Developing for Infinispan 10.1

Table of Contents

1. The Cache API

1.1. The Cache interface
1.1.1. Performance Concerns of Certain Map Methods
1.1.2. Mortal and Immortal Data
1.1.3. putForExternalRead operation
1.2. The AdvancedCache interface
1.2.1. Flags
1.2.2. Custom Interceptors
1.3. Listeners and Notifications
1.3.1. Cache-level notifications
1.3.2. Cache manager-level notifications
1.3.3. Synchronicity of events
1.4. Asynchronous API
1.4.1. Why use such an API?
1.4.2. Which processes actually happen asynchronously?
1.4.3. Notifying futures
1.4.4. Further reading
1.5. Invocation Flags
1.5.1. Examples

2. Functional Map API

2.1. Asynchronous and Lazy
2.2. Function transparency
2.3. Constructing Functional Maps
2.4. Read-Only Map API

2.4.1. Read-Only Entry View
2.5. Write-Only Map API

2.5.1. Write-Only Entry View
2.6. Read-Write Map API

2.6.1. Read-Write Entry View
2.7. Metadata Parameter Handling
2.8. Invocation Parameter
2.9. Functional Listeners

2.9.1. Write Listeners

2.9.2. Read-Write Listeners
2.10. Marshalling of Functions
2.11. Use Cases for Functional API

3. Encoding

3.1. Overview

© © © 00 00 I N O O b= W W W N B B =R

N N N N N R | | s
Ul R PO O 00N U R R WNN R R, R e

3.2. Default encoders
3.3. Overriding programmatically
3.4. Defining custom Encoders
3.5. MediaType
3.5.1. Configuration
3.5.2. Overriding the MediaType Programmatically

3.5.3. Transcoders and Encoders

4. The Embedded CacheManager

4.1. Obtaining caches

4.2. Clustering Information
4.3. Member Information
4.4. Other methods

5. Locking and Concurrency

5.1. Locking implementation details
5.1.1. How does it work in clustered caches?
5.1.2. Transactional caches
5.1.3. Isolation levels
5.1.4. The LockManager
5.1.5. Lock striping
5.1.6. Concurrency levels
5.1.7. Lock timeout
5.1.8. Consistency

5.2. Data Versioning

6. Clustered Lock

6.1. Installation
6.2. ClusteredLock Configuration
6.2.1. Ownership
6.2.2. Reentrancy
6.3. ClusteredLockManager Interface
6.4. ClusteredLock Interface
6.4.1. Usage Examples
6.4.2. ClusteredLockManager Configuration

7. Clustered Counters

7.1. Installation and Configuration

7.1.1. List counter names
7.2. The CounterManager interface.

7.2.1. Remove a counter via CounterManager
7.3. The Counter

7.3.1. The StrongCounter interface: when the consistency or bounds matters.

7.3.2. The WeakCounter interface: when speed is needed

7.4. Notifications and Events

25
26
26
28
29
29
30
32
32
33
33
34
35
35
35
36
36
36
36
36
37
37
37
39
39
39
39
39
40
41
42
42
44
44
47
47
48
48
49
53
54

8. Protocol Interoperability
8.1. Considerations with Media Types and Endpoint Interoperability

8.2. REST, Hot Rod, and Memcached Interoperability with Text-Based Storage
8.3. REST, Hot Rod, and Memcached Interoperability with Custom Java Objects

8.4.Java and Non-Java Client Interoperability with Protobuf
8.5. Custom Code Interoperability
8.5.1. Converting Data On Demand
8.5.2. Storing Data as POJOs
8.6. Deploying Entity Classes
8.7. Trying the Interoperability Demo

9. Marshalling Java Objects

9.1. Using the ProtoStream Marshaller

9.2. Using JBoss Marshalling

9.3. Using Java Serialization

9.4. Using the Kryo Marshaller

9.5. Using the Protostuff Marshaller

9.6. Using Custom Marshallers

9.7. Adding Java Classes to Deserialization White Lists
9.8. Storing Deserialized Objects in Infinispan Servers

9.9. Storing Data in Binary Format

10. Marshalling Custom Java Objects with ProtoStream

10.1. Protobuf Schemas

10.2. ProtoStream Serialization Contexts

10.3. ProtoStream Types

10.4. Generating Serialization Context Initializers

10.5. Manually Implementing Serialization Context Initializers

11. Using the Infinispan CDI Extension

11.1. CDI Dependencies

11.2. Injecting Embedded Caches
11.3. Injecting Remote Caches
11.4. JCache Caching Annotations

11.5. Receiving Cache and Cache Manager Events

12. JCache (JSR-107) provider

12.1. Dependencies
12.2. Create a local cache
12.3. Create a remote cache

12.4. Store and retrieve data

12.5. Comparing java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs

12.6. Clustering JCache instances

13. Multimap Cache

13.1. Installation and configuration

56
56
56
57
58
39
60
60
61
61
62
62
63
63
64
65
66
67
67
68
69
69
69
70
70
75
79
79
79
82
83
85
86
86
86
87
87
88
89
91
91

13.2. MultimapCache API 91

13.2.1. CompletableFuture<Void> put(K key, V value) 92
13.2.2. CompletableFuture<Collection<V>> get(K key) 92
13.2.3. CompletableFuture<Boolean> remove(K key) 92
13.2.4. CompletableFuture<Boolean> remove(K key, V value) 92
13.2.5. CompletableFuture<Void> remove(Predicate<? super V> p) 92
13.2.6. CompletableFuture<Boolean> containsKey(K key) 92
13.2.7. CompletableFuture<Boolean> containsValue(V value) 93
13.2.8. CompletableFuture<Boolean> containsEntry(K key, V value) 93
13.2.9. CompletableFuture<Long> size() 93
13.2.10. boolean supportsDuplicates() 93
13.3. Creating a Multimap Cache 93
13.3.1. Embedded mode 93
13.4. Limitations 93
13.4.1. Support for duplicates 94
13.4.2. Eviction 94
13.4.3. Transactions 94
14. Infinispan Transactions 95
14.1. Configuring transactions 96
14.2. Isolation levels 98
14.3. Transaction locking 98
14.3.1. Pessimistic transactional cache 98
14.3.2. Optimistic transactional cache 99
14.3.3. What do I need - pessimistic or optimistic transactions? 99
14.4. Write Skews 100
14.4.1. Forcing write locks on keys in pessimitic transactions 100
14.5. Dealing with exceptions 101
14.6. Enlisting Synchronizations 101
14.7. Batching 101
14.7.1. API 102
14.7.2. Batching and JTA 102
14.8. Transaction recovery 103
14.8.1. When to use recovery 103
14.8.2. How does it work 103
14.8.3. Configuring recovery 103
14.8.4. Recovery cache 103
14.8.5. Integration with the transaction manager 104
14.8.6. Reconciliation 104
14.8.7. Want to know more? 106
14.9. Total Order based commit protocol 106

14.9.1. Overview 107

14.9.2. Configuration 110

14.9.3. When to use it? 111
15. Indexing and Querying 112
15.1. Overview 112
15.2. Embedded Querying 112
15.2.1. Quick example 112
15.2.2. Indexing 115
15.2.3. Querying APIs 129
15.3. Remote Querying 147
15.3.1. Storing Protobuf encoded entities 148
15.3.2. Indexing of Protobuf encoded entries 148
15.3.3. A remote query example 148
15.3.4. Analysis 149
15.4. Statistics 151
15.5. Performance Tuning 152
15.5.1. Batch writing in SYNC mode 152
15.5.2. Writing using async mode 152
15.5.3. Index reader async strategy 153
15.5.4. Lucene Options 153
16. Executing code in the Grid 154
16.1. Cluster Executor 154
16.1.1. Filtering execution nodes 154
16.1.2. Timeout 155
16.1.3. Single Node Submission 155
16.1.4. Example: PI Approximation 156
17. Streams 158
17.1. Common stream operations 158
17.2. Key filtering 158
17.3. Segment based filtering 158
17.4. Local/Invalidation 159
17.5. Example 159
17.6. Distribution/Replication/Scattered 159
17.6.1. Rehash Aware 159
17.6.2. Serialization 160
17.7. Parallel Computation 162
17.8. Task timeout 163
17.9. Injection 163
17.10. Distributed Stream execution 163
17.11. Key based rehash aware operators 165
17.12. Intermediate operation exceptions 165

17.13. Examples 166

18. Extending Infinispan
18.1. Custom Commands
18.1.1. An Example
18.1.2. Preassigned Custom Command Id Ranges
18.2. Extending the configuration builders and parsers
19. Custom Interceptors
19.1. Adding custom interceptors declaratively
19.2. Adding custom interceptors programatically

19.3. Custom interceptor design

170
170
170
170
171
172
172
172
173

Chapter 1. The Cache API

1.1. The Cache interface

Infinispan’s Caches are manipulated through the Cache interface.

A Cache exposes simple methods for adding, retrieving and removing entries, including atomic
mechanisms exposed by the JDK’s ConcurrentMap interface. Based on the cache mode used,
invoking these methods will trigger a number of things to happen, potentially even including
replicating an entry to a remote node or looking up an entry from a remote node, or potentially a
cache store.

For simple usage, using the Cache API should be no different from using the JDK
o Map API, and hence migrating from simple in-memory caches based on a Map to
Infinispan’s Cache should be trivial.

1.1.1. Performance Concerns of Certain Map Methods

Certain methods exposed in Map have certain performance consequences when used with
Infinispan, such as size() , values() , keySet() and entrySet() . Specific methods on the keySet, values
and entrySet are fine for use please see their Javadoc for further details.

Attempting to perform these operations globally would have large performance impact as well as
become a scalability bottleneck. As such, these methods should only be used for informational or
debugging purposes only.

It should be noted that using certain flags with the withFlags method can mitigate some of these
concerns, please check each method’s documentation for more details.

1.1.2. Mortal and Immortal Data

Further to simply storing entries, Infinispan’s cache API allows you to attach mortality information
to data. For example, simply using put(key, value) would create an immortal entry, i.e., an entry that
lives in the cache forever, until it is removed (or evicted from memory to prevent running out of
memory). If, however, you put data in the cache using put(key, value, lifespan, timeunit) , this
creates a mortal entry, i.e., an entry that has a fixed lifespan and expires after that lifespan.

In addition to lifespan , Infinispan also supports maxldle as an additional metric with which to
determine expiration. Any combination of lifespans or maxIdles can be used.

1.1.3. putForExternalRead operation

Infinispan’s Cache class contains a different 'put' operation called putForExternalRead . This
operation is particularly useful when Infinispan is used as a temporary cache for data that is
persisted elsewhere. Under heavy read scenarios, contention in the cache should not delay the real
transactions at hand, since caching should just be an optimization and not something that gets in
the way.

https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/Cache.html#size--
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/Cache.html#values--
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/Cache.html#keySet--
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/Cache.html#entrySet--
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/BasicCache.html#put-K-V-long-java.util.concurrent.TimeUnit-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-

To achieve this, putForExternalRead acts as a put call that only operates if the key is not present in
the cache, and fails fast and silently if another thread is trying to store the same key at the same
time. In this particular scenario, caching data is a way to optimise the system and it’s not desirable
that a failure in caching affects the on-going transaction, hence why failure is handled differently.
putForExternalRead is considered to be a fast operation because regardless of whether it’s
successful or not, it doesn’t wait for any locks, and so returns to the caller promptly.

To understand how to use this operation, let’s look at basic example. Imagine a cache of Person
instances, each keyed by a Personld , whose data originates in a separate data store. The following
code shows the most common pattern of using putForExternalRead within the context of this
example:

// 1d of the person to look up, provided by the application
Personld id = ...;

// Get a reference to the cache where person instances will be stored
Cache<Personld, Person> cache = ...;

// First, check whether the cache contains the person instance
// associated with with the given 1id
Person cachedPerson = cache.get(id);

if (cachedPerson == null) {
// The person is not cached yet, so query the data store with the 1id
Person person = dataStore.lookup(id);

// Cache the person along with the id so that future requests can
// retrieve it from memory rather than going to the data store
cache.putForExternalRead(id, person);

} else {
// The person was found in the cache, so return it to the application
return cachedPerson;

Please note that putForExternalRead should never be used as a mechanism to update the cache
with a new Person instance originating from application execution (i.e. from a transaction that
modifies a Person’s address). When updating cached values, please use the standard put operation,
otherwise the possibility of caching corrupt data is likely.

1.2. The AdvancedCache interface

In addition to the simple Cache interface, Infinispan offers an AdvancedCache interface, geared
towards extension authors. The AdvancedCache offers the ability to inject custom interceptors,
access certain internal components and to apply flags to alter the default behavior of certain cache
methods. The following code snippet depicts how an AdvancedCache can be obtained:

AdvancedCache advancedCache = cache.getAdvancedCache();

https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/AdvancedCache.html

1.2.1. Flags

Flags are applied to regular cache methods to alter the behavior of certain methods. For a list of all
available flags, and their effects, see the Flag enumeration. Flags are applied using
AdvancedCache.withFlags() . This builder method can be used to apply any number of flags to a
cache invocation, for example:

advancedCache.withFlags(Flag.CACHE_MODE_LOCAL, Flag.SKIP_LOCKING)
.withFlags(Flag.FORCE_SYNCHRONOUS)
.put("hello", "world");

1.2.2. Custom Interceptors

The AdvancedCache interface also offers advanced developers a mechanism with which to attach
custom interceptors. Custom interceptors allow developers to alter the behavior of the cache API
methods, and the AdvancedCache interface allows developers to attach these interceptors
programmatically, at run-time. See the AdvancedCache Javadocs for more details.

1.3. Listeners and Notifications

Infinispan offers a listener API, where clients can register for and get notified when events take
place. This annotation-driven API applies to 2 different levels: cache level events and cache
manager level events.

Events trigger a notification which is dispatched to listeners. Listeners are simple POJO s annotated
with @Listener and registered using the methods defined in the Listenable interface.

Both Cache and CacheManager implement Listenable, which means you can attach
o listeners to either a cache or a cache manager, to receive either cache-level or
cache manager-level notifications.

For example, the following class defines a listener to print out some information every time a new
entry is added to the cache, in a non blocking fashion:

public class PrintWhenAdded {
Queue<CacheEntryCreatedEvent> events = new ConcurrentlLinkedQueue<>();

public CompletionStage<Void> print(CacheEntryCreatedEvent event) {
events.add(event);
return null;

}

For more comprehensive examples, please see the Javadocs for @Listener.

https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/context/Flag.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
http://en.wikipedia.org/wiki/Plain_Old_Java_Object
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/notifications/Listener.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/notifications/Listenable.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/notifications/Listener.html

1.3.1. Cache-level notifications

Cache-level events occur on a per-cache basis, and by default are only raised on nodes where the
events occur. Note in a distributed cache these events are only raised on the owners of data being
affected. Examples of cache-level events are entries being added, removed, modified, etc. These
events trigger notifications to listeners registered to a specific cache.

Please see the Javadocs on the org.infinispan.notifications.cachelistener.annotation package for a
comprehensive list of all cache-level notifications, and their respective method-level annotations.

Please refer to the Javadocs on the
o org.infinispan.notifications.cachelistener.annotation package for the list of cache-
level notifications available in Infinispan.

Cluster Listeners

The cluster listeners should be used when it is desirable to listen to the cache events on a single
node.

To do so all that is required is set to annotate your listener as being clustered.

(clustered = true)
public class MyClusterListener { }

There are some limitations to cluster listeners from a non clustered listener.

1. A cluster listener can only listen to @CacheEntryModified, @CacheEntryCreated, @CacheEntryRemoved
and @CacheEntryExpired events. Note this means any other type of event will not be listened to
for this listener.

2. Only the post event is sent to a cluster listener, the pre event is ignored.

Event filtering and conversion

All applicable events on the node where the listener is installed will be raised to the listener. It is
possible to dynamically filter what events are raised by using a KeyFilter (only allows filtering on
keys) or CacheEventFilter (used to filter for keys, old value, old metadata, new value, new metadata,
whether command was retried, if the event is before the event (ie. isPre) and also the command

type).

The example here shows a simple KeyFilter that will only allow events to be raised when an event
modified the entry for the key Only Me.

https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/filter/KeyFilter.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/notifications/cachelistener/filter/CacheEventFilter.html

public class SpecificKeyFilter implements KeyFilter<String> {
private final String keyToAccept;

public SpecificKeyFilter(String keyToAccept) {
if (keyToAccept == null) {
throw new NullPointerException();

}
this.keyToAccept = keyToAccept;

}

boolean accept(String key) {
return keyToAccept.equals(key);
}

cache.addListener(listener, new SpecificKeyFilter("Only Me"));

This can be useful when you want to limit what events you receive in a more efficient manner.

There is also a CacheEventConverter that can be supplied that allows for converting a value to
another before raising the event. This can be nice to modularize any code that does value
conversions.

The mentioned filters and converters are especially beneficial when used in
conjunction with a Cluster Listener. This is because the filtering and conversion is

o done on the node where the event originated and not on the node where event is
listened to. This can provide benefits of not having to replicate events across the
cluster (filter) or even have reduced payloads (converter).

Initial State Events

When a listener is installed it will only be notified of events after it is fully installed.

It may be desirable to get the current state of the cache contents upon first registration of listener
by having an event generated of type @CacheEntryCreated for each element in the cache. Any
additionally generated events during this initial phase will be queued until appropriate events have
been raised.

o This only works for clustered listeners at this time. ISPN-4608 covers adding this
for non clustered listeners.

Duplicate Events

It is possible in a non transactional cache to receive duplicate events. This is possible when the
primary owner of a key goes down while trying to perform a write operation such as a put.

https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/notifications/cachelistener/filter/CacheEventConverter.html
https://issues.jboss.org/browse/ISPN-4608

Infinispan internally will rectify the put operation by sending it to the new primary owner for the
given key automatically, however there are no guarantees in regards to if the write was first
replicated to backups. Thus more than 1 of the following write events (CacheEntryCreatedEvent,
CacheEntryModifiedEvent & CacheEntryRemovedEvent) may be sent on a single operation.

If more than one event is generated Infinispan will mark the event that it was generated by a
retried command to help the user to know when this occurs without having to pay attention to view
changes.

public class MyRetryListener {

public void entryModified(CacheEntryModifiedEvent event) {
if (event.isCommandRetried()) {
// Do something
}
}
}

Also when using a CacheEventFilter or CacheEventConverter the EventType contains a method
isRetry to tell if the event was generated due to retry.

1.3.2. Cache manager-level notifications

Cache manager-level events occur on a cache manager. These too are global and cluster-wide, but
involve events that affect all caches created by a single cache manager. Examples of cache
manager-level events are nodes joining or leaving a cluster, or caches starting or stopping.

Please see the Javadocs on the org.infinispan.notifications.cachemanagerlistener.annotation
package for a comprehensive list of all cache manager-level notifications, and their respective
method-level annotations.

1.3.3. Synchronicity of events

By default, all async notifications are dispatched in the notification thread pool. Sync notifications
will delay the operation from continuing until the listener method completes or the
CompletionStage completes (the former causing the thread to block). Alternatively, you could
annotate your listener as asynchronous in which case the operation will continue immediately,
while the notification is completed asynchronously on the notification thread pool. To do this,
simply annotate your listener such:

Asynchronous Listener

https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/notifications/cachelistener/filter/EventType.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/notifications/cachemanagerlistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/notifications/cachemanagerlistener/annotation/package-summary.html

(sync = false)
public class MyAsyncListener {

void listen(CacheEntryCreatedEvent event) { }
}

Blocking Synchronous Listener

public class MySyncListener {

void listen(CacheEntryCreatedEvent event) { }
Non-Blocking Listener

public class MyNonBlockinglListener {

CompletionStage<Void> listen(CacheEntryCreatedEvent event) { }
}

Asynchronous thread pool

To tune the thread pool used to dispatch such asynchronous notifications, use the <listener-
executor /> XML element in your configuration file.

1.4. Asynchronous API

In addition to synchronous API methods like Cache.put() , Cache.remove() , etc., Infinispan also has
an asynchronous, non-blocking API where you can achieve the same results in a non-blocking
fashion.

These methods are named in a similar fashion to their blocking counterparts, with "Async"
appended. E.g., Cache.putAsync() , Cache.removeAsync() , etc. These asynchronous counterparts
return a Future containing the actual result of the operation.

For example, in a cache parameterized as Cache<String, String>, Cache.put(String key, String
value) returns a String. Cache.putAsync(String key, String value) would return a Future<String>.

1.4.1. Why use such an API?

Non-blocking APIs are powerful in that they provide all of the guarantees of synchronous
communications - with the ability to handle communication failures and exceptions - with the ease
of not having to block until a call completes. This allows you to better harness parallelism in your
system. For example:

http://docs.jboss.org/infinispan/10.1/configdocs/infinispan-config-10.1.html
http://docs.jboss.org/infinispan/10.1/configdocs/infinispan-config-10.1.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#remove-java.lang.Object-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/AsyncCache.html#putAsync-K-V-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/AsyncCache.html#removeAsync-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

Set<Future<?>> futures = new HashSet<Future<?>>();

futures.add(cache.putAsync(key1, valuel)); // does not block
futures.add(cache.putAsync(key2, value2)); // does not block
futures.add(cache.putAsync(key3, value3)); // does not block

// the remote calls for the 3 puts will effectively be executed

// in parallel, particularly useful if running in distributed mode
// and the 3 keys would typically be pushed to 3 different nodes
// in the cluster

// check that the puts completed successfully
for (Future<?> f: futures) f.qget();

1.4.2. Which processes actually happen asynchronously?

There are 4 things in Infinispan that can be considered to be on the critical path of a typical write
operation. These are, in order of cost:

* network calls

* marshalling

* writing to a cache store (optional)

* locking
As of Infinispan 4.0, using the async methods will take the network calls and marshalling off the
critical path. For various technical reasons, writing to a cache store and acquiring locks, however,

still happens in the caller’s thread. In future, we plan to take these offline as well. See this
developer mail list thread about this topic.

1.4.3. Notifying futures

Strictly, these methods do not return JDK Futures, but rather a sub-interface known as a
NotifyingFuture . The main difference is that you can attach a listener to a NotifyingFuture such
that you could be notified when the future completes. Here is an example of making use of a
notifying future:

http://lists.jboss.org/pipermail/infinispan-dev/2010-January/002219.html
http://lists.jboss.org/pipermail/infinispan-dev/2010-January/002219.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/util/concurrent/NotifyingFuture.html

FuturelListener futurelListener = new FuturelListener() {

public void futureDone(Future future) {
try {
future.get();
} catch (Exception e) {
// Future did not complete successfully
System.out.println("Help!");

}
+

cache.putAsync("key", "value").attachListener(futurelListener);

1.4.4. Further reading

The Javadocs on the Cache interface has some examples on using the asynchronous API, as does
this article by Manik Surtani introducing the APIL

1.5. Invocation Flags

An important aspect of getting the most of Infinispan is the use of per-invocation flags in order to
provide specific behaviour to each particular cache call. By doing this, some important
optimizations can be implemented potentially saving precious time and network resources. One of
the most popular usages of flags can be found right in Cache API, underneath the
putForExternalRead() method which is used to load an Infinispan cache with data read from an
external resource. In order to make this call efficient, Infinispan basically calls a normal put
operation passing the following flags: FAIL_SILENTLY , FORCE_ASYNCHRONOUS |,
ZERO_LOCK_ACQUISITION_TIMEOUT

What Infinispan is doing here is effectively saying that when putting data read from external read,
it will use an almost-zero lock acquisition time and that if the locks cannot be acquired, it will fail
silently without throwing any exception related to lock acquisition. It also specifies that regardless
of the cache mode, if the cache is clustered, it will replicate asynchronously and so won’t wait for
responses from other nodes. The combination of all these flags make this kind of operation very
efficient, and the efficiency comes from the fact this type of putForExternalRead calls are used with
the knowledge that client can always head back to a persistent store of some sorts to retrieve the
data that should be stored in memory. So, any attempt to store the data is just a best effort and if not
possible, the client should try again if there’s a cache miss.

1.5.1. Examples

If you want to use these or any other flags available, which by the way are described in detail the
Flag enumeration , you simply need to get hold of the advanced cache and add the flags you need
via the withFlags() method call. For example:

https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/Cache.html
http://infinispan.blogspot.com/2009/05/whats-so-cool-about-asynchronous-api.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/context/Flag.html#FAIL_SILENTLY
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/context/Flag.html#FORCE_ASYNCHRONOUS
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/context/Flag.html#ZERO_LOCK_ACQUISITION_TIMEOUT
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/context/Flag.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-

Cache cache = ...

cache.getAdvancedCache()
.withFlags(Flag.SKIP_CACHE_STORE, Flag.CACHE_MODE_LOCAL)
.put("local”, "only");

It’s worth noting that these flags are only active for the duration of the cache operation. If the same
flags need to be used in several invocations, even if they’re in the same transaction, withFlags()
needs to be called repeatedly. Clearly, if the cache operation is to be replicated in another node, the
flags are carried over to the remote nodes as well.

Suppressing return values from a put() or remove()

Another very important use case is when you want a write operation such as put() to not return the
previous value. To do that, you need to use two flags to make sure that in a distributed
environment, no remote lookup is done to potentially get previous value, and if the cache is
configured with a cache loader, to avoid loading the previous value from the cache store. You can
see these two flags in action in the following example:

Cache cache = ...

cache.getAdvancedCache()
.withFlags(Flag.SKIP_REMOTE_LOOKUP, Flag.SKIP_CACHE_LOAD)
.put("local”, "only")

For more information, please check the Flag enumeration javadoc.

10

https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/context/Flag.html

Chapter 2. Functional Map API

Infinispan 8 introduces a new experimental API for interacting with your data which takes
advantage of the functional programming additions and improved asynchronous programming
capabilities available in Java 8.

Infinispan’s Functional Map API is a distilled map-like asynchronous API which uses functions to
interact with data.

2.1. Asynchronous and Lazy

Being an asynchronous API, all methods that return a single result, return a CompletableFuture
which wraps the result, so you can use the resources of your system more efficiently by having the
possibility to receive callbacks when the CompletableFuture has completed, or you can chain or
compose them with other CompletableFuture.

For those operations that return multiple results, the API returns instances of a Traversable
interface which offers a lazy pull-style API for working with multiple results. Traversable , being a
lazy pull-style API, can still be asynchronous underneath since the user can decide to work on the
traversable at a later stage, and the Traversable implementation itself can decide when to compute
those results.

2.2. Function transparency

Since the content of the functions is transparent to Infinispan, the API has been split into 3
interfaces for read-only (ReadOnlyMap), read-write (ReadWriteMap) and write-only (WriteOnlyMap)
operations respectively, in order to provide hints to the Infinispan internals on the type of work
needed to support functions.

2.3. Constructing Functional Maps

To construct any of the read-only, write-only or read-write map instances, an Infinispan
AdvancedCache is required, which is retrieved from the Cache Manager, and using the Advanced(Cache,
static method factory methods are used to create ReadOnlyMap , ReadWriteMap or WriteOnlyMap

import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.functional.impl.*;

AdvancedCache<String, String> cache = ...

FunctionalMapImpl<String, String> functionalMap = FunctionalMapImpl.create(cache);
ReadOnlyMap<String, String> readOnlyMap = ReadOnlyMapImpl.create(functionalMap);

WriteOnlyMap<String, String> writeOnlyMap = WriteOnlyMapImpl.create(functionalMap);
ReadWriteMap<String, String> readWriteMap = ReadWriteMapImpl.create(functionalMap);

11

https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/AdvancedCache.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/AdvancedCache.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html

At this stage, the Functional Map API is experimental and hence the way
A FunctionalMap, ReadOnlyMap, WriteOnlyMap and ReadWriteMap are constructed
is temporary.

2.4. Read-Only Map API

Read-only operations have the advantage that no locks are acquired for the duration of the
operation. Here’s an example on how to the equivalent operation for Map.get(K):

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadOnlyMap<String, String> readOnlyMap = ...
CompletableFuture<Optional<String>> readFuture = readOnlyMap.eval("key1",
ReadEntryView::find);

readFuture.thenAccept(System.out::println);

Read-only map also exposes operations to retrieve multiple keys in one go:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Traversable;

ReadOnlyMap<String, String> readOnlyMap = ...

Set<String> keys = new HashSet<>(Arrays.asList("key1", "key2"));
Traversable<String> values = readOnlyMap.evalMany(keys, ReadEntryView::get);
values.forEach(System.out::println);

Finally, read-only map also exposes methods to read all existing keys as well as entries, which
include both key and value information.

2.4.1. Read-Only Entry View

The function parameters for read-only maps provide the user with a read-only entry view to
interact with the data in the cache, which include these operations:

* key() method returns the key for which this function is being executed.

» find() returns a Java 8 Optional wrapping the value if present, otherwise it returns an empty
optional. Unless the value is guaranteed to be associated with the key, it’s recommended to use
find() to verify whether there’s a value associated with the key.

* get() returns the value associated with the key. If the key has no value associated with it, calling
get() throws a NoSuchElementException. get() can be considered as a shortcut of
ReadEntryView.find().get() which should be used only when the caller has guarantees that
there’s definitely a value associated with the key.

12

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#get-java.lang.Object-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#key--
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#find--
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#get--

o findMetaParam(Class<T> type) allows metadata parameter information associated with the cache
entry to be looked up, for example: entry lifespan, last accessed time...etc. See Metadata
Parameter Handling to find out more.

2.5. Write-Only Map API

Write-only operations include operations that insert or update data in the cache and also removals.
Crucially, a write-only operation does not attempt to read any previous value associated with the
key. This is an important optimization since that means neither the cluster nor any persistence
stores will be looked up to retrieve previous values. In the main Infinispan Cache, this kind of
optimization was achieved using a local-only per-invocation flag, but the use case is so common
that in this new functional API, this optimization is provided as a first-class citizen.

Using write-only map API, an operation equivalent to javax.cache.Cache (JCache) 's void returning
put can be achieved this way, followed by an attempt to read the stored value using the read-only
map APL

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

WriteOnlyMap<String, String> writeOnlyMap = ...
ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", "valuel",
(v, view) -> view.set(v));

CompletableFuture<String> readFuture = writeFuture.thenCompose(r ->
readOnlyMap.eval("key1", ReadEntryView::get));

readFuture.thenAccept(System.out::println);

Multiple key/value pairs can be stored in one go using evalMany API:

WriteOnlyMap<String, String> writeOnlyMap = ...

Map<K, String> data = new HashMap<>();

data.put("key1", "valuel");

data.put("key2", "value2");

CompletableFuture<Void> writerAllFuture = writeOnlyMap.evalMany(data, (v, view) ->
view.set(v));

writerAllFuture.thenAccept(x -> "Write completed");

To remove all contents of the cache, there are two possibilities with different semantics. If using
evalAll each cached entry is iterated over and the function is called with that entry’s information.
Using this method also results in listeners being invoked.

13

https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html#findMetaParam-java.lang.Class-
#meta_parameter
#meta_parameter
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java#L194
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#evalMany-java.util.Map-java.util.function.BiConsumer-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#evalAll-java.util.function.Consumer-

WriteOnlyMap<String, String> writeOnlyMap = ...

CompletableFuture<Void> removeAllFuture = writeOnlyMap.evalAll(WriteEntryView::remove
)i

removeAllFuture.thenAccept(x -> "All entries removed");

The alternative way to remove all entries is to call truncate operation which clears the entire cache
contents in one go without invoking any listeners and is best-effort:

WriteOnlyMap<String, String> writeOnlyMap = ...

CompletableFuture<Void> truncateFuture = writeOnlyMap.truncate();
truncateFuture.thenAccept(x -> "Cache contents cleared");

2.5.1. Write-Only Entry View

The function parameters for write-only maps provide the user with a write-only entry view to
modify the data in the cache, which include these operations:

e set(V, MetaParam.Writable:::) method allows for a new value to be associated with the cache
entry for which this function is executed, and it optionally takes zero or more metadata
parameters to be stored along with the value. See Metadata Parameter Handling for more
information.

* remove() method removes the cache entry, including both value and metadata parameters
associated with this key.

2.6. Read-Write Map API

The final type of operations we have are readwrite operations, and within this category CAS-like
(CompareAndSwap) operations can be found. This type of operations require previous value
associated with the key to be read and for locks to be acquired before executing the function. The
vast majority of operations within ConcurrentMap and JCache APIs fall within this category, and they
can easily be implemented using the read-write map API. Moreover, with read-write map API, you
can make CASlike comparisons not only based on value equality but based on metadata parameter
equality such as version information, and you can send back previous value or boolean instances to
signal whether the CASlike comparison succeeded.

Implementing a write operation that returns the previous value associated with the cache entry is
easy to achieve with the read-write map API:

14

https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#truncate--
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
#meta_parameter
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#remove--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadWriteMap<String, String> readWriteMap = ...

CompletableFuture<Optional<String>> readWriteFuture = readWriteMap.eval("key1",
"valuel",
(v, view) -> {
Optional<V> prev = rw.find();
view.set(v);
return prev;

};
readWriteFuture.thenAccept(System.out::println);

ConcurrentMap.replace(K, V, V) is a replace function that compares the value present in the map
and if it’s equals to the value passed in as first parameter, the second value is stored, returning a
boolean indicating whether the replace was successfully completed. This operation can easily be
implemented using the read-write map API:

ReadWriteMap<String, String> readWriteMap = ...

String oldValue = "old-value";
CompletableFuture<Boolean> replaceFuture = readWriteMap.eval("key1", "valuel", (v,
view) -> {
return view.find().map(prev -> {
if (prev.equals(oldValue)) {
rw.set(v);
return true; // previous value present and equals to the expected one

}

return false; // previous value associated with key does not match
}).orElse(false); // no value associated with this key

b

replaceFuture.thenAccept(replaced -> System.out.printf("Value was replaced? %s%n",
replaced));

o The function in the example above captures oldValue which is an external value to
the function which is valid use case.

Read-write map API contains evalMany and evalAll operations which behave similar to the write-
only map offerings, except that they enable previous value and metadata parameters to be read.

2.6.1. Read-Write Entry View

The function parameters for read-write maps provide the user with the possibility to query the
information associated with the key, including value and metadata parameters, and the user can
also use this read-write entry view to modify the data in the cache.

15

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/EntryView.ReadWriteEntryView.html

The operations are exposed by read-write entry views are a union of the operations exposed by
read-only entry views and write-only entry views.

2.7. Metadata Parameter Handling

Metadata parameters provide extra information about the cache entry, such as version
information, lifespan, last accessed/used time...etc. Some of these can be provided by the user, e.g.
version, lifespan...etc, but some others are computed internally and can only be queried, e.g. last
accessed/used time.

The functional map API provides a flexible way to store metadata parameters along with an cache
entry. To be able to store a metadata parameter, it must extend MetaParam.Writable interface, and
implement the methods to allow the internal logic to extra the data. Storing is done via the set(V,
MetaParam.Writable::-) method in the write-only entry view or read-write entry view function
parameters.

Querying metadata parameters is available via the findMetaParam(Class) method available via read-
write entry view or read-only entry views or function parameters.

Here is an example showing how to store metadata parameters and how to query them:

import java.time.Duration;

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.MetaParam.*;

WriteOnlyMap<String, String> writeOnlyMap = ...
ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", "valuel",
(v, view) -> view.set(v, new Metalifespan(Duration.ofHours(1).toMillis())));
CompletableFuture<Metalifespan> readFuture = writeFuture.thenCompose(r ->
readOnlyMap.eval("key1", view -> view.findMetaParam(Metalifespan.class).get()));
readFuture.thenAccept(System.out::println);

If the metadata parameter is generic, for example MetaEntryVersion<T> , retrieving the metadata
parameter along with a specific type can be tricky if using .class static helper in a class because it
does not return a (lass<T> but only (lass, and hence any generic information in the class is lost:

16

#read_only_entry_view
#write_only_entry_view
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/MetaParam.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html
#write_only_entry_view
#read_write_entry_view
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html#findMetaParam-java.lang.Class-
#read_write_entry_view
#read_write_entry_view
#read_only_entry_view
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/MetaParam.MetaEntryVersion.html

ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<String> readFuture = readOnlyMap.eval("key1", view -> {
// If caller depends on the typed information, this is not an ideal way to retrieve
it
// If the caller does not depend on the specific type, this works just fine.
Optional<MetaEntryVersion> version = view.findMetaParam(MetaEntryVersion.class);
return view.get();

b

When generic information is important the user can define a static helper method that coerces the
static class retrieval to the type requested, and then use that helper method in the call to
findMetaParam:

class MetaEntryVersion<T> implements MetaParam.Writable<EntryVersion<T>> {

public static <T> T type() { return (T) MetaEntryVersion.class; }

}

ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<String> readFuture = readOnlyMap.eval("key1", view -> {
// The caller wants quarantees that the metadata parameter for version is numeric
// e.g. to query the actual version information
Optional<MetaEntryVersion<Long>> version = view.findMetaParam(MetaEntryVersion.

type());
return view.get();

H;

Finally, users are free to create new instances of metadata parameters to suit their needs. They are
stored and retrieved in the very same way as done for the metadata parameters already provided
by the functional map API.

2.8. Invocation Parameter

Per-invocation parameters are applied to regular functional map API calls to alter the behaviour of
certain aspects. Adding per invocation parameters is done using the withParams(Param<?>::+)
method.

Param.FutureMode tweaks whether a method returning a CompletablefFuture will span a thread to
invoke the method, or instead will use the caller thread. By default, whenever a call is made to a
method returning a CompletableFuture , a separate thread will be span to execute the method
asynchronously. However, if the caller will immediately block waiting for the CompletableFuture to
complete, spanning a different thread is wasteful, and hence Param.FutureMode.COMPLETED can be
passed as per-invocation parameter to avoid creating that extra thread. Example:

17

https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Param.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Param.FutureMode.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Param.FutureMode.html#COMPLETED

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Param.*;

ReadOnlyMap<String, String> readOnlyMap = ...

ReadOnlyMap<String, String> readOnlyMapCompleted = readOnlyMap.withParams(FutureMode
.COMPLETED);

Optional<String> readFuture = readOnlyMapCompleted.eval("key1", ReadEntryView::find)

.get();

Param.PersistenceMode controls whether a write operation will be propagated to a persistence
store. The default behaviour is for all write-operations to be propagated to the persistence store if
the cache is configured with a persistence store. By passing PersistenceMode.SKIP as parameter, the
write operation skips the persistence store and its effects are only seen in the in-memory contents
of the cache. PersistenceMode.SKIP can be used to implement an Cache.evict() method which
removes data from memory but leaves the persistence store untouched:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Param.*;

WriteOnlyMap<String, String> writeOnlyMap = ...
WriteOnlyMap<String, String> skiPersistMap = writeOnlyMap.withParams(PersistenceMode

.SKIP);
CompletableFuture<Void> removeFuture = skiPersistMap.eval("key1", WriteEntryView:

‘remove);

Note that there’s no need for another PersistenceMode option to skip reading from the persistence
store, because a write operation can skip reading previous value from the store by calling a write-
only operation via the WriteOnlyMap.

Finally, new Param implementations are normally provided by the functional map API since they
tweak how the internal logic works. So, for the most part of users, they should limit themselves to
using the Param instances exposed by the API The exception to this rule would be advanced users
who decide to add new interceptors to the internal stack. These users have the ability to query
these parameters within the interceptors.

2.9. Functional Listeners

The functional map offers a listener API, where clients can register for and get notified when events
take place. These notifications are post-event, so that means the events are received after the event
has happened.

The listeners that can be registered are split into two categories: write listeners and read-write
listeners.

18

https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/Cache.html#evict-K-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html

2.9.1. Write Listeners

Write listeners enable user to register listeners for any cache entry write events that happen in
either a read-write or write-only functional map.

Listeners for write events cannot distinguish between cache entry created and cache entry
modify/update events because they don’t have access to the previous value. All they know is that a
new non-null entry has been written.

However, write event listeners can distinguish between entry removals and cache entry
create/modify-update events because they can query what the new entry’s value via
ReadEntryView.find() method.

Adding a write listener is done via the WriteListeners interface which is accessible via both
ReadWriteMap.listeners() and WriteOnlyMap.listeners() method.

A write listener implementation can be defined either passing a function to
onWrite(Consumer<ReadEntryView<K, V>>) method, or passing a WriteListener implementation to
add(WritelListener<K, V>) method. Either way, all these methods return an AutoCloseable instance
that can be used to de-register the function listener:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Listeners.WritelListeners.WritelListener;

WriteOnlyMap<String, String> woMap = ...

AutoCloseable writeFunctionCloseHandler = woMap.listeners().onWrite(written -> {
// ‘written' is a ReadEntryView of the written entry
System.out.printf("Written: %s%n", written.get());

19K

AutoCloseable writeCloseHanlder = woMap.listeners().add(new WritelListener<String,

String>() {

@0verride
public void onWrite(ReadEntryView<K, V> written) {
System.out.printf("Written: %s%n", written.get());
}
19K

// Either wrap handler in a try section to have it auto close...
try(writeFunctionCloseHandler) {
// Write entries using read-write or write-only functional map API

}
// Or close manually

writeCloseHanlder.close();

19

https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#find--
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html#listeners--
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#listeners--
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html#onWrite-java.util.function.Consumer-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html#add-org.infinispan.commons.api.functional.Listeners.WriteListeners.WriteListener-
https://docs.oracle.com/javase/8/docs/api/java/lang/AutoCloseable.html

2.9.2. Read-Write Listeners

Read-write listeners enable users to register listeners for cache entry created, modified and
removed events, and also register listeners for any cache entry write events.

Entry created, modified and removed events can only be fired when these originate on a read-write
functional map, since this is the only one that guarantees that the previous value has been read,
and hence the differentiation between create, modified and removed can be fully guaranteed.

Adding a read-write listener is done via the ReadWritelListeners interface which is accessible via
ReadWriteMap.listeners() method.

If interested in only one of the event types, the simplest way to add a listener is to pass a function to
either onCreate , onModify or onRemove methods. All these methods return an AutoCloseable instance
that can be used to de-register the function listener:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadWriteMap<String, String> rwMap = ...

AutoCloseable createClose = rwMap.listeners().onCreate(created -> {
// ‘created’ is a ReadEntryView of the created entry
System.out.printf("Created: %s%n", created.get());

3

AutoCloseable modifyClose = rwMap.listeners().onModify((before, after) -> {
// ‘before' is a ReadEntryView of the entry before update
// ‘after’ is a ReadEntryView of the entry after update
System.out.printf("Before: %s%n", before.get());
System.out.printf("After: %s%n", after.get());

3

AutoCloseable removeClose = rwMap.listeners().onRemove(removed -> {
// ‘removed' is a ReadEntryView of the removed entry
System.out.printf("Removed: %s%n", removed.get());

3

AutoCloseable writeClose = woMap.listeners().onWrite(written -> {
// ‘written' is a ReadEntryView of the written entry
System.out.printf("Written: %s%n", written.get());

1

// Either wrap handler in a try section to have it auto close...
try(createClose) {
// Create entries using read-write functional map API

}
// Or close manually

modifyClose.close();

If listening for two or more event types, it’s better to pass in an implementation of
ReadWritelistener interface via the ReadWritelisteners.add() method. ReadWriteListener offers the
same onCreate/onModify/onRemove callbacks with default method implementations that are empty:

20

https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html#listeners--
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onCreate-org.infinispan.commons.api.functional.EntryView.ReadEntryView-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onModify-org.infinispan.commons.api.functional.EntryView.ReadEntryView-org.infinispan.commons.api.functional.EntryView.ReadEntryView-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onRemove-org.infinispan.commons.api.functional.EntryView.ReadEntryView-
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.WriteListener.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html#add-org.infinispan.commons.api.functional.Listeners.ReadWriteListeners.ReadWriteListener-

import org.infinispan.commons.api.functional.EntryView.*;

import org.infinispan.commons.api.functional.FunctionalMap.*;

import
org.infinispan.commons.api.functional.Listeners.ReadWritelisteners.ReadWritelistener;

ReadWriteMap<String, String> ruwMap = ...
AutoCloseable readWriteClose = rwMap.listeners.add(new ReadWritelistener<String,
String>() {

public void onCreate(ReadEntryView<String, String> created) {
System.out.printf("Created: %s%n", created.get());

}

public void onModify(ReadEntryView<String, String> before, ReadEntryView<String,
String> after) {
System.out.printf("Before: %s%n", before.get());
System.out.printf("After: %s%n", after.get());

}

public void onRemove(ReadEntryView<String, String> removed) {
System.out.printf("Removed: %s%n", removed.get());

}
)

AutoCloseable writeClose = rwMap.listeners.add(new WriteListener<String, String>() {

public void onWrite(ReadEntryView<K, V> written) {

System.out.printf("Written: %s%n", written.qget());

}
)

// Either wrap handler in a try section to have it auto close...
try(readWriteClose) {
// Create/update/remove entries using read-write functional map API

}
// Or close manually

writeClose.close();

2.10. Marshalling of Functions

Running functional map in a cluster of nodes involves marshalling and replication of the operation
parameters under certain circumstances.

To be more precise, when write operations are executed in a cluster, regardless of read-write or
write-only operations, all the parameters to the method and the functions are replicated to other
nodes.

21

There are multiple ways in which a function can be marshalled. The simplest way, which is also the
most costly option in terms of payload size, is to mark the function as Serializable:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

WriteOnlyMap<String, String> writeOnlyMap

// Force a function to be Serializable
Consumer<WriteEntryView<String>> function
(Consumer<WriteEntryView<String>> & Serializable) wv -> wv.set("one");

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", function);

Infinispan provides overloads for all functional methods that make lambdas passed directly to the
API serializable by default; the compiler automatically selects this overload if that’s possible.
Therefore you can call

WriteOnlyMap<String, String> writeOnlyMap = ...
CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", wv -> wv.set("one"));

without doing the cast described above.

A more economical way to marshall a function is to provide an Infinispan Externalizer for it:

22

https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/marshall/Externalizer.html

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.marshall.Externalizer;

import org.infinispan.commons.marshall.SerializeFunctionWith;

WriteOnlyMap<String, String> writeOnlyMap = ...

// Force a function to be Serializable
Consumer<WriteEntryView<String>> function = new SetStringConstant<>();
CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", function);

(value = SetStringConstant.Externalizer@.class)
class SetStringConstant implements Consumer<WriteEntryView<String>> {

public void accept(WriteEntryView<String> view) {
view.set("valuel");

}

public static final class Externalizer® implements Externalizer<Object> {
public void writeObject(ObjectOutput oo, Object o) {
// No-op
}
public Object readObject(ObjectInput input) {
return new SetStringConstant<>();

}

To help users take advantage of the tiny payloads generated by Externalizer-based functions, the
functional API comes with a helper class called
org.infinispan.commons.marshall.MarshallableFunctions which provides marshallable functions for
some of the most commonly user functions.

In fact, all the functions required to implement ConcurrentMap and JCache using the functional map
API have been defined in MarshallableFunctions. For example, here is an implementation of
JCache’s boolean putIfAbsent(K, V) using functional map API which can be run in a cluster:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.marshall.MarshallableFunctions;

ReadWriteMap<String, String> readWriteMap = ...
CompletableFuture<Boolean> future = readWriteMap.eval("key1,

MarshallableFunctions.setValuelfAbsentReturnBoolean());
future.thenAccept(stored -> System.out.printf("Value was put? %s%n", stored));

23

https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/marshall/MarshallableFunctions.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://docs.jboss.org/infinispan/10.1/apidocs/org/infinispan/commons/marshall/MarshallableFunctions.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java#L283

2.11. Use Cases for Functional API

This new API is meant to complement existing Key/Value Infinispan API offerings, so you’ll still be
able to use ConcurrentMap or JCache standard APIs if that’s what suits your use case best.

The target audience for this new API is either:

 Distributed or persistent caching/inmemorydatagrid users that want to benefit from
CompletableFuture and/or Traversable for async/lazy data grid or caching data manipulation.
The clear advantage here is that threads do not need to be idle waiting for remote operations to
complete, but instead these can be notified when remote operations complete and then chain
them with other subsequent operations.

» Users who want to go beyond the standard operations exposed by ConcurrentMap and JCache, for
example, if you want to do a replace operation using metadata parameter equality instead of
value equality, or if you want to retrieve metadata information from values and so on.

24

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java

Chapter 3. Encoding

Encoding is the data conversion operation done by Infinispan caches before storing data, and when
reading back from storage.

3.1. Overview

Encoding allows dealing with a certain data format during API calls (map, listeners, stream, etc)
while the format effectively stored is different.

The data conversions are handled by instances of org.infinispan.commons.dataconversion.Encoder :

public interface Encoder {

/**
* Convert data in the read/write format to the storage format.
*

* @param content data to be converted, never null.
* @return Object in the storage format.

*/
Object toStorage(Object content);

/**

* Convert from storage format to the read/write format.
*

* @param content data as stored in the cache, never null.
* @return data i