Infinispan Hot Rod Protocol Reference

Table of Contents

1. Hot Rod Protocol

1.1. Hot Rod Protocol 1.0
1.1.1. Request Header
1.1.2. Response Header
1.1.3. Topology Change Headers
1.1.4. Topology-Aware Client Topology Change Header
1.1.5. Distribution-Aware Client Topology Change Header
1.1.6. Operations
1.1.7. Example - Put request
1.2. Hot Rod Protocol 1.1
1.2.1. Request Header
1.2.2. Distribution-Aware Client Topology Change Header
1.2.3. Server node hash code calculation
1.3. Hot Rod Protocol 1.2
1.3.1. Request Header
1.3.2. Response Header
1.3.3. Operations
1.4. Hot Rod Protocol 1.3
1.4.1. Request Header
1.4.2. Response Header
1.4.3. Operations
1.5. Hot Rod Protocol 2.0
1.5.1. Request Header
1.5.2. Response Header
1.5.3. Distribution-Aware Client Topology Change Header
1.5.4. Operations
1.5.5. Remote Events
1.6. Hot Rod Protocol 2.1
1.6.1. Request Header
1.6.2. Operations
1.7. Hot Rod Protocol 2.2
1.7.1. Operations
1.8. Hot Rod Protocol 2.3
1.8.1. Operations
1.9. Hot Rod Protocol 2.4
1.9.1. Operations
1.10. Hot Rod Protocol 2.5
1.11. Hot Rod Protocol 2.6

o OO Y DN R

BW W W W W W W W W W W NNDNDNDNDNDDNDNDDNDNDDNDNDN = =
S 00 O Ul B W W WD DN DN O OUL W WW W N DNhDOoO OO O O 0 g3

1.12. Hot Rod Protocol 2.7

1.13. Hot Rod Protocol 2.8
1.13.1. Request Header

1.14. Hot Rod Protocol 2.9

1.15. Hot Rod Hash Functions

1.16. Hot Rod Admin Tasks
1.16.1. Admin tasks

1.17. Hot Rod Protocol 3.0

43
51
52
53
57
58
39
39

Chapter 1. Hot Rod Protocol

The following articles provides detailed information about each version of the custom TCP

client/server Hot Rod protocol.
* Hot Rod Protocol 1.0 (Infinispan 4.1)
* Hot Rod Protocol 1.1 (Infinispan 5.1)
* Hot Rod Protocol 1.2 (Infinispan 5.2)
* Hot Rod Protocol 1.3 (Infinispan 6.0)
* Hot Rod Protocol 2.0 (Infinispan 7.0)
* Hot Rod Protocol 2.1 (Infinispan 7.1)
* Hot Rod Protocol 2.2 (Infinispan 8.0)
* Hot Rod Protocol 2.3 (Infinispan 8.0)
* Hot Rod Protocol 2.4 (Infinispan 8.1)
* Hot Rod Protocol 2.5 (Infinispan 8.2)
* Hot Rod Protocol 2.6 (Infinispan 9.0)
* Hot Rod Protocol 2.7 (Infinispan 9.2)
* Hot Rod Protocol 2.8 (Infinispan 9.3)
* Hot Rod Protocol 2.9 (Infinispan 9.4)
* Hot Rod Protocol 3.0 (Infinispan 10.0)

1.1. Hot Rod Protocol 1.0

Infinispan versions

A This version of the protocol was implemented since Infinispan 4.1.0.Final and is no
longer supported since Infinispan 10.

o All key and values are sent and stored as byte arrays. Hot Rod makes no
assumptions about their types.

Some clarifications about the other types:

» vInt : Variable-length integers are defined defined as compressed, positive integers where the
high-order bit of each byte indicates whether more bytes need to be read. The low-order seven
bits are appended as increasingly more significant bits in the resulting integer value making it
efficient to decode. Hence, values from zero to 127 are stored in a single byte, values from 128 to
16,383 are stored in two bytes, and so on:

Value First byte Second byte Third byte
0 00000000
1 00000001

#hot_rod_protocol_1_0
#hot_rod_protocol_1_1
#hot_rod_protocol_1_2
#hot_rod_protocol_1_3
#hot_rod_protocol_2_0
#hot_rod_protocol_2_1
#hot_rod_protocol_2_2
#hot_rod_protocol_2_3
#hot_rod_protocol_2_4
#hot_rod_protocol_2_5
#hot_rod_protocol_2_6
#hot_rod_protocol_2_7
#hot_rod_protocol_2_8
#hot_rod_protocol_2_9
#hot_rod_protocol_3_0

Value

127
128
129
130

16,383
16,384
16,385

First byte Second byte Third byte

00000010

01111111

10000000 00000001

10000001 00000001

10000010 00000001

M1111M 01111111

10000000 10000000 00000001
10000001 10000000 00000001

* signed vInt: The vIint above is also able to encode negative values, but will always use the
maximum size (5 bytes) no matter how small the endoded value is. In order to have a small
payload for negative values too, signed vints uses ZigZag encoding on top of the vint encoding.

More details here

* vLong : Refers to unsigned variable length long values similar to vint but applied to longer
values. They’re between 1 and 9 bytes long.

 String : Strings are always represented using UTF-8 encoding.

1.1.1. Request Header

The header for a request is composed of:

Table 1. Request header

Field Name
Magic
Message ID

Version

Size
1 byte

vLong

1 byte

Value

0xAOQ = request

ID of the message that will be copied back in the response. This
allows for Hot Rod clients to implement the protocol in an
asynchronous way.

Hot Rod server version. In this particular case, this is 10

http://developers.google.com/protocol-buffers/docs/encoding#types

Field Name

Opcode

Cache Name
Length

Cache Name

Flags

Size

1 byte

vint

string

vint

Value

Request operation code:

0x01 = put (since 1.0)

0x03 = get (since 1.0)

0x05 = putIfAbsent (since 1.0)

0x07 = replace (since 1.0)

0x09 = replacelfUnmodified (since 1.0)
0x0B = remove (since 1.0)

0x0D = removelfUnmodified (since 1.0)
0xOF = containsKey (since 1.0)

0x11 = getWithVersion (since 1.0)
0x13 = clear (since 1.0)

0x15 = stats (since 1.0)

0x17 = ping (since 1.0)

0x19 = bulkGet (since 1.2)

0x1B = getWithMetadata (since 1.2)
0x1D = bulkGetKeys (since 1.2)

0x1F = query (since 1.3)

0x21 = authMechList (since 2.0)

0x23 = auth (since 2.0)

0x25 = addClientListener (since 2.0)
0x27 = removeClientListener (since 2.0)
0x29 = size (since 2.0)

0x2B = exec (since 2.1)

0x2D = putAll (since 2.1)

0x2F = getAll (since 2.1)

0x31 = iterationStart (since 2.3)

0x33 = iterationNext (since 2.3)

0x35 = iterationEnd (since 2.3)

0x37 = getStream (since 2.6)

0x39 = putStream (since 2.6)

Length of cache name. If the passed length is 0 (followed by no
cache name), the operation will interact with the default cache.

Name of cache on which to operate. This name must match the
name of predefined cache in the Infinispan configuration file.

A variable length number representing flags passed to the
system. Each flags is represented by a bit. Note that since this
field is sent as variable length, the most significant bit in a byte is
used to determine whether more bytes need to be read, hence
this bit does not represent any flag. Using this model allows for
flags to be combined in a short space. Here are the current values
for each flag:

0x0001 = force return previous value

Field Name Size Value

Client Intelligence 1 byte This byte hints the server on the client capabilities:
0x01 = basic client, interested in neither cluster nor hash
information
0x02 = topology-aware client, interested in cluster information
0x03 = hash-distribution-aware client, that is interested in both
cluster and hash information

Topology Id vint This field represents the last known view in the client. Basic
clients will only send 0 in this field. When topology-aware or
hash-distribution-aware clients will send 0 until they have
received a reply from the server with the current view id.
Afterwards, they should send that view id until they receive a
new view id in a response.

Transaction Type 1 byte This is a 1 byte field, containing one of the following well-known
supported transaction types (For this version of the protocol, the
only supported transaction type is 0):
0 = Non-transactional call, or client does not support
transactions. The subsequent TX_ID field will be omitted.
1 = X/Open XA transaction ID (XID). This is a well-known, fixed-
size format.

Transaction Id byte array The byte array uniquely identifying the transaction associated to
this call. Its length is determined by the transaction type. If
transaction type is 0, no transaction id will be present.

1.1.2. Response Header

The header for a response is composed of:

Table 2. Response header

Field Name Size Value

Magic 1 byte 0xA1 = response

Message ID vLong ID of the message, matching the request for which the response
is sent.

Field Name Size Value

Opcode 1 byte Response operation code:
0x02 = put (since 1.0)
0x04 = get (since 1.0)
0x06 = putlfAbsent (since 1.0)
0x08 = replace (since 1.0)
0x0A = replaceIfUnmodified (since 1.0)
0x0C = remove (since 1.0)
0xOE = removelfUnmodified (since 1.0)
0x10 = containsKey (since 1.0)
0x12 = getWithVersion (since 1.0)
0x14 = clear (since 1.0)
0x16 = stats (since 1.0)
0x18 = ping (since 1.0)
0x1A = bulkGet (since 1.0)
0x1C = getWithMetadata (since 1.2)
0x1E = bulkGetKeys (since 1.2)
0x20 = query (since 1.3)
0x22 = authMechList (since 2.0)
0x24 = auth (since 2.0)
0x26 = addClientListener (since 2.0)
0x28 = removeClientListener (since 2.0)
0x2A = size (since 2.0)
0x2C = exec (since 2.1)
0x2E = putAll (since 2.1)
0x30 = getAll (since 2.1)
0x32 = iterationStart (since 2.3)
0x34 = iterationNext (since 2.3)
0x36 = iterationEnd (since 2.3)
0x38 = getStream (since 2.6)
0x3A = putStream (since 2.6)
0x50 = error (since 1.0)

Status 1 byte Status of the response, possible values:
0x00 = No error
0x01 = Not put/removed/replaced
0x02 = Key does not exist
0x81 = Invalid magic or message id
0x82 = Unknown command
0x83 = Unknown version
0x84 = Request parsing error
0x85 = Server Error
0x86 = Command timed out

Topology Change string This is a marker byte that indicates whether the response is

Marker prepended with topology change information. When no topology
change follows, the content of this byte is 0. If a topology change
follows, its contents are 1.

O

Exceptional error status responses, those that start with 0x8 ..., are followed by the
length of the error message (as a vint) and error message itself as String.

1.1.3. Topology Change Headers

The following section discusses how the response headers look for topology-aware or hash-
distribution-aware clients when there’s been a cluster or view formation change. Note that it’s the
server that makes the decision on whether it sends back the new topology based on the current
topology id and the one the client sent. If they’re different, it will send back the new topology.

1.1.4. Topology-Aware Client Topology Change Header

This is what topology-aware clients receive as response header when a topology change is sent

back:

Field Name

Response header
with topology
change marker

Topology Id

Num servers in
topology

m1: Host/IP length

m1: Host/IP
address

m1l: Port

m2: Host/IP length

m2: Host/IP
address

m2: Port

...etc

Size

variable

vint

vint

vint

string

2 bytes
(Unsigned
Short)

vint

string

2 bytes
(Unsigned
Short)

Value

See previous section.

Topology ID

Number of Hot Rod servers running within the cluster. This
could be a subset of the entire cluster if only a fraction of those
nodes are running Hot Rod servers.

Length of hostname or IP address of individual cluster member
that Hot Rod client can use to access it. Using variable length here
allows for covering for hostnames, IPv4 and IPv6 addresses.

String containing hostname or IP address of individual cluster
member that Hot Rod client can use to access it.

Port that Hot Rod clients can use to communicate with this
cluster member.

1.1.5. Distribution-Aware Client Topology Change Header

This is what hash-distribution-aware clients receive as response header when a topology change is

sent back:

Field Name Size
Response header variable
with topology

change marker
Topology Id vint

Num Key Owners 2 bytes

(Unsigned
Short)
Hash Function 1 byte
Version
Hash space size vint
Num servers in vint
topology

m1: Host/IP length vint

m1: Host/IP string
address
m1: Port 2 bytes
(Unsigned
Short)
m1: Hashcode 4 bytes

m2: Host/IP length vint

m2: Host/IP string
address
m2: Port 2 bytes
(Unsigned
Short)
m2: Hashcode 4 bytes
...etc

Value

See previous section.

Topology ID

Globally configured number of copies for each Infinispan
distributed key

Hash function version, pointing to a specific hash function in use.
See Hot Rod hash functions for details.

Modulus used by Infinispan for for all module arithmetic related
to hash code generation. Clients will likely require this
information in order to apply the correct hash calculation to the
keys.

Number of Infinispan Hot Rod servers running within the
cluster. This could be a subset of the entire cluster if only a
fraction of those nodes are running Hot Rod servers.

Length of hostname or IP address of individual cluster member
that Hot Rod client can use to access it. Using variable length here
allows for covering for hostnames, IPv4 and IPv6 addresses.

String containing hostname or IP address of individual cluster
member that Hot Rod client can use to access it.

Port that Hot Rod clients can use to communicat with this cluster
member.

32 bit integer representing the hashcode of a cluster member
that a Hot Rod client can use indentify in which cluster member
a key is located having applied the CSA to it.

It’s important to note that since hash headers rely on the consistent hash algorithm used by the
server and this is a factor of the cache interacted with, hash-distribution-aware headers can only be
returned to operations that target a particular cache. Currently ping command does not target any
cache (this is to change as per ISPN-424) , hence calls to ping command with hash-topology-aware
client settings will return a hash-distribution-aware header with "Num Key Owners", "Hash

#hot_rod_hash_functions
https://jira.jboss.org/jira/browse/ISPN-424

Function Version", "Hash space size" and each individual host’s hash code all set to 0. This type of
header will also be returned as response to operations with hash-topology-aware client settings that
are targeting caches that are not configured with distribution.

1.1.6. Operations

Get (0x03)/Remove (0x0B)/ContainsKey (0xOF)/GetWithVersion (0x11)

Common request format:

Field Name Size
Header variable
Key Length vint
Key byte array

Get response (0x04):

Field Name Size
Header variable
Response status 1 byte
Value Length vint
Value byte array

Remove response (0x00):

Field Name Size
Header variable
Response status 1 byte
Previous value vint
Length

Previous value byte array

ContainsKey response (0x10):

Value

Request header

Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer. MAX_VALUE.

Byte array containing the key whose value is being requested.

Value
Response header

0x00 = success, if key retrieved
0x02 = if key does not exist

If success, length of value

If success, the requested value

Value
Response header

0x00 = success, if key removed
0x02 = if key does not exist

If force return previous value flag was sent in the request and
the key was removed, the length of the previous value will be
returned. If the key does not exist, value length would be 0. If no
flag was sent, no value length would be present.

If force return previous value flag was sent in the request and
the key was removed, previous value.

Field Name
Header

Response status

GetWithVersion response (0x12):

Field Name
Header

Response status

Entry Version

Value Length

Value

BulkGet
Request (0x19):

Field Name
Header

Entry count

Response (0x20):

Field Name
Header
Response status

More

Key 1 Length
Key 1

Value 1 Length
Value 1

Size
variable

1 byte

Size
variable

1 byte

8 bytes

vint

byte array

Size
variable

vint

Size
variable
1 byte
1 byte

vint
byte array
vint

byte array

Value

Response header

0x00 = success, if key exists
0x02 = if key does not exist

Value

Response header

0x00 = success, if key retrieved
0x02 = if key does not exist

Unique value of an existing entry’s modification. The protocol
does not mandate that entry_version values are sequential. They
just need to be unique per update at the key level.

If success, length of value

If success, the requested value

Value

Request header

Maximum number of Infinispan entries to be returned by the
server (entry == key + associated value). Needed to support
CacheLoader.load(int). If 0 then all entries are returned (needed
for CacheLoader.loadAll()).

Value
Response header
0x00 = success, data follows

One byte representing whether more entries need to be read
from the stream. So, when it’s set to 1, it means that an entry
follows, whereas when it’s set to 0, it’s the end of stream and no
more entries are left to read. For more information on BulkGet
look here

Length of key
Retrieved key
Length of value

Retrieved value

http://community.jboss.org/docs/DOC-15592

Field Name
More

Key 2 Length
Key 2

Value 2 Length
Value 2

.. etc

Size
1 byte
vint
byte array
vint

byte array

Value

Put (0x01)/PutIfAbsent (0x05)/Replace (0x07)

Common request format:

Field Name
Header

Key Length

Key

Lifespan

Max Idle

Value Length

Value
Put response (0x02):

Field Name
Header
Response status

Previous value
Length

Previous value

10

Size
variable

vint

byte array

vint

vint

vint

byte-array

Size
variable
1 byte

vint

byte array

Value

Request header

Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer.MAX_VALUE.

Byte array containing the key whose value is being requested.

Number of seconds that a entry during which the entry is
allowed to life. If number of seconds is bigger than 30 days, this
number of seconds is treated as UNIX time and so, represents the
number of seconds since 1/1/1970. If set to 0, lifespan is
unlimited.

Number of seconds that a entry can be idle before it’s evicted
from the cache. If 0, no max idle time.

Length of value

Value to be stored

Value
Response header
0x00 = success, if stored

If force return previous value flag was sent in the request and
the key was put, the length of the previous value will be
returned. If the key does not exist, value length would be 0. If no
flag was sent, no value length would be present.

If force return previous value flag was sent in the request and
the key was put, previous value.

Replace response (0x08):

Field Name

Header

Response status

Previous value
Length

Previous value

Size
variable

1 byte

vint

byte array

PutIfAbsent response (0x06):

Field Name
Header

Response status

Previous value
Length

Previous value

ReplaceIfUnmodified
Request (0x09):

Field Name
Header

Key Length

Key

Lifespan

Size
variable

1 byte

vint

byte array

Size
variable

vint

byte array

vint

Value

Response header

0x00 = success, if stored
0x01 = if store did not happen because key does not exist

If force return previous value flag was sent in the request, the
length of the previous value will be returned. If the key does not
exist, value length would be 0. If no flag was sent, no value length
would be present.

If force return previous value flag was sent in the request and
the key was replaced, previous value.

Value

Response header

0x00 = success, if stored
0x01 = if store did not happen because key was present

If force return previous value flag was sent in the request, the
length of the previous value will be returned. If the key does not
exist, value length would be 0. If no flag was sent, no value length
would be present.

If force return previous value flag was sent in the request and
the key was replaced, previous value.

Value

Request header

Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer. MAX_VALUE.

Byte array containing the key whose value is being requested.

Number of seconds that a entry during which the entry is
allowed to life. If number of seconds is bigger than 30 days, this
number of seconds is treated as UNIX time and so, represents the
number of seconds since 1/1/1970. If set to 0, lifespan is
unlimited.

11

Field Name

Max Idle

Entry Version
Value Length

Value
Response (0x0A):

Field Name
Header

Response status

Previous value
Length

Previous value

RemovelfUnmodified
Request (0x0D):

Field Name
Header
Key Length

Key

Entry Version
Response (0XO0E):

Field Name
Header

Response status

12

Size

vint

8 bytes
vint

byte-array

Size
variable

1 byte

vint

byte array

Size
variable

vint

byte array
8 bytes

Size
variable

1 byte

Value

Number of seconds that a entry can be idle before it’s evicted
from the cache. If 0, no max idle time.

Use the value returned by GetWithVersion operation.
Length of value

Value to be stored

Value

Response header

0x00 = success, if replaced
0x01 = if replace did not happen because key had been modified
0x02 = if not replaced because if key does not exist

If force return previous value flag was sent in the request, the
length of the previous value will be returned. If the key does not
exist, value length would be 0. If no flag was sent, no value length
would be present.

If force return previous value flag was sent in the request and
the key was replaced, previous value.

Value

Request header

Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer. MAX_VALUE.

Byte array containing the key whose value is being requested.

Use the value returned by GetWithMetadata operation.

Value
Response header

0x00 = success, if removed
0x01 = if remove did not happen because key had been modified
0x02 = if not removed because key does not exist

Field Name

Previous value
Length

Previous value

Clear

Request (0x13):

Field Name

Header

Response (0x14):

Field Name

Header

Response status

PutAll

Size

vint

byte array

Size

variable

Size
variable

1 byte

Value

If force return previous value flag was sent in the request, the
length of the previous value will be returned. If the key does not
exist, value length would be 0. If no flag was sent, no value length
would be present.

If force return previous value flag was sent in the request and
the key was removed, previous value.

Value

Request header

Value
Response header

0x00 = success, if cleared

Bulk operation to put all key value entries into the cache at the same time.

Request (0x2D):

Field Name
Header

Lifespan

Max Idle

Entry count
Key 1 Length
Key 1

Value 1 Length
Value 1

Key 2 Length
Key 2

Value 2 Length

Size
variable

vint

vint

vint
vint
byte array
vint
byte array
vint
byte array

vint

Value
Request header

Number of seconds that provided entries are allowed to live. If
number of seconds is bigger than 30 days, this number of
seconds is treated as UNIX time and so, represents the number of
seconds since 1/1/1970. If set to 0, lifespan is unlimited.

Number of seconds that each entry can be idle before it’s evicted
from the cache. If 0, no max idle time.

How many entries are being inserted
Length of key

Retrieved key

Length of value

Retrieved value

13

Field Name

Value 2

... continues until
entry count is
reached

Response (0x2E):

Field Name

Header

Response status

GetAll

Size

byte array

Size
variable

1 byte

Value

Value

Response header

0x00 = success, if all put

Bulk operation to get all entries that map to a given set of keys.

Request (0x2F):

Field Name
Header

Key count
Key 1 Length
Key 1

Key 2 Length
Key 2

... continues until
key count is
reached

Response (0x30):

Field Name
Header
Response status
Entry count
Key 1 Length
Key 1

Value 1 Length
Value 1

Key 2 Length

14

Size
variable
vint
vint
byte array
vint

byte array

Size
variable
1 byte
vint
vint
byte array
vint
byte array

vint

Value

Request header

How many Kkeys to find entries for
Length of key

Retrieved key

Value

Response header

How many entries are being returned
Length of key

Retrieved key

Length of value

Retrieved value

Field Name Size
Key 2 byte array
Value 2 Length vint
Value 2 byte array

... continues until
entry count is
reached

Stats

Value

0x00 = success, if the get returned sucessfully

Returns a summary of all available statistics. For each statistic returned, a name and a value is
returned both in String UTF-8 format. The supported stats are the following:

Name
timeSinceStart

currentNumberOfEntries

totalNumberOfEntries
stores

retrievals

hits

misses

removeHits

removeMisses
Request (0x15):

Field Name Size

Header variable

Response (0x16):

Field Name Size
Header variable
Response status 1 byte
Number of stats vint
Name 1 length vint
Name 1 string
Value 1 length vint
Value 1 string

Explanation
Number of seconds since Hot Rod started.

Number of entries currently in the Hot Rod
server.

Number of entries stored in Hot Rod server.
Number of put operations.

Number of get operations.

Number of get hits.

Number of get misses.

Number of removal hits.

Number of removal misses.

Value

Request header

Value

Response header

0x00 = success, if stats retrieved
Number of individual stats returned.
Length of named statistic.

String containing statistic name.
Length of value field.

String containing statistic value.

15

Field Name Size Value
Name 2 length vint

Name 2 string

Value 2 length vint

Value 2 String

...etc
Ping

Application level request to see if the server is available.

Request (0x17):
Field Name Size Value
Header variable Request header

Response (0x18):

Field Name Size Value

Header variable Response header
Response status 1 byte 0x00 = success, if no errors
Error Handling

Error response (0x50)

Field Name Size Value

Header variable Response header

Response status 1byte 0x8x = error response code

Error Message vint Length of error message

Length

Error Message string Error message. In the case of 0x84 , this error field contains the
latest version supported by the Hot Rod server. Length is defined
by total body length.

Multi-Get Operations

A multi-get operation is a form of get operation that instead of requesting a single key, requests a
set of keys. The Hot Rod protocol does not include such operation but remote Hot Rod clients could
easily implement this type of operations by either parallelizing/pipelining individual get requests.
Another possibility would be for remote clients to use async or non-blocking get requests. For
example, if a client wants N keys, it could send send N async get requests and then wait for all the
replies. Finally, multi-get is not to be confused with bulk-get operations. In bulk-gets, either all or a
number of keys are retrieved, but the client does not know which keys to retrieve, whereas in
multi-get, the client defines which keys to retrieve.

16

1.1.7. Example - Put request

* Coded request

Byte 0 1 2 3 4 5 6 7
8 0xAO0 0x09 0x41 0x01 0x07 0x4D ('M') 0x79 ('y) 0x43('C)
16 0x61 ('a") 0x63('c) 0x68(h") 0x65(e) 0x00 0x03 0x00 0x00
24 0x00 0x05 0x48 (H') 0x65 ('e’) 0x6C(1l) 0x6C (1) Ox6F (‘o) 0x00
32 0x00 0x05 0x57 (W') 0x6F (‘o) 0x72(r') 0x6C(1) 0x64(d)

* Field explanation

Field Name Value Field Name Value
Magic (0) 0xA0 Message Id (1) 0x09
Version (2) 0x41 Opcode (3) 0x01
Cache name length (4) 0x07 Cache name(5-11) 'MyCache'
Flag (12) 0x00 Client Intelligence (13) 0x03
Topology Id (14) 0x00 Transaction Type (15) 0x00
Transaction Id (16) 0x00 Key field length (17) 0x05

Key (18 - 22) 'Hello' Lifespan (23) 0x00

Max idle (24) 0x00 Value field length (25) 0x05

Value (26-30) "World'

* Coded response

Byte 0 1 2 3 4 5 6 7

8 0xA1l 0x09 0x01 0x00 0x00

* Field Explanation

Field Name Value Field Name Value

Magic (0) 0xA1l Message Id (1) 0x09

Opcode (2) 0x01 Status (3) 0x00

Topology change 0x00

marker (4)

1.2. Hot Rod Protocol 1.1

17

Infinispan versions

This version of the protocol was implemented since Infinispan 5.1.0.FINAL and is
no longer supported since Infinispan 10.

1.2.1. Request Header

The version field in the header is updated to 11.

1.2.2. Distribution-Aware Client Topology Change Header

Updated for 1.1

This section has been modified to be more efficient when talking to distributed
caches with virtual nodes enabled.

This is what hash-distribution-aware clients receive as response header when a topology change is
sent back:

Field Name Size Value
Response header variable See previous section.
with topology
change marker
Topology Id vint Topology ID
Num Key Owners 2 bytes Globally configured number of copies for each Infinispan
(Unsigned distributed key
Short)
Hash Function 1 byte Hash function version, pointing to a specific hash function in use.
Version See Hot Rod hash functions for details.
Hash space size vint Modulus used by Infinispan for for all module arithmetic related

to hash code generation. Clients will likely require this
information in order to apply the correct hash calculation to the

keys.
Num servers in vint Number of Hot Rod servers running within the cluster. This
topology could be a subset of the entire cluster if only a fraction of those

nodes are running Hot Rod servers.

Num Virtual vint Field added in version 1.1 of the protocol that represents the

Nodes Owners number of configured virtual nodes. If no virtual nodes are
configured or the cache is not configured with distribution, this
field will contain 0.

m1: Host/IP length vint Length of hostname or IP address of individual cluster member
that Hot Rod client can use to access it. Using variable length here
allows for covering for hostnames, IPv4 and IPv6 addresses.

m1: Host/IP string String containing hostname or IP address of individual cluster
address member that Hot Rod client can use to access it.

18

#hot_rod_hash_functions

Field Name Size Value

m1: Port 2 bytes Port that Hot Rod clients can use to communicat with this cluster
(Unsigned member.
Short)
m1: Hashcode 4 bytes 32 bit integer representing the hashcode of a cluster member

that a Hot Rod client can use indentify in which cluster member
a key is located having applied the CSA to it.

m2: Host/IP length vint

m2: Host/IP string
address
m2: Port 2 bytes
(Unsigned
Short)
m2: Hashcode 4 bytes
...etc

1.2.3. Server node hash code calculation

Adding support for virtual nodes has made version 1.0 of the Hot Rod protocol impractical due to
bandwidth it would have taken to return hash codes for all virtual nodes in the clusters (this
number could easily be in the millions). So, as of version 1.1 of the Hot Rod protocol, clients are
given the base hash id or hash code of each server, and then they have to calculate the real hash
position of each server both with and without virtual nodes configured. Here are the rules clients
should follow when trying to calculate a node’s hash code:

1\. With virtual nodes disabled : Once clients have received the base hash code of the server, they
need to normalize it in order to find the exact position of the hash wheel. The process of
normalization involves passing the base hash code to the hash function, and then do a small
calculation to avoid negative values. The resulting number is the node’s position in the hash wheel:

public static int getNormalizedHash(int nodeBaseHashCode, Hash hashFct) {
return hashFct.hash(nodeBaseHashCode) & Integer.MAX_VALUE; // make sure no negative
numbers are involved.

}

2\. With virtual nodes enabled : In this case, each node represents N different virtual nodes, and to
calculate each virtual node’s hash code, we need to take the the range of numbers between 0 and N-
1 and apply the following logic:

 For virtual node with 0 as id, use the technique used to retrieve a node’s hash code, as shown in
the previous section.

* For virtual nodes from 1 to N-1 ids, execute the following logic:

19

public static int virtualNodeHashCode(int nodeBaseHashCode, int id, Hash hashFct) {
int virtualNodeBaseHashCode = id;
virtualNodeBaseHashCode = 31 * virtualNodeBaseHashCode + nodeBaseHashCode;
return getNormalizedHash(virtualNodeBaseHashCode, hashFct);

1.3. Hot Rod Protocol 1.2

Infinispan versions

A This version of the protocol was implemented since Infinispan 5.2.0.Final and is no
longer supported since Infinispan 10.

Since Infinispan 5.3.0, HotRod supports encryption via SSL. However, since this

o only affects the transport, the version number of the protocol has not been
incremented.
1.3.1. Request Header

The version field in the header is updated to 12.
Two new request operation codes have been added:

* 0x1B = getWithMetadata request

* 0x1D = bulkKeysGet request
Two new flags have been added too:
* 0x0002 = use cache-level configured default lifespan

* 0x0004 = use cache-level configured default max idle

1.3.2. Response Header
Two new response operation codes have been added:
* 0x1C = getWithMetadata response

* 0x1E = bulkKeysGet response

1.3.3. Operations

GetWithMetadata
Request (0x1B):
Field Name Size Value
Header variable Request header

20

Field Name

Key Length

Key
Response (0x10):

Field Name
Header

Response status

Flag

Created

Lifespan

LastUsed

MaxlIdle

Entry Version

Value Length

Value

BulkKeysGet
Request (0x1D):

Field Name

Header

Size

vint

byte array

Size
variable

1 byte

1 byte

Long

vint

Long

vint

8 bytes

vint

byte array

Size

variable

Value

Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer. MAX_VALUE.

Byte array containing the key whose value is being requested.

Value

Response header

0x00 = success, if key retrieved
0x02 = if key does not exist

A flag indicating whether the response contains expiration
information. The value of the flag is obtained as a bitwise OR
operation between INFINITE_LIFESPAN (0x01) and
INFINITE_MAXIDLE (0x02).

(optional) a Long representing the timestamp when the entry
was created on the server. This value is returned only if the flag’s
INFINITE_LIFESPAN bit is not set.

(optional) a vint representing the lifespan of the entry in seconds.
This value is returned only if the flag’s INFINITE_LIFESPAN bit is
not set.

(optional) a Long representing the timestamp when the entry
was last accessed on the server. This value is returned only if the
flag’s INFINITE_MAXIDLE bit is not set.

(optional) a vIint representing the maxlIdle of the entry in
seconds. This value is returned only if the flag’s INFINITE_MAXIDLE
bit is not set.

Unique value of an existing entry’s modification. The protocol
does not mandate that entry_version values are sequential. They
just need to be unique per update at the key level.

If success, length of value

If success, the requested value

Value

Request header

21

Field Name Size

Scope vint

Response (0xX1E):

Field Name Size
Header variable
Response status 1 byte
More 1 byte
Key 1 Length vint
Key 1 byte array
More 1 byte
Key 2 Length vint
Key 2 byte array
.. etc

Value

0 = Default Scope - This scope is used by RemoteCache.keySet()
method. If the remote cache is a distributed cache, the server
launch a stream operation to retrieve all keys from all of the
nodes. (Remember, a topology-aware Hot Rod Client could be
load balancing the request to any one node in the cluster).
Otherwise, it’'ll get keys from the cache instance local to the
server receiving the request (that is because the keys should be
the same across all nodes in a replicated cache).

1 = Global Scope - This scope behaves the same to Default Scope.
2 = Local Scope - In case when remote cache is a distributed
cache, the server will not launch a stream operation to retrieve
keys from all nodes. Instead, it’ll only get keys local from the
cache instance local to the server receiving the request.

Value
Response header
0x00 = success, data follows

One byte representing whether more keys need to be read from
the stream. So, when it’s set to 1, it means that an entry follows,
whereas when it’s set to 0, it’s the end of stream and no more
entries are left to read. For more information on BulkGet look
here

Length of key
Retrieved key

1.4. Hot Rod Protocol 1.3

Infinispan versions

This version of the protocol was implemented since Infinispan 6.0.0.Final and is no
longer supported since Infinispan 10.

1.4.1. Request Header

The version field in the header is updated to 13.

A new request operation code has been added:

22

http://community.jboss.org/docs/DOC-15592

* 0x1F = query request

1.4.2. Response Header

A new response operation code has been added:

* 0x20 = query response

1.4.3. Operations

Query
Request (0x1F):
Field Name Size Value
Header variable Request header
Query Length vint The length of the protobuf encoded query object
Query byte array Byte array containing the protobuf encoded query object, having

a length specified by previous field.

Response (0x20):

Field Name Size Value

Header variable Response header

Response payload vint The length of the protobuf encoded response object
Length

Response payload byte array Byte array containing the protobuf encoded response object,
having a length specified by previous field.

As of Infinispan 6.0, the query and response objects are specified by the protobuf message types
'org.infinispan.client.hotrod.impl.query.QueryRequest’ and
'org.infinispan.client.hotrod.impl.query.QueryResponse’ defined in remote-query/remote-query-
client/src/main/resources/org/infinispan/query/remote/client/query.proto. These definitions could
change in future Infinispan versions, but as long as these evolutions will be kept backward
compatible (according to the rules defined here) no new Hot Rod protocol version will be

introduced to accommodate this.

1.5. Hot Rod Protocol 2.0

(,) Infinispan versions
- This version of the protocol is implemented since Infinispan 7.0.0.Final.
1.5.1. Request Header

The request header no longer contains Transaction Type and Transaction ID elements since they’re
not in use, and even if they were in use, there are several operations for which they would not

23

https://github.com/infinispan/infinispan/blob/master/remote-query/remote-query-client/src/main/resources/org/infinispan/query/remote/client/query.proto
https://github.com/infinispan/infinispan/blob/master/remote-query/remote-query-client/src/main/resources/org/infinispan/query/remote/client/query.proto
https://developers.google.com/protocol-buffers/docs/proto#updating

make sense, such as ping or stats commands. Once transactions are implemented, the protocol
version will be upped, with the necessary changes in the request header.

The version field in the header is updated to 20.
Two new flags have been added:

* 0x0008 = operation skips loading from configured cache loader.

* 0x0010 = operation skips indexing. Only relevant when the query module is enabled for the
cache

The following new request operation codes have been added:

0x21 = auth mech list request

* 0x23 = auth request

0x25 = add client remote event listener request
* 0x27 = remove client remote event listener request

* 0x29 = size request

1.5.2. Response Header

The following new response operation codes have been added:

* 0x22 = auth mech list response

* 0x24 = auth mech response

0x26 = add client remote event listener response
* 0x28 = remove client remote event listener response

* 0x2A = size response

Two new error codes have also been added to enable clients more intelligent decisions, particularly
when it comes to fail-over logic:

* 0x87 = Node suspected. When a client receives this error as response, it means that the node
that responded had an issue sending an operation to a third node, which was suspected.
Generally, requests that return this error should be failed-over to other nodes.

» 0x88 = Illegal lifecycle state. When a client receives this error as response, it means that the
server-side cache or cache manager are not available for requests because either stopped,
they’re stopping or similar situation. Generally, requests that return this error should be failed-
over to other nodes.

Some adjustments have been made to the responses for the following commands in order to better
handle response decoding without the need to keep track of the information sent. More precisely,
the way previous values are parsed has changed so that the status of the command response
provides clues on whether the previous value follows or not. More precisely:

* Put response returns 0x03 status code when put was successful and previous value follows.

24

PutIfAbsent response returns 0x04 status code only when the putIfAbsent operation failed
because the key was present and its value follows in the response. If the putIfAbsent worked,
there would have not been a previous value, and hence it does not make sense returning
anything extra.

Replace response returns 0x03 status code only when replace happened and the previous or
replaced value follows in the response. If the replace did not happen, it means that the cache
entry was not present, and hence there’s no previous value that can be returned.

ReplacelfUnmodified returns 0x03 status code only when replace happened and the previous or
replaced value follows in the response.

ReplacelfUnmodified returns 0x04 status code only when replace did not happen as a result of
the key being modified, and the modified value follows in the response.

Remove returns 0x03 status code when the remove happened and the previous or removed
value follows in the response. If the remove did not occur as a result of the key not being
present, it does not make sense sending any previous value information.

RemovelfUnmodified returns 0x03 status code only when remove happened and the previous or
replaced value follows in the response.

RemovelfUnmodified returns 0x04 status code only when remove did not happen as a result of

the key being modified, and the modified value follows in the response.

1.5.3. Distribution-Aware Client Topology Change Header

In Infinispan 5.2, virtual nodes based consistent hashing was abandoned and instead segment
based consistent hash was implemented. In order to satisfy the ability for Hot Rod clients to find
data as reliably as possible, Infinispan has been transforming the segment based consistent hash to
fit Hot Rod 1.x protocol. Starting with version 2.0, a brand new distribution-aware topology change
header has been implemented which suppors segment based consistent hashing suitably and
provides 100% data location guarantees.

Field Name Size Value

Response header variable

with topology

change marker

Topology Id vint Topology ID

Num servers in vint Number of Infinispan Hot Rod servers running within the

topology cluster. This could be a subset of the entire cluster if only a
fraction of those nodes are running Hot Rod servers.

m1: Host/IP length vint Length of hostname or IP address of individual cluster member
that Hot Rod client can use to access it. Using variable length here
allows for covering for hostnames, IPv4 and IPv6 addresses.

m1: Host/IP string String containing hostname or IP address of individual cluster

address member that Hot Rod client can use to access it.

25

Field Name Size Value

m1: Port 2 bytes Port that Hot Rod clients can use to communicat with this cluster
(Unsigned member.
Short)

m2: Host/IP length vint

m2: Host/IP string
address
m2: Port 2 bytes
(Unsigned

Short)
Hash Function 1 byte Hash function version, pointing to a specific hash function in use.
Version See Hot Rod hash functions for details.
Num segments in vint Total number of segments in the topology
topology
Number of owners 1 byte This can be either 0, 1 or 2 owners.
in segment
First owner’s vint Given the list of all nodes, the position of this owner in this list.
index This is only present if number of owners for this segment is 1 or

2.

Second owner’s vint Given the list of all nodes, the position of this owner in this list.
index This is only present if number of owners for this segment is 2.

Given this information, Hot Rod clients should be able to recalculate all the hash segments and be
able to find out which nodes are owners for each segment. Even though there could be more than 2
owners per segment, Hot Rod protocol limits the number of owners to send for efficiency reasons.

1.5.4. Operations

Auth Mech List
Request (0x21):
Field Name Size Value
Header variable Request header

Response (0x22):

Field Name Size Value
Header variable Response header
Mech count vint The number of mechs

26

#hot_rod_hash_functions

Field Name Size Value
String containing the name of the SASL mech in its IANA-

Mech 1 string

registered form (e.g. GSSAPI, CRAM-MDS5, etc)
Mech 2 string
...etc

The purpose of this operation is to obtain the list of valid SASL authentication mechs supported by
the server. The client will then need to issue an Authenticate request with the preferred mech.

Authenticate
Request (0x23):
Field Name Size Value
Header variable Request header
Mech string String containing the name of the mech chosen by the client for
authentication. Empty on the successive invocations
Response length vint Length of the SASL client response
Response data byte array The SASL client response

Response (0x24):

Field Name Size Value

Header variable Response header

Completed byte 0 if further processing is needed, 1 if authentication is complete
Challenge length vint Length of the SASL server challenge

Challenge data byte array The SASL server challenge

The purpose of this operation is to authenticate a client against a server using SASL. The
authentication process, depending on the chosen mech, might be a multi-step operation. Once

complete the connection becomes authenticated

Add client listener for remote events

Request (0x25):
Field Name Size Value
Header variable Request header
Listener ID byte array Listener identifier

27

Field Name

Include state

Key/value filter
factory name

Key/value filter
factory parameter
count

Key/value filter
factory parameter
1

Key/value filter
factory parameter
2

Converter factory
name

Converter factory
parameter count

Converter factory
parameter 1

28

Size

byte

string

byte

byte array

byte array

string

byte

byte array

Value

When this byte is set to 1, cached state is sent back to remote
clients when either adding a cache listener for the first time, or
when the node where a remote listener is registered changes in a
clustered environment. When enabled, state is sent back as cache
entry created events to the clients. If set to 0, no state is sent back
to the client when adding a listener, nor it gets state when the
node where the listener is registered changes.

Optional name of the key/value filter factory to be used with this
listener. The factory is used to create key/value filter instances
which allow events to be filtered directly in the Hot Rod server,
avoiding sending events that the client is not interested in. If no
factory is to be used, the length of the string is 0.

The key/value filter factory, when creating a filter instance, can
take an arbitrary number of parameters, enabling the factory to
be used to create different filter instances dynamically. This
count field indicates how many parameters will be passed to the
factory. If no factory name was provided, this field is not present
in the request.

First key/value filter factory parameter

Second key/value filter factory parameter

Optional name of the converter factory to be used with this
listener. The factory is used to transform the contents of the
events sent to clients. By default, when no converter is in use,
events are well defined, according to the type of event generated.
However, there might be situations where users want to add
extra information to the event, or they want to reduce the size of
the events. In these cases, a converter can be used to transform
the event contents. The given converter factory name produces
converter instances to do this job. If no factory is to be used, the
length of the string is 0.

The converter factory, when creating a converter instance, can
take an arbitrary number of parameters, enabling the factory to
be used to create different converter instances dynamically. This
count field indicates how many parameters will be passed to the
factory. If no factory name was provided, this field is not present
in the request.

First converter factory parameter

Field Name Size Value

Converter factory = byte array Second converter factory parameter

parameter 2

Response (0x26):

Field Name Size Value

Header variable Response header

Remove client listener for remote events

Request (0x27):

Field Name Size Value
Header variable Request header
Listener ID byte array Listener identifier

Response (0x28):

Field Name Size Value

Header variable Response header
Size
Request (0x29):

Field Name Size Value

Header variable Request header

Response (0x2A):

Field Name Size Value
Header variable Response header
Size vint Size of the remote cache, which is calculated globally in the

clustered set ups, and if present, takes cache store contents into

account as well.

Exec

Request (0x2B):

Field Name Size Value
Header variable Request header
Script string Name of the task to execute

29

Field Name

Parameter Count
Parameter 1 Name

Parameter 1
Length

Parameter 1 Value
Response (0x2C):

Field Name

Header

Response status

Value Length

Value

Size
vint
string

vint

byte array

Size
variable

1 byte

vint

byte array

1.5.5. Remote Events

Value
The number of parameters
The name of the first parameter

The length of the first parameter

The value of the first parameter

Value

Response header

0x00 = success, if execution completed successfully
0x85 = server error

If success, length of return value

If success, the result of the execution

Starting with Hot Rod 2.0, clients can register listeners for remote events happening in the server.
Sending these events commences the moment a client adds a client listener for remote events.

Event Header:

Field Name
Magic
Message ID
Opcode

Status

Topology Change
Marker

Table 3. Cache entry created event

30

Size
1 byte
vLong

1 byte

1 byte

1 byte

Value
0xAl = response
ID of event

Event type:

0x60 = cache entry created event
0x61 = cache entry modified event
0x62 = cache entry removed event
0x66 = counter event

0x50 = error

Status of the response, possible values:
0x00 = No error

Since events are not associated with a particular incoming
topology ID to be able to decide whether a new topology is
required to be sent or not, new topologies will never be sent with
events. Hence, this marker will always have 0 value for events.

Field Name
Header
Listener ID
Custom marker

Command retried

Key

Version

Table 4. Cache entry modified event

Field Name
Header
Listener ID
Custom marker

Command retried

Key

Version

Table 5. Cache entry removed event

Field Name
Header
Listener ID
Custom marker

Command retried

Key

Table 6. Custom event

Field Name
Header
Listener ID
Custom marker

Event data

Size
variable
byte array
byte
byte

byte array
long

Size
variable
byte array
byte
byte

byte array

long

Size
variable
byte array
byte
byte

byte array

Size
variable
byte array
byte

byte array

Value

Event header with 0x60 operation code

Listener for which this event is directed

Custom event marker. For created events, this is 0.

Marker for events that are result of retried commands. If
command is retried, it returns 1, otherwise 0.

Created key

Version of the created entry. This version information can be
used to make conditional operations on this cache entry.

Value

Event header with 0x61 operation code

Listener for which this event is directed

Custom event marker. For created events, this is 0.

Marker for events that are result of retried commands. If
command is retried, it returns 1, otherwise 0.

Modified key

Version of the modified entry. This version information can be
used to make conditional operations on this cache entry.

Value

Event header with 0x62 operation code

Listener for which this event is directed

Custom event marker. For created events, this is 0.

Marker for events that are result