults to the name of the {brandname}
+cache-container+, as described below.
Each node identifies itself using the +client_name+ property. If none is explicitly
specified, the hostname on which the server is running will be used. This name can
also be overridden by specifying the +jboss.node.name+ system property.
The +client_password+ property contains the password of the node. It is recommended
that this password be stored in the Vault. Refer to
link:https://community.jboss.org/wiki/AS7UtilisingMaskedPasswordsViaTheVault[AS7:
Utilising masked passwords via the vault] for instructions on how to do so.
When using the GSSAPI mech, +client_name+ will be used as the name of a Kerberos-
enabled login module defined within the security domain subsystem:

[source,xml,options="nowrap",subs=attributes+]

<security-domain name="krb-node0" cache-type="default"> <authentication> <login-module
code="Kerberos" flag="required"> <module-option name="storeKey" value="true"/> <module-option

9

name="useKeyTab" value="true"/> <module-option name="refreshKrb5Config" value="true"/>
<module-option name="principal" value="jgroups/node0/clustered@INFINISPAN.ORG"/> <module-
option name="keyTab" value="${jboss.server.config.dir}/keytabs/jgroups_node0_clustered.keytab"/>
<module-option name="doNotPrompt" value="true"/> </login-module> </authentication> </security-
domain>

== {brandname} subsystem configuration
The {brandname} subsystem configures the cache containers and caches.

The subsystem declaration is enclosed in the following XML element:

[source,xml,options="nowrap",subs=attributes+]

<subsystem xmlns="urn:infinispan:server:core:9.4" default-cache-container="clustered"> …
</subsystem>

=== Containers
The {brandname} subsystem can declare multiple containers. A container is declared as
follows:

[source,xml,options="nowrap",subs=attributes+]

<cache-container name="clustered" default-cache="default"> … </cache-container>

Note that in server mode is the lack of an implicit default cache, but the ability to
specify a named cache as the default.

If you need to declare clustered caches (distributed, replicated, invalidation), you
also need to specify the `<transport/>` element which references an existing JGroups
transport. This is not needed if you only intend to have local caches only.

[source,xml,options="nowrap",subs=attributes+]

<transport executor="infinispan-transport" lock-timeout="60000" stack="udp" cluster="my-cluster-
name"/>

=== Caches
Now you can declare your caches. Please be aware that only the caches declared in the
configuration will be available to the endpoints and that attempting to access an
undefined cache is an illegal operation. Contrast this with the default {brandname}
library behaviour where obtaining an undefined cache will implicitly create one using
the default settings. The following are example declarations for all four available
types of caches:

[source,xml,options="nowrap",subs=attributes+]

10

<local-cache name="default" start="EAGER"> … </local-cache>

<replicated-cache name="replcache" mode="SYNC" remote-timeout="30000" start="EAGER"> …
</replicated-cache>

<invalidation-cache name="invcache" mode="SYNC" remote-timeout="30000" start="EAGER"> …
</invalidation-cache>

<distributed-cache name="distcache" mode="SYNC" segments="20" owners="2" remote-
timeout="30000" start="EAGER"> … </distributed-cache>

=== Expiration
To define a default expiration for entries in a cache, add the `<expiration/>` element
as follows:

[source,xml,options="nowrap",subs=attributes+]

<expiration lifespan="2000" max-idle="1000"/>

The possible attributes for the expiration element are:

* _lifespan_ maximum lifespan of a cache entry, after which the entry is expired
cluster-wide, in milliseconds. -1 means the entries never expire.
* _max-idle_ maximum idle time a cache entry will be maintained in the cache, in
milliseconds. If the idle time is exceeded, the entry will be expired cluster-wide. -1
means the entries never expire.
* _interval_ interval (in milliseconds) between subsequent runs to purge expired
entries from memory and any cache stores. If you wish to disable the periodic eviction
process altogether, set interval to -1.

=== Eviction
To define eviction for a cache, add the `<memory/>` element as follows:

[source,xml,options="nowrap",subs=attributes+]

<memory> <binary size="1000" eviction="COUNT"/> </memory>

11

The possible attributes for the eviction element are:

* _strategy_ sets the cache eviction strategy. Available options are 'UNORDERED',
'FIFO', 'LRU', 'LIRS' and 'NONE' (to disable eviction).
* _max-entries_ maximum number of entries in a cache instance. If selected value is
not a power of two the actual value will default to the least power of two larger than
selected value. -1 means no limit.

=== Locking
To define the locking configuration for a cache, add the `<locking/>` element as
follows:

[source,xml,options="nowrap",subs=attributes+]

<locking isolation="REPEATABLE_READ" acquire-timeout="30000" concurrency-level="1000"
striping="false"/>

12

The possible attributes for the locking element are:

* _isolation_ sets the cache locking isolation level. Can be NONE, READ_UNCOMMITTED,
READ_COMMITTED, REPEATABLE_READ, SERIALIZABLE. Defaults to REPEATABLE_READ
* _striping_ if true, a pool of shared locks is maintained for all entries that need
to be locked. Otherwise, a lock is created per entry in the cache. Lock striping helps
control memory footprint but may reduce concurrency in the system.
* _acquire-timeout_ maximum time to attempt a particular lock acquisition.
* _concurrency-level_ concurrency level for lock containers. Adjust this value
according to the number of concurrent threads interacting with {brandname}.
* _concurrent-updates_ for non-transactional caches only: if set to true(default
value) the cache keeps data consistent in the case of concurrent updates. For
clustered caches this comes at the cost of an additional RPC, so if you don't expect
your application to write data concurrently, disabling this flag increases
performance.

=== Transactional Operations with Hot Rod

Hot Rod clients can take advantage of transactional capabilities when performing cache
operations. No other protocols that {brandname} supports offer transactional
capabilities.

=== Loaders and Stores
Loaders and stores can be defined in server mode in almost the same way as in embedded
mode.

However, in server mode it is no longer necessary to define the
`<persistence>...</persistence>` tag. Instead, a store's attributes are
now defined on the store type element. For example, to configure the H2 database with
a distributed cache in domain mode
we define the "default" cache as follows in our domain.xml configuration:

[source,xml,options="nowrap",subs=attributes+]

<subsystem xmlns="urn:infinispan:server:core:9.4"> <cache-container name="clustered" default-
cache="default" statistics="true"> <transport lock-timeout="60000"/> <global-state/> <distributed-
cache name="default"> <string-keyed-jdbc-store datasource="java:jboss/datasources/ExampleDS"
fetch-state="true" shared="true"> <string-keyed-table prefix="ISPN"> <id-column name="id"
type="VARCHAR"/> <data-column name="datum" type="BINARY"/> <timestamp-column
name="version" type="BIGINT"/> </string-keyed-table> <write-behind modification-queue-
size="20"/> </string-keyed-jdbc-store> </distributed-cache> </cache-container> </subsystem>

Another important thing to note in this example, is that we use the "ExampleDS"
datasource which is defined in the datasources
subsystem in our domain.xml configuration as follows:

[source,xml,options="nowrap",subs=attributes+]

13

<subsystem xmlns="urn:jboss:domain:datasources:4.0"> <datasources> <datasource jndi-
name="java:jboss/datasources/ExampleDS" pool-name="ExampleDS" enabled="true" use-java-
context="true"> <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-
1;DB_CLOSE_ON_EXIT=FALSE</connection-url> <driver>h2</driver> <security> <user-
name>sa</user-name> <password>sa</password> </security> </datasource> </datasources>
</subsystem>

NOTE: For additional examples of store configurations, please view the configuration
templates in the default "domain.xml" file
provided with in the server distribution at `./domain/configuration/domain.xml`.

=== State Transfer
To define the state transfer configuration for a distributed or replicated cache, add
the `<state-transfer/>` element as follows:

[source,xml,options="nowrap",subs=attributes+]

<state-transfer enabled="true" timeout="240000" chunk-size="512" await-initial-transfer="true" />

The possible attributes for the state-transfer element are:

* _enabled_ if true, this will cause the cache to ask neighboring caches for state
when it starts up, so the cache starts 'warm', although it will impact startup time.
Defaults to true.
* _timeout_ the maximum amount of time (ms) to wait for state from neighboring
caches, before throwing an exception and aborting startup. Defaults to 240000 (4
minutes).
* _chunk-size_ the number of cache entries to batch in each transfer. Defaults to
512.
* _await-initial-transfer_ if true, this will cause the cache to wait for initial
state transfer to complete before responding to requests. Defaults to true.

== Endpoint subsystem configuration

The endpoint subsystem exposes a whole container (or in the case of Memcached, a
single cache) over a specific connector protocol. You can define as many connector as
you need, provided they bind on different interfaces/ports.

The subsystem declaration is enclosed in the following XML element:

[source,xml,options="nowrap",subs=attributes+]

<subsystem xmlns="urn:infinispan:server:endpoint:9.4"> … </subsystem>

14

=== Hot Rod
The following connector declaration enables a HotRod server using the _hotrod_ socket
binding (declared within a `<socket-binding-group />` element) and exposing the caches
declared in the _local_ container, using defaults for all other settings.

[source,xml,options="nowrap",subs=attributes+]

<hotrod-connector socket-binding="hotrod" cache-container="local" />

The connector will create a supporting topology cache with default settings. If you
wish to tune these settings add the `<topology-state-transfer />` child element to the
connector as follows:

[source,xml,options="nowrap",subs=attributes+]

<hotrod-connector socket-binding="hotrod" cache-container="local"> <topology-state-transfer lazy-
retrieval="false" lock-timeout="1000" replication-timeout="5000" /> </hotrod-connector>

The Hot Rod connector can be further tuned with additional settings such as
concurrency and buffering. See the protocol connector settings paragraph for
additional details

Furthermore the HotRod connector can be secured using SSL. First you need to declare
an SSL server identity within a security realm in the management section of the
configuration file. The SSL server identity should specify the path to a keystore and
its secret. Refer to the AS link:{wildflydocroot}/Security%20Realms[documentation] on
this. Next add the `<security />` element to the HotRod connector as follows:

[source,xml,options="nowrap",subs=attributes+]

<hotrod-connector socket-binding="hotrod" cache-container="local"> <security ssl="true" security-
realm="ApplicationRealm" require-ssl-client-auth="false" /> </hotrod-connector>

=== Memcached
The following connector declaration enables a Memcached server using the _memcached_
socket binding (declared within a `<socket-binding-group />` element) and exposing the
memcachedCache cache declared in the _local_ container, using defaults for all other
settings. Because of limitations in the Memcached protocol, only one cache can be
exposed by a connector. If you wish to expose more than one cache, declare additional
memcached-connectors on different socket-bindings.

[source,xml,options="nowrap",subs=attributes+]

<memcached-connector socket-binding="memcached" cache-container="local"/>

15

=== WebSocket

[source,xml,options="nowrap",subs=attributes+]

<websocket-connector socket-binding="websocket" cache-container="local"/>

=== REST

[source,xml,options="nowrap",subs=attributes+]

<rest-connector socket-binding="rest" cache-container="local" security-domain="other" auth-
method="BASIC"/>

16

=== Common Protocol Connector Settings

The HotRod, Memcached and WebSocket protocol connectors support a number of tuning
attributes in their declaration:

* _worker-threads_ Sets the number of worker threads. Defaults to 160.
* _idle-timeout_ Specifies the maximum time in seconds that connections from client
will be kept open without activity. Defaults to -1 (connections will never timeout)
* _tcp-nodelay_ Affects TCP NODELAY on the TCP stack. Defaults to enabled.
* _send-buffer-size_ Sets the size of the send buffer.
* _receive-buffer-size_ Sets the size of the receive buffer.

[[protocol_interoperability]]
=== Protocol Interoperability
Clients exchange data with {brandname} through endpoints such as REST or Hot Rod.

Each endpoint uses a different protocol so that clients can read and write data in a
suitable format. Because {brandname} can interoperate with multiple clients at the
same time, it must convert data between client formats and the storage formats.

=== Custom Marshaller Bridges
{brandname} provides two marshalling bridges for marshalling client/server requests
using the Kryo and Protostuff libraries.
To utilise either of these marshallers, you simply place the dependency of the
marshaller you require in your client
pom. Custom schemas for object marshalling must then be registered with the selected
library using the library's api on
the client or by implementing a RegistryService for the given marshaller bridge.
Examples of how to achieve this for both
libraries are presented below:

==== Protostuff

Add the protostuff marshaller dependency to your pom:

[source,xml,options="nowrap",subs=attributes+]

<dependency> <groupId>org.infinispan</groupId> <artifactId>infinispan-marshaller-
protostuff</artifactId> <!-- Replace ${version.infinispan} with the version of {brandname} that
you’re using. -→ <version>${version.infinispan}</version> </dependency>

To register custom Protostuff schemas in your own code, you must register the custom
schema with Protostuff before any
marshalling begins. This can be achieved by simply calling:

[source,java]

RuntimeSchema.register(ExampleObject.class, new ExampleObjectSchema());

17

Or, you can implement a service provider for the `SchemaRegistryService.java`
interface, placing all Schema registrations
in the `register()` method. Implementations of this interface are loaded via Java's
ServiceLoader api, therefore the full path
of the implementing class(es) should be provided in a `META-
INF/services/org/infinispan/marshaller/protostuff/SchemaRegistryService`
file within your deployment jar.

==== Kryo

Add the kryo marshaller dependency to your pom:

[source,xml,options="nowrap",subs=attributes+]

<dependency> <groupId>org.infinispan</groupId> <artifactId>infinispan-marshaller-
kryo</artifactId> <!-- Replace ${version.infinispan} with the version of {brandname} that you’re
using. -→ <version>${version.infinispan}</version> </dependency>

To register custom Kryo serializer in your own code, you must register the custom
serializer with Kryo before any
marshalling begins. This can be achieved by implementing a service provider for the
`SerializerRegistryService.java` interface, placing all serializer registrations
in the `register(Kryo)` method; where serializers should be registered with the
supplied `Kryo` object using the Kryo api.
e.g. `kryo.register(ExampleObject.class, new ExampleObjectSerializer())`.
Implementations of this interface are loaded
via Java's ServiceLoader api, therefore the full path of the implementing class(es)
should be provided in a
`META-INF/services/org/infinispan/marshaller/kryo/SerializerRegistryService` file
within your deployment jar.

==== Storing deserialized objects
When using the Protostuff/Kryo bridges in caches configured with _application/x-java-
object_ as MediaType (storing POJOs instead of binary content) it is necessary for the
class files of all custom objects to
be placed on the classpath of the server. To achieve this, you should place a jar
containing all of their custom classes on the server's classpath.

When utilising a custom marshaller, it is also necessary for the marshaller and it's
runtime dependencies
to be on the server's classpath. To aid with this step we have created a "bundle" jar
for each of the bridge implementations
which includes all of the runtime class files required by the bridge and underlying
library. Therefore, it is only
necessary to include this single jar on the server's classpath.

Bundle jar downloads:

- link:http://central.maven.org/maven2/org/infinispan/infinispan-marshaller-kryo-

18

bundle/{infinispanversion}/infinispan-marshaller-kryo-bundle-
{infinispanversion}.jar[Kryo Bundle]
- link:http://central.maven.org/maven2/org/infinispan/infinispan-marshaller-
protostuff-bundle/{infinispanversion}/infinispan-marshaller-protostuff-bundle-
{infinispanversion}.jar[Protostuff Bundle]

NOTE: Jar files containing custom classes must be placed in the same module/directory
as the custom marshaller bundle so
that the marshaller can load them. i.e. if you register the marshaller bundle in
`modules/system/layers/base/org/infinispan/main/modules.xml`,
then you must also register your custom classes here.

===== Registering Custom Schemas/Serializers
Custom serializers/schemas for the Kryo/Protostuff marshallers must be
registered via their respective service interfaces in order to store deserialized
objects.
To achieve this, it is necessary for a *JAR* that contains the service provider to
be registered in the same directory or module as the marshaller bundle and
custom classes.

[NOTE]
====
It is not necessary for the service provider implementation to be provided in
the same *JAR* as the user's custom classes. However, the *JAR* that contains
the provider must be in the same directory/module as the marshaller and custom
class *JAR* files.
====

//-

:leveloffset!:

:leveloffset: +1

[[rolling_upgrades]]
= Performing Rolling Upgrades

Upgrade {brandname} without downtime or data loss. You can perform rolling upgrades in
Remote Client/Server Mode to start using a more recent version of {brandname}.

[NOTE]
====
This section explains how to upgrade {brandname} servers, see the appropriate
documentation for your Hot Rod client for upgrade procedures.
====

From a high-level, you do the following to perform rolling upgrades:

. Set up a target cluster. The target cluster is the {brandname} version to which you
want to migrate data. The source cluster is the {brandname} deployment that is
currently in use. After the target cluster is running, you configure all clients to

19

point to it instead of the source cluster.
. Synchronize data from the source cluster to the target cluster.

== Setting Up a Target Cluster

. Start the target cluster with unique network properties or a different JGroups
cluster name to keep it separate from the source cluster.
. Configure a `RemoteCacheStore` on the target cluster for each cache you want to
migrate from the source cluster.
+
`RemoteCacheStore` settings::
+
* `remote-server` must point to the source cluster via the `outbound-socket-binding`
property.
* `remoteCacheName` must match the cache name on the source cluster.
* `hotrod-wrapping` must be `true` (enabled).
* `shared` must be `true` (enabled).
* `purge` must be `false` (disabled).
* `passivation` must be `false` (disabled).
* `protocol-version` matches the Hot Rod protocol version of the source cluster.
+
.Example `RemoteCacheStore` Configuration
[source,xml,options="nowrap",subs=attributes+]

<distributed-cache> <remote-store cache="MyCache" socket-timeout="60000" tcp-no-delay="true"
protocol-version="2.5" shared="true" hotrod-wrapping="true" purge="false" passivation="false">
<remote-server outbound-socket-binding="remote-store-hotrod-server"/> </remote-store>
</distributed-cache> … <socket-binding-group name="standard-sockets" default-interface="public"
port-offset="${jboss.socket.binding.port-offset:0}"> … <outbound-socket-binding name="remote-
store-hotrod-server"> <remote-destination host="198.51.100.0" port="11222"/> </outbound-socket-
binding> … </socket-binding-group>

20

+
. Configure the target cluster to handle all client requests instead of the source
cluster:
.. Configure all clients to point to the target cluster instead of the source cluster.
.. Restart each client node.
+
The target cluster lazily loads data from the source cluster on demand via
`RemoteCacheStore`.

== Synchronizing Data from the Source Cluster

. Call the `synchronizeData()` method in the `TargetMigrator` interface. Do one of the
following on the target cluster for each cache that you want to migrate:
+
JMX::
+
Invoke the `synchronizeData` operation and specify the `hotrod` parameter on the
`RollingUpgradeManager` MBean.
+
CLI::
+
[source,options=nowrap,subs=attributes+]

$ bin/ispn-cli.sh --connect controller=127.0.0.1:9990 -c "/subsystem=datagrid-infinispan/cache-
container=clustered/distributed-cache=MyCache:synchronize-data(migrator-name=hotrod)"

21

+
Data migrates to all nodes in the target cluster in parallel, with each node
receiving a subset of the data.
+
Use the following parameters to tune the operation:
+
* `read-batch` configures the number of entries to read from the source cluster at a
time. The default value is `10000`.
* `write-threads` configures the number of threads used to write data. The default
value is the number of processors available.
+
For example:
+
`synchronize-data(migrator-name=hotrod, read-batch=100000, write-threads=3)`
+
. Disable the `RemoteCacheStore` on the target cluster. Do one of the following:
+
JMX::
+
Invoke the `disconnectSource` operation and specify the `hotrod` parameter on the
`RollingUpgradeManager` MBean.
+
CLI::
+
[source,options=nowrap,subs=attributes+]

$ bin/ispn-cli.sh --connect controller=127.0.0.1:9990 -c "/subsystem=datagrid-infinispan/cache-
container=clustered/distributed-cache=MyCache:disconnect-source(migrator-name=hotrod)"

+
. Decommission the source cluster.

//-

:leveloffset: 1

//
:leveloffset: +1

[[client_server]]
= Client/Server
{brandname} offers two alternative access methods: embedded mode and client-server
mode.

* In Embedded mode the {brandname} libraries co-exist with the user application in the
same JVM as shown in the following diagram

image::{images_dir}/server_modules_1.png[align="center", title="Peer-to-peer access"]

22

* Client-server mode is when applications access the data stored in a remote
{brandname} server using some kind of network protocol

== Why Client/Server?
There are situations when accessing {brandname} in a client-server mode might make
more sense than embedding it within your application, for example, when trying to
access {brandname} from a non-JVM environment.
Since {brandname} is written in Java, if someone had a C\+\+ application that wanted
to access it, it couldn't just do it in a p2p way.
On the other hand, client-server would be perfectly suited here assuming that a
language neutral protocol was used and the corresponding client and server
implementations were available.

image::{images_dir}/server_modules_2.png[align="center", title="Non-JVM access"]

In other situations, {brandname} users want to have an elastic application tier where
you start/stop business processing servers very regularly. Now, if users deployed
{brandname} configured with distribution or state transfer, startup time could be
greatly influenced by the shuffling around of data that happens in these situations.
So in the following diagram, assuming {brandname} was deployed in p2p mode, the app in
the second server could not access {brandname} until state transfer had completed.

image::{images_dir}/server_modules_3.png[align="center", title="Elasticity issue with
P2P"]

This effectively means that bringing up new application-tier servers is impacted by
things like state transfer because applications cannot access {brandname} until these
processes have finished and if the state being shifted around is large, this could
take some time. This is undesirable in an elastic environment where you want quick
application-tier server turnaround and predictable startup times. Problems like this
can be solved by accessing {brandname} in a client-server mode because starting a new
application-tier server is just a matter of starting a lightweight client that can
connect to the backing data grid server. No need for rehashing or state transfer to
occur and as a result server startup times can be more predictable which is very
important for modern cloud-based deployments where elasticity in your application tier
is important.

image::{images_dir}/AchievingElasticity.png[align="center", title="Achieving
elasticity"]

Other times, it's common to find multiple applications needing access to data storage.
In this cases, you could in theory deploy an {brandname} instance per each of those
applications but this could be wasteful and difficult to maintain. Think about
databases here, you don't deploy a database alongside each of your applications, do
you? So, alternatively you could deploy {brandname} in client-server mode keeping a
pool of {brandname} data grid nodes acting as a shared storage tier for your
applications.

image::{images_dir}/server_modules_4.png[align="center", title="Shared data storage"]

Deploying {brandname} in this way also allows you to manage each tier independently,

23

for example, you can upgrade you application or app server without bringing down your
{brandname} data grid nodes.

== Why use embedded mode?
Before talking about individual {brandname} server modules, it's worth mentioning that
in spite of all the benefits, client-server {brandname} still has disadvantages over
p2p. Firstly, p2p deployments are simpler than client-server ones because in p2p, all
peers are equals to each other and hence this simplifies deployment. So, if this is
the first time you're using {brandname}, p2p is likely to be easier for you to get
going compared to client-server.

Client-server {brandname} requests are likely to take longer compared to p2p requests,
due to the serialization and network cost in remote calls. So, this is an important
factor to take in account when designing your application. For example, with
replicated {brandname} caches, it might be more performant to have lightweight HTTP
clients connecting to a server side application that accesses {brandname} in p2p mode,
rather than having more heavyweight client side apps talking to {brandname} in client-
server mode, particularly if data size handled is rather large. With distributed
caches, the difference might not be so big because even in p2p deployments, you're not
guaranteed to have all data available locally.

Environments where application tier elasticity is not so important, or where server
side applications access state-transfer-disabled, replicated {brandname} cache
instances are amongst scenarios where {brandname} p2p deployments can be more suited
than client-server ones.

== Server Modules
So, now that it's clear when it makes sense to deploy {brandname} in client-server
mode, what are available solutions? All {brandname} server modules are based on the
same pattern where the server backend creates an embedded {brandname} instance and if
you start multiple backends, they can form a cluster and share/distribute state if
configured to do so. The server types below primarily differ in the type of listener
endpoint used to handle incoming connections.

Here's a brief summary of the available server endpoints.

* *Hot Rod Server Module* - This module is an implementation of the Hot Rod binary
protocol backed by {brandname} which allows clients to do dynamic load balancing and
failover and smart routing.
 - A link:http://www.infinispan.org/hotrod-clients[variety of clients] exist for this
protocol.
 - If you're clients are running Java, this should be your defacto server module
choice because it allows for dynamic load balancing and failover. This means that Hot
Rod clients can dynamically detect changes in the topology of Hot Rod servers as long
as these are clustered, so when new nodes join or leave, clients update their Hot Rod
server topology view. On top of that, when Hot Rod servers are configured with
distribution, clients can detect where a particular key resides and so they can route
requests smartly.
 - Load balancing and failover is dynamically provided by Hot Rod client
implementations using information provided by the server.

24

* *REST Server Module* - The REST server, which is distributed as a WAR file, can be
deployed in any servlet container to allow {brandname} to be accessed via a RESTful
HTTP interface.
 - To connect to it, you can use any HTTP client out there and there're tons of
different client implementations available out there for pretty much any language or
system.
 - This module is particularly recommended for those environments where HTTP port is
the only access method allowed between clients and servers.
 - Clients wanting to load balance or failover between different {brandname} REST
servers can do so using any standard HTTP load balancer such as
link:http://www.jboss.org/mod_cluster[mod_cluster] . It's worth noting though these
load balancers maintain a static view of the servers in the backend and if a new one
was to be added, it would require manual update of the load balancer.

* *Memcached Server Module* - This module is an implementation of the
link:http://github.com/memcached/memcached/blob/master/doc/protocol.txt[Memcached text
protocol] backed by {brandname}.
 - To connect to it, you can use any of the
link:http://code.google.com/p/memcached/wiki/Clients[existing Memcached clients] which
are pretty diverse.
 - As opposed to Memcached servers, {brandname} based Memcached servers can actually
be clustered and hence they can replicate or distribute data using consistent hash
algorithms around the cluster. So, this module is particularly of interest to those
users that want to provide failover capabilities to the data stored in Memcached
servers.
 - In terms of load balancing and failover, there're a few clients that can load
balance or failover given a static list of server addresses (perl's Cache::Memcached
for example) but any server addition or removal would require manual intervention.

== Which protocol should I use?

Choosing the right protocol depends on a number of factors.

[cols="20,^20,^20,^20",options="header"]
|==
| | Hot Rod | HTTP / REST | Memcached
| Topology-aware | [green]*Y* | [red]*N* | [red]*N*
| Hash-aware | [green]*Y* | [red]*N* | [red]*N*
| Encryption | [green]*Y* | [green]*Y* | [red]*N*
| Authentication | [green]*Y* | [green]*Y* | [red]*N*
| Conditional ops | [green]*Y* | [green]*Y* | [green]*Y*
| Bulk ops | [green]*Y* | [red]*N* | [red]*N*
| Transactions | [red]*N* | [red]*N* | [red]*N*
| Listeners | [green]*Y* | [red]*N* | [red]*N*
| Query | [green]*Y* | [green]*Y* | [red]*N*
| Execution | [green]*Y* | [red]*N* | [red]*N*
| Cross-site failover| [green]*Y* | [red]*N* | [red]*N*
|==

:leveloffset: 1
:leveloffset: +1

25

[[hot_rod_server_usage]]
= Using Hot Rod Server
The {brandname} Server distribution contains a server module that implements
{brandname}'s custom binary protocol called Hot Rod. The protocol was designed to
enable faster client/server interactions compared to other existing text based
protocols and to allow clients to make more intelligent decisions with regards to load
balancing, failover and even data location operations.
Please refer to {brandname} Server's
link:../server_guide/server_guide.html[documentation] for instructions on how to
configure and run a HotRod server.

To connect to {brandname} over this highly efficient Hot Rod protocol you can
either use one of the clients described in this chapter, or use higher level
tools such as Hibernate OGM.

[[hotrod_java_client]]
== Java Hot Rod client

Hot Rod is a binary, language neutral protocol. This article explains how a Java
client can interact with a server via the Hot Rod protocol. A reference implementation
of the protocol written in Java can be found in all {brandname} distributions, and
this article focuses on the capabilities of this java client.

TIP: Looking for more clients? Visit link:http://infinispan.org/hotrod-clients[this
website] for clients written in a variety of different languages.

=== Configuration
The Java Hot Rod client can be configured both programmatically and externally,
through a configuration file.

The code snippet below illustrates the creation of a client instance using the
available Java fluent API:

[source,java]

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb = new
org.infinispan.client.hotrod.configuration.ConfigurationBuilder(); cb.tcpNoDelay(true)
.connectionPool() .numTestsPerEvictionRun(3) .testOnBorrow(false) .testOnReturn(false)
.testWhileIdle(true) .addServer() .host("localhost") .port(11222); RemoteCacheManager rmc = new
RemoteCacheManager(cb.build());

26

For a complete reference to the available configuration option please refer to the
link:{javadocroot}/org/infinispan/client/hotrod/configuration/ConfigurationBuilder.htm
l[ConfigurationBuilder]'s javadoc.

It is also possible to configure the Java Hot Rod client using a properties file,
e.g.:

[source]

infinispan.client.hotrod.transport_factory =
org.infinispan.client.hotrod.impl.transport.tcp.TcpTransportFactory
infinispan.client.hotrod.server_list = 127.0.0.1:11222 infinispan.client.hotrod.marshaller =
org.infinispan.jboss.marshalling.commons.GenericJBossMarshaller
infinispan.client.hotrod.async_executor_factory =
org.infinispan.client.hotrod.impl.async.DefaultAsyncExecutorFactory
infinispan.client.hotrod.default_executor_factory.pool_size = 1
infinispan.client.hotrod.default_executor_factory.queue_size = 10000
infinispan.client.hotrod.tcp_no_delay = true infinispan.client.hotrod.request_balancing_strategy =
org.infinispan.client.hotrod.impl.transport.tcp.RoundRobinBalancingStrategy
infinispan.client.hotrod.key_size_estimate = 64 infinispan.client.hotrod.value_size_estimate = 512
infinispan.client.hotrod.force_return_values = false infinispan.client.hotrod.client_intelligence =
HASH_DISTRIBUTION_AWARE infinispan.client.hotrod.batch_Size = 10000

3.2. below is connection pooling config
maxActive=-1 maxTotal = -1 maxIdle = -1 whenExhaustedAction = 1
timeBetweenEvictionRunsMillis=120000 minEvictableIdleTimeMillis=300000 testWhileIdle = true
minIdle = 1

The properties file is then passed to one of constructors of
link:{javadocroot}/org/infinispan/client/hotrod/RemoteCacheManager.html#RemoteCacheMan
ager-java.net.URL-[RemoteCacheManager].
You can use property substitution to replace values at runtime with
link:https://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html[Java
system properties]:

[source]

infinispan.client.hotrod.server_list = ${server_list}

27

In the above example the value of the _infinispan.client.hotrod.server_list_ property
will be expanded to the value of the _server_list_ Java system property.

which means that the value should be taken from a system property named
jboss.bind.address.management and if it is not defined use 127.0.0.1.

For a complete reference of the available configuration options for the properties
file please refer to
link:{javadocroot}/org/infinispan/client/hotrod/configuration/package-
summary.html#package.description[remote client configuration] javadoc.

=== Authentication

If the server has set up authentication, you need to configure your client
accordingly. Depending on the mechs enabled on the server,
the client must provide the required information.

NOTE: This section is about client configuration. If you want to set up the server to
require authentication, read the
link:../server_guide/server_guide.html#security:hotrod_auth[Hot Rod server
authentication] section.

==== DIGEST-MD5
DIGEST-MD5 is the recommended approach for simple username/password authentication
scenarios. If you are using the default
realm on the server (_"ApplicationRealm"_), all you need to do is provide your
credentials as follows:

.Hot Rod client configuration with DIGEST-MD5 authentication
[source,java]

ConfigurationBuilder clientBuilder = new ConfigurationBuilder(); clientBuilder .addServer()
.host("127.0.0.1") .port(11222) .security() .ssl() .username("myuser") .password("qwer1234!");
remoteCacheManager = new RemoteCacheManager(clientBuilder.build()); RemoteCache<String,
String> cache = remoteCacheManager.getCache("secured");

==== PLAIN
The PLAIN mechanism is not really recommended unless the connection is also encrypted,
as anyone can sniff the clear-text
password being sent along the wire.

.Hot Rod client configuration with DIGEST-MD5 authentication
[source,java]

ConfigurationBuilder clientBuilder = new ConfigurationBuilder(); clientBuilder .addServer()
.host("127.0.0.1") .port(11222) .security() .authentication() .saslMechanism("PLAIN")
.username("myuser") .password("qwer1234!"); remoteCacheManager = new
RemoteCacheManager(clientBuilder.build()); RemoteCache<String, String> cache =

28

remoteCacheManager.getCache("secured");

==== EXTERNAL
The EXTERNAL mechanism is special in that it doesn't explicitly provide credentials
but uses the client certificate as
identity. In order for this to work, in addition to the _TrustStore_ (to validate the
server certificate) you need to
provide a _KeyStore_ (to supply the client certificate).

.Hot Rod client configuration with EXTERNAL authentication (client cert)
[source,java]

ConfigurationBuilder clientBuilder = new ConfigurationBuilder(); clientBuilder .addServer()
.host("127.0.0.1") .port(11222) .security() .ssl() // TrustStore is a KeyStore which contains part of the
server certificate chain (e.g. the CA Root public cert) .trustStoreFileName("/path/to/truststore")
.trustStorePassword("truststorepassword".toCharArray()) // KeyStore containing this client’s own
certificate .keyStoreFileName("/path/to/keystore")
.keyStorePassword("keystorepassword".toCharArray()) .authentication()
.saslMechanism("EXTERNAL"); remoteCacheManager = new
RemoteCacheManager(clientBuilder.build()); RemoteCache<String, String> cache =
remoteCacheManager.getCache("secured");

For more details, read the link:#hr_encryption[Encryption] section below.

==== GSSAPI (Kerberos)

GSSAPI/Kerberos requires a much more complex setup, but it is used heavily in
enterprises with centralized authentication
servers. To successfully authenticate with Kerberos, you need to create a
LoginContext. This will obtain
a Ticket Granting Ticket (TGT) which will be used as a token to authenticate with the
service.

You will need to define a login module in a login configuration file:

.gss.conf
[source]

GssExample { com.sun.security.auth.module.Krb5LoginModule required client=TRUE; };

If you are using the IBM JDK, the above becomes:

.gss-ibm.conf
[source]

GssExample { com.ibm.security.auth.module.Krb5LoginModule required client=TRUE; };

29

You will also need to set the following system properties:

+java.security.auth.login.config=gss.conf+

+java.security.krb5.conf=/etc/krb5.conf+

The +krb5.conf+ file is dependent on your environment and needs to point to your KDC.
Ensure that you can authenticate
via Kerberos using _kinit_.

Next up, configure your client as follows:

.Hot Rod client GSSAPI configuration
[source,java]

LoginContext lc = new LoginContext("GssExample", new BasicCallbackHandler("krb_user",
"krb_password".toCharArray())); lc.login(); Subject clientSubject = lc.getSubject();

ConfigurationBuilder clientBuilder = new ConfigurationBuilder(); clientBuilder .addServer()
.host("127.0.0.1") .port(11222) .security() .authentication() .enable() .serverName("infinispan-
server") .saslMechanism("GSSAPI") .clientSubject(clientSubject) .callbackHandler(new
BasicCallbackHandler()); remoteCacheManager = new RemoteCacheManager(clientBuilder.build());
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

For brevity we used the same callback handler both for obtaining the client subject
and for handling authentication in the SASL GSSAPI mech, however different callbacks
will actually be invoked: NameCallback and PasswordCallback are needed to construct
the client subject, while the AuthorizeCallback will be called during the SASL
authentication.

==== Custom CallbackHandlers

In all of the above examples, the Hot Rod client is setting up a default
CallbackHandler for you that supplies the
provided credentials to the SASL mechanism. For advanced scenarios it may be necessary
to provide your own custom
CallbackHandler:

.Hot Rod client configuration with authentication via callback
[source,java]

public class MyCallbackHandler implements CallbackHandler { final private String username; final
private char[] password; final private String realm;

30

public MyCallbackHandler(String username, String realm, char[] password) {
 this.username = username;
 this.password = password;
 this.realm = realm;
}

 @Override
 public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {
 for (Callback callback : callbacks) {
 if (callback instanceof NameCallback) {
 NameCallback nameCallback = (NameCallback) callback;
 nameCallback.setName(username);
 } else if (callback instanceof PasswordCallback) {
 PasswordCallback passwordCallback = (PasswordCallback) callback;
 passwordCallback.setPassword(password);
 } else if (callback instanceof AuthorizeCallback) {
 AuthorizeCallback authorizeCallback = (AuthorizeCallback) callback;

authorizeCallback.setAuthorized(authorizeCallback.getAuthenticationID().equals(
 authorizeCallback.getAuthorizationID()));
 } else if (callback instanceof RealmCallback) {
 RealmCallback realmCallback = (RealmCallback) callback;
 realmCallback.setText(realm);
 } else {
 throw new UnsupportedCallbackException(callback);
 }
 }
 }
}

ConfigurationBuilder clientBuilder = new ConfigurationBuilder(); clientBuilder .addServer()
.host("127.0.0.1") .port(11222) .security() .authentication() .enable() .serverName("myhotrodserver")
.saslMechanism("DIGEST-MD5") .callbackHandler(new MyCallbackHandler("myuser",
"ApplicationRealm", "qwer1234!".toCharArray())); remoteCacheManager = new
RemoteCacheManager(clientBuilder.build()); RemoteCache<String, String> cache =
remoteCacheManager.getCache("secured");

31

The actual type of callbacks that your CallbackHandler will need to be able to handle
are mech-specific, so the above is just a simple example.

[[hr_encryption]]
=== Encryption

NOTE: This section is about client configuration. If you want to set up the server to
require encryption, read the
link:../server_guide/server_guide.html#security:hotrod_rest_encryption[Hot Rod server
encryption] section.

Encryption uses TLS/SSL, so it requires setting up an appropriate server certificate
chain. Generally, a certificate chain looks like the following:

image::{images_dir}/cert_chain.png[align="center", title="Certificate chain"]

In the above example there is one certificate authority _"CA"_ which has issued a
certificate for _"HotRodServer"_.
In order for a client to trust the server, it needs at least a portion of the above
chain (usually, just the public certificate for _"CA"_).
This certificate needs to placed in a keystore and used as a _TrustStore_ on the
client and used as shown below:

.Hot Rod client configuration with TLS (server cert)
[source,java]

ConfigurationBuilder clientBuilder = new ConfigurationBuilder(); clientBuilder .addServer()
.host("127.0.0.1") .port(11222) .security() .ssl() // TrustStore is a KeyStore which contains part of the
server certificate chain (e.g. the CA Root public cert) .trustStoreFileName("/path/to/truststore")
.trustStorePassword("truststorepassword".toCharArray()); RemoteCache<String, String> cache =
remoteCacheManager.getCache("secured");

==== SNI
The server may have been configured with TLS/SNI support
(link:https://en.wikipedia.org/wiki/Server_Name_Indication[Server Name Indication]).
This means that the server is presenting multiple identities (probably bound to
separate cache containers). The client
can specify which identity to connect to by specifying its name:

.Hot Rod client configuration with SNI (server cert)
[source,java]

ConfigurationBuilder clientBuilder = new ConfigurationBuilder(); clientBuilder .addServer()
.host("127.0.0.1") .port(11222) .security() .ssl() .sniHostName("myservername") // TrustStore is a
KeyStore which contains part of the server certificate chain (e.g. the CA Root public cert)
.trustStoreFileName("/path/to/truststore") .trustStorePassword("truststorepassword".toCharArray());
RemoteCache<String, String> cache = remoteCacheManager.getCache("secured");

32

==== Client certificates
With the above configurations the client trusts the server. For increased security, a
server administrator may have
set up the server to require the client to offer a valid certificate for mutual trust.
This kind of configuration
requires the client to present its own certificate, usually issued by the same
certificate authority as the server.
This certificate must be stored in a keystore and used as follows:

.Hot Rod client configuration with TLS (server and client cert)
[source,java]

ConfigurationBuilder clientBuilder = new ConfigurationBuilder(); clientBuilder .addServer()
.host("127.0.0.1") .port(11222) .security() .ssl() // TrustStore is a KeyStore which contains part of the
server certificate chain (e.g. the CA Root public cert) .trustStoreFileName("/path/to/truststore")
.trustStorePassword("truststorepassword".toCharArray()) // KeyStore containing this client’s own
certificate .keyStoreFileName("/path/to/keystore")
.keyStorePassword("keystorepassword".toCharArray()) RemoteCache<String, String> cache =
remoteCacheManager.getCache("secured");

Please read the link:{jdkroot}/technotes/tools/unix/keytool.html[KeyTool]
documentation for more details on KeyStores.
Additionally, the link:http://keystore-explorer.org/[KeyStore Explorer] is a great GUI
tool for easily managing KeyStores.

[[hr_basic_api]]
=== Basic API
Below is a sample code snippet on how the client API can be used to store or retrieve
information from a Hot Rod server using the Java Hot Rod client. It assumes that a Hot
Rod server has been started bound to the default location (localhost:11222)

[source,java]

CacheContainer cacheContainer = new RemoteCacheManager();

Cache<String, String> cache = cacheContainer.getCache();

cache.put("car", "ferrari"); assert cache.get("car").equals("ferrari");

cache.remove("car"); assert !cache.containsKey("car") : "Value must have been removed!";

33

The client API maps the local API:
link:{javadocroot}/org/infinispan/client/hotrod/RemoteCacheManager.html[RemoteCacheMan
ager] corresponds to
link:{javadocroot}/org/infinispan/manager/DefaultCacheManager.html[DefaultCacheManager
] (both implement
link:{javadocroot}/org/infinispan/manager/CacheContainer.html[CacheContainer]). This
common API facilitates an easy migration from local calls to remote calls through Hot
Rod: all one needs to do is switch between
link:{javadocroot}/org/infinispan/manager/DefaultCacheManager.html[DefaultCacheManager
] and
link:{javadocroot}/org/infinispan/client/hotrod/RemoteCacheManager.html[RemoteCacheMan
ager] - which is further simplified by the common
link:{javadocroot}/org/infinispan/manager/CacheContainer.html[CacheContainer]
interface that both inherit.

=== RemoteCache(.keySet|.entrySet|.values)

The collection methods `keySet`, `entrySet` and `values` are backed by the remote
cache.
That is that every method is called back into the `RemoteCache`. This is useful as
it allows for the various keys, entries or values to be retrieved lazily, and not
requiring them all be stored in the client memory at once if the user does not want.
These collections adhere to the `Map` specification being that `add` and `addAll`
are not supported but all other methods are supported.

One thing to note is the `Iterator.remove` and `Set.remove` or `Collection.remove`
methods require more than 1 round trip to the server to operate. You can check
out the link:{javadocroot}/org/infinispan/client/hotrod/RemoteCache.html[RemoteCache]
Javadoc to see more details about these and the other methods.

Iterator Usage

The iterator method of these collections uses `retrieveEntries` internally, which
is described below. If you notice `retrieveEntries` takes an argument for the batch
size. There is no way to provide this to the iterator. As such the batch size can be
configured via system property `infinispan.client.hotrod.batch_size` or through
the
link:{javadocroot}/org/infinispan/client/hotrod/configuraion/ConfigurationBuilder.html
#batchSize-int-[ConfigurationBuilder]
when configuring the `RemoteCacheManager`.

Also the `retrieveEntries` iterator returned is `Closeable` as such the iterators
from `keySet`, `entrySet` and `values` return an `AutoCloseable` variant. Therefore
you should always close these `Iterator`s when you are done with them.

[source,java]

try (CloseableIterator<Entry<K, V>> iterator = remoteCache.entrySet().iterator) { … }

34

What if I want a deep copy and not a backing collection?

Previous version of `RemoteCache` allowed for the retrieval of a deep copy
of the `keySet`. This is still possible with the new backing map, you just
have to copy the contents yourself. Also you can do this with `entrySet` and
`values`, which we didn't support before.

[source,java]

Set<K> keysCopy = remoteCache.keySet().stream().collect(Collectors.toSet());

Please use extreme cautiong with this as a large number of keys can and will cause
OutOfMemoryError in the client.

[source,java]

Set keys = remoteCache.keySet();

=== Remote Iterator

Alternatively, if memory is a concern (different batch size) or you wish to do server
side
filtering or conversion), use the remote iterator api to retrieve entries from the
server.
With this method you can limit the entries that are retrieved or even returned a
converted
value if you dont' need all properties of your entry.

[source,java]

int batchSize = 1000; try (CloseableIterator<Entry<Object, Object>> iterator =
remoteCache.retrieveEntries(null, batchSize)) { while(iterator.hasNext()) { // Do something } }

Set<Integer> segments = … try (CloseableIterator<Entry<Object, Object>> iterator =
remoteCache.retrieveEntries(null, segments, batchSize)) { while(iterator.hasNext()) { // Do
something } }

try (CloseableIterator<Entry<Object, Object>> iterator =
remoteCache.retrieveEntries("myFilterConverterFactory", segments, batchSize)) {
while(iterator.hasNext()) { // Do something } }

35

In order to use custom filters, it's necessary to deploy them first in the server.
Follow the steps:

* Create a factory for the filter extending
link:{javadocroot}/org/infinispan/filter/KeyValueFilterConverterFactory.html[KeyValueF
ilterConverterFactory], annotated with @NamedFactory containing the name of the
factory, example:

[source,java]

import java.io.Serializable;

import org.infinispan.filter.AbstractKeyValueFilterConverter; import
org.infinispan.filter.KeyValueFilterConverter; import
org.infinispan.filter.KeyValueFilterConverterFactory; import org.infinispan.filter.NamedFactory;
import org.infinispan.metadata.Metadata;

@NamedFactory(name = "myFilterConverterFactory") public class
MyKeyValueFilterConverterFactory implements KeyValueFilterConverterFactory {

@Override
public KeyValueFilterConverter<String, SampleEntity1, SampleEntity2>
getFilterConverter() {
 return new MyKeyValueFilterConverter();
}
// Filter implementation. Should be serializable or externalizable for DIST caches
static class MyKeyValueFilterConverter extends AbstractKeyValueFilterConverter<String,
SampleEntity1, SampleEntity2> implements Serializable {
 @Override
 public SampleEntity2 filterAndConvert(String key, SampleEntity1 entity, Metadata
metadata) {
 // returning null will case the entry to be filtered out
 // return SampleEntity2 will convert from the cache type SampleEntity1
 }

 @Override
 public MediaType format() {
 // returns the MediaType that data should be presented to this converter.
 // When ommitted, the server will use "application/x-java-object".
 // Returning null will cause the filter/converter to be done in the storage
format.
 }
 }
}

36

* Create a jar with a `META-
INF/services/org.infinispan.filter.KeyValueFilterConverterFactory` file and within it,
write the fully qualified class name of the filter factory class implementation.
* Optional: If the filter uses custom key/value classes, these must be included in the
JAR so that the filter can correctly unmarshall key and/or value instances.
* Deploy the JAR file in the {brandname} Server.

[[hr_versioned_api]]
=== Versioned API
A RemoteCacheManager provides instances of
link:{javadocroot}/org/infinispan/client/hotrod/RemoteCache.html[RemoteCache]
interface that represents a handle to the named or default cache on the remote
cluster.
API wise, it extends the link:{javadocroot}/org/infinispan/Cache.html[Cache] interface
to which it also adds some new methods, including the so called versioned API.
Please find below some examples of this API link:#server_hotrod_failover[but to
understand the motivation behind it, make sure you read this section.

The code snippet bellow depicts the usage of these versioned methods:

[source,java]

RemoteCacheManager remoteCacheManager = new RemoteCacheManager(); RemoteCache<String,
String> cache = remoteCacheManager.getCache();

remoteCache.put("car", "ferrari"); RemoteCache.VersionedValue valueBinary =
remoteCache.getVersioned("car");

assert remoteCache.remove("car", valueBinary.getVersion()); assert !cache.containsKey("car");

In a similar way, for replace:

[source,java]

remoteCache.put("car", "ferrari"); RemoteCache.VersionedValue valueBinary =
remoteCache.getVersioned("car"); assert remoteCache.replace("car", "lamborghini",
valueBinary.getVersion());

37

For more details on versioned operations refer to
link:{javadocroot}/org/infinispan/client/hotrod/RemoteCache.html[RemoteCache] 's
javadoc.

=== Streaming API

When sending / receiving large objects, it might make sense to stream them between the
client and the server. The
Streaming API implements methods similar to the link:#hr_basic_api[Hot Rod Basic API]
and link:#hr_versioned_api[Hot Rod Versioned API] described above but, instead of
taking the value as a parameter,
they return instances of InputStream and OutputStream. The following example shows how
one would write a potentially large
object:

[source,java]

RemoteStreamingCache<String> streamingCache = remoteCache.streaming(); OutputStream os =
streamingCache.put("a_large_object"); os.write(…); os.close();

Reading such an object through streaming:

[source,java]

RemoteStreamingCache<String> streamingCache = remoteCache.streaming(); InputStream is =
streamingCache.get("a_large_object"); for(int b = is.read(); b >= 0; b = is.read()) { … } is.close();

NOTE: The streaming API does *not* apply marshalling/unmarshalling to the values. For
this reason you cannot access
the same entries using both the streaming and non-streaming API at the same time,
unless you provide your own
marshaller to detect this situation.

The InputStream returned by the `RemoteStreamingCache.get(K key)` method implements
the `VersionedMetadata` interface, so
you can retrieve version and expiration information:

[source,java]

RemoteStreamingCache<String> streamingCache = remoteCache.streaming(); InputStream is =
streamingCache.get("a_large_object"); int version = VersionedMetadata) is).getVersion(); for(int b =
is.read(); b >= 0; b = is.read({ … } is.close();

38

NOTE: Conditional write methods (`putIfAbsent`, `replace`) only perform the actual
condition check once the value has
been completely sent to the server (i.e. when the `close()` method has been invoked on
the `OutputStream`.

=== Creating Event Listeners

Java Hot Rod clients can register listeners to receive cache-entry level events.
Cache entry created, modified and removed events are supported.

Creating a client listener is very similar to embedded listeners, except that
different annotations and event classes are used. Here's an example of a
client listener that prints out each event received:

[source,java]

import org.infinispan.client.hotrod.annotation.; import org.infinispan.client.hotrod.event.;

@ClientListener public class EventPrintListener {

@ClientCacheEntryCreated
public void handleCreatedEvent(ClientCacheEntryCreatedEvent e) {
 System.out.println(e);
}

@ClientCacheEntryModified
public void handleModifiedEvent(ClientCacheEntryModifiedEvent e) {
 System.out.println(e);
}

@ClientCacheEntryRemoved
public void handleRemovedEvent(ClientCacheEntryRemovedEvent e) {
 System.out.println(e);
}

}

39

`ClientCacheEntryCreatedEvent` and `ClientCacheEntryModifiedEvent` instances
provide information on the affected key, and the version of the entry. This
version can be used to invoke conditional operations on the server, such as
`replaceWithVersion` or `removeWithVersion`.

`ClientCacheEntryRemovedEvent` events are only sent when the remove operation
succeeds. In other words, if a remove operation is invoked but no entry is
found or no entry should be removed, no event is generated. Users interested
in removed events, even when no entry was removed, can develop event
customization logic to generate such events. More information can be found
in the link:#customizing_events[customizing client events section].

All `ClientCacheEntryCreatedEvent`, `ClientCacheEntryModifiedEvent` and
`ClientCacheEntryRemovedEvent` event instances also provide a `boolean
isCommandRetried()`
method that will return true if the write command that caused this had to be retried
again due to a topology change. This could be a sign that this event
has been duplicated or another event was dropped and replaced
(eg: ClientCacheEntryModifiedEvent replaced ClientCacheEntryCreatedEvent).

Once the client listener implementation has been created, it needs to be
registered with the server. To do so, execute:

[source,java]

RemoteCache<?, ?> cache = … cache.addClientListener(new EventPrintListener());

=== Removing Event Listeners

When an client event listener is not needed any more, it can be removed:

[source,java]

EventPrintListener listener = … cache.removeClientListener(listener);

=== Filtering Events

In order to avoid inundating clients with events, users can provide filtering
functionality to limit the number of events fired by the server for a
particular client listener. To enable filtering, a cache event filter factory
needs to be created that produces filter instances:

[source,java]

import org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory; import
org.infinispan.filter.NamedFactory;

40

@NamedFactory(name = "static-filter") class StaticCacheEventFilterFactory implements
CacheEventFilterFactory { @Override public CacheEventFilterFactory<Integer, String>
getFilter(Object[] params) { return new StaticCacheEventFilter(); } }

class StaticCacheEventFilter implements CacheEventFilter<Integer, String>, Serializable {
@Override public boolean accept(Integer key, String oldValue, Metadata oldMetadata, String
newValue, Metadata newMetadata, EventType eventType) { if (key.equals(1)) // static key return
true;

 return false;
 }
}

The cache event filter factory instance defined above creates filter instances
which statically filter out all entries except the one whose key is `1`.

To be able to register a listener with this cache event filter factory,
the factory has to be given a unique name, and the Hot Rod server needs to be
plugged with the name and the cache event filter factory instance. Plugging the
{brandname} Server with a custom filter involves the following steps:

1. Create a JAR file with the filter implementation within it.
2. Optional: If the cache uses custom key/value classes, these must be
included in the JAR so that the callbacks can be executed with the correctly
unmarshalled key and/or value instances. If the client listener has `useRawData`
enabled, this is not necessary since the callback key/value instances will be
provided in binary format.
3. Create a `META-
INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory
` file
within the JAR file and within it, write the fully qualified class name of the
filter class implementation.
4. Deploy the JAR file in the {brandname} Server.

On top of that, the client listener needs to be linked with this cache event
filter factory by adding the factory's name to the @ClientListener annotation:

[source,java]

@ClientListener(filterFactoryName = "static-filter") public class EventPrintListener { … }

And, register the listener with the server:

[source,java]

RemoteCache<?, ?> cache = … cache.addClientListener(new EventPrintListener());

41

Dynamic filter instances that filter based on parameters provided when the
listener is registered are also possible. Filters use the parameters received
by the filter factories to enable this option. For example:

[source,java]

import org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory; import
org.infinispan.notifications.cachelistener.filter.CacheEventFilter;

class DynamicCacheEventFilterFactory implements CacheEventFilterFactory { @Override public
CacheEventFilter<Integer, String> getFilter(Object[] params) { return new
DynamicCacheEventFilter(params); } }

class DynamicCacheEventFilter implements CacheEventFilter<Integer, String>, Serializable { final
Object[] params;

DynamicCacheEventFilter(Object[] params) {
 this.params = params;
}

@Override
public boolean accept(Integer key, String oldValue, Metadata oldMetadata,
 String newValue, Metadata newMetadata, EventType eventType) {
 if (key.equals(params[0])) // dynamic key
 return true;

 return false;
 }
}

The dynamic parameters required to do the filtering are provided when the
listener is registered:

[source,java]

RemoteCache<?, ?> cache = … cache.addClientListener(new EventPrintListener(), new Object[]{1},
null);

42

WARNING: Filter instances have to marshallable when they are deployed in a
cluster so that the filtering can happen right where the event is generated,
even if the even is generated in a different node to where the listener is
registered. To make them marshallable, either make them extend `Serializable`,
`Externalizable`, or provide a custom `Externalizer` for them.

[[skipping_notifications]]
==== Skipping Notifications

Include the `SKIP_LISTENER_NOTIFICATION` flag when calling remote API methods to
perform operations without getting event notifications from the server.
For example, to prevent listener notifications when creating or modifying values,
set the flag as follows:

[source,java]

remoteCache.withFlags(Flag.SKIP_LISTENER_NOTIFICATION).put(1, "one");

[[customizing_events]]
=== Customizing Events

The events generated by default contain just enough information to make the
event relevant but they avoid cramming too much information in order to reduce
the cost of sending them. Optionally, the information shipped in the events
can be customised in order to contain more information, such as values, or to
contain even less information. This customization is done with `CacheEventConverter`
instances generated by a `CacheEventConverterFactory`:

[source,java]

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory; import
org.infinispan.notifications.cachelistener.filter.CacheEventConverter; import
org.infinispan.filter.NamedFactory;

@NamedFactory(name = "static-converter") class StaticConverterFactory implements
CacheEventConverterFactory { final CacheEventConverter<Integer, String, CustomEvent>
staticConverter = new StaticCacheEventConverter(); public CacheEventConverter<Integer, String,
CustomEvent> getConverter(final Object[] params) { return staticConverter; } }

class StaticCacheEventConverter implements CacheEventConverter<Integer, String, CustomEvent>,
Serializable { public CustomEvent convert(Integer key, String oldValue, Metadata oldMetadata,
String newValue, Metadata newMetadata, EventType eventType) { return new CustomEvent(key,
newValue); } }

static class CustomEvent implements Serializable { final Integer key; final String value;
CustomEvent(Integer key, String value) { this.key = key; this.value = value; } }

43

In the example above, the converter generates a new custom event which
includes the value as well as the key in the event. This will result in bigger
event payloads compared with default events, but if combined with filtering,
it can reduce its network bandwidth cost.

WARNING: The target type of the converter must be either `Serializable` or
`Externalizable`. In this particular case of converters, providing an
Externalizer will not work by default since the default Hot Rod client
marshaller does not support them.

Handling custom events requires a slightly different client listener
implementation to the one demonstrated previously. To be more precise, it
needs to handle `ClientCacheEntryCustomEvent` instances:

[source,java]

import org.infinispan.client.hotrod.annotation.; import org.infinispan.client.hotrod.event.;

@ClientListener public class CustomEventPrintListener {

@ClientCacheEntryCreated
@ClientCacheEntryModified
@ClientCacheEntryRemoved
public void handleCustomEvent(ClientCacheEntryCustomEvent<CustomEvent> e) {
 System.out.println(e);
}

}

44

The `ClientCacheEntryCustomEvent` received in the callback exposes the custom
event via `getEventData` method, and the `getType` method provides information
on whether the event generated was as a result of cache entry creation,
modification or removal.

Similar to filtering, to be able to register a listener with this converter factory,
the factory has to be given a unique name, and the Hot Rod server needs to be
plugged with the name and the cache event converter factory instance. Plugging the
{brandname} Server with an event converter involves the following steps:

1. Create a JAR file with the converter implementation within it.
2. Optional: If the cache uses custom key/value classes, these must be
included in the JAR so that the callbacks can be executed with the correctly
unmarshalled key and/or value instances. If the client listener has `useRawData`
enabled, this is not necessary since the callback key/value instances will be
provided in binary format.
3. Create a `META-
INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventConverterFact
ory` file
within the JAR file and within it, write the fully qualified class name of the
converter class implementation.
4. Deploy the JAR file in the {brandname} Server.

On top of that, the client listener needs to be linked with this converter
factory by adding the factory's name to the @ClientListener annotation:

[source,java]

@ClientListener(converterFactoryName = "static-converter") public class CustomEventPrintListener
{ … }

And, register the listener with the server:

[source,java]

RemoteCache<?, ?> cache = … cache.addClientListener(new CustomEventPrintListener());

Dynamic converter instances that convert based on parameters provided when the
listener is registered are also possible. Converters use the parameters received
by the converter factories to enable this option. For example:

[source,java]

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory; import
org.infinispan.notifications.cachelistener.filter.CacheEventConverter;

@NamedFactory(name = "dynamic-converter") class DynamicCacheEventConverterFactory

45

implements CacheEventConverterFactory { public CacheEventConverter<Integer, String,
CustomEvent> getConverter(final Object[] params) { return new
DynamicCacheEventConverter(params); } }

class DynamicCacheEventConverter implements CacheEventConverter<Integer, String,
CustomEvent>, Serializable { final Object[] params;

DynamicCacheEventConverter(Object[] params) {
 this.params = params;
}

public CustomEvent convert(Integer key, String oldValue, Metadata oldMetadata,
 String newValue, Metadata newMetadata, EventType eventType) {
 // If the key matches a key given via parameter, only send the key information
 if (params[0].equals(key))
 return new CustomEvent(key, null);

 return new CustomEvent(key, newValue);
 }
}

The dynamic parameters required to do the conversion are provided when the
listener is registered:

[source,java]

RemoteCache<?, ?> cache = … cache.addClientListener(new EventPrintListener(), null, new
Object[]{1});

46

WARNING: Converter instances have to marshallable when they are deployed in a
cluster, so that the conversion can happen right where the event is generated,
even if the even is generated in a different node to where the listener is
registered. To make them marshallable, either make them extend `Serializable`,
`Externalizable`, or provide a custom `Externalizer` for them.

=== Filter and Custom Events

If you want to do both event filtering and customization, it's easier to
implement
`org.infinispan.notifications.cachelistener.filter.CacheEventFilterConverter`
which allows both filter and customization to happen in a single step.
For convenience, it's recommended to extend
`org.infinispan.notifications.cachelistener.filter.AbstractCacheEventFilterConverter`
instead of implementing
`org.infinispan.notifications.cachelistener.filter.CacheEventFilterConverter`
directly. For example:

[source,java]

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory; import
org.infinispan.notifications.cachelistener.filter.CacheEventConverter;

@NamedFactory(name = "dynamic-filter-converter") class
DynamicCacheEventFilterConverterFactory implements CacheEventFilterConverterFactory { public
CacheEventFilterConverter<Integer, String, CustomEvent> getFilterConverter(final Object[] params)
{ return new DynamicCacheEventFilterConverter(params); } }

class DynamicCacheEventFilterConverter extends AbstractCacheEventFilterConverter<Integer,
String, CustomEvent>, Serializable { final Object[] params;

DynamicCacheEventFilterConverter(Object[] params) {
 this.params = params;
}

public CustomEvent filterAndConvert(Integer key, String oldValue, Metadata
oldMetadata,
 String newValue, Metadata newMetadata, EventType eventType) {
 // If the key matches a key given via parameter, only send the key information
 if (params[0].equals(key))
 return new CustomEvent(key, null);

 return new CustomEvent(key, newValue);
 }
}

47

Similar to filters and converters, to be able to register a listener with this
combined filter/converter factory, the factory has to be given a unique name via the
`@NamedFactory` annotation, and the Hot Rod server needs to be plugged with the
name and the cache event converter factory instance. Plugging the {brandname}
Server with an event converter involves the following steps:

1. Create a JAR file with the converter implementation within it.
2. Optional: If the cache uses custom key/value classes, these must be
included in the JAR so that the callbacks can be executed with the correctly
unmarshalled key and/or value instances. If the client listener has `useRawData`
enabled, this is not necessary since the callback key/value instances will be
provided in binary format.
3. Create a `META-
INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventFilterConvert
erFactory` file
within the JAR file and within it, write the fully qualified class name of the
converter class implementation.
4. Deploy the JAR file in the {brandname} Server.

From a client perspective, to be able to use the combined filter and
converter class, the client listener must define the same filter factory and
converter factory names, e.g.:

[source,java]

@ClientListener(filterFactoryName = "dynamic-filter-converter", converterFactoryName =
"dynamic-filter-converter") public class CustomEventPrintListener { … }

The dynamic parameters required in the example above are provided when the
listener is registered via either filter or converter parameters. If filter
parameters are non-empty, those are used, otherwise, the converter parameters:

[source,java]

RemoteCache<?, ?> cache = … cache.addClientListener(new CustomEventPrintListener(), new
Object[]{1}, null);

=== Event Marshalling

Hot Rod servers can store data in different formats, but in spite of that,
Java Hot Rod client users can still develop `CacheEventConverter` or
`CacheEventFilter`
instances that work on typed objects. By default, filters and converter will use data
as POJO
(application/x-java-object) but it is possible to override the desired format by
overriding the
method `format()` from the filter/converter. If the format returns `null`, the
filter/converter will receive

48

data as it's stored.

As indicated in the link:#hot_rod_marshalling_data[Marshalling Data] section, Hot Rod
Java clients can be configured to use a different
`org.infinispan.commons.marshall.Marshaller`
instance. If doing this and deploying `CacheEventConverter` or `CacheEventFilter`
instances,
to be able to present filters/converter with Java Objects rather than marshalled
content,
the server needs to be able to convert between objects and the binary format produced
by the marshaller.

To deploy a Marshaller instance server-side, follow a similar method to the one
used to deploy `CacheEventConverter` or `CacheEventFilter` instances:

1. Create a JAR file with the converter implementation within it.
2. Create a `META-INF/services/org.infinispan.commons.marshall.Marshaller` file
within the JAR file and within it, write the fully qualified class name of the
marshaller class implementation.
3. Deploy the JAR file in the {brandname} Server.

Note that the Marshaller could be deployed in either a separate jar, or in the
same jar as the `CacheEventConverter` and/or `CacheEventFilter` instances.

[[protostream_deployment]]
==== Deploying Protostream Marshallers

If a cache stores protobuf content, as it happens when using protostream marshaller in
the Hot Rod client,
it's not necessary to deploy a custom marshaller since the format is already support
by the server: there are
transcoders from protobuf format to most common formats like JSON and POJO.

When using filters/converters with those caches, and it's desirable to use
filter/converters with Java Objects rather binary prototobuf data, it's necessary to
deploy the extra protostream marshallers so that the server can unmarshall the data
before filtering/converting. To do so, follow these steps:

1. Create a jar and include an implementation of the interface
`org.infinispan.query.remote.client.ProtostreamSerializationContextInitializer`,
adding extra marshallers and
optionally extra protobuf files to the cache manager's Serialization context.
2. Create a `META-
INF/services/org.infinispan.query.remote.client.ProtostreamSerializationContextInitial
izer` file
within the JAR file containing the fully qualified class name of the
`ProtostreamSerializationContextInitializer` class implementation.
3. Create a META-INF/MANIFEST.MF with `Dependencies: org.infinispan.protostream,
org.infinispan.remote-query.client`
4. Deploy the JAR file in the {brandname} Server in the `standalone/deployments`
folder

49

5. Configure this deployment in the desired cache manager:

[source,xml,options="nowrap",subs=attributes+]

<cache-container name="local" default-cache="default"> <modules> <module
name="deployment.my-entities.jar"/> </modules> … </cache-container>

WARNING: The deployment must be available during the server startup!

=== Listener State Handling

Client listener annotation has an optional `includeCurrentState` attribute
that specifies whether state will be sent to the client when the listener is
added or when there's a failover of the listener.

By default, `includeCurrentState` is false, but if set to true and a client
listener is added in a cache already containing data, the server iterates over
the cache contents and sends an event for each entry to the client as a
`ClientCacheEntryCreated` (or custom event if configured). This allows clients
to build some local data structures based on the existing content. Once the
content has been iterated over, events are received as normal, as cache
updates are received. If the cache is clustered, the entire cluster wide
contents are iterated over.

`includeCurrentState` also controls whether state is received when the node
where the client event listener is registered fails and it's moved to a
different node. The next section discusses this topic in depth.

=== Listener Failure Handling

When a Hot Rod client registers a client listener, it does so in a single
node in a cluster. If that node fails, the Java Hot Rod client detects that
transparently and fails over all listeners registered in the node that failed
to another node.

During this fail over the client might miss some events. To avoid missing
these events, the client listener annotation contains an optional parameter
called `includeCurrentState` which if set to true, when the failover happens,
the cache contents can iterated over and `ClientCacheEntryCreated` events
(or custom events if configured) are generated. By default,
`includeCurrentState` is set to false.

Java Hot Rod clients can be made aware of such fail over event by adding a
callback to handle it:

[source,java]

@ClientCacheFailover public void handleFailover(ClientCacheFailoverEvent e) { … }

50

This is very useful in use cases where the client has cached some data, and
as a result of the fail over, taking in account that some events could be
missed, it could decide to clear any locally cached data when the fail over
event is received, with the knowledge that after the fail over event, it will
receive events for the contents of the entire cache.

=== Near Caching

The Java Hot Rod client can be optionally configured with a near cache, which
means that the Hot Rod client can keep a local cache that stores recently used
data. Enabling near caching can significantly improve the performance of read
operations `get` and `getVersioned` since data can potentially be located
locally within the Hot Rod client instead of having to go remote.

To enable near caching, the user must set the near cache mode to `INVALIDATED`.
By doing that near cache is populated upon retrievals from the server via
calls to `get` or `getVersioned` operations. When near cached entries are
updated or removed server-side, the cached near cache entries are invalidated.
If a key is requested after it's been invalidated, it'll have to be re-fetched
from the server.

WARNING: You should not use `maxIdle` expiration with near caches, as near-cache
reads will not propagate the last access change to the server and to the other
clients.

When near cache is enabled, its size must be configured by defining
the maximum number of entries to keep in the near cache. When the maximum is
reached, near cached entries are evicted using a least-recently-used (LRU)
algorithm. If providing 0 or a negative value, it is assumed that the near
cache is unbounded.

WARNING: Users should be careful when configuring near cache to be
unbounded since it shifts the responsibility to keep the near cache's size
within the boundaries of the client JVM to the user.

The Hot Rod client's near cache mode is configured using the `NearCacheMode`
enumeration and calling:

[source,java]

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder; import
org.infinispan.client.hotrod.configuration.NearCacheMode; …

ConfigurationBuilder unbounded = new ConfigurationBuilder();
unbounded.nearCache().mode(NearCacheMode.INVALIDATED).maxEntries(-1);

ConfigurationBuilder bounded = new ConfigurationBuilder();
bounded.nearCache().mode(NearCacheMode.INVALIDATED).maxEntries(100);

51

Since the configuration is shared by all caches obtained from a single
`RemoteCacheManager`, you may not want to enable near-caching for all of them.
You can use the `cacheNamePattern` configuration attribute to define a regular
expression which matches the names of the caches for which you want near-caching.
Caches whose name don't match the regular expression, will not have near-caching
enabled.

[source,java]

ConfigurationBuilder bounded = new ConfigurationBuilder(); bounded.nearCache()
.mode(NearCacheMode.INVALIDATED) .maxEntries(100) .cacheNamePattern("near.*"); // enable
near-cache only for caches whose name starts with 'near'

NOTE: Near caches work the same way for local caches as they do for clustered
caches, but in a clustered cache scenario, if the server node sending the near
cache notifications to the Hot Rod client goes down, the Hot Rod client
transparently fails over to another node in the cluster, clearing the near
cache along the way.

=== Unsupported methods
Some of the link:{javadocroot}/org/infinispan/Cache.html[Cache] methods are not being
supported by the
link:{javadocroot}/org/infinispan/client/hotrod/RemoteCache.html[RemoteCache] .
Calling one of these methods results in an
link:{jdkdocroot}/java/lang/UnsupportedOperationException.html[UnsupportedOperationExc
eption] being thrown. Most of these methods do not make sense on the remote cache
(e.g. listener management operations), or correspond to methods that are not supported
by local cache as well (e.g. containsValue). Another set of unsupported operations are
some of the atomic operations inherited from
link:{jdkdocroot}/java/util/concurrent/ConcurrentMap.html[ConcurrentMap] :

[source,java]

boolean remove(Object key, Object value); boolean replace(Object key, Object value); boolean
replace(Object key, Object oldValue, Object value);

52

link:{javadocroot}/org/infinispan/client/hotrod/RemoteCache.html[RemoteCache] offers
alternative versioned methods for these atomic operations, that are also network
friendly, by not sending the whole value object over the network, but a version
identifier. See the section on versioned API.

Each one of these unsupported operation is documented in the
link:{javadocroot}/org/infinispan/client/hotrod/RemoteCache.html[RemoteCache] javadoc.

=== Return values
There is a set of methods that alter a cached entry and return the previous existing
value, e.g.:

[source,java]

V remove(Object key); V put(K key, V value);

By default on RemoteCache, these operations return null even if such a previous value
exists. This approach reduces the amount of data sent over the network. However, if
these return values are needed they can be enforced on a per invocation basis using
flags:

[source,java]

cache.put("aKey", "initialValue"); assert null == cache.put("aKey", "aValue"); assert
"aValue".equals(cache.withFlags(Flag.FORCE_RETURN_VALUE).put("aKey", "newValue"));

53

This default behavior can can be changed through force-return-value=true configuration
parameter (see configuration section bellow).

[[hr_transactions]]
= Hot Rod Transactions
You can configure and use Hot Rod clients in JTA {tx}s.

To participate in a transaction, the Hot Rod client requires the {tm} with which it
interacts and whether it participates in the transaction through the {sync} or {xa}
interface.

[IMPORTANT]
====
Transactions are optimistic in that clients acquire write locks on entries during the
prepare phase. To avoid data inconsistency, be sure to read about
link:#hr_transactions_force_return_value[Detecting Conflicts with Transactions].
====

[[hr_transactions_config_server]]
== Configuring the Server
Caches in the server must also be transactional for clients to participate in JTA
{tx}s.

The following server configuration is required, otherwise transactions rollback only:

* Isolation level must be `REPEATABLE_READ`.
* Locking mode must be `PESSIMISTIC`. In a future release, `OPTIMISTIC` locking mode
will be supported.
* Transaction mode should be `NON_XA` or `NON_DURABLE_XA`. Hot Rod transactions cannot
use `FULL_XA` because it degrades performance.

Hot Rod transactions have their own recovery mechanism.

[[hr_transactions_config_client]]
== Configuring Hot Rod Clients
When you create the {rcm}, you can set the default {tm} and {tx-mode} that the {rc}
uses.

The {rcm} lets you create only one configuration for transactional caches, as in the
following example:

[source,java]

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb = new
org.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.transaction().transactionManagerLookup(GenericTransactionManagerLookup.getInstance());
cb.transaction().transactionMode(TransactionMode.NON_XA); cb.transaction().timeout(1,
TimeUnit.MINUTES) RemoteCacheManager rmc = new RemoteCacheManager(cb.build());

54

The preceding configuration applies to all instances of a remote cache. If you need to
apply different configurations to remote cache instances, you can override the {rc}
configuration. See link:#hr_transactions_override_rcm[Overriding RemoteCacheManager
Configuration].

See {cb} Javadoc for documentation on configuration parameters.

You can also configure the Java Hot Rod client with a properties file, as in the
following example:

[source]

infinispan.client.hotrod.transaction.transaction_manager_lookup =
org.infinispan.client.hotrod.transaction.lookup.GenericTransactionManagerLookup
infinispan.client.hotrod.transaction.transaction_mode = NON_XA
infinispan.client.hotrod.transaction.timeout = 60000

[[hr_transactions_tmlookup]]
=== TransactionManagerLookup Interface
`TransactionManagerLookup` provides an entry point to fetch a {tm}.

Available implementations of `TransactionManagerLookup`:

{gtml}::
A lookup class that locates {tm}s running in Java EE application servers. Defaults to
the {rtm} if it cannot find a {tm}.

[TIP]
====
In most cases, {gtml} is suitable. However, you can implement the
`TransactionManagerLookup` interface if you need to integrate a custom {tm}.
====

{rtml}::
A basic, and volatile, {tm} if no other implementation is available. Note that this
implementation has significant limitations when handling concurrent transactions and
recovery.

[[hr_transactions_modes]]
=== Transaction Modes
{tx-mode} controls how a {rc} interacts with the {tm}.

[IMPORTANT]
====
Configure transaction modes on both the {brandname} server and your client
application. If clients attempt to perform transactional operations on non-
transactional caches, runtime exceptions can occur.
====

55

Transaction modes are the same in both the {brandname} configuration and client
settings. Use the following modes with your client, see the {brandname} configuration
schema for the server:

`NONE`::
The {rc} does not interact with the {tm}. This is the default mode and is non-
transactional.

`NON_XA`::
The {rc} interacts with the {tm} via {sync}.

`NON_DURABLE_XA`::
The {rc} interacts with the {tm} via {xa}. Recovery capabilities are disabled.

`FULL_XA`::
The {rc} interacts with the {tm} via {xa}. Recovery capabilities are enabled. Invoke
the `XaResource.recover()` method to retrieve transactions to recover.

[[hr_transactions_override_rcm]]
== Overriding Configuration for Cache Instances
Because {rcm} does not support different configurations for each cache instance.
However, {rcm} includes the `getCache(String)` method that returns the {rc} instances
and lets you override some configuration parameters, as follows:

`getCache(String cacheName, TransactionMode transactionMode)`::
Returns a {rc} and overrides the configured {tx-mode}.

`getCache(String cacheName, boolean forceReturnValue, TransactionMode
transactionMode)`::
Same as previous, but can also force return values for write operations.

`getCache(String cacheName, TransactionManager transactionManager)`::
Returns a {rc} and overrides the configured {tm}.

`getCache(String cacheName, boolean forceReturnValue, TransactionManager
transactionManager)`::
Same as previous, but can also force return values for write operations.

`getCache(String cacheName, TransactionMode transactionMode, TransactionManager
transactionManager)`::
Returns a {rc} and overrides the configured {tm} and {tx-mode}. Uses the configured
values, if `transactionManager` or `transactionMode` is null.

`getCache(String cacheName, boolean forceReturnValue, TransactionMode transactionMode,
TransactionManager transactionManager)`::
Same as previous, but can also force return values for write operations.

[NOTE]
====
The `getCache(String)` method returns {rc} instances regardless of whether they are
transaction or not. {rc} includes a `getTransactionManager()` method that returns the

56

{tm} that the cache uses. If the {rc} is not transactional, the method returns `null`.
====

[[hr_transactions_force_return_value]]
== Detecting Conflicts with Transactions
Transactions use the initial values of keys to detect conflicts. For example, "k" has
a value of "v" when a transaction begins. During the prepare phase, the transaction
fetches "k" from the server to read the value. If the value has changed, the
transaction rolls back to avoid a conflict.

[NOTE]
====
Transactions use versions to detect changes instead of checking value equality.
====

The `forceReturnValue` parameter controls write operations to the {rc} and helps avoid
conflicts. It has the following values:

* If `true`, the {tm} fetches the most recent value from the server before performing
write operations. However, the `forceReturnValue` parameter applies only to write
operations that access the key for the first time.
* If `false`, the {tm} does not fetch the most recent value from the server before
performing write operations. Because this setting

[NOTE]
====
This parameter does not affect _conditional_ write operations such as `replace` or
`putIfAbsent` because they require the most recent value.
====

The following transactions provide an example where the `forceReturnValue` parameter
can prevent conflicting write operations:

.Transaction 1 (TX1)
[source,java]

RemoteCache<String, String> cache = … TransactionManager tm = …

tm.begin(); cache.put("k", "v1"); tm.commit();

.Transaction 2 (TX2)
[source,java]

RemoteCache<String, String> cache = … TransactionManager tm = …

tm.begin(); cache.put("k", "v2"); tm.commit();

57

In this example, TX1 and TX2 are executed in parallel. The initial value of "k" is
"v".

* If `forceReturnValue = true`, the `cache.put()` operation fetches the value for "k"
from the server in both TX1 and TX2. The transaction that acquires the lock for "k"
first then commits. The other transaction rolls back during the commit phase because
the transaction can detect that "k" has a value other than "v".

* If `forceReturnValue = false`, the `cache.put()` operation does not fetch the value
for "k" from the server and returns null. Both TX1 and TX2 can successfully commit,
which results in a conflict. This occurs because neither transaction can detect that
the initial value of "k" changed.

The following transactions include `cache.get()` operations to read the value for "k"
before doing the `cache.put()` operations:

.Transaction 1 (TX1)
[source,java]

RemoteCache<String, String> cache = … TransactionManager tm = …

tm.begin(); cache.get("k"); cache.put("k", "v1"); tm.commit();

.Transaction 2 (TX2)
[source,java]

RemoteCache<String, String> cache = … TransactionManager tm = …

tm.begin(); cache.get("k"); cache.put("k", "v2"); tm.commit();

In the preceding examples, TX1 and TX2 both read the key so the `forceReturnValue`
parameter does not take effect. One transaction commits, the other rolls back.
However, the `cache.get()` operation requires an additional server request. If you do
not need the return value for the `cache.put()` operation that server request is
inefficient.

[[hr_transactions_ex_use_config]]
== Using the Configured Transaction Manager and Transaction Mode

The following example shows how to use the `TransactionManager` and `TransactionMode`
that you configure in the `RemoteCacheManager`:

[source,java]

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb = new
org.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.transaction().transactionManagerLookup(RemoteTransactionManagerLookup.getInstance());

58

cb.transaction().transactionMode(TransactionMode.NON_XA);

RemoteCacheManager rcm = new RemoteCacheManager(cb.build());

RemoteCache<String, String> cache = rcm.getCache("my-cache");

TransactionManager tm = cache.getTransactionManager();

tm.begin(); cache.put("k1", "v1"); System.out.println("K1 value is " + cache.get("k1")); tm.commit();

[[hr_transactions_ex_override_tm]]
== Overriding the Transaction Manager

The following example shows how to override `TransactionManager` with the `getCache`
method:

[source,java]

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb = new
org.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.transaction().transactionManagerLookup(RemoteTransactionManagerLookup.getInstance());
cb.transaction().transactionMode(TransactionMode.NON_XA);

RemoteCacheManager rcm = new RemoteCacheManager(cb.build());

TransactionManager myCustomTM = …

RemoteCache<String, String> cache = rcm.getCache("my-cache", null, myCustomTM);

myCustomTM.begin(); cache.put("k1", "v1"); System.out.println("K1 value is " + cache.get("k1"));
myCustomTM.commit();

[[hr_transactions_ex_override_mode]]
== Overriding the Transaction Mode

The following example shows how to override `TransactionMode` with the `getCache`
method:

[source,java]

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb = new
org.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.transaction().transactionManagerLookup(RemoteTransactionManagerLookup.getInstance());
cb.transaction().transactionMode(TransactionMode.NON_XA);

RemoteCacheManager rcm = new RemoteCacheManager(cb.build());

RemoteCache<String, String> cache = rcm.getCache("my-cache",
TransactionMode.NON_DURABLE_XA, null);

59

TransactionManager tm = cache.getTransactionManager();

tm.begin(); cache.put("k1", "v1"); System.out.println("K1 value is " + cache.get("k1")); tm.commit();

=== Client Intelligence
HotRod defines three level of intelligence for the clients:

. basic client, interested in neither cluster nor hash information

. topology-aware client, interested in cluster information

. hash-distribution-aware client, that is interested in both cluster and hash
information

The java client supports all 3 levels of intelligence. It is transparently notified
whenever a new server is added/removed from the HotRod cluster. At startup it only
needs to know the address of one HotRod server (ip:host). On connection to the server
the cluster topology is piggybacked to the client, and all further requests are being
dispatched to all available servers. Any further topology change is also piggybacked.

==== Distribution-aware client
Another aspect of the 3rd level of intelligence is the fact that it is hash-
distribution-aware. This means that, for each operation, the client chooses the most
appropriate remote server to go to: the data owner. As an example, for a put(k,v)
operation, the client calculates k's hash value and knows exactly on which server the
data resides on. Then it picks up a tcp connection to that particular server and
dispatches the operation to it. This means less burden on the server side which would
otherwise need to lookup the value based on the key's hash. It also results in a
quicker response from the server, as an additional network roundtrip is skipped. This
hash-distribution-aware aspect is only relevant to the distributed HotRod clusters and
makes no difference for replicated server deployments.

=== Request Balancing
Request balancing is only relevant when the server side is configured with replicated
{brandname} cluster (on distributed clusters the hash-distribution-aware client logic
is used, as discussed in the previos paragraph). Because the client is topology-aware,
it knows the list of available servers at all the time. Request balancing has to do
with how the client dispatches requests to the available servers.

The default strategy is round-robin: requests are being dispatched to all existing
servers in a circular manner. E.g. given a cluster of servers {s1, s2, s3} here is how
request will be dispatched:

[source,java]

CacheContainer cacheContainer = new RemoteCacheManager(); Cache<String, String> cache =
cacheContainer.getCache();

cache.put("key1", "aValue"); //this goes to s1 cache.put("key2", "aValue"); //this goes to s2 String value
= cache.get("key1"); //this goes to s3

cache.remove("key2"); //this is dispatched to s1 again, and so on…

60

Custom types of balancing policies can defined by implementing the
link:{javadocroot}/org/infinispan/client/hotrod/FailoverRequestBalancingStrategy.html[
FailoverRequestBalancingStrategy] and by specifying it through the
infinispan.client.hotrod.request-balancing-strategy configuration property. Please
refer to configuration section for more details on this.

=== Persistent connections
In order to avoid creating a TCP connection on each request (which is a costly
operation), the client keeps a pool of persistent connections to all the available
servers and it reuses these connections whenever it is possible. The validity of the
connections is checked using an async thread that iterates over the connections in the
pool and sends a HotRod ping command to the server. By using this connection
validation process the client is being proactive: there's a hight chance for broken
connections to be found while being idle in the pool and no on actual request from the
application.

The number of connections per server, total number of connections, how long should a
connection be kept idle in the pool before being closed - all these (and more) can be
configured. Please refer to the javadoc of
link:{javadocroot}/org/infinispan/client/hotrod/RemoteCacheManager.html[RemoteCacheMan
ager] for a list of all possible configuration elements.

[[hot_rod_marshalling_data]]
=== Marshalling data
The Hot Rod client allows one to plug in a custom marshaller for transforming user
objects into byte arrays and the other way around. This transformation is needed
because of Hot Rod's binary nature - it doesn't know about objects.

The marshaller can be plugged through the "marshaller" configuration element (see
Configuration section): the value should be the fully qualified name of a class
implementing the
link:{javadocroot}/org/infinispan/marshall/Marshaller.html[Marshaller] interface. This
is a optional parameter, if not specified it defaults to the
link:{javadocroot}/org/infinispan/marshall/jboss/GenericJBossMarshaller.html[GenericJB
ossMarshaller] - a highly optimized implementation based on the
link:http://www.jboss.org/jbossmarshalling[JBoss Marshalling] library.

Since version 6.0, there's a new marshaller available to Java Hot Rod clients based on
Protostream which generates portable payloads.

.WARNING: If developing your own custom marshaller, take care of potential injection
attacks.

To avoid such attacks, make the marshaller verify that any class names read, before
instantiating it, is amongst the expected/allowed class names.

The client configuration can be enhanced with a list of regular expressions for
classes that are allowed to be read.

.WARNING: These checks are opt-in, so if not configured, any class can be read.

61

In the example below, only classes with fully qualified names containing `Person` or
`Employee` would be allowed:

[source,java]

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;

… ConfigurationBuilder configBuilder = … configBuilder.addJavaSerialWhiteList(".Person.",
".Employee.");

=== Reading data in different data formats

By default, every Hot Rod client operation will use the configured marshaller when
reading and writing from the server for both keys and values. See
link:#hot_rod_marshalling_data[Marshalling Data].
Using the DataFormat API, it's possible to decorate remote caches so that all
operations can happen with a custom data format.

==== Using different marshallers for Key and Values

Marshallers for Keys and Values can be overridden at run time. For example, to bypass
all serialization in the Hot Rod client and read the byte[] as they are stored in the
server:

[source,java]

RemoteCache<String, Pojo> remoteCache = …

DataFormat rawKeyAndValues =
DataFormat.builder().keyMarshaller(IdentityMarshaller.INSTANCE).valueMarshaller(IdentityMarsh
aller.INSTANCE).build();

RemoteCache<byte[], byte[]> rawResultsCache = remoteCache.withDataFormat(rawKeyAndValues);

==== Reading data in different formats

Apart from defining custom key and value marshallers, it's also possible to
request/send data in different formats specified by a
`org.infinispan.commons.dataconversion.MediaType`:

[source,java]

RemoteCache<String, Pojo> protobufCache = …

DataFormat jsonString =
DataFormat.builder().valueType(MediaType.APPLICATION_JSON).valueMarshaller(new
UTF8StringMarshaller().build();

62

RemoteCache<String, String> jsonStrCache = remoteCache.withDataFormat(jsonString);

DataFormat jsonNode =
DataFormat.builder().valueType(MediaType.APPLICATION_JSON).valueMarshaller(new
CustomJacksonMarshaller().build();

RemoteCache<String, JsonNode> jsonNodeCache = remoteCache.withDataFormat(jsonNode);

IMPORTANT: The data conversions happen in the server, and if it doesn't support
converting from the storage format to the request format and vice versa, an error will
be returned.

WARNING: Using different marshallers and formats for the key, with `.keyMarshaller()`
and `.keyType()` may interfere with the client intelligence routing mechanism, causing
it
contact the server that is not the owner of the key during Hot Rod operations. This
will not result in errors but can result in extra hops inside the cluster to execute
the operation.
If performance is critical, make sure to use the keys in the format stored by the
server.

=== Statistics
Various server usage statistics can be obtained through the
link:{javadocroot}/org/infinispan/client/hotrod/RemoteCache.html[RemoteCache] .stats()
method. This returns a
link:{javadocroot}/org/infinispan/client/hotrod/ServerStatistics.html[ServerStatistics
] object - please refer to javadoc for details on the available statistics.

=== Multi-Get Operations
The Java Hot Rod client does not provide multi-get functionality out of the box but
clients can build it themselves with the given APIs.

[[server_hotrod_failover]]
=== Failover capabilities

Hot Rod clients' capabilities to keep up with topology changes helps with request
balancing and more importantly, with the ability to failover operations
if one or several of the servers fail.

Some of the conditional operations mentioned above, including `putIfAbsent`,
`replace` with and without version, and conditional `remove` have strict method
return guarantees, as well as those operations where returning the previous
value is forced.

In spite of failures, these methods return values need to be guaranteed, and
in order to do so, it's necessary that these methods are not applied partially
in the cluster in the event of failure. For example, imagine a `replace()`
operation called in a server for key=k1 with `Flag.FORCE_RETURN_VALUE`, whose
current value is `A` and the replace wants to set it to `B`. If the replace
fails, it could happen that some servers contain `B` and others contain `A`,

63

and during the failover, the original `replace()` could end up returning `B`,
if the replace failovers to a node where `B` is set, or could end up returning
`A`.

To avoid this kind of situations, whenever Java Hot Rod client users want to
use conditional operations, or operations whose previous value is required,
it's important that the cache is configured to be transactional in order to
avoid incorrect conditional operations or return values.

=== Site Cluster Failover

On top of the in-cluster failover, Hot Rod clients are also able to failover
to different clusters, which could be represented as an independent site.

The way site cluster failover works is that if all the main cluster nodes
are not available, the client checks to see if any other clusters have been
defined in which cases it tries to failover to the alternative cluster.
If the failover succeeds, the client will remain connected to the alternative
cluster until this becomes unavailable, in which case it'll try any other
clusters defined, and ultimately, it'll try the original server settings.

To configure a cluster in the Hot Rod client, one host/port pair details
must be provided for each of the clusters configured. For example:

[source,java]

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb = new
org.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.addCluster().addClusterNode("remote-cluster-host", 11222); RemoteCacheManager rmc = new
RemoteCacheManager(cb.build());

NOTE: Remember that regardless of the cluster definitions, the initial
server(s) configuration must be provided unless the initial servers can
be resolved using the default server host and port details.

=== Manual Site Cluster Switch

As well as supporting automatic site cluster failover, Java Hot Rod clients
can also switch between site clusters manually by calling RemoteCacheManager's
`switchToCluster(clusterName)` and `switchToDefaultCluster()`.

Using `switchToCluster(clusterName)`, users can force a client to switch
to one of the clusters pre-defined in the Hot Rod client configuration.
To switch to the initial servers defined in the client configuration, call
`switchToDefaultCluster()`.

[[hotrod_java_client_monitoring]]
=== Monitoring the Hot Rod client

The Hot Rod client can be monitored and managed via JMX.

64

By enabling statistics, an MBean will be registered for the `RemoteCacheManager` as
well as for each `RemoteCache` obtained
through it.
Through these MBeans it is possible to obtain statistics about remote and near-cache
hits/misses and connection pool usage.

=== Concurrent Updates
Data structures, such as {brandname}
link:{javadocroot}/org/infinispan/Cache.html[Cache] , that are accessed and modified
concurrently can suffer from data consistency issues unless there're mechanisms to
guarantee data correctness. {brandname} Cache, since it implements
link:{jdkdocroot}/java/util/concurrent/ConcurrentMap.html[ConcurrentMap] , provides
operations such as link:{jdkdocroot}/java/util/concurrent/ConcurrentMap.html#replace-
K-V-V-[conditional replace] ,
link:{jdkdocroot}/java/util/concurrent/ConcurrentMap.html#putIfAbsent-K-V-
[putIfAbsent] , and link:{jdkdocroot}/java/util/concurrent/ConcurrentMap.html#remove-
java.lang.Object-java.lang.Object-[conditional remove] to its clients in order to
guarantee data correctness. It even allows clients to operate against cache instances
within JTA transactions, hence providing the necessary data consistency guarantees.

However, when it comes to link:http://community.jboss.org/wiki/HotRodProtocol[Hot Rod
protocol] backed servers, clients do not yet have the ability to start remote
transactions but they can call instead versioned operations to mimic the conditional
methods provided by the embedded {brandname} cache instance API. Let's look at a real
example to understand how it works.

==== Data Consistency Problem
Imagine you have two ATMs that connect using Hot Rod to a bank where an account's
balance is stored. Two closely followed operations to retrieve the latest balance
could return 500 CHF (swiss francs) as shown below:

image::{images_dir}/server_modules_6.png[align="center", title="Concurrent readers"]

Next a customer connects to the first ATM and requests 400 CHF to be retrieved. Based
on the last value read, the ATM could calculate what the new balance is, which is 100
CHF, and request a put with this new value. Let's imagine now that around the same
time another customer connects to the ATM and requests 200 CHF to be retrieved. Let's
assume that the ATM thinks it has the latest balance and based on its calculations it
sets the new balance to 300 CHF:

image::{images_dir}/server_modules_7.png[Concurrent updates]

Obviously, this would be wrong. Two concurrent updates have resulted in an incorrect
account balance. The second update should not have been allowed since the balance the
second ATM had was incorrect. Even if the ATM would have retrieved the balance before
calculating the new balance, someone could have updated between the new balance being
retrieved and the update. Before finding out how to solve this issue in a client-
server scenario with Hot Rod, let's look at how this is solved when {brandname}
clients run in peer-to-peer mode where clients and {brandname} live within the same
JVM.

65

==== Embedded-mode Solution

If the ATM and the {brandname} instance storing the bank account lived in the same
JVM, the ATM could use the
link:{jdkdocroot}/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-[conditional
replace API] referred at the beginning of this article. So, it could send the
previous known value to verify whether it has changed since it was last read. By
doing so, the first operation could double check that the balance is still 500 CHF
when it was to update to 100 CHF. Now, when the second operation comes, the current
balance would not be 500 CHF any more and hence the conditional replace call would
fail, hence avoiding data consistency issues:

image::{images_dir}/server_modules_8.png[align="center", title="P2P solution"]

==== Client-Server Solution
In theory, Hot Rod could use the same p2p solution but sending the previous value
would be not practical. In this example, the previous value is just an integer but
the value could be a lot bigger and hence forcing clients to send it to the server
would be rather wasteful. Instead, Hot Rod offers versioned operations to deal with
this situation.

Basically, together with each key/value pair, Hot Rod stores a version number which
uniquely identifies each modification. So, using an operation called
link:http://community.jboss.org/wiki/HotRodProtocol#getWithVersion_response[getVersion
ed or getWithVersion] , clients can retrieve not only the value associated with a key,
but also the current version. So, if we look at the previous example once again, the
ATMs could call getVersioned and get the balance's version:

image::{images_dir}/server_modules_9.png[align="center", title="Get versioned"]

When the ATMs wanted to modify the balance, instead of just calling put, they could
call
link:http://community.jboss.org/wiki/HotRodProtocol#removeIfUnmodified_request[replace
IfUnmodified] operation passing the latest version number of which the clients are
aware of. The operation will only succeed if the version passed matches the version
in the server. So, the first modification by the ATM would be allowed since the
client passes 1 as version and the server side version for the balance is also 1. On
the other hand, the second ATM would not be able to make the modification because
after the first ATMs modification the version would have been incremented to 2, and
now the passed version (1) and the server side version (2) would not match:

image::{images_dir}/server_modules_10.png[align="center", title="Replace if versions
match"]

=== Javadocs
It is highly recommended to read the following Javadocs (this is pretty much all the
public API of the client):

*
link:{javadocroot}/org/infinispan/client/hotrod/RemoteCacheManager.html[RemoteCacheMan
ager]

66

* link:{javadocroot}/org/infinispan/client/hotrod/RemoteCache.html[RemoteCache]
//////////////////////
//terminate list
//////////////////////

:leveloffset: 1
//topic included in server_protocols_hotrod.adoc
//include::../../topics/server_protocols_hotrod_transaction.adoc[leveloffset=+1]
:leveloffset: +1

[[rest_server]]
= REST Server

The {brandname} Server distribution contains a module that implements
link:http://en.wikipedia.org/wiki/Representational_State_Transfer[RESTful] HTTP access
to the {brandname} data grid, built on https://github.com/netty/netty[Netty].

[[rest_run_server]]
== Running the REST server

The REST server endpoint is part of the {brandname} Server and by default listens on
port 8080. To run the server locally,
link:http://infinispan.org/download/[download] the zip distribution and execute in the
extracted directory:

[source]

bin/standalone.sh -b 0.0.0.0

or alternatively, run via docker:

[source]

docker run -it -p 8080:8080 -e "APP_USER=user" -e "APP_PASS=changeme" jboss/infinispan-server

[[rest_security]]
=== Security

The REST server is protected by authentication, so before usage it is necessary to
create an application login.
When running via docker, this is achieved by the APP_USER and APP_PASS command line
arguments, but when running
locally, this can be done with:

[source]

bin/add-user.sh -u user -p changeme -a

67

[[rest_supported_protocols]]
== Supported protocols

The REST Server supports HTTP/1.1 as well as HTTP/2 protocols. It is possible to
switch to HTTP/2 by either performing a link:https://http2.github.io/http2-
spec/#discover-http[HTTP/1.1 Upgrade procedure] or
by negotiating communication protocol using link:https://http2.github.io/http2-
spec/#versioning[TLS/ALPN extension].

Note: TLS/ALPN with JDK8 requires additional steps from the client perspective. Please
refer to your client documentation but it is very likely
that you will need Jetty ALPN Agent or OpenSSL bindings.

[[rest_server_cors]]
== CORS

The REST server supports https://en.wikipedia.org/wiki/Cross-
origin_resource_sharing[CORS] including preflight and rules based on the request
origin.

Example:

[source,xml,options="nowrap",subs=attributes+]

<rest-connector name="rest1" socket-binding="rest" cache-container="default"> <cors-
rules> <cors-rule name="restrict host1" allow-credentials="false"> <allowed-origins><a
href="http://host1,https://host1</allowed-origins>" class="bare">http://host1,https://host1</
allowed-origins>; <allowed-methods>GET</allowed-methods> </cors-rule>
<cors-rule name="allow ALL" allow-credentials="true" max-age-seconds="2000"> <allowed-
origins>*</allowed-origins> <allowed-
methods>GET,OPTIONS,POST,PUT,DELETE</allowed-methods> <allowed-headers>Key-
Content-Type</allowed-headers> </cors-rule> </cors-rules> </rest-connector>

68

The rules are evaluated sequentially based on the "Origin" header set by the browser;
in the example above if the origin is either "http://host1" or "https://host1" the
rule "restrict host1" will apply,
otherwise the next rule will be tested. Since the rule "allow ALL" permits all
origins, any script coming from a different origin will be able to perform the methods
specified and use the headers supplied.

The <cors-rule> element can be configured as follows:

|===
| Config | Description | Mandatory

| name | The name of the rule | yes
| allow-credentials | Enable CORS requests to use credentials | no
| allowed-origins | A comma separated list used to set the CORS 'Access-Control-Allow-
Origin' header to indicate the response can be shared with the origins | yes
| allowed-methods | A comma separated list used to set the CORS 'Access-Control-Allow-
Methods' header in the preflight response to specify the methods allowed for the
configured origin(s) | yes
| max-age-seconds | The amount of time CORS preflight request headers can be cached |
no
| expose-headers | A comma separated list used to set the CORS 'Access-Control-Expose-
Headers' in the preflight response to specify which headers can be exposed to the
configured origin(s) | no
|===

[[rest_server_data_format]]
== Data formats

[[rest_server_data_format_config]]
=== Configuration

Each cache exposed via REST stores data in a configurable data format defined by a
https://en.wikipedia.org/wiki/Media_type[MediaType]. More details in the configuration
link:#encoding_media_type[here].

An example of storage configuration is as follows:

[source,xml,options="nowrap",subs=attributes+]

<cache> <encoding> <key media-type="application/x-java-object; type=java.lang.Integer"/> <value
media-type="application/xml; charset=UTF-8"/> </encoding> </cache>

69

When no MediaType is configured, {brandname} assumes "application/octet-stream" for
both keys and values, with the following exceptions:

* If the cache is indexed, it assumes "application/x-protostream"

[[rest_server_data_format_support]]
=== Supported formats

Data can be written and read in different formats than the storage format; {brandname}
can convert between those formats when required.

The following "standard" formats can be converted interchangeably:

* _application/x-java-object_
* _application/octet-stream_
* _application/x-www-form-urlencoded_
* _text/plain_

The following formats can be converted to/from the formats above:

* __application/xml__
* _application/json_
* _application/x-jboss-marshalling_
* _application/x-protostream_
* _application/x-java-serialized_

Finally, the following conversion is also supported:

* Between _application/x-protostream_ and _application/json_

All the REST API calls can provide headers describing the content written or the
required format of the content
when reading. {brandname} supports the standard HTTP/1.1 headers "Content-Type" and
"Accept" that are applied for values,
plus the "Key-Content-Type" with similar effect for keys.

[[rest_accept]]
=== Accept header

The REST server is compliant with the
link:https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html[RFC-2616] Accept header,
and will negotiate the correct MediaType based on the conversions supported. Example,
sending the following header when reading data:

[source,options=nowrap]

Accept: text/plain;q=0.7, application/json;q=0.8, /;q=0.6

70

will cause {brandname} to try first to return content in JSON format (higher priority
0.8). If it's not possible to convert the storage format
to JSON, next format tried will be _text/plain_ (second highest priority 0.7), and
finally it falls back to _*/*_, that will pick a format
suitable for displaying automatically based on the cache configuration.

[[rest_key_content_type]]
=== Key-Content-Type header

Most REST API calls have the Key included in the URL. {brandname} will assume the Key
is a _java.lang.String_ when handling those calls, but
it's possible to use a specific header _Key-Content-Type_ for keys in different
formats.

Examples:

* Specifying a byte[] Key as a Base64 string:

API call:

 `PUT /my-cache/AQIDBDM=`

Headers:

`Key-Content-Type: application/octet-stream`

* Specifying a byte[] Key as a hexadecimal string:

API call:

`GET /my-cache/0x01CA03042F`

Headers:

[source,options=nowrap]

Key-Content-Type: application/octet-stream; encoding=hex

* Specifying a double Key:

API call:

`POST /my-cache/3.141456`

Headers:

[source,options=nowrap]

71

Key-Content-Type: application/x-java-object;type=java.lang.Double

The _type_ parameter for _application/x-java-object_ is restricted to:

* Primitive wrapper types
* java.lang.String
* Bytes, making _application/x-java-object;type=Bytes_ equivalent to
application/octet-stream;encoding=hex

=== JSON/Protostream conversion

When caches are indexed, or specifically configured to store _application/x-
protostream_, it's possible to send and receive
JSON documents that are automatically converted to/from protostream. In order for the
conversion to work, a protobuf schema must be registered.

The registration can be done via REST, by doing a POST/PUT in the
____protobuf_metadata_ cache. Example using cURL:

[source,bash]

curl -u user:password -X POST --data-binary @./schema.proto http://127.0.0.1:8080/rest/
___protobuf_metadata/schema.proto

When writing a JSON document, a special field *__type_* must be present in the
document to identity the protobuf _Message_
corresponding to the document.

For example, consider the following schema:

[source,protobuf]

message Person { required string name = 1; required int32 age = 2; }

A conformant JSON document would be:

[source,json]

{ "_type": "Person", "name": "user1", "age": 32 }

:leveloffset: +1

= REST V1 API

The REST V1 API supports basic cache capabilities including operations on keys and
query, and is now deprecated. For a more powerful and comprehensive API, check the

72

http://127.0.0.1:8080/rest/___protobuf_metadata/schema.proto
http://127.0.0.1:8080/rest/___protobuf_metadata/schema.proto

link:#rest_v2_api[REST V2 API].

HTTP PUT and POST methods are used to place data in the cache, with URLs to address
the cache name and key(s) - the data being the body of the request (the data can be
anything you like). Other headers are used to control the cache settings and
behaviour.

== Putting data in

[[rest_server_put_request]]
=== `PUT /{cacheName}/{cacheKey}`
A PUT request of the above URL form will place the payload (body) in the given cache,
with the given key (the named cache must exist on the server). For example
`http://someserver/hr/payRoll-3` (in which case `hr` is the cache name, and `payRoll-
3` is the key). Any existing data will be replaced, and Time-To-Live and Last-Modified
values etc will updated (if applicable).

[[rest_server_post_request]]
=== `POST /{cacheName}/{cacheKey}`
Exactly the same as PUT, only if a value in a cache/key already exists, it will return
a Http CONFLICT status (and the content will not be updated).

.Headers

* link:#rest_key_content_type[Key-Content-Type]: OPTIONAL The content type for the
Key present in the URL.

* Content-Type : OPTIONAL The https://en.wikipedia.org/wiki/Media_type[MediaType] of
the Value being sent.

* timeToLiveSeconds : OPTIONAL number (the number of seconds before this entry will
automatically be deleted). If no parameter is sent, {brandname} assumes configuration
default value. Passing any negative value will create an entry which will live
forever.

* maxIdleTimeSeconds : OPTIONAL number (the number of seconds after last usage of
this entry when it will automatically be deleted). If no parameter is sent,
{brandname} configuration default value. Passing any negative value will create an
entry which will live forever.

.Passing 0 as parameter for timeToLiveSeconds and/or maxIdleTimeSeconds
* If both `timeToLiveSeconds` and `maxIdleTimeSeconds` are 0, the cache will use the
default `lifespan` and `maxIdle` values configured in XML/programmatically
* If _only_ `maxIdleTimeSeconds` is 0, it uses the `timeToLiveSeconds` value passed
as parameter (or -1 if not present), and default `maxIdle` configured in
XML/programmatically
* If _only_ `timeToLiveSeconds` is 0, it uses default `lifespan` configured in
XML/programmatically, and `maxIdle` is set to whatever came as parameter (or -1 if not
present)

[[rest_server_get_data]]

73

== Getting data back out
HTTP GET and HEAD are used to retrieve data from entries.

[[rest_server_get_request]]
=== `GET /{cacheName}/{cacheKey}`
This will return the data found in the given cacheName, under the given key - as the
body of the response. A Content-Type header will be present in the response according
to the Media Type negotiation. Browsers can use the cache directly of course (eg as a
CDN). An link:http://en.wikipedia.org/wiki/HTTP_ETag[ETag] will be returned unique for
each entry, as will the Last-Modified and Expires headers field indicating the state
of the data at the given URL. ETags allow browsers (and other clients) to ask for data
only in the case where it has changed (to save on bandwidth) - this is standard HTTP
and is honoured by {brandname}.

.Headers

* link:#rest_key_content_type[Key-Content-Type]: OPTIONAL The content type for the
Key present in the URL. When omitted, _application/x-java-object;
type=java.lang.String_ is assumed
* link:#rest_accept[Accept]: OPTIONAL The required format to return the content

It is possible to obtain additional information by appending the "extended" parameter
on the query string, as follows:

`GET /cacheName/cacheKey?extended`

This will return the following custom headers:

* Cluster-Primary-Owner: the node name of the primary owner for this key
* Cluster-Node-Name: the JGroups node name of the server that has handled the request
* Cluster-Physical-Address: the physical JGroups address of the server that has
handled the request.

[[rest_server_head_request]]
=== `HEAD /{cacheName}/{cacheKey}`
The same as GET, only no content is returned (only the header fields). You will
receive the same content that you stored. E.g., if you stored a String, this is what
you get back. If you stored some XML or JSON, this is what you will receive. If you
stored a binary (base 64 encoded) blob, perhaps a serialized; Java; object - you will
need to; deserialize this yourself.

Similarly to the GET method, the HEAD method also supports returning extended
information via headers. See above.

.Headers

* link:#rest_key_content_type[Key-Content-Type]: OPTIONAL The content type for the
Key present in the URL. When omitted, _application/x-java-object;
type=java.lang.String_ is assumed

[[rest_server_list_keys]]

74

== Listing keys

[[rest_server_list_get]]
=== `GET /{cacheName}`

This will return a list of keys present in the given cacheName as the body of the
response. The format of the response can be controlled via the Accept header as
follows:

* _application/xml_ - the list of keys will be returned in XML format.
* _application/json_ - the list of keys will be return in JSON format.
* _text/plain_ - the list of keys will be returned in plain text format, one key per
line

If the cache identified by cacheName is distributed, only the keys owned by the node
handling the request will be returned. To return all keys, append the "global"
parameter to the query, as follows:

`GET /cacheName?global`

[[rest_server_remove_data]]
== Removing data
Data can be removed at the cache key/element level, or via a whole cache name using
the HTTP delete method.

[[rest_server_delete_keys]]
=== `DELETE /{cacheName}/{cacheKey}`

Removes the given key name from the cache.

.Headers

* link:#rest_key_content_type[Key-Content-Type]: OPTIONAL The content type for the
Key present in the URL. When omitted, _application/x-java-object;
type=java.lang.String_ is assumed

[[rest_server_delete_cache]]
=== `DELETE /{cacheName}`
Removes ALL the entries in the given cache name (i.e., everything from that path
down). If the operation is successful, it returns 200 code.

[[rest_server_query]]
== Querying

The REST server supports Ickle Queries in JSON format. It's important that the cache
is configured with
application/x-protostream for both Keys and Values. If the cache is indexed, no
configuration is needed.

[[rest_server_query_get]]
=== `GET /{cacheName}?action=search&query={ickle query}`

75

Will execute an Ickle query in the given cache name.

.Request parameters

* _query_: REQUIRED the query string
* _max_results_: OPTIONAL the number of results to return, default is _10_
* _offset_: OPTIONAL the index of the first result to return, default is _0_
* _query_mode_: OPTIONAL the execution mode of the query once it's received by server.
Valid values are _FETCH_ and _BROADCAST_. Default is _FETCH_.

.Query Result

Results are JSON documents containing one or more hits. Example:

[source, json]

{ "total_results" : 150, "hits" : [{ "hit" : { "name" : "user1", "age" : 35 } }, { "hit" : { "name" : "user2",
"age" : 42 } }, { "hit" : { "name" : "user3", "age" : 12 } }] }

* _total_results_: NUMBER, the total number of results from the query.
* _hits_: ARRAY, list of matches from the query
* _hit_: OBJECT, each result from the query. Can contain all fields or just a subset
of fields in case a _Select_ clause is used.

[[rest_server_query_post]]
=== `POST /{cacheName}?action=search`

Similar to que query using GET, but the body of the request is used instead to specify
the query parameters.

Example:

[source,json]

{ "query":"from Entity where name:\"user1\"", "max_results":20, "offset":10 }

76

:leveloffset: 1

:leveloffset: +1

[[rest_v2_api]]
= REST v2 API
{brandname} provides a REST v2 (version 2) API that improves upon the REST v1
API. The REST v2 API gives you all the features of the v1 API in addition to
support for resources beyond caching.

[[rest_v2_cache_operations]]
== Working with Caches
Use the REST API to create and manage caches on your {brandname} cluster and interact
with cached entries.

[[rest_v2_create_cache]]
=== Creating Caches
To create a named cache across the {brandname} cluster, invoke a `POST` request.

[source,options="nowrap",subs=attributes+]

POST /v2/caches/{cacheName}

To configure the cache, you supply the configuration in XML or JSON format as
part of the payload.

XML Configuration::
If you supply the {brandname} configuration in XML format, it must conform to
the schema and include the `<infinispan>` root element and a
`<cache-container>` definition, as in the following example:
+
[source,xml,options="nowrap",subs=attributes+]

<infinispan> <cache-container> <distributed-cache name="cacheName" mode="SYNC"> <memory>
<object size="20"/> </memory> </distributed-cache> </cache-container> </infinispan>

JSON Configuration::
If you supply the {brandname} configuration in a JSON payload, it requires only
the cache definition. However, the JSON payload must follow the structure of an
XML configuration. XML elements become JSON objects. XML attributes become JSON
fields.
+
For example, the preceding XML configuration is represented in JSON as follows:
+
[source,json,options="nowrap",subs=attributes+]

{ "distributed-cache": { "mode": "SYNC", "memory": { "object": { "size": 20 } } } }

77

.Headers
|===
|Header |Required or Optional |Parameter

|`Content-Type`
|REQUIRED
|Sets the https://en.wikipedia.org/wiki/Media_type[MediaType] for the
{brandname} configuration payload; either `application/xml` or
`application/json`.
|===

[[rest_v2_create_cache_template]]
==== Creating with Templates

To create a cache across the {brandname} cluster based on a pre-defined template,
invoke a `POST` request with
no payload and an extra request parameter:

[source,options="nowrap",subs=attributes+]

POST /v2/caches/{cacheName}?template={templateName}

[[rest_v2_cache_configuration]]
=== Retrieving Cache Configuration
To retrieve a {brandname} cache configuration, invoke a `GET` request.

[source,options="nowrap",subs=attributes+]

GET /v2/configurations/{name}

.Headers
|===
|Header |Required or Optional |Parameter

|`Accept`
|OPTIONAL
|Sets the required format to return content. Supported formats are `application/xml`
and `application/json`. The default is `application/json`. See
link:#rest_accept[Accept] for more information.
|===

[[rest_v2_add_entries]]
=== Adding Entries
To add entries to a named cache, invoke a `POST` request.

[source,options="nowrap",subs=attributes+]

78

POST /v2/caches/{cacheName}/{cacheKey}

The preceding request places the payload, or request body, in the `cacheName`
cache with the `cacheKey` key. The request replaces any data that already
exists and updates the `Time-To-Live` and `Last-Modified` values, if they apply.

If the specified key has an existing value, the request returns an HTTP
`CONFLICT` status and the value is not updated. In this case, you should use a `PUT`
request. See link:#rest_v2_replace_entries[Replacing Entries].

.Headers
|===
|Header |Required or Optional |Parameter

|`Key-Content-Type`
|OPTIONAL
|Sets the content type for the key in the request. See
link:#rest_key_content_type[Key-Content-Type] for more information.

|`Content-Type`
|OPTIONAL
|Sets the https://en.wikipedia.org/wiki/Media_type[MediaType] of the value for the
key.

|`timeToLiveSeconds`
|OPTIONAL
|Sets the number of seconds before the entry is automatically deleted. If you do not
set this parameter, {brandname} uses the default value from the configuration. If you
set a negative value, the entry is never deleted.

|`maxIdleTimeSeconds`
|OPTIONAL
|Sets the number of seconds that entries can be idle. If a read or write operation
does not occur for an entry after the maximum idle time elapses, the entry is
automatically deleted. If you do not set this parameter, {brandname} uses the default
value from the configuration. If you set a negative value, the entry is never deleted.
|===

[NOTE]
====
If both `timeToLiveSeconds` and `maxIdleTimeSeconds` have a value of `0`, {brandname}
uses the default `lifespan` and `maxIdle` values from the configuration.

If _only_ `maxIdleTimeSeconds` has a value of `0`, {brandname} uses:

* the default `maxIdle` value from the configuration.
* the value for `timeToLiveSeconds` that you pass as a request parameter or a value of
`-1` if you do not pass a value.

If _only_ `timeToLiveSeconds` has a value of `0`, {brandname} uses:

79

* the default `lifespan` value from the configuration.
* the value for `maxIdle` that you pass as a request parameter or a value of `-1` if
you do not pass a value.
====

[[rest_v2_replace_entries]]
=== Replacing Entries
To replace entries in a named cache, invoke a `PUT` request.

[source,options="nowrap",subs=attributes+]

PUT /v2/caches/{cacheName}/{cacheKey}

The preceding request is the same as a `POST` request to add entries to the cache.
However, if the entry already exists, the `PUT` request replaces it instead of
returning an HTTP `CONFLICT` status.

[[rest_v2_retrieve_cache]]
=== Retrieving Caches By Keys
To retrieve data for a specific key in a cache, invoke a `GET` request.

[source,options="nowrap",subs=attributes+]

GET /v2/caches/{cacheName}/{cacheKey}

80

The preceding request returns data from the given cache, `cacheName`, under the given
key, `cacheKey`, as the response body. Responses contain a `Content-Type` headers that
correspond to the MediaType negotiation.

[NOTE]
====
Browsers can also access caches directly, for example as a content delivery network
(CDN). {brandname} returns a unique link:http://en.wikipedia.org/wiki/HTTP_ETag[ETag]
for each entry along with the `Last-Modified` and `Expires` header fields. These
fields provide information about the state of the data that is returned in your
request. ETags allow browsers and other clients to request only data that has changed,
which conserves bandwidth.
====

.Headers
|===
|Header |Required or Optional |Parameter

|`Key-Content-Type`
|OPTIONAL
|Sets the content type for the key in the request. The default is `application/x-java-
object; type=java.lang.String`. See link:#rest_key_content_type[Key-Content-Type] for
more information.

|`Accept`
|OPTIONAL
|Sets the required format to return content. See link:#rest_accept[Accept] for more
information.
|===

[TIP]
====
Append the `extended` parameter to the query string to get additional information.

[source,options="nowrap",subs=attributes+]

GET /cacheName/cacheKey?extended

81

The preceding request returns custom headers:

* `Cluster-Primary-Owner` returns the node name that is the primary owner of the key.
* `Cluster-Node-Name` returns the JGroups node name of the server that handled the
request.
* `Cluster-Physical-Address` returns the physical JGroups address of the server that
handled the request.
====

[[rest_v2_check_entries]]
=== Checking if Entries Exist
To check if a specific entry exists in a cache, invoke a `HEAD` request.

[source,options="nowrap",subs=attributes+]

HEAD /v2/caches/{cacheName}/{cacheKey}

The preceding request returns only the header fields and the same content that you
stored with the entry. For example, if you stored a String, the request returns a
String. If you stored binary, base64-encoded, blobs or serialized Java objects,
{brandname} does not de-serialize the content in the request.

As with `GET` requests, `HEAD` requests also support the `extended` parameter.

.Headers
|===
|Header |Required or Optional |Parameter

|`Key-Content-Type`
|OPTIONAL
|Sets the content type for the key in the request. The default is `application/x-java-
object; type=java.lang.String`. See link:#rest_key_content_type[Key-Content-Type] for
more information.
|===

[[rest_v2_delete_entries]]
=== Deleting Entries
To delete entries from a cache, invoke a `DELETE` request.

[source,options="nowrap",subs=attributes+]

DELETE /v2/caches/{cacheName}/{cacheKey}

82

The preceding request removes the entry under `cacheKey` name from the cache.

.Headers
|===
|Header |Required or Optional |Parameter

|`Key-Content-Type`
|OPTIONAL
|Sets the content type for the key in the request. The default is `application/x-java-
object; type=java.lang.String`. See link:#rest_key_content_type[Key-Content-Type] for
more information.
|===

[[rest_v2_remove_cache]]
=== Removing Caches
To remove caches, invoke a `DELETE` request.

[source,options="nowrap",subs=attributes+]

DELETE /v2/caches/{cacheName}

The preceding request deletes all data and removes the cache named `cacheName` from
the cluster.

[[rest_v2_clear_cache]]
=== Clearing Caches
To delete all data from a cache, invoke a `GET` request with the `?action=clear`
parameter.

[source,options="nowrap",subs=attributes+]

GET /v2/caches/{cacheName}?action=clear

[[rest_v2_cache_size]]
=== Getting the size of Caches
To obtain the size of the cache across the entire cluster, invoke a `GET` request with
the `?action=size` parameter.

[source,options="nowrap",subs=attributes+]

GET /v2/caches/{cacheName}?action=size

83

[[rest_v2_query_cache]]
=== Querying Caches
Invoke a `GET` request to perform and Ickle query on a given cache, as follows:

[source,options="nowrap",subs=attributes+]

GET /v2/caches/{cacheName}?action=search&query={ickle query}

The preceding request returns a `JSON` document that contains one or more query hits,
for example:

[source,json]

{ "total_results" : 150, "hits" : [{ "hit" : { "name" : "user1", "age" : 35 } }, { "hit" : { "name" : "user2",
"age" : 42 } }, { "hit" : { "name" : "user3", "age" : 12 } }] }

* `total_results` displays the total number of results from the query.
* `hits` is an array of matches from the query.
* `hit` is an object that matches the query. Each hit can contain all fields or a
subset of fields if you use a `Select` clause.

.Request Parameters
|===
|Parameter |Required or Optional |Value

|`query`
|REQUIRED
|Specifies the query string.

|`max_results`
|OPTIONAL
|Sets the number of results to return. The default is `10`.

|`offset`
|OPTIONAL
|Specifies the index of the first result to return. The default is `0`.

|`query_mode`
|OPTIONAL
|Specifies how the {brandname} server executes the query. Values are `FETCH` and
`BROADCAST`. The default is `FETCH`.
|===

To use the body of the request instead of specifying query parameters, invoke a `POST`
request.

[source,options="nowrap",subs=attributes+]

84

POST /v2/caches/{cacheName}?action=search

The following is an example of a query in the request body:

[source,json]

{ "query":"from Entity where name:\"user1\"", "max_results":20, "offset":10 }

[[rest_v2_cache_manager_operations]]
== Cache Manager
Use the REST API to interact with the Cache Manager on your {brandname} and obtain
cluster and usage statistics.

[[rest_v2_cache_manager_info]]
=== Basic Information

To obtain information about a cache manager, invoke a `GET` request:

[source,options="nowrap",subs=attributes+]

GET /v2/cache-managers/{cacheManagerName}

The response will be a JSON document with the following information:

[source,json]

{ "version":"10.0.0-SNAPSHOT", "name":"default", "coordinator":true, "cache_configuration_names":[
"_protobuf_metadata", "cache2", "CacheManagerResourceTest", "cache1"], "cluster_name":"ISPN",
"physical_addresses":"[127.0.0.1:35770]", "coordinator_address":"CacheManagerResourceTest-NodeA-
49696", "cache_manager_status":"RUNNING", "created_cache_count":"3", "running_cache_count":"3",
"node_address":"CacheManagerResourceTest-NodeA-49696", "cluster_members":[
"CacheManagerResourceTest-NodeA-49696", "CacheManagerResourceTest-NodeB-28120"],
"cluster_members_physical_addresses":["127.0.0.1:35770", "127.0.0.1:60031"], "cluster_size":2,
"defined_caches":[{ "name":"CacheManagerResourceTest", "started":true }, { "name":"cache1",
"started":true }, { "name":"_protobuf_metadata", "started":true }, { "name":"cache2", "started":true }]

}

85

* `version` contains the {brandname} version
* `name` contains the name of the cache manager as defined in the configuration
* `coordinator` is true if the cache manager is the coordinator of the cluster
* `cache_configuration_names` contains an array of all caches configurations defined
in the cache manager
* `cluster_name` contains the name of the cluster as defined in the configuration
* `physical_addresses` contains the physical network addresses associated with the
cache manager
* `coordinator_address` contains the physical network addresses of the coordinator of
the cluster
* `cache_manager_status` the lifecycle status of the cache manager. For possible
values, check the
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/lifecycle/ComponentStatus
.html[`org.infinispan.lifecycle.ComponentStatus`] documentation
* `created_cache_count` number of created caches, excludes all internal and private
caches
* `running_cache_count` number of created caches that are running
* `node_address` contains the logical address of the cache manager
* `cluster_members` and `cluster_members_physical_addresses` an array of logical and
physical addresses of the members of the cluster
* `cluster_size` number of members in the cluster
* `defined_caches` A list of all caches defined in the cache manager, excluding
private caches but including internal caches that are accessible

[[rest_v2_cache_manager_health]]
=== Health

To retrieve information about the {brandname} cluster health, invoke a `GET` request.

[source,options="nowrap",subs=attributes+]

GET /v2/cache-managers/{cacheManagerName}/health

The response will be a JSON document with the following information:

[source,json]

{ "cluster_health":{ "cluster_name":"ISPN", "health_status":"HEALTHY", "number_of_nodes":2,
"node_names":["CacheManagerResourceTest-NodeA-36229", "CacheManagerResourceTest-NodeB-
28703"] }, "cache_health":[{ "status":"HEALTHY", "cache_name":"___protobuf_metadata" }, {
"status":"HEALTHY", "cache_name":"cache2" }, { "status":"HEALTHY",
"cache_name":"CacheManagerResourceTest" }, { "status":"HEALTHY", "cache_name":"cache1" }]

}

86

* `cluster_health` contains the health of the cluster
** `cluster_name` specifies the name of the cluster as defined in the configuration.
** `health_status` provides one of the following:
*** `UNHEALTHY` indicates at least one of the caches is in degraded mode.
*** `REBALANCING` indicates at least one cache is in the rebalancing state.
*** `HEALTHY` indicates all cache instances in the cluster are operating as expected.
** `number_of_nodes` displays the total number of cluster members. Returns a value of
`0` for non-clustered (standalone) servers.
** `node_names` is an array of all cluster members. Empty for standalone servers.
* `cache_health` contains health information per-cache
** `status` HEALTHY,UNHEALTHY or REBALANCING
** `cache_name` the name of the cache as defined in the configuration.

[[rest_v2_cache_manager_availability]]
=== Check Availability
To check that a {brandname} exists and is available, invoke a `HEAD` request in the
health resource

[source,options="nowrap",subs=attributes+]

HEAD /v2/cache-managers/{cacheManagerName}/health

If the preceding request returns a successful response code then the {brandname} REST
server is running and serving requests.

[[rest_v2_cache_manager_config]]
=== Obtaining Configuration

To obtain the
https://docs.jboss.org/infinispan/9.4/apidocs/org/infinispan/configuration/global/Glob
alConfiguration.html[GlobalConfiguration] associated with the Cache Manager, invoke a
`GET` request.

[source,options="nowrap",subs=attributes+]

GET /v2/cache-managers/{cacheManagerName}/config

87

.Headers
|===
|Header |Required or Optional |Parameter

|`link:#rest_accept[Accept]`
|OPTIONAL
|The required format to return the content. Supported formats are _application/json_
and _application/xml_. JSON is assumed if no header is provided.
|===

[[rest_v2_cache_manager_caches_config]]
=== Obtaining Caches Configuration

To obtain the configuration of all caches:

[source,options="nowrap",subs=attributes+]

GET /v2/cache-managers/{cacheManagerName}/cache-configs

The response will contain a JSON array with each cache and its configuration. Example:

[source,json]

[{ "name":"cache1", "configuration":{ "distributed-cache":{ "mode":"SYNC", "partition-handling":{
"when-split":"DENY_READ_WRITES" }, "statistics":true } } }, { "name":"cache2", "configuration":{
"distributed-cache":{ "mode":"SYNC", "transaction":{ "mode":"NONE" } } } }]

[[rest_v2_cache_manager_stats]]
=== Getting statistics

To obtain the statistics of the Cache Manager, invoke a `GET` request.

[source,options="nowrap",subs=attributes+]

GET /v2/cache-managers/{cacheManagerName}/stats

The response will be a JSON document with the following information:

[source,json]

{ "statistics_enabled":true, "read_write_ratio":0.0, "time_since_start":1, "time_since_reset":1,
"number_of_entries":0, "total_number_of_entries":0, "off_heap_memory_used":0,
"data_memory_used":0, "misses":0, "remove_hits":0, "remove_misses":0, "evictions":0,
"average_read_time":0, "average_read_time_nanos":0, "average_write_time":0,
"average_write_time_nanos":0, "average_remove_time":0, "average_remove_time_nanos":0,
"required_minimum_number_of_nodes":1, "hits":0, "stores":0,

88

"current_number_of_entries_in_memory":0, "hit_ratio":0.0, "retrievals":0, }

* `statistics_enabled` will show `true` if the statistics collection was enabled in
the Cache Manager
* `read_write_ratio` the read/write ratio across all caches
* `time_since_start` time in seconds since the Cache Manager start
* `time_since_reset` number of seconds since the Cache Manager statistics were last
reset
* `number_of_entries` total number of entries currently in all caches from the Cache
Manager. It only returns the entries in the local cache instances
* `total_number_of_entries` the number of store operations performed across all caches
from the Cache Manager
* `off_heap_memory_used` amount in bytes of off-heap memory used by this cache
container
* `data_memory_used` amount in bytes the current eviction algorithm estimates is in
use for data across all caches. Returns 0 if memory eviction is not enabled
* `misses` number of `get() misses across all caches
* `remove_hits` number of removal hits across all caches
* `remove_misses` number of removal misses across all caches
* `evictions` number of evictions across all caches
* `average_read_time` average number of milliseconds taken for `get()` operations
across all caches
* `average_read_time_nanos` same as above, but in nanoseconds
* `average_remove_time` average number of milliseconds for `remove()` operations
across all caches
* `average_remove_time_nanos` same as above but in nanoseconds
* `required_minimum_number_of_nodes` the required minimum number of nodes to guarantee
data consistency
* `hits` number of `get()` hits across all caches
* `stores` number of `put()` operations across all caches
* `current_number_of_entries_in_memory` total number of entries currently in all
caches, excluding passivated entries
* `hit_ratio` total percentage hit/(hit+miss) ratio for all caches
* `retrievals` total number of `get()` operations

[[rest_server_counters]]
== Counter
Use the REST API to work with counters.

[[rest_server_counters_create]]
=== Creating a Counter

To create a counter, use a `POST` request with the configuration as payload.

[source,options="nowrap",subs=attributes+]

POST /v2/counters/{counterName}

89

The payload must contain a JSON configuration of the counter. Example:

[source,json]

{ "weak-counter":{ "initial-value":5, "storage":"PERSISTENT", "concurrency-level":1 } }

[source,json]

{ "strong-counter":{ "initial-value":3, "storage":"PERSISTENT", "upper-bound":{ "value":5 } } }

[[rest_server_counters_delete]]
=== Deleting a Counter

To delete a counter, send a `DELETE` request with the counter name.

[source,options="nowrap",subs=attributes+]

DELETE /v2/counters/{counterName}

[[rest_server_counters_config]]
=== Retrieving Counters Configuration

The get the counter configuration, use a `GET` request with the counter name.

[source,options="nowrap",subs=attributes+]

GET /v2/counters/{counterName}/config

The result will be a JSON representation of the counter config.

[[rest_server_counters_add]]
=== Adding Values to Counters
To add a value to a named counter, invoke a `POST` request.

[source,options="nowrap",subs=attributes+]

POST /v2/counters/{counterName}

90

If the request payload is empty, the counter is incremented by one, otherwise the
payload is interpreted as a signed long and added to the counter.

Request responses depend on the type of counter, as follows:

* `WEAK` counters return empty responses.
* `STRONG` counters return their values after the operation is applied.

[NOTE]
====
This method processes only `plain/text` content.
====

[[rest_server_counters_get]]
=== Getting a Counter Value

To retrieve the value of a counter, invoke a `GET` request.

[source,options="nowrap",subs=attributes+]

GET /v2/counters/{counterName}

.Headers
|===
|Header |Required or Optional |Parameter

|`link:#rest_accept[Accept]`
|OPTIONAL
|The required format to return the content. Supported formats are _application/json_
and _text/plain_. JSON is assumed if no header is provided.
|===

[[rest_server_counters_reset]]
=== Reseting Counters

To reset counters, use a `GET` request with the `?action=reset` parameter.

[source,options="nowrap",subs=attributes+]

GET /v2/counters/{counterName}?action=reset

91

[[rest_server_counters_inc_weak]]
=== Incrementing Counters

To increment a Counter, use the `?action=increment` parameter.

[source,options="nowrap",subs=attributes+]

GET /v2/counters/{counterName}?action=increment

Request responses depend on the type of counter, as follows:

* `WEAK` counters return empty responses.
* `STRONG` counters return their values after the operation is applied.

[[rest_server_counters_add_weak]]
=== Adding a delta to Counters

To add an arbitrary amount to a Counter, use the params `?action=add` and `delta`.

[source,options="nowrap",subs=attributes+]

GET /v2/counters/{counterName}?action=add&delta={delta}

Request responses depend on the type of counter, as follows:

* `WEAK` counters return empty responses.
* `STRONG` counters return their values after the operation is applied.

[[rest_server_counters_dec_strong]]
=== Decrementing Counters

To increment a Counter, use the `?action=decrement` parameter.

[source,options="nowrap",subs=attributes+]

GET /v2/counters/{counterName}?action=decrement

92

Request responses depend on the type of counter, as follows:

* `WEAK` counters return empty responses.
* `STRONG` counters return their values after the operation is applied.

[[rest_server_counters_cmpset]]
=== compareAndSet Strong Counters

[source,options="nowrap",subs=attributes+]

GET /v2/counters/{counterName}?action=compareAndSet&expect={expect}&update={update}

Atomically sets the value to {update} if the current value is {expect}

Returns _true_ if successful.

[[rest_server_counters_cmpswp]]
=== compareAndSwap Strong Counter

[source,options="nowrap",subs=attributes+]

GET /v2/counters/{counterName}?action=compareAndSwap&expect={expect}&update={update}

Atomically sets the value to {update} if the current value is {expect}. Returns the
previous value in the
payload if the operation is successful.

//-

:leveloffset: 1

== Client-Side Code
Part of the point of a RESTful service is that you don't need to have tightly coupled
client libraries/bindings. All you need is a HTTP client library. For Java, Apache
HTTP Commons Client works just fine (and is used in the integration tests), or you can
use java.net API.

[[rest_server_client_ruby]]
=== Ruby example

[source,ruby]

93

Chapter 4. Shows how to interact with the
REST api from ruby.

94

Chapter 5. No special libraries, just standard
net/http
Author: Michael Neale # require 'net/http'

uri = URI.parse('http://localhost:8080/rest/default/MyKey') http = Net::HTTP.new(uri.host, uri.port)

#Create new entry

post = Net::HTTP::Post.new(uri.path, {"Content-Type" ⇒ "text/plain"}) post.basic_auth('user','pass')
post.body = "DATA HERE"

resp = http.request(post)

puts "POST response code : " + resp.code

#get it back

get = Net::HTTP::Get.new(uri.path) get.basic_auth('user','pass') resp = http.request(get)

puts "GET response code: " + resp.code puts "GET Body: " + resp.body

#use PUT to overwrite

put = Net::HTTP::Put.new(uri.path, {"Content-Type" ⇒ "text/plain"}) put.basic_auth('user','pass')
put.body = "ANOTHER DATA HERE"

resp = http.request(put)

puts "PUT response code : " + resp.code

#and remove… delete = Net::HTTP::Delete.new(uri.path) delete.basic_auth('user','pass')

resp = http.request(delete)

puts "DELETE response code : " + resp.code

#Create binary data like this… just the same…

uri = URI.parse('http://localhost:8080/rest/default/MyLogo') put = Net::HTTP::Put.new(uri.path,
{"Content-Type" ⇒ "application/octet-stream"}) put.basic_auth('user','pass') put.body =
File.read('./logo.png')

resp = http.request(put)

puts "PUT response code : " + resp.code

#and if you want to do json… require 'rubygems' require 'json'

#now for fun, lets do some JSON ! uri = URI.parse('http://localhost:8080/rest/jsonCache/user') put =
Net::HTTP::Put.new(uri.path, {"Content-Type" ⇒ "application/json"}) put.basic_auth('user','pass')

95

data = {:name ⇒ "michael", :age ⇒ 42 } put.body = data.to_json

resp = http.request(put)

puts "PUT response code : " + resp.code

get = Net::HTTP::Get.new(uri.path) get.basic_auth('user','pass') resp = http.request(get)

puts "GET Body: " + resp.body

[[rest_server_client_python]]
=== Python 3 example

[source,python]

import urllib.request

96

Chapter 6. Setup basic auth
base_uri = 'http://localhost:8080/rest/default' auth_handler = urllib.request.HTTPBasicAuthHandler()
auth_handler.add_password(user='user', passwd='pass', realm='ApplicationRealm', uri=base_uri)
opener = urllib.request.build_opener(auth_handler) urllib.request.install_opener(opener)

97

Chapter 7. putting data in
data = "SOME DATA HERE \!"

req = urllib.request.Request(url=base_uri + '/Key', data=data.encode("UTF-8"), method='PUT',
headers={"Content-Type": "text/plain"}) with urllib.request.urlopen(req) as f: pass

print(f.status) print(f.reason)

98

Chapter 8. getting data out
resp = urllib.request.urlopen(base_uri + '/Key') print(resp.read().decode('utf-8'))

[[rest_server_client_java]]
=== Java example

[source,java]

package org.infinispan;

import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader;
import java.io.OutputStreamWriter; import java.net.HttpURLConnection; import java.net.URL;
import java.util.Base64;

/** * Rest example accessing a cache. * * @author Samuel Tauil (samuel@redhat.com) */ public class
RestExample {

/**
 * Method that puts a String value in cache.
 *
 * @param urlServerAddress URL containing the cache and the key to insert
 * @param value Text to insert
 * @param user Used for basic auth
 * @param password Used for basic auth
 */
public void putMethod(String urlServerAddress, String value, String user, String
password) throws IOException {
 System.out.println("--");
 System.out.println("Executing PUT");
 System.out.println("--");
 URL address = new URL(urlServerAddress);
 System.out.println("executing request " + urlServerAddress);
 HttpURLConnection connection = (HttpURLConnection) address.openConnection();
 System.out.println("Executing put method of value: " + value);
 connection.setRequestMethod("PUT");
 connection.setRequestProperty("Content-Type", "text/plain");
 addAuthorization(connection, user, password);
 connection.setDoOutput(true);

OutputStreamWriter outputStreamWriter = new
OutputStreamWriter(connection.getOutputStream());
outputStreamWriter.write(value);

99

mailto:samuel@redhat.com

 connection.connect();
 outputStreamWriter.flush();
 System.out.println("--");
 System.out.println(connection.getResponseCode() + " " +
connection.getResponseMessage());
 System.out.println("--");
 connection.disconnect();
}

/**
 * Method that gets a value by a key in url as param value.
 *
 * @param urlServerAddress URL containing the cache and the key to read
 * @param user Used for basic auth
 * @param password Used for basic auth
 * @return String value
 */
public String getMethod(String urlServerAddress, String user, String password) throws
IOException {
 String line;
 StringBuilder stringBuilder = new StringBuilder();

System.out.println("--");
System.out.println("Executing GET");
System.out.println("--");

URL address = new URL(urlServerAddress);
System.out.println("executing request " + urlServerAddress);

HttpURLConnection connection = (HttpURLConnection) address.openConnection();
connection.setRequestMethod("GET");
connection.setRequestProperty("Content-Type", "text/plain");
addAuthorization(connection, user, password);
connection.setDoOutput(true);

BufferedReader bufferedReader = new BufferedReader(new
InputStreamReader(connection.getInputStream()));

connection.connect();

100

while ((line = bufferedReader.readLine()) != null) {
 stringBuilder.append(line).append('\n');
}

System.out.println("Executing get method of value: " + stringBuilder.toString());

System.out.println("--");
System.out.println(connection.getResponseCode() + " " +
connection.getResponseMessage());
System.out.println("--");

connection.disconnect();

 return stringBuilder.toString();
}

private void addAuthorization(HttpURLConnection connection, String user, String pass)
{
 String credentials = user + ":" + pass;
 String basic = Base64.getEncoder().encodeToString(credentials.getBytes());
 connection.setRequestProperty("Authorization", "Basic " + basic);
}

 /**
 * Main method example.
 */
 public static void main(String[] args) throws IOException {
 RestExample restExample = new RestExample();
 String user = "user";
 String pass = "pass";
 restExample.putMethod("http://localhost:8080/rest/default/1", "Infinispan REST
Test", user, pass);
 restExample.getMethod("http://localhost:8080/rest/default/1", user, pass);
 }
}

:leveloffset: 1
//Keep memcached?
:leveloffset: +1

[[memcached_server]]

101

= Memcached Server
The {brandname} Server distribution contains a server module that implements the
link:http://github.com/memcached/memcached/blob/master/doc/protocol.txt[Memcached text
protocol]. This allows Memcached clients to talk to one or several {brandname} backed
Memcached servers. These servers could either be working standalone just like
Memcached does where each server acts independently and does not communicate with the
rest, or they could be clustered where servers replicate or distribute their contents
to other {brandname} backed Memcached servers, thus providing clients with failover
capabilities.
Please refer to {brandname} Server's
link:../server_guide/server_guide.html#memcached[memcached server guide] for
instructions on how to configure and run a Memcached server.

[[memcached_client_encoding]]
== Client Encoding

The memcached text protocol assumes data values read and written by clients are raw
bytes. The support for type negotiation will come
with link:https://github.com/memcached/memcached/wiki/BinaryProtocolRevamped#data-
types[the memcached binary protocol] implementation, as part
of link:https://issues.jboss.org/browse/ISPN-8726[ISPN-8726].

Although it's not possible for a memcached client to negotiate the data type to obtain
data from the server or send data in different formats, the server can optionally be
configured to handle values encoded with a certain Media Type. By setting the `client-
encoding` attribute in the `memcached-connector` element, the server will return
content in this configured format, and clients also send data in this format.

The `client-encoding` is useful when a single cache is accessed from multiple remote
endpoints (Rest, HotRod, Memcached) and it allows to tailor the responses/requests to
memcached text clients. For more infomarmation on interoperability between endpoints,
consult the endpoint interoperability documentation.

//old_link: link:#endpoint_interop[Endpoint Interop guide].

== Command Clarifications
=== Flush All
Even in a clustered environment, flush_all command leads to the clearing of the
{brandname} Memcached server where the call lands. There's no attempt to propagate
this flush to other nodes in the cluster. This is done so that flush_all with delay
use case can be reproduced with the {brandname} Memcached server. The aim of passing a
delay to flush_all is so that different Memcached servers in a full can be flushed at
different times, and hence avoid overloading the database with requests as a result of
all Memcached servers being empty. For more info, check the
link:http://github.com/memcached/memcached/blob/master/doc/protocol.txt[Memcached text
protocol section on flush_all] .

== Unsupported Features
This section explains those parts of the memcached text protocol that for one reason
or the other, are not currently supported by the {brandname} based memcached
implementation.

102

=== Individual Stats
Due to difference in nature between the original memcached implementation which is
C/C\+\+ based and the {brandname} implementation which is Java based, there're some
general purpose stats that are not supported. For these unsupported stats, {brandname}
memcached server always returns 0.

.Unsupported statistics
* pid
* pointer_size
* rusage_user
* rusage_system
* bytes
* curr_connections
* total_connections
* connection_structures
* auth_cmds
* auth_errors
* limit_maxbytes
* threads
* conn_yields
* reclaimed

=== Statistic Settings
The settings statistics section of the text protocol has not been implemented due to
its volatility.

=== Settings with Arguments Parameter
Since the arguments that can be send to the Memcached server are not documented,
{brandname} Memcached server does not support passing any arguments to stats command.
If any parameters are passed, the {brandname} Memcached server will respond with a
CLIENT_ERROR .

=== Delete Hold Time Parameter
Memcached does no longer honor the optional hold time parameter to delete command and
so the {brandname} based memcached server does not implement such feature either.

=== Verbosity Command
Verbosity command is not supported since {brandname} logging cannot be simplified to
defining the logging level alone.

== Talking To {brandname} Memcached Servers From Non-Java Clients
This section shows how to talk to {brandname} memcached server via non-java client,
such as a python script.

=== Multi Clustered Server Tutorial
The example showcases the distribution capabilities of {brandname} memcached severs
that are not available in the original memcached implementation.

* Start two clustered nodes:
This configuration is the same one used for the GUI demo:

103

 $./bin/standalone.sh -c clustered.xml -Djboss.node.name=nodeA
 $./bin/standalone.sh -c clustered.xml -Djboss.node.name=nodeB
-Djboss.socket.binding.port-offset=100

Alternatively use

 $./bin/domain.sh

Which automatically starts two nodes.

* Execute
link:https://github.com/infinispan/infinispan/tree/master/server/memcached/src/test/re
sources/test_memcached_write.py[test_memcached_write.py] script which basically
executes several write operations against the {brandname} memcached server bound to
port 11211. If the script is executed successfully, you should see an output similar
to this:

 Connecting to 127.0.0.1:11211
 Testing set ['Simple_Key': Simple value] ... OK
 Testing set ['Expiring_Key' : 999 : 3] ... OK
 Testing increment 3 times ['Incr_Key' : starting at 1]
 Initialise at 1 ... OK
 Increment by one ... OK
 Increment again ... OK
 Increment yet again ... OK
 Testing decrement 1 time ['Decr_Key' : starting at 4]
 Initialise at 4 ... OK
 Decrement by one ... OK
 Testing decrement 2 times in one call ['Multi_Decr_Key' : 3]
 Initialise at 3 ... OK
 Decrement by 2 ... OK

* Execute
link:https://github.com/infinispan/infinispan/tree/master/server/memcached/src/test/re
sources/test_memcached_read.py[test_memcached_read.py] script which connects to server
bound to 127.0.0.1:11311 and verifies that it can read the data that was written by
the writer script to the first server. If the script is executed successfully, you
should see an output similar to this:

[source,options=nowrap]

Connecting to 127.0.0.1:11311
Testing get ['Simple_Key'] should return Simple value ... OK
Testing get ['Expiring_Key'] should return nothing... OK
Testing get ['Incr_Key'] should return 4 ... OK
Testing get ['Decr_Key'] should return 3 ... OK
Testing get ['Multi_Decr_Key'] should return 1 ... OK

104

:leveloffset: 1

//Next topic seems pointless and out of place.
//include::../../topics/execute_grid_remote.adoc[leveloffset=+1]
:leveloffset: +1

[[scripting]]
= Scripting

Scripting is a feature of {brandname} Server which allows invoking server-side scripts
from remote clients.
Scripting leverages the JDK's javax.script ScriptEngines, therefore allowing the use
of any JVM languages which offer one.
By default, the JDK comes with Nashorn, a ScriptEngine capable of running JavaScript.

== Installing scripts
Scripts are stored in a special script cache, named '___script_cache'.
Adding a script is therefore as simple as +put+ting it into the cache itself.
If the name of the script contains a filename extension, e.g. +myscript.js+, then that
extension determines the engine that
will be used to execute it.
Alternatively the script engine can be selected using script metadata (see below).
Be aware that, when security is enabled, access to the script cache via the remote
protocols requires
that the user belongs to the pass:['___script_manager'] role.

== Script metadata
Script metadata is additional information about the script that the user can provide
to the server to affect how a
script is executed.
It is contained in a specially-formatted comment on the first lines of the script.

Properties are specified as +key=value+ pairs, separated by commas.
You can use several different comment styles: The `//`, `;;`, `#` depending on the
scripting language you use.
You can split metadata over multiple lines if necessary, and you can use single (') or
double (") quotes to delimit your values.

The following are examples of valid metadata comments:
[source,javascript]

105

=== Metadata properties

The following metadata property keys are available

* mode: defines the mode of execution of a script. Can be one of the following values:
** local: the script will be executed only by the node handling the request. The
script itself however can invoke clustered operations
** distributed: runs the script using the Distributed Executor Service
* language: defines the script engine that will be used to execute the script, e.g.
Javascript
* extension: an alternative method of specifying the script engine that will be used
to execute the script, e.g. js
* role: a specific role which is required to execute the script
* parameters: an array of valid parameter names for this script. Invocations which
specify parameter names not included in this list will cause an exception.
* datatype: optional property providing information, in the form of
Media Types (also known as MIME) about the type of the data stored in the
caches, as well as parameter and return values. Currently it only accepts a
single value which is `text/plain; charset=utf-8`, indicating that data is
String UTF-8 format. This metadata parameter is designed for remote clients
that only support a particular type of data, making it easy for them to
retrieve, store and work with parameters.

Since the execution mode is a characteristic of the script, nothing special needs to
be done on the client to invoke scripts in different modes.

== Script bindings
The script engine within {brandname} exposes several internal objects as bindings in
the scope of the script execution.
These are:

* cache: the cache against which the script is being executed
* marshaller: the marshaller to use for marshalling/unmarshalling data to the cache
* cacheManager: the cacheManager for the cache
* scriptingManager: the instance of the script manager which is being used to run the
script. This can be used to run other scripts from a script.

== Script parameters
Aside from the standard bindings described above, when a script is executed it can be
passed a set of named parameters which also appear as bindings.
Parameters are passed as +name,value+ pairs where +name+ is a string and +value+ can
be any value that is understood by the marshaller in use.

The following is an example of a JavaScript script which takes two parameters,
+multiplicand+ and +multiplier+ and multiplies them.
Because the last operation is an expression evaluation, its result is returned to the
invoker.
[source,javascript]

multiplicand * multiplier

106

To store the script in the script cache, use the following Hot Rod code:

[source,java]

RemoteCache<String, String> scriptCache = cacheManager.getCache("___script_cache");
scriptCache.put("multiplication.js", "// mode=local,language=javascript\n"
"multiplicand * multiplier\n");

== Running Scripts using the Hot Rod Java client
The following example shows how to invoke the above script by passing two named
parameters.

[source,java]

RemoteCache<String, Integer> cache = cacheManager.getCache(); Map<String, Object> params =
new HashMap<>(); params.put("multiplicand", 10); params.put("multiplier", 20); Object result =
cache.execute("multiplication.js", params);

== Distributed execution
The following is a script which runs on all nodes.
Each node will return its address, and the results from all nodes will be collected in
a List and returned to the client.
[source,javascript]

cacheManager.getAddress().toString();

107

:leveloffset: 1
:leveloffset: +1

[[server_tasks]]
= Server Tasks
Server tasks are server-side scripts defined in Java language.

== Implementing Server Tasks
To develop a server task, you should define a class that extends
link:{javadocroot}/org/infinispan/tasks/ServerTask.html[`org.infinispan.tasks.ServerTa
sk`]
interface, defined in `infinispan-tasks-api` module.

A typical server task implementation would implement these methods:

* link:{javadocroot}/org/infinispan/tasks/ServerTask.html#setTaskContext-
org.infinispan.tasks.TaskContext-[`setTaskContext`]
allows server tasks implementors to access execution context information.
This includes task parameters, cache reference on which the task is executed...etc.
Normally, implementors would store this information locally and use it when the task
is actually executed.
* link:{javadocroot}/org/infinispan/tasks/Task.html#getName--[`getName`]
should return a unique name for the task.
The client will use this name to to invoke the task.
* link:{javadocroot}/org/infinispan/tasks/Task.html#getExecutionMode--
[`getExecutionMode`]
is used to decide whether to invoke the task in 1 node in a cluster of N nodes or
invoke it in N nodes.
For example, server tasks that invoke stream processing are only required to be
executed in 1 node in the cluster.
This is because stream processing itself makes sure processing is distributed to all
nodes in cluster.
* http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html?is-
external=true#call--[`call`]
is the method that's invoked when the user invokes the server task.

Here's an example of a hello greet task that takes as parameter the name of the person
to greet.

[source,java]

package example;

import org.infinispan.tasks.ServerTask; import org.infinispan.tasks.TaskContext;

public class HelloTask implements ServerTask<String> {

private TaskContext ctx;

108

@Override
public void setTaskContext(TaskContext ctx) {
 this.ctx = ctx;
}

@Override
public String call() throws Exception {
 String name = (String) ctx.getParameters().get().get("name");
 return "Hello " + name;
}

@Override
public String getName() {
 return "hello-task";
}

}

Once the task has been implemented, it needs to be wrapped inside a jar.
The jar is then deployed to the {brandname} Server and from them on it can be invoked.
The {brandname} Server uses
https://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html[service loader
pattern]
to load the task, so implementations need to adhere to these requirements.
For example, server task implementations must have a zero-argument constructor.

Moreover, the jar must contain a
`META-INF/services/org.infinispan.tasks.ServerTask`
file containing the fully qualified name(s) of the server tasks included in the jar.
For example:

[source]

example.HelloTask

With jar packaged, the next step is to push the jar to the {brandname} Server.
The server is powered by WildFly Application Server, so if using Maven
https://docs.jboss.org/wildfly/plugins/maven/latest/index.html[Wildfly's Maven plugin]
can be used for this:

[source,xml,options="nowrap",subs=attributes+]

<plugin> <groupId>org.wildfly.plugins</groupId> <artifactId>wildfly-maven-plugin</artifactId>
<version>1.2.0.Final</version> </plugin>

109

Then call the following from command line:

[source, bash]

$ mvn package wildfly:deploy

Alternative ways of deployment jar files to Wildfly Application Server are explained
https://docs.jboss.org/author/display/WFLY10/Application+deployment[here].

Executing the task can be done using the following code:

[source, java]

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.addServer().host("127.0.0.1").port(11222);

RemoteCacheManager cacheManager = new RemoteCacheManager(builder.build());

RemoteCache<String, String> cache = cacheManager.getCache();

Map<String, String> parameters = new HashMap<>(); parameters.put("name", "developer");

String greet = cache.execute("hello-task", parameters); System.out.println(greet);

110

:leveloffset: 1

:leveloffset: +1

= Health monitoring

{brandname} server has special endpoints for monitoring cluster health. The API is
exposed via:

* Programmatically (using `embeddedCacheManager.getHealth()`)
* JMX
* CLI
* REST (using
https://docs.jboss.org/author/display/WFLY10/The+HTTP+management+API[WildFly HTTP
Management API])

== Accessing Health API using JMX

At first you need to connect to the {brandname} Server using JMX (use JConsole or
other tool for this).
Next, navigate to object name `jboss.datagrid-
infinispan:type=CacheManager,name="clustered",component=CacheContainerHealth`.

== Accessing Health API using CLI

You can access the Health API from the Command Line Interface (CLI), as in the
following examples:

Standalone::
+
[source,options=nowrap,subs=attributes+]

$ bin/ispn-cli.sh -c "/subsystem=datagrid-infinispan/cache-
container=clustered/health=HEALTH:read-resource(include-runtime=true)"

Domain Mode::
+
[source,options=nowrap,subs=attributes+]

$ bin/ispn-cli.sh -c "/host=master/server=${servername}/subsystem=datagrid-infinispan/cache-
container=clustered/health=HEALTH:read-resource(include-runtime=true)"

111

+
Where `${servername}` is the name of the {brandname} server instance.

The following is a sample result for the CLI invocation:

[source,options="nowrap",subs=attributes+]

{ "outcome" ⇒ "success", "result" ⇒ { "cache-health" ⇒ "HEALTHY", "cluster-
health" ⇒ ["test"], "cluster-name" ⇒ "clustered", "free-memory" ⇒ 99958L, "log-
tail" ⇒ ["<time_stamp> INFO [org.infinispan.server.endpoint] (MSC service thread 1-5)
DGENDPT10001: HotRodServer listening on 127.0.0.1:11222", "<time_stamp> INFO
[org.infinispan.server.endpoint] (MSC service thread 1-1) DGENDPT10001: MemcachedServer
listening on 127.0.0.1:11211", "<time_stamp> INFO [org.jboss.as.clustering.infinispan] (MSC
service thread 1-6) DGISPN0001: Started _protobuf_metadata cache from clustered container",
"<time_stamp> INFO [org.jboss.as.clustering.infinispan] (MSC service thread 1-6) DGISPN0001:
Started _script_cache cache from clustered container", "<time_stamp> INFO
[org.jboss.as.clustering.infinispan] (MSC service thread 1-5) DGISPN0001: Started
___hotRodTopologyCache cache from clustered container", "<time_stamp> INFO
[org.infinispan.rest.NettyRestServer] (MSC service thread 1-6) ISPN012003: REST server starting,
listening on 127.0.0.1:8080", "<time_stamp> INFO [org.infinispan.server.endpoint] (MSC
service thread 1-6) DGENDPT10002: REST mapped to /rest", "<time_stamp> INFO [org.jboss.as]
(Controller Boot Thread) WFLYSRV0060: Http management interface listening on http://127.0.0.1:9990/management",
"<time_stamp> INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0051: Admin console
listening on http://127.0.0.1:9990",
"<time_stamp> INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0025: {brandname}
Server <build_version> (WildFly Core <build_version>) started in 8681ms - Started 196 of
237 services (121 services are lazy, passive or on-demand)"], "number-of-cpus" ⇒ 8, "number-
of-nodes" ⇒ 1, "total-memory" ⇒ 235520L } }

== Accessing Health API using REST

The REST interface lets you access the same set of resources as the CLI. However, the
HTTP Management API requires authentication so you must first add credentials with the
`add-user.sh` script.

After you set up credentials, access the Health API via REST as in the following
examples:

Standalone::
+
[source,bash]

curl --digest -L -D - "http://localhost:9990/management/subsystem/datagrid-infinispan/cache-
container/clustered/health/HEALTH?operation=resource&include-runtime=true&json.pretty=1"
--header "Content-Type: application/json" -u username:password

112

Domain Mode::
+
[source,bash]

curl --digest -L -D -
"http://localhost:9990/management/host/master/server/${servername}/subsystem/datagrid-
infinispan/cache-container/clustered/health/HEALTH?operation=resource&include-
runtime=true&json.pretty=1" --header "Content-Type: application/json" -u username:password

+
Where `${servername}` is the name of the {brandname} server instance.

The following is a sample result for the REST invocation:

[source,options="nowrap",subs=attributes+]

HTTP/1.1 200 OK Connection: keep-alive Authentication-Info:
nextnonce="AuZzFxz7uC4NMTQ3MDgyNTU1NTQ3OCfIJBHXVpPHPBdzGUy7Qts=",qop="auth",rspau
th="b518c3170e627bd732055c382ce5d970",cnonce="NGViOWM0NDY5OGJmNjY0MjcyOWE4NDkyZD
U3YzNhYjY=",nc=00000001 Content-Type: application/json; charset=utf-8 Content-Length: 1927 Date:
<time_stamp>

{ "cache-health" : "HEALTHY", "cluster-health" : ["test", "HEALTHY"], "cluster-name" : "clustered",
"free-memory" : 96778, "log-tail" : ["<time_stamp> INFO [org.infinispan.server.endpoint] (MSC
service thread 1-5) DGENDPT10001: HotRodServer listening on 127.0.0.1:11222",
"<time_stamp> INFO [org.infinispan.server.endpoint] (MSC service thread 1-1)
DGENDPT10001: MemcachedServer listening on 127.0.0.1:11211", "<time_stamp> INFO
[org.jboss.as.clustering.infinispan] (MSC service thread 1-6) DGISPN0001: Started
_protobuf_metadata cache from clustered container", "<time_stamp> INFO
[org.jboss.as.clustering.infinispan] (MSC service thread 1-6) DGISPN0001: Started
_script_cache cache from clustered container", "<time_stamp> INFO
[org.jboss.as.clustering.infinispan] (MSC service thread 1-5) DGISPN0001: Started
___hotRodTopologyCache cache from clustered container", "<time_stamp> INFO
[org.infinispan.rest.NettyRestServer] (MSC service thread 1-6) ISPN012003: REST server starting,
listening on 127.0.0.1:8080", "<time_stamp> INFO [org.infinispan.server.endpoint] (MSC
service thread 1-6) DGENDPT10002: REST mapped to /rest", "<time_stamp> INFO [org.jboss.as]
(Controller Boot Thread) WFLYSRV0060: Http management interface listening on http://127.0.0.1:9990/management",
"<time_stamp> INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0051: Admin console
listening on http://127.0.0.1:9990",
"<time_stamp> INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0025: {brandname}
Server <build_version> (WildFly Core <build_version>) started in 8681ms - Started 196 of
237 services (121 services are lazy, passive or on-demand)"], "number-of-cpus" : 8, "number-of-
nodes" : 1, "total-memory" : 235520 }%

113

Note that the result from the REST API is exactly the same as the one obtained by CLI.

//-

:leveloffset: 1
:leveloffset: +1

= Multi-tenancy

Multi-tenancy allows accessing multiple containers as shown below:

image::{images_dir}/multi-tenancy.png[]

Currently there are two supported protocols for accessing the data - using Hot Rod
client and using REST interface.

== Using REST interface

Multi-tenancy router uses URL prefixes to separate containers using the following
template:
`https://<server_ip>:<server_port>/rest/<rest_connector_name>/<cache_name>/<key>`. All
HTTP operations remain exactly the same as using standard `rest-connector`.

The REST connector by default support both HTTP/1.1 and HTTP/2 protocols. The
switching from HTTP/1.1 to HTTP/2 procedure involves
either using TLS/ALPN negotiation or HTTP/1.1 upgrade procedure. The former requires
proper encryption to be enabled. The latter
is always enabled.

== Using Hot Rod client

Multi-tenant routing for binary protocols requires using a standard, transport layer
mechanism such as link:https://en.wikipedia.org/wiki/Server_Name_Indication[SSL/TLS
Server Name Indication]. The server needs to be configured to support encryption and
additional SNI routing needs to be added to the `router-connector`.

In order to connect to a secured Hot Rod server, the client needs to use configuration
similar to this:

[source,java]

ConfigurationBuilder clientBuilder = new ConfigurationBuilder(); clientBuilder .addServer()
.host("127.0.0.1") .port(hotrodServer.getPort()) .security() .ssl() .enabled(sslClient)
.sniHostName("hotrod-1") // SNI Host Name .trustStoreFileName("truststore.jks")
.trustStorePassword("secret".toCharArray()); remoteCacheManager = new
RemoteCacheManager(clientBuilder.build());

114

=== Multi-tenant router

The Multi-tenant router endpoint works as a facade for one or more REST/Hot Rod
connectors. Its main purpose is to forward client requests into proper container.

In order to properly configure the routing, `socket-binding` attributes of other
connectors must be disabled and additional attribute `name` must be used as shown
below:

[source,xml,options="nowrap",subs=attributes+]

<rest-connector name="rest-1" cache-container="local"/> <rest-connector name="rest-2" cache-
container="local"/> <hotrod-connector name="hotrod-1" cache-container="local" /> <hotrod-
connector name="hotrod-2" cache-container="local" />

The next step is to add a new `router-connector` endpoint and configure how other
containers will be accessed. Note that Hot Rod connectors require using TLS/SNI and
REST connectors require using prefix in the URL:

[source,xml,options="nowrap",subs=attributes+]

<router-connector hotrod-socket-binding="hotrod" rest-socket-binding="rest" keep-alive="true" tcp-
nodelay="false" receive-buffer-size="1024" send-buffer-size="1024"> <hotrod name="hotrod-1" >
<sni host-name="hotrod-1" security-realm="SSLRealm1"/> </hotrod> <hotrod name="hotrod-2" >
<sni host-name="hotrod-2" security-realm="SSLRealm2"/> </hotrod> <rest name="rest-1"> <prefix
path="rest-1" /> </rest> <rest name="rest-2"> <prefix path="rest-2" /> </rest> </router-connector>

115

With the following configuration, Hot Rod clients will access `hotrod-1` connector
when using SNI Host Name "hotrod-1".
REST clients will need to use the following URL to access "rest-1" connector -
`https://<server_ip>:<server_port>/rest/rest-1`.

:leveloffset: 1

:leveloffset: +1

= Single-Port

Single-Port is a special type of router connector which allows exposing multiple
protocols over the same TCP port.
This approach is very convenient because it reduces the number of ports required by a
server, with advantages in security, configuration and management.
Protocol switching is handled in three ways:

* *HTTP/1.1 Upgrade header*: initiate an HTTP/1.1 connection and send an `Upgrade:
protocol` header where protocol is the name assigned to the desired endpoint.
* *TLS/ALPN*: protocol selection is performed based on the SNI specified by the
client.
* *Hot Rod header detection*: if a Hot Rod endpoint is present in the router
configuration, then any attempt to send a Hot Rod header will be detected and the
protocol will be switched automatically.

NOTE: The initial implementation supports only HTTP/1.1, HTTP/2 and Hot Rod protocols.
The Memcached protocol is not supported.

== Single-Port router

Internally, Single-Port is based on the same router component used to enable multi-
tenancy, and therefore it shares the same configuration.

[source,xml,options="nowrap",subs=attributes+]

<!-- TLS/ALPN negotiation -→ <router-connector name="router-ssl" single-port-socket-binding="rest-
ssl"> <single-port security-realm="SSLRealm1"> <hotrod name="hotrod" /> <rest name="rest" />
</single-port> </router-connector> <!-- HTTP 1.1/Upgrade procedure -→ <router-connector
name="router" single-port-socket-binding="rest"> <single-port> <hotrod name="hotrod" /> <rest
name="rest" /> </single-port> </router-connector>

116

With the configuration above, the Single-Port Router will operate on `rest` and `rest-
ssl` socket
bindings. The router named `router` should typically operate on port `8080` and will
use HTTP/1.1 Upgrade
(also known as _cleartext upgrade_) procedure. The other router instance (called
`router-ssl`) should typically
operate on port `8443` and will use TLS/ALPN.

=== Testing the Single-Port router

A tool such as `curl` can be used to access cache using both _cleartext upgrade_ or
TLS/ALPN. Here's an example:

[source,bash]

$ curl -v -k --http2-prior-knowledge https://127.0.0.1:8443/rest/default/test

The `--http2-prior-knowledge` can be exchanged with `--http2` switch allowing to
control how the switch procedure
is being done (via Plain-Text Upgrade or TLS/ALPN).

== Hot Rod

The single-port router has built-in automatic detection of Hot Rod messages which
trigger a transparent "upgrade" to the
Hot Rod protocol. This means that no changes are required on the client side to
connect to a single-port endpoint.
It also means that older clients will also be able to function seamlessly.

=== TLS/ALPN protocol selection

Another supported way to select the protocol is to use TLS/ALPN which uses the
link:https://tools.ietf.org/html/rfc7301[Application-Layer Protocol Negotiation] spec.
This feature requires that you have configured your endpoint to enable TLS. If you are
using JDK 9 or greater, ALPN is
supported out-of-the-box. However, if you are using JDK 8, you will need to use
https://netty.io/wiki/forked-tomcat-native.html[Netty's BoringSSL] library, which
leverages native libraries to enable ALPN.

[source,xml,options="nowrap",subs=attributes+]

<dependencyManagement> <dependency> <groupId>io.netty</groupId> <artifactId>netty-
bom</artifactId> <!-- Pulled from Infinispan BOM -→ <version>${version.netty}</version>
<type>pom</type> <scope>import</scope> </dependency> </dependencies>
</dependencyManagement>

<dependency> <groupId>io.netty</groupId> <artifactId>netty-tcnative-boringssl-static</artifactId>
<!-- The version is defined in Netty BOM -→ </dependency>

117

https://127.0.0.1:8443/rest/default/test

After adding the library, configure your trust store accordingly:

[source,java]

ConfigurationBuilder builder = new ConfigurationBuilder() .addServers("127.0.0.1:8443");

builder.security().ssl().enable() .trustStoreFileName("truststore.pkcs12")
.trustStorePassword(DEFAULT_TRUSTSTORE_PASSWORD.toCharArray());

RemoteCacheManager remoteCacheManager = new RemoteCacheManager(builder.build());
RemoteCache<String, String> cache = remoteCacheManager.getCache("default"");

:leveloffset: 1

//Topics assembled into user stories.
//include::stories.adoc[]

118

	Running {brandname} 10.0 Servers
	Table of Contents
	Chapter 1. About the {brandname} Server
	1.1. Getting Started

	Chapter 2. Operating modes
	2.1. Standalone mode
	2.2. Domain mode
	2.2.1. Host
	2.2.2. Domain Controller
	2.2.3. Server Group
	2.2.4. Server

	2.3. Example configurations

	Chapter 3. Configuration
	3.1. JGroups subsystem configuration
	3.2. below is connection pooling config

	Chapter 4. Shows how to interact with the REST api from ruby.
	Chapter 5. No special libraries, just standard net/http
	Chapter 6. Setup basic auth
	Chapter 7. putting data in
	Chapter 8. getting data out

