
Hot Rod Protocol Reference Guide
The {brandname} community

Table of Contents
1. Hot Rod Protocol . 1

1.1. Hot Rod Protocol 1.0. 1

1.1.1. Request Header . 2

1.1.2. Response Header. 4

1.1.3. Topology Change Headers. 6

1.1.4. Topology-Aware Client Topology Change Header . 6

1.1.5. Distribution-Aware Client Topology Change Header . 6

1.1.6. Operations . 7

1.1.7. Example - Put request . 16

1.2. Hot Rod Protocol 1.1. 17

1.2.1. Request Header . 17

1.2.2. Distribution-Aware Client Topology Change Header . 17

1.2.3. Server node hash code calculation. 18

1.3. Hot Rod Protocol 1.2. 19

1.3.1. Request Header . 19

1.3.2. Response Header. 19

1.3.3. Operations . 20

1.4. Hot Rod Protocol 1.3. 21

1.4.1. Request Header . 21

1.4.2. Response Header. 22

1.4.3. Operations . 22

1.5. Hot Rod Protocol 2.0. 22

1.5.1. Request Header . 22

1.5.2. Response Header. 23

1.5.3. Distribution-Aware Client Topology Change Header . 24

1.5.4. Operations . 25

1.5.5. Remote Events . 28

1.6. Hot Rod Protocol 2.1. 30

1.6.1. Request Header . 30

1.6.2. Operations . 30

1.7. Hot Rod Protocol 2.2. 31

1.7.1. Operations . 31

1.8. Hot Rod Protocol 2.3. 32

1.8.1. Operations . 32

1.9. Hot Rod Protocol 2.4. 34

1.9.1. Operations . 34

1.10. Hot Rod Protocol 2.5 . 36

1.11. Hot Rod Protocol 2.6 . 38

1.12. Hot Rod Protocol 2.7 . 41

1.13. Hot Rod Protocol 2.8 . 48

1.13.1. Request Header . 49

1.14. Hot Rod Protocol 2.9 . 50

1.15. Hot Rod Hash Functions . 54

1.16. Hot Rod Admin Tasks . 55

1.16.1. Admin tasks . 55

1.17. Hot Rod Protocol 3.0 . 56

Chapter 1. Hot Rod Protocol
The following articles provides detailed information about each version of the custom TCP
client/server Hot Rod protocol.

• Hot Rod Protocol 1.0 (Infinispan 4.1)

• Hot Rod Protocol 1.1 (Infinispan 5.1)

• Hot Rod Protocol 1.2 (Infinispan 5.2)

• Hot Rod Protocol 1.3 (Infinispan 6.0)

• Hot Rod Protocol 2.0 (Infinispan 7.0)

• Hot Rod Protocol 2.1 (Infinispan 7.1)

• Hot Rod Protocol 2.2 (Infinispan 8.0)

• Hot Rod Protocol 2.3 (Infinispan 8.0)

• Hot Rod Protocol 2.4 (Infinispan 8.1)

• Hot Rod Protocol 2.5 (Infinispan 8.2)

• Hot Rod Protocol 2.6 (Infinispan 9.0)

• Hot Rod Protocol 2.7 (Infinispan 9.2)

• Hot Rod Protocol 2.8 (Infinispan 9.3)

• Hot Rod Protocol 2.9 (Infinispan 9.4)

• Hot Rod Protocol 3.0 (Infinispan 10.0)

1.1. Hot Rod Protocol 1.0

Infinispan versions

This version of the protocol was implemented since Infinispan 4.1.0.Final and is no
longer supported since Infinispan 10.

All key and values are sent and stored as byte arrays. Hot Rod makes no
assumptions about their types.

Some clarifications about the other types:

• vInt : Variable-length integers are defined defined as compressed, positive integers where the
high-order bit of each byte indicates whether more bytes need to be read. The low-order seven
bits are appended as increasingly more significant bits in the resulting integer value making it
efficient to decode. Hence, values from zero to 127 are stored in a single byte, values from 128 to
16,383 are stored in two bytes, and so on:

Value First byte Second byte Third byte

0 00000000

1 00000001

1

#hot_rod_protocol_1_0
#hot_rod_protocol_1_1
#hot_rod_protocol_1_2
#hot_rod_protocol_1_3
#hot_rod_protocol_2_0
#hot_rod_protocol_2_1
#hot_rod_protocol_2_2
#hot_rod_protocol_2_3
#hot_rod_protocol_2_4
#hot_rod_protocol_2_5
#hot_rod_protocol_2_6
#hot_rod_protocol_2_7
#hot_rod_protocol_2_8
#hot_rod_protocol_2_9
#hot_rod_protocol_3_0

Value First byte Second byte Third byte

2 00000010

…
127 01111111

128 10000000 00000001

129 10000001 00000001

130 10000010 00000001

…
16,383 11111111 01111111

16,384 10000000 10000000 00000001

16,385 10000001 10000000 00000001

…

• signed vInt: The vInt above is also able to encode negative values, but will always use the
maximum size (5 bytes) no matter how small the endoded value is. In order to have a small
payload for negative values too, signed vInts uses ZigZag encoding on top of the vInt encoding.
More details here

• vLong : Refers to unsigned variable length long values similar to vInt but applied to longer
values. They’re between 1 and 9 bytes long.

• String : Strings are always represented using UTF-8 encoding.

1.1.1. Request Header

The header for a request is composed of:

Table 1. Request header

Field Name Size Value

Magic 1 byte 0xA0 = request

Message ID vLong ID of the message that will be copied back in the response. This
allows for Hot Rod clients to implement the protocol in an
asynchronous way.

Version 1 byte Hot Rod server version. In this particular case, this is 10

2

http://developers.google.com/protocol-buffers/docs/encoding#types

Field Name Size Value

Opcode 1 byte Request operation code:
0x01 = put (since 1.0)
0x03 = get (since 1.0)
0x05 = putIfAbsent (since 1.0)
0x07 = replace (since 1.0)
0x09 = replaceIfUnmodified (since 1.0)
0x0B = remove (since 1.0)
0x0D = removeIfUnmodified (since 1.0)
0x0F = containsKey (since 1.0)
0x11 = getWithVersion (since 1.0)
0x13 = clear (since 1.0)
0x15 = stats (since 1.0)
0x17 = ping (since 1.0)
0x19 = bulkGet (since 1.2)
0x1B = getWithMetadata (since 1.2)
0x1D = bulkGetKeys (since 1.2)
0x1F = query (since 1.3)
0x21 = authMechList (since 2.0)
0x23 = auth (since 2.0)
0x25 = addClientListener (since 2.0)
0x27 = removeClientListener (since 2.0)
0x29 = size (since 2.0)
0x2B = exec (since 2.1)
0x2D = putAll (since 2.1)
0x2F = getAll (since 2.1)
0x31 = iterationStart (since 2.3)
0x33 = iterationNext (since 2.3)
0x35 = iterationEnd (since 2.3)
0x37 = getStream (since 2.6)
0x39 = putStream (since 2.6)

Cache Name
Length

vInt Length of cache name. If the passed length is 0 (followed by no
cache name), the operation will interact with the default cache.

Cache Name string Name of cache on which to operate. This name must match the
name of predefined cache in the Infinispan configuration file.

Flags vInt A variable length number representing flags passed to the
system. Each flags is represented by a bit. Note that since this
field is sent as variable length, the most significant bit in a byte is
used to determine whether more bytes need to be read, hence
this bit does not represent any flag. Using this model allows for
flags to be combined in a short space. Here are the current values
for each flag:
0x0001 = force return previous value

Client Intelligence 1 byte This byte hints the server on the client capabilities:
0x01 = basic client, interested in neither cluster nor hash
information
0x02 = topology-aware client, interested in cluster information
0x03 = hash-distribution-aware client, that is interested in both
cluster and hash information

3

Field Name Size Value

Topology Id vInt This field represents the last known view in the client. Basic
clients will only send 0 in this field. When topology-aware or
hash-distribution-aware clients will send 0 until they have
received a reply from the server with the current view id.
Afterwards, they should send that view id until they receive a
new view id in a response.

Transaction Type 1 byte This is a 1 byte field, containing one of the following well-known
supported transaction types (For this version of the protocol, the
only supported transaction type is 0):
0 = Non-transactional call, or client does not support
transactions. The subsequent TX_ID field will be omitted.
1 = X/Open XA transaction ID (XID). This is a well-known, fixed-
size format.

Transaction Id byte array The byte array uniquely identifying the transaction associated to
this call. Its length is determined by the transaction type. If
transaction type is 0, no transaction id will be present.

1.1.2. Response Header

The header for a response is composed of:

Table 2. Response header

Field Name Size Value

Magic 1 byte 0xA1 = response

Message ID vLong ID of the message, matching the request for which the response
is sent.

4

Field Name Size Value

Opcode 1 byte Response operation code:
0x02 = put (since 1.0)
0x04 = get (since 1.0)
0x06 = putIfAbsent (since 1.0)
0x08 = replace (since 1.0)
0x0A = replaceIfUnmodified (since 1.0)
0x0C = remove (since 1.0)
0x0E = removeIfUnmodified (since 1.0)
0x10 = containsKey (since 1.0)
0x12 = getWithVersion (since 1.0)
0x14 = clear (since 1.0)
0x16 = stats (since 1.0)
0x18 = ping (since 1.0)
0x1A = bulkGet (since 1.0)
0x1C = getWithMetadata (since 1.2)
0x1E = bulkGetKeys (since 1.2)
0x20 = query (since 1.3)
0x22 = authMechList (since 2.0)
0x24 = auth (since 2.0)
0x26 = addClientListener (since 2.0)
0x28 = removeClientListener (since 2.0)
0x2A = size (since 2.0)
0x2C = exec (since 2.1)
0x2E = putAll (since 2.1)
0x30 = getAll (since 2.1)
0x32 = iterationStart (since 2.3)
0x34 = iterationNext (since 2.3)
0x36 = iterationEnd (since 2.3)
0x38 = getStream (since 2.6)
0x3A = putStream (since 2.6)
0x50 = error (since 1.0)

Status 1 byte Status of the response, possible values:
0x00 = No error
0x01 = Not put/removed/replaced
0x02 = Key does not exist
0x81 = Invalid magic or message id
0x82 = Unknown command
0x83 = Unknown version
0x84 = Request parsing error
0x85 = Server Error
0x86 = Command timed out

Topology Change
Marker

string This is a marker byte that indicates whether the response is
prepended with topology change information. When no topology
change follows, the content of this byte is 0. If a topology change
follows, its contents are 1.

Exceptional error status responses, those that start with 0x8 …, are followed by the
length of the error message (as a vInt) and error message itself as String.

5

1.1.3. Topology Change Headers

The following section discusses how the response headers look for topology-aware or hash-
distribution-aware clients when there’s been a cluster or view formation change. Note that it’s the
server that makes the decision on whether it sends back the new topology based on the current
topology id and the one the client sent. If they’re different, it will send back the new topology.

1.1.4. Topology-Aware Client Topology Change Header

This is what topology-aware clients receive as response header when a topology change is sent
back:

Field Name Size Value

Response header
with topology
change marker

variable See previous section.

Topology Id vInt Topology ID

Num servers in
topology

vInt Number of Hot Rod servers running within the cluster. This
could be a subset of the entire cluster if only a fraction of those
nodes are running Hot Rod servers.

m1: Host/IP length vInt Length of hostname or IP address of individual cluster member
that Hot Rod client can use to access it. Using variable length here
allows for covering for hostnames, IPv4 and IPv6 addresses.

m1: Host/IP
address

string String containing hostname or IP address of individual cluster
member that Hot Rod client can use to access it.

m1: Port 2 bytes
(Unsigned

Short)

Port that Hot Rod clients can use to communicate with this
cluster member.

m2: Host/IP length vInt

m2: Host/IP
address

string

m2: Port 2 bytes
(Unsigned

Short)

…etc

1.1.5. Distribution-Aware Client Topology Change Header

This is what hash-distribution-aware clients receive as response header when a topology change is
sent back:

Field Name Size Value

Response header
with topology
change marker

variable See previous section.

Topology Id vInt Topology ID

6

Field Name Size Value

Num Key Owners 2 bytes
(Unsigned

Short)

Globally configured number of copies for each Infinispan
distributed key

Hash Function
Version

1 byte Hash function version, pointing to a specific hash function in use.
See Hot Rod hash functions for details.

Hash space size vInt Modulus used by Infinispan for for all module arithmetic related
to hash code generation. Clients will likely require this
information in order to apply the correct hash calculation to the
keys.

Num servers in
topology

vInt Number of Infinispan Hot Rod servers running within the
cluster. This could be a subset of the entire cluster if only a
fraction of those nodes are running Hot Rod servers.

m1: Host/IP length vInt Length of hostname or IP address of individual cluster member
that Hot Rod client can use to access it. Using variable length here
allows for covering for hostnames, IPv4 and IPv6 addresses.

m1: Host/IP
address

string String containing hostname or IP address of individual cluster
member that Hot Rod client can use to access it.

m1: Port 2 bytes
(Unsigned

Short)

Port that Hot Rod clients can use to communicat with this cluster
member.

m1: Hashcode 4 bytes 32 bit integer representing the hashcode of a cluster member
that a Hot Rod client can use indentify in which cluster member
a key is located having applied the CSA to it.

m2: Host/IP length vInt

m2: Host/IP
address

string

m2: Port 2 bytes
(Unsigned

Short)

m2: Hashcode 4 bytes

…etc

It’s important to note that since hash headers rely on the consistent hash algorithm used by the
server and this is a factor of the cache interacted with, hash-distribution-aware headers can only be
returned to operations that target a particular cache. Currently ping command does not target any
cache (this is to change as per ISPN-424) , hence calls to ping command with hash-topology-aware
client settings will return a hash-distribution-aware header with "Num Key Owners", "Hash
Function Version", "Hash space size" and each individual host’s hash code all set to 0. This type of
header will also be returned as response to operations with hash-topology-aware client settings that
are targeting caches that are not configured with distribution.

1.1.6. Operations

Get (0x03)/Remove (0x0B)/ContainsKey (0x0F)/GetWithVersion (0x11)

7

#hot_rod_hash_functions
https://jira.jboss.org/jira/browse/ISPN-424

Common request format:

Field Name Size Value

Header variable Request header

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

Get response (0x04):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if key retrieved
0x02 = if key does not exist

Value Length vInt If success, length of value

Value byte array If success, the requested value

Remove response (0x0C):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if key removed
0x02 = if key does not exist

Previous value
Length

vInt If force return previous value flag was sent in the request and
the key was removed, the length of the previous value will be
returned. If the key does not exist, value length would be 0. If no
flag was sent, no value length would be present.

Previous value byte array If force return previous value flag was sent in the request and
the key was removed, previous value.

ContainsKey response (0x10):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if key exists
0x02 = if key does not exist

GetWithVersion response (0x12):

Field Name Size Value

Header variable Response header

8

Field Name Size Value

Response status 1 byte 0x00 = success, if key retrieved
0x02 = if key does not exist

Entry Version 8 bytes Unique value of an existing entry’s modification. The protocol
does not mandate that entry_version values are sequential. They
just need to be unique per update at the key level.

Value Length vInt If success, length of value

Value byte array If success, the requested value

BulkGet

Request (0x19):

Field Name Size Value

Header variable Request header

Entry count vInt Maximum number of Infinispan entries to be returned by the
server (entry == key + associated value). Needed to support
CacheLoader.load(int). If 0 then all entries are returned (needed
for CacheLoader.loadAll()).

Response (0x20):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, data follows

More 1 byte One byte representing whether more entries need to be read
from the stream. So, when it’s set to 1, it means that an entry
follows, whereas when it’s set to 0, it’s the end of stream and no
more entries are left to read. For more information on BulkGet
look here

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

Value 1 Length vInt Length of value

Value 1 byte array Retrieved value

More 1 byte

Key 2 Length vInt

Key 2 byte array

Value 2 Length vInt

Value 2 byte array

… etc

Put (0x01)/PutIfAbsent (0x05)/Replace (0x07)

Common request format:

9

http://community.jboss.org/docs/DOC-15592

Field Name Size Value

Header variable Request header

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

Lifespan vInt Number of seconds that a entry during which the entry is
allowed to life. If number of seconds is bigger than 30 days, this
number of seconds is treated as UNIX time and so, represents the
number of seconds since 1/1/1970. If set to 0, lifespan is
unlimited.

Max Idle vInt Number of seconds that a entry can be idle before it’s evicted
from the cache. If 0, no max idle time.

Value Length vInt Length of value

Value byte-array Value to be stored

Put response (0x02):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if stored

Previous value
Length

vInt If force return previous value flag was sent in the request and
the key was put, the length of the previous value will be
returned. If the key does not exist, value length would be 0. If no
flag was sent, no value length would be present.

Previous value byte array If force return previous value flag was sent in the request and
the key was put, previous value.

Replace response (0x08):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if stored
0x01 = if store did not happen because key does not exist

Previous value
Length

vInt If force return previous value flag was sent in the request, the
length of the previous value will be returned. If the key does not
exist, value length would be 0. If no flag was sent, no value length
would be present.

Previous value byte array If force return previous value flag was sent in the request and
the key was replaced, previous value.

PutIfAbsent response (0x06):

10

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if stored
0x01 = if store did not happen because key was present

Previous value
Length

vInt If force return previous value flag was sent in the request, the
length of the previous value will be returned. If the key does not
exist, value length would be 0. If no flag was sent, no value length
would be present.

Previous value byte array If force return previous value flag was sent in the request and
the key was replaced, previous value.

ReplaceIfUnmodified

Request (0x09):

Field Name Size Value

Header variable Request header

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

Lifespan vInt Number of seconds that a entry during which the entry is
allowed to life. If number of seconds is bigger than 30 days, this
number of seconds is treated as UNIX time and so, represents the
number of seconds since 1/1/1970. If set to 0, lifespan is
unlimited.

Max Idle vInt Number of seconds that a entry can be idle before it’s evicted
from the cache. If 0, no max idle time.

Entry Version 8 bytes Use the value returned by GetWithVersion operation.

Value Length vInt Length of value

Value byte-array Value to be stored

Response (0x0A):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if replaced
0x01 = if replace did not happen because key had been modified
0x02 = if not replaced because if key does not exist

Previous value
Length

vInt If force return previous value flag was sent in the request, the
length of the previous value will be returned. If the key does not
exist, value length would be 0. If no flag was sent, no value length
would be present.

11

Field Name Size Value

Previous value byte array If force return previous value flag was sent in the request and
the key was replaced, previous value.

RemoveIfUnmodified

Request (0x0D):

Field Name Size Value

Header variable Request header

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

Entry Version 8 bytes Use the value returned by GetWithMetadata operation.

Response (0x0E):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if removed
0x01 = if remove did not happen because key had been modified
0x02 = if not removed because key does not exist

Previous value
Length

vInt If force return previous value flag was sent in the request, the
length of the previous value will be returned. If the key does not
exist, value length would be 0. If no flag was sent, no value length
would be present.

Previous value byte array If force return previous value flag was sent in the request and
the key was removed, previous value.

Clear

Request (0x13):

Field Name Size Value

Header variable Request header

Response (0x14):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if cleared

PutAll

Bulk operation to put all key value entries into the cache at the same time.

12

Request (0x2D):

Field Name Size Value

Header variable Request header

Lifespan vInt Number of seconds that provided entries are allowed to live. If
number of seconds is bigger than 30 days, this number of
seconds is treated as UNIX time and so, represents the number of
seconds since 1/1/1970. If set to 0, lifespan is unlimited.

Max Idle vInt Number of seconds that each entry can be idle before it’s evicted
from the cache. If 0, no max idle time.

Entry count vInt How many entries are being inserted

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

Value 1 Length vInt Length of value

Value 1 byte array Retrieved value

Key 2 Length vInt

Key 2 byte array

Value 2 Length vInt

Value 2 byte array

… continues until
entry count is
reached

Response (0x2E):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if all put

GetAll

Bulk operation to get all entries that map to a given set of keys.

Request (0x2F):

Field Name Size Value

Header variable Request header

Key count vInt How many keys to find entries for

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

Key 2 Length vInt

Key 2 byte array

13

Field Name Size Value

… continues until
key count is
reached

Response (0x30):

Field Name Size Value

Header variable Response header

Response status 1 byte

Entry count vInt How many entries are being returned

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

Value 1 Length vInt Length of value

Value 1 byte array Retrieved value

Key 2 Length vInt

Key 2 byte array

Value 2 Length vInt

Value 2 byte array

… continues until
entry count is
reached

0x00 = success, if the get returned sucessfully

Stats

Returns a summary of all available statistics. For each statistic returned, a name and a value is
returned both in String UTF-8 format. The supported stats are the following:

Name Explanation

timeSinceStart Number of seconds since Hot Rod started.

currentNumberOfEntries Number of entries currently in the Hot Rod
server.

totalNumberOfEntries Number of entries stored in Hot Rod server.

stores Number of put operations.

retrievals Number of get operations.

hits Number of get hits.

misses Number of get misses.

removeHits Number of removal hits.

removeMisses Number of removal misses.

Request (0x15):

14

Field Name Size Value

Header variable Request header

Response (0x16):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if stats retrieved

Number of stats vInt Number of individual stats returned.

Name 1 length vInt Length of named statistic.

Name 1 string String containing statistic name.

Value 1 length vInt Length of value field.

Value 1 string String containing statistic value.

Name 2 length vInt

Name 2 string

Value 2 length vInt

Value 2 String

…etc

Ping

Application level request to see if the server is available.

Request (0x17):

Field Name Size Value

Header variable Request header

Response (0x18):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if no errors

Error Handling

Error response (0x50)

Field Name Size Value

Header variable Response header

Response status 1 byte 0x8x = error response code

Error Message
Length

vInt Length of error message

15

Field Name Size Value

Error Message string Error message. In the case of 0x84 , this error field contains the
latest version supported by the Hot Rod server. Length is defined
by total body length.

Multi-Get Operations

A multi-get operation is a form of get operation that instead of requesting a single key, requests a
set of keys. The Hot Rod protocol does not include such operation but remote Hot Rod clients could
easily implement this type of operations by either parallelizing/pipelining individual get requests.
Another possibility would be for remote clients to use async or non-blocking get requests. For
example, if a client wants N keys, it could send send N async get requests and then wait for all the
replies. Finally, multi-get is not to be confused with bulk-get operations. In bulk-gets, either all or a
number of keys are retrieved, but the client does not know which keys to retrieve, whereas in
multi-get, the client defines which keys to retrieve.

1.1.7. Example - Put request

• Coded request

Byte 0 1 2 3 4 5 6 7

8 0xA0 0x09 0x41 0x01 0x07 0x4D ('M') 0x79 ('y') 0x43 ('C')

16 0x61 ('a') 0x63 ('c') 0x68 ('h') 0x65 ('e') 0x00 0x03 0x00 0x00

24 0x00 0x05 0x48 ('H') 0x65 ('e') 0x6C ('l') 0x6C ('l') 0x6F ('o') 0x00

32 0x00 0x05 0x57 ('W') 0x6F ('o') 0x72 ('r') 0x6C ('l') 0x64 ('d')

• Field explanation

Field Name Value Field Name Value

Magic (0) 0xA0 Message Id (1) 0x09

Version (2) 0x41 Opcode (3) 0x01

Cache name length (4) 0x07 Cache name(5-11) 'MyCache'

Flag (12) 0x00 Client Intelligence (13) 0x03

Topology Id (14) 0x00 Transaction Type (15) 0x00

Transaction Id (16) 0x00 Key field length (17) 0x05

Key (18 - 22) 'Hello' Lifespan (23) 0x00

Max idle (24) 0x00 Value field length (25) 0x05

Value (26-30) 'World'

• Coded response

Byte 0 1 2 3 4 5 6 7

8 0xA1 0x09 0x01 0x00 0x00

• Field Explanation

16

Field Name Value Field Name Value

Magic (0) 0xA1 Message Id (1) 0x09

Opcode (2) 0x01 Status (3) 0x00

Topology change
marker (4)

0x00

1.2. Hot Rod Protocol 1.1

Infinispan versions

This version of the protocol was implemented since Infinispan 5.1.0.FINAL and is
no longer supported since Infinispan 10.

1.2.1. Request Header

The version field in the header is updated to 11.

1.2.2. Distribution-Aware Client Topology Change Header

Updated for 1.1

This section has been modified to be more efficient when talking to distributed
caches with virtual nodes enabled.

This is what hash-distribution-aware clients receive as response header when a topology change is
sent back:

Field Name Size Value

Response header
with topology
change marker

variable See previous section.

Topology Id vInt Topology ID

Num Key Owners 2 bytes
(Unsigned

Short)

Globally configured number of copies for each Infinispan
distributed key

Hash Function
Version

1 byte Hash function version, pointing to a specific hash function in use.
See Hot Rod hash functions for details.

Hash space size vInt Modulus used by Infinispan for for all module arithmetic related
to hash code generation. Clients will likely require this
information in order to apply the correct hash calculation to the
keys.

Num servers in
topology

vInt Number of Hot Rod servers running within the cluster. This
could be a subset of the entire cluster if only a fraction of those
nodes are running Hot Rod servers.

17

#hot_rod_hash_functions

Field Name Size Value

Num Virtual
Nodes Owners

vInt Field added in version 1.1 of the protocol that represents the
number of configured virtual nodes. If no virtual nodes are
configured or the cache is not configured with distribution, this
field will contain 0.

m1: Host/IP length vInt Length of hostname or IP address of individual cluster member
that Hot Rod client can use to access it. Using variable length here
allows for covering for hostnames, IPv4 and IPv6 addresses.

m1: Host/IP
address

string String containing hostname or IP address of individual cluster
member that Hot Rod client can use to access it.

m1: Port 2 bytes
(Unsigned

Short)

Port that Hot Rod clients can use to communicat with this cluster
member.

m1: Hashcode 4 bytes 32 bit integer representing the hashcode of a cluster member
that a Hot Rod client can use indentify in which cluster member
a key is located having applied the CSA to it.

m2: Host/IP length vInt

m2: Host/IP
address

string

m2: Port 2 bytes
(Unsigned

Short)

m2: Hashcode 4 bytes

…etc

1.2.3. Server node hash code calculation

Adding support for virtual nodes has made version 1.0 of the Hot Rod protocol impractical due to
bandwidth it would have taken to return hash codes for all virtual nodes in the clusters (this
number could easily be in the millions). So, as of version 1.1 of the Hot Rod protocol, clients are
given the base hash id or hash code of each server, and then they have to calculate the real hash
position of each server both with and without virtual nodes configured. Here are the rules clients
should follow when trying to calculate a node’s hash code:

1\. With virtual nodes disabled : Once clients have received the base hash code of the server, they
need to normalize it in order to find the exact position of the hash wheel. The process of
normalization involves passing the base hash code to the hash function, and then do a small
calculation to avoid negative values. The resulting number is the node’s position in the hash wheel:

public static int getNormalizedHash(int nodeBaseHashCode, Hash hashFct) {
 return hashFct.hash(nodeBaseHashCode) & Integer.MAX_VALUE; // make sure no negative
numbers are involved.
}

2\. With virtual nodes enabled : In this case, each node represents N different virtual nodes, and to

18

calculate each virtual node’s hash code, we need to take the the range of numbers between 0 and N-
1 and apply the following logic:

• For virtual node with 0 as id, use the technique used to retrieve a node’s hash code, as shown in
the previous section.

• For virtual nodes from 1 to N-1 ids, execute the following logic:

public static int virtualNodeHashCode(int nodeBaseHashCode, int id, Hash hashFct) {
 int virtualNodeBaseHashCode = id;
 virtualNodeBaseHashCode = 31 * virtualNodeBaseHashCode + nodeBaseHashCode;
 return getNormalizedHash(virtualNodeBaseHashCode, hashFct);
}

1.3. Hot Rod Protocol 1.2

Infinispan versions

This version of the protocol was implemented since Infinispan 5.2.0.Final and is no
longer supported since Infinispan 10.

Since Infinispan 5.3.0, HotRod supports encryption via SSL. However, since this
only affects the transport, the version number of the protocol has not been
incremented.

1.3.1. Request Header

The version field in the header is updated to 12.

Two new request operation codes have been added:

• 0x1B = getWithMetadata request

• 0x1D = bulkKeysGet request

Two new flags have been added too:

• 0x0002 = use cache-level configured default lifespan

• 0x0004 = use cache-level configured default max idle

1.3.2. Response Header

Two new response operation codes have been added:

• 0x1C = getWithMetadata response

• 0x1E = bulkKeysGet response

19

1.3.3. Operations

GetWithMetadata

Request (0x1B):

Field Name Size Value

Header variable Request header

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

Response (0x1C):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if key retrieved
0x02 = if key does not exist

Flag 1 byte A flag indicating whether the response contains expiration
information. The value of the flag is obtained as a bitwise OR
operation between INFINITE_LIFESPAN (0x01) and
INFINITE_MAXIDLE (0x02).

Created Long (optional) a Long representing the timestamp when the entry
was created on the server. This value is returned only if the flag’s
INFINITE_LIFESPAN bit is not set.

Lifespan vInt (optional) a vInt representing the lifespan of the entry in seconds.
This value is returned only if the flag’s INFINITE_LIFESPAN bit is
not set.

LastUsed Long (optional) a Long representing the timestamp when the entry
was last accessed on the server. This value is returned only if the
flag’s INFINITE_MAXIDLE bit is not set.

MaxIdle vInt (optional) a vInt representing the maxIdle of the entry in
seconds. This value is returned only if the flag’s INFINITE_MAXIDLE
bit is not set.

Entry Version 8 bytes Unique value of an existing entry’s modification. The protocol
does not mandate that entry_version values are sequential. They
just need to be unique per update at the key level.

Value Length vInt If success, length of value

Value byte array If success, the requested value

BulkKeysGet

Request (0x1D):

20

Field Name Size Value

Header variable Request header

Scope vInt 0 = Default Scope - This scope is used by RemoteCache.keySet()
method. If the remote cache is a distributed cache, the server
launch a stream operation to retrieve all keys from all of the
nodes. (Remember, a topology-aware Hot Rod Client could be
load balancing the request to any one node in the cluster).
Otherwise, it’ll get keys from the cache instance local to the
server receiving the request (that is because the keys should be
the same across all nodes in a replicated cache).
1 = Global Scope - This scope behaves the same to Default Scope.
2 = Local Scope - In case when remote cache is a distributed
cache, the server will not launch a stream operation to retrieve
keys from all nodes. Instead, it’ll only get keys local from the
cache instance local to the server receiving the request.

Response (0x1E):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, data follows

More 1 byte One byte representing whether more keys need to be read from
the stream. So, when it’s set to 1, it means that an entry follows,
whereas when it’s set to 0, it’s the end of stream and no more
entries are left to read. For more information on BulkGet look
here

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

More 1 byte

Key 2 Length vInt

Key 2 byte array

… etc

1.4. Hot Rod Protocol 1.3

Infinispan versions

This version of the protocol was implemented since Infinispan 6.0.0.Final and is no
longer supported since Infinispan 10.

1.4.1. Request Header

The version field in the header is updated to 13.

A new request operation code has been added:

21

http://community.jboss.org/docs/DOC-15592

• 0x1F = query request

1.4.2. Response Header

A new response operation code has been added:

• 0x20 = query response

1.4.3. Operations

Query

Request (0x1F):

Field Name Size Value

Header variable Request header

Query Length vInt The length of the protobuf encoded query object

Query byte array Byte array containing the protobuf encoded query object, having
a length specified by previous field.

Response (0x20):

Field Name Size Value

Header variable Response header

Response payload
Length

vInt The length of the protobuf encoded response object

Response payload byte array Byte array containing the protobuf encoded response object,
having a length specified by previous field.

As of Infinispan 6.0, the query and response objects are specified by the protobuf message types
'org.infinispan.client.hotrod.impl.query.QueryRequest' and
'org.infinispan.client.hotrod.impl.query.QueryResponse' defined in remote-query/remote-query-
client/src/main/resources/org/infinispan/query/remote/client/query.proto. These definitions could
change in future Infinispan versions, but as long as these evolutions will be kept backward
compatible (according to the rules defined here) no new Hot Rod protocol version will be
introduced to accommodate this.

1.5. Hot Rod Protocol 2.0

Infinispan versions

This version of the protocol is implemented since Infinispan 7.0.0.Final.

1.5.1. Request Header

The request header no longer contains Transaction Type and Transaction ID elements since they’re
not in use, and even if they were in use, there are several operations for which they would not
make sense, such as ping or stats commands. Once transactions are implemented, the protocol

22

https://github.com/infinispan/infinispan/blob/master/remote-query/remote-query-client/src/main/resources/org/infinispan/query/remote/client/query.proto
https://github.com/infinispan/infinispan/blob/master/remote-query/remote-query-client/src/main/resources/org/infinispan/query/remote/client/query.proto
https://developers.google.com/protocol-buffers/docs/proto#updating

version will be upped, with the necessary changes in the request header.

The version field in the header is updated to 20.

Two new flags have been added:

• 0x0008 = operation skips loading from configured cache loader.

• 0x0010 = operation skips indexing. Only relevant when the query module is enabled for the
cache

The following new request operation codes have been added:

• 0x21 = auth mech list request

• 0x23 = auth request

• 0x25 = add client remote event listener request

• 0x27 = remove client remote event listener request

• 0x29 = size request

1.5.2. Response Header

The following new response operation codes have been added:

• 0x22 = auth mech list response

• 0x24 = auth mech response

• 0x26 = add client remote event listener response

• 0x28 = remove client remote event listener response

• 0x2A = size response

Two new error codes have also been added to enable clients more intelligent decisions, particularly
when it comes to fail-over logic:

• 0x87 = Node suspected. When a client receives this error as response, it means that the node
that responded had an issue sending an operation to a third node, which was suspected.
Generally, requests that return this error should be failed-over to other nodes.

• 0x88 = Illegal lifecycle state. When a client receives this error as response, it means that the
server-side cache or cache manager are not available for requests because either stopped,
they’re stopping or similar situation. Generally, requests that return this error should be failed-
over to other nodes.

Some adjustments have been made to the responses for the following commands in order to better
handle response decoding without the need to keep track of the information sent. More precisely,
the way previous values are parsed has changed so that the status of the command response
provides clues on whether the previous value follows or not. More precisely:

• Put response returns 0x03 status code when put was successful and previous value follows.

• PutIfAbsent response returns 0x04 status code only when the putIfAbsent operation failed

23

because the key was present and its value follows in the response. If the putIfAbsent worked,
there would have not been a previous value, and hence it does not make sense returning
anything extra.

• Replace response returns 0x03 status code only when replace happened and the previous or
replaced value follows in the response. If the replace did not happen, it means that the cache
entry was not present, and hence there’s no previous value that can be returned.

• ReplaceIfUnmodified returns 0x03 status code only when replace happened and the previous or
replaced value follows in the response.

• ReplaceIfUnmodified returns 0x04 status code only when replace did not happen as a result of
the key being modified, and the modified value follows in the response.

• Remove returns 0x03 status code when the remove happened and the previous or removed
value follows in the response. If the remove did not occur as a result of the key not being
present, it does not make sense sending any previous value information.

• RemoveIfUnmodified returns 0x03 status code only when remove happened and the previous or
replaced value follows in the response.

• RemoveIfUnmodified returns 0x04 status code only when remove did not happen as a result of
the key being modified, and the modified value follows in the response.

1.5.3. Distribution-Aware Client Topology Change Header

In Infinispan 5.2, virtual nodes based consistent hashing was abandoned and instead segment
based consistent hash was implemented. In order to satisfy the ability for Hot Rod clients to find
data as reliably as possible, Infinispan has been transforming the segment based consistent hash to
fit Hot Rod 1.x protocol. Starting with version 2.0, a brand new distribution-aware topology change
header has been implemented which suppors segment based consistent hashing suitably and
provides 100% data location guarantees.

Field Name Size Value

Response header
with topology
change marker

variable

Topology Id vInt Topology ID

Num servers in
topology

vInt Number of Infinispan Hot Rod servers running within the
cluster. This could be a subset of the entire cluster if only a
fraction of those nodes are running Hot Rod servers.

m1: Host/IP length vInt Length of hostname or IP address of individual cluster member
that Hot Rod client can use to access it. Using variable length here
allows for covering for hostnames, IPv4 and IPv6 addresses.

m1: Host/IP
address

string String containing hostname or IP address of individual cluster
member that Hot Rod client can use to access it.

m1: Port 2 bytes
(Unsigned

Short)

Port that Hot Rod clients can use to communicat with this cluster
member.

m2: Host/IP length vInt

24

Field Name Size Value

m2: Host/IP
address

string

m2: Port 2 bytes
(Unsigned

Short)

… …

Hash Function
Version

1 byte Hash function version, pointing to a specific hash function in use.
See Hot Rod hash functions for details.

Num segments in
topology

vInt Total number of segments in the topology

Number of owners
in segment

1 byte This can be either 0, 1 or 2 owners.

First owner’s
index

vInt Given the list of all nodes, the position of this owner in this list.
This is only present if number of owners for this segment is 1 or
2.

Second owner’s
index

vInt Given the list of all nodes, the position of this owner in this list.
This is only present if number of owners for this segment is 2.

Given this information, Hot Rod clients should be able to recalculate all the hash segments and be
able to find out which nodes are owners for each segment. Even though there could be more than 2
owners per segment, Hot Rod protocol limits the number of owners to send for efficiency reasons.

1.5.4. Operations

Auth Mech List

Request (0x21):

Field Name Size Value

Header variable Request header

Response (0x22):

Field Name Size Value

Header variable Response header

Mech count vInt The number of mechs

Mech 1 string String containing the name of the SASL mech in its IANA-
registered form (e.g. GSSAPI, CRAM-MD5, etc)

Mech 2 string

…etc

The purpose of this operation is to obtain the list of valid SASL authentication mechs supported by
the server. The client will then need to issue an Authenticate request with the preferred mech.

Authenticate

25

#hot_rod_hash_functions

Request (0x23):

Field Name Size Value

Header variable Request header

Mech string String containing the name of the mech chosen by the client for
authentication. Empty on the successive invocations

Response length vInt Length of the SASL client response

Response data byte array The SASL client response

Response (0x24):

Field Name Size Value

Header variable Response header

Completed byte 0 if further processing is needed, 1 if authentication is complete

Challenge length vInt Length of the SASL server challenge

Challenge data byte array The SASL server challenge

The purpose of this operation is to authenticate a client against a server using SASL. The
authentication process, depending on the chosen mech, might be a multi-step operation. Once
complete the connection becomes authenticated

Add client listener for remote events

Request (0x25):

Field Name Size Value

Header variable Request header

Listener ID byte array Listener identifier

Include state byte When this byte is set to 1, cached state is sent back to remote
clients when either adding a cache listener for the first time, or
when the node where a remote listener is registered changes in a
clustered environment. When enabled, state is sent back as cache
entry created events to the clients. If set to 0, no state is sent back
to the client when adding a listener, nor it gets state when the
node where the listener is registered changes.

Key/value filter
factory name

string Optional name of the key/value filter factory to be used with this
listener. The factory is used to create key/value filter instances
which allow events to be filtered directly in the Hot Rod server,
avoiding sending events that the client is not interested in. If no
factory is to be used, the length of the string is 0.

Key/value filter
factory parameter
count

byte The key/value filter factory, when creating a filter instance, can
take an arbitrary number of parameters, enabling the factory to
be used to create different filter instances dynamically. This
count field indicates how many parameters will be passed to the
factory. If no factory name was provided, this field is not present
in the request.

26

Field Name Size Value

Key/value filter
factory parameter
1

byte array First key/value filter factory parameter

Key/value filter
factory parameter
2

byte array Second key/value filter factory parameter

…

Converter factory
name

string Optional name of the converter factory to be used with this
listener. The factory is used to transform the contents of the
events sent to clients. By default, when no converter is in use,
events are well defined, according to the type of event generated.
However, there might be situations where users want to add
extra information to the event, or they want to reduce the size of
the events. In these cases, a converter can be used to transform
the event contents. The given converter factory name produces
converter instances to do this job. If no factory is to be used, the
length of the string is 0.

Converter factory
parameter count

byte The converter factory, when creating a converter instance, can
take an arbitrary number of parameters, enabling the factory to
be used to create different converter instances dynamically. This
count field indicates how many parameters will be passed to the
factory. If no factory name was provided, this field is not present
in the request.

Converter factory
parameter 1

byte array First converter factory parameter

Converter factory
parameter 2

byte array Second converter factory parameter

…

Response (0x26):

Field Name Size Value

Header variable Response header

Remove client listener for remote events

Request (0x27):

Field Name Size Value

Header variable Request header

Listener ID byte array Listener identifier

Response (0x28):

Field Name Size Value

Header variable Response header

27

Size

Request (0x29):

Field Name Size Value

Header variable Request header

Response (0x2A):

Field Name Size Value

Header variable Response header

Size vInt Size of the remote cache, which is calculated globally in the
clustered set ups, and if present, takes cache store contents into
account as well.

Exec

Request (0x2B):

Field Name Size Value

Header variable Request header

Script string Name of the task to execute

Parameter Count vInt The number of parameters

Parameter 1 Name string The name of the first parameter

Parameter 1
Length

vInt The length of the first parameter

Parameter 1 Value byte array The value of the first parameter

Response (0x2C):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if execution completed successfully
0x85 = server error

Value Length vInt If success, length of return value

Value byte array If success, the result of the execution

1.5.5. Remote Events

Starting with Hot Rod 2.0, clients can register listeners for remote events happening in the server.
Sending these events commences the moment a client adds a client listener for remote events.

Event Header:

Field Name Size Value

Magic 1 byte 0xA1 = response

28

Field Name Size Value

Message ID vLong ID of event

Opcode 1 byte Event type:
0x60 = cache entry created event
0x61 = cache entry modified event
0x62 = cache entry removed event
0x66 = counter event
0x50 = error

Status 1 byte Status of the response, possible values:
0x00 = No error

Topology Change
Marker

1 byte Since events are not associated with a particular incoming
topology ID to be able to decide whether a new topology is
required to be sent or not, new topologies will never be sent with
events. Hence, this marker will always have 0 value for events.

Table 3. Cache entry created event

Field Name Size Value

Header variable Event header with 0x60 operation code

Listener ID byte array Listener for which this event is directed

Custom marker byte Custom event marker. For created events, this is 0.

Command retried byte Marker for events that are result of retried commands. If
command is retried, it returns 1, otherwise 0.

Key byte array Created key

Version long Version of the created entry. This version information can be
used to make conditional operations on this cache entry.

Table 4. Cache entry modified event

Field Name Size Value

Header variable Event header with 0x61 operation code

Listener ID byte array Listener for which this event is directed

Custom marker byte Custom event marker. For created events, this is 0.

Command retried byte Marker for events that are result of retried commands. If
command is retried, it returns 1, otherwise 0.

Key byte array Modified key

Version long Version of the modified entry. This version information can be
used to make conditional operations on this cache entry.

Table 5. Cache entry removed event

Field Name Size Value

Header variable Event header with 0x62 operation code

Listener ID byte array Listener for which this event is directed

Custom marker byte Custom event marker. For created events, this is 0.

29

Field Name Size Value

Command retried byte Marker for events that are result of retried commands. If
command is retried, it returns 1, otherwise 0.

Key byte array Removed key

Table 6. Custom event

Field Name Size Value

Header variable Event header with event specific operation code

Listener ID byte array Listener for which this event is directed

Custom marker byte Custom event marker. For custom events, this is 1.

Event data byte array Custom event data, formatted according to the converter
implementation logic.

1.6. Hot Rod Protocol 2.1

Infinispan versions

This version of the protocol is implemented since Infinispan 7.1.0.Final.

1.6.1. Request Header

The version field in the header is updated to 21.

1.6.2. Operations

Add client listener for remote events

An extra byte parameter is added at the end which indicates whether the client prefers client
listener to work with raw binary data for filter/converter callbacks. If using raw data, its value is 1
otherwise 0.

Request format:

Field Name Size Value

Header variable Request header

Listener ID byte array …

Include state byte …

Key/value filter
factory parameter
count

byte …

…

Converter factory
name

string …

Converter factory
parameter count

byte …

30

Field Name Size Value

…

Use raw data byte If filter/converter parameters should be raw binary, then 1,
otherwise 0.

Custom event

Starting with Hot Rod 2.1, custom events can return raw data that the Hot Rod client should not try
to unmarshall before passing it on to the user. The way this is transmitted to the Hot Rod client is by
sending 2 as the custom event marker. So, the format of the custom event remains like this:

Field Name Size Value

Header variable Event header with event specific operation code

Listener ID byte array Listener for which this event is directed

Custom marker byte Custom event marker. For custom events whose event data needs
to be unmarshalled before returning to user the value is 1. For
custom events that need to return the event data as-is to the user,
the value is 2.

Event data byte array Custom event data. If the custom marker is 1, the bytes represent
the marshalled version of the instance returned by the converter.
If custom marker is 2, it represents the byte array, as returned by
the converter.

1.7. Hot Rod Protocol 2.2

Infinispan versions

This version of the protocol is implemented since Infinispan 8.0

Added support for different time units.

1.7.1. Operations

Put/PutAll/PutIfAbsent/Replace/ReplaceIfUnmodified

Common request format:

31

Field Name Size Value

TimeUnits Byte Time units of lifespan (first 4 bits) and maxIdle (last 4 bits).
Special units DEFAULT and INFINITE can be used for default
server expiration and no expiration respectively. Possible values:
0x00 = SECONDS
0x01 = MILLISECONDS
0x02 = NANOSECONDS
0x03 = MICROSECONDS
0x04 = MINUTES
0x05 = HOURS
0x06 = DAYS
0x07 = DEFAULT
0x08 = INFINITE

Lifespan vLong Duration which the entry is allowed to life. Only sent when time
unit is not DEFAULT or INFINITE

Max Idle vLong Duration that each entry can be idle before it’s evicted from the
cache. Only sent when time unit is not DEFAULT or INFINITE

1.8. Hot Rod Protocol 2.3

Infinispan versions

This version of the protocol is implemented since Infinispan 8.0

1.8.1. Operations

Iteration Start

Request (0x31):

Field Name Size Value

Segments size signed vInt Size of the bitset encoding of the segments ids to iterate on. The
size is the maximum segment id rounded to nearest multiple of 8.
A value -1 indicates no segment filtering is to be done

Segments byte array (Optional) Contains the segments ids bitset encoded, where each
bit with value 1 represents a segment in the set. Byte order is
little-endian.
Example: segments [1,3,12,13] would result in the following
encoding:
00001010 00110000
size: 16 bits
first byte: represents segments from 0 to 7, from which 1 and 3
are set
second byte: represents segments from 8 to 15, from which 12
and 13 are set
More details in the java.util.BitSet implementation. Segments will
be sent if the previous field is not negative

FilterConverter
size

signed vInt The size of the String representing a KeyValueFilterConverter
factory name deployed on the server, or -1 if no filter will be used

32

Field Name Size Value

FilterConverter UTF-8 byte
array

(Optional) KeyValueFilterConverter factory name deployed on
the server. Present if previous field is not negative

BatchSize vInt number of entries to transfers from the server at one go

Response (0x32):

Field Name Size Value

IterationId String The unique id of the iteration

Iteration Next

Request (0x33):

Field Name Size Value

IterationId String The unique id of the iteration

Response (0x34):

Field Name Size Value

Finished segments
size

vInt size of the bitset representing segments that were finished
iterating

Finished segments byte array bitset encoding of the segments that were finished iterating

Entry count vInt How many entries are being returned

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

Value 1 Length vInt Length of value

Value 1 byte array Retrieved value

Key 2 Length vInt

Key 2 byte array

Value 2 Length vInt

Value 2 byte array

… continues until
entry count is
reached

Iteration End

Request (0x35):

Field Name Size Value

IterationId String The unique id of the iteration

Response (0x36):

33

Header variable Response header

Response status 1 byte 0x00 = success, if execution completed successfully
0x05 = for non existent IterationId

1.9. Hot Rod Protocol 2.4

Infinispan versions

This version of the protocol is implemented since Infinispan 8.1

This Hot Rod protocol version adds three new status code that gives the client hints on whether the
server has compatibility mode enabled or not:

• 0x06: Success status and compatibility mode is enabled.

• 0x07: Success status and return previous value, with compatibility mode is enabled.

• 0x08: Not executed and return previous value, with compatibility mode is enabled.

The Iteration Start operation can optionally send parameters if a custom filter is provided and it’s
parametrised:

1.9.1. Operations

Iteration Start

Request (0x31):

Field Name Size Value

Segments size signed vInt same as protocol version 2.3.

Segments byte array same as protocol version 2.3.

FilterConverter
size

signed vInt same as protocol version 2.3.

FilterConverter UTF-8 byte
array

same as protocol version 2.3.

Parameters size byte the number of params of the filter. Only present when
FilterConverter is provided.

Parameters byte[][] an array of parameters, each parameter is a byte array. Only
present if Parameters size is greater than 0.

BatchSize vInt same as protocol version 2.3.

The Iteration Next operation can optionally return projections in the value, meaning more than one
value is contained in the same entry.

Iteration Next

Response (0x34):

34

Field Name Size Value

Finished segments
size

vInt same as protocol version 2.3.

Finished segments byte array same as protocol version 2.3.

Entry count vInt same as protocol version 2.3.

Number of value
projections

vInt Number of projections for the values. If 1, behaves like version
protocol version 2.3.

Key1 Length vInt same as protocol version 2.3.

Key1 byte array same as protocol version 2.3.

Value1 projection1
length

vInt length of value1 first projection

Value1 projection1 byte array retrieved value1 first projection

Value1 projection2
length

vInt length of value2 second projection

Value1 projection2 byte array retrieved value2 second projection

… continues until
all projections for
the value
retrieved

Key2
Length

vInt

same as protocol
version 2.3.

Key2 byte array

same as protocol
version 2.3.

Value2
projection1

length

vInt

length of value 2
first projection

Value2
projection1

byte array

retrieved value 2
first projection

Value2
projection2

length

vInt

length of value 2
second projection

Value2
projection2

byte array

retrieved value 2
second projection

… continues
until entry

count is
reached

1. Stats:

Statistics returned by previous Hot Rod protocol versions were local to the node where the Hot Rod
operation had been called. Starting with 2.4, new statistics have been added which provide global
counts for the statistics returned previously. If the Hot Rod is running in local mode, these statistics
are not returned:

35

Name Explanation

globalCurrentNumberOfEntries Number of entries currently across the Hot Rod
cluster.

globalStores Total number of put operations across the Hot
Rod cluster.

globalRetrievals Total number of get operations across the Hot
Rod cluster.

globalHits Total number of get hits across the Hot Rod
cluster.

globalMisses Total number of get misses across the Hot Rod
cluster.

globalRemoveHits Total number of removal hits across the Hot Rod
cluster.

globalRemoveMisses Total number of removal misses across the Hot
Rod cluster.

1.10. Hot Rod Protocol 2.5

Infinispan versions

This version of the protocol is implemented since Infinispan 8.2

This Hot Rod protocol version adds support for metadata retrieval along with entries in the iterator.
It includes two changes:

• Iteration Start request includes an optional flag

• IterationNext operation may include metadata info for each entry if the flag above is set

Iteration Start

Request (0x31):

Field Name Size Value

Segments size signed vInt same as protocol version 2.4.

Segments byte array same as protocol version 2.4.

FilterConverter
size

signed vInt same as protocol version 2.4.

FilterConverter UTF-8 byte
array

same as protocol version 2.4.

Parameters size byte same as protocol version 2.4.

Parameters byte[][] same as protocol version 2.4.

BatchSize vInt same as protocol version 2.4.

Metadata 1 byte 1 if metadata is to be returned for each entry, 0 otherwise

Iteration Next

36

Response (0x34):

Field Name Size Value

Finished segments
size

vInt same as protocol version 2.4.

Finished segments byte array same as protocol version 2.4.

Entry count vInt same as protocol version 2.4.

Number of value
projections

vInt same as protocol version 2.4.

Metadata (entry 1) 1 byte If set, entry has metadata associated

Expiration (entry
1)

1 byte A flag indicating whether the response contains expiration
information. The value of the flag is obtained as a bitwise OR
operation between INFINITE_LIFESPAN (0x01) and
INFINITE_MAXIDLE (0x02). Only present if the metadata flag above
is set

Created (entry 1) Long (optional) a Long representing the timestamp when the entry
was created on the server. This value is returned only if the flag’s
INFINITE_LIFESPAN bit is not set.

Lifespan (entry 1) vInt (optional) a vInt representing the lifespan of the entry in seconds.
This value is returned only if the flag’s INFINITE_LIFESPAN bit is
not set.

LastUsed (entry 1) Long (optional) a Long representing the timestamp when the entry
was last accessed on the server. This value is returned only if the
flag’s INFINITE_MAXIDLE bit is not set.

MaxIdle (entry 1) vInt (optional) a vInt representing the maxIdle of the entry in
seconds. This value is returned only if the flag’s INFINITE_MAXIDLE
bit is not set.

Entry Version
(entry 1)

8 bytes Unique value of an existing entry’s modification. Only present if
Metadata flag is set

Key 1 Length vInt same as protocol version 2.4.

Key 1 byte array same as protocol version 2.4.

Value 1 Length vInt same as protocol version 2.4.

Value 1 byte array same as protocol version 2.4.

Metadata (entry 2) 1 byte Same as for entry 1

Expiration (entry
2)

1 byte Same as for entry 1

Created (entry 2) Long Same as for entry 1

Lifespan (entry 2) vInt Same as for entry 1

LastUsed (entry 2) Long Same as for entry 1

MaxIdle (entry 2) vInt Same as for entry 1

Entry Version
(entry 2)

8 bytes Same as for entry 1

Key 2 Length vInt

37

Field Name Size Value

Key 2 byte array

Value 2 Length vInt

Value 2 byte array

… continues until
entry count is
reached

1.11. Hot Rod Protocol 2.6

Infinispan versions

This version of the protocol is implemented since Infinispan 9.0

This Hot Rod protocol version adds support for streaming get and put operations. It includes two
new operations:

• GetStream for retrieving data as a stream, with an optional initial offset

• PutStream for writing data as a stream, optionally by specifying a version

GetStream

Request (0x37):

Field Name Size Value

Header variable Request header

Offset vInt The offset in bytes from which to start retrieving. Set to 0 to
retrieve from the beginning

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

GetStream

Response (0x38):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if key retrieved
0x02 = if key does not exist

Flag 1 byte A flag indicating whether the response contains expiration
information. The value of the flag is obtained as a bitwise OR
operation between INFINITE_LIFESPAN (0x01) and
INFINITE_MAXIDLE (0x02).

38

Field Name Size Value

Created Long (optional) a Long representing the timestamp when the entry
was created on the server. This value is returned only if the flag’s
INFINITE_LIFESPAN bit is not set.

Lifespan vInt (optional) a vInt representing the lifespan of the entry in seconds.
This value is returned only if the flag’s INFINITE_LIFESPAN bit is
not set.

LastUsed Long (optional) a Long representing the timestamp when the entry
was last accessed on the server. This value is returned only if the
flag’s INFINITE_MAXIDLE bit is not set.

MaxIdle vInt (optional) a vInt representing the maxIdle of the entry in
seconds. This value is returned only if the flag’s INFINITE_MAXIDLE
bit is not set.

Entry Version 8 bytes Unique value of an existing entry’s modification. The protocol
does not mandate that entry_version values are sequential. They
just need to be unique per update at the key level.

Value Length vInt If success, length of value

Value byte array If success, the requested value

PutStream

Request (0x39)

Field Name Size Value

Header variable Request header

Entry Version 8 bytes Possible values
0 = Unconditional put
-1 = Put If Absent
Other values = pass a version obtained by GetWithMetadata
operation to perform a conditional replace.

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

Value Chunk 1
Length

vInt The size of the first chunk of data. If this value is 0 it means the
client has completed transferring the value and the operation
should be performed.

Value Chunk 1 byte array Array of bytes forming the fist chunk of data.

…continues until
the value is
complete

Response (0x3A):

39

Field Name Size Value

Header variable Response header

On top of these additions, this Hot Rod protocol version improves remote listener registration by
adding a byte that indicates at a global level, which type of events the client is interested in. For
example, a client can indicate that only created events, or only expiration and removal events…etc.
More fine grained event interests, e.g. per key, can be defined using the key/value filter parameter.

So, the new add listener request looks like this:

Add client listener for remote events

Request (0x25):

Field Name Size Value

Header variable Request header

Listener ID byte array Listener identifier

Include state byte When this byte is set to 1, cached state is sent back to remote
clients when either adding a cache listener for the first time, or
when the node where a remote listener is registered changes in a
clustered environment. When enabled, state is sent back as cache
entry created events to the clients. If set to 0, no state is sent back
to the client when adding a listener, nor it gets state when the
node where the listener is registered changes.

Key/value filter
factory name

string Optional name of the key/value filter factory to be used with this
listener. The factory is used to create key/value filter instances
which allow events to be filtered directly in the Hot Rod server,
avoiding sending events that the client is not interested in. If no
factory is to be used, the length of the string is 0.

Key/value filter
factory parameter
count

byte The key/value filter factory, when creating a filter instance, can
take an arbitrary number of parameters, enabling the factory to
be used to create different filter instances dynamically. This
count field indicates how many parameters will be passed to the
factory. If no factory name was provided, this field is not present
in the request.

Key/value filter
factory parameter
1

byte array First key/value filter factory parameter

Key/value filter
factory parameter
2

byte array Second key/value filter factory parameter

…

40

Field Name Size Value

Converter factory
name

string Optional name of the converter factory to be used with this
listener. The factory is used to transform the contents of the
events sent to clients. By default, when no converter is in use,
events are well defined, according to the type of event generated.
However, there might be situations where users want to add
extra information to the event, or they want to reduce the size of
the events. In these cases, a converter can be used to transform
the event contents. The given converter factory name produces
converter instances to do this job. If no factory is to be used, the
length of the string is 0.

Converter factory
parameter count

byte The converter factory, when creating a converter instance, can
take an arbitrary number of parameters, enabling the factory to
be used to create different converter instances dynamically. This
count field indicates how many parameters will be passed to the
factory. If no factory name was provided, this field is not present
in the request.

Converter factory
parameter 1

byte array First converter factory parameter

Converter factory
parameter 2

byte array Second converter factory parameter

…

Listener even type
interests

vInt A variable length number representing listener event type
interests. Each event type is represented by a bit. Each flags is
represented by a bit. Note that since this field is sent as variable
length, the most significant bit in a byte is used to determine
whether more bytes need to be read, hence this bit does not
represent any flag. Using this model allows for flags to be
combined in a short space. Here are the current values for each
flag:
0x01 = cache entry created events 0x02 = cache entry modified
events 0x04 = cache entry removed events 0x08 = cache entry
expired events

1.12. Hot Rod Protocol 2.7

Infinispan versions

This version of the protocol is implemented since Infinispan 9.2

This Hot Rod protocol version adds support for transaction operations. It includes 3 new
operations:

• Prepare, with the transaction write set (i.e. modified keys), it tries to prepare and validate the
transaction in the server.

• Commit, commits a prepared transaction.

• Rollback, rollbacks a prepared transaction.

41

Prepare Request

Request (0x3B):

Field Name Size Value

Header variable Request header

Xid XID The transaction ID (XID)

OnePhaseCommit byte When it is set to 1, the server will use one-phase-commit if
available (XA only)

Number of keys vInt The number of keys

For each key (keys must be distinct)

Key Length vInt Length of key. Note that the size of a vInt can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vInt array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key

Control Byte Byte A bit set with the following meaning:
0x01 = NOT_READ
0x02 = NON_EXISTING
0x04 = REMOVE_OPERATION
Note that NOT_READ and NON_EXISTING can’t be set at the same time.

Version Read long The version read. Only sent when NOT_READ and NON_EXISTING
aren’t present.

TimeUnits Byte Time units of lifespan (first 4 bits) and maxIdle (last 4 bits).
Special units DEFAULT and INFINITE can be used for default server
expiration and no expiration respectively. Possible values:
0x00 = SECONDS
0x01 = MILLISECONDS
0x02 = NANOSECONDS
0x03 = MICROSECONDS
0x04 = MINUTES
0x05 = HOURS
0x06 = DAYS
0x07 = DEFAULT
0x08 = INFINITE
Only sent when REMOVE_OPERATION isn’t set.

Lifespan vLong Duration which the entry is allowed to life. Only sent when time
unit is not DEFAULT or INFINITE and REMOVE_OPERATION isn’t set.

Max Idle vLong Duration that each entry can be idle before it’s evicted from the
cache. Only sent when time unit is not DEFAULT or INFINITE and
REMOVE_OPERATION isn’t set.

Value Length vInt Length of value. Only sent if REMOVE_OPERATION isn’t set.

Value byte-array Value to be stored. Only sent if REMOVE_OPERATION isn’t set.

Commit and Rollback Request

Request. Commit (0x3D) and Rollback (0x3F):

42

Field Name Size Value

Header variable Request header

Xid XID The transaction ID (XID)

Response from prepare, commit and rollback request.

Response. Prepare (0x3C), Commit (0x3E) and Rollback (0x40)

Field Name Size Value

Header variable Response header

XA return code vInt The XA code representing the prepare response.
Can be XA_OK(0), XA_RDONLY(3) or any of the error codes (see
XaException).
This field isn’t present if the response state is different from
Successful.

XID Format

The XID in the requests has the following format:

Field Name Size Value

Format ID signed vInt The XID format.

Length of Global
Transaction id

byte The length of global transaction id byte array. It max value is 64.

Global Transaction
Id

byte array The global transaction id.

Length of Branch
Qualifier

byte The length of branch qualifier byte array. It max value is 64.

Branch Qualifier byte array The branch qualifier.

Counter Configuration encoding format

The CounterConfiguration class encoding format is the following:

 In counter related operation, the Cache Name field in Request Header can be empty.

Summary of Status value in the Response Header:
* 0x00: Operation successful.
* 0x01: Operation failed.
* 0x02: The counter isn’t defined.
* 0x04: The counter reached a boundary. Only possible for STRONG counters.

Field Name Size Value

Flags byte The CounterType and Storage encoded. Only the less significant
bits are used as following:
1st bit: 1 for WEAK counter and 0 for STRONG counter.
2nd bit: 1 for BOUNDED counter and 0 for UNBOUNDED counter
3rd bit: 1 for PERSISTENT storage and 0 for VOLATILE storage.

43

Field Name Size Value

Concurrency Level vInt (Optional) the counter’s concurrency-level. Only present if the
counter is WEAK.

Lower bound long (Optional) the lower bound of a bounded counter. Only present if
the counter is BOUNDED.

Upper bound long (Optional) the upper bound of a bounded counter. Only present if
the counter is BOUNDED.

Initial value long The counter’s initial value.

Counter create operation

Creates a counter if it doesn’t exist.

Table 7. Request (0x4B)

Field Name Size Value

Header variable Request header

Name string The counter’s name

Counter
Configuration

variable The counter’s configuration. See CounterConfiguration encode.

Table 8. Response (0x4C)

Field Name Size Value

Header variable Response header

Response Header Status possible values:

• 0x00: Operation successful.

• 0x01: Operation failed. Counter is already defined.

• See the Reponse Header for error codes.

Counter get configuration operation

Returns the counter’s configuration.

Table 9. Request (0x4D)

Field Name Size Value

Header variable Request header

Name string The counter’s name.

Table 10. Response (0x4E)

Field Name Size Value

Header variable Response header

Counter
Configuration

variable (Optional) The counter’s configuration. Only present if
Status==0x00. See CounterConfiguration encode.

44

#counter_config_encode
#hot_rod_response_header
#counter_config_encode

Response Header Status possible values:

• 0x00: Operation successful.

• 0x02: Counter doesn’t exist.

• See the Reponse Header for error codes.

Counter is defined operation

Checks if the counter is defined.

Table 11. Request (0x4F)

Field Name Size Value

Header variable Request header

Name string The counter’s name

Table 12. Response (0x51)

Field Name Size Value

Header variable Response header

Response Header Status possible values:

• 0x00: Counter is defined.

• 0x01: Counter isn’t defined.

• See the Reponse Header for error codes.

Counter add-and-get operation

Adds a value to the counter and returns the new value.

Table 13. Request (0x52)

Field Name Size Value

Header variable Request header

Name string The counter’s name

Value long The value to add

Table 14. Response (0x53)

Field Name Size Value

Header variable Response header

Value long (Optional) the counter’s new value. Only present if Status==0x00.

 Since the WeakCounter doesn’t have access to the new value, the value is zero.

Response Header Status possible values:

• 0x00: Operation successful.

45

#hot_rod_response_header
#hot_rod_response_header

• 0x02: The counter isn’t defined.

• 0x04: The counter reached its boundary. Only possible for STRONG counters.

• See the Reponse Header for error codes.

Counter reset operation

Resets the counter’s value.

Table 15. Request (0x54)

Field Name Size Value

Header variable Request header

Name string The counter’s name

Table 16. Response (0x55)

Field Name Size Value

Header variable Response header

Response Header Status possible values:

• 0x00: Operation successful.

• 0x02: Counter isn’t defined.

• See the Reponse Header for error codes.

Counter get operation

Returns the counter’s value.

Table 17. Request (0x56)

Field Name Size Value

Header variable Request header

Name string The counter’s name

Table 18. Response (0x57)

Field Name Size Value

Header variable Response header

Value long (Optional) the counter’s value. Only present if Status==0x00.

Response Header Status possible values:

• 0x00: Operation successful.

• 0x02: Counter isn’t defined.

• See the Reponse Header for error codes.

Counter compare-and-swap operation

Compares and only updates the counter value if the current value is the expected.

46

#hot_rod_response_header
#hot_rod_response_header
#hot_rod_response_header

Table 19. Request (0x58)

Field Name Size Value

Header variable Request header

Name string The counter’s name

Expect long The counter’s expected value.

Update long The counter’s value to set.

Table 20. Response (0x59)

Field Name Size Value

Header variable Response header

Value long (Optional) the counter’s value. Only present if Status==0x00.

Response Header Status possible values:

• 0x00: Operation successful.

• 0x02: The counter isn’t defined.

• 0x04: The counter reached its boundary. Only possible for STRONG counters.

• See the Reponse Header for error codes.

Counter add and remove listener

Adds/Removes a listener for a counter

Table 21. Request ADD (0x5A) / REMOVE (0x5C)

Field Name Size Value

Header variable Request header

Name string The counter’s name

Listener-id byte array The listener’s id

Table 22. Response: ADD (0x5B) / REMOVE (0x5D)

Field Name Size Value

Header variable Response header

Response Header Status possible values:

• 0x00: Operation successful and the connection used in the request will be used to send event
(add) or the connection can be removed (remove).

• 0x01: Operation successful and the current connection is still in use.

• 0x02: The counter isn’t defined.

• See the Reponse Header for error codes.

Table 23. Counter Event (0x66)

47

#hot_rod_response_header
#hot_rod_response_header

Field Name Size Value

Header variable Event header with operation code 0x66

Name string The counter’s name

Listener-id byte array The listener’s id

Encoded Counter
State

byte Encoded old and new counter state. Bit set:
------00: Valid old state
------01: Lower bound reached old state
------10: Upper bound reached old state
----00--: Valid new state
----01--: Lower bound reached new state
----10--: Upper bound reached new state

Old value long Counter’s old value

New value long Counter’s new value

 All counters under a CounterManager implementation can use the same listener-id.

A connection is dedicated to a single listener-id and can receive events from
different counters.

Counter remove operation

Removes the counter from the cluster.

 The counter is re-created if it is accessed again.

Table 24. Request (0x5E)

Field Name Size Value

Header variable Request header

Name string The counter’s name

Table 25. Response (0x5F)

Field Name Size Value

Header variable Response header

Response Header Status possible values:

• 0x00: Operation successful.

• 0x02: The counter isn’t defined.

• See the Reponse Header for error codes.

1.13. Hot Rod Protocol 2.8

Infinispan versions

This version of the protocol is implemented since Infinispan 9.3

48

#hot_rod_response_header

Events

The protocol allows clients to send requests on the same connection that was previously used for
Add Client Listener operation, and in protocol < 2.8 is reserved for sending events to the client. This
includes registering additional listeners, therefore receiving events for multiple listeners.

The binary format of requests/responses/events does not change but the previously meaningless
messageId in events must be set to:

• messageId of the Add Client Listener operation for the include-current-state events

• 0 for the events sent after the Add Client Listener operation has been finished (response sent).

The same holds for counter events: client can send further requests after Counter Add Listener.
Previously meaningless messageId in counter event is always set to 0.

These modifications of the protocol do not require any changes on the client side (as the client
simply won’t send additional operations if it does not support that; the changes are more
permissive to the clients) but the server has to handle load on the connection correctly.

MediaType

This Hot Rod protocol version also adds support for specifying the MediaType of Keys and Values,
allowing data to be read (and written) in different formats. This information is part of the Header.

The data formats are described using a MediaType object, that is represented as follows:

Field Name Size Value

type 1 byte 0x00 = No MediaType supplied
0x01 = Pre-defined MediaType supplied
0x02 = Custom MediaType supplied

id vInt (Optional) For a pre-defined MediaType (type=0x01), the Id of the
MediaType. The currently supported Ids can be found at
MediaTypeIds

customString string (Optional) If a custom MediaType is supplied (type=0x02), the
custom MediaType of the key, including type and subtype. E.g.:
text/plain, application/json, etc.

paramSize vInt The size of the parameters for the MediaType

paramKey1 string (Optional) The first parameter’s key

paramValue1 string (Optional) The first parameter’s value

… … …

paramKeyN string (Optional) The nth parameter’s key

paramValueN string (Optional) The nth parameter’s value

1.13.1. Request Header

The request header has the following extra fields:

49

https://github.com/infinispan/infinispan/blob/master/commons/src/main/java/org/infinispan/commons/dataconversion/MediaTypeIds.java

Field Name Type Value

Key Format MediaType The MediaType to be used for keys during the operation. It
applies to both the keys sent and received.

Value Format MediaType Analogous to Key Format, but applied for the values.

1.14. Hot Rod Protocol 2.9

Infinispan versions

This version of the protocol is implemented since Infinispan 9.4

Compatibility Mode removal

The compatibility mode hint from the Response status fields from the operations is not sent
anymore. Consequently, the following statuses are removed:

• 0x06: Success status with compatibility mode.

• 0x07: Success status with return previous value and compatibility mode.

• 0x08: Not executed with return previous value and compatibility mode.

To figure out what is the server’s storage, the configured MediaType of keys and values are
returned on the ping operation:

Ping Response (0x18):

Field Name Size Value

Header variable same as before

Response status 1 byte same as before

Key Type MediaType Media Type of the key stored in the server

Value Type MediaType Media Type of the value stored in the server

New query format

This version supports query requests and responses in JSON format. The format of the operations
0x1F (Query Request) and 0x20 (Query Response) are not changed.

To send JSON payloads, the "Value Format" field in the header should be application/json.

Query Request (0x1F):

Field Name Size Value

Header variable Request header

Query Length vInt The length of the UTF-8 encoded query object.

50

Field Name Size Value

Query byte array Byte array containing the JSON (UTF-8) encoded query object,
having a length specified by the previous field. Example of
payload:

{
 "query":"From Entity where field1:'value1'",
 "offset": 12,
 "max-results": 1000,
 "query-mode": "FETCH"
}

Where:

query: the Ickle query String.
offset: the index of the first result to return.
max_results: the maximum number of results to return.
query_mode: the indexed query mode. Either FETCH or
BROADCAST. FECTH is the default.

Query Response (0x20):

Field Name Size Value

Header variable Response header

Response payload
Length

vInt The length of the UTF-8 encoded response object

51

Field Name Size Value

Response payload byte array Byte array containing the JSON encoded response object, having
a length specified by previous field. Example payload:

{
 "total_results":801,
 "hits":[
 {
 "hit":{
 "field1":565,
 "field2":"value2"
 }
 },
 {
 "hit":{
 "field1":34,
 "field2":"value22"
 }
 }
]
}

Where:

total_results: the total number of results of the
query.
hits: an ARRAY of OBJECT representing the results.
hit: each OBJECT above contain another OBJECT in the
"hit" field, containing the result of the query, in
JSON format.

Also, this version introduces 3 new operations for Hot Rod transactions:

• Prepare Request V2: It adds new parameters to the request. The response stays the same.

• Forget Transaction Request: Removes transaction information in the server.

• Fetch In-Doubt Transactions Request: Fetches all in-doubt transactions’s Xid.

Prepare Request V2

Request (0x7D):

Field Name Size Value

Header variable Request header

Xid XID The transaction ID (XID)

52

Field Name Size Value

OnePhaseCommit byte When it is set to 1, the server will use one-phase-commit if
available (XA only)

Recoverable byte Set to 1 to allow recovery in this transactions

Timeout long The idle timeout in milliseconds. If the transaction isn’t
recoverable (Recoverable=0), the server rollbacks the transaction
if it has been idle for this amount of time.

Number of keys vInt The number of keys

For each key (keys must be distinct)

Key Length vInt Length of key. Note that the size of a vInt can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vInt array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key

Control Byte Byte A bit set with the following meaning:
0x01 = NOT_READ
0x02 = NON_EXISTING
0x04 = REMOVE_OPERATION
Note that NOT_READ and NON_EXISTING can’t be set at the same time.

Version Read long The version read. Only sent when NOT_READ and NON_EXISTING
aren’t present.

TimeUnits Byte Time units of lifespan (first 4 bits) and maxIdle (last 4 bits).
Special units DEFAULT and INFINITE can be used for default server
expiration and no expiration respectively. Possible values:
0x00 = SECONDS
0x01 = MILLISECONDS
0x02 = NANOSECONDS
0x03 = MICROSECONDS
0x04 = MINUTES
0x05 = HOURS
0x06 = DAYS
0x07 = DEFAULT
0x08 = INFINITE
Only sent when REMOVE_OPERATION isn’t set.

Lifespan vLong Duration which the entry is allowed to life. Only sent when time
unit is not DEFAULT or INFINITE and REMOVE_OPERATION isn’t set.

Max Idle vLong Duration that each entry can be idle before it’s evicted from the
cache. Only sent when time unit is not DEFAULT or INFINITE and
REMOVE_OPERATION isn’t set.

Value Length vInt Length of value. Only sent if REMOVE_OPERATION isn’t set.

Value byte-array Value to be stored. Only sent if REMOVE_OPERATION isn’t set.

Response (0x7E)

53

Field Name Size Value

Header variable Response header

XA return code vInt The XA code representing the prepare response.
Can be XA_OK(0), XA_RDONLY(3) or any of the error codes (see
XaException).
This field isn’t present if the response state is different from
Successful.

Forget Transaction

Request (0x79)

Field Name Size Value

Header variable Request header

Xid XID The transaction ID (XID)

Response (0x7A)

Field Name Size Value

Header variable Response header

Fetch in-doubt transactions

Request (0x7B)

Field Name Size Value

Header variable Request header

Response (0x7C)

Field Name Size Value

Header variable Response header

Number of Xid vInt The number of Xid in response

For each entry:

Xid XID The transaction ID (XID)

1.15. Hot Rod Hash Functions
Infinispan makes use of a consistent hash function to place nodes on a hash wheel, and to place
keys of entries on the same wheel to determine where entries live.

In Infinispan 4.2 and earlier, the hash space was hardcoded to 10240, but since 5.0, the hash space
is Integer.MAX_INT . Please note that since Hot Rod clients should not assume a particular hash
space by default, every time a hash-topology change is detected, this value is sent back to the client
via the Hot Rod protocol.

When interacting with Infinispan via the Hot Rod protocol, it is mandated that keys (and values)

54

https://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html#MAX_VALUE

are byte arrays, to ensure platform neutral behavior. As such, smart-clients which are aware of
hash distribution on the backend would need to be able to calculate the hash codes of such byte
array keys, again in a platform-neutral manner. To this end, the hash functions used by Infinispan
are versioned and documented, so that it can be re-implemented by non-Java clients if needed.

The version of the hash function in use is provided in the Hot Rod protocol, as the hash function
version parameter.

1. Version 1 (single byte, 0x01) The initial version of the hash function in use is based on Austin
Appleby’s MurmurHash 2.0 algorithm , a fast, non-cryptographic hash that exhibits excellent
distribution, collision resistance and avalanche behavior. The specific version of the algorithm
used is the slightly slower, endian-neutral version that allows consistent behavior across both
big- and little-endian CPU architectures. Infinispan’s version also hard-codes the hash seed as -1.
For details of the algorithm, please visit Austin Appleby’s MurmurHash 2.0 page. Other
implementations are detailed on Wikipedia . This hash function was the default one used by the
Hot Rod server until Infinispan 4.2.1. Since Infinispan 5.0, the server never uses hash version 1.
Since Infinispan 9.0, the client ignores hash version 1.

2. Version 2 (single byte, 0x02) Since Infinispan 5.0, a new hash function is used by default which
is based on Austin Appleby’s MurmurHash 3.0 algorithm. Detailed information about the hash
function can be found in this wiki. Compared to 2.0, it provides better performance and spread.
Since Infinispan 7.0, the server only uses version 2 for HotRod 1.x clients.

3. Version 3 (single byte, 0x03) Since Infinispan 7.0, a new hash function is used by default. The
function is still based on wiki, but is also aware of the hash segments used in the server’s
ConsistentHash.

1.16. Hot Rod Admin Tasks
Admin operations are handled by the Exec operation with a set of well known tasks. Admin tasks
are named according to the following rules:

@@context@name

All parameters are UTF-8 encoded strings. Parameters are specific to each task, with the exception
of the flags parameter which is common to all commands. The flags parameter contains zero or
more space-separated values which may affect the behaviour of the command. The following table
lists all currently available flags.

Admin tasks return the result of the operation represented as a JSON string.

Table 26. FLAGS

Flag Description

permanent Requests that the command’s effect be made permanent into the server’s
configuration. If the server cannot comply with the request, the entire
operation will fail with an error

1.16.1. Admin tasks

Table 27. @@cache@create

55

https://github.com/infinispan/infinispan/blob/master/commons/src/main/java/org/infinispan/commons/hash/MurmurHash2.java
https://github.com/infinispan/infinispan/blob/master/commons/src/main/java/org/infinispan/commons/hash/MurmurHash2.java
http://sites.google.com/site/murmurhash/
http://en.wikipedia.org/wiki/MurmurHash
https://github.com/infinispan/infinispan/blob/master/commons/src/main/java/org/infinispan/commons/hash/MurmurHash3.java
http://code.google.com/p/smhasher/wiki/MurmurHash3
http://code.google.com/p/smhasher/wiki/MurmurHash3
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/distribution/ch/ConsistentHash.java

Parameter Description Required

name The name of the cache to create. Yes

template The name of the cache configuration template to use for the new
cache.

No

configuration the XML declaration of a cache configuration to use. No

flags See the flags table above. No

Table 28. @@cache@remove

Parameter Description Required

name The name of the cache to remove. Yes

flags See the flags table above. No

@@cache@names

Returns the cache names as a JSON array of strings, e.g. ["cache1", "cache2"]

Table 29. @@cache@reindex

Parameter Description Required

name The name of the cache to reindex. Yes

flags See the flags table above. No, all flags
will be
ignored

1.17. Hot Rod Protocol 3.0

Infinispan versions

This version of the protocol is implemented since Infinispan 10.0

Automatic protocol selection

This version introduces changes to the ping operation which returns some additional information
when called with a protocol version of 30 or higher. This allows the server to tell the client the
highest supported protocol version as well as a list of supported operations. After obtaining the
response from the server, the client should use the highest possible version understood by the
server for all subsequent requests.

Expiration

Expiration values larger than the number of milliseconds in 30 days are no longer treated as Unix
time and are interpreted literally.

ping

Request (0x17):

Field Name Size Value

Header variable Request header

56

ping

Response (0x18):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if no errors

Key Type MediaType Media Type of the key stored in the server

Value Type MediaType Media Type of the value stored in the server

Version 1 byte Hot Rod server version.

opCount vInt Number of supported operations

opRequestCode1 1 byte Request opcode of the first operation

… … …

opRequestCodeN 1 short Request opcode of the nth operation

A new flag has been added:

0x0020 = used when an operation wants to skip notifications to the registered listeners

57

	Hot Rod Protocol Reference Guide
	Table of Contents
	Chapter 1. Hot Rod Protocol
	1.1. Hot Rod Protocol 1.0
	1.1.1. Request Header
	1.1.2. Response Header
	1.1.3. Topology Change Headers
	1.1.4. Topology-Aware Client Topology Change Header
	1.1.5. Distribution-Aware Client Topology Change Header
	1.1.6. Operations
	1.1.7. Example - Put request

	1.2. Hot Rod Protocol 1.1
	1.2.1. Request Header
	1.2.2. Distribution-Aware Client Topology Change Header
	1.2.3. Server node hash code calculation

	1.3. Hot Rod Protocol 1.2
	1.3.1. Request Header
	1.3.2. Response Header
	1.3.3. Operations

	1.4. Hot Rod Protocol 1.3
	1.4.1. Request Header
	1.4.2. Response Header
	1.4.3. Operations

	1.5. Hot Rod Protocol 2.0
	1.5.1. Request Header
	1.5.2. Response Header
	1.5.3. Distribution-Aware Client Topology Change Header
	1.5.4. Operations
	1.5.5. Remote Events

	1.6. Hot Rod Protocol 2.1
	1.6.1. Request Header
	1.6.2. Operations

	1.7. Hot Rod Protocol 2.2
	1.7.1. Operations

	1.8. Hot Rod Protocol 2.3
	1.8.1. Operations

	1.9. Hot Rod Protocol 2.4
	1.9.1. Operations

	1.10. Hot Rod Protocol 2.5
	1.11. Hot Rod Protocol 2.6
	1.12. Hot Rod Protocol 2.7
	1.13. Hot Rod Protocol 2.8
	1.13.1. Request Header

	1.14. Hot Rod Protocol 2.9
	1.15. Hot Rod Hash Functions
	1.16. Hot Rod Admin Tasks
	1.16.1. Admin tasks

	1.17. Hot Rod Protocol 3.0

