
Security Guide for Infinispan 12.1

Table of Contents

1. Infinispan Security. 1

2. Configuring Security Authorization. 2

2.1. Restricting Access to Caches. 2

2.2. Default Roles and Permissions . 2

2.3. How Security Authorization Works . 3

2.3.1. Permissions. 4

2.3.2. Role Mappers . 5

2.4. Customizing Roles and Permissions. 6

2.5. Programmatically Configuring Authorization. 7

2.6. Code Execution with Secure Caches. 9

3. Encrypting Cluster Transport . 10

3.1. Infinispan Cluster Security. 10

3.2. Configuring Cluster Transport with Asymmetric Encryption . 11

3.3. Configuring Cluster Transport with Symmetric Encryption . 13

4. Infinispan Ports and Protocols . 15

4.1. Infinispan Server Ports and Protocols. 15

4.1.1. Configuring Network Firewalls for Remote Connections . 15

4.2. TCP and UDP Ports for Cluster Traffic . 15

Chapter 1. Infinispan Security

Infinispan provides security for components as well as data across different layers:

• Within the core library to provide role-based access control (RBAC) to CacheManagers, Cache

instances, and stored data.

• Over remote protocols to authenticate client requests and encrypt network traffic.

• Across nodes in clusters to authenticate new cluster members and encrypt the cluster transport.

The Infinispan core library uses standard Java security libraries such as JAAS, JSSE, JCA, JCE, and

SASL to ease integration and improve compatibility with custom applications and container

environments. For this reason, the Infinispan core library provides only interfaces and a set of

basic implementations.

Infinispan servers support a wide range of security standards and mechanisms to readily integrate

with enterprise-level security frameworks.

1

Chapter 2. Configuring Security

Authorization

Authorization restricts the ability to perform operations with Infinispan and access data. You assign

users with roles that have different permission levels.

2.1. Restricting Access to Caches

Control access to caches with Infinispan authorization (RBAC).

This procedure shows you how to use the default Infinispan roles and permissions that are suitable

for most use cases.

Procedure

1. Open your infinispan.xml configuration for editing.

2. If it is not already declared, add the <authorization /> tag inside the security elements for the

cache-container.

This enables authorization for the Cache Manager and provides a global set of roles and

permissions that caches can inherit.

3. Add the <authorization /> tag to each cache for which Infinispan restricts access based on user

roles.

The following configuration example shows how to use implicit authorization configuration with

default roles and permissions:

<infinispan>

 <cache-container default-cache="rbac-cache" name="restricted">

 <security>

 <!-- Enable authorization with the default roles and permissions. -->

 <authorization />

 </security>

 <local-cache name="rbac-cache">

 <security>

 <!-- Inherit authorization settings from the cache-container. -->

 <authorization/>

 </security>

 </local-cache>

 </cache-container>

</infinispan>

2.2. Default Roles and Permissions

Infinispan includes a default set of default roles and permissions for security authorization.

2

Default roles and permissions come from the cluster role mapper that associates each role to a

permission that authorizes operations on Cache Managers and caches.


Use the Infinispan CLI to dynamically edit these roles with the user role

command.

Run help user for command usage examples.

Role Permissions

admin Superuser with all permissions including Cache

Managers.

deployer Access and modify resources such as caches and

counters. Create and delete resources such as

caches, counters, schemas, and scripts.

application Access and modify resources such as caches and

counters.

observer Read-only access to the system.

Reference

• Infinispan Configuration Schema Reference

2.3. How Security Authorization Works

Infinispan authorization secures your installation by restricting user access.

User applications or clients must belong to a role that is assigned with sufficient permissions before

they can perform operations on Cache Managers or caches.

For example, you configure authorization on a specific cache instance so that invoking Cache.get()

requires an identity to be assigned a role with read permission while Cache.put() requires a role

with write permission.

In this scenario, if a user application or client with the io role attempts to write an entry, Infinispan

denies the request and throws a security exception. If a user application or client with the writer

role sends a write request, Infinispan validates authorization and issues a token for subsequent

operations.

Identities

Identities are security Principals of type java.security.Principal. Subjects, implemented with the

javax.security.auth.Subject class, represent a group of security Principals. In other words, a

Subject represents a user and all groups to which it belongs.

Identities to roles

Infinispan uses role mappers so that security principals correspond to roles, which you assign one

or more permissions.

The following image illustrates how security principals correspond to roles:

3

Cache Manager

or Cache

2.3.1. Permissions

Authorization roles have different permissions with varying levels of access to Infinispan.

Permissions let you restrict user access to both Cache Managers and caches.

Cache Manager permissions

Permission Function Description

CONFIGURATION defineConfiguration Defines new cache

configurations.

LISTEN addListener Registers listeners against a

Cache Manager.

LIFECYCLE stop Stops the Cache Manager.

CREATE createCache, removeCache Create and remove container

resources such as caches,

counters, schemas, and scripts.

ALL - Includes all Cache Manager

permissions.

Cache permissions

Permission Function Description

READ get, contains Retrieves entries from a cache.

WRITE put, putIfAbsent, replace, remove,

evict

Writes, replaces, removes,

evicts data in a cache.

EXEC distexec, streams Allows code execution against a

cache.

LISTEN addListener Registers listeners against a

cache.

BULK_READ keySet, values, entrySet, query Executes bulk retrieve

operations.

BULK_WRITE clear, putAll Executes bulk write operations.

LIFECYCLE start, stop Starts and stops a cache.

4

Permission Function Description

ADMIN getVersion, addInterceptor*,

removeInterceptor,

getInterceptorChain,

getEvictionManager,

getComponentRegistry,

getDistributionManager,

getAuthorizationManager, evict,

getRpcManager,

getCacheConfiguration,

getCacheManager,

getInvocationContextContainer,

setAvailability,

getDataContainer, getStats,
getXAResource

Allows access to underlying

components and internal

structures.

ALL - Includes all cache permissions.

ALL_READ - Combines the READ and

BULK_READ permissions.

ALL_WRITE - Combines the WRITE and

BULK_WRITE permissions.

Reference

• Infinispan Security API

2.3.2. Role Mappers

Infinispan includes a PrincipalRoleMapper API that maps security Principals in a Subject to

authorization roles that you can assign to users.

Cluster role mappers

ClusterRoleMapper uses a persistent replicated cache to dynamically store principal-to-role

mappings for the default roles and permissions.

By default uses the Principal name as the role name and implements

org.infinispan.security.MutableRoleMapper which exposes methods to change role mappings at

runtime.

• Java class: org.infinispan.security.mappers.ClusterRoleMapper

• Declarative configuration: <cluster-role-mapper />

Identity role mappers

IdentityRoleMapper uses the Principal name as the role name.

• Java class: org.infinispan.security.mappers.IdentityRoleMapper

• Declarative configuration: <identity-role-mapper />

5

CommonName role mappers

CommonNameRoleMapper uses the Common Name (CN) as the role name if the Principal name is a

Distinguished Name (DN).

For example this DN, cn=managers,ou=people,dc=example,dc=com, maps to the managers role.

• Java class: org.infinispan.security.mappers.CommonRoleMapper

• Declarative configuration: <common-name-role-mapper />

Custom role mappers

Custom role mappers are implementations of org.infinispan.security.PrincipalRoleMapper.

• Declarative configuration: <custom-role-mapper class="my.custom.RoleMapper" />

Reference

• Infinispan Security API

• org.infinispan.security.PrincipalRoleMapper

2.4. Customizing Roles and Permissions

You can customize authorization settings in your Infinispan configuration to use role mappers with

different combinations of roles and permissions.

Procedure

1. Open your infinispan.xml configuration for editing.

2. Configure authorization for the cache-container by declaring a role mapper and a set of roles

and permissions.

3. Configure authorization for caches to restrict access based on user roles.

The following configuration example shows how to configure security authorization with roles and

permissions:

6

<infinispan>

 <cache-container default-cache="restricted" name="custom-authorization">

 <security>

 <authorization>

 <!-- Declare a role mapper that associates a security principal to each

role. -->

 <identity-role-mapper />

 <!-- Specify user roles and corresponding permissions. -->

 <role name="admin" permissions="ALL" />

 <role name="reader" permissions="READ" />

 <role name="writer" permissions="WRITE" />

 <role name="supervisor" permissions="READ WRITE EXEC"/>

 </authorization>

 </security>

 <local-cache name="implicit-authorization">

 <security>

 <!-- Inherit roles and permissions from the cache-container. -->

 <authorization/>

 </security>

 </local-cache>

 <local-cache name="restricted">

 <security>

 <!-- Explicitly define which roles can access the cache. -->

 <authorization roles="admin supervisor"/>

 </security>

 </local-cache>

 </cache-container>

</infinispan>

2.5. Programmatically Configuring Authorization

When using Infinispan as an embedded library, you can configure authorization with the

GlobalSecurityConfigurationBuilder and ConfigurationBuilder classes.

Procedure

1. Construct a GlobalConfigurationBuilder that enables authorization, specifies a role mapper, and

defines a set of roles and permissions.

7

GlobalConfigurationBuilder global = new GlobalConfigurationBuilder();

global

 .security()

 .authorization().enable() ①

 .principalRoleMapper(new IdentityRoleMapper()) ②

 .role("admin") ③

 .permission(AuthorizationPermission.ALL)

 .role("reader")

 .permission(AuthorizationPermission.READ)

 .role("writer")

 .permission(AuthorizationPermission.WRITE)

 .role("supervisor")

 .permission(AuthorizationPermission.READ)

 .permission(AuthorizationPermission.WRITE)

 .permission(AuthorizationPermission.EXEC);

① Enables Infinispan authorization for the Cache Manager.

② Specifies an implementation of PrincipalRoleMapper that maps Principals to roles.

③ Defines roles and their associated permissions.

2. Enable authorization in the ConfigurationBuilder for caches to restrict access based on user

roles.

ConfigurationBuilder config = new ConfigurationBuilder();

config

 .security()

 .authorization()

 .enable(); ①

① Implicitly adds all roles from the global configuration.

If you do not want to apply all roles to a cache, explicitly define the roles that are authorized for

caches as follows:

ConfigurationBuilder config = new ConfigurationBuilder();

config

 .security()

 .authorization()

 .enable()

 .role("admin") ①

 .role("supervisor")

 .role("reader");

① Defines authorized roles for the cache. In this example, users who have the writer role only

are not authorized for the "secured" cache. Infinispan denies any access requests from those

users.

8

Reference

• org.infinispan.configuration.global.GlobalSecurityConfigurationBuilder

• org.infinispan.configuration.cache.ConfigurationBuilder

2.6. Code Execution with Secure Caches

When you configure Infinispan authorization and then construct a DefaultCacheManager, it returns a

SecureCache that checks the security context before invoking any operations on the underlying

caches. A SecureCache also ensures that applications cannot retrieve lower-level insecure objects

such as DataContainer. For this reason, you must execute code with an identity that has the required

authorization.

In Java, executing code with a specific identity usually means wrapping the code to be executed

within a PrivilegedAction as follows:

import org.infinispan.security.Security;

Security.doAs(subject, new PrivilegedExceptionAction<Void>() {

public Void run() throws Exception {

 cache.put("key", "value");

}

});

With Java 8, you can simplify the preceding call as follows:

Security.doAs(mySubject, PrivilegedAction<String>() -> cache.put("key", "value"));

The preceding call uses the Security.doAs() method instead of Subject.doAs(). You can use either

method with Infinispan, however Security.doAs() provides better performance.

If you need the current Subject, use the following call to retrieve it from the Infinispan context or

from the AccessControlContext:

Security.getSubject();

9

Chapter 3. Encrypting Cluster Transport

Secure cluster transport so that nodes communicate with encrypted messages. You can also

configure Infinispan clusters to perform certificate authentication so that only nodes with valid

identities can join.

3.1. Infinispan Cluster Security

To secure cluster traffic, you configure Infinispan nodes to encrypt JGroups message payloads with

secret keys.

Infinispan nodes can obtain secret keys from either:

• The coordinator node (asymmetric encryption).

• A shared keystore (symmetric encryption).

Retrieving secret keys from coordinator nodes

You configure asymmetric encryption by adding the ASYM_ENCRYPT protocol to a JGroups stack in

your Infinispan configuration. This allows Infinispan clusters to generate and distribute secret keys.


When using asymmetric encryption, you should also provide keystores so that

nodes can perform certificate authentication and securely exchange secret keys.

This protects your cluster from man-in-the-middle (MitM) attacks.

Asymmetric encryption secures cluster traffic as follows:

1. The first node in the Infinispan cluster, the coordinator node, generates a secret key.

2. A joining node performs certificate authentication with the coordinator to mutually verify

identity.

3. The joining node requests the secret key from the coordinator node. That request includes the

public key for the joining node.

4. The coordinator node encrypts the secret key with the public key and returns it to the joining

node.

5. The joining node decrypts and installs the secret key.

6. The node joins the cluster, encrypting and decrypting messages with the secret key.

Retrieving secret keys from shared keystores

You configure symmetric encryption by adding the SYM_ENCRYPT protocol to a JGroups stack in your

Infinispan configuration. This allows Infinispan clusters to obtain secret keys from keystores that

you provide.

1. Nodes install the secret key from a keystore on the Infinispan classpath at startup.

2. Node join clusters, encrypting and decrypting messages with the secret key.

Comparison of asymmetric and symmetric encryption

10

ASYM_ENCRYPT with certificate authentication provides an additional layer of encryption in

comparison with SYM_ENCRYPT. You provide keystores that encrypt the requests to coordinator nodes

for the secret key. Infinispan automatically generates that secret key and handles cluster traffic,

while letting you specify when to generate secret keys. For example, you can configure clusters to

generate new secret keys when nodes leave. This ensures that nodes cannot bypass certificate

authentication and join with old keys.

SYM_ENCRYPT, on the other hand, is faster than ASYM_ENCRYPT because nodes do not need to exchange

keys with the cluster coordinator. A potential drawback to SYM_ENCRYPT is that there is no

configuration to automatically generate new secret keys when cluster membership changes. Users

are responsible for generating and distributing the secret keys that nodes use to encrypt cluster

traffic.

3.2. Configuring Cluster Transport with Asymmetric

Encryption

Configure Infinispan clusters to generate and distribute secret keys that encrypt JGroups messages.

Procedure

1. Create a keystore with certificate chains that enables Infinispan to verify node identity.

2. Place the keystore on the classpath for each node in the cluster.

For Infinispan Server, you put the keystore in the $ISPN_HOME directory.

3. Add the SSL_KEY_EXCHANGE and ASYM_ENCRYPT protocols to a JGroups stack in your Infinispan

configuration, as in the following example:

11

<infinispan>

 <jgroups>

 <!-- Creates a secure JGroups stack named "encrypt-tcp" that extends the

default TCP stack. -->

 <stack name="encrypt-tcp" extends="tcp">

 <!-- Adds a keystore that nodes use to perform certificate authentication.

-->

 <!-- Uses the stack.combine and stack.position attributes to insert

SSL_KEY_EXCHANGE into the default TCP stack after VERIFY_SUSPECT. -->

 <SSL_KEY_EXCHANGE keystore_name="mykeystore.jks"

 keystore_password="changeit"

 stack.combine="INSERT_AFTER"

 stack.position="VERIFY_SUSPECT"/>

 <!-- Configures ASYM_ENCRYPT -->

 <!-- Uses the stack.combine and stack.position attributes to insert

ASYM_ENCRYPT into the default TCP stack before pbcast.NAKACK2. -->

 <!-- The use_external_key_exchange = "true" attribute configures nodes to use

the `SSL_KEY_EXCHANGE` protocol for certificate authentication. -->

 <ASYM_ENCRYPT asym_keylength="2048"

 asym_algorithm="RSA"

 change_key_on_coord_leave = "false"

 change_key_on_leave = "false"

 use_external_key_exchange = "true"

 stack.combine="INSERT_BEFORE"

 stack.position="pbcast.NAKACK2"/>

 </stack>

 </jgroups>

 <cache-container name="default" statistics="true">

 <!-- Configures the cluster to use the JGroups stack. -->

 <transport cluster="${infinispan.cluster.name}"

 stack="encrypt-tcp"

 node-name="${infinispan.node.name:}"/>

 </cache-container>

</infinispan>

Verification

When you start your Infinispan cluster, the following log message indicates that the cluster is using

the secure JGroups stack:

[org.infinispan.CLUSTER] ISPN000078: Starting JGroups channel cluster with stack

<encrypted_stack_name>

Infinispan nodes can join the cluster only if they use ASYM_ENCRYPT and can obtain the secret key

from the coordinator node. Otherwise the following message is written to Infinispan logs:

12

[org.jgroups.protocols.ASYM_ENCRYPT] <hostname>: received message without encrypt

header from <hostname>; dropping it

Reference

The example ASYM_ENCRYPT configuration in this procedure shows commonly used parameters. Refer

to JGroups documentation for the full set of available parameters.

• JGroups 4 Manual

• JGroups 4.2 Schema

3.3. Configuring Cluster Transport with Symmetric

Encryption

Configure Infinispan clusters to encrypt JGroups messages with secret keys from keystores that you

provide.

Procedure

1. Create a keystore that contains a secret key.

2. Place the keystore on the classpath for each node in the cluster.

For Infinispan Server, you put the keystore in the $ISPN_HOME directory.

3. Add the SYM_ENCRYPT protocol to a JGroups stack in your Infinispan configuration.

13

<infinispan>

 <jgroups>

 <!-- Creates a secure JGroups stack named "encrypt-tcp" that extends the default

TCP stack. -->

 <stack name="encrypt-tcp" extends="tcp">

 <!-- Adds a keystore from which nodes obtain secret keys. -->

 <!-- Uses the stack.combine and stack.position attributes to insert SYM_ENCRYPT

into the default TCP stack after VERIFY_SUSPECT. -->

 <SYM_ENCRYPT keystore_name="myKeystore.p12"

 keystore_type="PKCS12"

 store_password="changeit"

 key_password="changeit"

 alias="myKey"

 stack.combine="INSERT_AFTER"

 stack.position="VERIFY_SUSPECT"/>

 </stack>

 </jgroups>

 <cache-container name="default" statistics="true">

 <!-- Configures the cluster to use the JGroups stack. -->

 <transport cluster="${infinispan.cluster.name}"

 stack="encrypt-tcp"

 node-name="${infinispan.node.name:}"/>

 </cache-container>

</infinispan>

Verification

When you start your Infinispan cluster, the following log message indicates that the cluster is using

the secure JGroups stack:

[org.infinispan.CLUSTER] ISPN000078: Starting JGroups channel cluster with stack

<encrypted_stack_name>

Infinispan nodes can join the cluster only if they use SYM_ENCRYPT and can obtain the secret key from

the shared keystore. Otherwise the following message is written to Infinispan logs:

[org.jgroups.protocols.SYM_ENCRYPT] <hostname>: received message without encrypt

header from <hostname>; dropping it

Reference

The example SYM_ENCRYPT configuration in this procedure shows commonly used parameters. Refer

to JGroups documentation for the full set of available parameters.

• JGroups 4 Manual

• JGroups 4.2 Schema

14

Chapter 4. Infinispan Ports and Protocols

As Infinispan distributes data across your network and can establish connections for external client

requests, you should be aware of the ports and protocols that Infinispan uses to handle network

traffic.

If run Infinispan as a remote server then you might need to allow remote clients through your

firewall. Likewise, you should adjust ports that Infinispan nodes use for cluster communication to

prevent conflicts or network issues.

4.1. Infinispan Server Ports and Protocols

Infinispan Server exposes endpoints on your network for remote client access.

Port Protocol Description

11222 TCP Hot Rod and REST endpoint

11221 TCP Memcached endpoint, which is

disabled by default.

4.1.1. Configuring Network Firewalls for Remote Connections

Adjust any firewall rules to allow traffic between the server and external clients.

Procedure

On Red Hat Enterprise Linux (RHEL) workstations, for example, you can allow traffic to port 11222

with firewalld as follows:

firewall-cmd --add-port=11222/tcp --permanent

success

firewall-cmd --list-ports | grep 11222

11222/tcp

To configure firewall rules that apply across a network, you can use the nftables utility.

4.2. TCP and UDP Ports for Cluster Traffic

Infinispan uses the following ports for cluster transport messages:

Default Port Protocol Description

7800 TCP/UDP JGroups cluster bind port

46655 UDP JGroups multicast

Cross-Site Replication

15

Infinispan uses the following ports for the JGroups RELAY2 protocol:

7900

For Infinispan clusters running on Kubernetes.

7800

If using UDP for traffic between nodes and TCP for traffic between clusters.

7801

If using TCP for traffic between nodes and TCP for traffic between clusters.

16

	Security Guide for Infinispan 12.1
	Table of Contents
	Chapter 1. Infinispan Security
	Chapter 2. Configuring Security Authorization
	2.1. Restricting Access to Caches
	2.2. Default Roles and Permissions
	2.3. How Security Authorization Works
	2.3.1. Permissions
	2.3.2. Role Mappers

	2.4. Customizing Roles and Permissions
	2.5. Programmatically Configuring Authorization
	2.6. Code Execution with Secure Caches

	Chapter 3. Encrypting Cluster Transport
	3.1. Infinispan Cluster Security
	3.2. Configuring Cluster Transport with Asymmetric Encryption
	3.3. Configuring Cluster Transport with Symmetric Encryption

	Chapter 4. Infinispan Ports and Protocols
	4.1. Infinispan Server Ports and Protocols
	4.1.1. Configuring Network Firewalls for Remote Connections

	4.2. TCP and UDP Ports for Cluster Traffic

