
Configuring Infinispan 10.1



Table of Contents

1. Infinispan Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

1.1. Cache Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

1.2. Cache Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

1.3. Cache Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

1.4. Cache Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

1.4.1. Cache Mode Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

2. Local Caches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

2.1. Simple Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

3. Clustered Caches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

3.1. Invalidation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

3.2. Replicated Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

3.3. Distributed Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

3.3.1. Read consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

3.3.2. Key Ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

3.3.3. Zero Capacity Node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

3.3.4. Hashing Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

3.3.5. Initial cluster size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

3.3.6. L1 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

3.3.7. Server Hinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

3.3.8. Key affinity service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

3.4. Scattered Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

3.5. Asynchronous Communication with Clustered Caches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

3.5.1. Asynchronous Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

3.5.2. Asynchronous API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

3.5.3. Return Values in Asynchronous Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

4. Configuring Caches Declaratively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

4.1. Infinispan subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

4.1.1. Containers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

4.1.2. Cache declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

4.2. Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

4.3. Loaders and Stores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

4.4. State Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

4.5. Declarative Cache Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

4.6. Cache configuration templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

4.7. Cache configuration wildcards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

4.8. XInclude support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

4.9. Declarative configuration reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

5. Configuring Caches Programmatically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30



5.1. CacheManager and ConfigurationBuilder API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

5.2. ConfigurationBuilder Programmatic Configuration API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

5.2.1. Enabling JMX MBeans and statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

5.2.2. Configuring thread pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

5.2.3. Configuring transactions and locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

5.2.4. Configuring cache stores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

5.2.5. Advanced programmatic configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

6. Setting Up Cluster Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

6.1. Getting Started with Default Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

6.1.1. Default JGroups Stacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

6.1.2. Default JGroups Stacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

6.2. Using Inline JGroups Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

6.3. Adjusting and Tuning JGroups Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

6.3.1. Stack Combine Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40

6.4. Using JGroups Stacks in External Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

6.5. Tuning JGroups Stacks with System Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

6.5.1. System Properties for Default JGroups Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

6.6. Using Custom JChannels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

7. Configuring Cluster Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

7.1. TCPPING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

7.2. Gossip Router. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

7.3. DNS_PING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

7.4. KUBE_PING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

7.5. NATIVE_S3_PING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46

7.6. JDBC_PING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

7.7. AZURE_PING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

7.8. GOOGLE2_PING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

8. Configuring Eviction and Expiration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49

8.1. Eviction and Data Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49

8.2. Enabling Eviction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49

8.2.1. Eviction strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49

8.2.2. Eviction types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

8.2.3. Storage type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

8.2.4. More defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

8.3. Expiration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51

8.3.1. Difference between Eviction and Expiration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52

8.3.2. Expiration details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52

8.3.3. Expiration designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55

9. Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

9.1. Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

9.2. Cache Passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59



9.2.1. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

9.2.2. Cache Loader Behavior with Passivation Disabled vs Enabled . . . . . . . . . . . . . . . . . . . . . . . .  60

9.3. Cache Loaders and transactional caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

9.4. Write-Through And Write-Behind Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

9.4.1. Write-Through (Synchronous). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

9.4.2. Write-Behind (Asynchronous) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62

9.4.3. Segmented Stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62

9.5. Filesystem based cache stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

9.6. Single File Store. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

9.6.1. Segmentation support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64

9.6.2. Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64

9.7. Soft-Index File Store. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64

9.7.1. Segmentation support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

9.7.2. Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

9.7.3. Current limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

9.8. JDBC String based Cache Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

9.8.1. Connection management (pooling) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66

9.8.2. Sample configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67

9.9. Remote store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68

9.9.1. Segmentation support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68

9.9.2. Sample Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69

9.10. Cluster cache loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69

9.10.1. ClusterCacheLoader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70

9.11. Command-Line Interface cache loader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70

9.11.1. CLI Cache Loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70

9.12. RocksDB Cache Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71

9.12.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71

9.12.2. Segmentation support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71

9.12.3. Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71

9.12.4. Additional References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73

9.13. JPA Cache Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73

9.13.1. Sample Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73

9.13.2. Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75

9.13.3. Additional References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76

9.14. Custom Cache Stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76

9.14.1. HotRod Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77

9.15. Store Migrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77

9.15.1. Migrating Cache Stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77

9.15.2. Store Migrator Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80

9.16. SPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82

9.16.1. More implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84



Chapter 1. Infinispan Caches

Infinispan caches provide flexible, in-memory data stores that you can configure to suit use cases

such as:

• boosting application performance with high-speed local caches.

• optimizing databases by decreasing the volume of write operations.

• providing resiliency and durability for consistent data across clusters.

1.1. Cache Interface

Cache<K,V> is the central interface for Infinispan and extends java.util.concurrent.ConcurrentMap.

Cache entries are highly concurrent data structures in key:value format that support a wide and

configurable range of data types, from simple strings to much more complex objects.

1.2. Cache Managers

Infinispan provides a CacheManager interface that lets you create, modify, and manage local or

clustered caches. Cache Managers are the starting point for using Infinispan caches.

There are two CacheManager implementations:

EmbeddedCacheManager

Entry point for caches when running Infinispan inside the same Java Virtual Machine (JVM) as

the client application, which is also known as Library Mode.

RemoteCacheManager

Entry point for caches when running Infinispan as a remote server in its own JVM. When it

starts running, RemoteCacheManager establishes a persistent TCP connection to a Hot Rod endpoint

on a Infinispan server.


Both embedded and remote CacheManager implementations share some methods

and properties. However, semantic differences do exist between

EmbeddedCacheManager and RemoteCacheManager.

1.3. Cache Containers

Cache containers declare one or more local or clustered caches that a Cache Manager controls.

Cache container declaration

<cache-container name="clustered" default-cache="default">

  ...

</cache-container>

1



1.4. Cache Modes


Infinispan Cache Managers can create and control multiple caches that use

different modes. For example, you can use the same Cache Manager for local

caches, distributes caches, and caches with invalidation mode.

Local Caches

Infinispan runs as a single node and never replicates read or write operations on cache entries.

Clustered Caches

Infinispan instances running on the same network can automatically discover each other and

form clusters to handle cache operations.

Invalidation Mode

Rather than replicating cache entries across the cluser, Infinispan evicts stale data from all

nodes whenever operations modify entries in the cache. Infinispan performs local read

operations only.

Replicated Caches

Infinispan replicates each cache entry on all nodes and performs local read operations only.

Distributed Caches

Infinispan stores cache entries across a subset of nodes and assigns entries to fixed owner

nodes. Infinispan requests read operations from owner nodes to ensure it returns the correct

value.

Scattered Caches

Infinispan stores cache entries across a subset of nodes. By default Infinispan assigns a primary

owner and a backup owner to each cache entry in scattered caches. Infinispan assigns primary

owners in the same way as with distributed caches, while backup owners are always the nodes

that initiate the write operations. Infinispan requests read operations from at least one owner

node to ensure it returns the correct value.

1.4.1. Cache Mode Comparison

The cache mode that you should choose depends on the qualities and guarantees you need for your

data.

The following table summarizes the primary differences between cache modes:

Simple Local Invalidatio

n

Replicated Distribute

d

Scattered

Clustered No No Yes Yes Yes Yes

Read

performance

Highest

(local)

High

(local)

High

(local)

High

(local)

Medium

(owners)

Medium

(primary)

2



Simple Local Invalidatio

n

Replicated Distribute

d

Scattered

Write

performance

Highest

(local)

High

(local)

Low

(all nodes,

no data)

Lowest

(all nodes)

Medium

(owner

nodes)

Higher

(single RPC)

Capacity Single node Single node Single node Smallest

node

Cluster

(sum_(i=1)^"

nodes""nod

e_capacity")/

"owners"

Cluster

(sum_(i=1)^"

nodes""nod

e_capacity")/

"2"

Availability Single node Single node Single node All nodes Owner

nodes

Owner

nodes

Features No TX,

persistence

, indexing

All All All All No TX

3



Chapter 2. Local Caches

While Infinispan is particularly interesting in clustered mode, it also offers a very capable local

mode. In this mode, it acts as a simple, in-memory data cache similar to a ConcurrentHashMap.

But why would one use a local cache rather than a map? Caches offer a lot of features over and

above a simple map, including write-through and write-behind to a persistent store, eviction of

entries to prevent running out of memory, and expiration.

Infinispan’s Cache interface extends JDK’s ConcurrentMap — making migration from a map to

Infinispan trivial.

Infinispan caches also support transactions, either integrating with an existing transaction

manager or running a separate one. Local caches transactions have two choices:

1. When to lock? Pessimistic locking locks keys on a write operation or when the user calls

AdvancedCache.lock(keys) explicitly. Optimistic locking only locks keys during the transaction

commit, and instead it throws a WriteSkewCheckException at commit time, if another transaction

modified the same keys after the current transaction read them.

2. Isolation level. We support read-committed and repeatable read.

2.1. Simple Caches

Traditional local caches use the same architecture as clustered caches, i.e. they use the interceptor

stack. That way a lot of the implementation can be reused. However, if the advanced features are

not needed and performance is more important, the interceptor stack can be stripped away and

simple cache can be used.

So, which features are stripped away? From the configuration perspective, simple cache does not

support:

• transactions and invocation batching

• persistence (cache stores and loaders)

• custom interceptors (there’s no interceptor stack!)

• indexing

• transcoding

• store as binary (which is hardly useful for local caches)

From the API perspective these features throw an exception:

• adding custom interceptors

• Distributed Executors Framework

So, what’s left?

• basic map-like API

4



• cache listeners (local ones)

• expiration

• eviction

• security

• JMX access

• statistics (though for max performance it is recommended to switch this off using statistics-

available=false)

Declarative configuration

<local-cache name="mySimpleCache" simple-cache="true">

    <!-- expiration, eviction, security... -->

</local-cache>

Programmatic configuration

CacheManager cm = getCacheManager();

ConfigurationBuilder builder = new ConfigurationBuilder().simpleCache(true);

cm.defineConfiguration("mySimpleCache", builder.build());

Cache cache = cm.getCache("mySimpleCache");

Simple cache checks against features it does not support, if you configure it to use e.g. transactions,

configuration validation will throw an exception.

5



Chapter 3. Clustered Caches

Clustered caches store data across multiple Infinispan nodes using JGroups technology as the

transport layer to pass data across the network.

3.1. Invalidation Mode

You can use Infinispan in invalidation mode to optimize systems that perform high volumes of read

operations. A good example is to use invalidation to prevent lots of database writes when state

changes occur.

This cache mode only makes sense if you have another, permanent store for your data such as a

database and are only using Infinispan as an optimization in a read-heavy system, to prevent

hitting the database for every read. If a cache is configured for invalidation, every time data is

changed in a cache, other caches in the cluster receive a message informing them that their data is

now stale and should be removed from memory and from any local store.

Figure 1. Invalidation mode

Sometimes the application reads a value from the external store and wants to write it to the local

cache, without removing it from the other nodes. To do this, it must call

Cache.putForExternalRead(key, value) instead of Cache.put(key, value).

Invalidation mode can be used with a shared cache store. A write operation will both update the

6



shared store, and it would remove the stale values from the other nodes' memory. The benefit of

this is twofold: network traffic is minimized as invalidation messages are very small compared to

replicating the entire value, and also other caches in the cluster look up modified data in a lazy

manner, only when needed.


Never use invalidation mode with a local store. The invalidation message will not

remove entries in the local store, and some nodes will keep seeing the stale value.

An invalidation cache can also be configured with a special cache loader, ClusterLoader. When

ClusterLoader is enabled, read operations that do not find the key on the local node will request it

from all the other nodes first, and store it in memory locally. In certain situation it will store stale

values, so only use it if you have a high tolerance for stale values.

Invalidation mode can be synchronous or asynchronous. When synchronous, a write blocks until

all nodes in the cluster have evicted the stale value. When asynchronous, the originator broadcasts

invalidation messages but doesn’t wait for responses. That means other nodes still see the stale

value for a while after the write completed on the originator.

Transactions can be used to batch the invalidation messages. Transactions acquire the key lock on

the primary owner. To find more about how primary owners are assigned, please read the Key

Ownership section.

• With pessimistic locking, each write triggers a lock message, which is broadcast to all the nodes.

During transaction commit, the originator broadcasts a one-phase prepare message (optionally

fire-and-forget) which invalidates all affected keys and releases the locks.

• With optimistic locking, the originator broadcasts a prepare message, a commit message, and an

unlock message (optional). Either the one-phase prepare or the unlock message is fire-and-

forget, and the last message always releases the locks.

3.2. Replicated Caches

Entries written to a replicated cache on any node will be replicated to all other nodes in the cluster,

and can be retrieved locally from any node. Replicated mode provides a quick and easy way to

share state across a cluster, however replication practically only performs well in small clusters

(under 10 nodes), due to the number of messages needed for a write scaling linearly with the

cluster size. Infinispan can be configured to use UDP multicast, which mitigates this problem to

some degree.

Each key has a primary owner, which serializes data container updates in order to provide

consistency. To find more about how primary owners are assigned, please read the Key Ownership

section.

7



Figure 2. Replicated mode

Replicated mode can be synchronous or asynchronous.

• Synchronous replication blocks the caller (e.g. on a cache.put(key, value)) until the

modifications have been replicated successfully to all the nodes in the cluster.

• Asynchronous replication performs replication in the background, and write operations return

immediately. Asynchronous replication is not recommended, because communication errors, or

errors that happen on remote nodes are not reported to the caller.

If transactions are enabled, write operations are not replicated through the primary owner.

• With pessimistic locking, each write triggers a lock message, which is broadcast to all the nodes.

During transaction commit, the originator broadcasts a one-phase prepare message and an

unlock message (optional). Either the one-phase prepare or the unlock message is fire-and-

forget.

• With optimistic locking, the originator broadcasts a prepare message, a commit message, and an

unlock message (optional). Again, either the one-phase prepare or the unlock message is fire-

and-forget.

3.3. Distributed Caches

Distribution tries to keep a fixed number of copies of any entry in the cache, configured as

numOwners. This allows the cache to scale linearly, storing more data as nodes are added to the

8



cluster.

As nodes join and leave the cluster, there will be times when a key has more or less than numOwners

copies. In particular, if numOwners nodes leave in quick succession, some entries will be lost, so we

say that a distributed cache tolerates numOwners - 1 node failures.

The number of copies represents a trade-off between performance and durability of data. The more

copies you maintain, the lower performance will be, but also the lower the risk of losing data due to

server or network failures. Regardless of how many copies are maintained, distribution still scales

linearly, and this is key to Infinispan’s scalability.

The owners of a key are split into one primary owner, which coordinates writes to the key, and

zero or more backup owners. To find more about how primary and backup owners are assigned,

please read the Key Ownership section.

Figure 3. Distributed mode

A read operation will request the value from the primary owner, but if it doesn’t respond in a

reasonable amount of time, we request the value from the backup owners as well. (The

infinispan.stagger.delay system property, in milliseconds, controls the delay between requests.) A

read operation may require 0 messages if the key is present in the local cache, or up to 2 *

numOwners messages if all the owners are slow.

A write operation will also result in at most 2 * numOwners messages: one message from the

originator to the primary owner, numOwners - 1 messages from the primary to the backups, and the

9



corresponding ACK messages.


Cache topology changes may cause retries and additional messages, both for reads

and for writes.

Just as replicated mode, distributed mode can also be synchronous or asynchronous. And as in

replicated mode, asynchronous replication is not recommended because it can lose updates. In

addition to losing updates, asynchronous distributed caches can also see a stale value when a

thread writes to a key and then immediately reads the same key.

Transactional distributed caches use the same kinds of messages as transactional replicated caches,

except lock/prepare/commit/unlock messages are sent only to the affected nodes (all the nodes that

own at least one key affected by the transaction) instead of being broadcast to all the nodes in the

cluster. As an optimization, if the transaction writes to a single key and the originator is the

primary owner of the key, lock messages are not replicated.

3.3.1. Read consistency

Even with synchronous replication, distributed caches are not linearizable. (For transactional

caches, we say they do not support serialization/snapshot isolation.) We can have one thread doing

a single put:

cache.get(k) -> v1

cache.put(k, v2)

cache.get(k) -> v2

But another thread might see the values in a different order:

cache.get(k) -> v2

cache.get(k) -> v1

The reason is that read can return the value from any owner, depending on how fast the primary

owner replies. The write is not atomic across all the owners — in fact, the primary commits the

update only after it receives a confirmation from the backup. While the primary is waiting for the

confirmation message from the backup, reads from the backup will see the new value, but reads

from the primary will see the old one.

3.3.2. Key Ownership

Distributed caches split entries into a fixed number of segments and assign each segment to a list of

owner nodes. Replicated caches do the same, with the exception that every node is an owner.

The first node in the list of owners is the primary owner. The other nodes in the list are backup

owners. When the cache topology changes, because a node joins or leaves the cluster, the segment

ownership table is broadcast to every node. This allows nodes to locate keys without making

multicast requests or maintaining metadata for each key.

10



The numSegments property configures the number of segments available. However, the number of

segments cannot change unless the cluster is restarted.

Likewise the key-to-segment mapping cannot change. Keys must always map to the same segments

regardless of cluster topology changes. It is important that the key-to-segment mapping evenly

distributes the number of segments allocated to each node while minimizing the number of

segments that must move when the cluster topology changes.

You can customize the key-to-segment mapping by configuring a KeyPartitioner or by using the

Grouping API.

However, Infinispan provides the following implementations:

SyncConsistentHashFactory

Uses an algorithm based on consistent hashing. Selected by default when server hinting is

disabled.

This implementation always assigns keys to the same nodes in every cache as long as the cluster

is symmetric. In other words, all caches run on all nodes. This implementation does have some

negative points in that the load distribution is slightly uneven. It also moves more segments than

strictly necessary on a join or leave.

TopologyAwareSyncConsistentHashFactory

Similar to SyncConsistentHashFactory, but adapted for Server Hinting. Selected by default when

server hinting is enabled.

DefaultConsistentHashFactory

Achieves a more even distribution than SyncConsistentHashFactory, but with one disadvantage.

The order in which nodes join the cluster determines which nodes own which segments. As a

result, keys might be assigned to different nodes in different caches.

Was the default from version 5.2 to version 8.1 with server hinting disabled.

TopologyAwareConsistentHashFactory

Similar to DefaultConsistentHashFactory, but adapted for Server Hinting.

Was the default from version 5.2 to version 8.1 with server hinting enabled.

ReplicatedConsistentHashFactory

Used internally to implement replicated caches. You should never explicitly select this algorithm

in a distributed cache.

Capacity Factors

Capacity factors are another way to customize the mapping of segments to nodes. The nodes in a

cluster are not always identical. If a node has 2x the memory of a "regular" node, configuring it

with a capacityFactor of 2 tells Infinispan to allocate 2x segments to that node. The capacity factor

can be any non-negative number, and the hashing algorithm will try to assign to each node a load

weighted by its capacity factor (both as a primary owner and as a backup owner).

11



One interesting use case is nodes with a capacity factor of 0. This could be useful when some nodes

are too short-lived to be useful as data owners, but they can’t use HotRod (or other remote

protocols) because they need transactions. With cross-site replication as well, the "site master"

should only deal with forwarding commands between sites and shouldn’t handle user requests, so

it makes sense to configure it with a capacity factor of 0.

3.3.3. Zero Capacity Node

You might need to configure a whole node where the capacity factor is 0 for every cache, user

defined caches and internal caches. When defining a zero capacity node, the node won’t hold any

data. This is how you declare a zero capacity node:

<cache-container zero-capacity-node="true" />

new GlobalConfigurationBuilder().zeroCapacityNode(true);

However, note that this will be true for distributed caches only. If you are using replicated caches,

the node will still keep a copy of the value. Use only distributed caches to make the best use of this

feature.

3.3.4. Hashing Configuration

This is how you configure hashing declaratively, via XML:

<distributed-cache name="distributedCache" owners="2" segments="100" capacity-factor=

"2" />

And this is how you can configure it programmatically, in Java:

Configuration c = new ConfigurationBuilder()

   .clustering()

      .cacheMode(CacheMode.DIST_SYNC)

      .hash()

         .numOwners(2)

         .numSegments(100)

         .capacityFactor(2)

   .build();

3.3.5. Initial cluster size

Infinispan’s very dynamic nature in handling topology changes (i.e. nodes being added / removed

at runtime) means that, normally, a node doesn’t wait for the presence of other nodes before

starting. While this is very flexible, it might not be suitable for applications which require a specific

number of nodes to join the cluster before caches are started. For this reason, you can specify how

many nodes should have joined the cluster before proceeding with cache initialization. To do this,

12



use the initialClusterSize and initialClusterTimeout transport properties. The declarative XML

configuration:

<transport initial-cluster-size="4" initial-cluster-timeout="30000" />

The programmatic Java configuration:

GlobalConfiguration global = new GlobalConfigurationBuilder()

   .transport()

       .initialClusterSize(4)

       .initialClusterTimeout(30000)

   .build();

The above configuration will wait for 4 nodes to join the cluster before initialization. If the initial

nodes do not appear within the specified timeout, the cache manager will fail to start.

3.3.6. L1 Caching

When L1 is enabled, a node will keep the result of remote reads locally for a short period of time

(configurable, 10 minutes by default), and repeated lookups will return the local L1 value instead of

asking the owners again.

Figure 4. L1 caching

13



L1 caching is not free though. Enabling it comes at a cost, and this cost is that every entry update

must broadcast an invalidation message to all the nodes. L1 entries can be evicted just like any

other entry when the the cache is configured with a maximum size. Enabling L1 will improve

performance for repeated reads of non-local keys, but it will slow down writes and it will increase

memory consumption to some degree.

Is L1 caching right for you? The correct approach is to benchmark your application with and

without L1 enabled and see what works best for your access pattern.

3.3.7. Server Hinting

The following topology hints can be specified:

Machine

This is probably the most useful, when multiple JVM instances run on the same node, or even

when multiple virtual machines run on the same physical machine.

Rack

In larger clusters, nodes located on the same rack are more likely to experience a hardware or

network failure at the same time.

Site

Some clusters may have nodes in multiple physical locations for extra resilience. Note that Cross

site replication is another alternative for clusters that need to span two or more data centres.

All of the above are optional. When provided, the distribution algorithm will try to spread the

ownership of each segment across as many sites, racks, and machines (in this order) as possible.

Configuration

The hints are configured at transport level:

<transport

    cluster="MyCluster"

    machine="LinuxServer01"

    rack="Rack01"

    site="US-WestCoast" />

3.3.8. Key affinity service

In a distributed cache, a key is allocated to a list of nodes with an opaque algorithm. There is no

easy way to reverse the computation and generate a key that maps to a particular node. However,

we can generate a sequence of (pseudo-)random keys, see what their primary owner is, and hand

them out to the application when it needs a key mapping to a particular node.

API

Following code snippet depicts how a reference to this service can be obtained and used.

14



// 1. Obtain a reference to a cache

Cache cache = ...

Address address = cache.getCacheManager().getAddress();

// 2. Create the affinity service

KeyAffinityService keyAffinityService = KeyAffinityServiceFactory

.newLocalKeyAffinityService(

      cache,

      new RndKeyGenerator(),

      Executors.newSingleThreadExecutor(),

      100);

// 3. Obtain a key for which the local node is the primary owner

Object localKey = keyAffinityService.getKeyForAddress(address);

// 4. Insert the key in the cache

cache.put(localKey, "yourValue");

The service is started at step 2: after this point it uses the supplied Executor to generate and queue

keys. At step 3, we obtain a key from the service, and at step 4 we use it.

Lifecycle

KeyAffinityService extends Lifecycle, which allows stopping and (re)starting it:

public interface Lifecycle {

   void start();

   void stop();

}

The service is instantiated through KeyAffinityServiceFactory. All the factory methods have an

Executor parameter, that is used for asynchronous key generation (so that it won’t happen in the

caller’s thread). It is the user’s responsibility to handle the shutdown of this Executor.

The KeyAffinityService, once started, needs to be explicitly stopped. This stops the background key

generation and releases other held resources.

The only situation in which KeyAffinityService stops by itself is when the cache manager with

which it was registered is shutdown.

Topology changes

When the cache topology changes (i.e. nodes join or leave the cluster), the ownership of the keys

generated by the KeyAffinityService might change. The key affinity service keep tracks of these

topology changes and doesn’t return keys that would currently map to a different node, but it won’t

do anything about keys generated earlier.

As such, applications should treat KeyAffinityService purely as an optimization, and they should

15



not rely on the location of a generated key for correctness.

In particular, applications should not rely on keys generated by KeyAffinityService for the same

address to always be located together. Collocation of keys is only provided by the Grouping API.

The Grouping API

Complementary to Key affinity service, the grouping API allows you to co-locate a group of entries

on the same nodes, but without being able to select the actual nodes.

How does it work?

By default, the segment of a key is computed using the key’s hashCode(). If you use the grouping API,

Infinispan will compute the segment of the group and use that as the segment of the key. See the

Key Ownership section for more details on how segments are then mapped to nodes.

When the group API is in use, it is important that every node can still compute the owners of every

key without contacting other nodes. For this reason, the group cannot be specified manually. The

group can either be intrinsic to the entry (generated by the key class) or extrinsic (generated by an

external function).

How do I use the grouping API?

First, you must enable groups. If you are configuring Infinispan programmatically, then call:

Configuration c = new ConfigurationBuilder()

   .clustering().hash().groups().enabled()

   .build();

Or, if you are using XML:

<distributed-cache>

   <groups enabled="true"/>

</distributed-cache>

If you have control of the key class (you can alter the class definition, it’s not part of an

unmodifiable library), then we recommend using an intrinsic group. The intrinsic group is

specified by adding the @Group annotation to a method. Let’s take a look at an example:

16



class User {

   ...

   String office;

   ...

   public int hashCode() {

      // Defines the hash for the key, normally used to determine location

      ...

   }

   // Override the location by specifying a group

   // All keys in the same group end up with the same owners

   @Group

   public String getOffice() {

      return office;

   }

   }

}

 The group method must return a String

If you don’t have control over the key class, or the determination of the group is an orthogonal

concern to the key class, we recommend using an extrinsic group. An extrinsic group is specified by

implementing the Grouper interface.

public interface Grouper<T> {

    String computeGroup(T key, String group);

    Class<T> getKeyType();

}

If multiple Grouper classes are configured for the same key type, all of them will be called, receiving

the value computed by the previous one. If the key class also has a @Group annotation, the first

Grouper will receive the group computed by the annotated method. This allows you even greater

control over the group when using an intrinsic group. Let’s take a look at an example Grouper

implementation:

17



public class KXGrouper implements Grouper<String> {

   // The pattern requires a String key, of length 2, where the first character is

   // "k" and the second character is a digit. We take that digit, and perform

   // modular arithmetic on it to assign it to group "0" or group "1".

   private static Pattern kPattern = Pattern.compile("(^k)(<a>\\d</a>)$");

   public String computeGroup(String key, String group) {

      Matcher matcher = kPattern.matcher(key);

      if (matcher.matches()) {

         String g = Integer.parseInt(matcher.group(2)) % 2 + "";

         return g;

      } else {

         return null;

      }

   }

   public Class<String> getKeyType() {

      return String.class;

   }

}

Grouper implementations must be registered explicitly in the cache configuration. If you are

configuring Infinispan programmatically:

Configuration c = new ConfigurationBuilder()

   .clustering().hash().groups().enabled().addGrouper(new KXGrouper())

   .build();

Or, if you are using XML:

<distributed-cache>

   <groups enabled="true">

      <grouper class="com.acme.KXGrouper" />

   </groups>

</distributed-cache>

Advanced Interface

AdvancedCache has two group-specific methods:

getGroup(groupName)

Retrieves all keys in the cache that belong to a group.

removeGroup(groupName)

Removes all the keys in the cache that belong to a group.

18



Both methods iterate over the entire data container and store (if present), so they can be slow when

a cache contains lots of small groups.

3.4. Scattered Caches

Scattered mode is very similar to Distribution Mode as it allows linear scaling of the cluster. It

allows single node failure by maintaining two copies of the data (as Distribution Mode with

numOwners=2). Unlike Distributed, the location of data is not fixed; while we use the same

Consistent Hash algorithm to locate the primary owner, the backup copy is stored on the node that

wrote the data last time. When the write originates on the primary owner, backup copy is stored on

any other node (the exact location of this copy is not important).

This has the advantage of single Remote Procedure Call (RPC) for any write (Distribution Mode

requires one or two RPCs), but reads have to always target the primary owner. That results in faster

writes but possibly slower reads, and therefore this mode is more suitable for write-intensive

applications.

Storing multiple backup copies also results in slightly higher memory consumption. In order to

remove out-of-date backup copies, invalidation messages are broadcast in the cluster, which

generates some overhead. This makes scattered mode less performant in very big clusters (this

behaviour might be optimized in the future).

When a node crashes, the primary copy may be lost. Therefore, the cluster has to reconcile the

backups and find out the last written backup copy. This process results in more network traffic

during state transfer.

Since the writer of data is also a backup, even if we specify machine/rack/site ids on the transport

level the cluster cannot be resilient to more than one failure on the same machine/rack/site.

Currently it is not possible to use scattered mode in transactional cache. Asynchronous replication

is not supported either; use asynchronous Cache API instead. Functional commands are not

implemented neither but these are expected to be added soon.

The cache is configured in a similar way as the other cache modes, here is an example of

declarative configuration:

<scattered-cache name="scatteredCache" />

And this is how you can configure it programmatically:

Configuration c = new ConfigurationBuilder()

   .clustering().cacheMode(CacheMode.SCATTERED_SYNC)

   .build();

Scattered mode is not exposed in the server configuration as the server is usually accessed through

the Hot Rod protocol. The protocol automatically selects primary owner for the writes and

therefore the write (in distributed mode with two owner) requires single RPC inside the cluster, too.

19



Therefore, scattered cache would not bring the performance benefit.

3.5. Asynchronous Communication with Clustered

Caches

3.5.1. Asynchronous Communications

All clustered cache modes can be configured to use asynchronous communications with the

mode="ASYNC" attribute on the <replicated-cache/>, <distributed-cache>, or <invalidation-cache/>

element.

With asynchronous communications, the originator node does not receive any acknowledgement

from the other nodes about the status of the operation, so there is no way to check if it succeeded

on other nodes.

We do not recommend asynchronous communications in general, as they can cause inconsistencies

in the data, and the results are hard to reason about. Nevertheless, sometimes speed is more

important than consistency, and the option is available for those cases.

3.5.2. Asynchronous API

The Asynchronous API allows you to use synchronous communications, but without blocking the

user thread.

There is one caveat: The asynchronous operations do NOT preserve the program order. If a thread

calls cache.putAsync(k, v1); cache.putAsync(k, v2), the final value of k may be either v1 or v2. The

advantage over using asynchronous communications is that the final value can’t be v1 on one node

and v2 on another.


Prior to version 9.0, the asynchronous API was emulated by borrowing a thread

from an internal thread pool and running a blocking operation on that thread.

3.5.3. Return Values in Asynchronous Communication

Because the Cache interface extends java.util.Map, write methods like put(key, value) and

remove(key) return the previous value by default.

In some cases, the return value may not be correct:

1. When using AdvancedCache.withFlags() with Flag.IGNORE_RETURN_VALUE, Flag.SKIP_REMOTE_LOOKUP,

or Flag.SKIP_CACHE_LOAD.

2. When the cache is configured with unreliable-return-values="true".

3. When using asynchronous communications.

4. When there are multiple concurrent writes to the same key, and the cache topology changes.

The topology change will make Infinispan retry the write operations, and a retried operation’s

return value is not reliable.

20



Transactional caches return the correct previous value in cases 3 and 4. However, transactional

caches also have a gotcha: in distributed mode, the read-committed isolation level is implemented

as repeatable-read. That means this example of "double-checked locking" won’t work:

Cache cache = ...

TransactionManager tm = ...

tm.begin();

try {

   Integer v1 = cache.get(k);

   // Increment the value

   Integer v2 = cache.put(k, v1 + 1);

   if (Objects.equals(v1, v2) {

      // success

   } else {

      // retry

   }

} finally {

  tm.commit();

}

The correct way to implement this is to use

cache.getAdvancedCache().withFlags(Flag.FORCE_WRITE_LOCK).get(k).

In caches with optimistic locking, writes can also return stale previous values. Write skew checks

can avoid stale previous values.

21



Chapter 4. Configuring Caches Declaratively

Infinispan declarative configuration.

4.1. Infinispan subsystem

The Infinispan subsystem configures the cache containers and caches.

The subsystem declaration is enclosed in the following XML element:

<subsystem xmlns="urn:infinispan:server:core:10.1" default-cache-container="clustered

">

  ...

</subsystem>

4.1.1. Containers

The Infinispan subsystem can declare multiple containers. A container is declared as follows:

<cache-container name="clustered" default-cache="default">

  ...

</cache-container>


Infinispan does not provide an implicit default cache, but lets you name a cache as

the default.

If you need to declare clustered caches (distributed, replicated, invalidation), you also need to

specify the <transport/> element which references an existing JGroups transport. This is not needed

if you only intend to have local caches only.

<transport executor="infinispan-transport" lock-timeout="60000" stack="udp" cluster=

"my-cluster-name"/>

4.1.2. Cache declarations

Now you can declare your caches. Please be aware that only the caches declared in the

configuration will be available to the endpoints and that attempting to access an undefined cache is

an illegal operation. Contrast this with the default Infinispan library behaviour where obtaining an

undefined cache will implicitly create one using the default settings. The following are example

declarations for all four available types of caches:

22



<local-cache name="default" start="EAGER">

  ...

</local-cache>

<replicated-cache name="replcache" mode="SYNC" remote-timeout="30000" start="EAGER">

  ...

</replicated-cache>

<invalidation-cache name="invcache" mode="SYNC" remote-timeout="30000" start="EAGER">

  ...

</invalidation-cache>

<distributed-cache name="distcache" mode="SYNC" segments="20" owners="2" remote-

timeout="30000" start="EAGER">

  ...

</distributed-cache>

4.2. Locking

To define the locking configuration for a cache, add the <locking/> element as follows:

<locking isolation="REPEATABLE_READ" acquire-timeout="30000" concurrency-level="1000"

striping="false"/>

The possible attributes for the locking element are:

• isolation sets the cache locking isolation level. Can be NONE, READ_UNCOMMITTED,

READ_COMMITTED, REPEATABLE_READ, SERIALIZABLE. Defaults to REPEATABLE_READ

• striping if true, a pool of shared locks is maintained for all entries that need to be locked.

Otherwise, a lock is created per entry in the cache. Lock striping helps control memory footprint

but may reduce concurrency in the system.

• acquire-timeout maximum time to attempt a particular lock acquisition.

• concurrency-level concurrency level for lock containers. Adjust this value according to the

number of concurrent threads interacting with Infinispan.

• concurrent-updates for non-transactional caches only: if set to true(default value) the cache

keeps data consistent in the case of concurrent updates. For clustered caches this comes at the

cost of an additional RPC, so if you don’t expect your application to write data concurrently,

disabling this flag increases performance.

4.3. Loaders and Stores

Loaders and stores can be defined in server mode in almost the same way as in embedded mode.

However, in server mode it is no longer necessary to define the <persistence>…</persistence> tag.

Instead, a store’s attributes are now defined on the store type element. For example, to configure

23



the H2 database with a distributed cache in domain mode we define the "default" cache as follows

in our domain.xml configuration:

<subsystem xmlns="urn:infinispan:server:core:10.1">

  <cache-container name="clustered" default-cache="default" statistics="true">

    <transport lock-timeout="60000"/>

    <global-state/>

    <distributed-cache name="default">

      <string-keyed-jdbc-store datasource="java:jboss/datasources/ExampleDS" fetch-

state="true" shared="true">

        <string-keyed-table prefix="ISPN">

          <id-column name="id" type="VARCHAR"/>

          <data-column name="datum" type="BINARY"/>

          <timestamp-column name="version" type="BIGINT"/>

        </string-keyed-table>

        <write-behind modification-queue-size="20"/>

      </string-keyed-jdbc-store>

    </distributed-cache>

  </cache-container>

</subsystem>

Another important thing to note in this example, is that we use the "ExampleDS" datasource which

is defined in the datasources subsystem in our domain.xml configuration as follows:

<subsystem xmlns="urn:jboss:domain:datasources:4.0">

  <datasources>

    <datasource jndi-name="java:jboss/datasources/ExampleDS" pool-name="ExampleDS"

enabled="true" use-java-context="true">

      <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-

1;DB_CLOSE_ON_EXIT=FALSE</connection-url>

      <driver>h2</driver>

      <security>

        <user-name>sa</user-name>

        <password>sa</password>

      </security>

    </datasource>

  </datasources>

</subsystem>


For additional examples of store configurations, please view the configuration

templates in the default "domain.xml" file provided with in the server distribution

at ./domain/configuration/domain.xml.

4.4. State Transfer

To define the state transfer configuration for a distributed or replicated cache, add the <state-

transfer/> element as follows:

24



<state-transfer enabled="true" timeout="240000" chunk-size="512" await-initial-

transfer="true" />

The possible attributes for the state-transfer element are:

• enabled if true, this will cause the cache to ask neighboring caches for state when it starts up, so

the cache starts 'warm', although it will impact startup time. Defaults to true.

• timeout the maximum amount of time (ms) to wait for state from neighboring caches, before

throwing an exception and aborting startup. Defaults to 240000 (4 minutes).

• chunk-size the number of cache entries to batch in each transfer. Defaults to 512.

• await-initial-transfer if true, this will cause the cache to wait for initial state transfer to complete

before responding to requests. Defaults to true.

4.5. Declarative Cache Configuration

Declarative configuration comes in a form of XML document that adheres to a provided Infinispan

configuration XML schema.

Every aspect of Infinispan that can be configured declaratively can also be configured

programmatically. In fact, declarative configuration, behind the scenes, invokes the programmatic

configuration API as the XML configuration file is being processed. One can even use a combination

of these approaches. For example, you can read static XML configuration files and at runtime

programmatically tune that same configuration. Or you can use a certain static configuration

defined in XML as a starting point or template for defining additional configurations in runtime.

There are two main configuration abstractions in Infinispan: global and cache.

Global configuration

Global configuration defines global settings shared among all cache instances created by a single

EmbeddedCacheManager. Shared resources like thread pools, serialization/marshalling settings,

transport and network settings, JMX domains are all part of global configuration.

Cache configuration

Cache configuration is specific to the actual caching domain itself: it specifies eviction, locking,

transaction, clustering, persistence etc. You can specify as many named cache configurations as you

need. One of these caches can be indicated as the default cache, which is the cache returned by the

CacheManager.getCache() API, whereas other named caches are retrieved via the

CacheManager.getCache(String name) API.

Whenever they are specified, named caches inherit settings from the default cache while additional

behavior can be specified or overridden. Infinispan also provides a very flexible inheritance

mechanism, where you can define a hierarchy of configuration templates, allowing multiple caches

to share the same settings, or overriding specific parameters as necessary.

One of the major goals of Infinispan is to aim for zero configuration. A simple XML configuration

file containing nothing more than a single infinispan element is enough to get you started. The

25



configuration file listed below provides sensible defaults and is perfectly valid.

infinispan.xml

<infinispan />

However, that would only give you the most basic, local mode, non-clustered cache manager with

no caches. Non-basic configurations are very likely to use customized global and default cache

elements.

Declarative configuration is the most common approach to configuring Infinispan cache instances.

In order to read XML configuration files one would typically construct an instance of

DefaultCacheManager by pointing to an XML file containing Infinispan configuration. Once the

configuration file is read you can obtain reference to the default cache instance.

EmbeddedCacheManager manager = new DefaultCacheManager("my-config-file.xml");

Cache defaultCache = manager.getCache();

or any other named instance specified in my-config-file.xml.

Cache someNamedCache = manager.getCache("someNamedCache");

The name of the default cache is defined in the <cache-container> element of the XML configuration

file, and additional caches can be configured using the <local-cache>,<distributed-cache>

,<invalidation-cache> or <replicated-cache> elements.

The following example shows the simplest possible configuration for each of the cache types

supported by Infinispan:

<infinispan>

   <cache-container default-cache="local">

      <transport cluster="mycluster"/>

      <local-cache name="local"/>

      <invalidation-cache name="invalidation" mode="SYNC"/>

      <replicated-cache name="repl-sync" mode="SYNC"/>

      <distributed-cache name="dist-sync" mode="SYNC"/>

   </cache-container>

</infinispan>

4.6. Cache configuration templates

As mentioned above, Infinispan supports the notion of configuration templates. These are full or

partial configuration declarations which can be shared among multiple caches or as the basis for

more complex configurations.

The following example shows how a configuration named local-template is used to define a cache

26



named local.

<infinispan>

   <cache-container default-cache="local">

      <!-- template configurations -->

      <local-cache-configuration name="local-template">

         <expiration interval="10000" lifespan="10" max-idle="10"/>

      </local-cache-configuration>

      <!-- cache definitions -->

      <local-cache name="local" configuration="local-template" />

   </cache-container>

</infinispan>

Templates can inherit from previously defined templates, augmenting and/or overriding some or

all of the configuration elements:

<infinispan>

   <cache-container default-cache="local">

      <!-- template configurations -->

      <local-cache-configuration name="base-template">

         <expiration interval="10000" lifespan="10" max-idle="10"/>

      </local-cache-configuration>

      <local-cache-configuration name="extended-template" configuration="base-

template">

         <expiration lifespan="20"/>

         <memory>

            <object size="2000"/>

         </memory>

      </local-cache-configuration>

      <!-- cache definitions -->

      <local-cache name="local" configuration="base-template" />

      <local-cache name="local-bounded" configuration="extended-template" />

   </cache-container>

</infinispan>

In the above example, base-template defines a local cache with a specific expiration configuration.

The extended-template configuration inherits from base-template, overriding just a single parameter

of the expiration element (all other attributes are inherited) and adds a memory element. Finally,

two caches are defined: local which uses the base-template configuration and local-bounded which

uses the extended-template configuration.


Be aware that for multi-valued elements (such as properties) the inheritance is

additive, i.e. the child configuration will be the result of merging the properties

from the parent and its own.

27



4.7. Cache configuration wildcards

An alternative way to apply templates to caches is to use wildcards in the template name, e.g.

basecache*. Any cache whose name matches the template wildcard will inherit that configuration.

<infinispan>

    <cache-container>

        <local-cache-configuration name="basecache*">

            <expiration interval="10500" lifespan="11" max-idle="11"/>

        </local-cache-configuration>

        <local-cache name="basecache-1"/>

        <local-cache name="basecache-2"/>

    </cache-container>

</infinispan>

Above, caches basecache-1 and basecache-2 will use the basecache* configuration. The configuration

will also be applied when retrieving undefined caches programmatically.


If a cache name matches multiple wildcards, i.e. it is ambiguous, an exception will

be thrown.

4.8. XInclude support

The configuration parser supports XInclude which means you can split your XML configuration

across multiple files:

infinispan.xml

<infinispan xmlns:xi="http://www.w3.org/2001/XInclude">

    <cache-container>

        <local-cache name="cache-1"/>

        <xi:include href="included.xml" />

    </cache-container>

</infinispan>

included.xml

<local-cache name="cache-1"/>


the parser supports a minimal subset of the XInclude spec (no support for

XPointer, fallback, text processing and content negotiation).

4.9. Declarative configuration reference

For more details on the declarative configuration schema, refer to the configuration reference.

28



If you are using XML editing tools for configuration writing you can use the provided Infinispan

schema to assist you.

29



Chapter 5. Configuring Caches

Programmatically

Infinispan programmatic configuration.

5.1. CacheManager and ConfigurationBuilder API

Programmatic Infinispan configuration is centered around the CacheManager and

ConfigurationBuilder API. Although every single aspect of Infinispan configuration could be set

programmatically, the most usual approach is to create a starting point in a form of XML

configuration file and then in runtime, if needed, programmatically tune a specific configuration to

suit the use case best.

EmbeddedCacheManager manager = new DefaultCacheManager("my-config-file.xml");

Cache defaultCache = manager.getCache();

Let’s assume that a new synchronously replicated cache is to be configured programmatically. First,

a fresh instance of Configuration object is created using ConfigurationBuilder helper object, and the

cache mode is set to synchronous replication. Finally, the configuration is defined/registered with a

manager.

Configuration c = new ConfigurationBuilder().clustering().cacheMode(CacheMode

.REPL_SYNC).build();

String newCacheName = "repl";

manager.defineConfiguration(newCacheName, c);

Cache<String, String> cache = manager.getCache(newCacheName);

The default cache configuration (or any other cache configuration) can be used as a starting point

for creation of a new cache. For example, lets say that infinispan-config-file.xml specifies a

replicated cache as a default and that a distributed cache is desired with a specific L1 lifespan while

at the same time retaining all other aspects of a default cache. Therefore, the starting point would

be to read an instance of a default Configuration object and use ConfigurationBuilder to construct

and modify cache mode and L1 lifespan on a new Configuration object. As a final step the

configuration is defined/registered with a manager.

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan-config-file.xml");

Configuration dcc = manager.getDefaultCacheConfiguration();

Configuration c = new ConfigurationBuilder().read(dcc).clustering().cacheMode

(CacheMode.DIST_SYNC).l1().lifespan(60000L).build();

 

String newCacheName = "distributedWithL1";

manager.defineConfiguration(newCacheName, c);

Cache<String, String> cache = manager.getCache(newCacheName);

30



As long as the base configuration is the default named cache, the previous code works perfectly

fine. However, other times the base configuration might be another named cache. So, how can new

configurations be defined based on other defined caches? Take the previous example and imagine

that instead of taking the default cache as base, a named cache called "replicatedCache" is used as

base. The code would look something like this:

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan-config-file.xml");

Configuration rc = manager.getCacheConfiguration("replicatedCache");

Configuration c = new ConfigurationBuilder().read(rc).clustering().cacheMode(

CacheMode.DIST_SYNC).l1().lifespan(60000L).build();

 

String newCacheName = "distributedWithL1";

manager.defineConfiguration(newCacheName, c);

Cache<String, String> cache = manager.getCache(newCacheName);

Refer to CacheManager , ConfigurationBuilder , Configuration , and GlobalConfiguration javadocs

for more details.

5.2. ConfigurationBuilder Programmatic Configuration

API

While the above paragraph shows how to combine declarative and programmatic configuration,

starting from an XML configuration is completely optional. The ConfigurationBuilder fluent

interface style allows for easier to write and more readable programmatic configuration. This

approach can be used for both the global and the cache level configuration. GlobalConfiguration

objects are constructed using GlobalConfigurationBuilder while Configuration objects are built

using ConfigurationBuilder. Let’s look at some examples on configuring both global and cache level

options with this API:

5.2.1. Enabling JMX MBeans and statistics

Sometimes you might also want to enable collection of global JMX statistics at cache manager level

or get information about the transport. To enable global JMX statistics simply do:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()

  .globalJmxStatistics()

  .enable()

  .build();

Please note that by not enabling (or by explicitly disabling) global JMX statistics your are just

turning off statistics collection. The corresponding MBean is still registered and can be used to

manage the cache manager in general, but the statistics attributes do not return meaningful values.

Further options at the global JMX statistics level allows you to configure the cache manager name

which comes handy when you have multiple cache managers running on the same system, or how

to locate the JMX MBean Server:

31



GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()

  .globalJmxStatistics()

    .cacheManagerName("SalesCacheManager")

    .mBeanServerLookup(new JBossMBeanServerLookup())

  .build();

5.2.2. Configuring thread pools

Some of the Infinispan features are powered by a group of the thread pool executors which can

also be tweaked at this global level. For example:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()

   .replicationQueueThreadPool()

     .threadPoolFactory(ScheduledThreadPoolExecutorFactory.create())

  .build();

You can not only configure global, cache manager level, options, but you can also configure cache

level options such as the cluster mode:

Configuration config = new ConfigurationBuilder()

  .clustering()

    .cacheMode(CacheMode.DIST_SYNC)

    .sync()

    .l1().lifespan(25000L)

    .hash().numOwners(3)

  .build();

Or you can configure eviction and expiration settings:

Configuration config = new ConfigurationBuilder()

           .memory()

             .size(20000)

          .expiration()

             .wakeUpInterval(5000L)

             .maxIdle(120000L)

           .build();

5.2.3. Configuring transactions and locking

An application might also want to interact with an Infinispan cache within the boundaries of JTA

and to do that you need to configure the transaction layer and optionally tweak the locking settings.

When interacting with transactional caches, you might want to enable recovery to deal with

transactions that finished with an heuristic outcome and if you do that, you will often want to

enable JMX management and statistics gathering too:

32



Configuration config = new ConfigurationBuilder()

  .locking()

    .concurrencyLevel(10000).isolationLevel(IsolationLevel.REPEATABLE_READ)

    .lockAcquisitionTimeout(12000L).useLockStriping(false).writeSkewCheck(true)

    .versioning().enable().scheme(VersioningScheme.SIMPLE)

  .transaction()

    .transactionManagerLookup(new GenericTransactionManagerLookup())

    .recovery()

  .jmxStatistics()

  .build();

5.2.4. Configuring cache stores

Configuring Infinispan with chained cache stores is simple too:

Configuration config = new ConfigurationBuilder()

   .persistence().passivation(false)

   .addSingleFileStore().location("/tmp").async().enable()

   .preload(false).shared(false).threadPoolSize(20).build();

5.2.5. Advanced programmatic configuration

The fluent configuration can also be used to configure more advanced or exotic options, such as

advanced externalizers:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()

  .serialization()

    .addAdvancedExternalizer(998, new PersonExternalizer())

    .addAdvancedExternalizer(999, new AddressExternalizer())

  .build();

Or, add custom interceptors:

Configuration config = new ConfigurationBuilder()

  .customInterceptors().addInterceptor()

    .interceptor(new FirstInterceptor()).position(InterceptorConfiguration.Position

.FIRST)

    .interceptor(new LastInterceptor()).position(InterceptorConfiguration.Position

.LAST)

    .interceptor(new FixPositionInterceptor()).index(8)

    .interceptor(new AfterInterceptor()).after(NonTransactionalLockingInterceptor

.class)

    .interceptor(new BeforeInterceptor()).before(CallInterceptor.class)

  .build();

33



For information on the individual configuration options, please check the configuration guide.

34



Chapter 6. Setting Up Cluster Transport

Infinispan nodes rely on a transport layer to join and leave clusters as well as to replicate data

across the network.

Infinispan uses JGroups technology to handle cluster transport. You configure cluster transport

with JGroups stacks, which define properties for either UDP or TCP protocols.

6.1. Getting Started with Default Stacks

Use default JGroups stacks with recommended settings as a starting point for your cluster transport

layer.


Default JGroups stacks are included in infinispan-core.jar and, as a result, are on

the classpath.

Programmatic procedure

• Specify default JGroups stacks with the addProperty() method.

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder().transport()

        .defaultTransport()

        .clusterName("qa-cluster")

         // Use default JGroups stacks with the addProperty() method.

        .addProperty("configurationFile", "default-jgroups-tcp.xml")

        .machineId("qa-machine").rackId("qa-rack")

        .build();

Declarative procedure

• Specify default JGroups stacks with the stack attribute.

<infinispan>

  <cache-container default-cache="replicatedCache">

    <!-- Add default JGroups stacks to clustered caches. -->

    <transport stack="tcp" />

    ...

  </cache-container>

</infinispan>


Use the cluster-stack argument with the Infinispan server startup script.

$ bin/server.sh --cluster-stack=tcp

35



6.1.1. Default JGroups Stacks

File name Stack name Description

default-jgroups-udp.xml udp Uses UDP for transport and UDP multicast for

discovery. Suitable for larger clusters (over 100

nodes) or if you are using replicated caches or

invalidation mode. Minimises the number of

open sockets.

default-jgroups-tcp.xml tcp Uses TCP for transport and UDP multicast for

discovery. Suitable for smaller clusters (under

100 nodes) only if you are using distributed

caches because TCP is more efficient than UDP

as a point-to-point protocol.

default-jgroups-ec2.xml ec2 Uses TCP for transport and S3_PING for discovery.

Suitable for Amazon EC2 nodes where UDP

multicast is not available.

default-jgroups-kubernetes.xml kubernetes Uses TCP for transport and DNS_PING for

discovery. Suitable for Kubernetes and Red Hat

OpenShift nodes where UDP multicast is not

always available.

default-jgroups-google.xml google Uses TCP for transport and GOOGLE_PING2 for

discovery. Suitable for Google Cloud Platform

nodes where UDP multicast is not available.

default-jgroups-azure.xml azure Uses TCP for transport and AZURE_PING for

discovery. Suitable for Microsoft Azure nodes

where UDP multicast is not available.

Next Steps

After you get up and running with the default JGroups stacks, use inheritance to combine, extend,

remove, and replace stack properties. See Adjusting and Tuning JGroups Stacks.

6.1.2. Default JGroups Stacks

Infinispan uses the following JGroups TCP and UDP stacks by default:

36



<stack name="udp">

  <transport type="UDP" socket-binding="jgroups-udp"/>

  <protocol type="PING"/>

  <protocol type="MERGE3"/>

  <protocol type="FD_SOCK" socket-binding="jgroups-udp-fd"/>

  <protocol type="FD_ALL"/>

  <protocol type="VERIFY_SUSPECT"/>

  <protocol type="pbcast.NAKACK2"/>

  <protocol type="UNICAST3"/>

  <protocol type="pbcast.STABLE"/>

  <protocol type="pbcast.GMS"/>

  <protocol type="UFC_NB"/>

  <protocol type="MFC_NB"/>

  <protocol type="FRAG3"/>

</stack>

<stack name="tcp">

  <transport type="TCP" socket-binding="jgroups-tcp"/>

  <protocol type="MPING" socket-binding="jgroups-mping"/>

  <protocol type="MERGE3"/>

  <protocol type="FD_SOCK" socket-binding="jgroups-tcp-fd"/>

  <protocol type="FD_ALL"/>

  <protocol type="VERIFY_SUSPECT"/>

  <protocol type="pbcast.NAKACK2">

    <property name="use_mcast_xmit">false</property>

  </protocol>

  <protocol type="UNICAST3"/>

  <protocol type="pbcast.STABLE"/>

  <protocol type="pbcast.GMS"/>

  <protocol type="MFC_NB"/>

  <protocol type="FRAG3"/>

</stack>



To improve performance, Infinispan uses some values for properties other than

the JGroups default values. You should examine the following files to review the

JGroups configuration for Infinispan:

• Infinispan servers

◦ jgroups-defaults.xml

◦ infinispan-jgroups.xml

• Embedded Infinispan

◦ default-jgroups-tcp.xml

◦ default-jgroups-udp.xml

The default TCP stack uses the MPING protocol for discovery, which uses UDP multicast.

Reference

• JGroups Protocol

37



• JGroups Discovery Protocols

6.2. Using Inline JGroups Stacks

Use inline JGroups stack definitions to customize cluster transport for optimal network

performance.


Use inheritance with inline JGroups stacks to tune and customize specific transport

properties.

Procedure

• Embed your custom JGroups stack definitions in infinispan.xml as in the following example:

38



<infinispan>

  <!-- jgroups is the parent for stack declarations. -->

  <jgroups>

    <!-- Add JGroups stacks for Infinispan clustering. -->

    <stack name="prod">

      <TCP bind_port="7800" port_range="30" recv_buf_size="20000000" send_buf_size

="640000"/>

      <MPING bind_addr="127.0.0.1" break_on_coord_rsp="true"

             mcast_addr="${jgroups.mping.mcast_addr:228.2.4.6}"

             mcast_port="${jgroups.mping.mcast_port:43366}"

             num_discovery_runs="3"

             ip_ttl="${jgroups.udp.ip_ttl:2}"/>

      <MERGE3 />

      <FD_SOCK />

      <FD_ALL timeout="3000" interval="1000" timeout_check_interval="1000" />

      <VERIFY_SUSPECT timeout="1000" />

      <pbcast.NAKACK2 use_mcast_xmit="false" xmit_interval="100"

xmit_table_num_rows="50"

                      xmit_table_msgs_per_row="1024"

xmit_table_max_compaction_time="30000" />

      <UNICAST3 xmit_interval="100" xmit_table_num_rows="50"

xmit_table_msgs_per_row="1024"

                xmit_table_max_compaction_time="30000" />

      <pbcast.STABLE stability_delay="200" desired_avg_gossip="2000" max_bytes="1M"

/>

      <pbcast.GMS print_local_addr="false" join_timeout=

"${jgroups.join_timeout:2000}" />

      <UFC_NB max_credits="3m" min_threshold="0.40" />

      <MFC_NB max_credits="3m" min_threshold="0.40" />

      <FRAG3 />

    </stack>

  </jgroups>

  <cache-container default-cache="replicatedCache">

    <!-- Add JGroups stacks to clustered caches. -->

    <transport stack="prod" />

    ...

  </cache-container>

</infinispan>

Reference

Infinispan Configuration Schema

6.3. Adjusting and Tuning JGroups Stacks

Use inheritance to combine, extend, remove, and replace specific properties in the default JGroups

stacks or custom configurations.

Procedure

39



1. Add a new JGroups stack declaration.

2. Name a parent stack with the extends attribute.

3. Modify transport properties with the stack.combine attribute.

For example, you want to evaluate using a Gossip router for cluster discovery using a TCP stack

configuration named prod.

You can create a new stack named gossip-prod that inherits from prod and use stack.combine to

change properties for the Gossip router configuration, as in the following example:

<jgroups>

  ...

  <!-- "gossip-prod" inherits properties from "prod" -->

  <stack name="gossip-prod" extends="prod">

    <!-- Use TCPGOSSIP discovery instead of MPING. -->

    <TCPGOSSIP initial_hosts="${jgroups.tunnel.gossip_router_hosts:localhost[12001]}"

             stack.combine="REPLACE" stack.position="MPING" />

    <!-- Remove FD_SOCK. -->

    <FD_SOCK stack.combine="REMOVE"/>

    <!-- Increase VERIFY_SUSPECT. -->

    <VERIFY_SUSPECT timeout="2000"/>

    <!-- Add SYM_ENCRYPT. -->

    <SYM_ENCRYPT sym_algorithm="AES"

                 key_store_name="defaultStore.keystore"

                 store_password="changeit"

                 alias="myKey" stack.combine="INSERT_AFTER" stack.position=

"pbcast.NAKACK2" />

  </stack>

  ...

</jgroups>

6.3.1. Stack Combine Attribute

stack.combine lets you override and modify inherited JGroups properties.

Value Description

COMBINE Overrides existing protocol attributes.

REPLACE Replaces existing protocols that you identify with the

stack.position attribute. If you do not specify stack.position,

Infinispan defaults to the same protocol as the inherited

configuration, which resets all non-specified attributes to the

default values.

INSERT_AFTER Inserts protocols after any protocols that you identify with the

stack.position attribute.

REMOVE Removes protocols from the inherited configuration.

40



6.4. Using JGroups Stacks in External Files

Use JGroups transport configuration from external files.


Infinispan looks for JGroups configuration files on your classpath first and then for

absolute path names.

Programmatic procedure

• Specify your JGroups transport configuration with the addProperty() method.

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder().transport()

        .defaultTransport()

        .clusterName("prod-cluster")

         // Add custom JGroups stacks with the addProperty() method.

        .addProperty("configurationFile", "prod-jgroups-tcp.xml")

        .machineId("prod-machine").rackId("prod-rack")

        .build();

Declarative procedure

• Add your JGroups stack file and then configure the Infinispan cluster to use it.

<infinispan>

  <jgroups>

     <!-- Add custom JGroups stacks in external files. -->

     <stack-file name="prod-tcp" path="prod-jgroups-tcp.xml"/>

  </jgroups>

  <cache-container default-cache="replicatedCache">

    <!-- Add custom JGroups stacks to clustered caches. -->

    <transport stack="prod-tcp" />

    <replicated-cache name="replicatedCache"/>

  </cache-container>

  ...

</infinispan>

Reference

• GlobalConfigurationBuilder.transport()

• TransportConfigurationBuilder

6.5. Tuning JGroups Stacks with System Properties

Pass system properties to the JVM at startup to tune JGroups stacks.

For example, to change the TCP port and IP address do the following:

41



$ java -cp ... -Djgroups.tcp.port=1234 -Djgroups.tcp.address=192.0.2.0

6.5.1. System Properties for Default JGroups Stacks

default-jgroups-udp.xml

System

Property

Description Default Value Required/O

ptional

jgroups.udp.
mcast_addr

IP address for multicast, both discovery

and inter-cluster communication. The IP

address must be a valid "class D" address

that is suitable for IP multicast.

228.6.7.8 Optional

jgroups.udp.
mcast_port

Port for the multicast socket. 46655 Optional

jgroups.udp.
ip_ttl

Specifies the time-to-live (TTL) for IP

multicast packets. The value defines the

number of network hops a packet can

make before it is dropped.

2 Optional

default-jgroups-tcp.xml

System

Property

Description Default Value Required/O

ptional

jgroups.tcp.
address

IP address for TCP transport. 127.0.0.1 Optional

jgroups.tcp.
port

Port for the TCP socket. 7800 Optional

jgroups.udp.
mcast_addr

IP address for multicast discovery. The IP

address must be a valid "class D" address

that is suitable for IP multicast.

228.6.7.8 Optional

jgroups.udp.
mcast_port

Port for the multicast socket. 46655 Optional

jgroups.udp.
ip_ttl

Specifies the time-to-live (TTL) for IP

multicast packets. The value defines the

number of network hops a packet can

make before it is dropped.

2 Optional

default-jgroups-ec2.xml

System

Property

Description Default Value Required/O

ptional

jgroups.tcp.
address

IP address for TCP transport. 127.0.0.1 Optional

jgroups.tcp.
port

Port for the TCP socket. 7800 Optional

jgroups.s3.a
ccess_key

Amazon S3 access key for an S3 bucket. No default value. Optional

42



System

Property

Description Default Value Required/O

ptional

jgroups.s3.s
ecret_access
_key

Amazon S3 secret key used for an S3

bucket.

No default value. Optional

jgroups.s3.b
ucket

Name of the Amazon S3 bucket. The

name must already exist and be unique.

No default value. Optional

default-jgroups-kubernetes.xml

System

Property

Description Default Value Required/O

ptional

jgroups.tcp.
address

IP address for TCP transport. eth0 Optional

jgroups.tcp.
port

Port for the TCP socket. 7800 Optional

Reference

• JGroups System Properties

• JGroups Protocol List

6.6. Using Custom JChannels

Construct custom JGroups JChannels as in the following example:

GlobalConfigurationBuilder global = new GlobalConfigurationBuilder();

JChannel jchannel = new JChannel();

// Configure the jchannel to your needs.

JGroupsTransport transport = new JGroupsTransport(jchannel);

global.transport().transport(transport);

new DefaultCacheManager(global.build());

 Infinispan cannot use custom JChannels that are already connected.

Reference

JGroups JChannel

43



Chapter 7. Configuring Cluster Discovery

Running Infinispan on hosted services requires using discovery mechanisms that are adapted to

network constraints that individual cloud providers impose. For instance, Amazon EC2 does not

allow UDP multicast.

Infinispan can use the following cloud discovery mechanisms:

• Generic discovery protocols (TCPPING and TCPGOSSIP)

• JGroups PING protocols (KUBE_PING and DNS_PING)

• Cloud-specific PING protocols

 Embedded Infinispan requires cloud provider dependencies.

7.1. TCPPING

TCPPING is a generic JGroups discovery mechanism that uses a static list of IP addresses for cluster

members.

To use TCPPING, you must add the list of static IP addresses to the JGroups configuration file for each

Infinispan node. However, the drawback to TCPPING is that it does not allow nodes to dynamically

join Infinispan clusters.

TCPPING configuration example

<config>

      <TCP bind_port="7800" />

      <TCPPING timeout="3000"

           initial_hosts=

"${jgroups.tcpping.initial_hosts:localhost[7800],localhost[7801]}"

           port_range="1"

           num_initial_members="3"/>

...

...

</config>

Reference

JGroups TCPPING

7.2. Gossip Router

Gossip routers provide a centralized location on the network from which your Infinispan cluster

can retrieve addresses of other nodes.

You inject the address (IP:PORT) of the Gossip router into Infinispan nodes as follows:

1. Pass the address as a system property to the JVM; for example,

44



-DGossipRouterAddress="10.10.2.4[12001]".

2. Reference that system property in the JGroups configuration file.

Gossip router configuration example

<config>

    <TCP bind_port="7800" />

    <TCPGOSSIP timeout="3000" initial_hosts="${GossipRouterAddress}"

num_initial_members="3" />

...

...

</config>

Reference

JGroups Gossip Router

7.3. DNS_PING

JGroups DNS_PING queries DNS servers to discover Infinispan cluster members in Kubernetes

environments such as OKD and Red Hat OpenShift.

DNS_PING configuration example

<stack name="dns-ping">

...

    <dns.DNS_PING

      dns_query="myservice.myproject.svc.cluster.local" />

...

</stack>

Reference

• JGroups DNS_PING

• DNS for Services and Pods (Kubernetes documentation for adding DNS entries)

7.4. KUBE_PING

JGroups Kube_PING uses a Kubernetes API to discover Infinispan cluster members in environments

such as OKD and Red Hat OpenShift.

45



KUBE_PING configuration example

<config>

    <TCP bind_addr="${match-interface:eth.*}" />

    <kubernetes.KUBE_PING />

...

...

</config>

KUBE_PING configuration requirements

• Your KUBE_PING configuration must bind the JGroups stack to the eth0 network interface. Docker

containers use eth0 for communication.

• KUBE_PING uses environment variables inside containers for configuration. The

KUBERNETES_NAMESPACE environment variable must specify a valid namespace. You can either

hardcode it or populate it via the Kubernetes Downward API.

• KUBE_PING requires additional privileges on Red Hat OpenShift. Assuming that oc project -q

returns the current namespace and default is the service account name, you can run:

$ oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default -n

$(oc project -q)

Reference

• JGroups Kube_PING

• Kubernetes Downward API

• Docker Networking

7.5. NATIVE_S3_PING

On Amazon Web Service (AWS), use the S3_PING protocol for discovery.

You can configure JGroups to use shared storage to exchange the details of Infinispan nodes.

NATIVE_S3_PING allows Amazon S3 as the shared storage but requires both Amazon S3 and EC2

subscriptions.

NATIVE_S3_PING configuration example

<config>

    <TCP bind_port="7800" />

    <org.jgroups.aws.s3.NATIVE_S3_PING

            region_name="replace this with your region (e.g. eu-west-1)"

            bucket_name="replace this with your bucket name"

            bucket_prefix="replace this with a prefix to use for entries in the bucket

(optional)" />

</config>

46



NATIVE_S3_PING dependencies for embedded Infinispan

<dependency>

  <groupId>org.jgroups.aws.s3</groupId>

  <artifactId>native-s3-ping</artifactId>

  <!-- Replace ${version.jgroups.native_s3_ping} with the

  version of the native-s3-ping module you want to use. -->

  <version>${version.jgroups.native_s3_ping}</version>

</dependency>

7.6. JDBC_PING

JDBC_PING uses JDBC connections to shared databases, such as Amazon RDS on EC2, to store

information about Infinispan nodes.

Reference

JDBC_PING Wiki

7.7. AZURE_PING

On Microsoft Azure, use a generic discovery protocol or AZURE_PING, which uses shared Azure Blob

Storage to store discovery information.

AZURE_PING configuration example

<azure.AZURE_PING

    storage_account_name="replace this with your account name"

    storage_access_key="replace this with your access key"

    container="replace this with your container name"

/>

AZURE_PING dependencies for embedded Infinispan

<dependency>

  <groupId>org.jgroups.azure</groupId>

  <artifactId>jgroups-azure</artifactId>

  <!-- Replace ${version.jgroups.azure} with the

  version of the jgroups-azure module you want to use. -->

  <version>${version.jgroups.azure}</version>

</dependency>

7.8. GOOGLE2_PING

On Google Compute Engine (GCE), use a generic discovery protocol or GOOGLE2_PING, which uses

Google Cloud Storage (GCS) to store information about the cluster members.

47



GOOGLE2_PING configuration example

<org.jgroups.protocols.google.GOOGLE_PING2 location="${jgroups.google.bucket_name}" />

GOOGLE2_PING dependencies for embedded Infinispan

<dependency>

  <groupId>org.jgroups.google</groupId>

  <artifactId>jgroups-google</artifactId>

  <!-- Replace ${version.jgroups.google} with the

  version of the jgroups-goole module you want to use. -->

  <version>${version.jgroups.google}</version>

</dependency>

48



Chapter 8. Configuring Eviction and

Expiration

8.1. Eviction and Data Container

Infinispan supports eviction of entries, such that you do not run out of memory. Eviction is typically

used in conjunction with a cache store, so that entries are not permanently lost when evicted, since

eviction only removes entries from memory and not from cache stores or the rest of the cluster.

Infinispan supports storing data in a few different formats. Data can be stored as the object iself,

binary as a byte[], and off-heap which stores the byte[] in native memory.



Passivation is also a popular option when using eviction, so that only a single copy

of an entry is maintained - either in memory or in a cache store, but not both. The

main benefit of using passivation over a regular cache store is that updates to

entries which exist in memory are cheaper since the update doesn’t need to be

made to the cache store as well.



Eviction occurs on a local basis, and is not cluster-wide. Each node runs an

eviction thread to analyse the contents of its in-memory container and decide

what to evict. Eviction does not take into account the amount of free memory in

the JVM as threshold to starts evicting entries. You have to set size attribute of the

eviction element to be greater than zero in order for eviction to be turned on. If

size is too large you can run out of memory. The size attribute will probably take

some tuning in each use case.

8.2. Enabling Eviction

Eviction is configured by adding the <memory /> element to your <*-cache /> configuration sections

or using MemoryConfigurationBuilder API programmatic approach.

All cache entry are evicted by piggybacking on user threads that are hitting the cache.

8.2.1. Eviction strategy

Strategies control how the eviction is handled.

The possible choices are

NONE

Eviction is not enabled and it is assumed that the user will not invoke evict directly on the cache. If

passivation is enabled this will cause aa warning message to be emitted. This is the default strategy.

MANUAL

This strategy is just like <b>NONE</b> except that it asssumes the user will be invoking evict

directly. This way if passivation is enabled no warning message is logged.

49



REMOVE

This strategy will actually evict "old" entries to make room for incoming ones.

Eviction is handled by Caffeine utilizing the TinyLFU algorithm with an additional admission

window. This was chosen as provides high hit rate while also requiring low memory overhead. This

provides a better hit ratio than LRU while also requiring less memory than LIRS.

EXCEPTION

This strategy actually prevents new entries from being created by throwing a

ContainerFullException. This strategy only works with transactional caches that always run with 2

phase commit, that is no 1 phase commit or synchronization optimizations allowed.

8.2.2. Eviction types

Eviction type applies only when the size is set to something greater than 0. The eviction type below

determines when the container will decide to remove entries.

COUNT

This type of eviction will remove entries based on how many there are in the cache. Once the count

of entries has grown larger than the size then an entry will be removed to make room.

MEMORY

This type of eviction will estimate how much each entry will take up in memory and will remove an

entry when the total size of all entries is larger than the configured size. This type does not work

with OBJECT storage type below.

8.2.3. Storage type

Infinispan allows the user to configure in what form their data is stored. Each form supports the

same features of Infinispan, however eviction can be limited for some forms. There are currently

three storage formats that Infinispan provides, they are:

OBJECT

Stores the keys and values as objects in the Java heap Only COUNT eviction type is supported.

BINARY

Stores the keys and values as a byte[] in the Java heap. This will use the configured marshaller for

the cache if there is one. Both COUNT and MEMORY eviction types are supported.

OFF-HEAP

Stores the keys and values in native memory outside of the Java heap as bytes. The configured

marshaller will be used if the cache has one. Both COUNT and MEMORY eviction types are supported.


Both BINARY and OFF-HEAP violate equality and hashCode that they are dictated by

the resulting byte[] they generate instead of the object instance.

8.2.4. More defaults

By default when no <memory /> element is specified, no eviction takes place, OBJECT storage type is

used, and a strategy of NONE is assumed.

50



In case there is an memory element, this table describes the behaviour of eviction based on

information provided in the xml configuration ("-" in Supplied size or Supplied strategy column

means that the attribute wasn’t supplied)

Supplied size Example Eviction behaviour

- <memory /> no eviction as an object

- <memory> <object
strategy="MANUAL" /> </memory>

no eviction as an object and

won’t log warning if passivation

is enabled

> 0 <memory> <object size="100" />
</memory>

eviction takes place and stored

as objects

> 0 <memory> <binary size="100"
eviction="MEMORY"/> </memory>

eviction takes place and stored

as a binary removing to make

sure memory doens’t go higher

than 100

> 0 <memory> <off-heap size="100"
/> </memory>

eviction takes place and stored

in off-heap

> 0 <memory> <off-heap size="100"
strategy="EXCEPTION" />
</memory>

entries are stored in off-heap

and if 100 entries are in

container exceptions will be

thrown for additional

0 <memory> <object size="0" />
</memory>

no eviction

< 0 <memory> <object size="-1" />
</memory>

no eviction

8.3. Expiration

Similar to, but unlike eviction, is expiration. Expiration allows you to attach lifespan and/or

maximum idle times to entries. Entries that exceed these times are treated as invalid and are

removed. When removed expired entries are not passivated like evicted entries (if passivation is

turned on).


Unlike eviction, expired entries are removed globally - from memory, cache stores,

and cluster-wide.

By default entries created are immortal and do not have a lifespan or maximum idle time. Using the

cache API, mortal entries can be created with lifespans and/or maximum idle times. Further,

default lifespans and/or maximum idle times can be configured by adding the <expiration />

element to your <*-cache /> configuration sections.

When an entry expires it resides in the data container or cache store until it is accessed again by a

user request. An expiration reaper is also available to check for expired entries and remove them at

a configurable interval of milliseconds.

51



You can enable the expiration reaper declaratively with the reaper-interval attribute or

programmatically with the enableReaper method in the ExpirationConfigurationBuilder class.


• The expiration reaper cannot be disabled when a cache store is present.

• When using a maximum idle time in a clustered cache, you should always

enable the expiration reaper. For more information, see Clustered Max Idle.

8.3.1. Difference between Eviction and Expiration

Both Eviction and Expiration are means of cleaning the cache of unused entries and thus guarding

the heap against OutOfMemory exceptions, so now a brief explanation of the difference.

With eviction you set maximal number of entries you want to keep in the cache and if this limit is

exceeded, some candidates are found to be removed according to a choosen eviction strategy (LRU,

LIRS, etc…). Eviction can be setup to work with passivation, which is eviction to a cache store.

With expiration you set time criteria for entries to specify how long you want to keep them in the

cache.

lifespan

Specifies how long entries can remain in the cache before they expire. The default value is -1,

which is unlimited time.

maximum idle time

Specifies how long entries can remain idle before they expire. An entry in the cache is idle when

no operation is performed with the key. The default value is -1, which is unlimited time.

8.3.2. Expiration details

1. Expiration is a top-level construct, represented in the configuration as well as in the cache API.

2. While eviction is local to each cache instance , expiration is cluster-wide . Expiration lifespan

and maxIdle values are replicated along with the cache entry.

3. Maximum idle times for cache entries require additional network messages in clustered

environments. For this reason, setting maxIdle in clustered caches can result in slower operation

times.

4. Expiration lifespan and maxIdle are also persisted in CacheStores, so this information survives

eviction/passivation.

Maximum Idle Expiration

Maximum idle expiration has different behavior in local and clustered cache environments.

Local Max Idle

In non-clustered cache environments, the maxIdle configuration expires entries when:

• accessed directly (Cache.get).

52



• iterated upon (Cache.size).

• the expiration reaper thread runs.

Clustered Max Idle

In clustered environments, nodes in the cluster can have different access times for the same entry.

Entries do not expire from the cache until they reach the maxium idle time for all owners across

the cluster.

When a node detects that an entry has reached the maximum idle time and is expired, the node

gets the last time that the entry was accessed from the other owners in the cluster. If the other

owners indicate that the entry is expired, that entry is not returned to the requester and removed

from the cache.

The following points apply to using the maxIdle configuration with clustered caches:

• If one or more owner in the cluster detects that an entry is not expired, then a Cache.get

operation returns the entry. The last access time for that entry is also updated to the current

time.

• When the expiration reaper finds entries that might be expired with the maximum idle time, all

nodes update the last access time for those entries to the most recent access time before the

maxIdle time. In this way, the reaper prevents invalid expiration of entries.

• Clustered transactional caches do not remove entries that are expired with the maximum idle

time on Cache.get operations. These expired entries are removed with the expiration reaper

thread only, otherwise deadlocking can occur.

• Iteration across a clustered cache returns entries that might be expired with the maximum idle

time. This behavior ensures performance because no remote invocations are performed during

the iteration. However this does not refresh any expired entries, which are removed by the

expiration reaper or when accessed directly (Cache.get).



• Clustered caches should always use the expiration reaper with the maxIdle

configuration.

• When using maxIdle expiration with exception-based eviction, entries that are

expired but not removed from the cache count towards the size of the data

container.

Configuration

Eviction and Expiration may be configured using the programmatic or declarative XML

configuration. This configuration is on a per-cache basis. Valid eviction/expiration-related

configuration elements are:

53



<!-- Eviction -->

<memory>

   <object size="2000"/>

</memory>

<!-- Expiration -->

<expiration lifespan="1000" max-idle="500" interval="1000" />

Programmatically, the same would be defined using:

Configuration c = new ConfigurationBuilder()

               .memory().size(2000)

               .expiration().wakeUpInterval(5000l).lifespan(1000l).maxIdle(500l)

               .build();

Memory Based Eviction Configuration

Memory based eviction may require some additional configuration options if you are using your

own custom types (as Infinispan is normally used). In this case Infinispan cannot estimate the

memory usage of your classes and as such you are required to use storeAsBinary when memory

based eviction is used.

<!-- Enable memory based eviction with 1 GB/> -->

<memory>

   <binary size="1000000000" eviction="MEMORY"/>

</memory>

Configuration c = new ConfigurationBuilder()

               .memory()

               .storageType(StorageType.BINARY)

               .evictionType(EvictionType.MEMORY)

               .size(1_000_000_000)

               .build();

Default values

Eviction is disabled by default. Default values are used:

• size: -1 is used if not specified, which means unlimited entries.

• 0 means no entries, and the eviction thread will strive to keep the cache empty.

Expiration lifespan and maxIdle both default to -1, which means that entries will be created

immortal by default. This can be overridden per entry with the API.

54



Using expiration

Expiration allows you to set either a lifespan or a maximum idle time on each key/value pair stored

in the cache. This can either be set cache-wide using the configuration, as described above, or it can

be defined per-key/value pair using the Cache interface. Any values defined per key/value pair

overrides the cache-wide default for the specific entry in question.

For example, assume the following configuration:

<expiration lifespan="1000" />

// this entry will expire in 1000 millis

cache.put("pinot noir", pinotNoirPrice);

// this entry will expire in 2000 millis

cache.put("chardonnay", chardonnayPrice, 2, TimeUnit.SECONDS);

// this entry will expire 1000 millis after it is last accessed

cache.put("pinot grigio", pinotGrigioPrice, -1,

          TimeUnit.SECONDS, 1, TimeUnit.SECONDS);

// this entry will expire 1000 millis after it is last accessed, or

// in 5000 millis, which ever triggers first

cache.put("riesling", rieslingPrice, 5,

          TimeUnit.SECONDS, 1, TimeUnit.SECONDS);

8.3.3. Expiration designs

Central to expiration is an ExpirationManager.

The purpose of the ExpirationManager is to drive the expiration thread which periodically purges

items from the DataContainer. If the expiration thread is disabled (wakeupInterval set to -1)

expiration can be kicked off manually using ExprationManager.processExpiration(), for example

from another maintenance thread that may run periodically in your application.

The expiration manager processes expirations in the following manner:

1. Causes the data container to purge expired entries

2. Causes cache stores (if any) to purge expired entries

55



Chapter 9. Persistence

Persistence allows configuring external (persistent) storage engines complementary to the default

in memory storage offered by Infinispan. An external persistent storage might be useful for several

reasons:

• Increased Durability. Memory is volatile, so a cache store could increase the life-span of the

information store in the cache.

• Write-through. Interpose Infinispan as a caching layer between an application and a (custom)

external storage engine.

• Overflow Data. By using eviction and passivation, one can store only the "hot" data in memory

and overflow the data that is less frequently used to disk.

The integration with the persistent store is done through the following SPI: CacheLoader,

CacheWriter, AdvancedCacheLoader and AdvancedCacheWriter (discussed in the following

sections).

These SPIs allow for the following features:

• Alignment with JSR-107. The CacheWriter and CacheLoader interface are similar to the the

loader and writer in JSR 107. This should considerably help writing portable stores across

JCache compliant vendors.

• Simplified Transaction Integration. All necessary locking is handled by Infinispan automatically

and implementations don’t have to be concerned with coordinating concurrent access to the

store. Even though concurrent writes on the same key are not going to happen (depending

locking mode in use), implementors should expect operations on the store to happen from

multiple/different threads and code the implementation accordingly.

• Parallel Iteration. It is now possible to iterate over entries in the store with multiple threads in

parallel.

• Reduced Serialization. This translates in less CPU usage. The new API exposes the stored entries

in serialized format. If an entry is fetched from persistent storage for the sole purpose of being

sent remotely, we no longer need to deserialize it (when reading from the store) and serialize it

back (when writing to the wire). Now we can write to the wire the serialized format as read

from the storage directly.

9.1. Configuration

Stores (readers and/or writers) can be configured in a chain. Cache read operation looks at all of the

specified CacheLoader s, in the order they are configured, until it finds a valid and non-null element

of data. When performing writes all cache CacheWriter s are written to, except if the

ignoreModifications element has been set to true for a specific cache writer.

56





Implementing both a CacheWriter and CacheLoader

Store providers should implement both the CacheWriter and the CacheLoader

interfaces. Stores that do this are considered both for reading and writing

(assuming read-only=false) data.

This is the configuration of a custom (not shipped with infinispan) store:

<local-cache name="myCustomStore">

   <persistence passivation="false">

      <store

         class="org.acme.CustomStore"

         fetch-state="false" preload="true" shared="false"

         purge="true" read-only="false" segmented="true">

         <write-behind modification-queue-size="123" thread-pool-size="23" />

         <property name="myProp">${system.property}</property>

      </store>

   </persistence>

</local-cache>

Parameters that you can use to configure persistence are as follows:

connection-attempts

Sets the maximum number of attempts to start each configured CacheWriter/CacheLoader. If the

attempts to start are not successful, an exception is thrown and the cache does not start.

connection-interval

Specifies the time, in milliseconds, to wait between connection attempts on startup. A negative

or zero value means no wait between connection attempts.

availability-interval

Specifies the time, in milliseconds, between availability checks to determine if the

PersistenceManager is available. In other words, this interval sets how often stores/loaders are

polled via their org.infinispan.persistence.spi.CacheWriter#isAvailable or

org.infinispan.persistence.spi.CacheLoader#isAvailable implementation. If a single store/loader

is not available, an exception is thrown during cache operations.

passivation

Enables passivation. The default value is false (boolean).

This property has a significant impact on Infinispan interactions with the loaders. See Cache

Passivation for more information.

class

Defines the class of the store and must implement CacheLoader, CacheWriter, or both.

fetch-state

Fetches the persistent state of a cache when joining a cluster. The default value is false

57



(boolean).

The purpose of this property is to retrieve the persistent state of a cache and apply it to the local

cache store of a node when it joins a cluster. Fetching the persistent state does not apply if a

cache store is shared because it accesses the same data as the other stores.

This property can be true for one configured cache loader only. If more than one cache loader

fetches the persistent state, a configuration exception is thrown when the cache service starts.

preload

Pre-loads data into memory from the cache loader when the cache starts. The default value is

false (boolean).

This property is useful when data in the cache loader is required immediately after startup to

prevent delays with cache operations when the data is loaded lazily. This property can provide a

"warm cache" on startup but it impacts performance because it affects start time.

Pre-loading data is done locally, so any data loaded is stored locally in the node only. The pre-

loaded data is not replicated or distributed. Likewise, Infinispan pre-loads data only up to the

maximum configured number of entries in eviction.

shared

Determines if the cache loader is shared between cache instances. The default value is false

(boolean).

This property prevents duplicate writes of data to the cache loader by different cache instances.

An example is where all cache instances in a cluster use the same JDBC settings for the same

remote, shared database.

segmented

Configures a cache store to segment data. The default value is false (boolean).

If true the cache store stores data in buckets. The hash.numSegments property configures how

many buckets there are for storing data.

Depending on the cache store implementation, segmenting data can cause slower write

operations. However, performance improves for other cache operations. See Segmented Stores

for more information.

read-only

Prevents new data from being persisted to the cache store. The default value is false (boolean).

purge

Empties the specified cache loader at startup. The default value is false (boolean). This property

takes effect only if the read-only property is set to false.

max-batch-size

Sets the maximum size of a batch to insert of delete from the cache store. The default value is

#{AbstractStore-maxBatchSize}.

If the value is less than 1, no upper limit applies to the number of operations in a batch.

58



write-behind

Asynchronously persists data to the cache store. The default value is false (boolean). See

Asynchronous Write-Behind for more information.



You can define additional attributes in the properties section to configure specific

aspects of each cache loader, such as the myProp attribute in the previous example.

Other cache loaders with more complex configurations also include additional

properties. See the following JDBC cache store configuration for examples.

The preceding configuration applies a generic cache store implementation. However, the default

Infinispan store implementation has a more complex configuration schema, in which the

properties section is replaced with XML attributes:

<persistence passivation="false">

   <!-- note that class is missing and is induced by the fileStore element name -->

   <file-store

           shared="false" preload="true"

           fetch-state="true"

           read-only="false"

           purge="false"

           path="${java.io.tmpdir}">

      <write-behind thread-pool-size="5" />

   </file-store>

</persistence>

The same configuration can be achieved programmatically:

ConfigurationBuilder builder = new ConfigurationBuilder();

builder.persistence()

      .passivation(false)

      .addSingleFileStore()

         .preload(true)

         .shared(false)

         .fetchPersistentState(true)

         .ignoreModifications(false)

         .purgeOnStartup(false)

         .location(System.getProperty("java.io.tmpdir"))

         .async()

            .enabled(true)

            .threadPoolSize(5)

9.2. Cache Passivation

A CacheWriter can be used to enforce entry passivation and activation on eviction in a cache. Cache

passivation is the process of removing an object from in-memory cache and writing it to a

secondary data store (e.g., file system, database) on eviction. Cache activation is the process of

59



restoring an object from the data store into the in-memory cache when it’s needed to be used. In

order to fully support passivation, a store needs to be both a CacheWriter and a CacheLoader. In

both cases, the configured cache store is used to read from the loader and write to the data writer.

When an eviction policy in effect evicts an entry from the cache, if passivation is enabled, a

notification that the entry is being passivated will be emitted to the cache listeners and the entry

will be stored. When a user attempts to retrieve a entry that was evicted earlier, the entry is (lazily)

loaded from the cache loader into memory. When the entry has been loaded a notification is

emitted to the cache listeners that the entry has been activated. In order to enable passivation just

set passivation to true (false by default). When passivation is used, only the first cache loader

configured is used and all others are ignored.

9.2.1. Limitations

Due to the unique nature of passivation, it is not supported with some other store configurations.

• Transactional store - Passivation writes/removes entries from the store outside the scope of the

actual Infinispan commit boundaries.

• Shared store - Shared store requires entries always being in the store for other owners. Thus

passivation makes no sense as we can’t remove the entry from the store.

9.2.2. Cache Loader Behavior with Passivation Disabled vs Enabled

When passivation is disabled, whenever an element is modified, added or removed, then that

modification is persisted in the backend store via the cache loader. There is no direct relationship

between eviction and cache loading. If you don’t use eviction, what’s in the persistent store is

basically a copy of what’s in memory. If you do use eviction, what’s in the persistent store is

basically a superset of what’s in memory (i.e. it includes entries that have been evicted from

memory). When passivation is enabled, and with an unshared store, there is a direct relationship

between eviction and the cache loader. Writes to the persistent store via the cache loader only

occur as part of the eviction process. Data is deleted from the persistent store when the application

reads it back into memory. In this case, what’s in memory and what’s in the persistent store are two

subsets of the total information set, with no intersection between the subsets. With a shared store,

entries which have been passivated in the past will continue to exist in the store, although they may

have a stale value if this has been overwritten in memory.

The following is a simple example, showing what state is in RAM and in the persistent store after

each step of a 6 step process:

Operation Passivation Off Passivation On,

Shared Off

Passivation On,

Shared On

Insert keyOne Memory: keyOne

Disk: keyOne

Memory: keyOne

Disk: (none)

Memory: keyOne

Disk: (none)

Insert keyTwo Memory: keyOne,

keyTwo

Disk: keyOne, keyTwo

Memory: keyOne,

keyTwo

Disk: (none)

Memory: keyOne,

keyTwo

Disk: (none)

60



Operation Passivation Off Passivation On,

Shared Off

Passivation On,

Shared On

Eviction thread runs,

evicts keyOne

Memory: keyTwo

Disk: keyOne, keyTwo

Memory: keyTwo

Disk: keyOne

Memory: keyTwo

Disk: keyOne

Read keyOne Memory: keyOne,

keyTwo

Disk: keyOne, keyTwo

Memory: keyOne,

keyTwo

Disk: (none)

Memory: keyOne,

keyTwo

Disk: keyOne

Eviction thread runs,

evicts keyTwo

Memory: keyOne

Disk: keyOne, keyTwo

Memory: keyOne

Disk: keyTwo

Memory: keyOne

Disk: keyOne, keyTwo

Remove keyTwo Memory: keyOne

Disk: keyOne

Memory: keyOne

Disk: (none)

Memory: keyOne

Disk: keyOne

9.3. Cache Loaders and transactional caches

When a cache is transactional and a cache loader is present, the cache loader won’t be enlisted in

the transaction in which the cache is part. That means that it is possible to have inconsistencies at

cache loader level: the transaction to succeed applying the in-memory state but (partially) fail

applying the changes to the store. Manual recovery would not work with caches stores.

9.4. Write-Through And Write-Behind Caching

Infinispan can optionally be configured with one or several cache stores allowing it to store data in

a persistent location such as shared JDBC database, a local filesystem, etc. Infinispan can handle

updates to the cache store in two different ways:

• Write-Through (Synchronous)

• Write-Behind (Asynchronous)

9.4.1. Write-Through (Synchronous)

In this mode, which is supported in version 4.0, when clients update a cache entry, i.e. via a

Cache.put() invocation, the call will not return until Infinispan has gone to the underlying cache

store and has updated it. Normally, this means that updates to the cache store are done within the

boundaries of the client thread.

The main advantage of this mode is that the cache store is updated at the same time as the cache,

hence the cache store is consistent with the cache contents. On the other hand, using this mode

reduces performance because the latency of having to access and update the cache store directly

impacts the duration of the cache operation.

Configuring a write-through or synchronous cache store does not require any particular

configuration option. By default, unless marked explicitly as write-behind or asynchronous, all

cache stores are write-through or synchronous. Please find below a sample configuration file of a

write-through unshared local file cache store:

61



<persistence passivation="false">

   <file-store fetch-state="true"

               read-only="false"

               purge="false" path="${java.io.tmpdir}"/>

</persistence>

9.4.2. Write-Behind (Asynchronous)

In this mode, updates to the cache are asynchronously written to the cache store. Infinispan puts

pending changes into a modification queue so that it can quickly store changes.

The configured number of threads consume the queue and apply the modifications to the

underlying cache store. If the configured number of threads cannot consume the modifications fast

enough, or if the underlying store becomes unavailable, the modification queue becomes full. In

this event, the cache store becomes write-through until the queue can accept new entries.

This mode provides an advantage in that cache operations are not affected by updates to the

underlying store. However, because updates happen asynchronously, there is a period of time

during which data in the cache store is inconsistent with data in the cache.

The write-behind strategy is suitable for cache stores with low latency and small operational cost;

for example, an unshared file-based cache store that is local to the cache itself. In this case, the time

during which data is inconsistent between the cache store and the cache is reduced to the lowest

possible period.

The following is an example configuration for the write-behind strategy:

<persistence passivation="false">

   <file-store fetch-state="true"

               read-only="false"

               purge="false" path="${java.io.tmpdir}">

   <!-- start write-behind configuration -->

   <write-behind modification-queue-size="123" thread-pool-size="23" />

   <!-- end write-behind configuration -->

   </file-store>

</persistence>

9.4.3. Segmented Stores

You can configure stores so that data resides in segments to which keys map. See Key Ownership

for more information about segments and ownership.

Segmented stores increase read performance for bulk operations; for example, streaming over data

(Cache.size, Cache.entrySet.stream), pre-loading the cache, and doing state transfer operations.

However, segmented stores can also result in loss of performance for write operations. This

performance loss applies particularly to batch write operations that can take place with

transactions or write-behind stores. For this reason, you should evaluate the overhead for write

62



operations before you enable segmented stores. The performance gain for bulk read operations

might not be acceptable if there is a significant performance loss for write operations.



Loss of data can occur if the number of segments in a cache store are not changed

gracefully. For this reason, if you change the numSegments setting in the store

configuration, you must migrate the existing store to use the new configuration.

The recommended method to migrate the cache store configuration is to perform a

rolling upgrade. The store migrator supports migrating a non-segmented cache

store to a segmented cache store only. The store migrator does not currently

support migrating from a segmented cache store.



Not all cache stores support segmentation. See the appropriate section for each

store to determine if it supports segmentation.

If you plan to convert or write a new store to support segmentation, see the

following SPI section that provides more details.

9.5. Filesystem based cache stores

A filesystem-based cache store is typically used when you want to have a cache with a cache store

available locally which stores data that has overflowed from memory, having exceeded size and/or

time restrictions.



Usage of filesystem-based cache stores on shared filesystems like NFS, Windows

shares, etc. should be avoided as these do not implement proper file locking and

can cause data corruption. File systems are inherently not transactional, so when

attempting to use your cache in a transactional context, failures when writing to

the file (which happens during the commit phase) cannot be recovered.

9.6. Single File Store

The single file cache store keeps all data in a single file. The way it looks up data is by keeping an in-

memory index of keys and the positions of their values in this file. This results in greater

performance compared to old file cache store. There is one caveat though. Since the single file

based cache store keeps keys in memory, it can lead to increased memory consumption, and hence

it’s not recommended for caches with big keys.

In certain use cases, this cache store suffers from fragmentation: if you store larger and larger

values, the space is not reused and instead the entry is appended at the end of the file. The space

(now empty) is reused only if you write another entry that can fit there. Also, when you remove all

entries from the cache, the file won’t shrink, and neither will be de-fragmented.

These are the available configuration options for the single file cache store:

• path where data will be stored. (e.g., path="/tmp/myDataStore"). By default, the location is

Infinispan-SingleFileStore.

63



• max-entries specifies the maximum number of entries to keep in this file store. As mentioned

before, in order to speed up lookups, the single file cache store keeps an index of keys and their

corresponding position in the file. To avoid this index resulting in memory consumption

problems, this cache store can bounded by a maximum number of entries that it stores. If this

limit is exceeded, entries are removed permanently using the LRU algorithm both from the in-

memory index and the underlying file based cache store. So, setting a maximum limit only

makes sense when Infinispan is used as a cache, whose contents can be recomputed or they can

be retrieved from the authoritative data store. If this maximum limit is set when the Infinispan

is used as an authoritative data store, it could lead to data loss, and hence it’s not recommended

for this use case. The default value is -1 which means that the file store size is unlimited.

9.6.1. Segmentation support

The single file cache store supports segmentation and creates a separate instance per segment.

Segmentation results in multiple directories under the configured directory, where each directory

is a number that represents the segment to which the data maps.

9.6.2. Configuration

The following examples show single file cache store configuration:

<persistence>

   <file-store path="/tmp/myDataStore" max-entries="5000"/>

</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();

b.persistence()

    .addSingleFileStore()

    .location("/tmp/myDataStore")

    .maxEntries(5000);

9.7. Soft-Index File Store

The Soft-Index File Store is an experimental local file-based. It is a pure Java implementation that

tries to get around Single File Store’s drawbacks by implementing a variant of B+ tree that is cached

in-memory using Java’s soft references - here’s where the name Soft-Index File Store comes from.

This B+ tree (called Index) is offloaded on filesystem to single file that does not need to be persisted

- it is purged and rebuilt when the cache store restarts, its purpose is only offloading.

The data that should be persisted are stored in a set of files that are written in append-only way -

that means that if you store this on conventional magnetic disk, it does not have to seek when

writing a burst of entries. It is not stored in single file but set of files. When the usage of any of

these files drops below 50% (the entries from the file are overwritten to another file), the file starts

to be collected, moving the live entries into different file and in the end removing that file from

disk.

64



Most of the structures in Soft Index File Store are bounded, therefore you don’t have to be afraid of

OOMEs. For example, you can configure the limits for concurrently open files as well.

9.7.1. Segmentation support

The Soft-Index file store supports segmentation and creates a separate instance per segment.

Segmentation results in multiple directories under the configured directory, where each directory

is a number that represents the segment to which the data maps.

9.7.2. Configuration

Here is an example of Soft-Index File Store configuration via XML:

<persistence>

    <soft-index-file-store xmlns="urn:infinispan:config:store:soft-index:10.1">

        <index path="/tmp/sifs/testCache/index" />

        <data path="/tmp/sifs/testCache/data" />

    </soft-index-file-store>

</persistence>

Programmatic configuration would look as follows:

ConfigurationBuilder b = new ConfigurationBuilder();

b.persistence()

    .addStore(SoftIndexFileStoreConfigurationBuilder.class)

        .indexLocation("/tmp/sifs/testCache/index");

        .dataLocation("/tmp/sifs/testCache/data")

9.7.3. Current limitations

Size of a node in the Index is limited, by default it is 4096 bytes, though it can be configured. This

size also limits the key length (or rather the length of the serialized form): you can’t use keys longer

than size of the node - 15 bytes. Moreover, the key length is stored as 'short', limiting it to 32767

bytes. There’s no way how you can use longer keys - SIFS throws an exception when the key is

longer after serialization.

When entries are stored with expiration, SIFS cannot detect that some of those entries are expired.

Therefore, such old file will not be compacted (method AdvancedStore.purgeExpired() is not

implemented). This can lead to excessive file-system space usage.

9.8. JDBC String based Cache Store

A cache store which relies on the provided JDBC driver to load/store values in the underlying

database.

Each key in the cache is stored in its own row in the database. In order to store each key in its own

row, this store relies on a (pluggable) bijection that maps the each key to a String object. The

65



bijection is defined by the Key2StringMapper interface. Infinispans ships a default implementation

(smartly named DefaultTwoWayKey2StringMapper) that knows how to handle primitive types.


By default Infinispan shares are not stored, meaning that all nodes in the cluster

will write to the underlying store upon each update. If you wish for an operation

to only be written to the underlying database once, you must configure the JDBC

store to be shared.


The JDBC string-based cache store does not support segmentation. Support will be

available in a future release.

9.8.1. Connection management (pooling)

In order to obtain a connection to the database the JDBC cache store relies on a ConnectionFactory

implementation. The connection factory is specified programmatically using one of the

connectionPool(), dataSource() or simpleConnection() methods on the

JdbcStringBasedStoreConfigurationBuilder class or declaratively using one of the <connectionPool

/>, <dataSource /> or <simpleConnection /> elements.

Infinispan ships with three ConnectionFactory implementations:

• PooledConnectionFactoryConfigurationBuilder is a factory based on Agroal, which is configured

via the PooledConnectionFactoryConfiguration or by specifying a properties file via

PooledConnectionFactoryConfiguration.propertyFile. Properties must be specified with the

prefix "org.infinispan.agroal.". An example agroal.properties file is shown below:

org.infinispan.agroal.metricsEnabled=false

org.infinispan.agroal.minSize=10

org.infinispan.agroal.maxSize=100

org.infinispan.agroal.initialSize=20

org.infinispan.agroal.acquisitionTimeout_s=1

org.infinispan.agroal.validationTimeout_m=1

org.infinispan.agroal.leakTimeout_s=10

org.infinispan.agroal.reapTimeout_m=10

org.infinispan.agroal.metricsEnabled=false

org.infinispan.agroal.autoCommit=true

org.infinispan.agroal.jdbcTransactionIsolation=READ_COMMITTED

org.infinispan.agroal.jdbcUrl=jdbc:h2:mem:PooledConnectionFactoryTest;DB_CLOSE_DELAY=-

1

org.infinispan.agroal.driverClassName=org.h2.Driver.class

org.infinispan.agroal.principal=sa

org.infinispan.agroal.credential=sa

• ManagedConnectionFactoryConfigurationBuilder is a connection factory that can be used

within managed environments, such as application servers. It knows how to look into the JNDI

tree at a certain location (configurable) and delegate connection management to the

66



DataSource.

• SimpleConnectionFactoryConfigurationBuilder is a factory implementation that will create

database connection on a per invocation basis. Not recommended in production.

The PooledConnectionFactory is generally recommended for stand-alone deployments (i.e. not

running within AS or servlet container). ManagedConnectionFactory can be used when running in a

managed environment where a DataSource is present, so that connection pooling is performed

within the DataSource.

9.8.2. Sample configurations

Below is a sample configuration for the JdbcStringBasedStore. For detailed description of all the

parameters used refer to the JdbcStringBasedStore.

<persistence>

   <string-keyed-jdbc-store xmlns="urn:infinispan:config:store:jdbc:10.1" shared="

true" fetch-state="false" read-only="false" purge="false">

      <connection-pool connection-url=

"jdbc:h2:mem:infinispan_string_based;DB_CLOSE_DELAY=-1" username="sa" driver=

"org.h2.Driver"/>

      <string-keyed-table drop-on-exit="true" create-on-start="true" prefix=

"ISPN_STRING_TABLE">

         <id-column name="ID_COLUMN" type="VARCHAR(255)" />

         <data-column name="DATA_COLUMN" type="BINARY" />

         <timestamp-column name="TIMESTAMP_COLUMN" type="BIGINT" />

      </string-keyed-table>

   </string-keyed-jdbc-store>

</persistence>

ConfigurationBuilder builder = new ConfigurationBuilder();

builder.persistence().addStore(JdbcStringBasedStoreConfigurationBuilder.class)

      .fetchPersistentState(false)

      .ignoreModifications(false)

      .purgeOnStartup(false)

      .shared(true)

      .table()

         .dropOnExit(true)

         .createOnStart(true)

         .tableNamePrefix("ISPN_STRING_TABLE")

         .idColumnName("ID_COLUMN").idColumnType("VARCHAR(255)")

         .dataColumnName("DATA_COLUMN").dataColumnType("BINARY")

         .timestampColumnName("TIMESTAMP_COLUMN").timestampColumnType("BIGINT")

      .connectionPool()

         .connectionUrl("jdbc:h2:mem:infinispan_string_based;DB_CLOSE_DELAY=-1")

         .username("sa")

         .driverClass("org.h2.Driver");

Finally, below is an example of a JDBC cache store with a managed connection factory, which is

67



chosen implicitly by specifying a datasource JNDI location:

<string-keyed-jdbc-store xmlns="urn:infinispan:config:store:jdbc:10.1" shared="true"

fetch-state="false" read-only="false" purge="false">

   <data-source jndi-url="java:/StringStoreWithManagedConnectionTest/DS" />

   <string-keyed-table drop-on-exit="true" create-on-start="true" prefix=

"ISPN_STRING_TABLE">

      <id-column name="ID_COLUMN" type="VARCHAR(255)" />

      <data-column name="DATA_COLUMN" type="BINARY" />

      <timestamp-column name="TIMESTAMP_COLUMN" type="BIGINT" />

   </string-keyed-table>

</string-keyed-jdbc-store>

ConfigurationBuilder builder = new ConfigurationBuilder();

builder.persistence().addStore(JdbcStringBasedStoreConfigurationBuilder.class)

      .fetchPersistentState(false)

      .ignoreModifications(false)

      .purgeOnStartup(false)

      .shared(true)

      .table()

         .dropOnExit(true)

         .createOnStart(true)

         .tableNamePrefix("ISPN_STRING_TABLE")

         .idColumnName("ID_COLUMN").idColumnType("VARCHAR(255)")

         .dataColumnName("DATA_COLUMN").dataColumnType("BINARY")

         .timestampColumnName("TIMESTAMP_COLUMN").timestampColumnType("BIGINT")

      .dataSource()

         .jndiUrl("java:/StringStoreWithManagedConnectionTest/DS");


Apache Derby users

If you’re connecting to an Apache Derby database, make sure you set

dataColumnType to BLOB: <data-column name="DATA_COLUMN" type="BLOB"/>

9.9. Remote store

The RemoteStore is a cache loader and writer implementation that stores data in a remote Infinispan

cluster. In order to communicate with the remote cluster, the RemoteStore uses the HotRod

client/server architecture. HotRod bering the load balancing and fault tolerance of calls and the

possibility to fine-tune the connection between the RemoteCacheStore and the actual cluster. Please

refer to Hot Rod for more information on the protocol, client and server configuration. For a list of

RemoteStore configuration refer to the javadoc . Example:

9.9.1. Segmentation support

The RemoteStore store supports segmentation because it can publish keys and entries by segment,

allowing for more efficient bulk operations.

68



Segmentation is only supported when the remote server supports at least protocol version 2.3 or

newer.


Ensure the number of segments and hash are the same between the store

configured cache and the remote server otherwise bulk operations will not return

correct results.

9.9.2. Sample Usage

<persistence>

   <remote-store xmlns="urn:infinispan:config:store:remote:10.1" cache="mycache" raw-

values="true">

      <remote-server host="one" port="12111" />

      <remote-server host="two" />

      <connection-pool max-active="10" exhausted-action="CREATE_NEW" />

      <write-behind />

   </remote-store>

</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();

b.persistence().addStore(RemoteStoreConfigurationBuilder.class)

      .fetchPersistentState(false)

      .ignoreModifications(false)

      .purgeOnStartup(false)

      .remoteCacheName("mycache")

      .rawValues(true)

.addServer()

      .host("one").port(12111)

      .addServer()

      .host("two")

      .connectionPool()

      .maxActive(10)

      .exhaustedAction(ExhaustedAction.CREATE_NEW)

      .async().enable();

In this sample configuration, the remote cache store is configured to use the remote cache named

"mycache" on servers "one" and "two". It also configures connection pooling and provides a custom

transport executor. Additionally the cache store is asynchronous.

9.10. Cluster cache loader

The ClusterCacheLoader is a cache loader implementation that retrieves data from other cluster

members.

69



9.10.1. ClusterCacheLoader

It is a cache loader only as it doesn’t persist anything (it is not a Store), therefore features like

fetchPersistentState (and like) are not applicable.

A cluster cache loader can be used as a non-blocking (partial) alternative to stateTransfer : keys not

already available in the local node are fetched on-demand from other nodes in the cluster. This is a

kind of lazy-loading of the cache content.

 The cluster cache loader does not support segmentation.

<persistence>

   <cluster-loader remote-timeout="500"/>

</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();

b.persistence()

    .addClusterLoader()

    .remoteCallTimeout(500);

For a list of ClusterCacheLoader configuration refer to the javadoc .


The ClusterCacheLoader does not support preloading (preload=true). It also won’t

provide state if fetchPersistentSate=true.

9.11. Command-Line Interface cache loader

The Command-Line Interface (CLI) cache loader is a cache loader implementation that retrieves

data from another Infinispan node using the CLI. The node to which the CLI connects to could be a

standalone node, or could be a node that it’s part of a cluster. This cache loader is read-only, so it

will only be used to retrieve data, and hence, won’t be used when persisting data.

9.11.1. CLI Cache Loader

The CLI cache loader is configured with a connection URL pointing to the Infinispan node to which

connect to. Here is an example:

 The Command-Line Interface (CLI) cache loader does not support segmentation.

<persistence>

   <cli-loader connection="jmx://1.2.3.4:4444/MyCacheManager/myCache" />

</persistence>

70



ConfigurationBuilder b = new ConfigurationBuilder();

b.persistence()

    .addStore(CLInterfaceLoaderConfigurationBuilder.class)

    .connectionString("jmx://192.0.2.0:4444/MyCacheManager/myCache");

9.12. RocksDB Cache Store

Infinispan supports using RocksDB as a cache store.

9.12.1. Introduction

RocksDB is a fast key-value filesystem-based storage from Facebook. It started as a fork of Google’s

LevelDB, but provides superior performance and reliability, especially in highly concurrent

scenarios.

9.12.2. Segmentation support

The RocksDB cache store supports segmentation and creates a separate column family per segment,

which substantially improves lookup performance and iteration. However, write operations are a

little slower when the cache store is segmented.


You should not configure more than a few hundred segments. RocksDB is not

designed to have an unlimited number of column families. Too many segments

also significantly increases startup time for the cache store.

Sample Usage

The RocksDB cache store requires 2 filesystem directories to be configured - each directory contains

a RocksDB database: one location is used to store non-expired data, while the second location is

used to store expired keys pending purge.

Configuration cacheConfig = new ConfigurationBuilder().persistence()

                .addStore(RocksDBStoreConfigurationBuilder.class)

                .build();

EmbeddedCacheManager cacheManager = new DefaultCacheManager(cacheConfig);

Cache<String, User> usersCache = cacheManager.getCache("usersCache");

usersCache.put("raytsang", new User(...));

9.12.3. Configuration

It is also possible to configure the underlying rocks db instance. This can be done via properties in

the store configuration. Any property that is prefixed with the name database will configure the

rocks db database. Data is now stored in column families, these can be configured independently of

the database by setting a property prefixed with the name data.

71



Note that you do not have to supply properties and this is entirely optional.

Sample Programatic Configuration

Properties props = new Properties();

props.put("database.max_background_compactions", "2");

props.put("data.write_buffer_size", "512MB");

Configuration cacheConfig = new ConfigurationBuilder().persistence()

                .addStore(RocksDBStoreConfigurationBuilder.class)

                .location("/tmp/rocksdb/data")

                .expiredLocation("/tmp/rocksdb/expired")

        .properties(props)

                .build();

Parameter Description

location Directory to use for RocksDB to store primary

cache store data. The directory will be auto-

created if it does not exit.

expiredLocation Directory to use for RocksDB to store expiring

data pending to be purged permanently. The

directory will be auto-created if it does not exit.

expiryQueueSize Size of the in-memory queue to hold expiring

entries before it gets flushed into expired

RocksDB store

clearThreshold There are two methods to clear all entries in

RocksDB. One method is to iterate through all

entries and remove each entry individually. The

other method is to delete the database and re-

init. For smaller databases, deleting individual

entries is faster than the latter method. This

configuration sets the max number of entries

allowed before using the latter method

compressionType Configuration for RocksDB for data

compression, see CompressionType enum for

options

blockSize Configuration for RocksDB - see documentation

for performance tuning

cacheSize Configuration for RocksDB - see documentation

for performance tuning

Sample XML Configuration

72



infinispan.xml

<local-cache name="vehicleCache">

   <persistence>

      <rocksdb-store xmlns="urn:infinispan:config:store:rocksdb:10.1" path=

"/tmp/rocksdb/data">

         <expiration path="/tmp/rocksdb/expired"/>

         <property name="database.max_background_compactions">2</property>

         <property name="data.write_buffer_size">512MB</property>

      </rocksdb-store>

   </persistence>

</local-cache>

9.12.4. Additional References

Refer to the test case for code samples in action.

Refer to test configurations for configuration samples.

9.13. JPA Cache Store

The implementation depends on JPA 2.0 specification to access entity meta model.

In normal use cases, it’s recommended to leverage Infinispan for JPA second level cache and/or

query cache. However, if you’d like to use only Infinispan API and you want Infinispan to persist

into a cache store using a common format (e.g., a database with well defined schema), then JPA

Cache Store could be right for you.

Things to note

• When using JPA Cache Store, the key should be the ID of the entity, while the value should be

the entity object.

• Only a single @Id or @EmbeddedId annotated property is allowed.

• Auto-generated ID is not supported.

• Lastly, all entries will be stored as immortal entries.

 The JPA cache store does not support segmentation.

9.13.1. Sample Usage

For example, given a persistence unit "myPersistenceUnit", and a JPA entity User:

persistence.xml

<persistence-unit name="myPersistenceUnit">

    ...

</persistence-unit>

73



User entity class

User.java

@Entity

public class User implements Serializable {

    @Id

    private String username;

    private String firstName;

    private String lastName;

    ...

}

Then you can configure a cache "usersCache" to use JPA Cache Store, so that when you put data into

the cache, the data would be persisted into the database based on JPA configuration.

EmbeddedCacheManager cacheManager = ...;

Configuration cacheConfig = new ConfigurationBuilder().persistence()

            .addStore(JpaStoreConfigurationBuilder.class)

            .persistenceUnitName("org.infinispan.loaders.jpa.configurationTest")

            .entityClass(User.class)

            .build();

cacheManager.defineCache("usersCache", cacheConfig);

Cache<String, User> usersCache = cacheManager.getCache("usersCache");

usersCache.put("raytsang", new User(...));

Normally a single Infinispan cache can store multiple types of key/value pairs, for example:

Cache<String, User> usersCache = cacheManager.getCache("myCache");

usersCache.put("raytsang", new User());

Cache<Integer, Teacher> teachersCache = cacheManager.getCache("myCache");

teachersCache.put(1, new Teacher());

It’s important to note that, when a cache is configured to use a JPA Cache Store, that cache would

only be able to store ONE type of data.

Cache<String, User> usersCache = cacheManager.getCache("myJPACache"); // configured

for User entity class

usersCache.put("raytsang", new User());

Cache<Integer, Teacher> teachersCache = cacheManager.getCache("myJPACache"); // cannot

do this when this cache is configured to use a JPA cache store

teachersCache.put(1, new Teacher());

Use of @EmbeddedId is supported so that you can also use composite keys.

74



@Entity

public class Vehicle implements Serializable {

    @EmbeddedId

    private VehicleId id;

    private String color;   ...

}

@Embeddable

public class VehicleId implements Serializable

{

    private String state;

    private String licensePlate;

    ...

}

Lastly, auto-generated IDs (e.g., @GeneratedValue) is not supported. When putting things into the

cache with a JPA cache store, the key should be the ID value!

9.13.2. Configuration

Sample Programmatic Configuration

Configuration cacheConfig = new ConfigurationBuilder().persistence()

             .addStore(JpaStoreConfigurationBuilder.class)

             .persistenceUnitName("org.infinispan.loaders.jpa.configurationTest")

             .entityClass(User.class)

             .build();

Parameter Description

persistenceUnitName JPA persistence unit name in JPA configuration

(persistence.xml) that contains the JPA entity

class

entityClass JPA entity class that is expected to be stored in

this cache. Only one class is allowed.

Sample XML Configuration

<local-cache name="vehicleCache">

   <persistence passivation="false">

      <jpa-store xmlns="urn:infinispan:config:store:jpa:10.1"

         persistence-unit="org.infinispan.persistence.jpa.configurationTest"

         entity-class="org.infinispan.persistence.jpa.entity.Vehicle">

        />

   </persistence>

</local-cache>

75



Parameter Description

persistence-unit JPA persistence unit name in JPA configuration

(persistence.xml) that contains the JPA entity

class

entity-class Fully qualified JPA entity class name that is

expected to be stored in this cache. Only one

class is allowed.

9.13.3. Additional References

Refer to the test case for code samples in action.

Refer to test configurations for configuration samples.

9.14. Custom Cache Stores

If the provided cache stores do not fulfill all of your requirements, it is possible for you to

implement your own store. The steps required to create your own store are as follows:

1. Write your custom store by implementing one of the following interfaces:

◦ org.infinispan.persistence.spi.AdvancedCacheWriter

◦ org.infinispan.persistence.spi.AdvancedCacheLoader

◦ org.infinispan.persistence.spi.CacheLoader

◦ org.infinispan.persistence.spi.CacheWriter

◦ org.infinispan.persistence.spi.ExternalStore

◦ org.infinispan.persistence.spi.AdvancedLoadWriteStore

◦ org.infinispan.persistence.spi.TransactionalCacheWriter

◦ org.infinispan.persistence.spi.SegmentedAdvancedLoadWriteStore

2. Annotate your store class with the @Store annotation and specify the properties relevant to your

store, e.g. is it possible for the store to be shared in Replicated or Distributed mode:

@Store(shared = true).

3. Create a custom cache store configuration and builder. This requires extending

AbstractStoreConfiguration and AbstractStoreConfigurationBuilder. As an optional step, you

should add the following annotations to your configuration - @ConfigurationFor, @BuiltBy as well

as adding @ConfiguredBy to your store implementation class. These additional annotations will

ensure that your custom configuration builder is used to parse your store configuration from

xml. If these annotations are not added, then the CustomStoreConfigurationBuilder will be used

to parse the common store attributes defined in AbstractStoreConfiguration and any additional

elements will be ignored. If a store and its configuration do not declare the @Store and

@ConfigurationFor annotations respectively, a warning message will be logged upon cache

initialisation.

If you wish for your store to be segmented, where it will craete a different store instance per

segment, instead of extending AbstractStoreConfiguration you should extend

AbstractSegmentedStoreConfiguration.

76



4. Add your custom store to your cache’s configuration:

a. Add your custom store to the ConfigurationBuilder, for example:

Configuration config = new ConfigurationBuilder()

            .persistence()

            .addStore(CustomStoreConfigurationBuilder.class)

            .build();

b. Define your custom store via xml:

<local-cache name="customStoreExample">

  <persistence>

    <store class="org.infinispan.persistence.dummy.DummyInMemoryStore" />

  </persistence>

</local-cache>

9.14.1. HotRod Deployment

A Custom Cache Store can be packaged into a separate JAR file and deployed in a HotRod server

using the following steps:

1. Follow Custom Cache Stores, steps 1-3>> in the previous section and package your

implementations in a JAR file (or use a Custom Cache Store Archetype).

2. In your Jar create a proper file under META-INF/services/, which contains the fully qualified

class name of your store implementation. The name of this service file should reflect the

interface that your store implements. For example, if your store implements the

AdvancedCacheWriter interface than you need to create the following file:

◦ /META-INF/services/org.infinispan.persistence.spi.AdvancedCacheWriter

3. Deploy the JAR file in the Infinispan Server.

9.15. Store Migrator

Infinispan 9.0 introduced changes to internal marshalling functionality that are not backwardly

compatible with previous versions of Infinispan. As a result, Infinispan 9.x and later cannot read

cache stores created in earlier versions of Infinispan. Additionally, Infinispan no longer provides

some store implementations such as JDBC Mixed and Binary stores.

You can use StoreMigrator.java to migrate cache stores. This migration tool reads data from cache

stores in previous versions and rewrites the content for compatibility with the current marshalling

implementation.

9.15.1. Migrating Cache Stores

To perform a migration with StoreMigrator,

77



1. Put infinispan-tools-10.1.jar and dependencies for your source and target databases, such as

JDBC drivers, on your classpath.

2. Create a .properties file that contains configuration properties for the source and target cache

stores.

You can find an example properties file that contains all applicable configuration options in

migrator.properties.

3. Specify .properties file as an argument for StoreMigrator.

4. Run mvn exec:java to execute the migrator.

See the following example Maven pom.xml for StoreMigrator:

78



<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

    <modelVersion>4.0.0</modelVersion>

    <groupId>org.infinispan.example</groupId>

    <artifactId>jdbc-migrator-example</artifactId>

    <version>1.0-SNAPSHOT</version>

    <dependencies>

        <dependency>

            <groupId>org.infinispan</groupId>

            <artifactId>infinispan-tools</artifactId>

            <!-- Replace ${version.infinispan} with the

            version of Infinispan that you're using. -->

            <version>${version.infinispan}</version>

        </dependency>

        <!-- ADD YOUR REQUIRED DEPENDENCIES HERE -->

    </dependencies>

    <build>

        <plugins>

            <plugin>

                <groupId>org.codehaus.mojo</groupId>

                <artifactId>exec-maven-plugin</artifactId>

                <version>1.2.1</version>

                <executions>

                    <execution>

                        <goals>

                            <goal>java</goal>

                        </goals>

                    </execution>

                </executions>

                <configuration>

                    <mainClass>StoreMigrator</mainClass>

                    <arguments>

                        <argument><!-- PATH TO YOUR MIGRATOR.PROPERTIES FILE --

></argument>

                    </arguments>

                </configuration>

            </plugin>

        </plugins>

    </build>

</project>

79



9.15.2. Store Migrator Properties

All migrator properties are configured within the context of a source or target store. Each property

must start with either source. or target..

All properties in the following sections apply to both source and target stores, except for

table.binary.* properties because it is not possible to migrate to a binary table.

Common Properties

Property Description Example value Required

type JDBC_STRING |

JDBC_BINARY |

JDBC_MIXED |

LEVELDB | ROCKSDB |

SINGLE_FILE_STORE |

SOFT_INDEX_FILE_STO

RE

JDBC_MIXED TRUE

cache_name The name of the cache

associated with the

store

persistentMixedCache TRUE

segment_count How many segments

this store will be

created with. If not

provided store will not

be segmented.

(supported as target

only - JDBC not yet

supported)

null FALSE

It should be noted that the segment_count property should match how many segments your cache

will be using. That is that it should match the clustering.hash.numSegments config value. If these do

not match, data will not be properly read when running the cache.

JDBC Properties

Property Description Example value Required

dialect The dialect of the

underlying database

POSTGRES TRUE

80



Property Description Example value Required

marshaller.type The marshaller to use

for the store. Possible

values are:

- LEGACY Infinispan 8.2.x

marshaller. Valid for

source stores only.

- CURRENT Infinispan 9.x

marshaller.

- CUSTOM Custom

marshaller.

CURRENT TRUE

marshaller.class The class of the

marshaller if

type=CUSTOM

org.example.CustomMa

rshaller

marshaller.externalizer

s

A comma-separated list

of custom

AdvancedExternalizer

implementations to

load [id]:<Externalizer
class>

25:Externalizer1,org.e
xample.Externalizer2

connection_pool.conne

ction_url

The JDBC connection

url

jdbc:postgresql:postgr
es

TRUE

connection_pool.driver

_class

The class of the JDBC

driver

org.postrgesql.Driver TRUE

connection_pool.userna

me

Database username TRUE

connection_pool.passw

ord

Database password TRUE

db.major_version Database major version 9

db.minor_version Database minor

version

5

db.disable_upsert Disable db upsert false

db.disable_indexing Prevent table index

being created

false

table.<binary|string>.ta

ble_name_prefix

Additional prefix for

table name

tablePrefix

table.<binary|string>.<i

d|data|timestamp>.nam

e

Name of the column id_column TRUE

81



Property Description Example value Required

table.<binary|string>.<i

d|data|timestamp>.type

Type of the column VARCHAR TRUE

key_to_string_mapper TwoWayKey2StringMa

pper Class

org.infinispan.persist
ence.keymappers.
DefaultTwoWayKey2Strin
gMapper

LevelDB/RocksDB Properties

Property Description Example value Required

location The location of the db

directory

/some/example/dir TRUE

compression The compression type

to be used

SNAPPY

SingleFileStore Properties

Property Description Example value Required

location The directory

containing the store’s

.dat file

/some/example/dir TRUE

SoftIndexFileStore Properties

Property Description Example value Required

location The location of the db

directory

/some/example/dir TRUE

index_location The location of the db’s

index

/some/example/dir-

index

Target Only

9.16. SPI

The following class diagram presents the main SPI interfaces of the persistence API:

82



Figure 5. Persistence SPI

Some notes about the classes:

• ByteBuffer - abstracts the serialized form of an object

• MarshalledEntry - abstracts the information held within a persistent store corresponding to a

key-value added to the cache. Provides method for reading this information both in serialized

(ByteBuffer) and deserialized (Object) format. Normally data read from the store is kept in

serialized format and lazily deserialized on demand, within the MarshalledEntry

implementation

• CacheWriter and CacheLoader provide basic methods for reading and writing to a store

• AdvancedCacheLoader and AdvancedCacheWriter provide operations to manipulate the

underlaying storage in bulk: parallel iteration and purging of expired entries, clear and size.

• SegmentedAdvancedLoadWriteStore provide all the various operations that deal with segments.

A cache store can be segmented if it does one of the following:

• Implements the SegmentedAdvancedLoadWriteStore interface. In this case only a single store

instance is used per cache.

• Has a configuration that extends the AbstractSegmentedConfiguration abstract class. Doing this

requires you to implement the newConfigurationFrom method where it is expected that a new

StoreConfiguration instance is created per invocation. This creates a store instance per segment

to which a node can write. Stores might start and stop as data is moved between nodes.

A provider might choose to only implement a subset of these interfaces:

83



• Not implementing the AdvancedCacheWriter makes the given writer not usable for purging

expired entries or clear

• If a loader does not implement the AdvancedCacheLoader inteface, then it will not participate

in preloading nor in cache iteration (required also for stream operations).

If you’re looking at migrating your existing store to the new API or to write a new store

implementation, the SingleFileStore might be a good starting point/example.

9.16.1. More implementations

Many more cache loader and cache store implementations exist. Visit this website for more details.

84


	Configuring Infinispan 10.1
	Table of Contents
	Chapter 1. Infinispan Caches
	1.1. Cache Interface
	1.2. Cache Managers
	1.3. Cache Containers
	1.4. Cache Modes
	1.4.1. Cache Mode Comparison


	Chapter 2. Local Caches
	2.1. Simple Caches

	Chapter 3. Clustered Caches
	3.1. Invalidation Mode
	3.2. Replicated Caches
	3.3. Distributed Caches
	3.3.1. Read consistency
	3.3.2. Key Ownership
	3.3.3. Zero Capacity Node
	3.3.4. Hashing Configuration
	3.3.5. Initial cluster size
	3.3.6. L1 Caching
	3.3.7. Server Hinting
	3.3.8. Key affinity service

	3.4. Scattered Caches
	3.5. Asynchronous Communication with Clustered Caches
	3.5.1. Asynchronous Communications
	3.5.2. Asynchronous API
	3.5.3. Return Values in Asynchronous Communication


	Chapter 4. Configuring Caches Declaratively
	4.1. Infinispan subsystem
	4.1.1. Containers
	4.1.2. Cache declarations

	4.2. Locking
	4.3. Loaders and Stores
	4.4. State Transfer
	4.5. Declarative Cache Configuration
	4.6. Cache configuration templates
	4.7. Cache configuration wildcards
	4.8. XInclude support
	4.9. Declarative configuration reference

	Chapter 5. Configuring Caches Programmatically
	5.1. CacheManager and ConfigurationBuilder API
	5.2. ConfigurationBuilder Programmatic Configuration API
	5.2.1. Enabling JMX MBeans and statistics
	5.2.2. Configuring thread pools
	5.2.3. Configuring transactions and locking
	5.2.4. Configuring cache stores
	5.2.5. Advanced programmatic configuration


	Chapter 6. Setting Up Cluster Transport
	6.1. Getting Started with Default Stacks
	6.1.1. Default JGroups Stacks
	6.1.2. Default JGroups Stacks

	6.2. Using Inline JGroups Stacks
	6.3. Adjusting and Tuning JGroups Stacks
	6.3.1. Stack Combine Attribute

	6.4. Using JGroups Stacks in External Files
	6.5. Tuning JGroups Stacks with System Properties
	6.5.1. System Properties for Default JGroups Stacks

	6.6. Using Custom JChannels

	Chapter 7. Configuring Cluster Discovery
	7.1. TCPPING
	7.2. Gossip Router
	7.3. DNS_PING
	7.4. KUBE_PING
	7.5. NATIVE_S3_PING
	7.6. JDBC_PING
	7.7. AZURE_PING
	7.8. GOOGLE2_PING

	Chapter 8. Configuring Eviction and Expiration
	8.1. Eviction and Data Container
	8.2. Enabling Eviction
	8.2.1. Eviction strategy
	8.2.2. Eviction types
	8.2.3. Storage type
	8.2.4. More defaults

	8.3. Expiration
	8.3.1. Difference between Eviction and Expiration
	8.3.2. Expiration details
	8.3.3. Expiration designs


	Chapter 9. Persistence
	9.1. Configuration
	9.2. Cache Passivation
	9.2.1. Limitations
	9.2.2. Cache Loader Behavior with Passivation Disabled vs Enabled

	9.3. Cache Loaders and transactional caches
	9.4. Write-Through And Write-Behind Caching
	9.4.1. Write-Through (Synchronous)
	9.4.2. Write-Behind (Asynchronous)
	9.4.3. Segmented Stores

	9.5. Filesystem based cache stores
	9.6. Single File Store
	9.6.1. Segmentation support
	9.6.2. Configuration

	9.7. Soft-Index File Store
	9.7.1. Segmentation support
	9.7.2. Configuration
	9.7.3. Current limitations

	9.8. JDBC String based Cache Store
	9.8.1. Connection management (pooling)
	9.8.2. Sample configurations

	9.9. Remote store
	9.9.1. Segmentation support
	9.9.2. Sample Usage

	9.10. Cluster cache loader
	9.10.1. ClusterCacheLoader

	9.11. Command-Line Interface cache loader
	9.11.1. CLI Cache Loader

	9.12. RocksDB Cache Store
	9.12.1. Introduction
	9.12.2. Segmentation support
	9.12.3. Configuration
	9.12.4. Additional References

	9.13. JPA Cache Store
	9.13.1. Sample Usage
	9.13.2. Configuration
	9.13.3. Additional References

	9.14. Custom Cache Stores
	9.14.1. HotRod Deployment

	9.15. Store Migrator
	9.15.1. Migrating Cache Stores
	9.15.2. Store Migrator Properties

	9.16. SPI
	9.16.1. More implementations



