Developing for Infinispan 11.0

Table of Contents

1. Configuring the Infinispan Maven Repository
1.1. Configuring Your Infinispan POM
2. Cache Managers
2.1. Obtaining caches
2.2. Clustering Information
2.3. Member Information
3. Infinispan Cache Interface
3.1. Cache API
3.1.1. Performance Concerns of Certain Map Methods
3.1.2. Mortal and Immortal Data
3.1.3. putForExternalRead operation
3.2. AdvancedCache API
3.2.1. Flags
3.3. Listeners and Notifications
3.3.1. Cache-level notifications
3.3.2. Cache manager-level notifications
3.3.3. Synchronicity of events
3.4. Asynchronous API
3.4.1. Why use such an API?
3.4.2. Which processes actually happen asynchronously?
4. Data Encoding and MediaTypes
4.1. Overview
4.2. Default encoders
4.3. Overriding programmatically
4.4. Defining custom Encoders
4.5. MediaType
4.5.1. Configuration
4.5.2. Overriding the MediaType Programmatically
4.5.3. Transcoders and Encoders
5. Protocol Interoperability
5.1. Considerations with Media Types and Endpoint Interoperability
5.2. REST, Hot Rod, and Memcached Interoperability with Text-Based Storage
5.3. REST, Hot Rod, and Memcached Interoperability with Custom Java Objects
5.4. Java and Non-Java Client Interoperability with Protobuf
5.5. Custom Code Interoperability
5.5.1. Converting Data On Demand
5.5.2. Storing Data as POJOs
5.6. Deploying Entity Classes

© © O O o Ul R R R R W W NN R e

NN NN N DNDNDNDNR B R B R R, | |, |,) s
G b B W N P, O O O 9o O U W Wk NN FL O O

6. Marshalling Java Objects

6.1. Using the ProtoStream Marshaller

6.2. Using JBoss Marshalling

6.3. Using Java Serialization

6.4. Using the Kryo Marshaller

6.5. Using the Protostuff Marshaller

6.6. Using Custom Marshallers

6.7. Adding Java Classes to Deserialization White Lists
6.8. Storing Deserialized Objects in Infinispan Servers

6.9. Storing Data in Binary Format

7. Marshalling Custom Java Objects with ProtoStream

7.1. Protobuf Schemas

7.2. ProtoStream Serialization Contexts

7.3. ProtoStream Types

7.4. Generating Serialization Context Initializers

7.5. Manually Implementing Serialization Context Initializers

8. Clustered Locks

8.1. Installation
8.2. ClusteredLock Configuration
8.2.1. Ownership
8.2.2. Reentrancy
8.3. ClusteredLockManager Interface
8.4. ClusteredLock Interface
8.4.1. Usage Examples
8.4.2. ClusteredLockManager Configuration

9. Clustered Counters

9.1. Installation and Configuration

9.1.1. List counter names
9.2. The CounterManager interface.

9.2.1. Remove a counter via CounterManager
9.3. The Counter

9.3.1. The StrongCounter interface: when the consistency or bounds matters.

9.3.2. The WeakCounter interface: when speed is needed

9.4. Notifications and Events

10. Locking and Concurrency

10.1. Locking implementation details
10.1.1. How does it work in clustered caches?
10.1.2. Transactional caches
10.1.3. Isolation levels
10.1.4. The LockManager
10.1.5. Lock striping

26
26
27
27
28
29
30
31
31
32
33
33
33
34
34
39
43
43
43
43
43
44
45
46
46
48
48
51
51
52
52
53
57
58
60
60
60
61
61
61
61

10.1.6. Concurrency levels
10.1.7. Lock timeout
10.1.8. Consistency
10.2. Data Versioning
11. Using the Infinispan CDI Extension
11.1. CDI Dependencies
11.2. Injecting Embedded Caches
11.3. Injecting Remote Caches
11.4. JCache Caching Annotations
11.5. Receiving Cache and Cache Manager Events
12. Infinispan Transactions
12.1. Configuring transactions
12.2. Isolation levels
12.3. Transaction locking
12.3.1. Pessimistic transactional cache

12.3.2. Optimistic transactional cache

12.3.3. What do I need - pessimistic or optimistic transactions?

12.4. Write Skews

12.4.1. Forcing write locks on keys in pessimitic transactions

12.5. Dealing with exceptions
12.6. Enlisting Synchronizations
12.7. Batching
12.7.1. API
12.7.2. Batching and JTA
12.8. Transaction recovery
12.8.1. When to use recovery
12.8.2. How does it work
12.8.3. Configuring recovery

12.8.4. Recovery cache

12.8.5. Integration with the transaction manager

12.8.6. Reconciliation
12.8.7. Want to know more?
13. Functional Map API

13.1. Asynchronous and Lazy
13.2. Function transparency
13.3. Constructing Functional Maps
13.4. Read-Only Map API

13.4.1. Read-Only Entry View
13.5. Write-Only Map API

13.5.1. Write-Only Entry View
13.6. Read-Write Map API

61
62
62
62
64
64
64
67
68
70
71
72
73
74
74
75
75
75
76
76
76
77
77
78
78
78
79
79
79
79
80
81
82
82
82
82
83
83
84
85
85

13.6.1. Read-Write Entry View

13.7. Metadata Parameter Handling

13.8. Invocation Parameter

13.9. Functional Listeners
13.9.1. Write Listeners
13.9.2. Read-Write Listeners

13.10. Marshalling of Functions

13.11. Use Cases for Functional API

14. Indexing and Searching

14.1. Overview

14.2. Indexing Entry Values
14.2.1. Configuration
14.2.2. Specifying Indexed Entities
14.2.3. Index Storage
14.2.4. Index Manager
14.2.5. Rebuilding Indexes

14.3. Searching
14.3.1. Pagination
14.3.2. Number of Hits
14.3.3. Iteration
14.3.4. Using Named Query Parameters
14.3.5. Ickle Query Language Parser Syntax

14.4. Embedded Search
14.4.1. Quick example
14.4.2. Mapping Entities

14.5. Remote Search
14.5.1. A remote query example
14.5.2. Indexing of Protobuf encoded entries
14.5.3. Analysis

14.6. Continuous Query
14.6.1. Continuous Query Execution
14.6.2. Running Continuous Queries
14.6.3. Removing Continuous Queries
14.6.4. Notes on performance of Continuous Queries

14.7. Statistics

14.8. Performance Tuning
14.8.1. Batch writing in SYNC mode
14.8.2. Writing using async mode
14.8.3. Index reader async strategy
14.8.4. Lucene Options

15. Executing Code in the Grid

86
87
88
89
90
91
92
95
96
96
96
96
97
98
99
100
100
101
101
101
101
102
107
107
109
112
113
116
116
119
119
120
121
121
122
122
122
122
123
123
124

15.1. Cluster Executor 124

15.1.1. Filtering execution nodes 124
15.1.2. Timeout 125
15.1.3. Single Node Submission 125
15.1.4. Example: PI Approximation 126

16. Streams 128
16.1. Common stream operations 128
16.2. Key filtering 128
16.3. Segment based filtering 128
16.4. Local/Invalidation 129
16.5. Example 129
16.6. Distribution/Replication/Scattered 129
16.6.1. Rehash Aware 129
16.6.2. Serialization 130
16.7. Parallel Computation 132
16.8. Task timeout 133
16.9. Injection 133
16.10. Distributed Stream execution 133
16.11. Key based rehash aware operators 135
16.12. Intermediate operation exceptions 135
16.13. Examples 136
17.]JCache (JSR-107) API 140
17.1. Creating embedded caches 140
17.1.1. Configuring embedded caches 140
17.2. Creating remote caches 141
17.2.1. Configuring remote caches 142
17.3. Store and retrieve data 142
17.4. Comparing java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs 143
17.5. Clustering JCache instances 144
18. Multimap Cache 146
18.1. Installation and configuration 146
18.2. MultimapCache API 146
18.3. Creating a Multimap Cache 148
18.3.1. Embedded mode 148
18.4. Limitations 148
18.4.1. Support for duplicates 148
18.4.2. Eviction 148
18.4.3. Transactions 149

19. Custom Interceptors 150
19.1. Adding custom interceptors declaratively 150

19.2. Adding custom interceptors programatically 150

19.3. Custom interceptor design
20. Extending Infinispan
20.1. Custom Commands
20.1.1. An Example
20.1.2. Preassigned Custom Command Id Ranges

20.2. Extending the configuration builders and parsers

151
152
152
152
152
153

Chapter 1. Configuring the Infinispan Maven
Repository

Infinispan Java distributions are available from Maven.

Infinispan artifacts are available from Maven central. See the org.infinispan group for available
Infinispan artifacts.

1.1. Configuring Your Infinispan POM

Maven uses configuration files called Project Object Model (POM) files to define projects and
manage builds. POM files are in XML format and describe the module and component
dependencies, build order, and targets for the resulting project packaging and output.

Procedure

1. Open your project pom.xml for editing.
2. Define the version.infinispan property with the correct Infinispan version.

3. Include the infinispan-bomin a dependencyManagement section.

The Bill Of Materials (BOM) controls dependency versions, which avoids version conflicts and
means you do not need to set the version for each Infinispan artifact you add as a dependency
to your project.

4. Save and close pom. xml.

The following example shows the Infinispan version and BOM:

<properties>
<version.infinispan>11.0.1.Final</version.infinispan>
</properties>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-bom</artifactId>
<version>${version.infinispan}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

Next Steps

Add Infinispan artifacts as dependencies to your pom.xml as required.

Chapter 2. Cache Managers

The main entry point to Infinispan is the CacheManager interface that lets you:

* Configure and obtain caches.
* Manage and monitor clustered Infinispan nodes.

» Execute code across your cluster.

If you embed Infinispan in your application, then you use an EmbeddedCacheManager. If you run
Infinispan as a remote server, then you use a RemoteCacheManager.

Cache Managers are heavyweight objects so you should instantiate only one CacheManager instance

per JVM in most cases.

EmbeddedCacheManager manager = new DefaultCacheManager(); @®

@ Starts a local, non-clustered, Cache Manager with no caches.

Cache Managers have lifecycles and the default constructors also call the start() method.
Overloaded versions of the constructors are available, but they do not start the CacheManager.
However, you must always start the CacheManager before you can create caches.

Likewise, you must call stop() when you no longer require a running CacheManager so that it
releases resources. This also ensures that the Cache Manager safely stops any caches that it
controls.

2.1. Obtaining caches

After you configure the CacheManager, you can obtain and control caches.

Invoke the getCache(String) method to obtain caches, as follows:
Cache<String, String> myCache = manager.getCache("myCache");

The preceding operation creates a cache named myCache, if it does not already exist, and returns it.

Using the getCache() method creates the cache only on the node where you invoke the method. In
other words, it performs a local operation that must be invoked on each node across the cluster.
Typically, applications deployed across multiple nodes obtain caches during initialization to ensure
that caches are symmetric and exist on each node.

Invoke the createCache() method to create caches dynamically across the entire cluster, as follows:

Cache<String, String> myCache = manager.administration().createCache("myCache",
"myTemplate");

The preceding operation also automatically creates caches on any nodes that subsequently join the
cluster.

Caches that you create with the createCache() method are ephemeral by default. If the entire cluster
shuts down, the cache is not automatically created again when it restarts.

Use the PERMANENT flag to ensure that caches can survive restarts, as follows:

Cache<String, String> myCache = manager.administration().withFlags(AdminFlag.
PERMANENT) .createCache("myCache", "myTemplate");

For the PERMANENT flag to take effect, you must enable global state and set a configuration storage
provider.

For more information about configuration storage providers, see
GlobalStateConfigurationBuilder#configurationStorage().

2.2. Clustering Information

The EmbeddedCacheManager has quite a few methods to provide information as to how the cluster is
operating. The following methods only really make sense when being used in a clustered
environment (that is when a Transport is configured).

2.3. Member Information

When you are using a cluster it is very important to be able to find information about membership
in the cluster including who is the owner of the cluster.

getMembers()

The getMembers() method returns all of the nodes in the current cluster.

getCoordinator()

The getCoordinator() method will tell you which one of the members is the coordinator of the
cluster. For most intents you shouldn’t need to care who the coordinator is. You can use
isCoordinator() method directly to see if the local node is the coordinator as well.

Chapter 3. Infinispan Cache Interface

Infinispan provides a Cache interface that exposes simple methods for adding, retrieving and
removing entries, including atomic mechanisms exposed by the JDK’s ConcurrentMap interface.
Based on the cache mode used, invoking these methods will trigger a number of things to happen,
potentially even including replicating an entry to a remote node or looking up an entry from a
remote node, or potentially a cache store.

3.1. Cache API

For simple usage, using the Cache API should be no different from using the J]DK Map API, and
hence migrating from simple in-memory caches based on a Map to Infinispan’s Cache should be
trivial.

3.1.1. Performance Concerns of Certain Map Methods

Certain methods exposed in Map have certain performance consequences when used with
Infinispan, such as size() , values() , keySet() and entrySet() . Specific methods on the keySet, values
and entrySet are fine for use please see their Javadoc for further details.

Attempting to perform these operations globally would have large performance impact as well as
become a scalability bottleneck. As such, these methods should only be used for informational or
debugging purposes only.

It should be noted that using certain flags with the withFlags() method can mitigate some of these
concerns, please check each method’s documentation for more details.

3.1.2. Mortal and Immortal Data

Further to simply storing entries, Infinispan’s cache API allows you to attach mortality information
to data. For example, simply using put(key, value) would create an immortal entry, i.e., an entry that
lives in the cache forever, until it is removed (or evicted from memory to prevent running out of
memory). If, however, you put data in the cache using put(key, value, lifespan, timeunit) , this
creates a mortal entry, i.e., an entry that has a fixed lifespan and expires after that lifespan.

In addition to lifespan , Infinispan also supports maxldle as an additional metric with which to
determine expiration. Any combination of lifespans or maxIdles can be used.

3.1.3. putForExternalRead operation

Infinispan’s Cache class contains a different 'put' operation called putForExternalRead . This
operation is particularly useful when Infinispan is used as a temporary cache for data that is
persisted elsewhere. Under heavy read scenarios, contention in the cache should not delay the real
transactions at hand, since caching should just be an optimization and not something that gets in
the way.

To achieve this, putForExternalRead() acts as a put call that only operates if the key is not present in
the cache, and fails fast and silently if another thread is trying to store the same key at the same

time. In this particular scenario, caching data is a way to optimise the system and it’s not desirable
that a failure in caching affects the on-going transaction, hence why failure is handled differently.
putForExternalRead() is considered to be a fast operation because regardless of whether it’s
successful or not, it doesn’t wait for any locks, and so returns to the caller promptly.

To understand how to use this operation, let’s look at basic example. Imagine a cache of Person
instances, each keyed by a Personld , whose data originates in a separate data store. The following
code shows the most common pattern of using putForExternalRead within the context of this
example:

// 1d of the person to look up, provided by the application
PersonIld id = ...;

// Get a reference to the cache where person instances will be stored
Cache<PersonlId, Person> cache = ...;

// First, check whether the cache contains the person instance
// associated with with the given id
Person cachedPerson = cache.get(id);

if (cachedPerson == null) {
// The person is not cached yet, so query the data store with the id
Person person = dataStore.lookup(id);

// Cache the person along with the id so that future requests can
// retrieve it from memory rather than going to the data store
cache.putForExternalRead(id, person);

} else {
// The person was found in the cache, so return it to the application
return cachedPerson;

Note that putForExternalRead should never be used as a mechanism to update the cache with a
new Person instance originating from application execution (i.e. from a transaction that modifies a
Person’s address). When updating cached values, please use the standard put operation, otherwise
the possibility of caching corrupt data is likely.

3.2. AdvancedCache API

In addition to the simple Cache interface, Infinispan offers an AdvancedCache interface, geared
towards extension authors. The AdvancedCache offers the ability to access certain internal
components and to apply flags to alter the default behavior of certain cache methods. The following
code snippet depicts how an AdvancedCache can be obtained:

AdvancedCache advancedCache = cache.getAdvancedCache();

3.2.1. Flags

Flags are applied to regular cache methods to alter the behavior of certain methods. For a list of all
available flags, and their effects, see the Flag enumeration. Flags are applied using
AdvancedCache.withFlags() . This builder method can be used to apply any number of flags to a
cache invocation, for example:

advancedCache.withFlags(Flag.CACHE_MODE_LOCAL, Flag.SKIP_LOCKING)
.withFlags(Flag.FORCE_SYNCHRONOUS)
.put("hello", "world");

3.3. Listeners and Notifications

Infinispan offers a listener API, where clients can register for and get notified when events take
place. This annotation-driven API applies to 2 different levels: cache level events and cache
manager level events.

Events trigger a notification which is dispatched to listeners. Listeners are simple POJOs annotated
with @Listener and registered using the methods defined in the Listenable interface.

Both Cache and CacheManager implement Listenable, which means you can attach
0 listeners to either a cache or a cache manager, to receive either cache-level or
cache manager-level notifications.

For example, the following class defines a listener to print out some information every time a new
entry is added to the cache, in a non blocking fashion:

public class PrintWhenAdded {
Queue<CacheEntryCreatedEvent> events = new ConcurrentlLinkedQueue<>();

public CompletionStage<Void> print(CacheEntryCreatedEvent event) {
events.add(event);
return null;

}

For more comprehensive examples, please see the Javadocs for @Listener.

3.3.1. Cache-level notifications

Cache-level events occur on a per-cache basis, and by default are only raised on nodes where the
events occur. Note in a distributed cache these events are only raised on the owners of data being
affected. Examples of cache-level events are entries being added, removed, modified, etc. These
events trigger notifications to listeners registered to a specific cache.

Please see the Javadocs on the org.infinispan.notifications.cachelistener.annotation package for a
comprehensive list of all cache-level notifications, and their respective method-level annotations.

Please refer to the Javadocs on the
o org.infinispan.notifications.cachelistener.annotation package for the list of cache-
level notifications available in Infinispan.

Cluster Listeners

The cluster listeners should be used when it is desirable to listen to the cache events on a single
node.

To do so all that is required is set to annotate your listener as being clustered.

@Listener (clustered = true)
public class MyClusterListener { }

There are some limitations to cluster listeners from a non clustered listener.

1. A cluster listener can only listen to @CacheEntryModified, @CacheEntryCreated, @CacheEntryRemoved
and @CacheEntryExpired events. Note this means any other type of event will not be listened to
for this listener.

2. Only the post event is sent to a cluster listener, the pre event is ignored.

Event filtering and conversion

All applicable events on the node where the listener is installed will be raised to the listener. It is
possible to dynamically filter what events are raised by using a KeyFilter (only allows filtering on
keys) or CacheEventFilter (used to filter for keys, old value, old metadata, new value, new metadata,
whether command was retried, if the event is before the event (ie. isPre) and also the command

type).

The example here shows a simple KeyFilter that will only allow events to be raised when an event
modified the entry for the key Only Me.

public class SpecificKeyFilter implements KeyFilter<String> {
private final String keyToAccept;

public SpecificKeyFilter(String keyToAccept) {
if (keyToAccept == null) {
throw new NullPointerException();

}
this.keyToAccept = keyToAccept;

}

public boolean accept(String key) {
return keyToAccept.equals(key);
}

cache.addListener(listener, new SpecificKeyFilter("Only Me"));

This can be useful when you want to limit what events you receive in a more efficient manner.

There is also a CacheEventConverter that can be supplied that allows for converting a value to
another before raising the event. This can be nice to modularize any code that does value
conversions.

The mentioned filters and converters are especially beneficial when used in
conjunction with a Cluster Listener. This is because the filtering and conversion is

o done on the node where the event originated and not on the node where event is
listened to. This can provide benefits of not having to replicate events across the
cluster (filter) or even have reduced payloads (converter).

Initial State Events

When a listener is installed it will only be notified of events after it is fully installed.

It may be desirable to get the current state of the cache contents upon first registration of listener
by having an event generated of type @CacheEntryCreated for each element in the cache. Any
additionally generated events during this initial phase will be queued until appropriate events have
been raised.

o This only works for clustered listeners at this time. ISPN-4608 covers adding this
for non clustered listeners.
Duplicate Events

It is possible in a non transactional cache to receive duplicate events. This is possible when the
primary owner of a key goes down while trying to perform a write operation such as a put.

Infinispan internally will rectify the put operation by sending it to the new primary owner for the
given key automatically, however there are no guarantees in regards to if the write was first
replicated to backups. Thus more than 1 of the following write events (CacheEntryCreatedEvent,
CacheEntryModifiedEvent & CacheEntryRemovedEvent) may be sent on a single operation.

If more than one event is generated Infinispan will mark the event that it was generated by a
retried command to help the user to know when this occurs without having to pay attention to view
changes.

public class MyRetryListener {

public void entryModified(CacheEntryModifiedEvent event) {
if (event.isCommandRetried()) {
// Do something
}
}
}

Also when using a CacheEventFilter or CacheEventConverter the EventType contains a method
isRetry to tell if the event was generated due to retry.

3.3.2. Cache manager-level notifications

Cache manager-level events occur on a cache manager. These too are global and cluster-wide, but
involve events that affect all caches created by a single cache manager. Examples of cache
manager-level events are nodes joining or leaving a cluster, or caches starting or stopping.

See the org.infinispan.notifications.cachemanagerlistener.annotation package for a comprehensive
list of all cache manager-level notifications, and their respective method-level annotations.

3.3.3. Synchronicity of events

By default, all async notifications are dispatched in the notification thread pool. Sync notifications
will delay the operation from continuing until the listener method completes or the
CompletionStage completes (the former causing the thread to block). Alternatively, you could
annotate your listener as asynchronous in which case the operation will continue immediately,
while the notification is completed asynchronously on the notification thread pool. To do this,
simply annotate your listener such:

Asynchronous Listener

(sync = false)
public class MyAsyncListener {

void listen(CacheEntryCreatedEvent event) { }

Blocking Synchronous Listener

public class MySyncListener {

void listen(CacheEntryCreatedEvent event) { }
Non-Blocking Listener

public class MyNonBlockinglListener {

CompletionStage<Void> listen(CacheEntryCreatedEvent event) { }

Asynchronous thread pool

To tune the thread pool used to dispatch such asynchronous notifications, use the <listener-
executor /> XML element in your configuration file.

3.4. Asynchronous API

In addition to synchronous API methods like Cache.put() , Cache.remove() , etc., Infinispan also has
an asynchronous, non-blocking API where you can achieve the same results in a non-blocking
fashion.

These methods are named in a similar fashion to their blocking counterparts, with "Async"
appended. E.g., Cache.putAsync() , Cache.removeAsync() , etc. These asynchronous counterparts
return a CompletableFuture that contains the actual result of the operation.

For example, in a cache parameterized as Cache<String, String>, Cache.put(String key, String
value) returns String while Cache.putAsync(String key, String value) returns
CompletableFuture<String>.

3.4.1. Why use such an API?

Non-blocking APIs are powerful in that they provide all of the guarantees of synchronous
communications - with the ability to handle communication failures and exceptions - with the ease
of not having to block until a call completes. This allows you to better harness parallelism in your
system. For example:

10

Set<CompletableFuture<?>> futures = new HashSet<>();

futures.add(cache.putAsync(key1, valuel)); // does not block
futures.add(cache.putAsync(key2, value2)); // does not block
futures.add(cache.putAsync(key3, value3)); // does not block

// the remote calls for the 3 puts will effectively be executed

// in parallel, particularly useful if running in distributed mode
// and the 3 keys would typically be pushed to 3 different nodes
// in the cluster

// check that the puts completed successfully
for (CompletableFuture<?> f: futures) f.get();

3.4.2. Which processes actually happen asynchronously?

There are 4 things in Infinispan that can be considered to be on the critical path of a typical write
operation. These are, in order of cost:

* network calls

* marshalling

* writing to a cache store (optional)

* locking
Using the async methods will take the network calls and marshalling off the critical path. For

various technical reasons, writing to a cache store and acquiring locks, however, still happens in
the caller’s thread.

11

Chapter 4. Data Encoding and MediaTypes

Encoding is the data conversion operation done by Infinispan caches before storing data, and when
reading back from storage.

4.1. Overview

Encoding allows dealing with a certain data format during API calls (map, listeners, stream, etc)
while the format effectively stored is different.

The data conversions are handled by instances of org.infinispan.commons.dataconversion.Encoder :

public interface Encoder {

/**

* Convert data in the read/write format to the storage format.
*

* @param content data to be converted, never null.
* @return Object in the storage format.
*/

Object toStorage(Object content);

/**

* Convert from storage format to the read/write format.
*

* @param content data as stored in the cache, never null.
* @return data in the read/write format
*/
Object fromStorage(Object content);
/**
* Returns the {@link MediaType} produced by this encoder or null if the storage
format is not known.
*/
MediaType getStorageFormat();
}

4.2. Default encoders

Infinispan automatically picks the Encoder depending on the cache configuration. The table below
shows which internal Encoder is used for several configurations:

Mode Configuration Encoder Description

Embedded/Server Default IdentityEncoder Passthrough encoder,
no conversion done

12

Mode Configuration Encoder Description

Embedded StorageType.OFF_HEAP GlobalMarshallerEncod Use the Infinispan
er internal marshaller to
convert to byte[]. May
delegate to the

configured marshaller
in the cache manager.

Embedded StorageType.BINARY BinaryEncoder Use the Infinispan
internal marshaller to
convert to byte[],
except for primitives
and String.

Server StorageType.OFF_HEAP IdentityEncoder Store byte[]s directly as
received by remote
clients

4.3. Overriding programmatically

It is possible to override programmatically the encoding used for both keys and values, by calling
the .withEncoding() method variants from AdvancedCache.

Example, consider the following cache configured as OFF_HEAP:

// Read and write P0JO, storage will be byte[] since for
// OFF_HEAP the GlobalMarshallerEncoder is used internally:
cache.put(1, new Pojo())

Pojo value = cache.get(1)

// Get the content in its stored format by overriding
// the internal encoder with a no-op encoder (IdentityEncoder)

Cache<?,?> rawContent = cache.getAdvancedCache().withEncoding(IdentityEncoder.class);
byte[] marshalled = (byte[]) rawContent.get(1);

The override can be useful if any operation in the cache does not require decoding, such as
counting number of entries, or calculating the size of byte[] of an OFF_HEAP cache.

4.4. Defining custom Encoders

A custom encoder can be registered in the EncoderRegistry.

o Ensure that the registration is done in every node of the cluster, before starting the
caches.

Consider a custom encoder used to compress/decompress with gzip:

13

14

public class GzipEncoder implements Encoder {

@Override

public Object toStorage(Object content) {
assert content instanceof String;
return compress(content.toString());

}

@0verride

public Object fromStorage(Object content) {
assert content instanceof byte[];
return decompress((byte[]) content);

}

private byte[] compress(String str) {
try (ByteArrayOutputStream baos = new ByteArrayOutputStream();
GZIPQutputStream gis = new GZIPOutputStream(baos)) {
gis.write(str.getBytes("UTF-8"));
gis.close();
return baos.toByteArray();
} catch (IOException e) {
throw new RuntimeException("Unabled to compress", e);
}
}

private String decompress(byte[] compressed) {
try (GZIPInputStream gis = new GZIPInputStream(new ByteArrayInputStream
(compressed));
BufferedReader bf = new BufferedReader(new InputStreamReader(gis, "UTF-8")
)) A
StringBuilder result = new StringBuilder();
String line;
while ((Lline = bf.readline()) != null) {
result.append(line);
}
return result.toString();
} catch (IOException e) {
throw new RuntimeException("Unable to decompress", e);
}
}

@Override
public MediaType getStorageFormat() {

return MediaType.parse("application/gzip");
}

@0verride
public boolean isStorageFormatFilterable() {
return false;

}

@0verride
public short id() {
return 10000;

}

It can be registered by:

GlobalComponentRegistry registry = cacheManager.getGlobalComponentRegistry();
EncoderRegistry encoderRegistry = registry.getComponent(EncoderRegistry.class);
encoderRegistry.registerEncoder(new GzipEncoder());

And then be used to write and read data from a cache:

AdvancedCache<String, String> cache = ...

// Decorate cache with the newly registered encoder, without encoding keys
(IdentityEncoder)

// but compressing values

AdvancedCache<String, String> compressingCache = (AdvancedCache<String, String>)
cache.withEncoding(IdentityEncoder.class, GzipEncoder.class);

// A1l values will be stored compressed...
compressingCache.put("297931749", "0412c789a37f50861743255cfa693dd5");

// ... but API calls deals with String
String stringValue = compressingCache.get("297931749");

// Bypassing the value encoder to obtain the value as it is stored
Object value = compressingCache.withEncoding(IdentityEncoder.class).get("297931749");

// value is a byte[] which is the compressed value

4.5. MediaType

A Cache can optionally be configured with a org.infinispan.commons.dataconversion.MediaType for
keys and values. By describing the data format of the cache, Infinispan is able to convert data on
the fly during cache operations.

The MediaType configuration is more suitable when storing binary data. When
using server mode, it’s common to have a MediaType configured and clients such

as REST or Hot Rod reading and writing in different formats.

The data conversion between MediaType formats are handled by instances of
org.infinispan.commons.dataconversion.Transcoder

15

public interface Transcoder {

/**

* Transcodes content between two different {@link MediaType}.

* @param content Content to transcode.
* @param contentType The {@link MediaType} of the content.
* @param destinationType The target {@link MediaType} to convert.
* @return the transcoded content.
*/
Object transcode(Object content, MediaType contentType, MediaType destinationType);

/**
* @return all the {@link MediaType} handled by this Transcoder.
*
/
Set<MediaType> getSupportedMediaTypes();
by

4.5.1. Configuration

Declarative:

<cache>
<encoding>
<key media-type="application/x-java-object; type=java.lang.Integer"/>
<value media-type="application/xml; charset=UTF-8"/>
</encoding>
</cache>

Programmatic:

ConfigurationBuilder cfg = new ConfigurationBuilder();
cfg.encoding().key().mediaType("text/plain");
cfg.encoding().value().mediaType("application/json");

4.5.2. Overriding the MediaType Programmatically

It’s possible to decorate the Cache with a different MediaType, allowing cache operations to be
executed sending and receiving different data formats.

Example:

16

DefaultCacheManager cacheManager = new DefaultCacheManager();

// The cache will store P0JO for keys and values

ConfigurationBuilder cfg = new ConfigurationBuilder();
cfg.encoding().key().mediaType("application/x-java-object");
cfg.encoding().value().mediaType("application/x-java-object");
cacheManager.defineConfiguration("mycache", cfg.build());

Cache<Integer, Person> cache = cacheManager.getCache("mycache");

cache.put(1, new Person("John","Doe"));

// Wraps cache using 'application/x-java-object' for keys but JSON for values
Cache<Integer, byte[]> jsonValuesCache = (Cache<Integer, byte[]>) cache
.getAdvancedCache().withMediaType("application/x-java-object", "application/json");

byte[] json = jsonValuesCache.get(1);

Will return the value in JSON format:

{
"_type":"org.infinispan.sample.Person”,
"name":"John",
"surname": "Doe"

¥

Most Transcoders are installed when server mode is used; when using library
mode, an extra dependency, org.infinispan:infinispan-server-core should be added
to the project.

4.5.3. Transcoders and Encoders

Usually there will be none or only one data conversion involved in a cache operation:

* No conversion by default on caches using in embedded or server mode;

* Encoder based conversion for embedded caches without MediaType configured, but using
OFF_HEAP or BINARY;

* Transcoder based conversion for caches used in server mode with multiple REST and Hot Rod
clients sending and receiving data in different formats. Those caches will have MediaType
configured describing the storage.

But it’s possible to have both encoders and transcoders being used simultaneously for advanced use
cases.

Consider an example, a cache that stores marshalled objects (with jboss marshaller) content but for
security reasons a transparent encryption layer should be added in order to avoid storing "plain”

17

data to an external store. Clients should be able to read and write data in multiple formats.

This can be achieved by configuring the cache with the the MediaType that describes the storage
regardless of the encoding layer:

ConfigurationBuilder cfg = new ConfigurationBuilder();
cfg.encoding().key().mediaType("application/x-jboss-marshalling");
cfg.encoding().key().mediaType("application/x-jboss-marshalling");

The transparent encryption can be added by decorating the cache with a special Encoder that
encrypts/decrypts with storing/retrieving, for example:

class Scrambler implements Encoder {

public Object toStorage(Object content) {
// Encrypt data

}

public Object fromStorage(Object content) {
// Decrypt data
}

public boolean isStorageFormatFilterable() {

}

public MediaType getStorageFormat() {
return new MediaType("application”, "scrambled");

}

public short id() {
//return id

}

To make sure all data written to the cache will be stored encrypted, it’s necessary to decorate the
cache with the Encoder above and perform all cache operations in this decorated cache:

Cache<?,?> secureStorageCache = cache.getAdvancedCache().withEncoding(Scrambler.class
).put(k,v);

The capability of reading data in multiple formats can be added by decorating the cache with the
desired MediaType:

18

// Obtain a stream of values in XML format from the secure cache
secureStorageCache.getAdvancedCache().withMediaType("application/xml","application/xml
"Y.values().stream();

Internally, Infinispan will first apply the encoder fromStorage operation to obtain the entries, that
will be in "application/x-jboss-marshalling” format and then apply a successive conversion to
"application/xml" by using the adequate Transcoder.

19

Chapter 5. Protocol Interoperability

Clients exchange data with Infinispan through endpoints such as REST or Hot Rod.

Each endpoint uses a different protocol so that clients can read and write data in a suitable format.
Because Infinispan can interoperate with multiple clients at the same time, it must convert data
between client formats and the storage formats.

To configure Infinispan endpoint interoperability, you should define the MediaType that sets the
format for data stored in the cache.

5.1. Considerations with Media Types and Endpoint
Interoperability

Configuring Infinispan to store data with a specific media type affects client interoperability.

Although REST clients do support sending and receiving encoded binary data, they are better at
handling text formats such as JSON, XML, or plain text.

Memcached text clients can handle String-based keys and byte[] values but cannot negotiate data
types with the server. These clients do not offer much flexibility when handling data formats
because of the protocol definition.

Java Hot Rod clients are suitable for handling Java objects that represent entities that reside in the
cache. Java Hot Rod clients use marshalling operations to serialize and deserialize those objects into
byte arrays.

Similarly, non-Java Hot Rod clients, such as the C++, C#, and Javascript clients, are suitable for
handling objects in the respective languages. However, non-Java Hot Rod clients can interoperate
with Java Hot Rod clients using platform independent data formats.

5.2. REST, Hot Rod, and Memcached Interoperability
with Text-Based Storage

You can configure key and values with a text-based storage format.

For example, specify text/plain; charset=UTF-8, or any other character set, to set plain text as the
media type. You can also specify a media type for other text-based formats such as JSON
(application/json) or XML (application/xml) with an optional character set.

The following example configures the cache to store entries with the text/plain; charset=UTF-8
media type:

20

<cache>
<encoding>
<key media-type="text/plain; charset=UTF-8"/>
<value media-type="text/plain; charset=UTF-8"/>
</encoding>
</cache>

To handle the exchange of data in a text-based format, you must configure Hot Rod clients with the
org.infinispan.commons.marshall.StringMarshaller marshaller.

REST clients must also send the correct headers when writing and reading from the cache, as
follows:

* Write: Content-Type: text/plain; charset=UTF-8
* Read: Accept: text/plain; charset=UTF-8

Memcached clients do not require any configuration to handle text-based formats.

This configuration is compatible with...

REST clients Yes
Java Hot Rod clients Yes
Memcached clients Yes
Non-Java Hot Rod clients No
Querying and Indexing No
Custom Java objects No

5.3. REST, Hot Rod, and Memcached Interoperability
with Custom Java Objects

If you store entries in the cache as marshalled, custom Java objects, you should configure the cache
with the MediaType of the marshalled storage.

Java Hot Rod clients use the JBoss marshalling storage format as the default to store entries in the
cache as custom Java objects.

The following example configures the cache to store entries with the application/x-jboss-
marshalling media type:

21

<distributed-cache name="my-cache">
<encoding>
<key media-type="application/x-jboss-marshalling"/>
<value media-type="application/x-jboss-marshalling"/>
</encoding>
</distributed-cache>

If you use the Protostream marshaller, configure the MediaType as application/x-protostream. For
UTF8Marshaller, configure the MediaType as text/plain.

(r') If only Hot Rod clients interact with the cache, you do not need to configure the
- MediaType.

Because REST clients are most suitable for handling text formats, you should use primitives such as
java.lang.String for keys. Otherwise, REST clients must handle keys as bytes[] using a supported
binary encoding.

REST clients can read values for cache entries in XML or JSON format. However, the classes must be
available in the server.

To read and write data from Memcached clients, you must use java.lang.String for keys. Values are
stored and returned as marshalled objects.

Some Java Memcached clients allow data transformers that marshall and unmarshall objects. You
can also configure the Memcached server module to encode responses in different formats, such as
'TSON' which is language neutral. This allows non-Java clients to interact with the data even if the
storage format for the cache is Java-specific.

o Storing Java objects in the cache requires you to deploy entity classes to
{ProductName}. See Deploying Entity Classes.

This configuration is compatible with...

REST clients Yes
Java Hot Rod clients Yes
Memcached clients Yes
Non-Java Hot Rod clients No
Querying and Indexing No
Custom Java objects Yes

5.4.Java and Non-Java Client Interoperability with
Protobuf

Storing data in the cache as Protobuf encoded entries provides a platform independent
configuration that enables Java and Non-Java clients to access and query the cache from any

22

endpoint.

If indexing is configured for the cache, Infinispan automatically stores keys and values with the
application/x-protostream media type.

If indexing is not configured for the cache, you can configure it to store entries with the
application/x-protostream media type as follows:

<distributed-cache name="my-cache">
<encoding>
<key media-type="application/x-protostream"/>
<value media-type="application/x-protostream"/>
</encoding>
</distributed-cache>

Infinispan converts between application/x-protostream and application/json, which allows REST
clients to read and write JSON formatted data. However REST clients must send the correct headers,

as follows:

Read Header

Read: Accept: application/json

Write Header

Write: Content-Type: application/json

The application/x-protostream media type uses Protobuf encoding, which requires
o you to register a Protocol Buffers schema definition that describes the entities and
marshallers that the clients use.

This configuration is compatible with...

REST clients Yes
Java Hot Rod clients Yes
Non-Java Hot Rod clients Yes
Querying and Indexing Yes
Custom Java objects Yes

5.5. Custom Code Interoperability

You can deploy custom code with Infinispan. For example, you can deploy scripts, tasks, listeners,
converters, and merge policies. Because your custom code can access data directly in the cache, it
must interoperate with clients that access data in the cache through different endpoints.

23

For example, you might create a remote task to handle custom objects stored in the cache while
other clients store data in binary format.

To handle interoperability with custom code you can either convert data on demand or store data
as Plain Old Java Objects (POJOs).

5.5.1. Converting Data On Demand

If the cache is configured to store data in a binary format such as application/x-protostream or
application/x-jboss-marshalling, you can configure your deployed code to perform cache
operations using Java objects as the media type. See Overriding the MediaType Programmatically.

This approach allows remote clients to use a binary format for storing cache entries, which is
optimal. However, you must make entity classes available to the server so that it can convert
between binary format and Java objects.

Additionally, if the cache uses Protobuf (application/x-protostream) as the binary format, you must
deploy protostream marshallers so that {ProductName} can unmarshall data from your custom
code.

5.5.2. Storing Data as POJOs

Storing unmarshalled Java objects in the server is not recommended. Doing so requires Infinispan
to serialize data when remote clients read from the cache and then deserialize data when remote
clients write to the cache.

The following example configures the cache to store entries with the application/x-java-object
media type:

<distributed-cache name="my-cache">
<encoding>
<key media-type="application/x-java-object"/>
<value media-type="application/x-java-object"/>
</encoding>
</distributed-cache>

Hot Rod clients must use a supported marshaller when data is stored as POJOs in the cache, either
the JBoss marshaller or the default Java serialization mechanism. You must also deploy the classes
must be deployed in the server.

REST clients must use a storage format that Infinispan can convert to and from Java objects,
currently JSON or XML.

o Storing Java objects in the cache requires you to deploy entity classes to Infinispan.
See Deploying Entity Classes.

Memcached clients must send and receive a serialized version of the stored POJO, which is a JBoss

marshalled payload by default. However if you configure the client encoding in the appropriate
Memcached connector, you change the storage format so that Memcached clients use a platform

24

neutral format such as JSON.

This configuration is compatible with...

REST clients Yes

Java Hot Rod clients Yes

Non-Java Hot Rod clients No

Querying and Indexing Yes. However, querying and indexing works

with POJOs only if the entities are annotated.

Custom Java objects Yes

5.6. Deploying Entity Classes

If you plan to store entries in the cache as custom Java objects or POJOs, you must deploy entity
classes to Infinispan. Clients always exchange objects as bytes[]. The entity classes represent those
custom objects so that Infinispan can serialize and deserialize them.

To make entity classes available to the server, do the following:

1. Create a JAR file that contains the entities and dependencies.
2. Stop Infinispan if it is running. Infinispan only loads entity classes at boot time.

3. Copy the JAR to the server/1ib directory of your Infinispan server installation.

—— server
! F—— 1ib
| —— deployment.my-entities.jar

25

Chapter 6. Marshalling Java Objects

Marshalling converts Java objects into binary format so they can be transferred over the wire or
stored to disk. The reverse process, unmarshalling, transforms data from binary format into Java
objects.

Infinispan performs marshalling and unmarshalling to:

* Send data to other Infinispan nodes in a cluster.
 Store data in persistent cache stores.

+ Store data in binary format to provide lazy deserialization capabilities.

0 Infinispan handles marshalling for all internal types. You need to configure
marshalling only for the Java objects that you want to store.

Infinispan uses ProtoStream as the default for marshalling Java objects to binary format. Infinispan
also provides other Marshaller implementations you can use.

6.1. Using the ProtoStream Marshaller

Infinispan integrates with the ProtoStream API to encode and decode Java objects into Protocol
Buffers (Protobuf); a language-neutral, backwards compatible format.

Procedure

1. Create implementations of the ProtoStream SerializationContextInitializer interface so that
Infinispan can marshall your Java objects.

2. Configure Infinispan to use the implementations.

o Programmatically:

GlobalConfigurationBuilder builder = new GlobalConfigurationBuilder();
builder.serialization()
.addContextInitializers(new LibraryInitializerImpl(), new SCIImpl());

o Declaratively

<serialization>
<context-initializer class="org.infinispan.example.LibraryInitializerImpl"/>
<context-initializer class="org.infinispan.example.another.SCIImpl"/>
</serialization>

Reference

* Creating Serialization Contexts for ProtoStream Marshalling

* Protocol Buffers

26

6.2. Using JBoss Marshalling

JBoss Marshalling is a serialization-based marshalling library and was the default marshaller in
previous Infinispan versions.

* You should not use serialization-based marshalling with Infinispan. Instead
you should use Protostream, which is a high-performance binary wire format
that ensures backwards compatibility.

o * JBoss Marshalling and the AdvancedExternalizer interface are deprecated and
will be removed in a future release. However, Infinispan ignores
AdvancedExternalizer implementations when persisting data unless you use
JBoss Marshalling.

Procedure

1. Add the infinispan-jboss-marshalling dependency to your classpath.
2. Configure Infinispan to use the JBossUserMarshaller.

o Programmatically:

GlobalConfigurationBuilder builder = new GlobalConfigurationBuilder();
builder.serialization().marshaller(new JBossUserMarshaller());

o Declaratively:

<serialization marshaller=
"org.infinispan.jboss.marshalling.core.JBossUserMarshaller"/>

Reference

* Adding Java Classes to Deserialization White Lists

¢ AdvancedExternalizer

6.3. Using Java Serialization

You can use Java serialization with Infinispan to marshall your objects, but only if your Java objects
implement Java’s Serializable interface.

Procedure

1. Configure Infinispan to use JavaSerializationMarshaller as the marshaller.
2. Add your Java classes to the deserialization white list.

o Programmatically:

27

GlobalConfigurationBuilder builder = new GlobalConfigurationBuilder();
builder.serialization()

.marshaller(new JavaSerializationMarshaller())

.whiteList()

.addRegexps("org.infinispan.example.",
org.infinispan.concrete.Some(Class");

o Declaratively:

<serialization marshaller=
"org.infinispan.commons.marshall.JavaSerializationMarshaller">
<white-Tist>
<class>org.infinispan.concrete.SomeClass</class>
<regex>org.infinispan.example.*</regex>
</white-list>
</serialization>

Reference

* Adding Java Classes to Deserialization White Lists
 Serializable

» org.infinispan.commons.marshall.JavaSerializationMarshaller

6.4. Using the Kryo Marshaller

Infinispan provides a marshalling implementation that uses Kryo libraries.

Prerequisites for Infinispan Servers

To use Kryo marshalling with Infinispan servers, add a JAR that includes the runtime class files for
the Kryo marshalling implementation as follows:

1. Download the Kryo Bundle.

2. Add the JAR file to the server/1ib directory in your Infinispan server installation directory.

Prerequisites for Infinispan Library Mode

To use Kryo marshalling with Infinispan as an embedded library in your application, do the
following:

1. Add the infinispan-marshaller-kryo dependency to your pom.xml.

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-marshaller-kryo</artifactId>
<version>${version.infinispan}</version>
</dependency>

28

2. Specify the org.infinispan.marshaller.kryo.KryoMarshaller class as the marshaller.

GlobalConfigurationBuilder builder = new GlobalConfigurationBuilder();
builder.serialization()
.marshaller(new org.infinispan.marshaller.kryo.KryoMarshaller());

Procedure

1. Implement a service provider for the SerializerRegistryService.java interface.

2. Place all serializer registrations in the register(Kryo) method; where serializers are registered
with the supplied Kryo object using the Kryo API, for example:

kryo.register(ExampleObject.class, new ExampleObjectSerializer())
3. Specify the full path of implementing classes in your deployment JAR file within:

META-INF/services/org/infinispan/marshaller/kryo/SerializerRegistryService

Reference

* Kryo on GitHub

6.5. Using the Protostuff Marshaller

Infinispan provides a marshalling implementation that uses Protostuff libraries.

Prerequisites for Infinispan Servers

To use Protostuff marshalling with Infinispan servers, add a JAR that includes the runtime class
files for the Protostuff marshalling implementation as follows:

1. Download the Protostuff Bundle JAR.

2. Add the JAR file to the server/1ib directory in your Infinispan server installation directory.

Prerequisites for Infinispan Library Mode

To use Protostuff marshalling with Infinispan as an embedded library in your application, do the
following:

1. Add the infinispan-marshaller-protostuff dependency to your pom.xml.

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-marshaller-protostuff</artifactId>
<version>${version.infinispan}</version>

</dependency>

29

2. Specify the org.infinispan.marshaller.protostuff.ProtostuffMarshaller class as the marshaller.

GlobalConfigurationBuilder builder = new GlobalConfigurationBuilder();
builder.serialization()
.marshaller(new org.infinispan.marshaller.protostuff.ProtostuffMarshaller()

)

Procedure

Do one of the following to register custom Protostuff schemas for object marshalling:

» Call the register() method.
RuntimeSchema.register (ExampleObject.class, new ExampleObjectSchema());

* Implement a service provider for the SerializerRegistryService.java interface that places all
schema registrations in the register() method.

You should then specify the full path of implementing classes in your deployment JAR file
within:

META-INF/services/org/infinispan/marshaller/protostuff/SchemaRegistryService

Reference

» Protostuff on GitHub

6.6. Using Custom Marshallers

Infinispan provides a Marshaller interface for custom marshallers.

Programmatic procedure

GlobalConfigurationBuilder builder = new GlobalConfigurationBuilder();
builder.serialization()
.marshaller(new org.infinispan.example.marshall.CustomMarshaller())
.whiteList().addRegexp("org.infinispan.example.*");

Declarative procedure

<serialization marshaller="org.infinispan.example.marshall.CustomMarshaller">
<white-Tist>
<class>org.infinispan.concrete.SomeClass</class>
<regex>org.infinispan.example.*</regex>
</white-list>
</serialization>

30

G Custom marshaller implementations can access a configured white list via the
- initialize() method, which is called during startup.

Reference

* org.infinispan.commons.marshall.Marshaller

6.7. Adding Java Classes to Deserialization White Lists

Infinispan does not allow deserialization of arbritrary Java classes for security reasons, which
applies to JSON, XML, and marshalled byte[] content.

You must add Java classes to a deserialization white list, either using system properties or
specifying them in the Infinispan configuration.

System properties

// Specify a comma-separated list of fully qualified class names
-Dinfinispan.deserialization.whitelist.classes=java.time.Instant,com.myclass.Entity

// Specify a regular expression to match classes
-Dinfinispan.deserialization.whitelist.regexps=.*

Declarative

<cache-container>
<serialization version="1.0" marshaller=
"org.infinispan.marshall.TestObjectStreamMarshaller">
<white-list>
<class>org.infinispan.test.data.Person</class>
<regex>org.infinispan.test.data.*</regex>
</white-list>
</serialization>
</cache-container>

Java classes that you add to the deserialization whitelist apply to the Infinispan
o CacheContainer and can be deserialized by all caches that the CacheContainer
controls.

6.8. Storing Deserialized Objects in Infinispan Servers

You can configure Infinispan to use the application/x-java-object MediaType as the format for
your data. In other words, Infinispan stores your data as Plain Old Java Objects (POJOs) instead of
binary content.

If you store POJOs, you must put class files for all custom objects on the Infinispan server classpath.

Procedure

31

* Add JAR files that contain custom classes and/or service providers for marshaller
implementations in the server/1ib directory.

—— server

| F——— 1ib

| | —— UserObjects.jar
| L—— README.txt

6.9. Storing Data in Binary Format

Infinispan can store data in its serialized form, in binary format, and then either serialize or
deserialize Java objects as needed. This behavior is also referred to as lazy deserialization.

Programmatic procedure

ConfigurationBuilder builder = ...
builder.memory().storageType(StorageType.BINARY);

Declarative procedure

<memory>
<binary />
</memory>

Equality Considerations

When storing data in binary format, Infinispan uses the WrappedBytes interface for keys and values.
This wrapper class transparently takes care of serialization and deserialization on demand, and
internally may have a reference to the object itself being wrapped, or the serialized, byte array
representation of the object. This has an effect on the behavior of equality, which is important to
note if you implement an equals() methods on keys.

The equals() method of the wrapper class either compares binary representations (byte arrays) or
delegates to the wrapped object instance’s equals() method, depending on whether both instances
being compared are in serialized or deserialized form at the time of comparison. If one of the
instances being compared is in one form and the other in another form, then one instance is either
serialized or deserialized.

Reference

* org.infinispan.commons.marshall. WrappedBytes.

32

Chapter 7. Marshalling Custom Java Objects
with ProtoStream

Infinispan uses a ProtoStream API to encode and decode Java objects into Protocol Buffers
(Protobuf); a language-neutral, backwards compatible format.

* Infinispan ProtoStream library

* Protocol Buffers

7.1. Protobuf Schemas

Protocol Buffers, Protobuf, schemas provide structured representations of your Java objects.

You define Protobuf message types .proto schema files as in the following example:

package book_sample;

message Book {
optional string title = 1;
optional string description = 2;
optional int32 publicationYear = 3; // no native Date type available in Protobuf

repeated Author authors = 4;
}
message Author {
optional string name = 1;
optional string surname = 2;

The preceding .library.proto file defines an entity (Protobuf message type) named Book that is
contained in the book_sample package. Book declares several fields of primitive types and an array
(Protobuf repeatable field) named authors, which is the Author message type.

Protobuf Messages

* You can nest messages but the resulting structure is strictly a tree, never a graph.
* Type inheritance is not possible.

* Collections are not supported but you can emulate arrays with repeated fields.

Reference

» Protocol Buffers Developer Guide

7.2. ProtoStream Serialization Contexts

A ProtoStream SerializationContext contains Protobuf type definitions for custom Java objects,

33

loaded from .proto schema files, and the accompanying Marshallers for the objects.

The SerializationContextInitializer interface registers Java objects and marshallers so that the
ProtoStream library can encode your custom objects to Protobuf format, which then enables
Infinispan to transmit and store your data.

7.3. ProtoStream Types

ProtoStream can handle the following types, as well as the unboxed equivalents in the case of
primitive types, without any additional configuration:

« String

« Integer

« Long

« Double

o Float

« Boolean

« byte[]

« Byte

« Short

« Character
o java.util.Date

o java.time.Instant

To marshall any other Java objects, you must generate, or manually create,
SerializationContextInitializer implementations that register .proto schemas and marshallers
with a SerializationContext.

7.4. Generating Serialization Context Initializers

Infinispan provides an protostream-processor artifact that can generate .proto schemas and
SerializationContextInitializer implementations from annotated Java classes.

Procedure

1. Add the protostream-processor dependency to your pom.xmL.

34

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-bom</artifactId>
<version>${version.infinispan}</version>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>

<dependencies>
<dependency>
<groupId>org.infinispan.protostream</groupId>
<artifactId>protostream-processor</artifactId>
</dependency>
</dependencies>

2. Annotate the Java objects that you want to marshall with @ProtoField and @ProtoFactory.

Book.java

import org.infinispan.protostream.annotations.ProtoFactory;
import org.infinispan.protostream.annotations.ProtoField;

public class Book {

@ProtoField(number = 1)
final String title;
@ProtoField(number = 2)

final String description;

@ProtoField(number = 3, defaultValue = "0")
final int publicationYear;

@ProtoField(number = 4, collectionImplementation = ArraylList.class)
final List<Author> authors;

@ProtoFactory
Book(String title, String description, int publicationYear, List<Author>
authors) {
this.title = title;
this.description = description;
this.publicationYear = publicationYear;
this.authors = authors;

}
// public Getter methods omitted for brevity

Author.java

import org.infinispan.protostream.annotations.ProtoFactory;
import org.infinispan.protostream.annotations.ProtoField;

public class Author {
@ProtoField(number = 1)
final String name;

@ProtoField(number = 2)
final String surname;

@ProtoFactory

Author (String name, String surname) {
this.name = name;
this.surname = surname;

}
// public Getter methods omitted for brevity

3. Define an interface that extends SerializationContextInitializer and is annotated with
@AutoProtoSchemaBuilder.

@AutoProtoSchemaBuilder(

includeClasses = {
Book.class,

Author.class,

b
schemaFileName = "library.proto", @®
schemaFilePath = "proto/", @

schemaPackageName = "book_sample")
interface LibraryInitializer extends SerializationContextInitializer {

}

@ names the generated .proto schema file.

@ sets the path under target/classes where the schema file is generated.

During compile-time, protostream-processor generates a concrete implementation of the interface
that you can use to initialize a ProtoStream SerializationContext. By default, implementation
names are the annotated class name with an "Impl" suffix.

Examples

The following are examples of a generated schema file and implementation:

36

target/classes/proto/library.proto

// File name: library.proto
// Generated from : org.infinispan.commons.marshall.LibraryInitializer

syntax = "proto2";

package book_sample;

message Book {
optional string title = 1;

optional string description = 2;

optional int32 publicationYear = 3 [default = 0];

repeated Author authors = 4;

message Author {
optional string name = 1;

optional string surname = 2;

LibrarylInitializerImpljava

/*

Generated by
org.infinispan.protostream.annotations.impl.processor.AutoProtoSchemaBuilderAnnotation
Processor

for class org.infinispan.commons.marshall.LibraryInitializer

annotated with
@org.infinispan.protostream.annotations.AutoProtoSchemaBuilder(dependsOn=,
service=false, autoImportClasses=false, exclude(Classes=,
includeClasses=org.infinispan.commons.marshall.Book,org.infinispan.commons.marshall.Au
thor, basePackages={}, value={}, schemaPackageName="book_sample",
schemaFilePath="proto/", schemaFileName="1library.proto", className="")

*/

package org.infinispan.commons.marshall;

/**

* WARNING: Generated code!
*/

37

38

@javax.annotation.Generated(value =
"org.infinispan.protostream.annotations.impl.processor.AutoProtoSchemaBuilderAnnotatio
nProcessor",
comments = "Please do not edit this file!")
@org.infinispan.protostream.annotations.impl.0OriginatingClasses({
"org.infinispan.commons.marshall.Author",
"org.infinispan.commons.marshall.Book"
})
/*@org.infinispan.protostream.annotations.AutoProtoSchemaBuilder(
className = "LibraryInitializerImpl",
schemaFileName = "library.proto",
schemaFilePath = "proto/",
schemaPackageName = "book_sample",
service = false,
autoImportClasses
classes = {
org.infinispan.commons.marshall.Author.class,
org.infinispan.commons.marshall.Book.class

false,

}
)*/
public class LibraryInitializerImpl implements org.infinispan.commons.marshall
.LibraryInitializer {

@0verride
public String getProtoFileName() { return "library.proto”; }

@0verride
public String getProtoFile() { return org.infinispan.protostream
.FileDescriptorSource.getResourceAsString(getClass(), "/proto/library.proto"); }

@0verride
public void registerSchema(org.infinispan.protostream.SerializationContext serCtx)
{
serCtx.registerProtoFiles(org.infinispan.protostream.FileDescriptorSource
.fromString(getProtoFileName(), getProtoFile()));
}

@Override
public void registerMarshallers(org.infinispan.protostream.SerializationContext
serCtx) {
serCtx.registerMarshaller(new org.infinispan.commons.marshall.Book
$ _ Marshaller_cdc76a682a43643e6e1d7e43babd1ef6f794949a45e1a8bc961046cdad4c9a85());
serCtx.registerMarshaller(new org.infinispan.commons.marshall.Author
$ Marshaller_9b67elclecea213b4207541b411fb9af2ae6f658610d2a4ca9126484d57786d1());

}
}

7.5. Manually Implementing Serialization Context
Initializers

In some cases you might need to manually define .proto schema files and implement ProtoStream
marshallers. For example, if you cannot modify Java object classes to add annotations.

Procedure

1. Create a .proto schema with Protobuf messages.

package book_sample;

message Book {
optional string title = 1;
optional string description = 2;
optional int32 publicationYear = 3; // no native Date type available in

Protobuf
repeated Author authors = 4;
}
message Author {
optional string name = 1;
optional string surname = 2;

2. Use the org.infinispan.protostream.MessageMarshaller interface to implement marshallers for
your classes.

39

40

BookMarshaller.java
import org.infinispan.protostream.MessageMarshaller;

public class BookMarshaller implements MessageMarshaller<Book> {

public String getTypeName() {
return "book_sample.Book";

}

public Class<? extends Book> getJavaClass() {
return Book.class;

}

public void writeTo(MessageMarshaller.ProtoStreamWriter writer, Book book)
throws IOException {
writer.writeString("title", book.getTitle());
writer.writeString("description”, book.getDescription());
writer.writeInt("publicationYear", book.getPublicationYear());
writer.writeCollection("authors", book.getAuthors(), Author.class);

public Book readFrom(MessageMarshaller.ProtoStreamReader reader) throws

IOException {

String title = reader.readString("title");

String description = reader.readString("description");

int publicationYear = reader.readInt("publicationYear");

List<Author> authors = reader.readCollection("authors", new ArraylList<>(),
Author.class);

return new Book(title, description, publicationYear, authors);

}

AuthorMarshaller.java
import org.infinispan.protostream.MessageMarshaller;

public class AuthorMarshaller implements MessageMarshaller<Author> {

public String getTypeName() {
return "book_sample.Author";

}

public Class<? extends Author> getJavaClass() {
return Author.class;

}

public void writeTo(MessageMarshaller.ProtoStreamWriter writer, Author author)
throws IOException {
writer.writeString("name", author.getName());
writer.writeString("surname", author.getSurname());

}

public Author readFrom(MessageMarshaller.ProtoStreamReader reader) throws
I0Exception {
String name = reader.readString("name");
String surname = reader.readString("surname");
return new Author(name, surname);

3. Create a SerializationContextInitializer implementation that registers the .proto schema and
the ProtoStream marshaller implementations with a SerializationContext.

41

42

ManualSerializationContextInitializer.java

import org.infinispan.protostream.FileDescriptorSource;
import org.infinispan.protostream.SerializationContext;
import org.infinispan.protostream.SerializationContextInitializer;

public class ManualSerializationContextInitializer implements
SerializationContextInitializer {
@0verride
public String getProtoFileName() {
return "library.proto";

}

@0verride
public String getProtoFile() throws UncheckedIOException {
// Assumes that the file is located in a Jar's resources, we must provide the
path to the library.proto file
return FileDescriptorSource.getResourceAsString(getClass(), "/" +
getProtoFileName());
}

@0verride
public void registerSchema(SerializationContext serCtx) {
serCtx.registerProtoFiles(FileDescriptorSource.fromString(getProtoFileName(),
getProtoFile()));

}

@0verride

public void registerMarshallers(SerializationContext serCtx) {
serCtx.registerMarshaller(new AuthorMarshaller());
serCtx.registerMarshaller(new BookMarshaller());

}

Chapter 8. Clustered Locks

A clustered lock is a lock which is distributed and shared among all nodes in the Infinispan cluster
and currently provides a way to execute code that will be synchronized between the nodes in a
given cluster.

8.1. Installation

In order to start using the clustered locks, you needs to add the dependency in your Maven pom.xml
file:

pom.xml

<dependency>
<groupId>org.infinispan</groupld>
<artifactId>infinispan-clustered-lock</artifactId>
</dependency>

8.2. ClusteredLock Configuration

Currently there is a single type of ClusteredLock supported : non reentrant, NODE ownership lock.

8.2.1. Ownership

» NODE When a ClusteredLock is defined, this lock can be used from all the nodes in the Infinispan
cluster. When the ownership is NODE type, this means that the owner of the lock is the
Infinispan node that acquired the lock at a given time. This means that each time we get a
ClusteredlLock instance with the ClusteredCacheManager, this instance will be the same instance
for each Infinispan node. This lock can be used to synchronize code between Infinispan nodes.
The advantage of this lock is that any thread in the node can release the lock at a given time.

» INSTANCE - not yet supported

When a ClusteredlLock is defined, this lock can be used from all the nodes in the Infinispan cluster.
When the ownership is INSTANCE type, this means that the owner of the lock is the actual instance
we acquired when ClusteredLockManager.get("lockName") is called.

This means that each time we get a ClusteredlLock instance with the ClusteredCacheManager, this
instance will be a new instance. This lock can be used to synchronize code between Infinispan
nodes and inside each Infinispan node. The advantage of this lock is that only the instance that
called 'lock’ can release the lock.

8.2.2. Reentrancy

When a ClusteredlLock is configured reentrant, the owner of the lock can reacquire the lock as many
consecutive times as it wants while holding the lock.

Currently, only non reentrant locks are supported. This means that when two consecutive lock calls

43

are sent for the same owner, the first call will acquire the lock if it’s available, and the second call
will block.

8.3. ClusteredLockManager Interface

The ClusteredLockManager interface, marked as experimental, is the entry point to define, retrieve
and remove a lock. It automatically listen to the creation of EmbeddedCacheManager and proceeds with
the registration of an instance of it per EmbeddedCacheManager. It starts the internal caches needed to
store the lock state.

Retrieving the ClusteredLockManager is as simple as invoking the
EmbeddedClusteredLockManagerFactory.from(EmbeddedCacheManager) as shown in the example below:

// create or obtain your EmbeddedCacheManager
EmbeddedCacheManager manager = ...;

// retrieve the ClusteredLockManager

ClusteredLockManager clusteredLockManager = EmbeddedClusteredLockManagerFactory.from
(manager);

public interface ClusteredLockManager {
boolean definelLock(String name);
boolean definelLock(String name, ClusteredLockConfiguration configuration);
ClusteredlLock get(String name);
ClusteredLockConfiguration getConfiqguration(String name);
boolean isDefined(String name);
CompletableFuture<Boolean> remove(String name);

CompletableFuture<Boolean> forceRelease(String name);

» definelock : Defines a lock with the specified name and the default ClusteredLockConfiguration.
It does not overwrite existing configurations.

o defineLock(String name, ClusteredLockConfiguration configuration) : Defines a lock with the
specified name and ClusteredLockConfiguration. It does not overwrite existing configurations.

* (lusteredLock get(String name) : Get’s a ClusteredLock by it’s name. A call of defineLock must be
done at least once in the cluster. See ownership level section to understand the implications of
get method call.

44

Currently, the only ownership level supported is NODE.
* (lusteredLockConfiguration getConfiguration(String name) :
Returns the configuration of a ClusteredLock, if such exists.

* boolean isDefined(String name) : Checks if a lock is already defined.
* CompletableFuture<Boolean> remove(String name) : Removes a ClusteredLock if such exists.

o CompletableFuture<Boolean> forceRelease(String name) : Releases - or unlocks - a ClusteredLock,
if such exists, no matter who is holding it at a given time. Calling this method may cause
concurrency issues and has to be used in exceptional situations.

8.4. ClusteredLock Interface

(lusteredlLock interface, marked as experimental, is the interface that implements the clustered
locks.

public interface ClusteredlLock {
CompletableFuture<Void> lock();
CompletableFuture<Boolean> trylLock();
CompletableFuture<Boolean> trylLock(long time, TimeUnit unit);
CompletableFuture<Void> unlock();
CompletableFuture<Boolean> isLocked();

CompletableFuture<Boolean> isLockedByMe();

* lock : Acquires the lock. If the lock is not available then call blocks until the lock is acquired.
Currently, there is no maximum time specified for a lock request to fail, so this could cause
thread starvation.

* trylLock Acquires the lock only if it is free at the time of invocation, and returns true in that case.
This method does not block (or wait) for any lock acquisition.

* tryLock(long time, TimeUnit unit) If the lock is available this method returns immediately with
true. If the lock is not available then the call waits until :

o The lock is acquired

- The specified waiting time elapses

If the time is less than or equal to zero, the method will not wait at all.

« unlock

45

Releases the lock. Only the holder of the lock may release the lock.

e jslocked Returns true when the lock is locked and false when the lock is released.

* isLockedByMe Returns true when the lock is owned by the caller and false when the lock is
owned by someone else or it’s released.

8.4.1. Usage Examples

EmbeddedCache cm = ...;
ClusteredLockManager cclm = EmbeddedClusteredLockManagerFactory.from(cm);

lock.tryLock()
.thenCompose(result -> {
if (result) {
try {
// manipulate protected state
} finally {
return lock.unlock();

}
} else {
// Do something else

}
1
}

8.4.2. ClusteredLockManager Configuration

You can configure ClusteredLockManager to use different strategies for locks, either declaratively or
programmatically, with the following attributes:

num-owners

Defines the total number of nodes in each cluster that store the states of clustered locks. The
default value is -1, which replicates the value to all nodes.

reliability
Controls how clustered locks behave when clusters split into partitions or multiple nodes leave a
cluster. You can set the following values:

» AVAILABLE: Nodes in any partition can concurrently operate on locks.

» CONSISTENT: Only nodes that belong to the majority partition can operate on locks. This is the
default value.

The following is an example declarative configuration for ClusteredLockManager:

46

<?xml version="1.0" encoding="UTF-8"?>
<infinispan
xmlns="urn:infinispan:config:11.0">

<cache-container default-cache="default">
<transport/>
<local-cache name="default">
<locking concurrency-level="100" acquire-timeout="1000"/>
</local-cache>

<clustered-locks xmlns="urn:infinispan:config:clustered-locks:11.0"
num-owners = "3"
reliability="AVAILABLE">
<clustered-lock name="lock1" />
<clustered-lock name="lock2" />
</clustered-locks>
</cache-container>

</infinispan>

47

Chapter 9. Clustered Counters

Clustered counters are counters which are distributed and shared among all nodes in the Infinispan
cluster. Counters can have different consistency levels: strong and weak.

Although a strong/weak consistent counter has separate interfaces, both support updating its value,
return the current value and they provide events when its value is updated. Details are provided
below in this document to help you choose which one fits best your uses-case.

9.1. Installation and Configuration

In order to start using the counters, you needs to add the dependency in your Maven pom. xml file:

pom.xml

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-clustered-counter</artifactId>
</dependency>

The counters can be configured Infinispan configuration file or on-demand via the CounterManager
interface detailed later in this document. A counters configured in Infinispan configuration file is
created at boot time when the EmbeddedCacheManager is starting. Theses counters are started eagerly
and they are available in all the cluster’s nodes.

48

configuration.xml

<?xml version="1.0" encoding="UTF-8"?>
<infinispan>
<cache-container ...>
<!-- if needed to persist counter, global state needs to be configured -->
<global-state>

</global-state>
<!-- your caches configuration goes here -->
<counters xmlns="urn:infinispan:config:counters:11.0" num-owners="3"
reliability="CONSISTENT">
<strong-counter name="c1" initial-value="1" storage="PERSISTENT"/>
<strong-counter name="c2" initial-value="2" storage="VOLATILE">
<lower-bound value="0"/>
</strong-counter>
<strong-counter name="c3" initial-value="3" storage="PERSISTENT">
<upper-bound value="5"/>
</strong-counter>
<strong-counter name="c4" initial-value="4" storage="VOLATILE">
<lower-bound value="0"/>
<upper-bound value="10"/>
</strong-counter>
<weak-counter name="c5" initial-value="5" storage="PERSISTENT"
concurrency-level="1"/>
</counters>
</cache-container>
</infinispan>

or programmatically, in the GlobalConfigurationBuilder:

GlobalConfigurationBuilder globalConfigurationBuilder = ...;
CounterManagerConfigurationBuilder builder = globalConfigurationBuilder.addModule
(CounterManagerConfigurationBuilder.class);
builder.numOwner(3).reliability(Reliability.CONSISTENT);
builder.addStrongCounter().name("c1").initialValue(1).storage(Storage.PERSISTENT);
builder.addStrongCounter().name("c2").initialValue(2).lowerBound(?).storage(Storage.V0
LATILE);
builder.addStrongCounter().name("c3").initialValue(3).upperBound(5).storage(Storage.PE
RSISTENT);
builder.addStrongCounter().name("c4").initialValue(4).lowerBound(@).upperBound(10).sto
rage(Storage.VOLATILE);
builder.addWeakCounter().name("c5").initialValue(5).concurrencylLevel(1).storage(Storag
e.PERSISTENT);

On other hand, the counters can be configured on-demand, at any time after the
EmbeddedCacheManager is initialized.

49

CounterManager manager = ...;

manager .defineCounter("c1", CounterConfiguration.builder(CounterType.UNBOUNDED_STRONG
).initialValue(1).storage(Storage.PERSISTENT).build());

manager .defineCounter("c2", CounterConfiguration.builder(CounterType.BOUNDED_STRONG)
.initialValue(2).lowerBound(0).storage(Storage.VOLATILE).build());

manager .defineCounter("c3", CounterConfiguration.builder(CounterType.BOUNDED_STRONG)
.initialValue(3).upperBound(5).storage(Storage.PERSISTENT).build());

manager .defineCounter("c4", CounterConfiguration.builder(CounterType.BOUNDED_STRONG)
.initialValue(4).1lowerBound(0).upperBound(10).storage(Storage.VOLATILE).build());
manager .defineCounter("c2", CounterConfiguration.builder(CounterType.WEAK)
.initialValue(5).concurrencylLevel(1).storage(Storage.PERSISTENT).build());

o CounterConfiguration is immutable and can be reused.

The method defineCounter() will return true if the counter is successful configured or false
otherwise. However, if the configuration 1is invalid, the method will throw a
CounterConfigurationException. To find out if a counter is already defined, use the method
isDefined().

CounterManager manager = ...
if (!manager.isDefined("someCounter")) {
manager .define("someCounter"”, ...);

}

Per cluster attributes:

* num-owners: Sets the number of counter’s copies to keep cluster-wide. A smaller number will
make update operations faster but will support a lower number of server crashes. It must be
positive and its default value is 2.

* reliability: Sets the counter’s update behavior in a network partition. Default value is
AVAILABLE and valid values are:

o AVAILABLE: all partitions are able to read and update the counter’s value.
o CONSISTENT: only the primary partition (majority of nodes) will be able to read and update
the counter’s value. The remaining partitions can only read its value.

Per counter attributes:

e initial-value [common]: Sets the counter’s initial value. Default is 0 (zero).

* storage [common]: Sets the counter’s behavior when the cluster is shutdown and restarted.
Default value is VOLATILE and valid values are:

o VOLATILE: the counter’s value is only available in memory. The value will be lost when a
cluster is shutdown.

o PERSISTENT: the counter’s value is stored in a private and local persistent store. The value is
kept when the cluster is shutdown and restored after a restart.

50

o On-demand and VOLATILE counters will lose its value and configuration after a
cluster shutdown. They must be defined again after the restart.

* lower-bound [strong]: Sets the strong consistent counter’s lower bound. Default value is
Long.MIN_VALUE.

* upper-bound [strong]: Sets the strong consistent counter’s upper bound. Default value is
Long.MAX_VALUE.

o If neither the lower-bound or upper-bound are configured, the strong counter is set
as unbounded.

A The initial-value must be between lower-bound and upper-bound inclusive.

» concurrency-level [weak]: Sets the number of concurrent updates. Its value must be positive
and the default value is 16.

9.1.1. List counter names

To list all the counters defined, the method CounterManager.getCounterNames() returns a collection of
all counter names created cluster-wide.

9.2. The CounterManager interface.

The CounterManager interface is the entry point to define, retrieve and remove a counter. It
automatically listen to the creation of EmbeddedCacheManager and proceeds with the registration of an
instance of it per EmbeddedCacheManager. It starts the caches needed to store the counter state and
configures the default counters.

Retrieving the CounterManager is as simple as invoke the
EmbeddedCounterManagerFactory.asCounterManager (EmbeddedCacheManager) as shown in the example
below:

// create or obtain your EmbeddedCacheManager
EmbeddedCacheManager manager = ...;

// retrieve the CounterManager

CounterManager counterManager = EmbeddedCounterManagerFactory.asCounterManager(
manager);

For Hot Rod client, the CounterManager is registered in the RemoteCacheManager and it can be
retrieved like:

51

// create or obtain your RemoteCacheManager
RemoteCacheManager manager = ...;

// retrieve the CounterManager
CounterManager counterManager = RemoteCounterManagerFactory.asCounterManager(manager);

9.2.1. Remove a counter via CounterManager

A use with caution.

There is a difference between remove a counter via the Strong/WeakCounter interfaces and the
CounterManager. The CounterManager.remove(String) removes the counter value from the cluster and
removes all the listeners registered in the counter in the local counter instance. In addition, the
counter instance is no longer reusable and it may return an invalid results.

On the other side, the Strong/WeakCounter removal only removes the counter value. The instance
can still be reused and the listeners still works.

o The counter is re-created if it is accessed after a removal.

9.3. The Counter

A counter can be strong (StrongCounter) or weakly consistent (WeakCounter) and both is identified by
a name. They have a specific interface but they share some logic, namely, both of them are
asynchronous (a CompletableFuture is returned by each operation), provide an update event and
can be reset to its initial value.

If you don’t want to use the async API, it is possible to return a synchronous counter via sync()
method. The API is the same but without the CompletableFuture return value.

The following methods are common to both interfaces:

String getName();

CompletableFuture<Long> getValue();

CompletableFuture<Void> reset();

<T extends CounterlListener> Handle<T> addListener(T listener);
CounterConfiguration getConfiguration();
CompletableFuture<Void> remove();

SyncStrongCounter sync(); //SyncWeakCounter for WeakCounter

* getName() returns the counter name (identifier).
* getValue() returns the current counter’s value.
* reset() allows to reset the counter’s value to its initial value.

» addListener() register a listener to receive update events. More details about it in the
Notification and Events section.

52

» getConfiguration() returns the configuration used by the counter.

e remove() removes the counter value from the cluster. The instance can still be used and the
listeners are kept.

* sync() creates a synchronous counter.

o The counter is re-created if it is accessed after a removal.

9.3.1. The StrongCounter interface: when the consistency or bounds matters.

The strong counter provides uses a single key stored in Infinispan cache to provide the consistency
needed. All the updates are performed under the key lock to updates its values. On other hand, the
reads don’t acquire any locks and reads the current value. Also, with this scheme, it allows to
bound the counter value and provide atomic operations like compare-and-set/swap.

A StrongCounter can be retrieved from the CounterManager by using the getStrongCounter() method.

As an example:

CounterManager counterManager = ...
StrongCounter aCounter = counterManager.getStrongCounter("my-counter™);

g Since every operation will hit a single key, the StrongCounter has a higher
contention rate.

The StrongCounter interface adds the following method:

default CompletableFuture<Long> incrementAndGet() {
return addAndGet(1L);

}

default CompletableFuture<Long> decrementAndGet() {
return addAndGet(-1L);
}

CompletableFuture<Long> addAndGet(long delta);
CompletableFuture<Boolean> compareAndSet(long expect, long update);

CompletableFuture<Long> compareAndSwap(long expect, long update);

incrementAndGet () increments the counter by one and returns the new value.

decrementAndGet() decrements the counter by one and returns the new value.

addAndGet() adds a delta to the counter’s value and returns the new value.

» compareAndSet() and compareAndSwap() atomically set the counter’s value if the current value is
the expected.

53

o A operation is considered completed when the CompletableFuture is completed.

The difference between compare-and-set and compare-and-swap is that the

o former returns true if the operation succeeds while the later returns the previous
value. The compare-and-swap is successful if the return value is the same as the
expected.

Bounded StrongCounter

When bounded, all the update method above will throw a CounterOutOfBoundsException when they
reached the lower or upper bound. The exception has the following methods to check which side
bound has been reached:

public boolean isUpperBoundReached();
public boolean isLowerBoundReached();

Uses cases

The strong counter fits better in the following uses cases:

* When counter’s value is needed after each update (example, cluster-wise ids generator or
sequences)

* When a bounded counter is needed (example, rate limiter)

Usage Examples

54

StrongCounter counter = counterManager.getStrongCounter("unbounded_counter");

// incrementing the counter
System.out.println("new value is

+ counter.incrementAndGet().get());

// decrement the counter's value by 100 using the functional API
counter.addAndGet(-100).thenApply(v -> {

System.out.println("new value is " + v);

return null;

}).get();

// alternative, you can do some work while the counter is updated
CompletableFuture<Long> f = counter.addAndGet(10);

// ... do some work ...

System.out.println("new value is " + f.get());

// and then, check the current value
System.out.println("current value is

+ counter.getValue().get());

// finally, reset to initial value
counter.reset().get();
System.out.println("current value is

+ counter.getValue().get());

// or set to a new value if zero
System.out.println("compare and set succeeded? " + counter.compareAndSet(0, 1));

And below, there is another example using a bounded counter:

StrongCounter counter = counterManager.getStrongCounter("bounded_counter");

// incrementing the counter
try {
System.out.println("new value is " + counter.addAndGet(100).get());
} catch (ExecutionException e) {
Throwable cause = e.getCause();
if (cause instanceof CounterOutOfBoundsException) {
if (((CounterOutOfBoundsException) cause).isUpperBoundReached()) {
System.out.println("ops, upper bound reached.");
} else if (((CounterOutOfBoundsException) cause).isLowerBoundReached()) {
System.out.println("ops, lower bound reached.");

}
}

// now using the functional API
counter.addAndGet(-100).handle((v, throwable) -> {
if (throwable != null) {
Throwable cause = throwable.getCause();
if (cause instanceof CounterOutOfBoundsException) {
if (((CounterOutOfBoundsException) cause).isUpperBoundReached()) {
System.out.println("ops, upper bound reached.");
} else if (((CounterOutOfBoundsException) cause).isLowerBoundReached()) {
System.out.println("ops, lower bound reached.");
}
}
return null;
}
System.out.println("new value is
return null;

1) .get();

+Vv);

Compare-and-set vs Compare-and-swap examples:

StrongCounter counter = counterManager.getStrongCounter("my-counter");
long oldValue, newValue;
do {
oldValue = counter.getValue().get();
newValue = somelogic(oldValue);
} while (!counter.compareAndSet(oldValue, newValue).get());

With compare-and-swap, it saves one invocation counter invocation (counter.getValue())

56

StrongCounter counter = counterManager.getStrongCounter("my-counter");
long oldValue = counter.getValue().get();
long currentValue, newValue;
do {

currentValue = oldValue;

newValue = somelogic(oldValue);
} while ((oldValue = counter.compareAndSwap(oldValue, newValue).get()) !=
currentValue);

9.3.2. The WeakCounter interface: when speed is needed

The WeakCounter stores the counter’s value in multiple keys in Infinispan cache. The number of keys
created is configured by the concurrency-level attribute. Each Kkey stores a partial state of the
counter’s value and it can be updated concurrently. It main advantage over the StrongCounter is the
lower contention in the cache. On other hand, the read of its value is more expensive and bounds
are not allowed.

The reset operation should be handled with caution. It is not atomic and it
A produces intermediates values. These value may be seen by a read operation and
by any listener registered.

A WeakCounter can be retrieved from the CounterManager by using the getWeakCounter () method. As an
example:

CounterManager counterManager = ...
StrongCounter aCounter = counterManager.getWeakCounter("my-counter);

Weak Counter Interface

The WeakCounter adds the following methods:

default CompletableFuture<Void> increment() {
return add(1L);

}

default CompletableFuture<Void> decrement() {
return add(-1L);
}

CompletableFuture<Void> add(long delta);

They are similar to the "StrongCounter’s methods but they don’t return the new value.

Uses cases

The weak counter fits best in uses cases where the result of the update operation is not needed or

57

the counter’s value is not required too often. Collecting statistics is a good example of such an use
case.

Examples

Below, there is an example of the weak counter usage.

WeakCounter counter = counterManager.getWeakCounter("my_counter");

// increment the counter and check its result
counter.increment().get();
System.out.println("current value is

+ counter.getValue());

CompletableFuture<Void> f = counter.add(-100);
//do some work

f.get(); //wait until finished
System.out.println("current value is

n

+ counter.getValue().get());

//using the functional API

counter.reset().whenComplete((aVoid, throwable) -> System.out.println("Reset done
(throwable == null ? "successfully" : "unsuccessfully"))).get();
System.out.println("current value is " + counter.getValue().get());

+

9.4. Notifications and Events

Both strong and weak counter supports a listener to receive its updates events. The listener must
implement CounterlListener and it can be registered by the following method:

<T extends CounterlListener> Handle<T> addListener(T listener);
The CounterListener has the following interface:

public interface CounterListener {
void onUpdate(CounterEvent entry);

}

The Handle object returned has the main goal to remove the CounterListener when it is not longer
needed. Also, it allows to have access to the CounterlListener instance that is it handling. It has the
following interface:

public interface Handle<T extends CounterListener> {
T getCounterlListener();
void remove();

58

Finally, the CounterEvent has the previous and current value and state. It has the following
interface:

public interface CounterEvent {
long getOldValue();
State getOldState();
long getNewValue();
State getNewState();

The state is always State.VALID for unbounded strong counter and weak counter.
o State.LOWER_BOUND_REACHED and State.UPPER_BOUND_REACHED are only wvalid for
bounded strong counters.

g The weak counter reset() operation will trigger multiple notification with
intermediate values.

59

Chapter 10. Locking and Concurrency

Infinispan makes use of multi-versioned concurrency control (MVCC) - a concurrency scheme
popular with relational databases and other data stores. MVCC offers many advantages over coarse-
grained Java synchronization and even JDK Locks for access to shared data, including:

* allowing concurrent readers and writers

 readers and writers do not block one another

o write skews can be detected and handled

internal locks can be striped

10.1. Locking implementation details

Infinispan’s MVCC implementation makes use of minimal locks and synchronizations, leaning
heavily towards lock-free techniques such as compare-and-swap and lock-free data structures
wherever possible, which helps optimize for multi-CPU and multi-core environments.

In particular, Infinispan’s MVCC implementation is heavily optimized for readers. Reader threads
do not acquire explicit locks for entries, and instead directly read the entry in question.

Writers, on the other hand, need to acquire a write lock. This ensures only one concurrent writer
per entry, causing concurrent writers to queue up to change an entry.

To allow concurrent reads, writers make a copy of the entry they intend to modify, by wrapping the
entry in an MVCCEntry. This copy isolates concurrent readers from seeing partially modified state.
Once a write has completed, MVCCEntry.commit() will flush changes to the data container and
subsequent readers will see the changes written.

10.1.1. How does it work in clustered caches?

In clustered caches, each key has a node responsible to lock the key. This node is called primary
owner.

Non Transactional caches

1. The write operation is sent to the primary owner of the key.
2. The primary owner tries to lock the key.
a. If it succeeds, it forwards the operation to the other owners;

b. Otherwise, an exception is thrown.

o If the operation is conditional and it fails on the primary owner, it is not
forwarded to the other owners.

o If the operation is executed locally in the primary owner, the first step is skipped.

60

10.1.2. Transactional caches

The transactional cache supports optimistic and pessimistic locking mode. Refer to Transaction
Locking for more information.

10.1.3. Isolation levels

Isolation level affects what transactions can read when running concurrently with other
transaction. Refer to Isolation Levels for more information.

10.1.4. The LockManager

The LockManager is a component that is responsible for locking an entry for writing. The LockManager
makes use of a LockContainer to locate/hold/create locks. LockContainers come in two broad flavours,
with support for lock striping and with support for one lock per entry.

10.1.5. Lock striping

Lock striping entails the use of a fixed-size, shared collection of locks for the entire cache, with
locks being allocated to entries based on the entry’s key’s hash code. Similar to the way the JDK’s
ConcurrentHashMap allocates locks, this allows for a highly scalable, fixed-overhead locking
mechanism in exchange for potentially unrelated entries being blocked by the same lock.

The alternative is to disable lock striping - which would mean a new lock is created per entry. This
approach may give you greater concurrent throughput, but it will be at the cost of additional
memory usage, garbage collection churn, etc.

Default lock striping settings

lock striping is disabled by default, due to potential deadlocks that can happen if
locks for different keys end up in the same lock stripe.

The size of the shared lock collection used by lock striping can be tuned using the concurrencylevel
attribute of the <locking /> configuration element.

Configuration example:
<locking striping="false|true"/>
Or

new ConfigurationBuilder().locking().uselLockStriping(false|true);

10.1.6. Concurrency levels

In addition to determining the size of the striped lock container, this concurrency level is also used
to tune any JDK ConcurrentHashMap based collections where related, such as internal to
DataContainers. Please refer to the JDK ConcurrentHashMap Javadocs for a detailed discussion of

61

concurrency levels, as this parameter is used in exactly the same way in Infinispan.

Configuration example:
<locking concurrency-level="32"/>
Or

new ConfigurationBuilder().locking().concurrencylLevel(32);

10.1.7. Lock timeout

The lock timeout specifies the amount of time, in milliseconds, to wait for a contented lock.

Configuration example:
<locking acquire-timeout="10000"/>
Or

new ConfigurationBuilder().locking().lockAcquisitionTimeout(10000);
//alternatively
new ConfigurationBuilder().locking().lockAcquisitionTimeout(10, TimeUnit.SECONDS);

10.1.8. Consistency

The fact that a single owner is locked (as opposed to all owners being locked) does not break the
following consistency guarantee: if key K is hashed to nodes {A, B} and transaction TX1 acquires a
lock for K, let’s say on A. If another transaction, TX2, is started on B (or any other node) and TX2 tries
to lock K then it will fail with a timeout as the lock is already held by TX1. The reason for this is the
that the lock for a key K is always, deterministically, acquired on the same node of the cluster,
regardless of where the transaction originates.

10.2. Data Versioning

Infinispan supports two forms of data versioning: simple and external. The simple versioning is
used in transactional caches for write skew check.

The external versioning is used to encapsulate an external source of data versioning within
Infinispan, such as when using Infinispan with Hibernate which in turn gets its data version
information directly from a database.

In this scheme, a mechanism to pass in the version becomes necessary, and overloaded versions of
put() and putForExternalRead() will be provided in AdvancedCache to take in an external data
version. This is then stored on the InvocationContext and applied to the entry at commit time.

62

Write skew checks cannot and will not be performed in the case of external data
versioning.

63

Chapter 11. Using the Infinispan CDI
Extension

Infinispan provides an extension that integrates with the CDI (Contexts and Dependency Injection)
programming model and allows you to:

* Configure and inject caches into CDI Beans and Java EE components.
* Configure cache managers.
* Receive cache and cache manager level events.

* Control data storage and retrieval using JCache annotations.

11.1. CDI Dependencies

Update your pom.xml with one of the following dependencies to include the Infinispan CDI extension
in your project:

Embedded (Library) Mode

<dependency>
<groupId>org.infinispan</groupld>
<artifactId>infinispan-cdi-embedded</artifactId>
</dependency>

Server Mode

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-cdi-remote</artifactId>
</dependency>

11.2. Injecting Embedded Caches

Set up CDI beans to inject embedded caches.

Procedure

1. Create a cache qualifier annotation.

64

import javax.inject.Qualifier;

@Qualifier

@Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)

@Documented

public @interface GreetingCache { @

}

@ creates a @GreetingCache qualifier.

2. Add a producer method that defines the cache configuration.

import org.infinispan.configuration.cache.Configuration;

import org.infinispan.confiqguration.cache.ConfigurationBuilder;
import org.infinispan.cdi.ConfigureCache;

import javax.enterprise.inject.Produces;

public class Config {

@ConfigureCache("mygreetingcache") @®
@GreetingCache @
@Produces
public Configuration greetingCacheConfiguration() {
return new ConfigurationBuilder()
.memory ()
.size(1000)
.build();

@ names the cache to inject.

@ adds the cache qualifier.

3. Add a producer method that creates a clustered cache manager, if required

65

package org.infinispan.configuration.global.GlobalConfigurationBuilder;

public class Config {
©)

@
public EmbeddedCacheManager defaultClusteredCacheManager() { ®
return new DefaultCacheManager (
new GlobalConfigurationBuilder().transport().defaultTransport().build();

@ adds the cache qualifier.

@ creates the bean once for the application. Producers that create cache managers should
always include the @EApplicationScoped annotation to avoid creating multiple cache
managers.

® creates a new DefaultCacheManager instance that is bound to the @GreetingCache qualifier.

Cache managers are heavy weight objects. Having more than one cache

o manager running in your application can degrade performance. When
injecting multiple caches, either add the qualifier of each cache to the cache
manager producer method or do not add any qualifier.

4. Add the @GreetingCache qualifier to your cache injection point.

import javax.inject.Inject;
public class GreetingService {

@Inject @GreetingCache
private Cache<String, String> cache;

public String greet(String user) {
String cachedValue = cache.get(user);
if (cachedValue == null) {
cachedValue = "Hello " + user;
cache.put(user, cachedValue);

}

return cachedValue;

66

11.3. Injecting Remote Caches

Set up CDI beans to inject remote caches.

Procedure

1. Create a cache qualifier annotation.

("mygreetingcache") @

({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD})
(RetentionPolicy.RUNTIME)

public RemoteGreetingCache { @
}

® names the cache to inject.

@ creates a @RemoteGreetingCache qualifier.

2. Add the @RemoteGreetingCache qualifier to your cache injection point.

public class GreetingService {

private RemoteCache<String, String> cache;

public String greet(String user) {
String cachedValue = cache.get(user);
if (cachedValue == null) {
cachedValue = "Hello " + user;
cache.put(user, cachedValue);

}

return cachedValue;

Tips for injecting remote caches

* You can inject remote caches without using qualifiers.

("greetingCache")
private RemoteCache<String, String> cache;

* If you have more than one Infinispan cluster, you can create separate remote cache manager
producers for each cluster.

67

import javax.enterprise.context.ApplicationScoped;

public class Config {

©)
public ConfigurationBuilder builder = new ConfigurationBuilder(); @
builder.addServer().host("localhost").port(11222);
return new RemoteCacheManager(builder.build());

@ creates the bean once for the application. Producers that create cache managers should
always include the @ApplicationScoped annotation to avoid creating multiple cache
managers, which are heavy weight objects.

@ creates a new RemoteCacheManager instance that is bound to the @RemoteGreetingCache
qualifier.

11.4. JCache Caching Annotations

You can use the following JCache caching annotations with CDI managed beans when JCache
artifacts are on the classpath:

@CacheResult
caches the results of method calls.

@CachePut
caches method parameters.

@CacheRemoveEntry
removes entries from a cache.

@CacheRemoveAll
removes all entries from a cache.

o Target type: You can use these JCache caching annotations on methods only.

To use JCache caching annotations, declare interceptors in the beans.xml file for your application.

68

Managed Environments (Application Server)

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
version="1.2" bean-discovery-mode="annotated">

<interceptors>
<class>org.infinispan.jcache.annotation.InjectedCacheResultInterceptor</class>
<class>org.infinispan.jcache.annotation.InjectedCachePutInterceptor</class>
<class>
org.infinispan.jcache.annotation.InjectedCacheRemoveEntryInterceptor</class>
<class>org.infinispan.jcache.annotation.InjectedCacheRemoveAllInterceptor</class>
</interceptors>
</beans>

Non-managed Environments (Standalone)

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
version="1.2" bean-discovery-mode="annotated">

<interceptors>
<class>org.infinispan.jcache.annotation.CacheResultInterceptor</class>
<class>org.infinispan.jcache.annotation.CachePutInterceptor</class>
<class>org.infinispan.jcache.annotation.CacheRemoveEntryInterceptor</class>
<class>org.infinispan.jcache.annotation.CacheRemoveAllInterceptor</class>
</interceptors>
</beans>

JCache Caching Annotation Examples

The following example shows how the @CacheResult annotation caches the results of the
GreetingService.greet() method:

import javax.cache.interceptor.CacheResult;
public class GreetingService {
@CacheResult

public String greet(String user) {
return "Hello" + user;

}

69

With JCache