
Infinispan 9.0 User Guide
The Infinispan community

Table of Contents
1. Introduction . 1

1.1. What is Infinispan ? . 1

1.2. Why use Infinispan ? . 1

1.2.1. As a local cache . 1

1.2.2. As a clustered cache . 1

1.2.3. As a clustering building block for your applications . 1

1.2.4. As a remote cache . 1

1.2.5. As a data grid . 2

1.2.6. As a geographical backup for your data . 2

2. Configuration . 3

2.1. Configuring caches declaratively . 3

2.1.1. Cache configuration templates . 4

2.1.2. Declarative configuration reference . 5

2.2. Configuring caches programmatically . 6

2.2.1. ConfigurationBuilder Programmatic Configuration API . 7

2.2.2. Advanced programmatic configuration . 9

2.3. Configuration Migration Tools . 10

2.4. Clustered Configuration . 10

2.4.1. Using an external JGroups file . 10

2.4.2. Use one of the pre-configured JGroups files . 11

2.4.3. Further reading . 13

3. The CacheManager API . 14

3.1. Clustering Information . 14

3.1.1. Member Information. 14

3.1.2. Other methods. 14

3.2. Cluster Executor . 14

3.2.1. Example: Dynamically Start and Stop Clustered Cache . 15

4. The Cache API . 16

4.1. The Cache interface . 16

4.1.1. Performance Concerns of Certain Map Methods . 16

4.1.2. Mortal and Immortal Data . 16

4.1.3. Example of Using Expiry and Mortal Data . 16

4.1.4. putForExternalRead operation . 17

4.2. The AdvancedCache interface. 18

4.2.1. Flags . 18

4.2.2. Custom Interceptors . 18

4.3. Listeners and Notifications . 18

4.3.1. Cache-level notifications. 19

4.3.2. Cache manager-level notifications . 21

4.3.3. Synchronicity of events. 21

4.4. Asynchronous API . 22

4.4.1. Why use such an API? . 22

4.4.2. Which processes actually happen asynchronously? . 22

4.4.3. Notifying futures . 23

4.4.4. Further reading . 23

4.5. Invocation Flags . 23

4.5.1. DecoratedCache . 24

4.5.2. Examples . 24

4.6. Tree API Module . 25

4.6.1. What is Tree API about? . 25

4.6.2. Using the Tree API . 25

4.6.3. Creating a Tree Cache . 26

4.6.4. Manipulating data in a Tree Cache . 26

4.6.5. Common Operations . 27

4.6.6. Locking in the Tree API . 28

4.6.7. Listeners for tree cache events . 29

5. Eviction . 30

5.1. Enabling Eviction . 30

5.1.1. Eviction strategies . 30

5.1.2. Eviction types . 31

5.1.3. More defaults. 31

5.2. Expiration . 32

5.2.1. Difference between Eviction and Expiration . 32

5.3. Eviction Examples . 32

5.3.1. Configuration . 33

5.3.2. Memory Based Eviction Configuration . 33

5.3.3. Default values . 33

5.3.4. Using expiration . 34

5.4. Expiration designs . 34

6. Persistence. 36

6.1. Configuration . 36

6.2. Cache Passivation. 39

6.2.1. Cache Loader Behavior with Passivation Disabled vs Enabled . 39

6.3. Cache Loaders and transactional caches . 40

6.4. Write-Through And Write-Behind Caching . 40

6.4.1. Write-Through (Synchronous) . 41

6.4.2. Write-Behind (Asynchronous). 41

6.5. Filesystem based cache stores. 42

6.5.1. Single File Store . 42

6.5.2. Soft-Index File Store. 43

6.6. LevelDB Cache Store . 44

6.6.1. Introduction. 45

6.6.2. Configuration . 45

6.6.3. Additional References . 46

6.7. Remote store . 46

6.8. Cluster cache loader . 47

6.9. Command-Line Interface cache loader. 48

6.10. RocksDB Cache Store . 48

6.10.1. Introduction. 48

6.10.2. Configuration . 49

6.10.3. Additional References . 50

6.11. LevelDB Cache Store . 50

6.12. REST Cache Store . 50

6.12.1. Introduction. 50

6.12.2. Javadoc . 50

6.12.3. Configuration . 50

6.13. JPA Cache Store . 51

6.13.1. Introduction. 51

6.13.2. Configuration . 53

6.13.3. Additional References . 53

6.13.4. Javadoc . 54

6.14. Custom Cache Store deployment . 54

6.15. Data Migration . 54

6.16. API . 55

6.17. More implementations . 56

7. Clustering. 57

7.1. Local Mode. 57

7.1.1. Simple Cache . 58

7.2. Invalidation Mode . 59

7.3. Replicated Mode . 61

7.4. Distribution Mode . 61

7.4.1. Read consistency . 62

7.4.2. Key ownership . 63

7.4.3. Initial cluster size . 64

7.4.4. L1 Caching . 65

7.4.5. Server Hinting . 66

7.4.6. Key affinity service . 66

7.4.7. The Grouping API . 68

7.5. Asynchronous Options . 71

7.5.1. Asynchronous Communications . 71

7.5.2. Asynchronous API . 71

7.5.3. Return Values . 71

7.6. Partition handling . 72

7.6.1. Split brain . 73

7.6.2. Successive nodes stopped . 74

7.6.3. Configuring partition handling . 75

7.6.4. Monitoring and administration . 75

8. Marshalling . 77

8.1. The Role Of JBoss Marshalling . 77

8.2. Support For Non-Serializable Objects . 77

8.2.1. Store As Binary . 78

8.3. Advanced Configuration . 79

8.3.1. Troubleshooting . 79

8.4. User Defined Externalizers . 82

8.4.1. Benefits of Externalizers. 83

8.4.2. User Friendly Externalizers . 83

8.4.3. Advanced Externalizers . 84

9. Transactions . 90

9.1. Configuring transactions . 90

9.2. Isolation levels . 92

9.3. Transaction locking . 93

9.3.1. Pessimistic transactional cache . 93

9.3.2. Optimistic transactional cache . 94

9.3.3. What do I need - pessimistic or optimistic transactions? . 94

9.4. Write Skew. 94

9.5. Deadlock detection . 95

9.6. Dealing with exceptions . 96

9.7. Enlisting Synchronizations . 96

9.8. Batching . 96

9.8.1. API . 97

9.8.2. Batching and JTA . 97

9.9. Transaction recovery . 98

9.9.1. When to use recovery . 98

9.9.2. How does it work . 98

9.9.3. Configuring recovery . 98

9.9.4. Recovery cache . 98

9.9.5. Integration with the transaction manager . 99

9.9.6. Reconciliation . 99

9.9.7. Want to know more? . 101

9.10. Total Order based commit protocol . 101

9.10.1. Overview . 102

9.10.2. Configuration . 105

9.10.3. When to use it? . 106

10. Locking and Concurrency . 107

10.1. Locking implementation details . 107

10.1.1. How does it work in clustered caches? . 107

10.1.2. Transactional caches . 108

10.1.3. Isolation levels . 108

10.1.4. The LockManager . 108

10.1.5. Lock striping . 108

10.1.6. Concurrency levels . 108

10.1.7. Lock timeout . 109

10.1.8. Consistency . 109

10.2. Data Versioning . 109

11. Streams . 111

11.1. Common stream operations . 111

11.1.1. Key filtering . 111

11.1.2. Segment based filtering . 111

11.2. Local/Invalidation . 111

11.2.1. Example . 112

11.3. Distribution/Replication . 112

11.3.1. Rehash Aware . 112

11.3.2. Serialization . 112

11.3.3. Parallel Computation . 115

11.3.4. Task timeout . 116

11.3.5. Injection . 116

11.3.6. Distributed Stream execution . 116

11.3.7. Key based rehash aware operators . 117

11.3.8. Intermediate operation exceptions . 118

11.4. Examples . 119

12. Distributed Execution. 122

12.1. DistributedCallable API . 122

12.2. Callable and CDI . 123

12.3. DistributedExecutorService, DistributedTaskBuilder and DistributedTask API 123

12.4. Distributed task failover . 124

12.5. Distributed task execution policy . 126

12.6. Examples . 126

13. Querying . 128

13.1. The infinispan-query module . 128

13.2. Simple example . 128

13.2.1. Notable differences with Hibernate Search . 130

13.2.2. Requirements for the Key: @Transformable . 130

13.3. Configuration . 131

13.3.1. Configuration via XML . 131

13.3.2. Automatic configuration . 132

13.3.3. Lucene Directory . 134

13.3.4. Using programmatic configuration and index mapping . 134

13.4. Cache modes and managing indexes . 135

13.4.1. LOCAL . 135

13.4.2. REPLICATION . 135

13.4.3. DISTRIBUTION . 136

13.4.4. INVALIDATION . 137

13.5. Sharing the Index . 137

13.6. Clustering the Index in Infinispan. 137

13.7. Rebuilding the Index. 138

13.8. Obtaining query statistics . 138

13.9. Infinispan’s Query DSL. 138

13.10. Filtering operators . 140

13.10.1. Filtering based on attributes of embedded entities . 141

13.11. Boolean conditions . 142

13.12. Nested conditions . 142

13.13. Projections. 143

13.14. Sorting . 143

13.15. Pagination . 144

13.16. Grouping and Aggregation . 144

13.16.1. Aggregations . 145

13.16.2. Evaluation of queries with grouping and aggregation . 145

13.17. Using Named Query Parameters . 146

13.18. Continuous Queries. 147

13.18.1. Continuous Query Execution . 147

13.18.2. Running Continuous Queries . 148

13.18.3. Removing Continuous Queries . 149

13.18.4. Notes on performance of Continuous Queries . 150

13.19. More Query DSL samples . 150

14. CDI Support . 151

14.1. Maven Dependencies . 151

14.2. Embedded cache integration . 151

14.2.1. Inject an embedded cache . 151

14.2.2. Override the default embedded cache manager and configuration 153

14.2.3. Configure the transport for clustered use . 154

14.3. Remote cache integration . 154

14.3.1. Inject a remote cache . 154

14.3.2. Override the default remote cache manager . 156

14.4. Use a custom remote/embedded cache manager for one or more cache 156

14.5. Use JCache caching annotations. 157

14.6. Use Cache events and CDI . 158

15. JCache (JSR-107) provider . 160

15.1. Dependencies . 160

15.2. Create a local cache . 160

15.3. Store and retrieve data. 161

15.4. Comparing java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs 161

15.5. Clustering JCache instances. 162

16. Management Tooling . 164

16.1. JMX . 164

16.1.1. Understanding The Exposed MBeans . 164

16.1.2. Enabling JMX Statistics . 165

16.1.3. Multiple JMX Domains . 166

16.1.4. Registering MBeans In Non-Default MBean Servers . 166

16.1.5. MBeans added in Infinispan 5.0 . 167

16.2. Command-Line Interface (CLI) . 167

16.2.1. Commands . 169

16.2.2. upgrade . 175

16.2.3. version . 175

16.2.4. Data Types . 175

16.2.5. Time Values . 176

16.3. Hawt.io . 176

16.4. Writing plugins for other management tools . 176

17. Custom Interceptors . 177

17.1. Adding custom interceptors declaratively . 177

17.2. Adding custom interceptors programatically . 177

17.3. Custom interceptor design . 178

18. Running on Cloud Services . 179

18.1. Amazon Web Services . 179

18.1.1. TCPPing, GossipRouter, S3_PING . 179

18.1.2. GossipRouter . 180

18.1.3. S3_PING . 180

18.1.4. JDBC_PING . 180

19. Kubernetes and OpenShift . 181

19.1. Why Client-Server? . 182

19.2. Why use embedded mode? . 186

19.3. Server Modules . 186

19.4. Using Hot Rod Server . 187

19.4.1. Hot Rod Protocol . 188

19.4.2. Hot Rod Hash Functions . 229

19.4.3. Java Hot Rod client . 229

19.4.4. Return values . 245

19.4.5. Intelligence . 246

19.4.6. Request Balancing . 246

19.4.7. Failover capabilities . 248

19.4.8. Consistent Concurrent Updates With Hot Rod Versioned Operations 249

19.4.9. Interacting With Hot Rod Server From Within Same JVM. 252

19.4.10. Querying via the Java Hot Rod client . 256

19.5. Scripting . 260

19.5.1. Installing scripts . 260

19.5.2. Script metadata . 261

19.5.3. Script bindings . 261

19.5.4. Script parameters . 262

19.5.5. Running Scripts using the Hot Rod Java client . 262

19.5.6. Distributed execution . 262

19.6. Infinispan REST Server . 263

19.6.1. REST API . 263

19.6.2. Client side code . 265

19.7. Using Infinispan Memcached Server . 269

19.7.1. Command Clarifications . 269

19.7.2. Unsupported Features . 269

19.7.3. Talking To Infinispan Memcached Servers From Non-Java Clients 270

19.8. Infinispan WebSocket Server . 271

19.8.1. Javascript API . 272

19.8.2. Sample code. 273

19.8.3. Screencast . 273

19.8.4. Status . 273

19.8.5. Source . 274

20. Embedded/Remote Compatibility . 275

20.1. Enable Compatibility Mode . 275

20.1.1. Optional: Configuring Compatibility Marshaller . 276

20.2. Code examples . 276

21. Security . 277

21.1. Embedded Security . 277

21.1.1. Embedded Permissions . 277

21.1.2. Embedded API . 278

21.1.3. Embedded Configuration . 279

21.2. Security Audit . 281

21.3. Cluster security . 282

22. Integrations. 284

22.1. Apache Spark . 284

22.2. Apache Hadoop . 284

22.3. Apache Lucene . 284

22.3.1. Lucene compatibility. 284

22.3.2. Maven dependencies. 284

22.3.3. How to use it . 285

22.3.4. Configuration . 286

22.3.5. Using a CacheLoader . 287

22.3.6. Storing the index in a database . 287

22.3.7. Loading an existing Lucene Index . 288

22.3.8. Architectural limitations . 288

22.3.9. Suggestions for optimal performance. 289

22.3.10. Demo . 290

22.3.11. Additional Links . 290

22.4. Directory Provider for Hibernate Search . 290

22.4.1. Maven dependencies. 290

22.4.2. How to use it . 290

22.4.3. Configuration . 291

22.4.4. Architecture considerations . 291

22.5. Using Infinispan as JPA-Hibernate Second Level Cache Provider . 291

22.5.1. Configuration . 291

22.5.2. Default Configuration Explained . 293

22.5.3. JTA Transactions Configuration . 294

22.5.4. Advanced Configuration . 296

22.5.5. Handling custom identifiers types . 301

22.5.6. Integration with WildFly . 302

22.5.7. Using Infinispan as remote Second Level Cache? . 302

22.6. Implementing standalone JPA JTA Hibernate application outside J2EE server using

Infinispan 2nd level cache

 303

22.6.1. JBoss Transactions . 304

22.6.2. JOTM . 308

22.6.3. Bitronix . 311

22.6.4. Atomikos . 314

22.7. Infinispan as Hibernate 2nd-Level Cache in JBoss AS 5.x . 317

22.8. Using Infinispan as a Spring Cache provider . 318

22.8.1. Activating Spring Cache support . 318

22.8.2. Telling Spring to use Infinispan as its caching provider . 320

22.8.3. Adding caching to your application code . 320

22.8.4. Externalizing session using Spring Session . 321

22.8.5. Conclusion . 322

22.9. Infinispan modules for WildFly . 323

22.9.1. Installation. 323

22.9.2. Usage . 323

22.9.3. Troubleshooting . 325

23. Grid File System . 326

23.1. WebDAV demo . 327

24. Cross site replication . 328

24.1. Sample deployment. 328

24.1.1. Local cluster’s jgroups .xml configuration. 331

24.1.2. RELAY2 configuration file . 331

24.2. Data replication . 332

24.2.1. Non transactional caches . 332

24.2.2. Transactional caches . 332

24.3. Taking a site offline . 333

24.3.1. Configuration . 333

24.3.2. Taking a site back online . 334

24.4. State Transfer between sites . 334

24.4.1. Handling join/leave nodes . 335

24.4.2. Handling broken link between sites . 335

24.4.3. System Administrator Operations . 335

24.4.4. Configuration . 335

24.5. Reference . 336

25. Rolling upgrades . 337

25.1. Rolling upgrades for Infinispan library/embedded mode . 337

25.1.1. Steps . 337

25.2. Rolling upgrades for Infinispan Servers . 338

25.3. Steps . 338

26. Customizing Key/Value Comparisons . 340

26.1. The Problem of Caching Arrays . 340

26.2. Old workaround: Wrapper Classes . 340

26.3. New solution: Plugging Equivalence functions . 341

26.3.1. Configuring Equivalence functions . 344

26.3.2. Byte array storage example . 345

26.3.3. Other methods in Equivalence interface . 345

27. Extending Infinispan . 346

27.1. Custom Commands . 346

27.1.1. An Example . 346

27.1.2. Preassigned Custom Command Id Ranges . 346

27.2. Extending the configuration builders and parsers . 347

27.3. Cache hierarchy . 347

27.4. Commands . 347

27.5. Visitors . 348

27.6. Interceptors . 348

27.7. Putting it all together . 349

27.8. Subsystem Managers . 349

27.8.1. DistributionManager. 349

27.8.2. TransactionManager . 349

27.8.3. RpcManager . 349

27.8.4. LockManager . 349

27.8.5. PersistenceManager . 349

27.8.6. DataContainer . 349

27.8.7. Configuration . 350

27.9. ComponentRegistry . 350

28. Functional Map API . 352

28.1. Asynchronous and Lazy . 352

28.2. Function transparency . 352

28.3. Constructing Functional Maps . 352

28.4. Read-Only Map API . 353

28.4.1. Read-Only Entry View . 353

28.5. Write-Only Map API . 354

28.5.1. Write-Only Entry View . 355

28.6. Read-Write Map API . 355

28.6.1. Read-Write Entry View . 356

28.7. Metadata Parameter Handling . 357

28.8. Invocation Parameter . 358

28.9. Functional Listeners . 359

28.9.1. Write Listeners . 360

28.9.2. Read-Write Listeners. 361

28.10. Marshalling of Functions . 362

28.11. Use cases for Functional API . 364

Chapter 1. Introduction
Welcome to the official Infinispan user guide. This comprehensive document will guide you
through every last detail of Infinispan. Because of this, it can be a poor starting point if you are new
to Infinispan.


For newbies, starting with the Getting Started Guide or one of the Quickstarts is
probably a better bet.

The Frequently Asked Questions and Glossary are also useful documents to have alongside this user
guide.

1.1. What is Infinispan ?
Infinispan is a distributed in-memory key/value data store with optional schema, available under
the Apache License 2.0. It can be used both as an embedded Java library and as a language-
independent service accessed remotely over a variety of protocols (Hot Rod, REST, Memcached and
WebSockets). It offers advanced functionality such as transactions, events, querying and distributed
processing as well as numerous integrations with frameworks such as the JCache API standard, CDI,
Hibernate, WildFly, Spring Cache, Spring Session, Lucene, Spark and Hadoop.

1.2. Why use Infinispan ?

1.2.1. As a local cache

The primary use for Infinispan is to provide a fast in-memory cache of frequently accessed data.
Suppose you have a slow data source (database, web service, text file, etc): you could load some or
all of that data in memory so that it’s just a memory access away from your code. Using Infinispan
is better than using a simple ConcurrentHashMap, since it has additional useful features such as
expiration and eviction.

1.2.2. As a clustered cache

If your data doesn’t fit in a single node, or you want to invalidate entries across multiple instances
of your application, Infinispan can scale horizontally to several hundred nodes.

1.2.3. As a clustering building block for your applications

If you need to make your application cluster-aware, integrate Infinispan and get access to features
like topology change notifications, cluster communication and clustered execution.

1.2.4. As a remote cache

If you want to be able to scale your caching layer independently from your application, or you need
to make your data available to different applications, possibly even using different languages /
platforms, use Infinispan Server and its various clients.

1

../getting_started/getting_started.html
http://www.infinispan.org/documentation
../faqs/faqs.html
../glossary/glossary.html

1.2.5. As a data grid

Data you place in Infinispan doesn’t have to be temporary: use Infinispan as your primary store
and use its powerful features such as transactions, notifications, queries, distributed execution,
distributed streams, analytics to process data quickly.

1.2.6. As a geographical backup for your data

Infinispan supports replication between clusters, allowing you to backup your data across
geographically remote sites.

2

Chapter 2. Configuration
Infinispan offers both declarative and programmatic configuration.

Declarative configuration comes in a form of XML document that adheres to a provided Infinispan
configuration XML schema.

Every aspect of Infinispan that can be configured declaratively can also be configured
programmatically In fact, declarative configuration, behind the scenes, invokes programmatic
configuration API as the XML configuration file is being processed. One can even use a combination
of these approaches. For example, you can read static XML configuration files and at runtime
programmatically tune that same configuration. Or you can use a certain static configuration
defined in XML as a starting point or template for defining additional configurations in runtime.

There are two main configuration abstractions in Infinispan: global and cache.

Global configuration

Global configuration defines global settings shared among all cache instances created by a single
EmbeddedCacheManager. Shared resources like thread pools, serialization/marshalling settings,
transport and network settings, JMX domains are all part of global configuration.

Cache configuration

Cache configuration is specific to the actual caching domain itself: it specifies eviction, locking,
transaction, clustering, persistence etc. You can specify as many named cache configurations as you
need. One of these caches can be indicated as the default cache, which is the cache returned by the
CacheManager.getCache() API, whereas other named caches are retrieved via the
CacheManager.getCache(String name) API. Whenever they are specified, named caches inherit
settings from the default cache while additional behavior can be specified or overridden. Infinispan
also provides a very flexible inheritance mechanism, where you can define a hierarchy of
configuration templates, allowing multiple caches to share the same settings, or overriding specific
parameters as necessary.


Embedded and Server configuration use different schemas, but we strive to
maintain them as compatible as possible so that you can easily migrate between
the two.

2.1. Configuring caches declaratively
One of the major goals of Infinispan is to aim for zero configuration. A simple XML configuration
file containing nothing more than a single infinispan element is enough to get you started. The
configuration file listed below provides sensible defaults and is perfectly valid.

infinispan.xml

<infinispan />

However, that would only give you the most basic, local mode, non-clustered cache. Non-basic

3

http://www.infinispan.org/schemas/infinispan-config-9.0.xsd
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html

configurations are very likely to use customized global and default cache elements.

Declarative configuration is the most common approach to configuring Infinispan cache instances.
In order to read XML configuration files one would typically construct an instance of
DefaultCacheManager by pointing to an XML file containing Infinispan configuration. Once the
configuration file is read you can obtain reference to the default cache instance.

EmbeddedCacheManager manager = new DefaultCacheManager("my-config-file.xml");
Cache defaultCache = manager.getCache();

or any other named instance specified in my-config-file.xml.

Cache someNamedCache = manager.getCache("someNamedCache");

The name of the default cache is defined in the <cache-container> element of the XML configuration
file, and additional caches can be configured using the <local-cache>,<distributed-cache>
,<invalidation-cache> or <replicated-cache> elements.

The following example shows the simplest possible configuration for each of the cache types
supported by Infinispan:

<infinispan>
 <cache-container default-cache="local">
 <transport cluster="mycluster"/>
 <local-cache name="local"/>
 <invalidation-cache name="invalidation" mode="SYNC"/>
 <replicated-cache name="repl-sync" mode="SYNC"/>
 <distributed-cache name="dist-sync" mode="SYNC"/>
 </cache-container>
</infinispan>

2.1.1. Cache configuration templates

As mentioned above, Infinispan supports the notion of configuration templates. These are full or
partial configuration declarations which can be shared among multiple caches or as the basis for
more complex configurations.

The following example shows how a configuration named local-template is used to define a cache
named local.

4

<infinispan>
 <cache-container default-cache="local">
 <!-- template configurations -->
 <local-cache-configuration name="local-template">
 <expiration interval="10000" lifespan="10" max-idle="10"/>
 </local-cache-configuration>

 <!-- cache definitions -->
 <local-cache name="local" configuration="local-template" />
 </cache-container>
</infinispan>

Templates can inherit from previously defined templates, augmenting and/or overriding some or
all of the configuration elements:

<infinispan>
 <cache-container default-cache="local">
 <!-- template configurations -->
 <local-cache-configuration name="base-template">
 <expiration interval="10000" lifespan="10" max-idle="10"/>
 </local-cache-configuration>

 <local-cache-configuration name="extended-template" configuration="base-
template">
 <expiration lifespan="20"/>
 <eviction max-entries="2000" strategy="LRU"/>
 </local-cache-configuration>

 <!-- cache definitions -->
 <local-cache name="local" configuration="base-template" />
 <local-cache name="local-bounded" configuration="extended-template" />
 </cache-container>
</infinispan>

In the above example, base-template defines a local cache with a specific expiration configuration.
The extended-template configuration inherits from base-template, overriding just a single parameter
of the expiration element (all other attributes are inherited) and adds an eviction element. Finally,
two caches are defined: local which uses the base-template configuration and local-bounded which
uses the extended-template configuration.


Be aware that for multi-valued elements (such as properties) the inheritance is
additive, i.e. the child configuration will be the result of merging the properties
from the parent and its own.

2.1.2. Declarative configuration reference

For more details on the declarative configuration schema, refer to the configuration reference. If

5

http://docs.jboss.org/infinispan/9.0/configdocs

you are using XML editing tools for configuration writing you can use the provided Infinispan
schema to assist you.

2.2. Configuring caches programmatically
Programmatic Infinispan configuration is centered around the CacheManager and
ConfigurationBuilder API. Although every single aspect of Infinispan configuration could be set
programmatically, the most usual approach is to create a starting point in a form of XML
configuration file and then in runtime, if needed, programmatically tune a specific configuration to
suit the use case best.

EmbeddedCacheManager manager = new DefaultCacheManager("my-config-file.xml");
Cache defaultCache = manager.getCache();

Let’s assume that a new synchronously replicated cache is to be configured programmatically. First,
a fresh instance of Configuration object is created using ConfigurationBuilder helper object, and the
cache mode is set to synchronous replication. Finally, the configuration is defined/registered with a
manager.

Configuration c = new ConfigurationBuilder().clustering().cacheMode(CacheMode
.REPL_SYNC).build();

String newCacheName = "repl";
manager.defineConfiguration(newCacheName, c);
Cache<String, String> cache = manager.getCache(newCacheName);

The default cache configuration (or any other cache configuration) can be used as a starting point
for creation of a new cache. For example, lets say that infinispan-config-file.xml specifies a
replicated cache as a default and that a distributed cache is desired with a specific L1 lifespan while
at the same time retaining all other aspects of a default cache. Therefore, the starting point would
be to read an instance of a default Configuration object and use ConfigurationBuilder to construct
and modify cache mode and L1 lifespan on a new Configuration object. As a final step the
configuration is defined/registered with a manager.

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan-config-file.xml");
Configuration dcc = manager.getDefaultCacheConfiguration();
Configuration c = new ConfigurationBuilder().read(dcc).clustering().cacheMode
(CacheMode.DIST_SYNC).l1().lifespan(60000L).build();

String newCacheName = "distributedWithL1";
manager.defineConfiguration(newCacheName, c);
Cache<String, String> cache = manager.getCache(newCacheName);

As long as the base configuration is the default named cache, the previous code works perfectly
fine. However, other times the base configuration might be another named cache. So, how can new
configurations be defined based on other defined caches? Take the previous example and imagine

6

http://infinispan.org/schemas/infinispan-config-9.0.xsd

that instead of taking the default cache as base, a named cache called "replicatedCache" is used as
base. The code would look something like this:

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan-config-file.xml");
Configuration rc = manager.getCacheConfiguration("replicatedCache");
Configuration c = new ConfigurationBuilder().read(rc).clustering().cacheMode(
CacheMode.DIST_SYNC).l1().lifespan(60000L).build();

String newCacheName = "distributedWithL1";
manager.defineConfiguration(newCacheName, c);
Cache<String, String> cache = manager.getCache(newCacheName);

Refer to CacheManager , ConfigurationBuilder , Configuration , and GlobalConfiguration javadocs
for more details.

2.2.1. ConfigurationBuilder Programmatic Configuration API

While the above paragraph shows how to combine declarative and programmatic configuration,
starting from an XML configuration is completely optional. The ConfigurationBuilder fluent
interface style allows for easier to write and more readable programmatic configuration. This
approach can be used for both the global and the cache level configuration. GlobalConfiguration
objects are constructed using GlobalConfigurationBuilder while Configuration objects are built
using ConfigurationBuilder. Let’s look at some examples on configuring both global and cache level
options with this API:

One of the most commonly configured global option is the transport layer, where you indicate how
an Infinispan node will discover the others:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder().transport()
 .defaultTransport()
 .clusterName("qa-cluster")
 .addProperty("configurationFile", "jgroups-tcp.xml")
 .machineId("qa-machine").rackId("qa-rack")
 .build();

Sometimes you might also want to enable collection of global JMX statistics at cache manager level
or get information about the transport. To enable global JMX statistics simply do:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
 .globalJmxStatistics()
 .enable()
 .build();

Please note that by not enabling (or by explicitly disabling) global JMX statistics your are just
turning off statistics collection. The corresponding MBean is still registered and can be used to
manage the cache manager in general, but the statistics attributes do not return meaningful values.

7

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/CacheManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/configuration/cache/ConfigurationBuilder.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/configuration/cache/Configuration.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/configuration/global/GlobalConfiguration.html
https://docs.jboss.org/infinispan/9.0/apidocs/jmxComponents.html

Further options at the global JMX statistics level allows you to configure the cache manager name
which comes handy when you have multiple cache managers running on the same system, or how
to locate the JMX MBean Server:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
 .globalJmxStatistics()
 .cacheManagerName("SalesCacheManager")
 .mBeanServerLookup(new JBossMBeanServerLookup())
 .build();

Some of the Infinispan features are powered by a group of the thread pool executors which can
also be tweaked at this global level. For example:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
 .replicationQueueThreadPool()
 .threadPoolFactory(ScheduledThreadPoolExecutorFactory.create())
 .build();

You can not only configure global, cache manager level, options, but you can also configure cache
level options such as the cluster mode:

Configuration config = new ConfigurationBuilder()
 .clustering()
 .cacheMode(CacheMode.DIST_SYNC)
 .sync()
 .l1().lifespan(25000L)
 .hash().numOwners(3)
 .build();

Or you can configure eviction and expiration settings:

Configuration config = new ConfigurationBuilder()
 .eviction()
 .maxEntries(20000).strategy(EvictionStrategy.LIRS).expiration()
 .wakeUpInterval(5000L)
 .maxIdle(120000L)
 .build();

An application might also want to interact with an Infinispan cache within the boundaries of JTA
and to do that you need to configure the transaction layer and optionally tweak the locking settings.
When interacting with transactional caches, you might want to enable recovery to deal with
transactions that finished with an heuristic outcome and if you do that, you will often want to
enable JMX management and statistics gathering too:

8

Configuration config = new ConfigurationBuilder()
 .locking()
 .concurrencyLevel(10000).isolationLevel(IsolationLevel.REPEATABLE_READ)
 .lockAcquisitionTimeout(12000L).useLockStriping(false).writeSkewCheck(true)
 .versioning().enable().scheme(VersioningScheme.SIMPLE)
 .transaction()
 .transactionManagerLookup(new GenericTransactionManagerLookup())
 .recovery()
 .jmxStatistics()
 .build();

Configuring Infinispan with chained cache stores is simple too:

Configuration config = new ConfigurationBuilder()
 .persistence().passivation(false)
 .addSingleFileStore().location("/tmp").async().enable()
 .preload(false).shared(false).threadPoolSize(20).build();

2.2.2. Advanced programmatic configuration

The fluent configuration can also be used to configure more advanced or exotic options, such as
advanced externalizers:

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
 .serialization()
 .addAdvancedExternalizer(998, new PersonExternalizer())
 .addAdvancedExternalizer(999, new AddressExternalizer())
 .build();

Or, add custom interceptors:

Configuration config = new ConfigurationBuilder()
 .customInterceptors().addInterceptor()
 .interceptor(new FirstInterceptor()).position(InterceptorConfiguration.Position
.FIRST)
 .interceptor(new LastInterceptor()).position(InterceptorConfiguration.Position
.LAST)
 .interceptor(new FixPositionInterceptor()).index(8)
 .interceptor(new AfterInterceptor()).after(NonTransactionalLockingInterceptor
.class)
 .interceptor(new BeforeInterceptor()).before(CallInterceptor.class)
 .build();

For information on the individual configuration options, please check the configuration guide .

9

http://docs.jboss.org/infinispan/9.0/configdocs/

2.3. Configuration Migration Tools
The configuration format of Infinispan has changed since version 6.0 in order to align the
embedded schema with the one used by the server. For this reason, when upgrading to Infinispan
7.x or later, you should use the configuration converter included in the all distribution. Simply
invoke it from the command-line passing the old configuration file as the first parameter and the
name of the converted file as the second parameter.

To convert on Unix/Linux/macOS:

bin/config-converter.sh oldconfig.xml newconfig.xml

on Windows:

bin\config-converter.bat oldconfig.xml newconfig.xml


If you wish to help write conversion tools from other caching systems, please
contact infinispan-dev.

2.4. Clustered Configuration
Infinispan uses JGroups for network communications when in clustered mode. Infinispan ships
with pre-configured JGroups stacks that make it easy for you to jump-start a clustered configuration.

2.4.1. Using an external JGroups file

If you are configuring your cache programmatically, all you need to do is:

GlobalConfiguration gc = new GlobalConfigurationBuilder()
 .transport().defaultTransport()
 .addProperty("configurationFile", "jgroups.xml")
 .build();

and if you happen to use an XML file to configure Infinispan, just use:

10

https://lists.jboss.org/mailman/listinfo/infinispan-dev
http://www.jgroups.org

<infinispan>
 <jgroups>
 <stack-file name="external-file" path="jgroups.xml"/>
 </jgroups>
 <cache-container default-cache="replicatedCache">
 <transport stack="external-file" />
 <replicated-cache name="replicatedCache"/>
 </cache-container>

 ...

</infinispan>

In both cases above, Infinispan looks for jgroups.xml first in your classpath, and then for an
absolute path name if not found in the classpath.

2.4.2. Use one of the pre-configured JGroups files

Infinispan ships with a few different JGroups files (packaged in infinispan-core.jar) which means
they will already be on your classpath by default. All you need to do is specify the file name, e.g.,
instead of jgroups.xml above, specify /default-configs/default-jgroups-tcp.xml.

The configurations available are:

• default-jgroups-udp.xml - Uses UDP as a transport, and UDP multicast for discovery. Usually
suitable for larger (over 100 nodes) clusters or if you are using replication or invalidation.
Minimises opening too many sockets.

• default-jgroups-tcp.xml - Uses TCP as a transport and UDP multicast for discovery. Better for
smaller clusters (under 100 nodes) only if you are using distribution, as TCP is more efficient as
a point-to-point protocol

• default-jgroups-ec2.xml - Uses TCP as a transport and S3_PING for discovery. Suitable on
Amazon EC2 nodes where UDP multicast isn’t available.

• default-jgroups-kubernetes.xml - Uses TCP as a transport and KUBE_PING for discovery.
Suitable on Kubernetes and OpenShift nodes where UDP multicast is not always available.

Tuning JGroups settings

The settings above can be further tuned without editing the XML files themselves. Passing in
certain system properties to your JVM at startup can affect the behaviour of some of these settings.
The table below shows you which settings can be configured in this way. E.g.,

$ java -cp ... -Djgroups.tcp.port=1234 -Djgroups.tcp.address=10.11.12.13

Table 1. default-jgroups-udp.xml

System Property Description Default Required?

11

#replicated_mode
#invalidation_mode
#distribution_mode
http://jgroups.org/manual/index.html#_s3_ping
http://aws.amazon.com/ec2/
https://github.com/jgroups-extras/jgroups-kubernetes
http://kubernetes.io/
https://www.openshift.org/

jgroups.udp.mcast_add
r

IP address to use for
multicast (both for
communications and
discovery). Must be a
valid Class D IP
address, suitable for IP
multicast.

228.6.7.8 No

jgroups.udp.mcast_port Port to use for
multicast socket

46655 No

jgroups.udp.ip_ttl Specifies the time-to-
live (TTL) for IP
multicast packets. The
value here refers to the
number of network
hops a packet is
allowed to make before
it is dropped

2 No

Table 2. default-jgroups-tcp.xml

System Property Description Default Required?

jgroups.tcp.address IP address to use for
the TCP transport.

127.0.0.1 No

jgroups.tcp.port Port to use for TCP
socket

7800 No

jgroups.udp.mcast_add
r

IP address to use for
multicast (for
discovery). Must be a
valid Class D IP
address, suitable for IP
multicast.

228.6.7.8 No

jgroups.udp.mcast_port Port to use for
multicast socket

46655 No

jgroups.udp.ip_ttl Specifies the time-to-
live (TTL) for IP
multicast packets. The
value here refers to the
number of network
hops a packet is
allowed to make before
it is dropped

2 No

Table 3. default-jgroups-ec2.xml

System Property Description Default Required?

jgroups.tcp.address IP address to use for
the TCP transport.

127.0.0.1 No

12

http://compnetworking.about.com/od/workingwithipaddresses/l/aa042400b.htm
http://compnetworking.about.com/od/workingwithipaddresses/l/aa042400b.htm

jgroups.tcp.port Port to use for TCP
socket

7800 No

jgroups.s3.access_key The Amazon S3 access
key used to access an
S3 bucket

No

jgroups.s3.secret_access
_key

The Amazon S3 secret
key used to access an
S3 bucket

No

jgroups.s3.bucket Name of the Amazon S3
bucket to use. Must be
unique and must
already exist

No

Table 4. default-jgroups-kubernetes.xml

System Property Description Default Required?

jgroups.tcp.address IP address to use for
the TCP transport.

eth0 No

jgroups.tcp.port Port to use for TCP
socket

7800 No

2.4.3. Further reading

JGroups also supports more system property overrides, details of which can be found on this page:
SystemProps

In addition, the JGroups configuration files shipped with Infinispan are intended as a jumping off
point to getting something up and running, and working. More often than not though, you will
want to fine-tune your JGroups stack further to extract every ounce of performance from your
network equipment. For this, your next stop should be the JGroups manual which has a detailed
section on configuring each of the protocols you see in a JGroups configuration file.

13

http://www.jgroups.org/manual4/index.html#SystemProperties
http://jgroups.org/manual/html/protlist.html
http://jgroups.org/manual/html/protlist.html

Chapter 3. The CacheManager API
Infinispan provides the EmbeddedCacheManager, as mentioned in the configuration section, as the API
for exposing various operations related to the Infinispan cache container and its supporting
elements. This section is to go over some of these pieces as well as when you may need to use them.

3.1. Clustering Information
The EmbeddedCacheManager has quite a few methods to provide information as to how the cluster is
operating. The following methods only really make sense when being used in a clustered
environment (that is when a Transport is configured).

3.1.1. Member Information

When you are using a cluster it is very important to be able to find information about membership
in the cluster including who is the owner of the cluster.

getMembers

The getMembers() method returns all of the nodes in the current cluster.

getCoordinator

The getCoordinator() method will tell you which one of the members is the coordinator of the
cluster. For most intents you shouldn’t need to care who the coordinator is. You can use
isCoordinator method directly to see if the local node is the coordinator as well.

3.1.2. Other methods

getTransport

This method provides you access to the underlying Transport that is used to send messages to other
nodes. In most cases a user wouldn’t ever need to go to this level, but if you want to get Transport
specific information (in this case JGroups) you can use this mechanism.

getStats

The stats provided here are coalesced from all of the active caches in this manager. These stats can
be useful to see if there is something wrong going on with your cluster overall.

3.2. Cluster Executor
The cache manager comes with a nice utility that allows you to execute arbitrary code in the
cluster. Note this is unlike the Distributed Execution Service as this requires no Cache to be used.
This cluster executor can be retrieved by calling executor() of the EmbeddedCacheManager.

This manager was built specifically using Java 8 and such has functional APIs in mind, thus all
methods take a functional inteface as an argument. Also since these arguments will be sent to other
nodes they need to be serializable. We even used a nice trick to ensure our lambdas are
immediately Serializable. That is by having the arguments implement both Serializable and the
real argument type (ie. Runnable or Function). The JRE will pick the most specific class when

14

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getMembers--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getCoordinator--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#isCoordinator--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getTransport--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/EmbeddedCacheManager.html#getStats--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/ClusterExecutor.html

determining which method to invoke, so in that case your lambdas will always be serializable.

Below you will see an example of how to use the new executor.

3.2.1. Example: Dynamically Start and Stop Clustered Cache

This example shows how you can use the ClusterExecutor to dynamically start and stop a cache.

Non-Clustered

Start start/stop cache in non-clustered mode is simple. You can use
EmbeddedCacheManager.defineConfiguration(cacheName, configuration) to define a cache, and then
call EmbeddedCacheManager.getCache(cacheName).

If you don’t define a specific configuration for the cache and directly call
EmbeddedCacheManager.getCache(…) , then a new cache would be created with default
configurations.

To stop a cache, call EmbeddedCacheManager.remove(cacheName)

Clustered

To start a clustered cache, you’ll need to do the above on every clustered node, while making sure
the cache mode is clustered, of course.

You can start the cache by calling EmbeddedCacheManager.getCache(…) To do this on every single
node though, you could write your own service to do that, or with JMX, or use the ClusterExecutor.

StartCache.java

 EmbeddedCacheManager manager = null;
 String cacheName = "start-this-cache";
 manager.executor().submitConsumer(localManager -> {
 localManager.getCache(cacheName);
 return null;
 }, (address, value, throwable) -> {
 if (throwable != null) {
 log.fatal("Cache startup encountered exception on node " + address, t);
 }
 }).join();

The first argument is a Function that when invoked will pass the EmbeddedCacheManager local to each
node. Normally this also allows for a return value to be sent back, but unfortunately a Cache
instance is not serializable so we can’t send that back to the calling node. Thus we have to return
null. In this case the second argument TriConsumer would be called back for each node and will
contain who this response is from (address), the return value (if there was one, in our case this is
always null), and a throwable if a problem occurred. The value and throwable variables will never
both be non null. That is if the throwable is non null the value will always be null. Lastly this
returns a CompletableFuture that will be complete after all of the node’s responses have been fully
processed.

15

Chapter 4. The Cache API

4.1. The Cache interface
Infinispan exposes a simple, JSR-107 compliant Cache interface.

The Cache interface exposes simple methods for adding, retrieving and removing entries, including
atomic mechanisms exposed by the JDK’s ConcurrentMap interface. Based on the cache mode used,
invoking these methods will trigger a number of things to happen, potentially even including
replicating an entry to a remote node or looking up an entry from a remote node, or potentially a
cache store.


For simple usage, using the Cache API should be no different from using the JDK
Map API, and hence migrating from simple in-memory caches based on a Map to
Infinispan’s Cache should be trivial.

4.1.1. Performance Concerns of Certain Map Methods

Certain methods exposed in Map have certain performance consequences when used with
Infinispan, such as size() , values() , keySet() and entrySet() . Specific methods on the keySet, values
and entrySet are fine for use please see their Javadoc for further details.

Attempting to perform these operations globally would have large performance impact as well as
become a scalability bottleneck. As such, these methods should only be used for informational or
debugging purposes only.

It should be noted that using certain flags with the withFlags method can mitigate some of these
concerns, please check each method’s documentation for more details.

For more performance tips, have a look at our Performance Guide.

4.1.2. Mortal and Immortal Data

Further to simply storing entries, Infinispan’s cache API allows you to attach mortality information
to data. For example, simply using put(key, value) would create an immortal entry, i.e., an entry
that lives in the cache forever, until it is removed (or evicted from memory to prevent running out
of memory). If, however, you put data in the cache using put(key, value, lifespan, timeunit) , this
creates a mortal entry, i.e., an entry that has a fixed lifespan and expires after that lifespan.

In addition to lifespan , Infinispan also supports maxIdle as an additional metric with which to
determine expiration. Any combination of lifespans or maxIdles can be used.

4.1.3. Example of Using Expiry and Mortal Data

See these examples of using mortal data with Infinispan.

16

http://jcp.org/en/jsr/detail?id=107
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#size--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#values--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#keySet--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#entrySet--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
../performance_guide/performance_guide.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/BasicCache.html#put-K-V-long-java.util.concurrent.TimeUnit-

4.1.4. putForExternalRead operation

Infinispan’s Cache class contains a different 'put' operation called putForExternalRead . This
operation is particularly useful when Infinispan is used as a temporary cache for data that is
persisted elsewhere. Under heavy read scenarios, contention in the cache should not delay the real
transactions at hand, since caching should just be an optimization and not something that gets in
the way.

To achieve this, putForExternalRead acts as a put call that only operates if the key is not present in
the cache, and fails fast and silently if another thread is trying to store the same key at the same
time. In this particular scenario, caching data is a way to optimise the system and it’s not desirable
that a failure in caching affects the on-going transaction, hence why failure is handled differently.
putForExternalRead is consider to be a fast operation because regardless of whether it’s successful
or not, it doesn’t wait for any locks, and so returns to the caller promptly.

To understand how to use this operation, let’s look at basic example. Imagine a cache of Person
instances, each keyed by a PersonId , whose data originates in a separate data store. The following
code shows the most common pattern of using putForExternalRead within the context of this
example:

// Id of the person to look up, provided by the application
PersonId id = ...;

// Get a reference to the cache where person instances will be stored
Cache<PersonId, Person> cache = ...;

// First, check whether the cache contains the person instance
// associated with with the given id
Person cachedPerson = cache.get(id);

if (cachedPerson == null) {
 // The person is not cached yet, so query the data store with the id
 Person person = dataStore.lookup(id);

 // Cache the person along with the id so that future requests can
 // retrieve it from memory rather than going to the data store
 cache.putForExternalRead(id, person);
} else {
 // The person was found in the cache, so return it to the application
 return cachedPerson;
}

Please note that putForExternalRead should never be used as a mechanism to update the cache
with a new Person instance originating from application execution (i.e. from a transaction that
modifies a Person’s address). When updating cached values, please use the standard put operation,
otherwise the possibility of caching corrupt data is likely.

17

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-

4.2. The AdvancedCache interface
In addition to the simple Cache interface, Infinispan offers an AdvancedCache interface, geared
towards extension authors. The AdvancedCache offers the ability to inject custom interceptors,
access certain internal components and to apply flags to alter the default behavior of certain cache
methods. The following code snippet depicts how an AdvancedCache can be obtained:

AdvancedCache advancedCache = cache.getAdvancedCache();

4.2.1. Flags

Flags are applied to regular cache methods to alter the behavior of certain methods. For a list of all
available flags, and their effects, see the Flag enumeration. Flags are applied using
AdvancedCache.withFlags() . This builder method can be used to apply any number of flags to a
cache invocation, for example:

advancedCache.withFlags(Flag.CACHE_MODE_LOCAL, Flag.SKIP_LOCKING)
 .withFlags(Flag.FORCE_SYNCHRONOUS)
 .put("hello", "world");

4.2.2. Custom Interceptors

The AdvancedCache interface also offers advanced developers a mechanism with which to attach
custom interceptors. Custom interceptors allow developers to alter the behavior of the cache API
methods, and the AdvancedCache interface allows developers to attach these interceptors
programmatically, at run-time. See the AdvancedCache Javadocs for more details.

For more information on writing custom interceptors, see this chapter.

4.3. Listeners and Notifications
Infinispan offers a listener API, where clients can register for and get notified when events take
place. This annotation-driven API applies to 2 different levels: cache level events and cache
manager level events.

Events trigger a notification which is dispatched to listeners. Listeners are simple POJO s
annotated with @Listener and registered using the methods defined in the Listenable interface.


Both Cache and CacheManager implement Listenable, which means you can
attach listeners to either a cache or a cache manager, to receive either cache-level
or cache manager-level notifications.

For example, the following class defines a listener to print out some information every time a new
entry is added to the cache:

18

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
http://en.wikipedia.org/wiki/Plain_Old_Java_Object
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/Listener.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/Listenable.html

@Listener
public class PrintWhenAdded {

 @CacheEntryCreated
 public void print(CacheEntryCreatedEvent event) {
 System.out.println("New entry " + event.getKey() + " created in the cache");
 }

}

For more comprehensive examples, please see the Javadocs for @Listener.

4.3.1. Cache-level notifications

Cache-level events occur on a per-cache basis, and by default are only raised on nodes where the
events occur. Note in a distributed cache these events are only raised on the owners of data being
affected. Examples of cache-level events are entries being added, removed, modified, etc. These
events trigger notifications to listeners registered to a specific cache.

Please see the Javadocs on the org.infinispan.notifications.cachelistener.annotation package for a
comprehensive list of all cache-level notifications, and their respective method-level annotations.


Please refer to the Javadocs on the
org.infinispan.notifications.cachelistener.annotation package for the list of cache-
level notifications available in Infinispan.

Cluster Listeners

The cluster listeners should be used when it is desirable to listen to the cache events on a single
node.

To do so all that is required is set to annotate your listener as being clustered.

@Listener (clustered = true)
public class MyClusterListener { }

There are some limitations to cluster listeners from a non clustered listener.

1. A cluster listener can only listen to @CacheEntryModified, @CacheEntryCreated, @CacheEntryRemoved
and @CacheEntryExpired events. Note this means any other type of event will not be listened to
for this listener.

2. Only the post event is sent to a cluster listener, the pre event is ignored.

Event filtering and conversion

All applicable events on the node where the listener is installed will be raised to the listener. It is
possible to dynamically filter what events are raised by using a KeyFilter (only allows filtering on

19

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/Listener.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/filter/KeyFilter.html

keys) or CacheEventFilter (used to filter for keys, old value, old metadata, new value, new metadata,
whether command was retried, if the event is before the event (ie. isPre) and also the command
type).

The example here shows a simple KeyFilter that will only allow events to be raised when an event
modified the entry for the key Only Me.

public class SpecificKeyFilter implements KeyFilter<String> {
 private final String keyToAccept;

 public SpecificKeyFilter(String keyToAccept) {
 if (keyToAccept == null) {
 throw new NullPointerException();
 }
 this.keyToAccept = keyToAccept;
 }

 boolean accept(String key) {
 return keyToAccept.equals(key);
 }
}

...
cache.addListener(listener, new SpecificKeyFilter("Only Me"));
...

This can be useful when you want to limit what events you receive in a more efficient manner.

There is also a CacheEventConverter that can be supplied that allows for converting a value to
another before raising the event. This can be nice to modularize any code that does value
conversions.



The mentioned filters and converters are especially beneficial when used in
conjunction with a Cluster Listener. This is because the filtering and conversion
is done on the node where the event originated and not on the node where event
is listened to. This can provide benefits of not having to replicate events across
the cluster (filter) or even have reduced payloads (converter).

Initial State Events

When a listener is installed it will only be notified of events after it is fully installed.

It may be desirable to get the current state of the cache contents upon first registration of listener
by having an event generated of type @CacheEntryCreated for each element in the cache. Any
additionally generated events during this initial phase will be queued until appropriate events have
been raised.

20

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/filter/CacheEventFilter.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/filter/CacheEventConverter.html


This only works for clustered listeners at this time. ISPN-4608 covers adding this
for non clustered listeners.

Duplicate Events

It is possible in a non transactional cache to receive duplicate events. This is possible when the
primary owner of a key goes down while trying to perform a write operation such as a put.

Infinispan internally will rectify the put operation by sending it to the new primary owner for the
given key automatically, however there are no guarantees in regards to if the write was first
replicated to backups. Thus more than 1 of the following write events (CacheEntryCreatedEvent,
CacheEntryModifiedEvent & CacheEntryRemovedEvent) may be sent on a single operation.

If more than one event is generated Infinispan will mark the event that it was generated by a
retried command to help the user to know when this occurs without having to pay attention to view
changes.

@Listener
public class MyRetryListener {
 @CacheEntryModified
 public void entryModified(CacheEntryModifiedEvent event) {
 if (event.isCommandRetried()) {
 // Do something
 }
 }
}

Also when using a CacheEventFilter or CacheEventConverter the EventType contains a method
isRetry to tell if the event was generated due to retry.

4.3.2. Cache manager-level notifications

Cache manager-level events occur on a cache manager. These too are global and cluster-wide, but
involve events that affect all caches created by a single cache manager. Examples of cache
manager-level events are nodes joining or leaving a cluster, or caches starting or stopping.

Please see the Javadocs on the org.infinispan.notifications.cachemanagerlistener.annotation
package for a comprehensive list of all cache manager-level notifications, and their respective
method-level annotations.

4.3.3. Synchronicity of events

By default, all notifications are dispatched in the same thread that generates the event. This means
that you must write your listener such that it does not block or do anything that takes too long, as it
would prevent the thread from progressing. Alternatively, you could annotate your listener as
asynchronous , in which case a separate thread pool will be used to dispatch the notification and
prevent blocking the event originating thread. To do this, simply annotate your listener such:

21

https://issues.jboss.org/browse/ISPN-4608
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachelistener/filter/EventType.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachemanagerlistener/annotation/package-summary.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/notifications/cachemanagerlistener/annotation/package-summary.html

@Listener (sync = false)
public class MyAsyncListener { }

Asynchronous thread pool

To tune the thread pool used to dispatch such asynchronous notifications, use the <listener-
executor /> XML element in your configuration file.

4.4. Asynchronous API
In addition to synchronous API methods like Cache.put() , Cache.remove() , etc., Infinispan also has
an asynchronous, non-blocking API where you can achieve the same results in a non-blocking
fashion.

These methods are named in a similar fashion to their blocking counterparts, with "Async"
appended. E.g., Cache.putAsync() , Cache.removeAsync() , etc. These asynchronous counterparts
return a Future containing the actual result of the operation.

For example, in a cache parameterized as Cache<String, String>, Cache.put(String key, String
value) returns a String. Cache.putAsync(String key, String value) would return a Future<String>.

4.4.1. Why use such an API?

Non-blocking APIs are powerful in that they provide all of the guarantees of synchronous
communications - with the ability to handle communication failures and exceptions - with the ease
of not having to block until a call completes. This allows you to better harness parallelism in your
system. For example:

Set<Future<?>> futures = new HashSet<Future<?>>();
futures.add(cache.putAsync(key1, value1)); // does not block
futures.add(cache.putAsync(key2, value2)); // does not block
futures.add(cache.putAsync(key3, value3)); // does not block

// the remote calls for the 3 puts will effectively be executed
// in parallel, particularly useful if running in distributed mode
// and the 3 keys would typically be pushed to 3 different nodes
// in the cluster

// check that the puts completed successfully
for (Future<?> f: futures) f.get();

4.4.2. Which processes actually happen asynchronously?

There are 4 things in Infinispan that can be considered to be on the critical path of a typical write
operation. These are, in order of cost:

• network calls

22

http://docs.jboss.org/infinispan/9.0/configdocs/infinispan-config-9.0.html
http://docs.jboss.org/infinispan/9.0/configdocs/infinispan-config-9.0.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#remove-java.lang.Object-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/AsyncCache.html#putAsync-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/AsyncCache.html#removeAsync-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

• marshalling

• writing to a cache store (optional)

• locking

As of Infinispan 4.0, using the async methods will take the network calls and marshalling off the
critical path. For various technical reasons, writing to a cache store and acquiring locks, however,
still happens in the caller’s thread. In future, we plan to take these offline as well. See this
developer mail list thread about this topic.

4.4.3. Notifying futures

Strictly, these methods do not return JDK Futures, but rather a sub-interface known as a
NotifyingFuture . The main difference is that you can attach a listener to a NotifyingFuture such
that you could be notified when the future completes. Here is an example of making use of a
notifying future:

FutureListener futureListener = new FutureListener() {

 public void futureDone(Future future) {
 try {
 future.get();
 } catch (Exception e) {
 // Future did not complete successfully
 System.out.println("Help!");
 }
 }
};

cache.putAsync("key", "value").attachListener(futureListener);

4.4.4. Further reading

The Javadocs on the Cache interface has some examples on using the asynchronous API, as does
this article by Manik Surtani introducing the API.

4.5. Invocation Flags
An important aspect of getting the most of Infinispan is the use of per-invocation flags in order to
provide specific behaviour to each particular cache call. By doing this, some important
optimizations can be implemented potentially saving precious time and network resources. One of
the most popular usages of flags can be found right in Cache API, underneath the
putForExternalRead() method which is used to load an Infinispan cache with data read from an
external resource. In order to make this call efficient, Infinispan basically calls a normal put
operation passing the following flags: FAIL_SILENTLY , FORCE_ASYNCHRONOUS ,
ZERO_LOCK_ACQUISITION_TIMEOUT

What Infinispan is doing here is effectively saying that when putting data read from external read,

23

http://lists.jboss.org/pipermail/infinispan-dev/2010-January/002219.html
http://lists.jboss.org/pipermail/infinispan-dev/2010-January/002219.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/util/concurrent/NotifyingFuture.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html
http://infinispan.blogspot.com/2009/05/whats-so-cool-about-asynchronous-api.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#putForExternalRead-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html#FAIL_SILENTLY
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html#FORCE_ASYNCHRONOUS
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html#ZERO_LOCK_ACQUISITION_TIMEOUT

it will use an almost-zero lock acquisition time and that if the locks cannot be acquired, it will fail
silently without throwing any exception related to lock acquisition. It also specifies that regardless
of the cache mode, if the cache is clustered, it will replicate asynchronously and so won’t wait for
responses from other nodes. The combination of all these flags make this kind of operation very
efficient, and the efficiency comes from the fact this type of putForExternalRead calls are used with
the knowledge that client can always head back to a persistent store of some sorts to retrieve the
data that should be stored in memory. So, any attempt to store the data is just a best effort and if not
possible, the client should try again if there’s a cache miss.

4.5.1. DecoratedCache

Another approach would be to use the DecoratedCache wrapper. This allows you to reuse flags. For
example:

AdvancedCache cache = ...
DecoratedCache strictlyLocal = new DecoratedCache(cache, Flag.CACHE_MODE_LOCAL, Flag
.SKIP_CACHE_STORE);
strictlyLocal.put("local_1", "only");
strictlyLocal.put("local_2", "only");
strictlyLocal.put("local_3", "only");

This approach makes your code more readable.

4.5.2. Examples

If you want to use these or any other flags available, which by the way are described in detail the
Flag enumeration , you simply need to get hold of the advanced cache and add the flags you need
via the withFlags() method call. For example:

Cache cache = ...
cache.getAdvancedCache()
 .withFlags(Flag.SKIP_CACHE_STORE, Flag.CACHE_MODE_LOCAL)
 .put("local", "only");

It’s worth noting that these flags are only active for the duration of the cache operation. If the same
flags need to be used in several invocations, even if they’re in the same transaction, withFlags()
needs to be called repeatedly. Clearly, if the cache operation is to be replicated in another node, the
flags are carried over to the remote nodes as well.

Suppressing return values from a put() or remove()

Another very important use case is when you want a write operation such as put() to not return the
previous value. To do that, you need to use two flags to make sure that in a distributed
environment, no remote lookup is done to potentially get previous value, and if the cache is
configured with a cache loader, to avoid loading the previous value from the cache store. You can
see these two flags in action in the following example:

24

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/DecoratedCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#withFlags-org.infinispan.context.Flag…​-

Cache cache = ...
cache.getAdvancedCache()
 .withFlags(Flag.SKIP_REMOTE_LOOKUP, Flag.SKIP_CACHE_LOAD)
 .put("local", "only")

For more information, please check the Flag enumeration javadoc.

4.6. Tree API Module
Infinispan’s tree API module offers clients the possibility of storing data using a tree-structure like
API. This API is similar to the one provided by JBoss Cache, hence the tree module is perfect for
those users wanting to migrate their applications from JBoss Cache to Infinispan, who want to limit
changes their codebase as part of the migration. Besides, it’s important to understand that
Infinispan provides this tree API much more efficiently than JBoss Cache did, so if you’re a user of
the tree API in JBoss Cache, you should consider migrating to Infinispan.

4.6.1. What is Tree API about?

The aim of this API is to store information in a hierarchical way. The hierarchy is defined using
paths represented as Fqn or fully qualified names , for example: /this/is/a/fqn/path or /another/path .
In the hierarchy, there’s a special path called root which represents the starting point of all paths
and it’s represented as: /

Each FQN path is represented as a node where users can store data using a key/value pair style API
(i.e. a Map). For example, in /persons/john , you could store information belonging to John, for
example: surname=Smith, birthdate=05/02/1980…etc.

Please remember that users should not use root as a place to store data. Instead, users should
define their own paths and store data there. The following sections will delve into the practical
aspects of this API.

4.6.2. Using the Tree API

Dependencies

For your application to use the tree API, you need to import infinispan-tree.jar which can be located
in the Infinispan binary distributions, or you can simply add a dependency to this module in your
pom.xml:

25

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/context/Flag.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/package-summary.html
http://docs.jboss.org/jbosscache/3.2.1.GA/apidocs/org/jboss/cache/package-summary.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/Fqn.html

pom.xml

<dependencies>
 ...
 <dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-tree</artifactId>
 <version>$put-infinispan-version-here</version>
 </dependency>
 ...
</dependencies>

4.6.3. Creating a Tree Cache

The first step to use the tree API is to actually create a tree cache. To do so, you need to create an
Infinispan Cache as you’d normally do, and using the TreeCacheFactory , create an instance of
TreeCache . A very important note to remember here is that the Cache instance passed to the
factory must be configured with invocation batching. For example:

import org.infinispan.config.Configuration;
import org.infinispan.tree.TreeCacheFactory;
import org.infinispan.tree.TreeCache;
...
Configuration config = new Configuration();
config.setInvocationBatchingEnabled(true);
Cache cache = new DefaultCacheManager(config).getCache();
TreeCache treeCache = TreeCacheFactory.createTreeCache(cache);

4.6.4. Manipulating data in a Tree Cache

The Tree API effectively provides two ways to interact with the data:

Via TreeCache convenience methods: These methods are located within the TreeCache interface
and enable users to store , retrieve , move , remove …etc data with a single call that takes the Fqn ,
in String or Fqn format, and the data involved in the call. For example:

treeCache.put("/persons/john", "surname", "Smith");

Or:

import org.infinispan.tree.Fqn;
...
Fqn johnFqn = Fqn.fromString("persons/john");
Calendar calendar = Calendar.getInstance();
calendar.set(1980, 5, 2);
treeCache.put(johnFqn, "birthdate", calendar.getTime()));

26

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCacheFactory.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html#put-java.lang.String-K-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html#get-org.infinispan.tree.Fqn-K-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html#move-org.infinispan.tree.Fqn-org.infinispan.tree.Fqn-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/TreeCache.html#remove-org.infinispan.tree.Fqn-K-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/Fqn.html

Via Node API: It allows finer control over the individual nodes that form the FQN, allowing
manipulation of nodes relative to a particular node. For example:

import org.infinispan.tree.Node;
...
TreeCache treeCache = ...
Fqn johnFqn = Fqn.fromElements("persons", "john");
Node<String, Object> john = treeCache.getRoot().addChild(johnFqn);
john.put("surname", "Smith");

Or:

Node persons = treeCache.getRoot().addChild(Fqn.fromString("persons"));
Node<String, Object> john = persons.addChild(Fqn.fromString("john"));
john.put("surname", "Smith");

Or even:

Fqn personsFqn = Fqn.fromString("persons");
Fqn johnFqn = Fqn.fromRelative(personsFqn, Fqn.fromString("john"));
Node<String, Object> john = treeCache.getRoot().addChild(johnFqn);
john.put("surname", "Smith");

A node also provides the ability to access its parent or children . For example:

Node<String, Object> john = ...
Node persons = john.getParent();

Or:

Set<Node<String, Object>> personsChildren = persons.getChildren();

4.6.5. Common Operations

In the previous section, some of the most used operations, such as addition and retrieval, have been
shown. However, there are other important operations that are worth mentioning, such as remove:

You can for example remove an entire node, i.e. /persons/john , using:

treeCache.removeNode("/persons/john");

Or remove a child node, i.e. persons that a child of root, via:

27

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/Node.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/Node.html#getParent--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/tree/Node.html#getChildren--

treeCache.getRoot().removeChild(Fqn.fromString("persons"));

You can also remove a particular key/value pair in a node:

Node john = treeCache.getRoot().getChild(Fqn.fromElements("persons", "john"));
john.remove("surname");

Or you can remove all data in a node with:

Node john = treeCache.getRoot().getChild(Fqn.fromElements("persons", "john"));
john.clearData();

Another important operation supported by Tree API is the ability to move nodes around in the tree.
Imagine we have a node called "john" which is located under root node. The following example is
going to show how to we can move "john" node to be under "persons" node:

Current tree structure:

 /persons
 /john

Moving trees from one FQN to another:

Node john = treeCache.getRoot().addChild(Fqn.fromString("john"));
Node persons = treeCache.getRoot().getChild(Fqn.fromString("persons"));
treeCache.move(john.getFqn(), persons.getFqn());

Final tree structure:

 /persons/john

4.6.6. Locking in the Tree API

Understanding when and how locks are acquired when manipulating the tree structure is
important in order to maximise the performance of any client application interacting against the
tree, while at the same time maintaining consistency.

Locking on the tree API happens on a per node basis. So, if you’re putting or updating a key/value
under a particular node, a write lock is acquired for that node. In such case, no write locks are
acquired for parent node of the node being modified, and no locks are acquired for children nodes.

If you’re adding or removing a node, the parent is not locked for writing. In JBoss Cache, this
behaviour was configurable with the default being that parent was not locked for insertion or

28

removal.

Finally, when a node is moved, the node that’s been moved and any of its children are locked, but
also the target node and the new location of the moved node and its children. To understand this
better, let’s look at an example:

Imagine you have a hierarchy like this and we want to move c/ to be underneath b/:

 /
 --|--
 / \
 a c
 | |
 b e
 |
 d

The end result would be something like this:

 /
 |
 a
 |
 b
 --|--
 / \
 d c
 |
 e

To make this move, locks would have been acquired on:

• /a/b - because it’s the parent underneath which the data will be put

• /c and /c/e - because they’re the nodes that are being moved

• /a/b/c and /a/b/c/e - because that’s new target location for the nodes being moved

4.6.7. Listeners for tree cache events

The current Infinispan listeners have been designed with key/value store notifications in mind, and
hence they do not map to tree cache events correctly. Tree cache specific listeners that map directly
to tree cache events (i.e. adding a child…etc) are desirable but these are not yet available. If you’re
interested in this type of listeners, please follow this issue to find out about any progress in this
area.

29

https://issues.jboss.org/browse/ISPN-1935

Chapter 5. Eviction
Infinispan supports eviction of entries, such that you do not run out of memory. Eviction is typically
used in conjunction with a cache store, so that entries are not permanently lost when evicted, since
eviction only removes entries from memory and not from cache stores or the rest of the cluster.



Passivation is also a popular option when using eviction, so that only a single
copy of an entry is maintained - either in memory or in a cache store, but not
both. The main benefit of using passivation over a regular cache store is that
updates to entries which exist in memory are cheaper since the update doesn’t
need to be made to the cache store as well.



that eviction occurs on a local basis, and is not cluster-wide. Each node runs an
eviction thread to analyse the contents of its in-memory container and decide
what to evict. Eviction does not take into account the amount of free memory in
the JVM as threshold to starts evicting entries. You have to set size attribute of
the eviction element to be greater than zero in order for eviction to be turned on.
If size is too large you can run out of memory. The size attribute will probably
take some tuning in each use case.

5.1. Enabling Eviction
Eviction is configured by adding the <eviction /> element to your <*-cache /> configuration
sections or using EvictionConfigurationBuilder API programmatic approach.

All cache entry are evicted by piggybacking on user threads that are hitting the cache.

5.1.1. Eviction strategies

NONE

This eviction strategy effectively disables the eviction thread. This is the default configuration.

UNORDERED

UNORDERED eviction strategy is a legacy eviction strategy that has been deprecated. If
UNORDERED strategy is specified LRU eviction algorithm will be used.

LRU

If LRU eviction is used cache entries are selected for eviction using a well known least-recently-
used pattern.

LIRS

LRU eviction algorithm, although simple and easy to understand, under performs in cases of weak
access locality (one time access entries are not timely replaced, entries to be accessed soonest are
unfortunately replaced, and so on). Recently, a new eviction algorithm - LIRS has gathered a lot of
attention because it addresses weak access locality shortcomings of LRU yet it retains LRU’s
simplicity. Eviction in LIRS algorithm relies on history information of cache entries accesses using
so called Inter-Reference Recency (a.k.a IRR) and the Recency. The IRR of a cache entry A refers to

30

http://docs.jboss.org/infinispan/9.0/configdocs/infinispan-config-9.0.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/configuration/cache/EvictionConfigurationBuilder.html

number of other distinct entries accessed between the last two consecutive accesses to cache entry
A, while recency refers to the number of other entries accessed from last reference to A up to
current time point. If we relied only on cache recency we would essentially have LRU functionality.
However, in addition to recency LIRS tracks elements that are in low IRR and high IRR, aptly named
LIR and HIR cache entry blocks respectively. LIRS eviction algorithm essentially keeps entries with
a low IRR in the cache as much as possible while evicting high IRR entries if eviction is required. If
recency of a LIR cache entry increases to a certain point and entry in HIR gets accessed at a smaller
recency than that of the LIR entry, the LIR/HIR statuses of the two blocks are switched. Entries in
HIR may be evicted regardless of its recency, even if element was recently accessed.

MANUAL

This eviction strategy is identical to NONE, in that it disables automatic eviction altogether, but
signals the intention that the user wants to evict entries manually. The effect is to disable
misleading warning validation messages.

5.1.2. Eviction types

COUNT

This type of eviction will remove entries based on how many there are in the cache. Once the count
of entries has grown larger than the size then an entry will be removed to make room.

MEMORY

This type of eviction will estimate how much each entry will take up in memory and will remove an
entry when the total size of all entries is larger than the configured size. This type only works with
primitive wrapper, String and byte[] types, thus if custom types are desired you must enable
storeAsBinary. Also MEMORY based eviction only works with LRU policy.

5.1.3. More defaults

By default when no <eviction /> element is specified, no eviction takes place.

In case there is an eviction element, this table describes behaviour of eviction based on information
provided in the xml configuration ("-" in Supplied size or Supplied strategy column means that the
attribute wasn’t supplied)

Supplied size Supplied strategy Example Eviction behaviour

- - <eviction /> no eviction

> 0 - <eviction size="100"
/>

the strategy defaults to
LIRS and eviction takes
place

> 0 NONE <eviction size="100"
strategy="NONE" />

the strategy defaults to
LIRS and eviction takes
place

> 0 != NONE <eviction size="100"
strategy="LRU" />

eviction takes place
with defined strategy

0 - <eviction size="0" /> no eviction

31

Supplied size Supplied strategy Example Eviction behaviour

0 NONE <eviction size="0"
strategy="NONE" />

no eviction

0 != NONE <eviction size="0"
strategy="LRU" />

ConfigurationException

< 0 - <eviction size="-1" /> no eviction

< 0 NONE <eviction size="-1"
strategy="NONE" />

no eviction

< 0 != NONE <eviction size="-1"
strategy="LRU" />

ConfigurationException

5.2. Expiration
Similar to, but unlike eviction, is expiration. Expiration allows you to attach lifespan and/or
maximum idle times to entries. Entries that exceed these times are treated as invalid and are
removed. When removed expired entries are not passivated like evicted entries (if passivation is
turned on).


Unlike eviction, expired entries are removed globally - from memory, cache
stores, and cluster-wide.

By default entries created are immortal and do not have a lifespan or maximum idle time. Using
the cache API, mortal entries can be created with lifespans and/or maximum idle times. Further,
default lifespans and/or maximum idle times can be configured by adding the <expiration />
element to your <*-cache /> configuration sections.

When an entry expires it will reside in the data container or cache store until it is accessed again by
a user request. There is also an optional expiration reaper that can run at a given configurable
interval of milliseconds which will check for expired entries and remove them.

5.2.1. Difference between Eviction and Expiration

Both Eviction and Expiration are means of cleaning the cache of unused entries and thus guarding
the heap against OutOfMemory exceptions, so now a brief explanation of the difference.

With eviction you set maximal number of entries you want to keep in the cache and if this limit is
exceeded, some candidates are found to be removed according to a choosen eviction strategy (LRU,
LIRS, etc…). Eviction can be setup to work with passivation (evicting to a cache store).

With expiration you set time criteria for entries, how long you want to keep them in cache. Either
you set maximum lifespan of the entry - time it is allowed to stay in the cache or maximum idle time
, time it’s allowed to be untouched (no operation performed with given key).

5.3. Eviction Examples
1. Expiration is a top-level construct, represented in the configuration as well as in the cache API.

32

http://docs.jboss.org/infinispan/9.0/configdocs/infinispan-config-9.0.html

2. While eviction is local to each cache instance , expiration is cluster-wide . Expiration lifespans
and maxIdle values are replicated along with the cache entry.

3. Expiration lifespan and maxIdle are also persisted in CacheStores, so this information survives
eviction/passivation.

4. Four eviction strategies are shipped, EvictionStrategy.NONE , EvictionStrategy.LRU ,
EvictionStrategy.UNORDERED , and EvictionStrategy.LIRS .

5.3.1. Configuration

Eviction may be configured using the Configuration bean or the XML file. Eviction configuration is
on a per-cache basis. Valid eviction-related configuration elements are:

<eviction strategy="LRU" size="2000"/>
<expiration lifespan="1000" max-idle="500" interval="1000" />

Programmatically, the same would be defined using:

Configuration c = new ConfigurationBuilder().eviction().strategy(EvictionStrategy.LRU)
 .size(2000).expiration().wakeUpInterval(5000l).lifespan(1000l).maxIdle
(500l)
 .build();

5.3.2. Memory Based Eviction Configuration

Memory based eviction may require some additional configuration options if you are using your
own custom types (as Infinispan is normally used). In this case Infinispan cannot estimate the
memory usage of your classes and as such you are required to use storeAsBinary when memory
based eviction is used.

<!-- Enable memory based eviction with 1 GB/>
<eviction strategy="LRU" size="1000000000" type="MEMORY"/>
<store-as-binary enabled="true"/>

Configuration c = new ConfigurationBuilder().eviction().strategy(EvictionStrategy.LRU)
 .type(EvictionType.MEMORY)
 .size(1_000_000_000)
 .storeAsBinary().enable()
 .build();

5.3.3. Default values

Eviction is disabled by default. If enabled (using an empty <eviction /> element), certain default
values are used:

33

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/eviction/EvictionStrategy.html#NONE
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/eviction/EvictionStrategy.html#LRU
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/eviction/EvictionStrategy.html#UNORDERED
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/eviction/EvictionStrategy.html#LIRS

• strategy: EvictionStrategy.NONE is assumed, if a strategy is not specified..

• wakeupInterval: 60000 is used if not specified.

• If you wish to disable the eviction thread, set wakeupInterval to -1.

• size: -1 is used if not specified, which means unlimited entries.

• 0 means no entries, and the eviction thread will strive to keep the cache empty.

Expiration lifespan and maxIdle both default to -1.

5.3.4. Using expiration

Expiration allows you to set either a lifespan or a maximum idle time on each key/value pair stored
in the cache. This can either be set cache-wide using the configuration, as described above, or it
can be defined per-key/value pair using the Cache interface. Any values defined per key/value pair
overrides the cache-wide default for the specific entry in question.

For example, assume the following configuration:

<expiration lifespan="1000" />

// this entry will expire in 1000 millis
cache.put("pinot noir", pinotNoirPrice);

// this entry will expire in 2000 millis
cache.put("chardonnay", chardonnayPrice, 2, TimeUnit.SECONDS);

// this entry will expire 1000 millis after it is last accessed
cache.put("pinot grigio", pinotGrigioPrice, -1,
 TimeUnit.SECONDS, 1, TimeUnit.SECONDS);

// this entry will expire 1000 millis after it is last accessed, or
// in 5000 millis, which ever triggers first
cache.put("riesling", rieslingPrice, 5,
 TimeUnit.SECONDS, 1, TimeUnit.SECONDS);

5.4. Expiration designs
Central to expiration is an ExpirationManager.

The purpose of the ExpirationManager is to drive the expiration thread which periodically purges
items from the DataContainer. If the expiration thread is disabled (wakeupInterval set to -1)
expiration can be kicked off manually using ExprationManager.processExpiration(), for example
from another maintenance thread that may run periodically in your application.

The expiration manager processes expirations in the following manner:

1. Causes the data container to purge expired entries

34

2. Causes cache stores (if any) to purge expired entries

35

Chapter 6. Persistence
Persistence allows configuring external (persistent) storage engines complementary to the default
in memory storage offered by Infinispan. An external persistent storage might be useful for several
reasons:

• Increased Durability. Memory is volatile, so a cache store could increase the life-span of the
information store in the cache.

• Write-through. Interpose Infinispan as a caching layer between an application and a (custom)
external storage engine.

• Overflow Data. By using eviction and passivation, one can store only the "hot" data in memory
and overflow the data that is less frequently used to disk.

The integration with the persistent store is done through the following SPI: CacheLoader,
CacheWriter, AdvancedCacheLoader and AdvancedCacheWriter (discussed in the following
sections).

These SPIs allow for the following features:

• Alignment with JSR-107. The CacheWriter and CacheLoader interface are similar to the the
loader and writer in JSR 107. This should considerably help writing portable stores across
JCache compliant vendors.

• Simplified Transaction Integration. All necessary locking is handled by Infinispan automatically
and implementations don’t have to be concerned with coordinating concurrent access to the
store. Even though concurrent writes on the same key are not going to happen (depending
locking mode in use), implementors should expect operations on the store to happen from
multiple/different threads and code the implementation accordingly.

• Parallel Iteration. It is now possible to iterate over entries in the store with multiple threads in
parallel.

• Reduced Serialization. This translates in less CPU usage. The new API exposes the stored entries
in serialized format. If an entry is fetched from persistent storage for the sole purpose of being
sent remotely, we no longer need to deserialize it (when reading from the store) and serialize it
back (when writing to the wire). Now we can write to the wire the serialized format as read
from the storage directly.

6.1. Configuration
Stores (readers and/or writers) can be configured in a chain. Cache read operation looks at all of the
specified CacheLoader s, in the order they are configured, until it finds a valid and non-null element
of data. When performing writes all cache CacheWriter s are written to, except if the
ignoreModifications element has been set to true for a specific cache writer.

36

http://jcp.org/en/jsr/detail?id=107
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/CacheWriter.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/CacheLoader.html


Implementing both a CacheWriter and CacheLoader

it is possible and recommended for a store provider to implement both the
CacheWriter and the CacheLoader interface. The stores that do this are considered
both for reading and writing(assuming read-only=false) data.

This is the configuration of a custom(not shipped with infinispan) store:
 <local-cache name="myCustomStore">
 <persistence passivation="false">
 <store
 class="org.acme.CustomStore"
 fetch-state="false" preload="true" shared="false"
 purge="true" read-only="false" singleton="false">

 <write-behind modification-queue-size="123" thread-pool-size="23" />

 <property name="myProp">${system.property}</property>
 </store>
 </persistence>
 </local-cache>

Explanation of the configuration options:

• passivation (false by default) has a significant impact on how Infinispan interacts with the
loaders, and is discussed in the Cache Passivation section.

• class defines the class of the store and must implement CacheLoader, CacheWriter or both

• fetch-state (false by default) determines whether or not to fetch the persistent state of a cache
when joining a cluster. The aim here is to take the persistent state of a cache and apply it to the
local cache store of the joining node. Fetch persistent state is ignored if a cache store is
configured to be shared, since they access the same data. Only one configured cache loader may
set this property to true; if more than one cache loader does so, a configuration exception will
be thrown when starting your cache service.

• preload (false by default) if true, when the cache starts, data stored in the cache loader will be
pre-loaded into memory. This is particularly useful when data in the cache loader is needed
immediately after startup and you want to avoid cache operations being delayed as a result of
loading this data lazily. Can be used to provide a 'warm-cache' on startup, however there is a
performance penalty as startup time is affected by this process. Note that preloading is done in
a local fashion, so any data loaded is only stored locally in the node. No replication or
distribution of the preloaded data happens. Also, Infinispan only preloads up to the maximum
configured number of entries in eviction.

• shared (false by default) indicates that the cache loader is shared among different cache
instances, for example where all instances in a cluster use the same JDBC settings to talk to the
same remote, shared database. Setting this to true prevents repeated and unnecessary writes of
the same data to the cache loader by different cache instances.

• purge (false by default) empties the specified cache loader (if read-only is false) when the cache
loader starts up.

37

• read-only (false by default) prevents new data to be persisted to the store.

• write-behind (disabled by default) element has to do with a persisting data asynchronously to
the actual store. It is discussed in detail here.

• singleton (disabled by default) attribute enables modifications to be stored by only one node in
the cluster, the coordinator. Essentially, whenever any data comes in to some node it is always
replicated(or distributed) so as to keep the caches in-memory states in sync; the coordinator,
though, has the sole responsibility of pushing that state to disk. This functionality must be
configured by setting the enabled attribute to true in all nodes. Only the coordinator of the
cluster will persist data, but all nodes must have this configured to prevent others from
persisting as well. You cannot configure a store as shared and singleton.

• additional attributes can be configures within the properties section. These attributes configure
aspects specific to each cache loader, e.g. the myProp attribute in the previous example. Other
loaders, with more complex configuration, also introduce additional sub-elements to the basic
configuration. See for example the JDBC cache store configuration examples below

The configuration above is used for a generic store implementation. However the store
implementation provided by default with Infinispan have a more rich configuration schema, in
which the properties section is replaced with XML attributes:

<persistence passivation="false">
 <!-- note that class is missing and is induced by the fileStore element name -->
 <file-store
 shared="false" preload="true"
 fetch-state="true"
 read-only="false"
 purge="false"
 path="${java.io.tmpdir}">
 <write-behind thread-pool-size="5" />
 </file-store>
</persistence>

The same configuration can be achieved programmatically:

38

 ConfigurationBuilder builder = new ConfigurationBuilder();
 builder.persistence()
 .passivation(false)
 .addSingleFileStore()
 .preload(true)
 .shared(false)
 .fetchPersistentState(true)
 .ignoreModifications(false)
 .purgeOnStartup(false)
 .location(System.getProperty("java.io.tmpdir"))
 .async()
 .enabled(true)
 .threadPoolSize(5)
 .singleton()
 .enabled(true)
 .pushStateWhenCoordinator(true)
 .pushStateTimeout(20000);

6.2. Cache Passivation
A CacheWriter can be used to enforce entry passivation and activation on eviction in a cache. Cache
passivation is the process of removing an object from in-memory cache and writing it to a
secondary data store (e.g., file system, database) on eviction. Cache activation is the process of
restoring an object from the data store into the in-memory cache when it’s needed to be used. In
order to fully support passivation, a store needs to be both a CacheWriter and a CacheLoader. In
both cases, the configured cache store is used to read from the loader and write to the data writer.

When an eviction policy in effect evicts an entry from the cache, if passivation is enabled, a
notification that the entry is being passivated will be emitted to the cache listeners and the entry
will be stored. When a user attempts to retrieve a entry that was evicted earlier, the entry is (lazily)
loaded from the cache loader into memory. When the entry and its children have been loaded,
they’re removed from the cache loader and a notification is emitted to the cache listeners that the
entry has been activated. In order to enable passivation just set passivation to true (false by
default). When passivation is used, only the first cache loader configured is used and all others are
ignored.

6.2.1. Cache Loader Behavior with Passivation Disabled vs Enabled

When passivation is disabled, whenever an element is modified, added or removed, then that
modification is persisted in the backend store via the cache loader. There is no direct relationship
between eviction and cache loading. If you don’t use eviction, what’s in the persistent store is
basically a copy of what’s in memory. If you do use eviction, what’s in the persistent store is
basically a superset of what’s in memory (i.e. it includes entries that have been evicted from
memory). When passivation is enabled, there is a direct relationship between eviction and the
cache loader. Writes to the persistent store via the cache loader only occur as part of the eviction
process. Data is deleted from the persistent store when the application reads it back into memory.
In this case, what’s in memory and what’s in the persistent store are two subsets of the total

39

information set, with no intersection between the subsets.

The following is a simple example, showing what state is in RAM and in the persistent store after
each step of a 6 step process:

1. Insert keyOne

2. Insert keyTwo

3. Eviction thread runs, evicts keyOne

4. Read keyOne

5. Eviction thread runs, evicts keyTwo

6. Remove keyTwo

When passivation is disabled

1. Memory: keyOne Disk: keyOne

2. Memory: keyOne, keyTwo Disk: keyOne, keyTwo

3. Memory: keyTwo Disk: keyOne, keyTwo

4. Memory: keyOne, keyTwo Disk: keyOne, keyTwo

5. Memory: keyOne Disk: keyOne, keyTwo

6. Memory: keyOne Disk: keyOne

When passivation is enabled

1. Memory: keyOne Disk: (none)

2. Memory: keyOne, keyTwo Disk: (none)

3. Memory: keyTwo Disk: keyOne

4. Memory: keyOne, keyTwo Disk: (none)

5. Memory: keyOne Disk: keyTwo

6. Memory: keyOne Disk: (none)

6.3. Cache Loaders and transactional caches
When a cache is transactional and a cache loader is present, the cache loader won’t be enlisted in
the transaction in which the cache is part. That means that it is possible to have inconsistencies at
cache loader level: the transaction to succeed applying the in-memory state but (partially) fail
applying the changes to the store. Manual recovery would not work with caches stores.

6.4. Write-Through And Write-Behind Caching
Infinispan can optionally be configured with one or several cache stores allowing it to store data in
a persistent location such as shared JDBC database, a local filesystem, etc. Infinispan can handle
updates to the cache store in two different ways:

• Write-Through (Synchronous)

40

• Write-Behind (Asynchronous)

6.4.1. Write-Through (Synchronous)

In this mode, which is supported in version 4.0, when clients update a cache entry, i.e. via a
Cache.put() invocation, the call will not return until Infinispan has gone to the underlying cache
store and has updated it. Normally, this means that updates to the cache store are done within the
boundaries of the client thread.

The main advantage of this mode is that the cache store is updated at the same time as the cache,
hence the cache store is consistent with the cache contents. On the other hand, using this mode
reduces performance because the latency of having to access and update the cache store directly
impacts the duration of the cache operation.

Configuring a write-through or synchronous cache store does not require any particular
configuration option. By default, unless marked explicitly as write-behind or asynchronous, all
cache stores are write-through or synchronous. Please find below a sample configuration file of a
write-through unshared local file cache store:

<persistence passivation="false">
 <file-store fetch-state="true"
 read-only="false"
 purge="false" path="${java.io.tmpdir}"/>
 </persistence>

6.4.2. Write-Behind (Asynchronous)

In this mode, updates to the cache are asynchronously written to the cache store. Normally, this
means that updates to the cache store are done by a separate thread to the client thread interacting
with the cache.

One of the major advantages of this mode is that the performance of a cache operation does not get
affected by the update of the underlying store. On the other hand, since the update happens
asynchronously, there’s a time window during the which the cache store can contain stale data
compared to the cache. Even within write-behind, there are different strategies that can be used to
store data:

Unscheduled Write-Behind Strategy

In this mode, which is supported in version 4.0, Infinispan tries to store changes as quickly as
possible by taking the pending changes and applying them in parallel. Normally, this means that
there are several threads waiting for modifications to occur and once they’re available, they apply
them to underlying cache store.

This strategy is suited for cache stores with low latency and cheap operation cost. One such
example would a local unshared file based cache store, where the cache store is local to the cache
itself. With this strategy, the window of inconsistency between the contents of the cache and the
cache store are reduced to the lowest possible time. Please find below a sample configuration file of

41

this strategy:

<persistence passivation="false">
 <file-store fetch-state="true"
 read-only="false"
 purge="false" path="${java.io.tmpdir}">
 <!-- write behind configuration starts here -->
 <write-behind />
 <!-- write behind configuration ends here -->
 </file-store>
</persistence>

Scheduled Write-Behind Strategy

First of all, please note that this strategy is not included in version 4.0 but it will be implemented at
a later stage. ISPN-328 has been created to track this feature request. If you want it implemented,
please vote for it on that page, and watch it to be notified of any changes. The following explanation
refers to how we envision it to work.

In this mode, Infinispan would periodically store changes to the underlying cache store. The
periodicity could be defined in seconds, minutes, days, etc.

Since this strategy is oriented at cache stores with high latency or expensive operation cost, it
makes sense to coalesce changes, so that if there are multiple operations queued on the same key,
only the latest value is applied to cache store. With this strategy, the window of inconsistency
between the contents of the cache and the cache store depends on the delay or periodicity
configured. The higher the periodicity, the higher the chance of inconsistency.

6.5. Filesystem based cache stores
A filesystem-based cache store is typically used when you want to have a cache with a cache store
available locally which stores data that has overflowed from memory, having exceeded size and/or
time restrictions.



Usage of filesystem-based cache stores on shared filesystems like NFS, Windows
shares, etc. should be avoided as these do not implement proper file locking and
can cause data corruption. File systems are inherently not transactional, so when
attempting to use your cache in a transactional context, failures when writing to
the file (which happens during the commit phase) cannot be recovered.

6.5.1. Single File Store

Starting with Infinispan 6.0, a new file cache store has been created called single file cache store.
The old pre-6.0 file cache store has been completely removed, and it’s no longer configurable.


Check Data Migration section for information on how to migrate old file based
cache store data to the new single file cache store.

42

https://jira.jboss.org/jira/browse/ISPN-328

The new single file cache store keeps all data in a single file. The way it looks up data is by keeping
an in-memory index of keys and the positions of their values in this file. This results in greater
performance compared to old file cache store. There is one caveat though. Since the single file
based cache store keeps keys in memory, it can lead to increased memory consumption, and hence
it’s not recommended for caches with big keys.

In certain use cases, this cache store suffers from fragmentation: if you store larger and larger
values, the space is not reused and instead the entry is appended at the end of the file. The space
(now empty) is reused only if you write another entry that can fit there. Also, when you remove all
entries from the cache, the file won’t shrink, and neither will be de-fragmented.

These are the available configuration options for the single file cache store:

• path where data will be stored. (e.g., path="/tmp/myDataStore"). By default, the location is
Infinispan-SingleFileStore.

• max-entries specifies the maximum number of entries to keep in this file store. As mentioned
before, in order to speed up lookups, the single file cache store keeps an index of keys and their
corresponding position in the file. To avoid this index resulting in memory consumption
problems, this cache store can bounded by a maximum number of entries that it stores. If this
limit is exceeded, entries are removed permanently using the LRU algorithm both from the in-
memory index and the underlying file based cache store. So, setting a maximum limit only
makes sense when Infinispan is used as a cache, whose contents can be recomputed or they can
be retrieved from the authoritative data store. If this maximum limit is set when the Infinispan
is used as an authoritative data store, it could lead to data loss, and hence it’s not recommended
for this use case. The default value is -1 which means that the file store size is unlimited.

<persistence>
 <file-store path="/tmp/myDataStore" max-entries="5000"/>
</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence()
 .addSingleFileStore()
 .location("/tmp/myDataStore")
 .maxEntries(5000);

6.5.2. Soft-Index File Store

In Infinispan 7.0 we have added a new experimental local file-based cache store - Soft-Index File
Store. It is a pure Java implementation that tries to get around Single File Store’s drawbacks by
implementing a variant of B+ tree that is cached in-memory using Java’s soft references - here’s
where the name Soft-Index File Store comes from. This B+ tree (called Index) is offloaded on
filesystem to single file that does not need to be persisted - it is purged and rebuilt when the cache
store restarts, its purpose is only offloading.

The data that should be persisted are stored in a set of files that are written in append-only way -

43

that means that if you store this on conventional magnetic disk, it does not have to seek when
writing a burst of entries. It is not stored in single file but set of files. When the usage of any of
these files drops below 50% (the entries from the file are overwritten to another file), the file starts
to be collected, moving the live entries into different file and in the end removing that file from
disk.

Most of the structures in Soft Index File Store are bounded, therefore you don’t have to be afraid of
OOMEs. For example, you can configure the limits for concurrently open files as well.

Configuration

Here is an example of Soft-Index File Store configuration via XML:

<persistence>
 <soft-index-file-store xmlns="urn:infinispan:config:store:soft-index:8.0">
 <index path="/tmp/sifs/testCache/index" />
 <data path="/tmp/sifs/testCache/data" />
 </soft-index-file-store>
</persistence>

Programmatic configuration would look as follows:

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence()
 .addStore(SoftIndexFileStoreConfigurationBuilder.class)
 .indexLocation("/tmp/sifs/testCache/index");
 .dataLocation("/tmp/sifs/testCache/data")

Current limitations

Size of a node in the Index is limited, by default it is 4096 bytes, though it can be configured. This
size also limits the key length (or rather the length of the serialized form): you can’t use keys longer
than size of the node - 15 bytes. Moreover, the key length is stored as 'short', limiting it to 32767
bytes. There’s no way how you can use longer keys - SIFS throws an exception when the key is
longer after serialization.

When entries are stored with expiration, SIFS cannot detect that some of those entries are expired.
Therefore, such old file will not be compacted (method AdvancedStore.purgeExpired() is not
implemented). This can lead to excessive file-system space usage.

6.6. LevelDB Cache Store
The Infinispan Community

44

6.6.1. Introduction

LevelDB is a fast key-value filesystem-based storage from Google. The LevelDB cache store can use
both the native implementation (via a JNI bridge) or a Java re-implementation.

Sample Usage

LevelDB cache store requires 2 filesystem directories to be configured - each directory for a
LevelDB database. One location is used to store non-expired data, while the second location is used
to store expired keys pending purge.

Configuration cacheConfig = new ConfigurationBuilder().persistence()
 .addStore(LevelDBStoreConfigurationBuilder.class)
 .build();
EmbeddedCacheManager cacheManager = new DefaultCacheManager(cacheConfig);

Cache<String, User> usersCache = cacheManager.getCache("usersCache");
usersCache.put("raytsang", new User(...));

6.6.2. Configuration

Sample Programatic Configuration

Configuration cacheConfig = new ConfigurationBuilder().persistence()
 .addStore(LevelDBStoreConfigurationBuilder.class)
 .location("/tmp/leveldb/data")
 .expiredLocation("/tmp/leveldb/expired")
 .build();

Parameter Description

location Directory to use for LevelDB to store primary
cache store data. Directory will be auto-created
if it does not exit.

expiredLocation Directory to use for LevelDB to store expiring
data pending to be purged permanently.
Directory will be auto-created if it does not exit.

expiryQueueSize Size of the in-memory queue to hold expiring
entries before it gets flushed into expired
LevelDB store

45

http://leveldb.org/
https://github.com/dain/leveldb

Parameter Description

clearThreshold There are two methods to clear all entries in
LevelDB. One method is to iterate through all
entries and remove each entry individually. The
other method is to delete the database and re-
init. For smaller databases, deleting individual
entries is faster than the latter method. This
configuration sets the max number of entries
allowed before using the latter method

compressionType Configuration for LevelDB for data compression,
see CompressionType enum for options

blockSize Configuration for LevelDB - see documentation
for performance tuning

cacheSize Configuration for LevelDB - see documentation
for performance tuning

Sample XML Configuration

infinispan.xml

<local-cache name="vehicleCache">
 <persistence>
 <leveldb-store path="/tmp/leveldb/data">
 <expiration path="/tmp/leveldb/expired"/>
 </leveldb-store>
 </persistence>
</local-cache>

6.6.3. Additional References

Refer to the test case for code samples in action.

Refer to test configurations for configuration samples.

6.7. Remote store
The RemoteStore is a cache loader and writer implementation that stores data in a remote infinispan
cluster. In order to communicate with the remote cluster, the RemoteStore uses the HotRod
client/server architecture. HotRod bering the load balancing and fault tolerance of calls and the
possibility to fine-tune the connection between the RemoteCacheStore and the actual cluster. Please
refer to Hot Rod for more information on the protocol, client and server configuration. For a list of
RemoteStore configuration refer to the javadoc . Example:

46

https://github.com/google/leveldb/blob/master/README.md
https://github.com/google/leveldb/blob/master/README.md
https://github.com/infinispan/infinispan/blob/master/persistence/leveldb/src/test/java/org/infinispan/persistence/leveldb/config/ConfigurationTest.java
https://github.com/infinispan/infinispan/tree/master/persistence/leveldb/src/test/resources/config/
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/remote/configuration/RemoteStoreConfigurationBuilder.html

<persistence>
 <remote-store xmlns="urn:infinispan:config:store:remote:8.0" cache="mycache" raw-
values="true">
 <remote-server host="one" port="12111" />
 <remote-server host="two" />
 <connection-pool max-active="10" exhausted-action="CREATE_NEW" />
 <write-behind />
 </remote-store>
</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence().addStore(RemoteStoreConfigurationBuilder.class)
 .fetchPersistentState(false)
 .ignoreModifications(false)
 .purgeOnStartup(false)
 .remoteCacheName("mycache")
 .rawValues(true)
.addServer()
 .host("one").port(12111)
 .addServer()
 .host("two")
 .connectionPool()
 .maxActive(10)
 .exhaustedAction(ExhaustedAction.CREATE_NEW)
 .async().enable();

In this sample configuration, the remote cache store is configured to use the remote cache named
"mycache" on servers "one" and "two". It also configures connection pooling and provides a custom
transport executor. Additionally the cache store is asynchronous.

6.8. Cluster cache loader
The ClusterCacheLoader is a cache loader implementation that retrieves data from other cluster
members.

It is a cache loader only as it doesn’t persist anything (it is not a Store), therefore features like
fetchPersistentState (and like) are not applicable.

A cluster cache loader can be used as a non-blocking (partial) alternative to stateTransfer : keys not
already available in the local node are fetched on-demand from other nodes in the cluster. This is a
kind of lazy-loading of the cache content.

<persistence>
 <cluster-loader remote-timeout="500"/>
</persistence>

47

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence()
 .addClusterLoader()
 .remoteCallTimeout(500);

For a list of ClusterCacheLoader configuration refer to the javadoc .


The ClusterCacheLoader does not support preloading(preload=true). It also won’t
provide state if fetchPersistentSate=true.

6.9. Command-Line Interface cache loader
The Command-Line Interface (CLI) cache loader is a cache loader implementation that retrieves
data from another Infinispan node using the CLI. The node to which the CLI connects to could be a
standalone node, or could be a node that it’s part of a cluster. This cache loader is read-only, so it
will only be used to retrieve data, and hence, won’t be used when persisting data.

The CLI cache loader is configured with a connection URL pointing to the Infinispan node to which
connect to. Here is an example:


Details on the format of the URL and how to make sure a node can receive
invocations via the CLI can be found in the Command-Line Interface chapter.

<persistence>
 <cli-loader connection="jmx://1.2.3.4:4444/MyCacheManager/myCache" />
</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence()
 .addStore(CLInterfaceLoaderConfigurationBuilder.class)
 .connectionString("jmx://1.2.3.4:4444/MyCacheManager/myCache");

6.10. RocksDB Cache Store
The Infinispan Community

6.10.1. Introduction

RocksDB is a fast key-value filesystem-based storage from Facebook. It started as a fork of Google’s
LevelDB, but provides superior performance and reliability, especially in highly concurrent
scenarios.

48

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/configuration/cache/ClusterLoaderConfiguration.html
http://rocksdb.org/

Sample Usage

The RocksDB cache store requires 2 filesystem directories to be configured - each directory contains
a RocksDB database: one location is used to store non-expired data, while the second location is
used to store expired keys pending purge.

Configuration cacheConfig = new ConfigurationBuilder().persistence()
 .addStore(RocksDBStoreConfigurationBuilder.class)
 .build();
EmbeddedCacheManager cacheManager = new DefaultCacheManager(cacheConfig);

Cache<String, User> usersCache = cacheManager.getCache("usersCache");
usersCache.put("raytsang", new User(...));

6.10.2. Configuration

Sample Programatic Configuration

Configuration cacheConfig = new ConfigurationBuilder().persistence()
 .addStore(RocksDBStoreConfigurationBuilder.class)
 .location("/tmp/rocksdb/data")
 .expiredLocation("/tmp/rocksdb/expired")
 .build();

Parameter Description

location Directory to use for RocksDB to store primary
cache store data. The directory will be auto-
created if it does not exit.

expiredLocation Directory to use for RocksDB to store expiring
data pending to be purged permanently. The
directory will be auto-created if it does not exit.

expiryQueueSize Size of the in-memory queue to hold expiring
entries before it gets flushed into expired
RocksDB store

clearThreshold There are two methods to clear all entries in
RocksDB. One method is to iterate through all
entries and remove each entry individually. The
other method is to delete the database and re-
init. For smaller databases, deleting individual
entries is faster than the latter method. This
configuration sets the max number of entries
allowed before using the latter method

compressionType Configuration for RocksDB for data
compression, see CompressionType enum for
options

49

Parameter Description

blockSize Configuration for RocksDB - see documentation
for performance tuning

cacheSize Configuration for RocksDB - see documentation
for performance tuning

Sample XML Configuration

infinispan.xml

<local-cache name="vehicleCache">
 <persistence>
 <rocksdb-store path="/tmp/rocksdb/data">
 <expiration path="/tmp/rocksdb/expired"/>
 </rocksdb-store>
 </persistence>
</local-cache>

6.10.3. Additional References

Refer to the test case for code samples in action.

Refer to test configurations for configuration samples.

6.11. LevelDB Cache Store


The LevelDB Cache Store has been deprecated in Infinispan 9.0 and has been
replaced with the RocksDB Cache Store. If you have existing data stored in a
LevelDB Cache Store, the RocksDB Cache Store will convert it to the new SST-
based format on the first run.

6.12. REST Cache Store
The Infinispan Community

6.12.1. Introduction

TODO

6.12.2. Javadoc

TODO

6.12.3. Configuration

TODO

50

https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/infinispan/infinispan/blob/master/persistence/rocksdb/src/test/java/org/infinispan/persistence/rocksdb/config/ConfigurationTest.java
https://github.com/infinispan/infinispan/tree/master/persistence/rocksdb/src/test/resources/config/

6.13. JPA Cache Store
The Infinispan Community

6.13.1. Introduction

The implementation depends on JPA 2.0 specification to access entity meta model.

In normal use cases, it’s recommended to leverage Infinispan for JPA second level cache and/or
query cache. However, if you’d like to use only Infinispan API and you want Infinispan to persist
into a cache store using a common format (e.g., a database with well defined schema), then JPA
Cache Store could be right for you.

Things to note

• When using JPA Cache Store, the key should be the ID of the entity, while the value should be
the entity object.

• Only a single @Id or @EmbeddedId annotated property is allowed.

• Auto-generated ID is not supported.

• Lastly, all entries will be stored as immortal entries.

Sample Usage

For example, given a persistence unit "myPersistenceUnit", and a JPA entity User:

persistence.xml

<persistence-unit name="myPersistenceUnit">
 ...
</persistence-unit>

User entity class

User.java

@Entity
public class User implements Serializable {
 @Id
 private String username;
 private String firstName;
 private String lastName;

 ...
}

Then you can configure a cache "usersCache" to use JPA Cache Store, so that when you put data into
the cache, the data would be persisted into the database based on JPA configuration.

51

EmbeddedCacheManager cacheManager = ...;

Configuration cacheConfig = new ConfigurationBuilder().persistence()
 .addStore(JpaStoreConfigurationBuilder.class)
 .persistenceUnitName("org.infinispan.loaders.jpa.configurationTest")
 .entityClass(User.class)
 .build();
cacheManager.defineCache("usersCache", cacheConfig);

Cache<String, User> usersCache = cacheManager.getCache("usersCache");
usersCache.put("raytsang", new User(...));

Normally a single Infinispan cache can store multiple types of key/value pairs, for example:

Cache<String, User> usersCache = cacheManager.getCache("myCache");
usersCache.put("raytsang", new User());
Cache<Integer, Teacher> teachersCache = cacheManager.getCache("myCache");
teachersCache.put(1, new Teacher());

It’s important to note that, when a cache is configured to use a JPA Cache Store, that cache would
only be able to store ONE type of data.

Cache<String, User> usersCache = cacheManager.getCache("myJPACache"); // configured
for User entity class
usersCache.put("raytsang", new User());
Cache<Integer, Teacher> teachersCache = cacheManager.getCache("myJPACache"); // cannot
do this when this cache is configured to use a JPA cache store
teachersCache.put(1, new Teacher());

Use of @EmbeddedId is supported so that you can also use composite keys.

@Entity
public class Vehicle implements Serializable {
 @EmbeddedId
 private VehicleId id;
 private String color; ...
}

@Embeddable
public class VehicleId implements Serializable
{
 private String state;
 private String licensePlate;
 ...
}

52

Lastly, auto-generated IDs ﻿(e.g., @GeneratedValue) is not supported. When putting things into the
cache with a JPA cache store, the key should be the ID value!

6.13.2. Configuration

Sample Programatic Configuration

Configuration cacheConfig = new ConfigurationBuilder().persistence()
 .addStore(JpaStoreConfigurationBuilder.class)
 .persistenceUnitName("org.infinispan.loaders.jpa.configurationTest")
 .entityClass(User.class)
 .build();

Parameter Description

persistenceUnitName JPA persistence unit name in JPA configuration
﻿(persistence.xml) that contains the JPA entity
class

entityClass JPA entity class that is expected to be stored in
this cache. Only one class is allowed.

Sample XML Configuration

<local-cache name="vehicleCache">
 <persistence passivation="false">
 <jpa-store xmlns="urn:infinispan:config:store:jpa:7.0"
 persistence-unit="org.infinispan.persistence.jpa.configurationTest"
 entity-class="org.infinispan.persistence.jpa.entity.Vehicle">
 />
 </persistence>
</local-cache>

Parameter Description

persistence-unit JPA persistence unit name in JPA configuration
﻿(persistence.xml) that contains the JPA entity
class

entity-class Fully qualified JPA entity class name that is
expected to be stored in this cache. Only one
class is allowed.

6.13.3. Additional References

Refer to the test case for code samples in action.

Refer to test configurations for configuration samples.

53

https://github.com/infinispan/infinispan/blob/master/persistence/jpa/src/test/java/org/infinispan/persistence/jpa/JpaConfigurationTest.java
https://github.com/infinispan/infinispan/blob/master/persistence/jpa/src/test/resources/config/jpa-config.xml

6.13.4. Javadoc

TODO

6.14. Custom Cache Store deployment
A Custom Cache Store might be packaged into a separate JAR file and deployed in a HotRod server
using the following steps:

1. Create a JAR file (or use a Custom Cache Store Archetype) and implement one of the interfaces
within it:

• org.infinispan.persistence.spi.AdvancedCacheWriter

• org.infinispan.persistence.spi.AdvancedCacheLoader

• org.infinispan.persistence.spi.CacheLoader

• org.infinispan.persistence.spi.CacheWriter

• org.infinispan.persistence.spi.ExternalStore

• org.infinispan.persistence.spi.AdvancedLoadWriteStore

2. It is possible to create a Custom Cache Store configuration. This requires implementing
AbstractStoreConfiguration and AbstractStoreConfigurationBuilder. Additionally, 2 annotations
need to be added to the configuration - @ConfigurationFor and @BuiltBy. However this is an
optional step.

3. Create a proper file in META-INF/services/, which reflects the implementation:

• /META-INF/services/org.infinispan.persistence.spi.AdvancedCacheWriter

• /META-INF/services/org.infinispan.persistence.spi.AdvancedCacheLoader

• /META-INF/services/org.infinispan.persistence.spi.CacheLoader

• /META-INF/services/org.infinispan.persistence.spi.CacheWriter

• /META-INF/services/org.infinispan.persistence.spi.ExternalStore

• /META-INF/services/org.infinispan.persistence.spi.AdvancedLoadWriteStore Write the fully
qualified class name of the Custom Cache Store class implementation.

4. Deploy the JAR file in the Infinispan Server.

6.15. Data Migration
The format in which data is persisted has changed in Infinispan 6.0, so this means that if you stored
data using Infinispan 4.x or Infinispan 5.x, Infinispan 6.0 won’t be able to read it. The best way to
upgrade persisted data from Infinispan 4.x/5.x to Infinispan 6.0 is to use the mechanisms explained
in the Rolling Upgrades section. In other words, by starting a rolling upgrade, data stored in
Infinispan 4.x/5.x can be migrated to a Infinispan 6.0 installation where persitence is configured
with a different location for the data. The location configuration varies according to the specific
details of each cache store.

Following sections describe the SPI and also discuss the SPI implementations that Infinispan ships
out of the box.

54

https://github.com/infinispan/infinispan-cachestore-archetype

6.16. API
The following class diagram presents the main SPI interfaces of the persistence API:

Figure 1. Persistence SPI

Some notes about the classes:

• ByteBuffer - abstracts the serialized form of an object

• MarshalledEntry - abstracts the information held within a persistent store corresponding to a
key-value added to the cache. Provides method for reading this information both in serialized
(ByteBuffer) and deserialized (Object) format. Normally data read from the store is kept in
serialized format and lazily deserialized on demand, within the MarshalledEntry
implementation

• CacheWriter and CacheLoader provide basic methods for reading and writing to a store

• AdvancedCacheLoader and AdvancedCacheWriter provide operations to manipulate the
underlaying storage in bulk: parallel iteration and purging of expired entries, clear and size.

A provider might choose to only implement a subset of these interfaces:

• Not implementing the AdvancedCacheWriter makes the given writer not usable for purging
expired entries or clear

• If a loader does not implement the AdvancedCacheWriter inteface, then it will not participate in
preloading nor in cache iteration (required also for stream operations).

55

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/io/ByteBuffer.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/MarshalledEntry.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/io/ByteBuffer.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/MarshalledEntry.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/CacheWriter.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/CacheLoader.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/AdvancedCacheLoader.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/AdvancedCacheWriter.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/AdvancedCacheWriter.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/persistence/spi/AdvancedCacheWriter.html

If you’re looking at migrating your existing store to the new API or to write a new store
implementation, the SingleFileStore might be a good starting point/example.

6.17. More implementations
Many more cache loader and cache store implementations exist. Visit this website for more details.

56

https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/persistence/file/SingleFileStore.java
http://infinispan.org/cache-store-implementations

Chapter 7. Clustering
A cache manager can be configured to be either local (standalone) or clustered. When clustered,
manager instances use JGroups' discovery protocols to automatically discover neighboring
instances on the same local network and form a cluster.

Creating a local-only cache manager is trivial: just use the no-argument DefaultCacheManager
constructor, or supply the following XML configuration file.

<infinispan/>

To start a clustered cache manager, you need to create a clustered configuration.

GlobalConfigurationBuilder gcb = GlobalConfigurationBuilder.defaultClusteredBuilder();
DefaultCacheManager manager = new DefaultCacheManager(gcb.build());

<infinispan>
 <cache-container>
 <transport/>
 </cache-container>
</infinispan>

Individual caches can then be configured in different modes:

• Local: changes and reads are never replicated. This is the only mode available in standalone
cache managers.

• Invalidation: changes are not replicated, instead the key is invalidated on all nodes; reads are
local.

• Replicated: changes are replicated to all nodes, reads are always local.

• Distributed: changes are replicated to a fixed number of nodes, reads request the value from at
least one of the owner nodes.

7.1. Local Mode
While Infinispan is particularly interesting in clustered mode, it also offers a very capable local
mode. In this mode, it acts as a simple, in-memory data cache similar to a ConcurrentHashMap.

But why would one use a local cache rather than a map? Caches offer a lot of features over and
above a simple map, including write-through and write-behind to a persistent store, eviction of
entries to prevent running out of memory, and expiration.

Infinispan’s Cache interface extends JDK’s ConcurrentMap — making migration from a map to
Infinispan trivial.

57

Infinispan caches also support transactions, either integrating with an existing transaction
manager or running a separate one. Local caches transactions have two choices:

1. When to lock? Pessimistic locking locks keys on a write operation or when the user calls
AdvancedCache.lock(keys) explicitly. Optimistic locking only locks keys during the transaction
commit, and instead it throws a WriteSkewCheckException at commit time, if another transaction
modified the same keys after the current transaction read them.

2. Isolation level. We support read-committed and repeatable read.

7.1.1. Simple Cache

Traditional local caches use the same architecture as clustered caches, i.e. they use the interceptor
stack. That way a lot of the implementation can be reused. However, if the advanced features are
not needed and performance is more important, the interceptor stack can be stripped away and
simple cache can be used.

So, which features are stripped away? From the configuration perspective, simple cache does not
support:

• transactions and invocation batching

• persistence (cache stores and loaders)

• custom interceptors (there’s no interceptor stack!)

• indexing

• compatibility (embedded/server mode)

• store as binary (which is hardly useful for local caches)

From the API perspective these features throw an exception:

• adding custom interceptors

• Distributed Executors Framework

So, what’s left?

• basic map-like API

• cache listeners (local ones)

• expiration

• eviction

• security

• JMX access

• statistics (though for max performance it is recommended to switch this off using statistics-
available=false)

Declarative configuration

58

 <local-cache name="mySimpleCache" simple-cache="true">
 <!-- expiration, eviction, security... -->
 </local-cache>

Programmatic configuration

CacheManager cm = getCacheManager();
ConfigurationBuilder builder = new ConfigurationBuilder().simpleCache(true);
cm.defineConfiguration("mySimpleCache", builder.build());
Cache cache = cm.getCache("mySimpleCache");

Simple cache checks against features it does not support, if you configure it to use e.g. transactions,
configuration validation will throw an exception.

7.2. Invalidation Mode
In invalidation, the caches on different nodes do not actually share any data. Instead, when a key is
written to, the cache only aims to remove data that may be stale from other nodes. This cache mode
only makes sense if you have another, permanent store for your data such as a database and are
only using Infinispan as an optimization in a read-heavy system, to prevent hitting the database for
every read. If a cache is configured for invalidation, every time data is changed in a cache, other
caches in the cluster receive a message informing them that their data is now stale and should be
removed from memory and from any local store.

59

Figure 2. Invalidation mode

Sometimes the application reads a value from the external store and wants to write it to the local
cache, without removing it from the other nodes. To do this, it must call
Cache.putForExternalRead(key, value) instead of Cache.put(key, value).

Invalidation mode can be used with a shared cache store. A write operation will both update the
shared store, and it would remove the stale values from the other nodes' memory. The benefit of
this is twofold: network traffic is minimized as invalidation messages are very small compared to
replicating the entire value, and also other caches in the cluster look up modified data in a lazy
manner, only when needed.


Never use invalidation mode with a local store. The invalidation message will not
remove entries in the local store, and some nodes will keep seeing the stale value.

An invalidation cache can also be configured with a special cache loader, ClusterLoader. When
ClusterLoader is enabled, read operations that do not find the key on the local node will request it
from all the other nodes first, and store it in memory locally. In certain situation it will store stale
values, so only use it if you have a high tolerance for stale values.

Invalidation mode can be synchronous or asynchronous. When synchronous, a write blocks until
all nodes in the cluster have evicted the stale value. When asynchronous, the originator broadcasts
invalidation messages but doesn’t wait for responses. That means other nodes still see the stale
value for a while after the write completed on the originator.

60

Transactions can be used to batch the invalidation messages. They won’t behave like regular
transactions though, as locks are only acquired on the local node, and entries can be invalidated by
other transactions at any time.

7.3. Replicated Mode
Entries written to a replicated cache on any node will be replicated to all other nodes in the cluster,
and can be retrieved locally from any node. Replicated mode provides a quick and easy way to
share state across a cluster, however replication practically only performs well in small clusters
(under 10 nodes), due to the number of messages needed for a write scaling linearly with the
cluster size. Infinispan can be configured to use UDP multicast, which mitigates this problem to
some degree.

Each key has a primary owner, which serializes data container updates in order to provide
consistency. To find more about how primary owners are assigned, please read the Key Ownership
section.

Replicated mode can be synchronous or asynchronous.

• Synchronous replication blocks the caller (e.g. on a cache.put(key, value)) until the
modifications have been replicated successfully to all the nodes in the cluster.

• Asynchronous replication performs replication in the background, and write operations return
immediately. Asynchronous replication is not recommended, because communication errors, or
errors that happen on remote nodes are not reported to the caller.

If transactions are enabled, write operations are not replicated through the primary owner.

• With pessimistic locking, each write triggers a lock message, which is broadcast to all the nodes.
During transaction commit, the originator broadcasts a one-phase prepare message and an
unlock message (optional). Either the one-phase prepare or the unlock message is fire-and-
forget.

• With optimistic locking, the originator broadcasts a prepare message, a commit message, and an
unlock message (optional). Again, either the one-phase prepare or the unlock message is fire-
and-forget.

7.4. Distribution Mode
Distribution tries to keep a fixed number of copies of any entry in the cache, configured as
numOwners. This allows the cache to scale linearly, storing more data as nodes are added to the
cluster.

As nodes join and leave the cluster, there will be times when a key has more or less than numOwners
copies. In particular, if numOwners nodes leave in quick succession, some entries will be lost, so we
say that a distributed cache tolerates numOwners - 1 node failures.

The number of copies represents a trade-off between performance and durability of data. The more
copies you maintain, the lower performance will be, but also the lower the risk of losing data due to

61

server or network failures. Regardless of how many copies are maintained, distribution still scales
linearly, and this is key to Infinispan’s scalability.

The owners of a key are split into one primary owner, which coordinates writes to the key, and
zero or more backup owners. To find more about how primary and backup owners are assigned,
please read the Key Ownership section.

A read operation will request the value from the primary owner, but if it doesn’t respond in a
reasonable amount of time, we request the value from the backup owners as well. (The
infinispan.stagger.delay system property, in milliseconds, controls the delay between requests.) A
read operation may require 0 messages if the key is present in the local cache, or up to 2 *

numOwners messages if all the owners are slow.

A write operation will also result in at most 2 * numOwners messages: one message from the
originator to the primary owner, numOwners - 1 messages from the primary to the backups, and the
corresponding ACK messages.


Cache topology changes may cause retries and additional messages, both for
reads and for writes.

Just as replicated mode, distributed mode can also be synchronous or asynchronous. And as in
replicated mode, asynchronous replication is not recommended because it can lose updates. In
addition to losing updates, asynchronous distributed caches can also see a stale value when a
thread writes to a key and then immediately reads the same key.

Transactional distributed caches use the same kinds of messages as transactional replicated caches,
except lock/prepare/commit/unlock messages are sent only to the affected nodes (all the nodes that
own at least one key affected by the transaction) instead of being broadcast to all the nodes in the
cluster. As an optimization, if the transaction writes to a single key and the originator is the
primary owner of the key, lock messages are not replicated.

7.4.1. Read consistency

Even with synchronous replication, distributed caches are not linearizable. (For transactional
caches, we say they do not support serialization/snapshot isolation.) We can have one thread doing
a single put:

cache.get(k) -> v1
cache.put(k, v2)
cache.get(k) -> v2

But another thread might see the values in a different order:

cache.get(k) -> v2
cache.get(k) -> v1

62

The reason is that read can return the value from any owner, depending on how fast the primary
owner replies. The write is not atomic across all the owners — in fact, the primary commits the
update only after it receives a confirmation from the backup. While the primary is waiting for the
confirmation message from the backup, reads from the backup will see the new value, but reads
from the primary will see the old one.

7.4.2. Key ownership

Distributed caches split entries into a fixed number of segments, and assign each segment to a list
of owner nodes. Replicated caches do the same, except every node is an owner.

The first node in the owners list is called the primary owner, and the others are called backup
owners. The segment ownership table is broadcast to every node when the cache topology changes
(i.e. a node joins or leaves the cluster). This way, a node can compute the location of a key itself,
without resorting to multicast requests or maintaining per-key metadata.

The number of segments is configurable (numSegments), but it cannot be changed without restarting
the cluster. The mapping of keys to segments is also fixed — a key must map to the same segment,
regardless of how the topology of the cluster changes. The key-to-segment mapping can be
customized by configuring a KeyPartitioner or by using the Grouping API.

There is no hard rule on how segments must be mapped to owners, but the goal is to balance the
number of segments allocated to each node and at the same time minimize the number of segments
that have to move after a node joins or leaves the cluster. The segment mapping is customizable,
and in fact there are five implementations that ship with Infinispan:

SyncConsistentHashFactory

An algorithm based on consistent hashing. It always assigns a key to the same node in every
cache as long as the cluster is symmetric (i.e. all caches run on all nodes). It does have some
weaknesses: the load distribution is a bit uneven, and it also moves more segments than strictly
necessary on a join or leave. Selected by default when server hinting is disabled.

TopologyAwareSyncConsistentHashFactory

Similar to SyncConsistentHashFactory, but adapted for Server Hinting. Selected by default when
server hinting is enabled.

DefaultConsistentHashFactory

It achieves a more even distribution than SyncConsistentHashFactory, but it has one
disadvantage: the mapping of segments to nodes depends on the order in which caches joined
the cluster, so a key’s owners are not guaranteed to be the same in all the caches running in a
cluster. Used to be the default from version 5.2 to version 8.1 (with server hinting disabled).

TopologyAwareConsistentHashFactory

Similar to DefaultConsistentHashFactory, but adapted for Server Hinting. Used to be the default
with from version 5.2 to version 8.1 (with server hinting enabled).

ReplicatedConsistentHashFactory

This algorithm is used internally to implement replicated caches. Users should never select this
explicitly in a distributed cache.

63

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/distribution/ch/KeyPartitioner.html
http://en.wikipedia.org/wiki/Consistent_hashing

Capacity Factors

Capacity factors are another way to customize the mapping of segments to nodes. The nodes in a
cluster are not always identical. If a node has 2x the memory of a "regular" node, configuring it
with a capacityFactor of 2 tells Infinispan to allocate 2x segments to that node. The capacity factor
can be any non-negative number, and the hashing algorithm will try to assign to each node a load
weighted by its capacity factor (both as a primary owner and as a backup owner).

One interesting use case is nodes with a capacity factor of 0. This could be useful when some nodes
are too short-lived to be useful as data owners, but they can’t use HotRod (or other remote
protocols) because they need transactions. With cross-site replication as well, the "site master"
should only deal with forwarding commands between sites and shouldn’t handle user requests, so
it makes sense to configure it with a capacity factor of 0.

Hashing Configuration

This is how you configure hashing declaratively, via XML:

 <distributed-cache name="distributedCache" owners="2" segments="100" capacity-
factor="2" />

And this is how you can configure it programmatically, in Java:

Configuration c = new ConfigurationBuilder()
 .clustering()
 .cacheMode(CacheMode.DIST_SYNC)
 .hash()
 .numOwners(2)
 .numSegments(100)
 .capacityFactor(2)
 .build();

7.4.3. Initial cluster size

Infinispan’s very dynamic nature in handling topology changes (i.e. nodes being added / removed
at runtime) means that, normally, a node doesn’t wait for the presence of other nodes before
starting. While this is very flexible, it might not be suitable for applications which require a specific
number of nodes to join the cluster before caches are started. For this reason, you can specify how
many nodes should have joined the cluster before proceeding with cache initialization. To do this,
use the initialClusterSize and initialClusterTimeout transport properties. The declarative XML
configuration:

 <transport initial-cluster-size="4" initial-cluster-timeout="30000" />

The programmatic Java configuration:

64

GlobalConfiguration global = new GlobalConfigurationBuilder()
 .transport()
 .initialClusterSize(4)
 .initialClusterTimeout(30000)
 .build();

The above configuration will wait for 4 nodes to join the cluster before initialization. If the initial
nodes do not appear within the specified timeout, the cache manager will fail to start.

7.4.4. L1 Caching

When L1 is enabled, a node will keep the result of remote reads locally for a short period of time
(configurable, 10 minutes by default), and repeated lookups will return the local L1 value instead of
asking the owners again.

Figure 5. L1 caching

L1 caching is not free though. Enabling it comes at a cost, and this cost is that every entry update
must broadcast an invalidation message to all the nodes. L1 entries can be evicted just like any
other entry when the the cache is configured with a maximum size. Enabling L1 will improve
performance for repeated reads of non-local keys, but it will slow down writes and it will increase
memory consumption to some degree.

Is L1 caching right for you? The correct approach is to benchmark your application with and

65

without L1 enabled and see what works best for your access pattern.

7.4.5. Server Hinting

The following topology hints can be specified:

Machine

This is probably the most useful, when multiple JVM instances run on the same node, or even
when multiple virtual machines run on the same physical machine.

Rack

In larger clusters, nodes located on the same rack are more likely to experience a hardware or
network failure at the same time.

Site

Some clusters may have nodes in multiple physical locations for extra resilience. Note that Cross
site replication is another alternative for clusters that need to span two or more data centres.

All of the above are optional. When provided, the distribution algorithm will try to spread the
ownership of each segment across as many sites, racks, and machines (in this order) as possible.

Configuration

The hints are configured at transport level:

<transport
 cluster="MyCluster"
 machine="LinuxServer01"
 rack="Rack01"
 site="US-WestCoast" />

7.4.6. Key affinity service

In a distributed cache, a key is allocated to a list of nodes with an opaque algorithm. There is no
easy way to reverse the computation and generate a key that maps to a particular node. However,
we can generate a sequence of (pseudo-)random keys, see what their primary owner is, and hand
them out to the application when it needs a key mapping to a particular node.

API

Following code snippet depicts how a reference to this service can be obtained and used.

66

// 1. Obtain a reference to a cache
Cache cache = ...
Address address = cache.getCacheManager().getAddress();

// 2. Create the affinity service
KeyAffinityService keyAffinityService = KeyAffinityServiceFactory
.newLocalKeyAffinityService(
 cache,
 new RndKeyGenerator(),
 Executors.newSingleThreadExecutor(),
 100);

// 3. Obtain a key for which the local node is the primary owner
Object localKey = keyAffinityService.getKeyForAddress(address);

// 4. Insert the key in the cache
cache.put(localKey, "yourValue");

The service is started at step 2: after this point it uses the supplied Executor to generate and queue
keys. At step 3, we obtain a key from the service, and at step 4 we use it.

Lifecycle

KeyAffinityService extends Lifecycle, which allows stopping and (re)starting it:

public interface Lifecycle {
 void start();
 void stop();
}

The service is instantiated through KeyAffinityServiceFactory. All the factory methods have an
Executor parameter, that is used for asynchronous key generation (so that it won’t happen in the
caller’s thread). It is the user’s responsibility to handle the shutdown of this Executor.

The KeyAffinityService, once started, needs to be explicitly stopped. This stops the background key
generation and releases other held resources.

The only situation in which KeyAffinityService stops by itself is when the cache manager with
which it was registered is shutdown.

Topology changes

When the cache topology changes (i.e. nodes join or leave the cluster), the ownership of the keys
generated by the KeyAffinityService might change. The key affinity service keep tracks of these
topology changes and doesn’t return keys that would currently map to a different node, but it won’t
do anything about keys generated earlier.

As such, applications should treat KeyAffinityService purely as an optimization, and they should

67

not rely on the location of a generated key for correctness.

In particular, applications should not rely on keys generated by KeyAffinityService for the same
address to always be located together. Collocation of keys is only provided by the Grouping API.

7.4.7. The Grouping API

Complementary to Key affinity service and similar to AtomicMap, the grouping API allows you to
co-locate a group of entries on the same nodes, but without being able to select the actual nodes.

How does it work?

By default, the segment of a key is computed using the key’s hashCode(). If you use the grouping API,
Infinispan will compute the segment of the group and use that as the segment of the key. See the
Key Ownership section for more details on how segments are then mapped to nodes.

When the group API is in use, it is important that every node can still compute the owners of every
key without contacting other nodes. For this reason, the group cannot be specified manually. The
group can either be intrinsic to the entry (generated by the key class) or extrinsic (generated by an
external function).

How do I use the grouping API?

First, you must enable groups. If you are configuring Infinispan programmatically, then call:

Configuration c = new ConfigurationBuilder()
 .clustering().hash().groups().enabled()
 .build();

Or, if you are using XML:

<distributed-cache>
 <groups enabled="true"/>
</distributed-cache>

If you have control of the key class (you can alter the class definition, it’s not part of an
unmodifiable library), then we recommend using an intrinsic group. The intrinsic group is
specified by adding the @Group annotation to a method. Let’s take a look at an example:

68

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/atomic/AtomicMap.html

class User {
 ...
 String office;
 ...

 public int hashCode() {
 // Defines the hash for the key, normally used to determine location
 ...
 }

 // Override the location by specifying a group
 // All keys in the same group end up with the same owners
 @Group
 public String getOffice() {
 return office;
 }
 }
}

 The group method must return a String

If you don’t have control over the key class, or the determination of the group is an orthogonal
concern to the key class, we recommend using an extrinsic group. An extrinsic group is specified by
implementing the Grouper interface.

public interface Grouper<T> {
 String computeGroup(T key, String group);

 Class<T> getKeyType();
}

If multiple Grouper classes are configured for the same key type, all of them will be called, receiving
the value computed by the previous one. If the key class also has a @Group annotation, the first
Grouper will receive the group computed by the annotated method. This allows you even greater
control over the group when using an intrinsic group. Let’s take a look at an example Grouper
implementation:

69

public class KXGrouper implements Grouper<String> {

 // The pattern requires a String key, of length 2, where the first character is
 // "k" and the second character is a digit. We take that digit, and perform
 // modular arithmetic on it to assign it to group "0" or group "1".
 private static Pattern kPattern = Pattern.compile("(^k)(<a>\\d)$");

 public String computeGroup(String key, String group) {
 Matcher matcher = kPattern.matcher(key);
 if (matcher.matches()) {
 String g = Integer.parseInt(matcher.group(2)) % 2 + "";
 return g;
 } else {
 return null;
 }
 }

 public Class<String> getKeyType() {
 return String.class;
 }
}

Grouper implementations must be registered explicitly in the cache configuration. If you are
configuring Infinispan programmatically:

Configuration c = new ConfigurationBuilder()
 .clustering().hash().groups().enabled().addGrouper(new KXGrouper())
 .build();

Or, if you are using XML:

<distributed-cache>
 <groups enabled="true">
 <grouper class="com.acme.KXGrouper" />
 </groups>
</distributed-cache>

Advanced Interface

AdvancedCache has two group-specific methods:

getGroup(groupName)

Retrieves all keys in the cache that belong to a group.

removeGroup(groupName)

Removes all the keys in the cache that belong to a group.

70

http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#getGroup-java.lang.String-
http://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#removeGroup-java.lang.String-

Both methods iterate over the entire data container and store (if present), so they can be slow when
a cache contains lots of small groups.

 This interface is available since Infinispan 7.0.0.

7.5. Asynchronous Options

7.5.1. Asynchronous Communications

All clustered cache modes can be configured to use asynchronous communications with the
mode="ASYNC" attribute on the <replicated-cache/>, <distributed-cache>, or <invalidation-cache/>
element.

With asynchronous communications, the originator node does not receive any acknowledgement
from the other nodes about the status of the operation, so there is no way to check if it succeeded
on other nodes.

We do not recommend asynchronous communications in general, as they can cause inconsistencies
in the data, and the results are hard to reason about. Nevertheless, sometimes speed is more
important than consistency, and the option is available for those cases.

7.5.2. Asynchronous API

The Asynchronous API allows you to use synchronous communications, but without blocking the
user thread.

There is one caveat: The asynchronous operations do NOT preserve the program order. If a thread
calls cache.putAsync(k, v1); cache.putAsync(k, v2), the final value of k may be either v1 or v2. The
advantage over using asynchronous communications is that the final value can’t be v1 on one node
and v2 on another.


Prior to version 9.0, the asynchronous API was emulated by borrowing a thread
from an internal thread pool and running a blocking operation on that thread.

7.5.3. Return Values

Because the Cache interface extends java.util.Map, write methods like put(key, value) and
remove(key) return the previous value by default.

In some cases, the return value may not be correct:

1. When using AdvancedCache.withFlags() with Flag.IGNORE_RETURN_VALUE, Flag.SKIP_REMOTE_LOOKUP,
or Flag.SKIP_CACHE_LOAD.

2. When the cache is configured with unreliable-return-values="true".

3. When using asynchronous communications.

4. When there are multiple concurrent writes to the same key, and the cache topology changes.
The topology change will make Infinispan retry the write operations, and a retried operation’s

71

http://docs.jboss.org/infinispan/9.0/configdocs/infinispan-config-9.0.html

return value is not reliable.

Transactional caches return the correct previous value in cases 3 and 4. However, transactional
caches also have a gotcha: in distributed mode, the read-committed isolation level is implemented
as repeatable-read. That means this example of "double-checked locking" won’t work:

Cache cache = ...
TransactionManager tm = ...

tm.begin();
try {
 Integer v1 = cache.get(k);
 // Increment the value
 Integer v2 = cache.put(k, v1 + 1);
 if (Objects.equals(v1, v2) {
 // success
 } else {
 // retry
 }
} finally {
 tm.commit();
}

The correct way to implement this is to use
cache.getAdvancedCache().withFlags(Flag.FORCE_WRITE_LOCK).get(k).

In caches with optimistic locking writes can return a stale previous value as well, and the only way
protect against it is to enable write-skew checks and to catch WriteSkewException.

7.6. Partition handling
An Infinispan cluster is built out of a number of nodes where data is stored. In order not to lose
data in the presence of node failures, Infinispan copies the same data — cache entry in Infinispan
parlance — over multiple nodes. This level of data redundancy is configured through the numOwners
configuration attribute and ensures that as long as fewer than numOwners nodes crash
simultaneously, Infinispan has a copy of the data available.

However, there might be catastrophic situations in which more than numOwners nodes disappear
from the cluster:

Split brain

Caused e.g. by a router crash, this splits the cluster in two or more partitions, or sub-clusters that
operate independently. In these circumstances, multiple clients reading/writing from different
partitions see different versions of the same cache entry, which for many application is
problematic. Note there are ways to alleviate the possibility for the split brain to happen, such as
redundant networks or IP bonding. These only reduce the window of time for the problem to
occur, though.

72

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-networkscripts-interfaces-chan.html

numOwners nodes crash in sequence

When at least numOwners nodes crash in rapid succession and Infinispan does not have the time to
properly rebalance its state between crashes, the result is partial data loss.

The partition handling functionality discussed in this section allows the user to be informed when
data has been lost, temporarily or permanently, and wait for the cluster to heal. The goal is to avoid
situations in which wrong data is returned to the user as a result of either split brain or multiple
nodes crashing in rapid sequence. In terms of Brewer’s CAP theorem , enabling partition handling
in Infinispan preserves data consistency but sacrifices availability in the presence of partitions.

Enabling partition handling is critical for applications that have high consistency requirements:
when the data read from the system must be accurate. On the other hand, if Infinispan is used as a
best-effort cache, partitions are perfectly tolerable.

The following sections describe the way Infinispan handles split brain and successive failures when
partition handling is enabled, followed by a section on configuring the partition handling
functionality.

7.6.1. Split brain

In a split brain situation, each network partition will install its own JGroups view, removing the
nodes from the other partition(s). We don’t have a direct way of determining whether the has been
split into two or more partitions, since the partitions are unaware of each other. Instead, we
assume the cluster has split when one or more nodes disappear from the JGroups cluster without
sending an explicit leave message.

With partition handling disabled, each such partition would continue to function as an
independent cluster. Each partition may only see a part of the data, and each partition could write
conflicting updates in the cache.

With partition handling enabled, if we detect a split, each partition does not start a rebalance
immediately, but first it checks whether it should enter DEGRADED mode instead:

• If at least one segment has lost all its owners (meaning at least numOwners nodes left since the
last rebalance ended), the partition enters DEGRADED mode.

• If the partition does not contain a simple majority of the nodes (floor(numNodes/2) + 1) in the
latest stable topology, the partition also enters DEGRADED mode.

• Otherwise the partition keeps functioning normally, and it starts a rebalance.

The stable topology is updated every time a rebalance operation ends and the coordinator
determines that another rebalance is not necessary.

These rules ensures that at most one partition stays in AVAILABLE mode, and the other partitions
enter DEGRADED mode.

When a partition is in DEGRADED mode, it only allows access to the keys that are wholly owned:

• Requests (reads and writes) for entries that have all the copies on nodes within this partition
are honoured.

73

http://en.wikipedia.org/wiki/CAP_theorem

• Requests for entries that are partially or totally owned by nodes that disappeared are rejected
with an AvailabilityException.

This guarantees that partitions cannot write different values for the same key (cache is consistent),
and also that one partition can not read keys that have been updated in the other partitions (no
stale data).

To exemplify, consider the initial cluster M = {A, B, C, D}, configured in distributed mode with
numOwners = 2. Further on, consider three keys k1, k2 and k3 (that might exist in the cache or not)
such that owners(k1) = {A,B}, owners(k2) = {B,C} and owners(k3) = {C,D}. Then the network splits in
two partitions, N1 = {A, B} and N2 = {C, D}, they enter DEGRADED mode and behave like this:

• on N1, k1 is available for read/write, k2 (partially owned) and k3 (not owned) are not available
and accessing them results in an AvailabilityException

• on N2, k1 and k2 are not available for read/write, k3 is available

A relevant aspect of the partition handling process is the fact that when a split brain happens, the
resulting partitions rely on the original segment mapping (the one that existed before the split
brain) in order to calculate key ownership. So it doesn’t matter if k1, k2, or k3 already existed cache
or not, their availability is the same.

If at a further point in time the network heals and N1 and N2 partitions merge back together into the
initial cluster M, then M exits the degraded mode and becomes fully available again.

As another example, the cluster could split in two partitions O1 = {A, B, C} and O2 = {D}, partition
O1 will stay fully available (rebalancing cache entries on the remaining members). Partition O2,
however, will detect a split and enter the degraded mode. Since it doesn’t have any fully owned
keys, it will reject any read or write operation with an AvailabilityException.

If afterwards partitions O1 and O2 merge back into M, then the cache entries on D will be wiped (since
they could be stale). D will be fully available, but it will not hold any data until the cache is
rebalanced.

Current limitations

Two partitions could start up isolated, and as long as they don’t merge they can read and write
inconsistent data. In the future, we will allow custom availability strategies (e.g. check that a certain
node is part of the cluster, or check that an external machine is accessible) that could handle that
situation as well.

7.6.2. Successive nodes stopped

As mentioned in the previous section, Infinispan can’t detect whether a node left the JGroups view
because of a process/machine crash, or because of a network failure: whenever a node leaves the
JGroups cluster abruptly, it is assumed to be because of a network problem.

If the configured number of copies (numOwners) is greater than 1, the cluster can remain available
and will try to make new replicas of the data on the crashed node. However, other nodes might
crash during the rebalance process. If more than numOwners nodes crash in a short interval of time,
there is a chance that some cache entries have disappeared from the cluster altogether. In this case,

74

with partition handling functionality enabled, Infinispan assumes (incorrectly) that there is a split
brain and enters DEGRADED mode as described in the split-brain section.

The administrator can also shut down more than numOwners nodes in rapid succession, causing the
loss of the data stored only on those nodes. When the administrator shuts down a node gracefully,
Infinispan knows that the node can’t come back. However, the cluster doesn’t keep track of how
each node left, and the cache still enters DEGRADED mode as if those nodes had crashed.

At this stage there is no way for the cluster to recover its state, except stopping it and repopulating
it on restart with the data from an external source. Clusters are expected to be configured with an
appropriate numOwners in order to avoid numOwners successive node failures, so this situation should
be pretty rare. If the application can handle losing some of the data in the cache, the administrator
can force the availability mode back to AVAILABLE via JMX.

7.6.3. Configuring partition handling

At this stage the partition handling is disabled by default. We will revisit this decision in the future,
based on user feedback. In order to enable partition handling within the XML configuration:

<distributed-cache name="the-default-cache">
 <partition-handling enabled="true"/>
</distributed-cache>

Unless the cache is distributed or replicated, the configuration is ignored.

The same can be achieved programmatically:

ConfigurationBuilder dcc = new ConfigurationBuilder();
dcc.clustering().partitionHandling().enabled(true);

7.6.4. Monitoring and administration

The availability mode of a cache is exposed in JMX as an attribute in the Cache MBean. The
attribute is writable, allowing an administrator to forcefully migrate a cache from DEGRADED
mode back to AVAILABLE (at the cost of consistency).

The availability mode is also accessible via the AdvancedCache interface:

75

https://docs.jboss.org/infinispan/9.0/apidocs/jmxComponents.html#Cache
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html

AdvancedCache ac = cache.getAdvancedCache();

// Read the availability
boolean available = ac.getAvailability() == AvailabilityMode.AVAILABLE;

// Change the availability
if (!available) {
 ac.setAvailability(AvailabilityMode.AVAILABLE);
}

76

Chapter 8. Marshalling
Marshalling is the process of converting Java POJOs into something that can be written in a format
that can be transferred over the wire. Unmarshalling is the reverse process whereby data read
from a wire format is transformed back into Java POJOs. Infinispan uses
marshalling/unmarshalling in order to:

• Transform data so that it can be send over to other Infinispan nodes in a cluster.

• Transform data so that it can be stored in underlying cache stores.

• Store data in Infinispan in a wire format to provide lazy deserialization capabilities.

8.1. The Role Of JBoss Marshalling
Since performance is a very important factor in this process, Infinispan uses JBoss Marshalling
framework instead of standard Java Serialization in order to marshall/unmarshall Java POJOs.
Amongst other things, this framework enables Infinispan to provide highly efficient ways to
marshall internal Infinispan Java POJOs that are constantly used. Apart from providing more
efficient ways to marshall Java POJOs, including internal Java classes, JBoss Marshalling uses highly
performant java.io.ObjectOutput and java.io.ObjectInput implementations compared to standard
java.io.ObjectOutputStream and java.io.ObjectInputStream.

8.2. Support For Non-Serializable Objects
From a users perspective, a very common concern is whether Infinispan supports storing non-
Serializable objects. In 4.0, an Infinispan cache instance can only store non-Serializable key or
value objects if, and only if:

• cache is configured to be a local cache and…

• cache is not configured with lazy serialization and…

• cache is not configured with any write-behind cache store

If either of these options is true, key/value pairs in the cache will need to be marshalled and
currently they require to either to extend java.io.Serializable or java.io.Externalizable.


Since Infinispan 5.0, marshalling non-Serializable key/value objects are
supported as long as users can to provide meaningful Externalizer
implementations for these non-Seralizable objects. This section has more details.

If you’re unable to retrofit Serializable or Externalizable into the classes whose instances are stored
in Infinispan, you could alternatively use something like XStream to convert your Non-Serializable
objects into a String that can be stored into Infinispan. The one caveat about using XStream is that it
slows down the process of storing key/value objects due to the XML transformation that it needs to
do.

77

http://x-stream.github.io/

8.2.1. Store As Binary

Store as binary enables data to be stored in its serialized form. This can be useful to achieve lazy
deserialization, which is the mechanism by which Infinispan by which serialization and
deserialization of objects is deferred till the point in time in which they are used and needed. This
typically means that any deserialization happens using the thread context class loader of the
invocation that requires deserialization, and is an effective mechanism to provide classloader
isolation. By default lazy deserialization is disabled but if you want to enable it, you can do it like
this:

• Via XML at the Cache level, either under <*-cache /> element:

<store-as-binary />

• Programmatically:

ConfigurationBuilder builder = ...
builder.storeAsBinary().enable();

Equality Considerations

When using lazy deserialization/storing as binary, keys and values are wrapped as
MarshalledValues. It is this wrapper class that transparently takes care of serialization and
deserialization on demand, and internally may have a reference to the object itself being wrapped,
or the serialized, byte array representation of this object.

This has a particular effect on the behavior of equality. The equals() method of this class will either
compare binary representations (byte arrays) or delegate to the wrapped object instance’s equals()
method, depending on whether both instances being compared are in serialized or deserialized
form at the time of comparison. If one of the instances being compared is in one form and the other
in another form, then one instance is either serialized or deserialized.

This will affect the way keys stored in the cache will work, when storeAsBinary is used, since
comparisons happen on the key which will be wrapped by a MarshalledValue. Implementers of
equals() methods on their keys need to be aware of the behavior of equality comparison, when a
key is wrapped as a MarshalledValue, as detailed above.

Store-by-value via defensive copying

The configuration storeAsBinary offers the possibility to enable defensive copying, which allows for
store-by-value like behaviour.

Infinispan marshalls objects the moment they’re stored, hence changes made to object references
are not stored in the cache, not even for local caches. This provides store-by-value like behaviour.
Enabling storeAsBinary can be achieved:

• Via XML at the Cache level, either under <*-cache /> or <default /> elements:

78

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/marshall/core/MarshalledValue

<store-as-binary keys="true" values="true"/>

• Programmatically:

ConfigurationBuilder builder = ...
builder.storeAsBinary().enable().storeKeysAsBinary(true).storeValuesAsBinary(true);

8.3. Advanced Configuration
Internally, Infinispan uses an implementation of this Marshaller interface in order to
marshall/unmarshall Java objects so that they’re sent other nodes in the grid, or so that they’re
stored in a cache store, or even so to transform them into byte arrays for lazy deserialization.

By default, Infinispan uses the VersionAwareMarshaller which, as the name suggests, adds a
version short to the start of any stream when writing, enabling similar VersionAwareMarshaller
instances to read the version short and know which specific marshaller implementation to delegate
the call to. Using a VersionAwareMarshaller helps achieve wire protocol compatibility between
minor releases but still affords us the flexibility to tweak and improve the wire protocol between
minor or micro releases. Optionally, Infinispan users to optionally provide their own marshaller,
for example:

• Via XML at the CacheManager level, under <cache-manager /> element:

<serialization marshaller="com.acme.MyMarshaller"/>

• Programmatically:

GlobalConfigurationBuilder builder = ...
builder.serialization().marshaller(myMarshaller); // needs an instance of the
marshaller

8.3.1. Troubleshooting

Sometimes it might happen that the Infinispan marshalling layer, and in particular JBoss
Marshalling, might have issues marshalling/unmarshalling some user object. In Infinispan 4.0,
marshalling exceptions will contain further information on the objects that were being marshalled.
Example:

java.io.NotSerializableException: java.lang.Object
at org.jboss.marshalling.river.RiverMarshaller.doWriteObject(RiverMarshaller.java:857)
at org.jboss.marshalling.AbstractMarshaller.writeObject(AbstractMarshaller.java:407)
at
org.infinispan.marshall.exts.ReplicableCommandExternalizer.writeObject(ReplicableComma
ndExternalizer.java:54)

79

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/marshall/Marshaller.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/marshall/VersionAwareMarshaller.html

at
org.infinispan.marshall.jboss.ConstantObjectTable$ExternalizerAdapter.writeObject(Cons
tantObjectTable.java:267)
at org.jboss.marshalling.river.RiverMarshaller.doWriteObject(RiverMarshaller.java:143)
at org.jboss.marshalling.AbstractMarshaller.writeObject(AbstractMarshaller.java:407)
at
org.infinispan.marshall.jboss.JBossMarshaller.objectToObjectStream(JBossMarshaller.jav
a:167)
at
org.infinispan.marshall.VersionAwareMarshaller.objectToBuffer(VersionAwareMarshaller.j
ava:92)
at
org.infinispan.marshall.VersionAwareMarshaller.objectToByteBuffer(VersionAwareMarshall
er.java:170)
at
org.infinispan.marshall.VersionAwareMarshallerTest.testNestedNonSerializable(VersionAw
areMarshallerTest.java:415)
Caused by: an exception which occurred:
in object java.lang.Object@b40ec4
in object org.infinispan.commands.write.PutKeyValueCommand@df661da7
... Removed 22 stack frames

The way the "in object" messages are read is the same in which stacktraces are read. The highest "in
object" being the most inner one and the lowest "in object" message being the most outer one. So,
the above example indicates that a java.lang.Object instance contained in an instance of
org.infinispan.commands.write.PutKeyValueCommand could not be serialized because
java.lang.Object@b40ec4 is not serializable.

This is not all though! If you enable DEBUG or TRACE logging levels, marshalling exceptions will
contain show the toString() representations of objects in the stacktrace. For example:

java.io.NotSerializableException: java.lang.Object
...
Caused by: an exception which occurred:
in object java.lang.Object@b40ec4
-> toString = java.lang.Object@b40ec4
in object org.infinispan.commands.write.PutKeyValueCommand@df661da7
-> toString = PutKeyValueCommand{key=k, value=java.lang.Object@b40ec4,
putIfAbsent=false, lifespanMillis=0, maxIdleTimeMillis=0}

With regards to unmarshalling exceptions, showing such level of information it’s a lot more
complicated but where possible. Infinispan will provide class type information. For example:

java.io.IOException: Injected failure!
at
org.infinispan.marshall.VersionAwareMarshallerTest$1.readExternal(VersionAwareMarshall
erTest.java:426)
at

80

org.jboss.marshalling.river.RiverUnmarshaller.doReadNewObject(RiverUnmarshaller.java:1
172)
at
org.jboss.marshalling.river.RiverUnmarshaller.doReadObject(RiverUnmarshaller.java:273)
at
org.jboss.marshalling.river.RiverUnmarshaller.doReadObject(RiverUnmarshaller.java:210)
at org.jboss.marshalling.AbstractUnmarshaller.readObject(AbstractUnmarshaller.java:85)
at
org.infinispan.marshall.jboss.JBossMarshaller.objectFromObjectStream(JBossMarshaller.j
ava:210)
at
org.infinispan.marshall.VersionAwareMarshaller.objectFromByteBuffer(VersionAwareMarsha
ller.java:104)
at
org.infinispan.marshall.VersionAwareMarshaller.objectFromByteBuffer(VersionAwareMarsha
ller.java:177)
at
org.infinispan.marshall.VersionAwareMarshallerTest.testErrorUnmarshalling(VersionAware
MarshallerTest.java:431)
Caused by: an exception which occurred:
in object of type org.infinispan.marshall.VersionAwareMarshallerTest$1

In this example, an IOException was thrown when trying to unmarshall a instance of the inner
class org.infinispan.marshall.VersionAwareMarshallerTest$1. In similar fashion to marshalling
exceptions, when DEBUG or TRACE logging levels are enabled, classloader information of the class
type is provided. For example:

java.io.IOException: Injected failure!
...
Caused by: an exception which occurred:
in object of type org.infinispan.marshall.VersionAwareMarshallerTest$1
-> classloader hierarchy:
-> type classloader = sun.misc.Launcher$AppClassLoader@198dfaf
->...file:/opt/eclipse/configuration/org.eclipse.osgi/bundles/285/1/.cp/eclipse
-testng.jar
->...file:/opt/eclipse/configuration/org.eclipse.osgi/bundles/285/1/.cp/lib/testng
-jdk15.jar
->...file:/home/galder/jboss/infinispan/code/trunk/core/target/test-classes/
->...file:/home/galder/jboss/infinispan/code/trunk/core/target/classes/
->...file:/home/galder/.m2/repository/org/testng/testng/5.9/testng-5.9-jdk15.jar
->...file:/home/galder/.m2/repository/net/jcip/jcip-annotations/1.0/jcip-annotations
-1.0.jar
->...file:/home/galder/.m2/repository/org/easymock/easymockclassextension/2.4/easymock
classextension-2.4.jar
->...file:/home/galder/.m2/repository/org/easymock/easymock/2.4/easymock-2.4.jar
->...file:/home/galder/.m2/repository/cglib/cglib-nodep/2.1_3/cglib-nodep-2.1_3.jar
->...file:/home/galder/.m2/repository/javax/xml/bind/jaxb-api/2.1/jaxb-api-2.1.jar
->...file:/home/galder/.m2/repository/javax/xml/stream/stax-api/1.0-2/stax-api-1.0
-2.jar
->...file:/home/galder/.m2/repository/javax/activation/activation/1.1/activation

81

-1.1.jar
->...file:/home/galder/.m2/repository/jgroups/jgroups/2.8.0.CR1/jgroups-2.8.0.CR1.jar
->...file:/home/galder/.m2/repository/org/jboss/javaee/jboss-transaction
-api/1.0.1.GA/jboss-transaction-api-1.0.1.GA.jar
->...file:/home/galder/.m2/repository/org/jboss/marshalling/river/1.2.0.CR4
-SNAPSHOT/river-1.2.0.CR4-SNAPSHOT.jar
->...file:/home/galder/.m2/repository/org/jboss/marshalling/marshalling-api/1.2.0.CR4
-SNAPSHOT/marshalling-api-1.2.0.CR4-SNAPSHOT.jar
->...file:/home/galder/.m2/repository/org/jboss/jboss-common-core/2.2.14.GA/jboss
-common-core-2.2.14.GA.jar
->...file:/home/galder/.m2/repository/org/jboss/logging/jboss-logging
-spi/2.0.5.GA/jboss-logging-spi-2.0.5.GA.jar
->...file:/home/galder/.m2/repository/log4j/log4j/1.2.14/log4j-1.2.14.jar
->...file:/home/galder/.m2/repository/com/thoughtworks/xstream/xstream/1.2/xstream
-1.2.jar
->...file:/home/galder/.m2/repository/xpp3/xpp3_min/1.1.3.4.O/xpp3_min-1.1.3.4.O.jar
->...file:/home/galder/.m2/repository/com/sun/xml/bind/jaxb-impl/2.1.3/jaxb-impl
-2.1.3.jar
-> parent classloader = sun.misc.Launcher$ExtClassLoader@1858610
->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/localedata.jar
->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/sunpkcs11.jar
->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/sunjce_provider.jar
->...file:/usr/java/jdk1.5.0_19/jre/lib/ext/dnsns.jar
... Removed 22 stack frames
</code>

Finding the root cause of marshalling/unmarshalling exceptions can sometimes be really daunting
but we hope that the above improvements would help get to the bottom of those in a more quicker
and efficient manner.

8.4. User Defined Externalizers
One of the key aspects of Infinispan is that it often needs to marshall/unmarshall objects in order to
provide some of its functionality. For example, if it needs to store objects in a write-through or
write-behind cache store, the stored objects need marshalling. If a cluster of Infinispan nodes is
formed, objects shipped around need marshalling. Even if you enable lazy deserialization, objects
need to be marshalled so that they can be lazily unmarshalled with the correct classloader.

Using standard JDK serialization is slow and produces payloads that are too big and can affect
bandwidth usage. On top of that, JDK serialization does not work well with objects that are
supposed to be immutable. In order to avoid these issues, Infinispan uses JBoss Marshalling for
marshalling/unmarshalling objects. JBoss Marshalling is fast, produces very space efficient
payloads, and on top of that during unmarshalling, it enables users to have full control over how to
construct objects, hence allowing objects to carry on being immutable.

Starting with 5.0, users of Infinispan can now benefit from this marshalling framework as well, and
they can provide their own externalizer implementations, but before finding out how to provide
externalizers, let’s look at the benefits they bring.

82

http://jboss.org/jbossmarshalling

8.4.1. Benefits of Externalizers

The JDK provides a simple way to serialize objects which, in its simplest form, is just a matter of
extending java.io.Serializable , but as it’s well known, this is known to be slow and it generates
payloads that are far too big. An alternative way to do serialization, still relying on JDK
serialization, is for your objects to extend java.io.Externalizable . This allows for users to provide
their own ways to marshall/unmarshall classes, but has some serious issues because, on top of
relying on slow JDK serialization, it forces the class that you want to serialize to extend this
interface, which has two side effects: The first is that you’re forced to modify the source code of the
class that you want to marshall/unmarshall which you might not be able to do because you either,
don’t own the source, or you don’t even have it. Secondly, since Externalizable implementations do
not control object creation, you’re forced to add set methods in order to restore the state, hence
potentially forcing your immutable objects to become mutable.

Instead of relying on JDK serialization, Infinispan uses JBoss Marshalling to serialize objects and
requires any classes to be serialized to be associated with an Externalizer interface implementation
that knows how to transform an object of a particular class into a serialized form and how to read
an object of that class from a given input. Infinispan does not force the objects to be serialized to
implement Externalizer. In fact, it is recommended that a separate class is used to implement the
Externalizer interface because, contrary to JDK serialization, Externalizer implementations control
how objects of a particular class are created when trying to read an object from a stream. This
means that readObject() implementations are responsible of creating object instances of the target
class, hence giving users a lot of flexibility on how to create these instances (whether direct
instantiation, via factory or reflection), and more importantly, allows target classes to carry on
being immutable. This type of externalizer architecture promotes good OOP designs principles,
such as the principle of single responsibility .

It’s quite common, and in general recommended, that Externalizer implementations are stored as
inner static public classes within classes that they externalize. The advantages of doing this is that
related code stays together, making it easier to maintain. In Infinispan, there are two ways in which
Infinispan can be plugged with user defined externalizers:

8.4.2. User Friendly Externalizers

In the simplest possible form, users just need to provide an Externalizer implementation for the
type that they want to marshall/unmarshall, and then annotate the marshalled type class with
{@link SerializeWith} annotation indicating the externalizer class to use. For example:

import org.infinispan.commons.marshall.Externalizer;
import org.infinispan.commons.marshall.SerializeWith;

@SerializeWith(Person.PersonExternalizer.class)
public class Person {

 final String name;
 final int age;

 public Person(String name, int age) {
 this.name = name;

83

https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://docs.oracle.com/javase/8/docs/api/java/io/Externalizable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/Externalizer.html
http://en.wikipedia.org/wiki/Single_responsibility_principle
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/Externalizer.html

 this.age = age;
 }

 public static class PersonExternalizer implements Externalizer<Person> {
 @Override
 public void writeObject(ObjectOutput output, Person person)
 throws IOException {
 output.writeObject(person.name);
 output.writeInt(person.age);
 }

 @Override
 public Person readObject(ObjectInput input)
 throws IOException, ClassNotFoundException {
 return new Person((String) input.readObject(), input.readInt());
 }
 }
}

At runtime JBoss Marshalling will inspect the object and discover that it’s marshallable (thanks to
the annotation) and so marshall it using the externalizer class passed. To make externalizer
implementations easier to code and more typesafe, make sure you define type <T> as the type of
object that’s being marshalled/unmarshalled.

Even though this way of defining externalizers is very user friendly, it has some disadvantages:

• Due to several constraints of the model, such as support for different versions of the same class
or the need to marshall the Externalizer class, the payload sizes generated via this method are
not the most efficient.

• This model requires that the marshalled class be annotated with {@link SerializeWith} but a
user might need to provide an Externalizer for a class for which source code is not available, or
for any other constraints, it cannot be modified.

• The use of annotations by this model might be limiting for framework developers or service
providers that try to abstract lower level details, such as the marshalling layer, away from the
user.

If you’re affected by any of these disadvantages, an alternative method to provide externalizers is
available via more advanced externalizers:

8.4.3. Advanced Externalizers

AdvancedExternalizer provides an alternative way to provide externalizers for
marshalling/unmarshalling user defined classes that overcome the deficiencies of the more user-
friendly externalizer definition model explained in Externalizer. For example:

import org.infinispan.marshall.AdvancedExternalizer;

public class Person {

84

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/AdvancedExternalizer.html

 final String name;
 final int age;

 public Person(String name, int age) {
 this.name = name;
 this.age = age;
 }

 public static class PersonExternalizer implements AdvancedExternalizer<Person> {
 @Override
 public void writeObject(ObjectOutput output, Person person)
 throws IOException {
 output.writeObject(person.name);
 output.writeInt(person.age);
 }

 @Override
 public Person readObject(ObjectInput input)
 throws IOException, ClassNotFoundException {
 return new Person((String) input.readObject(), input.readInt());
 }

 @Override
 public Set<Class<? extends Person>> getTypeClasses() {
 return Util.<Class<? extends Person>>asSet(Person.class);
 }

 @Override
 public Integer getId() {
 return 2345;
 }
 }
}

The first noticeable difference is that this method does not require user classes to be annotated in
anyway, so it can be used with classes for which source code is not available or that cannot be
modified. The bound between the externalizer and the classes that are marshalled/unmarshalled is
set by providing an implementation for getTypeClasses() which should return the list of classes that
this externalizer can marshall:

Linking Externalizers with Marshaller Classes

Once the Externalizer’s readObject() and writeObject() methods have been implemented, it’s time to
link them up together with the type classes that they externalize. To do so, the Externalizer
implementation must provide a getTypeClasses() implementation. For example:

85

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/AdvancedExternalizer.html#getTypeClasses--

import org.infinispan.commons.util.Util;
...
@Override
public Set<Class<? extends ReplicableCommand>> getTypeClasses() {
 return Util.asSet(LockControlCommand.class, RehashControlCommand.class,
 StateTransferControlCommand.class, GetKeyValueCommand.class,
 ClusteredGetCommand.class,
 SingleRpcCommand.class, CommitCommand.class,
 PrepareCommand.class, RollbackCommand.class,
 ClearCommand.class, EvictCommand.class,
 InvalidateCommand.class, InvalidateL1Command.class,
 PutKeyValueCommand.class, PutMapCommand.class,
 RemoveCommand.class, ReplaceCommand.class);
}

In the code above, ReplicableCommandExternalizer indicates that it can externalize several type of
commands. In fact, it marshalls all commands that extend ReplicableCommand interface, but
currently the framework only supports class equality comparison and so, it’s not possible to
indicate that the classes to marshalled are all children of a particular class/interface.

However there might sometimes when the classes to be externalized are private and hence it’s not
possible to reference the actual class instance. In this situations, users can attempt to look up the
class with the given fully qualified class name and pass that back. For example:

@Override
public Set<Class<? extends List>> getTypeClasses() {
 return Util.<Class<? extends List>>asSet(
 Util.loadClass("java.util.Collections$SingletonList"));
}

Externalizer Identifier

Secondly, in order to save the maximum amount of space possible in the payloads generated,
advanced externalizers require externalizer implementations to provide a positive identified via
getId() implementations or via XML/programmatic configuration that identifies the externalizer
when unmarshalling a payload. In order for this to work however, advanced externalizers require
externalizers to be registered on cache manager creation time via XML or programmatic
configuration which will be explained in next section. On the contrary, externalizers based on
Externalizer and SerializeWith require no pre-registration whatsoever. Internally, Infinispan uses
this advanced externalizer mechanism in order to marshall/unmarshall internal classes.

So, getId() should return a positive integer that allows the externalizer to be identified at read time
to figure out which Externalizer should read the contents of the incoming buffer, or it can return
null. If getId() returns null, it is indicating that the id of this advanced externalizer will be defined
via XML/programmatic configuration, which will be explained in next section.

Regardless of the source of the the id, using a positive integer allows for very efficient variable
length encoding of numbers, and it’s much more efficient than shipping externalizer

86

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/AdvancedExternalizer.html#getId--

implementation class information or class name around. Infinispan users can use any positive
integer as long as it does not clash with any other identifier in the system. It’s important to
understand that a user defined externalizer can even use the same numbers as the externalizers in
the Infinispan Core project because the internal Infinispan Core externalizers are special and they
use a different number space to the user defined externalizers. On the contrary, users should avoid
using numbers that are within the pre-assigned identifier ranges which can be found at the end of
this article. Infinispan checks for id duplicates on startup, and if any are found, startup is halted
with an error.

When it comes to maintaining which ids are in use, it’s highly recommended that this is done in a
centralized way. For example, getId() implementations could reference a set of statically defined
identifiers in a separate class or interface. Such class/interface would give a global view of the
identifiers in use and so can make it easier to assign new ids.

Registering Advanced Externalizers

The following example shows the type of configuration required to register an advanced
externalizer implementation for Person object shown earlier stored as a static inner class within it:

infinispan.xml

<infinispan>
 <cache-container>
 <serialization>
 <advanced-externalizer class="Person$PersonExternalizer"/>
 </serialization>
 </cache-container>
 ...
</infinispan>

Programmatically:

GlobalConfigurationBuilder builder = ...
builder.serialization()
 .addAdvancedExternalizer(new Person.PersonExternalizer());

As mentioned earlier, when listing these externalizer implementations, users can optionally
provide the identifier of the externalizer via XML or programmatically instead of via getId()
implementation. Again, this offers a centralized way to maintain the identifiers but it’s important
that the rules are clear: An AdvancedExternalizer implementation, either via XML/programmatic
configuration or via annotation, needs to be associated with an identifier. If it isn’t, Infinispan will
throw an error and abort startup. If a particular AdvancedExternalizer implementation defines an
id both via XML/programmatic configuration and annotation, the value defined via
XML/programmatically is the one that will be used. Here’s an example of an externalizer whose id
is defined at registration time:

87

infinispan.xml

<infinispan>
 <cache-container>
 <serialization>
 <advanced-externalizer id="123"
 class="Person$PersonExternalizer"/>
 </serialization>
 </cache-container>
 ...
</infinispan>

Programmatically:

GlobalConfigurationBuilder builder = ...
builder.serialization()
 .addAdvancedExternalizer(123, new Person.PersonExternalizer());

Finally, a couple of notes about the programmatic configuration.
GlobalConfiguration.addExternalizer() takes varargs, so it means that it is possible to register
multiple externalizers in just one go, assuming that their ids have already been defined via
@Marshalls annotation. For example:

builder.serialization()
 .addAdvancedExternalizer(new Person.PersonExternalizer(),
 new Address.AddressExternalizer());

Preassigned Externalizer Id Ranges

This is the list of Externalizer identifiers that are used by Infinispan based modules or frameworks.
Infinispan users should avoid using ids within these ranges.

Infinispan Tree Module: 1000 - 1099

Infinispan Server Modules: 1100 - 1199

Hibernate Infinispan Second Level Cache: 1200 - 1299

Infinispan Lucene Directory: 1300 - 1399

Hibernate OGM: 1400 - 1499

Hibernate Search: 1500 - 1599

Infinispan Query Module: 1600 - 1699

Infinispan Remote Query Module: 1700 - 1799

Infinispan Scripting Module: 1800 - 1849

Infinispan Server Event Logger Module: 1850 - 1899

88

Infinispan Remote Store: 1900 - 1999

89

Chapter 9. Transactions
Infinispan can be configured to use and to participate in JTA compliant transactions. Alternatively,
if transaction support is disabled, it is equivalent to using autocommit in JDBC calls, where
modifications are potentially replicated after every change (if replication is enabled).

On every cache operation Infinispan does the following:

1. Retrieves the current Transaction associated with the thread

2. If not already done, registers XAResource with the transaction manager to be notified when a
transaction commits or is rolled back.

In order to do this, the cache has to be provided with a reference to the environment’s
TransactionManager. This is usually done by configuring the cache with the class name of an
implementation of the TransactionManagerLookup interface. When the cache starts, it will create
an instance of this class and invoke its getTransactionManager() method, which returns a reference
to the TransactionManager.

Infinispan ships with several transaction manager lookup classes:

Transaction manager lookup implementations

• DummyTransactionManagerLookup: This provides with a dummy transaction manager which
should only be used for testing. Being a dummy, this is not recommended for production use a it
has some severe limitations to do with concurrent transactions and recovery.

• JBossStandaloneJTAManagerLookup: If you’re running Infinispan in a standalone environment,
this should be your default choice for transaction manager. It’s a fully fledged transaction
manager based on JBoss Transactions which overcomes all the deficiencies of the dummy
transaction manager.

• GenericTransactionManagerLookup: This is a lookup class that locate transaction managers in
the most popular Java EE application servers. If no transaction manager can be found, it
defaults on the dummy transaction manager.

Once initialized, the TransactionManager can also be obtained from the Cache itself:

//the cache must have a transactionManagerLookupClass defined
Cache cache = cacheManager.getCache();

//equivalent with calling TransactionManagerLookup.getTransactionManager();
TransactionManager tm = cache.getAdvancedCache().getTransactionManager();

9.1. Configuring transactions
Transactions are configured at cache level. Below is the configuration that affects a transaction
behaviour and a small description of each configuration attribute.

90

https://docs.oracle.com/javaee/7/api/javax/transaction/Transaction.htmll
https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html
https://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/transaction/lookup/TransactionManagerLookup.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/transaction/lookup/DummyTransactionManagerLookup.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/transaction/lookup/JBossStandaloneJTAManagerLookup.html
http://narayana.io/
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/transaction/lookup/GenericTransactionManagerLookup.html

<locking
 isolation="READ_COMMITTED"
 write-skew="false"/>
<transaction
 locking="OPTIMISTIC"
 auto-commit="true"
 complete-timeout="60000"
 mode="NONE"
 notifications="true"
 protocol="DEFAULT"
 reaper-interval="30000"
 recovery-cache="__recoveryInfoCacheName__"
 stop-timeout="30000"
 transaction-manager-lookup=
"org.infinispan.transaction.lookup.GenericTransactionManagerLookup"/>
<versioning
 scheme="NONE"/>

or programmatically:

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.locking()
 .isolationLevel(IsolationLevel.READ_COMMITTED)
 .writeSkewCheck(false);
builder.transaction()
 .lockingMode(LockingMode.OPTIMISTIC)
 .autoCommit(true)
 .completedTxTimeout(60000)
 .transactionMode(TransactionMode.NON_TRANSACTIONAL)
 .useSynchronization(false)
 .notifications(true)
 .transactionProtocol(TransactionProtocol.DEFAULT)
 .reaperWakeUpInterval(30000)
 .cacheStopTimeout(30000)
 .transactionManagerLookup(new GenericTransactionManagerLookup())
 .recovery()
 .enabled(false)
 .recoveryInfoCacheName("__recoveryInfoCacheName__");
builder.versioning()
 .enabled(false)
 .scheme(VersioningScheme.NONE);

• isolation - configures the isolation level. Check section Isolation levels for more details. Default
is READ_COMMITTED.

• write-skew - enables the write skew check. Check section Write Skew for more details. Default is
false.

• locking - configures whether the cache uses optimistic or pessimistic locking. Check section

91

Transaction locking for more details. Default is OPTIMISTIC.

• auto-commit - if enable, the user does not need to start a transaction manually for a single
operation. The transaction is automatically started and committed. Default is true.

• complete-timeout - the duration in milliseconds to keep information about completed
transactions. Default is 60000.

• mode - configures whether the cache is transactional or not. Default is NONE. The available options
are:

• NONE - non transactional cache

• FULL_XA - XA transactional cache with recovery enabled. Check section Transaction recovery
for more details about recovery.

• NON_DURABLE_XA - XA transactional cache with recovery disabled.

• NON_XA - transactional cache with integration via Synchronization instead of XA. Check
section Enlisting Synchronizations for details.

• BATCH- transactional cache using batch to group operations. Check section Batching for
details.

• notifications - enables/disables triggering transactional events in cache listeners. Default is
true.

• protocol - configures the protocol uses. Default is DEFAULT. Values available are:

• DEFAULT - uses the traditional Two-Phase-Commit protocol. It is described below.

• TOTAL_ORDER - uses total order ensured by the Transport to commit transactions. Check section
Total Order based commit protocol for details.

• reaper-interval - the time interval in millisecond at which the thread that cleans up transaction
completion information kicks in. Defaults is 30000.

• recovery-cache - configures the cache name to store the recovery information. Check section
Transaction recovery for more details about recovery. Default is recoveryInfoCacheName.

• stop-timeout - the time in millisecond to wait for ongoing transaction when the cache is
stopping. Default is 30000.

• transaction-manager-lookup - configures the fully qualified class name of a class that looks up a
reference to a javax.transaction.TransactionManager. Default is
org.infinispan.transaction.lookup.GenericTransactionManagerLookup.

• Versioning scheme - configure the version scheme to use when write skew is enabled with
optimistic or total order transactions. Check section Write Skew for more details. Default is NONE.

For more details on how Two-Phase-Commit (2PC) is implemented in Infinispan and how locks are
being acquired see the section below. More details about the configuration settings are available in
Configuration reference.

9.2. Isolation levels
Infinispan offers two isolation levels - READ_COMMITTED and REPEATABLE_READ.

92

https://docs.oracle.com/javaee/7/api/javax/transaction/Synchronization.html
http://docs.jboss.org/infinispan/9.0/configdocs/
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Read_committed
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Repeatable_reads

These isolation levels determine when readers see a concurrent write, and are internally
implemented using different subclasses of MVCCEntry, which have different behaviour in how state
is committed back to the data container.

Here’s a more detailed example that should help understand the difference between READ_COMMITTED
and REPEATABLE_READ in the context of Infinispan. With READ_COMMITTED, if between two consecutive
read calls on the same key, the key has been updated by another transaction, the second read may
return the new updated value:

Thread1: tx.begin()
Thread1: cache.get(k) returns v
Thread2: tx.begin()
Thread2: cache.get(k) returns v
Thread2: cache.put(k, v2)
Thread2: tx.commit()
Thread1: cache.get(k) returns v2! //Final get

With REPEATABLE_READ, the final get will still return v. So, if you’re going to retrieve the same key
multiple times within a transaction, you should use REPEATABLE_READ.

9.3. Transaction locking

9.3.1. Pessimistic transactional cache

From a lock acquisition perspective, pessimistic transactions obtain locks on keys at the time the
key is written.

1. A lock request is sent to the primary owner (can be an explicit lock request or an operation)

2. The primary owner tries to acquire the lock:

a. If it succeed, it sends back a positive reply;

b. Otherwise, a negative reply is sent and the transaction is rollback.

As an example:

transactionManager.begin();
cache.put(k1,v1); //k1 is locked.
cache.remove(k2); //k2 is locked when this returns
transactionManager.commit();

When cache.put(k1,v1) returns, k1 is locked and no other transaction running anywhere in the
cluster can write to it. Reading k1 is still possible. The lock on k1 is released when the transaction
completes (commits or rollbacks).

 For conditional operations, the validation is performed in the originator.

93

9.3.2. Optimistic transactional cache

With optimistic transactions locks are being acquired at transaction prepare time and are only
being held up to the point the transaction commits (or rollbacks). This is different from the 5.0
default locking model where local locks are being acquire on writes and cluster locks are being
acquired during prepare time.

1. The prepare is sent to all the owners.

2. The primary owners try to acquire the locks needed:

a. If locking succeeds, it performs the write skew check.

b. If the write skew check succeeds (or is disabled), send a positive reply.

c. Otherwise, a negative reply is sent and the transaction is rolled back.

As an example:

transactionManager.begin();
cache.put(k1,v1);
cache.remove(k2);
transactionManager.commit(); //at prepare time, K1 and K2 is locked until
committed/rolled back.

 For conditional commands, the validation still happens on the originator.

9.3.3. What do I need - pessimistic or optimistic transactions?

From a use case perspective, optimistic transactions should be used when there is not a lot of
contention between multiple transactions running at the same time. That is because the optimistic
transactions rollback if data has changed between the time it was read and the time it was
committed (with write skew check enabled).

On the other hand, pessimistic transactions might be a better fit when there is high contention on
the keys and transaction rollbacks are less desirable. Pessimistic transactions are more costly by
their nature: each write operation potentially involves a RPC for lock acquisition.

9.4. Write Skew
The write skew anomaly occurs when 2 transactions read and update the same key and both of
them can commit successfully without having seen the update performed by the other. To detect
and rollback one of the transaction, write-skew should be enabled.

 The write skew check is only performed for REPEATABLE_READ isolation.


Pessimistic transaction does not perform any write skew check. It can be avoided
by locking the key at read time. Look how at the example below.

94

Locking key before read (Pessimitic Transaction)

if (!cache.getAdvancedCache().lock(key)) {
 //key not locked. abort transaction
}
cache.get(key);
cache.put(key, value);

//this code is equivalent
cache.getAdvancedCache().withFlags(Flag.FORCE_WRITE_LOCK).get(key); //will throw an
exception is not locked.
cache.put(key, value);

When operating in LOCAL mode, write skew checks relies on Java object references to compare
differences and this is adequate to provide a reliable write-skew check. However, this technique is
useless in a cluster and a more reliable form of versioning is necessary to provide reliable write
skew checks.

Data version needs to be configured in order to support write skew check:

<versioning scheme="SIMPLE|NONE" />

Or

new ConfigurationBuilder().versioning().scheme(SIMPLE);


SIMPLE versioning is an implementation of the proposed EntryVersion interface,
backed by a long that is incremented each time the entry is updated.

9.5. Deadlock detection
Deadlocks can significantly (up to one order of magnitude) reduce the throughput of a system,
especially when multiple transactions are operating against the same key set. Deadlock detection is
disabled by default, but can be enabled/configured per cache (i.e. under *-cache config element) by
adding the following:

<local-cache deadlock-detection-spin="1000"/>

or, programmatically

new ConfigurationBuilder().deadlockDetection().enable().spinDuration(1000);
//or
new ConfigurationBuilder().deadlockDetection().enable().spinDuration(1, TimeUnit
.SECONDS);

95

Some clues on when to enable deadlock detection.

• A high number of transaction rolling back due to TimeoutException is an indicator that this
functionality might help.

• TimeoutException might be caused by other causes as well, but deadlocks will always result in
this exception being thrown.

Generally, when you have a high contention on a set of keys, deadlock detection may help. But the
best way is not to guess the performance improvement but to benchmark and monitor it: you can
have access to statistics (e.g. number of deadlocks detected) through JMX, as it is exposed via the
DeadlockDetectingLockManager MBean. For more details on how deadlock detection works,
benchmarks and design details refer to this article.


deadlock detection only runs on an a per cache basis: deadlocks that spread over
two or more caches won’t be detected.

9.6. Dealing with exceptions
If a CacheException (or a subclass of it) is thrown by a cache method within the scope of a JTA
transaction, then the transaction is automatically marked for rollback.

9.7. Enlisting Synchronizations
By default Infinispan registers itself as a first class participant in distributed transactions through
XAResource. There are situations where Infinispan is not required to be a participant in the
transaction, but only to be notified by its lifecycle (prepare, complete): e.g. in the case Infinispan is
used as a 2nd level cache in Hibernate.

Starting with 5.0 release, Infinispan allows transaction enlistment through Synchronisation. To
enable it just use NON_XA transaction mode.

Synchronizations have the advantage that they allow TransactionManager to optimize 2PC with a 1PC
where only one other resource is enlisted with that transaction (last resource commit optimization).
E.g. Hibernate second level cache: if Infinispan registers itself with the TransactionManager as a
XAResource than at commit time, the TransactionManager sees two XAResource (cache and database)
and does not make this optimization. Having to coordinate between two resources it needs to write
the tx log to disk. On the other hand, registering Infinispan as a Synchronisation makes the
TransactionManager skip writing the log to the disk (performance improvement).

9.8. Batching
Batching allows atomicity and some characteristics of a transaction, but not full-blown JTA or XA
capabilities. Batching is often a lot lighter and cheaper than a full-blown transaction.

96

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/util/concurrent/TimeoutException.html
http://infinispan.blogspot.com/2009/07/increase-transactional-throughput-with.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/CacheException.html
https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html
https://docs.oracle.com/javaee/7/api/javax/transaction/Synchronization.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/5/html/Administration_And_Configuration_Guide/lrco-overview.html



Generally speaking, one should use batching API whenever the only participant
in the transaction is an Infinispan cluster. On the other hand, JTA transactions
(involving TransactionManager) should be used whenever the transactions
involves multiple systems. E.g. considering the "Hello world!" of transactions:
transferring money from one bank account to the other. If both accounts are
stored within Infinispan, then batching can be used. If one account is in a
database and the other is Infinispan, then distributed transactions are required.

 You do not have to have a transaction manager defined to use batching.

9.8.1. API

Once you have configured your cache to use batching, you use it by calling startBatch() and
endBatch() on Cache. E.g.,

Cache cache = cacheManager.getCache();
// not using a batch
cache.put("key", "value"); // will replicate immediately

// using a batch
cache.startBatch();
cache.put("k1", "value");
cache.put("k2", "value");
cache.put("k2", "value");
cache.endBatch(true); // This will now replicate the modifications since the batch was
started.

// a new batch
cache.startBatch();
cache.put("k1", "value");
cache.put("k2", "value");
cache.put("k3", "value");
cache.endBatch(false); // This will "discard" changes made in the batch

9.8.2. Batching and JTA

Behind the scenes, the batching functionality starts a JTA transaction, and all the invocations in that
scope are associated with it. For this it uses a very simple (e.g. no recovery) internal
TransactionManager implementation. With batching, you get:

1. Locks you acquire during an invocation are held until the batch completes

2. Changes are all replicated around the cluster in a batch as part of the batch completion process.
Reduces replication chatter for each update in the batch.

3. If synchronous replication or invalidation are used, a failure in replication/invalidation will
cause the batch to roll back.

4. All the transaction related configurations apply for batching as well.

97

9.9. Transaction recovery
Recovery is a feature of XA transactions, which deal with the eventuality of a resource or possibly
even the transaction manager failing, and recovering accordingly from such a situation.

9.9.1. When to use recovery

Consider a distributed transaction in which money is transferred from an account stored in an
external database to an account stored in Infinispan. When TransactionManager.commit() is invoked,
both resources prepare successfully (1st phase). During the commit (2nd) phase, the database
successfully applies the changes whilst Infinispan fails before receiving the commit request from
the transaction manager. At this point the system is in an inconsistent state: money is taken from
the account in the external database but not visible yet in Infinispan (since locks are only released
during 2nd phase of a two-phase commit protocol). Recovery deals with this situation to make sure
data in both the database and Infinispan ends up in a consistent state.

9.9.2. How does it work

Recovery is coordinated by the transaction manager. The transaction manager works with
Infinispan to determine the list of in-doubt transactions that require manual intervention and
informs the system administrator (via email, log alerts, etc). This process is transaction manager
specific, but generally requires some configuration on the transaction manager.

Knowing the in-doubt transaction ids, the system administrator can now connect to the Infinispan
cluster and replay the commit of transactions or force the rollback. Infinispan provides JMX tooling
for this - this is explained extensively in the Reconciliation section.

9.9.3. Configuring recovery

Recovery is not enabled by default in Infinispan. If disabled, the TransactionManager won’t be able to
work with Infinispan to determine the in-doubt transactions. The Configuring transactions section
shows how to enable it.

 recovery-cache attribute is not mandatory and it is configured per-cache.


For recovery to work, mode must be set to FULL_XA, since full-blown XA
transactions are needed.

Enable JMX support

In order to be able to use JMX for managing recovery JMX support must be explicitly enabled. More
about enabling JMX in Management Tooling section.

9.9.4. Recovery cache

In order to track in-doubt transactions and be able to reply them, Infinispan caches all transaction
state for future use. This state is held only for in-doubt transaction, being removed for successfully
completed transactions after when the commit/rollback phase completed.

98

This in-doubt transaction data is held within a local cache: this allows one to configure swapping
this info to disk through cache loader in the case it gets too big. This cache can be specified through
the recovery-cache configuration attribute. If not specified infinispan will configure a local cache
for you.

It is possible (though not mandated) to share same recovery cache between all the Infinispan
caches that have recovery enabled. If the default recovery cache is overridden, then the specified
recovery cache must use a TransactionManagerLookup that returns a different transaction
manager than the one used by the cache itself.

9.9.5. Integration with the transaction manager

Even though this is transaction manager specific, generally a transaction manager would need a
reference to a XAResource implementation in order to invoke XAResource.recover() on it. In order to
obtain a reference to an Infinispan XAResource following API can be used:

XAResource xar = cache.getAdvancedCache().getXAResource();

It is a common practice to run the recovery in a different process from the one running the
transaction. At the moment it is not possible to do this with infinispan: the recovery must be run
from the same process where the infinispan instance exists. This limitation will be dropped once
transactions over Hot Rod are available.

9.9.6. Reconciliation

The transaction manager informs the system administrator on in-doubt transaction in a
proprietary way. At this stage it is assumed that the system administrator knows transaction’s XID
(a byte array).

A normal recovery flow is:

• STEP 1: The system administrator connects to an Infinispan server through JMX, and lists the in
doubt transactions. The image below demonstrates JConsole connecting to an Infinispan node
that has an in doubt transaction.

99

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/transaction/lookup/class-use/TransactionManagerLookup.html
https://issues.jboss.org/browse/ISPN-375

Figure 6. Show in-doubt transactions

The status of each in-doubt transaction is displayed(in this example " PREPARED "). There might be
multiple elements in the status field, e.g. "PREPARED" and "COMMITTED" in the case the transaction
committed on certain nodes but not on all of them.

• STEP 2: The system administrator visually maps the XID received from the transaction manager
to an Infinispan internal id, represented as a number. This step is needed because the XID, a
byte array, cannot conveniently be passed to the JMX tool (e.g. JConsole) and then re-assembled
on infinispan’s side.

• STEP 3: The system administrator forces the transaction’s commit/rollback through the
corresponding jmx operation, based on the internal id. The image below is obtained by forcing
the commit of the transaction based on its internal id.

100

Figure 7. Force commit


All JMX operations described above can be executed on any node, regardless of
where the transaction originated.

Force commit/rollback based on XID

XID-based JMX operations for forcing in-doubt transactions' commit/rollback are available as well:
these methods receive byte[] arrays describing the XID instead of the number associated with the
transactions (as previously described at step 2). These can be useful e.g. if one wants to set up an
automatic completion job for certain in-doubt transactions. This process is plugged into transaction
manager’s recovery and has access to the transaction manager’s XID objects.

9.9.7. Want to know more?

The recovery design document describes in more detail the insides of transaction recovery
implementation.

9.10. Total Order based commit protocol
The Total Order based protocol is a multi-master scheme (in this context, multi-master scheme
means that all nodes can update all the data) as the (optimistic/pessimist) locking mode
implemented in Infinispan. This commit protocol relies on the concept of totally ordered delivery of

101

https://community.jboss.org/wiki/TransactionRecoveryDesign

messages which, informally, implies that each node which delivers a set of messages, delivers them
in the same order.

This protocol comes with this advantages.

1. transactions can be committed in one phase, as they are delivered in the same order by the
nodes that receive them.

2. it mitigates distributed deadlocks.

The weaknesses of this approach are the fact that its implementation relies on a single thread per
node which delivers the transaction and its modification, and the slightly cost of total ordering the
messages in Transport.

Thus, this protocol delivers best performance in scenarios of high contention , in which it can
benefit from the single-phase commit and the deliver thread is not the bottleneck.

Currently, the Total Order based protocol is available only in transactional caches for replicated and
distributed modes.

9.10.1. Overview

The Total Order based commit protocol only affects how transactions are committed by Infinispan
and the isolation level and write skew affects it behaviour.

When write skew is disabled, the transaction can be committed/rolled back in single phase. The
data consistency is guaranteed by the Transport that ensures that all owners of a key will deliver the
same transactions set by the same order.

On other hand, when write skew is enabled, the protocol adapts and uses one phase commit when
it is safe. In XaResource enlistment, we can use one phase if the TransactionManager request a commit
in one phase (last resource commit optimization) and the Infinispan cache is configured in
replicated mode. This optimization is not safe in distributed mode because each node performs the
write skew check validation in different keys subset. When in Synchronization enlistment, the
TransactionManager does not provide any information if Infinispan is the only resource enlisted (last
resource commit optimization), so it is not possible to commit in a single phase.

Commit in one phase

When the transaction ends, Infinispan sends the transaction (and its modification) in total order.
This ensures all the transactions are deliver in the same order in all the involved Infinispan nodes.
As a result, when a transaction is delivered, it performs a deterministic write skew check over the
same state (if enabled), leading to the same outcome (transaction commit or rollback).

102

Figure 8. 1-phase commit

The figure above demonstrates a high level example with 3 nodes. Node1 and Node3 are running one
transaction each and lets assume that both transaction writes on the same key. To make it more
interesting, lets assume that both nodes tries to commit at the same time, represented by the first
colored circle in the figure. The blue circle represents the transaction tx1 and the green the
transaction tx2 . Both nodes do a remote invocation in total order (to-send) with the transaction’s
modifications. At this moment, all the nodes will agree in the same deliver order, for example, tx1
followed by tx2 . Then, each node delivers tx1 , perform the validation and commits the
modifications. The same steps are performed for tx2 but, in this case, the validation will fail and the
transaction is rollback in all the involved nodes.

Commit in two phases

In the first phase, it sends the modification in total order and the write skew check is performed.
The result of the write skew check is sent back to the originator. As soon as it has the confirmation
that all keys are successfully validated, it give a positive response to the TransactionManager. On
other hand, if it receives a negative reply, it returns a negative response to the TransactionManager.
Finally, the transaction is committed or aborted in the second phase depending of the
TransactionManager request.

103

Figure 9. 2-phase commit

The figure above shows the scenario described in the first figure but now committing the
transactions using two phases. When tx1 is deliver, it performs the validation and it replies to the
TransactionManager. Next, lets assume that tx2 is deliver before the TransactionManager request the
second phase for tx1. In this case, tx2 will be enqueued and it will be validated only when tx1 is
completed. Eventually, the TransactionManager for tx1 will request the second phase (the commit)
and all the nodes are free to perform the validation of tx2 .

Transaction Recovery

Transaction recovery is currently not available for Total Order based commit protocol.

State Transfer

For simplicity reasons, the total order based commit protocol uses a blocking version of the current
state transfer. The main differences are:

1. enqueue the transaction deliver while the state transfer is in progress;

2. the state transfer control messages (CacheTopologyControlCommand) are sent in total order.

This way, it provides a synchronization between the state transfer and the transactions deliver that
is the same all the nodes. Although, the transactions caught in the middle of state transfer (i.e. sent

104

before the state transfer start and deliver after it) needs to be re-sent to find a new total order
involving the new joiners.

Figure 10. Node joining during transaction

The figure above describes a node joining. In the scenario, the tx2 is sent in topologyId=1 but when
it is received, it is in topologyId=2 . So, the transaction is re-sent involving the new nodes.

9.10.2. Configuration

To use total order in your cache, you need to add the TOA protocol in your jgroups.xml configuration
file.

jgroups.xml

<tom.TOA />

 Check the JGroups Manual for more details.


If you are interested in detail how JGroups guarantees total order, check the TOA
manual.

105

http://jgroups.org/manual-3.x/html/index.html
:http://jgroups.org/manual/index.html#TOA
:http://jgroups.org/manual/index.html#TOA

Also, you need to set the protocol=TOTAL_ORDER in the <transaction> element, as shown in
Configuration section.

9.10.3. When to use it?

Total order shows benefits when used in write intensive and high contented workloads. It mitigates
the cost associated with deadlock detection and avoids contention in the lock keys.

106

Chapter 10. Locking and Concurrency
Infinispan makes use of multi-versioned concurrency control (MVCC) - a concurrency scheme
popular with relational databases and other data stores. MVCC offers many advantages over coarse-
grained Java synchronization and even JDK Locks for access to shared data, including:

• allowing concurrent readers and writers

• readers and writers do not block one another

• write skews can be detected and handled

• internal locks can be striped

10.1. Locking implementation details
Infinispan’s MVCC implementation makes use of minimal locks and synchronizations, leaning
heavily towards lock-free techniques such as compare-and-swap and lock-free data structures
wherever possible, which helps optimize for multi-CPU and multi-core environments.

In particular, Infinispan’s MVCC implementation is heavily optimized for readers. Reader threads
do not acquire explicit locks for entries, and instead directly read the entry in question.

Writers, on the other hand, need to acquire a write lock. This ensures only one concurrent writer
per entry, causing concurrent writers to queue up to change an entry. To allow concurrent reads,
writers make a copy of the entry they intend to modify, by wrapping the entry in an MVCCEntry. This
copy isolates concurrent readers from seeing partially modified state. Once a write has completed,
MVCCEntry.commit() will flush changes to the data container and subsequent readers will see the
changes written.

10.1.1. How does it work in clustered caches?

In clustered caches, each key has a node responsible to lock the key. This node is called primary
owner.

Non Transactional caches

1. The write operation is sent to the primary owner of the key.

2. The primary owner tries to lock the key.

a. If it succeeds, it forwards the operation to the other owners;

b. Otherwise, an exception is thrown.


If the operation is conditional and it fails on the primary owner, it is not
forwarded to the other owners.

 If the operation is executed locally in the primary owner, the first step is skipped.

107

http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Compare-and-swap

10.1.2. Transactional caches

The transactional cache supports optimistic and pessimistic locking mode. Check section
Transaction locking for more information about it.

10.1.3. Isolation levels

Isolation level affects what transactions can read when running concurrently with other
transaction. Check section Isolation levels for more details about it.

10.1.4. The LockManager

The LockManager is a component that is responsible for locking an entry for writing. The LockManager
makes use of a LockContainer to locate/hold/create locks. LockContainers come in two broad flavours,
with support for lock striping and with support for one lock per entry.

10.1.5. Lock striping

Lock striping entails the use of a fixed-size, shared collection of locks for the entire cache, with
locks being allocated to entries based on the entry’s key’s hash code. Similar to the way the JDK’s
ConcurrentHashMap allocates locks, this allows for a highly scalable, fixed-overhead locking
mechanism in exchange for potentially unrelated entries being blocked by the same lock.

The alternative is to disable lock striping - which would mean a new lock is created per entry. This
approach may give you greater concurrent throughput, but it will be at the cost of additional
memory usage, garbage collection churn, etc.


Default lock striping settings

From Infinispan 5.0, lock striping is disabled by default, due to potential
deadlocks that can happen if locks for different keys end up in the same lock
stripe. Previously, in Infinispan 4.x lock striping used to be enabled by default.

The size of the shared lock collection used by lock striping can be tuned using the concurrencyLevel
attribute of the `<locking /> configuration element.

Configuration example:

<locking striping="false|true"/>

Or

new ConfigurationBuilder().locking().useLockStriping(false|true);

10.1.6. Concurrency levels

In addition to determining the size of the striped lock container, this concurrency level is also used
to tune any JDK ConcurrentHashMap based collections where related, such as internal to

108

DataContainers. Please refer to the JDK ConcurrentHashMap Javadocs for a detailed discussion of
concurrency levels, as this parameter is used in exactly the same way in Infinispan.

Configuration example:

<locking concurrency-level="32"/>

Or

new ConfigurationBuilder().locking().concurrencyLevel(32);

10.1.7. Lock timeout

The lock timeout specifies the amount of time, in milliseconds, to wait for a contented lock.

Configuration example:

<locking acquire-timeout="10000"/>

Or

new ConfigurationBuilder().locking().lockAcquisitionTimeout(10000);
//alternatively
new ConfigurationBuilder().locking().lockAcquisitionTimeout(10, TimeUnit.SECONDS);

10.1.8. Consistency

The fact that a single owner is locked (as opposed to all owners being locked) does not break the
following consistency guarantee: if key K is hashed to nodes {A, B} and transaction TX1 acquires a
lock for K, let’s say on A. If another transaction, TX2, is started on B (or any other node) and TX2 tries
to lock K then it will fail with a timeout as the lock is already held by TX1. The reason for this is the
that the lock for a key K is always, deterministically, acquired on the same node of the cluster,
regardless of where the transaction originates.

10.2. Data Versioning
Infinispan supports two forms of data versioning: simple and external. The simple versioning is
used in transactional caches for write skew check. Check section Write Skew section for detail
about it.

The external versioning is used to encapsulate an external source of data versioning within
Infinispan, such as when using Infinispan with Hibernate which in turn gets its data version
information directly from a database.

In this scheme, a mechanism to pass in the version becomes necessary, and overloaded versions of

109

put() and putForExternalRead() will be provided in AdvancedCache to take in an external data
version. This is then stored on the InvocationContext and applied to the entry at commit time.


Write skew checks cannot and will not be performed in the case of external data
versioning.

110

Chapter 11. Streams
Java 8 introduced the concept of a Stream which allows functional-style operations on collections
rather than having to procedurally iterate over the data yourself. Stream operations can be
implemented in a fashion very similar to MapReduce. Streams, just like MapReduce allow you to
perform processing upon the entirety of your cache, possibly a very large data set, but in an
efficient way.

Also since we can control how the entries are iterated upon we can more efficiently perform the
operations in a cache that is distributed if you want it to perform all of the operations across the
cluster concurrently.

A stream is retrieved from the entrySet, keySet or values collections returned from the Cache by
invoking the stream or parallelStream methods.

11.1. Common stream operations
This section highlights various options that are present irrespective of what type of underlying
cache you are using.

11.1.1. Key filtering

It is possible to filter the stream so that it only operates upon a given subset of keys. This can be
done by invoking the filterKeys method on the CacheStream. This should always be used over a
Predicate filter and will be faster if the predicate was holding all keys.

If you are familiar with the AdvancedCache interface you may be wondering why you even use getAll
over this keyFilter. There are some small benefits (mostly smaller payloads) to using getAll if you
need the entries as is and need them all in memory in the local node. However if you need to do
processing on these elements a stream is recommended since you will get both distributed and
threaded parallelism for free.

11.1.2. Segment based filtering


This is an advanced feature and should only be used with deep knowledge of
Infinispan segment and hashing techniques. These segments based filtering can
be useful if you need to segment data into separate invocations. This can be
useful when integrating with other tools such as Apache Spark.

This option is only supported for replicated and distributed caches. This allows the user to operate
upon a subset of data at a time as determined by the KeyPartitioner. The segments can be filtered
by invoking filterKeySegments method on the CacheStream. This is applied after the key filter but
before any intermediate operations are performed.

11.2. Local/Invalidation
A stream used with a local or invalidation cache can be used just the same way you would use a

111

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#entrySet--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#keySet--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#values--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#stream--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#parallelStream--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#filterKeys-java.util.Set-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html?is-external=true#filter-java.util.function.Predicate-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html#getAll-java.util.Set-
http://spark.apache.org/
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/distribution/ch/KeyPartitioner.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#filterKeySegments-java.util.Set-

stream on a regular collection. Infinispan handles all of the translations if necessary behind the
scenes and works with all of the more interesting options (ie. storeAsBinary, compatibility mode,
and a cache loader). Only data local to the node where the stream operation is performed will be
used, for example invalidation only uses local entries.

11.2.1. Example

The code below takes a cache and returns a map with all the cache entries whose values contain the
string "JBoss"

Map<Object, String> jbossValues = cache.entrySet().stream()
 .filter(e -> e.getValue().contains("JBoss"))
 .collect(Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));

11.3. Distribution/Replication
This is where streams come into their stride. When a stream operation is performed it will send the
various intermediate and terminal operations to each node that has pertinent data. This allows
processing the intermediate values on the nodes owning the data, and only sending the final results
back to the originating nodes, improving performance.

11.3.1. Rehash Aware

Internally the data is segmented and each node only performs the operations upon the data it owns
as a primary owner. This allows for data to be processed evenly, assuming segments are granular
enough to provide for equal amounts of data on each node.

When you are utilizing a distributed cache, the data can be reshuffled between nodes when a new
node joins or leaves. Distributed Streams handle this reshuffling of data automatically so you don’t
have to worry about monitoring when nodes leave or join the cluster. Reshuffled entries may be
processed a second time, and we keep track of the processed entries at the key level or at the
segment level (depending on the terminal operation) to limit the amount of duplicate processing.

It is possible but highly discouraged to disable rehash awareness on the stream. This should only
be considered if your request can handle only seeing a subset of data if a rehash occurs. This can
be done by invoking CacheStream.disableRehashAware() The performance gain for most
operations when a rehash doesn’t occur is completely negligible. The only exceptions are for
iterator and forEach, which will use less memory, since they do not have to keep track of processed
keys.


Please rethink disabling rehash awareness unless you really know what you are
doing.

11.3.2. Serialization

Since the operations are sent across to other nodes they must be serializable by Infinispan
marshalling. This allows the operations to be sent to the other nodes.

112

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#disableRehashAware--

The simplest way is to use a CacheStream instance and use a lambda just as you would normally.
Infinispan overrides all of the various Stream intermediate and terminal methods to take
Serializable versions of the arguments (ie. SerializableFunction, SerializablePredicate…) You can
find these methods at CacheStream. This relies on the spec to pick the most specific method as
defined here.

In our previous example we used a Collector to collect all the results into a Map. Unfortunately the
Collectors class doesn’t produce Serializable instances. Thus if you need to use these, you can use
the newly provided CacheCollectors class which allows for a Supplier<Collector> to be provided.
This instance could then use the Collectors to supply a Collector which is not serialized. You can
read more details about how the collector peforms in a distributed fashion at distributed execution.

Map<Object, String> jbossValues = cache.entrySet().stream()
 .filter(e -> e.getValue().contains("Jboss"))
 .collect(CacheCollectors.serializableCollector(() -> Collectors.toMap
(Map.Entry::getKey, Map.Entry::getValue)));

If however you are not able to use the Cache and CacheStream interfaces you cannot utilize
Serializable arguments and you must instead cast the lambdas to be Serializable manually by
casting the lambda to multiple interfaces. It is not a pretty sight but it gets the job done.

Map<Object, String> jbossValues = cache.entrySet().stream()
 .filter((Serializable & Predicate<Map.Entry<Object, String>>) e -> e
.getValue().contains("Jboss"))
 .collect(CacheCollectors.serializableCollector(() -> Collectors.toMap
(Map.Entry::getKey, Map.Entry::getValue)));

The recommended and most performant way is to use an AdvancedExternalizer as this provides
the smallest payload. Unfortunately this means you cannot use lamdbas as advanced externalizers
require defining the class before hand.

You can use an advanced externalizer as shown below:

 Map<Object, String> jbossValues = cache.entrySet().stream()
 .filter(new ContainsFilter("Jboss"))
 .collect(CacheCollectors.serializableCollector(() -> Collectors.toMap
(Map.Entry::getKey, Map.Entry::getValue)));

 class ContainsFilter implements Predicate<Map.Entry<Object, String>> {
 private final String target;

 ContainsFilter(String target) {
 this.target = target;
 }

 @Override
 public boolean test(Map.Entry<Object, String> e) {

113

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/stream/CacheStream.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.12.2.5
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/stream/CacheCollectors.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html
user_guide.html#distributed_stream_execution
user_guide.html#advanced_externalizers

 return e.getValue().contains(target);
 }
 }

 class JbossFilterExternalizer implements AdvancedExternalizer<ContainsFilter> {

 @Override
 public Set<Class<? extends ContainsFilter>> getTypeClasses() {
 return Util.asSet(ContainsFilter.class);
 }

 @Override
 public Integer getId() {
 return CUSTOM_ID;
 }

 @Override
 public void writeObject(ObjectOutput output, ContainsFilter object) throws
IOException {
 output.writeUTF(object.target);
 }

 @Override
 public ContainsFilter readObject(ObjectInput input) throws IOException,
ClassNotFoundException {
 return new ContainsFilter(input.readUTF());
 }
 }

You could also use an advanced externalizer for the CacheCollector supplier to reduce the payload
size even further.

 Map<Object, String> jbossValues = cache.entrySet().stream()
 .filter(new ContainsFilter("Jboss"))
 .collect(CacheCollectors.serializableCollector(ToMapCollectorSupplier
.INSTANCE);

 class ToMapCollectorSupplier<K, U> implements Supplier<Collector<Map.Entry<K, U>, ?,
Map<K, U>>> {
 static final ToMapCollectorSupplier INSTANCE = new ToMapCollectorSupplier();

 private ToMapCollectorSupplier() { }

 @Override
 public Collector<Map.Entry<K, U>, ?, Map<K, U>> get() {
 return Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue);
 }
 }

 class ToMapCollectorSupplierExternalizer implements AdvancedExternalizer

114

<ToMapCollectorSupplier> {

 @Override
 public Set<Class<? extends ToMapCollectorSupplier>> getTypeClasses() {
 return Util.asSet(ToMapCollectorSupplier.class);
 }

 @Override
 public Integer getId() {
 return CUSTOM_ID;
 }

 @Override
 public void writeObject(ObjectOutput output, ToMapCollectorSupplier object)
throws IOException {
 }

 @Override
 public ToMapCollectorSupplier readObject(ObjectInput input) throws IOException,
ClassNotFoundException {
 return ToMapCollectorSupplier.INSTANCE;
 }
 }

11.3.3. Parallel Computation

Distributed streams by default try to parallelize as much as possible. It is possible for the end user
to control this and actually they always have to control one of the options. There are 2 ways these
streams are parallelized.

Local to each node

When a stream is created from the cache collection the end user can choose between invoking
stream or parallelStream method. Depending on if the parallel stream was picked will enable
multiple threading for each node locally. Note that some operations like a rehash aware iterator
and forEach operations will always use a sequential stream locally. This could be enhanced at some
point to allow for parallel streams locally.

Remote requests

When there are multiple nodes it may be desirable to control whether the remote requests are all
processed at the same time concurrently or one at a time. By default all terminal operations except
the iterator perform concurrent requests. The iterator, method to reduce overall memory pressure
on the local node, only performs sequential requests which actually performs slightly better.

If a user wishes to change this default however they can do so by invoking the
sequentialDistribution or parallelDistribution methods on the CacheStream. Note that currently
intermediate operations return a Stream instance so you must make sure to invoke these methods
before calling another intermediate operation.

115

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#stream--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#parallelStream--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#sequentialDistribution--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#parallelDistribution--

11.3.4. Task timeout

It is possible to set a timeout value for the operation requests. This timeout is used only for remote
requests timing out and it is on a per request basis. The former means the local execution will not
timeout and the latter means if you have a failover scenario as described above the subsequent
requests each have a new timeout. If no timeout is specified it uses the replication timeout as a
default timeout. You can set the timeout in your task by doing the following:

CacheStream<Object, String> stream = cache.entrySet().stream();
stream.timeout(1, TimeUnit.MINUTES);

For more information about this, please check the java doc in timeout javadoc.

11.3.5. Injection

The Stream has a terminal operation called forEach which allows for running some sort of side
effect operation on the data. In this case it may be desirable to get a reference to the Cache that is
backing this Stream. If your Consumer implements the CacheAware interface the injectCache
method be invoked before the accept method from the Consumer interface.

11.3.6. Distributed Stream execution

Distributed streams execution works in a fashion very similiar to map reduce. Except in this case
we are sending zero to many intermediate operations (map, filter etc.) and a single terminal
operation to the various nodes. The operation basically comes down to the following:

1. The desired segments are grouped by which node is the primary owner of the given segment

2. A request is generated to send to each remote node that contains the intermediate and terminal
operations including which segments it should process

a. The terminal operation will be performed locally if necessary

b. Each remote node will receive this request and run the operations and subsequently send
the response back

3. The local node will then gather the local response and remote responses together performing
any kind of reduction required by the operations themselves.

4. Final reduced response is then returned to the user

In most cases all operations are fully distributed, as in the operations are all fully applied on each
remote node and usually only the last operation or something related may be reapplied to reduce
the results from multiple nodes. One important note is that intermediate values do not actually
have to be serializable, it is the last value sent back that is the part desired (exceptions for various
operations will be highlighted below).

Terminal operator distributed result reductions

The following paragraphs describe how the distributed reductions work for the various terminal
operators. Some of these are special in that an intermediate value may be required to be

116

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#timeout-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEach-java.util.function.Consumer-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/stream/CacheAware.html

serializable instead of the final result.

allMatch noneMatch anyMatch

The allMatch operation is ran on each node and then all the results are logically anded together
locally to get the appropriate value. The noneMatch and anyMatch operations use a logical or
instead. These methods also have early termination support, stopping remote and local
operations once the final result is known.

collect

The collect method is interesting in that it can do a few extra steps. The remote node performs
everything as normal except it doesn’t perform the final finisher upon the result and instead
sends back the fully combined results. The local thread then combines the remote and local
result into a value which is then finally finished. The key here to remember is that the final
value doesn’t have to be serializable but rather the values produced from the supplier and
combiner methods.

count

The count method just adds the numbers together from each node.

findAny findFirst

The findAny operation returns just the first value they find, whether it was from a remote node
or locally. Note this supports early termination in that once a value is found it will not process
others. Note the findFirst method is special since it requires a sorted intermediate operation,
which is detailed in the exceptions section.

max min

The max and min methods find the respective min or max value on each node then a final
reduction is performed locally to ensure only the min or max across all nodes is returned.

reduce

The various reduce methods 1 , 2 , 3 will end up serializing the result as much as the
accumulator can do. Then it will accumulate the local and remote results together locally, before
combining if you have provided that. Note this means a value coming from the combiner
doesn’t have to be Serializable.

11.3.7. Key based rehash aware operators

The iterator, spliterator and forEach are unlike the other terminal operators in that the rehash
awareness has to keep track of what keys per segment have been processed instead of just
segments. This is to guarantee an exactly once (iterator & spliterator) or at least once behavior
(forEach) even under cluster membership changes.

The iterator and spliterator operators when invoked on a remote node will return back batches of
entries, where the next batch is only sent back after the last has been fully consumed. This
batching is done to limit how many entries are in memory at a given time. The user node will hold
onto which keys it has processed and when a given segment is completed it will release those keys
from memory. This is why sequential processing is preferred for the iterator method, so only a
subset of segment keys are held in memory at once, instead of from all nodes.

117

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#allMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#noneMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#anyMatch-java.util.function.Predicate-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect-java.util.stream.Collector-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#finisher--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#combiner--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#supplier--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html#combiner--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#count--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#findAny--
user_guide.html#intermediate_operation_exceptions
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#max-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#min-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-java.util.function.BinaryOperator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-T-java.util.function.BinaryOperator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-U-java.util.function.BiFunction-java.util.function.BinaryOperator-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#iterator--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#spliterator--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#forEach-java.util.function.Consumer-

The forEach method also returns batches, but it returns a batch of keys after it has finished
processing at least a batch worth of keys. This way the originating node can know what keys have
been processed already to reduce chances of processing the same entry again. Unfortunately this
means it is possible to have an at least once behavior when a node goes down unexpectedly. In this
case that node could have been processing a batch and not yet completed one and those entries that
were processed but not in a completed batch will be ran again when the rehash failure operation
occurs. Note that adding a node will not cause this issue as the rehash failover doesn’t occur until
all responses are received.

These operations batch sizes are both controlled by the same value which can be configured by
invoking distributedBatchSize method on the CacheStream. This value will default to the chunkSize
configured in state transfer. Unfortunately this value is a tradeoff with memory usage vs
performance vs at least once and your mileage may vary.

Using iterator with a replication cache

Currently if you are using a replicated cache the iterator or spliterator terminal operations will
not perform any of the operations remotely and will instead perform everything on the local node.
This is for performance as doing a remote iteration process is very costly.

11.3.8. Intermediate operation exceptions

There are some intermediate operations that have special exceptions, these are skip, peek, sorted 1
2. & distinct. All of these methods have some sort of artificial iterator implanted in the stream
processing to guarantee correctness, they are documented as below. Note this means these
operations may cause possibly severe performance degradation.

Skip

An artificial iterator is implanted up to the intermediate skip operation. Then results are
brought locally so it can skip the appropriate amount of elements.

Peek

An artificial iterator is implanted up to the intermediate peek operation. Only up to the number
of peeked elements is returned a remote node. Then results are brought locally so it can peek at
only the amount desired.

Sorted

WARNING: This operation requires having all entries in memory on the local node. An artificial
iterator is implanted up to the intermediate sorted operation. All results are sorted locally.
There are possible plans to have a distributed sort which returns batches of elements, but this is
not yet implemented.

Distinct

WARNING: This operation requires having all or nearly all entries in memory on the local node.
Distinct is performed on each remote node and then an artificial iterator returns those distinct
values. Then finally all of those results have a distinct operation performed upon them.

The rest of the intermediate operations are fully distributed as one would expect.

118

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/CacheStream.html#distributedBatchSize-int-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#skip-long-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#peek-java.util.function.Consumer-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#sorted-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#sorted--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#distinct--

11.4. Examples
Word count is a classic, if overused, example of map/reduce paradigm. Assume we have a mapping
of key → sentence stored on Infinispan nodes. Key is a String, each sentence is also a String, and we
have to count occurrence of all words in all sentences available. The implementation of such a
distributed task could be defined as follows:

public class WordCountExample {

 /**
 * In this example replace c1 and c2 with
 * real Cache references
 *
 * @param args
 */
 public static void main(String[] args) {
 Cache<String, String> c1 = ...;
 Cache<String, String> c2 = ...;

 c1.put("1", "Hello world here I am");
 c2.put("2", "Infinispan rules the world");
 c1.put("3", "JUDCon is in Boston");
 c2.put("4", "JBoss World is in Boston as well");
 c1.put("12","JBoss Application Server");
 c2.put("15", "Hello world");
 c1.put("14", "Infinispan community");
 c2.put("15", "Hello world");

 c1.put("111", "Infinispan open source");
 c2.put("112", "Boston is close to Toronto");
 c1.put("113", "Toronto is a capital of Ontario");
 c2.put("114", "JUDCon is cool");
 c1.put("211", "JBoss World is awesome");
 c2.put("212", "JBoss rules");
 c1.put("213", "JBoss division of RedHat ");
 c2.put("214", "RedHat community");

 Map<String, Integer> wordCountMap = c1.entrySet().parallelStream()
 .map(e -> e.getValue().split("\\s"))
 .flatMap(Arrays::stream)
 .collect(CacheCollectors.serializableCollector(() -> Collectors.groupingBy
(Function.identity(), Collectors.counting())));
 }
}

In this case it is pretty simple to do the word count from the previous example.

However what if we want to find the most frequent word in the example? If you take a second to
think about this case you will realize you need to have all words counted and available locally first.

119

Thus we actually have a few options.

We could use a finisher on the collector, which is invoked on the user thread after all the results
have been collected. Some redundant lines have been removed from the previous example.

public class WordCountExample {
 public static void main(String[] args) {
 // Lines removed

 String mostFrequentWord = c1.entrySet().parallelStream()
 .map(e -> e.getValue().split("\\s"))
 .flatMap(Arrays::stream)
 .collect(CacheCollectors.serializableCollector(() -> Collectors
.collectingAndThen(
 Collectors.groupingBy(Function.identity(), Collectors.counting()),
 wordCountMap -> {
 String mostFrequent = null;
 long maxCount = 0;
 for (Map.Entry<String, Long> e : wordCountMap.entrySet()) {
 int count = e.getValue().intValue();
 if (count > maxCount) {
 maxCount = count;
 mostFrequent = e.getKey();
 }
 }
 return mostFrequent;
 })));

}

Unfortunately the last step is only going to be ran in a single thread, which if we have a lot of words
could be quite slow. Maybe there is another way to parallelize this with Streams.

We mentioned before we are in the local node after processing, so we could actually use a stream
on the map results. We can therefore use a parallel stream on the results.

public class WordFrequencyExample {
 public static void main(String[] args) {
 // Lines removed

 Map<String, Long> wordCount = c1.entrySet().parallelStream()
 .map(e -> e.getValue().split("\\s"))
 .flatMap(Arrays::stream)
 .collect(CacheCollectors.serializableCollector(() -> Collectors
.groupingBy(Function.identity(), Collectors.counting())));
 Optional<Map.Entry<String, Long>> mostFrequent = wordCount.entrySet()
.parallelStream().reduce(
 (e1, e2) -> e1.getValue() > e2.getValue() ? e1 : e2);

120

This way you can still utilize all of the cores locally when calculating the most frequent element.

Also remember that Streams are a JRE tool now and there are a multitude of examples that can be
found all over. Just remember that your operations need to be Serializable in some fashion!

121

Chapter 12. Distributed Execution
Infinispan provides distributed execution through a standard JDK ExecutorService interface. Tasks
submitted for execution, instead of being executed in a local JVM, are executed on an entire cluster
of Infinispan nodes. Every DistributedExecutorService is bound to one particular cache. Tasks
submitted will have access to key/value pairs from that particular cache if and only if the task
submitted is an instance of DistributedCallable. Also note that there is nothing preventing users
from submitting a familiar Runnable or Callable just like to any other ExecutorService. However,
DistributedExecutorService, as it name implies, will likely migrate submitted Callable or Runnable
to another JVM in Infinispan cluster, execute it and return a result to task invoker. Due to a
potential task migration to other nodes every Callable, Runnable and/or DistributedCallable
submitted must be either Serializable or Externalizable. Also the value returned from a callable
must be Serializable or Externalizable as well. If the value returned is not serializable a
NotSerializableException will be thrown.

Infinispan’s distributed task executors use data from Infinispan cache nodes as input for execution
tasks. Most other distributed frameworks do not have that leverage and users have to specify input
for distributed tasks from some well known location. Furthermore, users of Infinispan distributed
execution framework do not have to configure store for intermediate and final results thus
removing another layer of complexity and maintenance.

Our distributed execution framework capitalizes on the fact input data in Infinispan data grid is
already load balanced (in case of DIST mode). Since input data is already balanced execution tasks
will be automatically balanced as well; users do not have to explicitly assign work tasks to specific
Infinispan nodes. However, our framework accommodates users to specify arbitrary subset of
cache keys as input for distributed execution tasks.

12.1. DistributedCallable API
In case users needs access to Infinispan cache data for an execution of a task we recommend that
you encapsulate task in DistributedCallable interface. DistributedCallable is a subtype of the
existing Callable from java.util.concurrent package; DistributedCallable can be executed in a
remote JVM and receive input from Infinispan cache. Task’s main algorithm could essentially
remain unchanged, only the input source is changed. Existing Callable implementations most likely
get their input in a form of some Java object/primitive while DistributedCallable gets its input from
an Infinispan cache. Therefore, users who have already implemented Callable interface to describe
their task units would simply extend DistributedCallable and use keys from Infinispan execution
environment as input for the task. Implentation of DistributedCallable can in fact continue to
support implementation of an already existing Callable while simultaneously be ready for
distribited execution by extending DistributedCallable.

122

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/distexec/DistributedCallable.html

public interface DistributedCallable<K, V, T> extends Callable<T> {

 /**
 * Invoked by execution environment after DistributedCallable
 * has been migrated for execution to a specific Infinispan node.
 *
 * @param cache
 * cache whose keys are used as input data for this
 * DistributedCallable task
 * @param inputKeys
 * keys used as input for this DistributedCallable task
 */
 public void setEnvironment(Cache<K, V> cache, Set<K> inputKeys);

}

12.2. Callable and CDI
Users that do not want or can not implement DistributedCallable yet need a reference to input
cache used in DistributedExecutorService have an option of the input cache being injected by CDI
mechanism. Upon arrival of user’s Callable to an Infinispan executing node, Infinispan CDI
mechanism will provide appropriate cache reference and inject it to executing Callable. All one has
to do is to declare a Cache field in Callable and annotate it with org.infinispan.cdi.Input annotation
along with mandatory @Inject annotation.

 public class CallableWithInjectedCache implements Callable<Integer>, Serializable {

 @Inject
 @Input
 private Cache<String, String> cache;

 @Override
 public Integer call() throws Exception {
 //use injected cache reference
 return 1;
 }
}

12.3. DistributedExecutorService,
DistributedTaskBuilder and DistributedTask API
DistributedExecutorService is a simple extension of a familiar ExecutorService from
java.util.concurrent package. However, advantages of DistributedExecutorService are not to be
overlooked. Existing Callable tasks, instead of being executed in JDK’s ExecutorService, are also
eligible for execution on Infinispan cluster. Infinispan execution environment would migrate a task

123

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/distexec/DistributedExecutorService.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

to execution node(s), run the task and return the result(s) to the calling node. Of course, not all
Callable tasks would benefit from parallel distributed execution. Excellent candidates are long
running and computationally intensive tasks that can run concurrently and/or tasks using input
data that can be processed concurrently. For more details about good candidates for parallel
execution and parallel algorithms in general refer to Introduction to Parallel Computing .

The second advantage of the DistributedExecutorService is that it allows a quick and simple
implementation of tasks that take input from Infinispan cache nodes, execute certain computation
and return results to the caller. Users would specify which keys to use as input for specified
DistributedCallable and submit that callable for execution on Infinispan cluster. Infinispan runtime
would locate the appriate keys, migrate DistributedCallable to target execution node(s) and finally
return a list of results for each executed Callable. Of course, users can omit specifying input keys in
which case Infinispan would execute DistributedCallable on all keys for a specified cache.

Lets see how we can use DistributedExecutorService If you already have Callable/Runnable tasks
defined! Well, simply submit them to an instance of DefaultExecutorService for execution!

ExecutorService des = new DefaultExecutorService(cache);
Future<Boolean> future = des.submit(new SomeCallable());
Boolean r = future.get();

In case you need to specify more task parameters like task timeout, custom failover policy or
execution policy use DistributedTaskBuilder and DistributedTask API.

DistributedExecutorService des = new DefaultExecutorService(cache);
DistributedTaskBuilder<Boolean> taskBuilder = des.createDistributedTaskBuilder(new
SomeCallable());
taskBuilder.timeout(10,TimeUnit.SECONDS);
...
...
DistributedTask<Boolean> distributedTask = taskBuilder.build();
Future<Boolean> future = des.submit(distributedTask);
Boolean r = future.get();

12.4. Distributed task failover
Distributed execution framework supports task failover. By default no failover policy is installed
and task’s Runnable/Callable/DistributedCallable will simply fail. Failover mechanism is invoked in
the following cases:

a) Failover due to a node failure where task is executing

b) Failover due to a task failure (e.g. Callable task throws Exception).

Infinispan provides random node failover policy which will attempt execution of a part of
distributed task on another random node, if such node is available. However, users that have a
need to implement a more sophisticated failover policy can implement

124

https://computing.llnl.gov/tutorials/parallel_comp/
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/distexec/DistributedTaskBuilder.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/distexec/DistributedTask.html

DistributedTaskFailoverPolicy interface. For example, users might want to use consistent hashing
(CH) mechanism for failover of uncompleted tasks. CH based failover might for example migrate
failed task T to cluster node(s) having a backup of input data that was executed on a failed node F.

/**
 * DistributedTaskFailoverPolicy allows pluggable fail over target selection for a
failed remotely
 * executed distributed task.
 *
 */
public interface DistributedTaskFailoverPolicy {

 /**
 * As parts of distributively executed task can fail due to the task itself
throwing an exception
 * or it can be an Infinispan system caused failure (e.g node failed or left
cluster during task
 * execution etc).
 *
 * @param failoverContext
 * the FailoverContext of the failed execution
 * @return result the Address of the Infinispan node selected for fail over
execution
 */
 Address failover(FailoverContext context);

 /**
 * Maximum number of fail over attempts permitted by this
DistributedTaskFailoverPolicy
 *
 * @return max number of fail over attempts
 */
 int maxFailoverAttempts();
}

Therefore one could for example specify random failover execution policy simply by:

DistributedExecutorService des = new DefaultExecutorService(cache);
DistributedTaskBuilder<Boolean> taskBuilder = des.createDistributedTaskBuilder(new
SomeCallable());
taskBuilder.failoverPolicy(DefaultExecutorService.RANDOM_NODE_FAILOVER);
DistributedTask<Boolean> distributedTask = taskBuilder.build();
Future<Boolean> future = des.submit(distributedTask);
Boolean r = future.get();

125

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/distexec/DistributedTaskFailoverPolicy.html

12.5. Distributed task execution policy
DistributedTaskExecutionPolicy is an enum that allows tasks to specify its custom task execution
policy across Infinispan cluster. DistributedTaskExecutionPolicy effectively scopes execution of
tasks to a subset of nodes. For example, someone might want to exclusively execute tasks on a local
network site instead of a backup remote network centre as well. Others might, for example, use
only a dedicated subset of a certain Infinispan rack nodes for specific task execution.
DistributedTaskExecutionPolicy is set per instance of DistributedTask.

DistributedExecutorService des = new DefaultExecutorService(cache);
DistributedTaskBuilder<Boolean> taskBuilder = des.createDistributedTaskBuilder(new
SomeCallable());
taskBuilder.executionPolicy(DistributedTaskExecutionPolicy.SAME_RACK);
DistributedTask<Boolean> distributedTask = taskBuilder.build();
Future<Boolean> future = des.submit(distributedTask);
Boolean r = future.get();

12.6. Examples
Pi approximation can greatly benefit from parallel distributed execution in
DistributedExecutorService. Recall that area of the square is Sa = 4r2 and area of the circle is
Ca=pi*r2. Substituting r2 from the second equation into the first one it turns out that pi = 4 * Ca/Sa.
Now, image that we can shoot very large number of darts into a square; if we take ratio of darts
that land inside a circle over a total number of darts shot we will approximate Ca/Sa value. Since
we know that pi = 4 * Ca/Sa we can easily derive approximate value of pi. The more darts we shoot
the better approximation we get. In the example below we shoot 10 million darts but instead of
"shooting" them serially we parallelize work of dart shooting across entire Infinispan cluster.

 public class PiAppx {

 public static void main (String [] arg){
 List<Cache> caches = ...;
 Cache cache = ...;

 int numPoints = 10000000;
 int numServers = caches.size();
 int numberPerWorker = numPoints / numServers;

 DistributedExecutorService des = new DefaultExecutorService(cache);
 long start = System.currentTimeMillis();
 CircleTest ct = new CircleTest(numberPerWorker);
 List<Future<Integer>> results = des.submitEverywhere(ct);
 int countCircle = 0;
 for (Future<Integer> f : results) {
 countCircle += f.get();
 }
 double appxPi = 4.0 * countCircle / numPoints;

126

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/distexec/DistributedTaskExecutionPolicy.html

 System.out.println("Distributed PI appx is " + appxPi +
 " completed in " + (System.currentTimeMillis() - start) + " ms");
 }

 private static class CircleTest implements Callable<Integer>, Serializable {

 /** The serialVersionUID */
 private static final long serialVersionUID = 3496135215525904755L;

 private final int loopCount;

 public CircleTest(int loopCount) {
 this.loopCount = loopCount;
 }

 @Override
 public Integer call() throws Exception {
 int insideCircleCount = 0;
 for (int i = 0; i < loopCount; i++) {
 double x = Math.random();
 double y = Math.random();
 if (insideCircle(x, y))
 insideCircleCount++;
 }
 return insideCircleCount;
 }

 private boolean insideCircle(double x, double y) {
 return (Math.pow(x - 0.5, 2) + Math.pow(y - 0.5, 2))
 <= Math.pow(0.5, 2);
 }
 }
}

127

Chapter 13. Querying
Infinispan supports indexing and searching of Java objects stored in the grid using powerful search
APIs which complement its main Map-like API. Historically, searching was first available in
Infinispan via Apache Lucene's API but since version 6.0 Infinispan provides its own query API
based on a simple and expressive internal DSL. Searching with the new API is available for both
embedded and remote clients while the Lucene based API is only available to embedded clients.
The remote querying capability is further described in the Hot Rod client chapter.

13.1. The infinispan-query module
This module adds indexing and querying capabilities to Infinispan. It uses Hibernate Search and
Apache Lucene to index and search objects in the cache. It allows users to obtain objects within the
cache without needing to know the keys to each object that they want to obtain. You can search
your objects based on some of its properties. For example to retrieve all red cars (exact metadata
match), or all books about a specific topic (full text search and relevance scoring).

The queries can be expressed as Lucene queries, built directly using the Lucene Query API or built
with the help of Hibernate Search Query DSL. Alternatively, you can also use Infinispan’s own
query DSL which most users might find easier to use than the one based on Lucene at the cost of
not being able to access some of the powerful capabilities which are specific to the underlying
Lucene implementation.

Indexing must be enabled in the configuration (as explained in XML Configuration or
Programmatic configuration). This will trigger automatic indexing of objects stored in the cache;
there are several different ways to specify how these objects need to be indexed explained in the
following paragraphs. To run queries you use the SearchManager which exposes all necessary
methods to get started.

13.2. Simple example
We’re going to store Book instances in Infinispan; each Book will be defined as in the following
example; we have to choose which properties are indexed, and for each property we can optionally
choose advanced indexing options using the annotations defined in the Hibernate Search project.

128

http://lucene.apache.org/
#infinispan_s_query_dsl
#querying_via_the_java_hot_rod_client
http://hibernate.org/subprojects/search
http://lucene.apache.org/

// example values stored in the cache and indexed:
import org.hibernate.search.annotations.*;

//Values you want to index need to be annotated with @Indexed, then you pick which
fields and how they are to be indexed:
@Indexed
public class Book {
 @Field String title;
 @Field String description;
 @Field @DateBridge(resolution=Resolution.YEAR) Date publicationYear;
 @IndexedEmbedded Set<Author> authors = new HashSet<Author>();
}

public class Author {
 @Field String name;
 @Field String surname;
 // hashCode() and equals() omitted
}

Now assuming we stored several Book instances in our Infinispan Cache , we can search them for
any matching field as in the following example.

// get the search manager from the cache:
SearchManager searchManager = org.infinispan.query.Search.getSearchManager(cache);

// create any standard Lucene query, via Lucene's QueryParser or any other means:
org.apache.lucene.search.Query fullTextQuery = //any Apache Lucene Query

// convert the Lucene query to a CacheQuery:
CacheQuery cacheQuery = searchManager.getQuery(fullTextQuery);

// get the results:
List<Object> found = cacheQuery.list();

A Lucene Query is often created by parsing a query in text format such as "title:infinispan AND
authors.name:sanne", or by using the query builder provided by Hibernate Search.

// get the search manager from the cache:
SearchManager searchManager = org.infinispan.query.Search.getSearchManager(cache);

// you could make the queries via Lucene APIs, or use some helpers:
QueryBuilder queryBuilder = searchManager.buildQueryBuilderForClass(Book.class).get();

// the queryBuilder has a nice fluent API which guides you through all options.
// this has some knowledge about your object, for example which Analyzers
// need to be applied, but the output is a fairly standard Lucene Query.
org.apache.lucene.search.Query luceneQuery = queryBuilder.phrase()
 .onField("description")

129

 .andField("title")
 .sentence("a book on highly scalable query engines")
 .createQuery();

// the query API itself accepts any Lucene Query, and on top of that
// you can restrict the result to selected class types:
CacheQuery query = searchManager.getQuery(luceneQuery, Book.class);

// and there are your results!
List objectList = query.list();

for (Object book : objectList) {
 System.out.println(book);
}

A part from list() you have the option for streaming results, or use pagination.

This barely scratches the surface of all what is possible to do: see the Hibernate Search reference
documentation to learn about sorting, numeric fields, declarative filters, caching filters, complex
object graph indexing, custom types and the powerful faceting search API.

13.2.1. Notable differences with Hibernate Search

Using @DocumentId to mark a field as identifier does not apply to Infinispan values; in Infinispan
Query the identifier for all @Indexed objects is the key used to store the value. You can still
customize how the key is indexed using a combination of @Transformable , custom types and
custom FieldBridge implementations.

13.2.2. Requirements for the Key: @Transformable

The key for each value needs to be indexed as well, and the key instance must be transformed in a
String. Infinispan includes some default transformation routines to encode common primitives, but
to use a custom key you must provide an implementation of org.infinispan.query.Transformer .

Registering a Transformer via annotations

You can annotate your key type with org.infinispan.query.Transformable :

130

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single

@Transformable(transformer = CustomTransformer.class)
public class CustomKey {
 ...
}

public class CustomTransformer implements Transformer {
 @Override
 public Object fromString(String s) {
 ...
 return new CustomKey(...);
 }

 @Override
 public String toString(Object customType) {
 CustomKey ck = (CustomKey) customType;
 return ...
 }
}

Registering a Transformer programmatically

Using this technique, you don’t have to annotated your custom key type:

org.infinispan.query.SearchManager.registerKeyTransformer(Class<?>, Class<? extends
Transformer>)

13.3. Configuration

13.3.1. Configuration via XML

To enable indexing via XML, you need to add the <indexing /> element to your cache configuration,
and optionally pass additional properties to the embedded Hibernate Search engine:

<infinispan>
 <cache-container default-cache="default">
 <local-cache name="default">
 <indexing index="LOCAL">
 <property name="default.directory_provider">ram</property>
 </indexing>
 </local-cache>
 </cache-container>
</infinispan>

In this example the index is stored in memory, so when this nodes is shutdown the index is lost:
good for a quick demo, but in real world cases you’ll want to use the default (store on filesystem) or
store the index in Infinispan as well. For the complete reference of properties to define, refer to the

131

Hibernate Search documentation .

13.3.2. Automatic configuration

 <local-cache name="default">
 <indexing index="LOCAL" auto-config="true">
 </indexing>
 </local-cache>

Tha attribute auto-config provides a simple way of configuring indexing based on the cache type.
For replicated and local caches, the indexing is configured to be persisted on disk and not shared
with any other processes. Also, it is configured so that minimum delay exists between the moment
an object is indexed and the moment it is available for searches (near real time).


it is possible to redefine any property added via auto-config, and also add new
properties, allowing for advanced tuning.

The auto config adds the following properties for replicated and local caches:

Prop
erty
name

value description

hiber
nate.s
earch
.defa
ult.di
recto
ry_pr
ovide
r

filesystem Filesystem based index. More details at Hibernate Search
documentation

hiber
nate.s
earch
.defa
ult.ex
clusiv
e_ind
ex_us
e

true indexing operation in exclusive mode, allowing Hibernate Search to
optimize writes

132

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration-directory
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration-directory

Prop
erty
name

value description

hiber
nate.s
earch
.defa
ult.in
dexm
anage
r

near-real-time make use of Lucene near real time feature, meaning indexed objects
are promptly available to searches

hiber
nate.s
earch
.defa
ult.re
ader.
strate
gy

shared Reuse index reader across several queries, thus avoiding reopening it

For distributed caches, the auto-config configure indexes in infinispan itself, internally handled as a
master-slave mechanism where indexing operations are sent to a single node which is responsible
to write to the index.

The auto config properties for distributed caches are:

Prop
erty
name

value description

hiber
nate.s
earch
.defa
ult.di
recto
ry_pr
ovide
r

infinispan Indexes stored in Infinispan. More details at Hibernate Search
documentation

hiber
nate.s
earch
.defa
ult.ex
clusiv
e_ind
ex_us
e

true indexing operation in exclusive mode, allowing Hibernate Search to
optimize writes

133

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#infinispan-directories
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#infinispan-directories

Prop
erty
name

value description

hiber
nate.s
earch
.defa
ult.in
dexm
anage
r

org.infinispan.quer
y.indexmanager.Inf
inispanIndexMana
ger

Delegates index writing to a single node in the Infinispan cluster

hiber
nate.s
earch
.defa
ult.re
ader.
strate
gy

shared Reuse index reader across several queries, avoiding reopening it

13.3.3. Lucene Directory

Infinispan Query isn’t aware of where you store the indexes, it just passes the configuration of
which Lucene Directory implementation you want to use to the Hibernate Search engine. There are
several Lucene Directory implementations bundled, and you can plug your own or add third party
implementations: the Directory is the IO API for Lucene to store the indexes.

The most common Lucene Directory implementations used with Infinispan Query are:

• Ram - stores the index in a local map to the node. This index can’t be shared.

• Filesystem - stores the index in a locally mounted filesystem. This could be a network shared FS,
but sharing this way is generally not recommended.

• Infinispan - stores the index in a different dedicated Infinispan cache. This cache can be
configured as replicated or distributed, to share the index among nodes. See also the dedicated
chapter on the Lucene Directory in this guide.

Of course having a shared index vs. an independent index on each node directly affects behaviour
of the Query module; some combinations might not make much sense.

13.3.4. Using programmatic configuration and index mapping

In the following example we start Infinispan programmatically, avoiding XML configuration files,
and also map an object Author which is to be stored in the grid and made searchable on two
properties but without annotating the class.

SearchMapping mapping = new SearchMapping();
mapping.entity(Author.class).indexed()
 .property("name", ElementType.METHOD).field()

134

 .property("surname", ElementType.METHOD).field();

Properties properties = new Properties();
properties.put(org.hibernate.search.Environment.MODEL_MAPPING, mapping);
properties.put("hibernate.search.[other options]", "[...]");

Configuration infinispanConfiguration = new ConfigurationBuilder()
 .indexing()
 .enable()
 .indexLocalOnly(true)
 .withProperties(properties)
 .build();

DefaultCacheManager cacheManager = new DefaultCacheManager(infinispanConfiguration);

Cache<Long, Author> cache = cacheManager.getCache();
SearchManager sm = Search.getSearchManager(cache);

Author author = new Author(1, "Manik", "Surtani");
cache.put(author.getId(), author);

QueryBuilder qb = sm.buildQueryBuilderForClass(Author.class).get();
Query q = qb.keyword().onField("name").matching("Manik").createQuery();
CacheQuery cq = sm.getQuery(q, Author.class);
Assert.assertEquals(cq.getResultSize(), 1);

13.4. Cache modes and managing indexes
Index management is currently controlled by the Configuration.setIndexLocalOnly() setter, or the
<indexing index="LOCAL" /> XML element. If you set this to true, only modifications made locally on
each node are considered in indexing. Otherwise, remote changes are considered too.

Regarding actually configuring a Lucene directory, refer to the Hibernate Search documentation on
how to pass in the appropriate Lucene configuration via the Properties object passed to
QueryHelper.

13.4.1. LOCAL

In local mode, you may use any Lucene Directory implementation. Also the option indexLocalOnly
isn’t meaningful.

13.4.2. REPLICATION

In replication mode, each node can have its own local copy of the index. So indexes can either be
stored locally on each node (RAMDirectory, FSDirectory, etc) but you need to set indexLocalOnly to
false , so that each node will apply needed updates it receives from other nodes in addition to the
updates started locally. Any Directory implementation can be used, but you have to make sure that
when a new node is started it receives an up to date copy of the index; typically rsync is well suited
for this task, but being an external operation you might end up with a slightly out-of-sync index,

135

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration

especially if updates are very frequent.

Alternately, if you use some form of shared storage for indexes (see Sharing the Index), you then
have to set indexLocalOnly to true so that each node will apply only the changes originated locally;
in this case there’s no risk in having an out-of-sync index, but to avoid write contention on the
index you should make sure that a single node is "in charge" of updating the index. Again, the
Hibernate Search reference documentation describes means to use a JMS queue or JGroups to send
indexing tasks to a master node.

The diagram below shows a replicated deployment, in which each node has a local index.

Figure 11. Indexes in replicated mode

13.4.3. DISTRIBUTION

For these 2 cache modes, you need to use a shared index and set indexLocalOnly to true.

The diagram below shows a deployment with a shared index. Note that while not mandatory, a
shared index can be used for replicated (vs. distributed) caches as well.

136

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#jms-backend
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#jgroups-backend

Figure 12. Shared indexes

13.4.4. INVALIDATION

Indexing or searching of elements under INVALIDATION mode is not supported.

13.5. Sharing the Index
The most simple way to share an index is to use some form of shared storage for the indexes, like
an FSDirectory on a shared disk; however this form is problematic as the FSDirectory relies on
specific locking semantics which are often incompletely implemented on network filesystems, or
not reliable enough; if you go for this approach make sure to search for potential problems on the
Lucene mailing lists for other experiences and workarounds. Good luck, test well.

There are many alternative Directory implementations you can find, one of the most suited
approaches when working with Infinispan is of course to store the index in an Infinispan cache:
have a look at the InfinispanDirectoryProvider , as all Infinispan based layers it can be combined
with persistent CacheLoaders to keep the index on a shared filesystem without the locking issues,
or alternatively in a database, cloud storage, or any other CacheLoader implementation; you could
backup the index in the same store used to backup your values.

For full documentation on clustering the Lucene engine, refer to the Hibernate Search
documentation to properly configure it clustered.

13.6. Clustering the Index in Infinispan
Again the configuration details are in the Hibernate Search reference, in particular in the
infinispan-directories section. This backend will by default start a secondary Infinispan
CacheManager, and optionally take another Infinispan configuration file: don’t reuse the same
configuration or you will start grids recursively! It is currently not possible to share the same
CacheManager.

137

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#search-configuration
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#infinispan-directories

13.7. Rebuilding the Index
Occasionally you might need to rebuild the Lucene index by reconstructing it from the data stored
in the Cache. You need to rebuild the index if you change the definition of what is indexed on your
types, or if you change for example some Analyzer parameter, as Analyzers affect how the index is
defined. Also, you might need to rebuild the index if you had it destroyed by some system
administration mistake. To rebuild the index just get a reference to the MassIndexer and start it;
beware if might take some time as it needs to reprocess all data in the grid!

SearchManager searchManager = Search.getSearchManager(cache);
searchManager.getMassIndexer().start();


This is also available as a start JMX operation on the MassIndexer MBean
registered under the name org.infinispan:type=Query,manager="{name-of-cache-
manager}",cache="{name-of-cache}",component=MassIndexer.

13.8. Obtaining query statistics
Query Statistics can be obtained from the SearchManager, as demonstrated in the following code
snippet.

SearchManager searchManager = Search.getSearchManager(cache);
org.hibernate.search.stat.Statistics statistics = searchManager.getStatistics();



This data is also available via JMX through the Hibernate Search
StatisticsInfoMBean registered under the name
org.infinispan:type=Query,manager="{name-of-cache-manager}",cache="{name-of-

cache}",component=Statistics. Please note this MBean is always registered by
Infinispan but the statistics are collected only if statistics collection is enabled at
cache level.


Hibernate Search has its own configuration properties
hibernate.search.jmx_enabled and hibernate.search.generate_statistics for JMX
statistics as explained here. Using them with Infinispan Query is forbidden as it
will only lead to duplicated MBeans and unpredictable results.

13.9. Infinispan’s Query DSL


This is a new API undergoing refinements and changes that might break
compatibility in future releases.

Starting with 6.0 Infinispan provides its own query DSL, independent of Lucene and Hibernate
Search. Decoupling the query API from the underlying query and indexing mechanism makes it
possible to introduce new alternative engines in the future, besides Lucene, and still being able to

138

https://docs.jboss.org/infinispan/9.0/apidocs/jmxComponents.html#MassIndexer
http://docs.jboss.org/hibernate/search/4.4/api/org/hibernate/search/stat/Statistics.html
http://docs.jboss.org/hibernate/search/4.4/reference/en-US/html/search-monitoring.html#d0e7624
http://docs.jboss.org/hibernate/search/4.4/reference/en-US/html/search-monitoring.html#d0e7624
#enabling_jmx_statistics
http://docs.jboss.org/hibernate/search/4.4/reference/en-US/html/search-monitoring.html#d0e7595

use the same uniform query API. The current implementation of indexing and searching is still
based on Hibernate Search and Lucene so all indexing related aspects presented in this chapter still
apply.

The new API simplifies the writing of queries by not exposing the user to the low level details of
constructing Lucene query objects and also has the advantage of being available to remote Hot Rod
clients. But before delving into further details, let’s examine first a simple example of writing a
query for the Book entity from previous example.

Query example using Infinispan’s query DSL

import org.infinispan.query.dsl.*;

// get the DSL query factory from the cache, to be used for constructing the Query
object:
QueryFactory qf = org.infinispan.query.Search.getQueryFactory(cache);

// create a query for all the books that have a title which contains the word
"engine":
org.infinispan.query.dsl.Query query = qf.from(Book.class)
 .having("title").like("%engine%")
 .toBuilder().build();

// get the results:
List<Book> list = query.list();

The API is located in the org.infinispan.query.dsl package. A query is created with the help of the
QueryFactory instance which is obtained from the per-cache SearchManager. Each QueryFactory
instance is bound to the same Cache instance as the SearchManager, but it is otherwise a stateless
and thread-safe object that can be used for creating multiple queries in parallel.

Query creation starts with the invocation of the from(Class entityType) method which returns a
QueryBuilder object that is further responsible for creating queries targeted to the specified entity
class from the given cache.


A query will always target a single entity type and is evaluated over the contents
of a single cache. Running a query over multiple caches or creating queries that
target several entity types (joins) is not supported.

The QueryBuilder accumulates search criteria and configuration specified through the invocation of
its DSL methods and is ultimately used to build a Query object by the invocation of the
QueryBuilder.build() method that completes the construction. Being a stateful object, it cannot be
used for constructing multiple queries at the same time (except for nested queries) but can be
reused afterwards.


This QueryBuilder is different from the one from Hibernate Search but has a
somewhat similar purpose, hence the same name. We are considering renaming
it in near future to prevent ambiguity.

139

#querying_via_the_java_hot_rod_client
#querying_via_the_java_hot_rod_client
#simple_example
#nested_conditions

Executing the query and fetching the results is as simple as invoking the list() method of the
Query object. Once executed the Query object is not reusable. If you need to re-execute it in order to
obtain fresh results then a new instance must be obtained by calling QueryBuilder.build().

13.10. Filtering operators
Constructing a query is a hierarchical process of composing multiple criteria and is best explained
following this hierarchy.

The simplest possible form of a query criteria is a restriction on the values of an entity attribute
according to a filtering operator that accepts zero or more arguments. The entity attribute is
specified by invoking the having(String attributePath) method of the query builder which returns
an intermediate context object (FilterConditionEndContext) that exposes all the available operators.
Each of the methods defined by FilterConditionEndContext is an operator that accepts an argument,
except for between which has two arguments and isNull which has no arguments. The arguments
are statically evaluated at the time the query is constructed, so if you’re looking for a feature
similar to SQL’s correlated sub-queries, that is not currently available.

// a single query criterion
QueryBuilder qb = ...
qb.having("title").eq("Infinispan Data Grid Platform");

Table 5. FilterConditionEndContext exposes the following filtering operators:

Filter Arguments Description

in Collection values Checks that the left operand is equal to one of the elements from the
Collection of values given as argument.

in Object… values Checks that the left operand is equal to one of the (fixed) list of values
given as argument.

conta
ins

Object value Checks that the left argument (which is expected to be an array or a
Collection) contains the given element.

conta
insAll

Collection values Checks that the left argument (which is expected to be an array or a
Collection) contains all the elements of the given collection, in any
order.

conta
insAll

Object… values Checks that the left argument (which is expected to be an array or a
Collection) contains all of the the given elements, in any order.

conta
insAn
y

Collection values Checks that the left argument (which is expected to be an array or a
Collection) contains any of the elements of the given collection.

conta
insAn
y

Object… values Checks that the left argument (which is expected to be an array or a
Collection) contains any of the the given elements.

isNull Checks that the left argument is null.

140

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/query/dsl/FilterConditionEndContext.html

Filter Arguments Description

like String pattern Checks that the left argument (which is expected to be a String)
matches a wildcard pattern that follows the JPA rules.

eq Object value Checks that the left argument is equal to the given value.

equal Object value Alias for eq.

gt Object value Checks that the left argument is greater than the given value.

gte Object value Checks that the left argument is greater than or equal to the given
value.

lt Object value Checks that the left argument is less than the given value.

lte Object value Checks that the left argument is less than or equal to the given value.

betw
een

Object from,
Object to

Checks that the left argument is between the given range limits.

It’s important to note that query construction requires a multi-step chaining of method invocation
that must be done in the proper sequence, must be properly completed exactly once and must not
be done twice, or it will result in an error. The following examples are invalid, and depending on
each case they lead to criteria being ignored (in benign cases) or an exception being thrown (in
more serious ones).

// Incomplete construction. This query does not have any filter on "title" attribute
yet,
// although the author may have intended to add one.
QueryBuilder qb1 = ...
qb1.having("title");
Query q1 = qb1.build(); // consequently, this query matches all Book instances
regardless of title!

// Duplicated completion. This results in an exception at run-time.
// Maybe the author intended to connect two conditions with a boolean operator,
// but this does NOT actually happen here.
QueryBuilder qb2 = ...
qb2.having("title").like("%Infinispan%");
qb2.having("description").like("%clustering%"); // will throw
java.lang.IllegalStateException: Sentence already started. Cannot use 'having(..)'
again.
Query q2 = qb2.build();

13.10.1. Filtering based on attributes of embedded entities

The having method also accepts dot separated attribute paths for referring to embedded entity
attributes, so the following is a valid query:

141

// match all books that have an author named "Manik"
Query query = queryFactory.from(Book.class)
 .having("author.name").eq("Manik")
 .toBuilder().build();

Each part of the attribute path must refer to an existing indexed attribute in the corresponding
entity or embedded entity class respectively. It’s possible to have multiple levels of embedding.

13.11. Boolean conditions
Combining multiple attribute conditions with logical conjunction (and) and disjunction (or)
operators in order to create more complex conditions is demonstrated in the following example.
The well known operator precedence rule for boolean operators applies here, so the order of DSL
method invocations during construction is irrelevant. Here and operator still has higher priority
than or even though or was invoked first.

// match all books that have the word "Infinispan" in their title
// or have an author named "Manik" and their description contains the word
"clustering"
Query query = queryFactory.from(Book.class)
 .having("title").like("%Infinispan%")
 .or().having("author.name").eq("Manik")
 .and().having("description").like("%clustering%")
 .toBuilder().build();

Boolean negation is achieved with the not operator, which has highest precedence among logical
operators and applies only to the next simple attribute condition.

// match all books that do not have the word "Infinispan" in their title and are
authored by "Manik"
Query query = queryFactory.from(Book.class)
 .not().having("title").like("%Infinispan%")
 .and().having("author.name").eq("Manik")
 .toBuilder().build();

13.12. Nested conditions
Changing the precendece of logical operators is achieved with nested filter conditions. Logical
operators can be used to connect two simple attribute conditions as presented before, but can also
connect a simple attribute condition with the subsequent complex condition created with the same
query factory.

142

// match all books that have an author named "Manik" and their title contains
// the word "Infinispan" or their description contains the word "clustering"
Query query = queryFactory.from(Book.class)
 .having("author.name").eq("Manik");
 .and(queryFactory.having("title").like("%Infinispan%")
 .or().having("description").like("%clustering%"))
 .toBuilder().build();

13.13. Projections
In some use cases returning the whole domain object is overkill if only a small subset of the
attributes are actually used by the application, especially if the domain entity has embedded
entities. The query language allows you to specify a subset of attributes (or attribute paths) to
return - the projection. If projections are used then the Query.list() will not return the whole
domain entity but will return a List of Object[], each slot in the array corresponding to a projected
attribute.

TODO document what needs to be configured for an attribute to be available for projection.

// match all books that have the word "Infinispan" in their title or description
// and return only their title and publication year
Query query = queryFactory.from(Book.class)
 .select("title", "publicationYear")
 .having("title").like("%Infinispan%")
 .or().having("description").like("%Infinispan%"))
 .toBuilder().build();

13.14. Sorting
Ordering the results based on one or more attributes or attribute paths is done with the
QueryBuilder.orderBy() method which accepts an attribute path and a sorting direction. If
multiple sorting criteria are specified, then the order of invocation of orderBy method will dictate
their precedence. But you have to think of the multiple sorting criteria as acting together on the
tuple of specified attributes rather than in a sequence of individual sorting operations on each
attribute.

TODO document what needs to be configured for an attribute to be available for sorting.

143

// match all books that have the word "Infinispan" in their title or description
// and return them sorted by the publication year and title
Query query = queryFactory.from(Book.class)
 .orderBy("publicationYear", SortOrder.DESC)
 .orderBy("title", SortOrder.ASC)
 .having("title").like("%Infinispan%")
 .or().having("description").like("%Infinispan%"))
 .toBuilder().build();

13.15. Pagination
You can limit the number of returned results by setting the maxResults property of QueryBuilder.
This can be used in conjunction with setting the startOffset in order to achieve pagination of the
result set.

// match all books that have the word "clustering" in their title
// sorted by publication year and title
// and return 3'rd page of 10 results
Query query = queryFactory.from(Book.class)
 .orderBy("publicationYear", SortOrder.DESC)
 .orderBy("title", SortOrder.ASC)
 .setStartOffset(20)
 .maxResults(10)
 .having("title").like("%clustering%")
 .toBuilder().build();


Even if the results being fetched are limited to maxResults you can still find the
total number of matching results by calling Query.getResultSize().

TODO Does pagination make sense if no stable sort criteria is defined? Luckily when running on
Lucene and no sort criteria is specified we still have the order of relevance, but this has to be
defined for other search engines.

13.16. Grouping and Aggregation
Infinispan has the ability to group query results according to a set of grouping fields and construct
aggregations of the results from each group by applying an aggregation function to the set of values
that fall into each group. Grouping and aggregation can only be applied to projection queries. The
supported aggregations are: avg, sum, count, max, min. The set of grouping fields is specified with
the groupBy(field) method, which can be invoked multiple times. The order used for defining
grouping fields is not relevant. All fields selected in the projection must either be grouping fields or
else they must be aggregated using one of the grouping functions described below. A projection
field can be aggregated and used for grouping at the same time. A query that selects only grouping
fields but no aggregation fields is legal. ⁠

Example: Grouping Books by author and counting them.

144

Query query = queryFactory.from(Book.class)
 .select(Expression.property("author"), Expression.count("title"))
 .having("title").like("%engine%")
 .toBuilder()
 .groupBy("author")
 .build();


A projection query in which all selected fields have an aggregation function
applied and no fields are used for grouping is allowed. In this case the
aggregations will be computed globally as if there was a single global group.

13.16.1. Aggregations

The following aggregation functions may be applied to a field: avg, sum, count, max, min

• avg() - Computes the average of a set of numbers. Accepted values are primitive numbers and
instances of java.lang.Number. The result is represented as java.lang.Double. If there are no non-
null values the result is null instead.

• count() - Counts the number of non-null rows and returns a java.lang.Long. If there are no non-
null values the result is 0 instead.

• max() - Returns the greatest value found. Accepted values must be instances of
java.lang.Comparable. If there are no non-null values the result is null instead.

• min() - Returns the smallest value found. Accepted values must be instances of
java.lang.Comparable. If there are no non-null values the result is null instead.

• sum() - Computes the sum of a set of Numbers. If there are no non-null values the result is null
instead. The following table indicates the return type based on the specified field.

Table 6. Table sum return type

Field Type Return Type

Integral (other than BigInteger) Long

Float or Double Double

BigInteger BigInteger

BigDecimal BigDecimal

13.16.2. Evaluation of queries with grouping and aggregation

Aggregation queries can include filtering conditions, like usual queries. Filtering can be performed
in two stages: before and after the grouping operation. All filter conditions defined before invoking
the groupBy method will be applied before the grouping operation is performed, directly to the
cache entries (not to the final projection). These filter conditions may reference any fields of the
queried entity type, and are meant to restrict the data set that is going to be the input for the
grouping stage. All filter conditions defined after invoking the groupBy method will be applied to
the projection that results from the projection and grouping operation. These filter conditions can

145

either reference any of the groupBy fields or aggregated fields. Referencing aggregated fields that
are not specified in the select clause is allowed; however, referencing non-aggregated and non-
grouping fields is forbidden. Filtering in this phase will reduce the amount of groups based on their
properties. Sorting may also be specified similar to usual queries. The ordering operation is
performed after the grouping operation and can reference any of the groupBy fields or aggregated
fields.

13.17. Using Named Query Parameters
Instead of building a new Query object for every execution it is possible to include named
parameters in the query which can be substituted with actual values before execution. This allows
a query to be defined once and be efficiently executed many times. Parameters can only be used on
the right-hand side of an operator and are defined when the query is created by supplying an object
produced by the org.infinispan.query.dsl.Expression.param(String paramName) method to the
operator instead of the usual constant value. Once the parameters have been defined they can be
set by invoking either Query.setParameter(parameterName, value) or
Query.setParameters(parameterMap) as shown in the examples below. ⁠

import org.infinispan.query.Search;
import org.infinispan.query.dsl.*;
[...]

QueryFactory queryFactory = Search.getQueryFactory(cache);
// Defining a query to search for various authors and publication years
Query query = queryFactory.from(Book.class)
 .select("title")
 .having("author").eq(Expression.param("authorName"))
 .and()
 .having("publicationYear").eq(Expression.param("publicationYear"))
 .toBuilder().build();

// Set actual parameter values
query.setParameter("authorName", "Doe");
query.setParameter("publicationYear", 2010);

// Execute the query
List<Book> found = query.list();

Alternatively, multiple parameters may be set at once by supplying a map of actual parameter
values: ⁠

146

Setting multiple named parameters at once

import java.util.Map;
import java.util.HashMap;

[...]

Map<String, Object> parameterMap = new HashMap<>();
parameterMap.put("authorName", "Doe");
parameterMap.put("publicationYear", 2010);

query.setParameters(parameterMap);



A significant portion of the query parsing, validation and execution planning
effort is performed during the first execution of a query with parameters. This
effort is not repeated during subsequent executions leading to better
performance compared to a similar query using constant values instead of query
parameters.

13.18. Continuous Queries
Continuous Queries allow an application to register a listener which will receive the entries that
currently match a query filter, and will be continuously notified of any changes to the queried data
set that result from further cache operations. This includes incoming matches, for values that have
joined the set, updated matches, for matching values that were modified and continue to match,
and outgoing matches, for values that have left the set. By using a Continuous Query the application
receives a steady stream of events instead of having to repeatedly execute the same query to
discover changes, resulting in a more efficient use of resources. For instance, all of the following
use cases could utilize Continuous Queries:

• Return all persons with an age between 18 and 25 (assuming the Person entity has an age
property and is updated by the user application).

• Return all transactions higher than $2000.

• Return all times where the lap speed of F1 racers were less than 1:45.00s (assuming the cache
contains Lap entries and that laps are entered live during the race).

13.18.1. Continuous Query Execution

A continuous query uses a listener that is notified when:

• An entry starts matching the specified query, represented by a Join event.

• A matching entry is updated and continues to match the query, represented by an Update event.

• An entry stops matching the query, represented by a Leave event.

When a client registers a continuous query listener it immediately begins to receive the results
currently matching the query, received as Join events as described above. In addition, it will receive

147

subsequent notifications when other entries begin matching the query, as Join events, or stop
matching the query, as Leave events, as a consequence of any cache operations that would normally
generate creation, modification, removal, or expiration events. Updated cache entries will generate
Update events if the entry matches the query filter before and after the operation. To summarize,
the logic used to determine if the listener receives a Join, Update or Leave event is:

1. If the query on both the old and new values evaluate false, then the event is suppressed.

2. If the query on the old value evaluates false and on the new value evaluates true, then a Join
event is sent.

3. If the query on both the old and new values evaluate true, then an Update event is sent.

4. If the query on the old value evaluates true and on the new value evaluates false, then a Leave
event is sent.

5. If the query on the old value evaluates true and the entry is removed or expired, then a Leave
event is sent.


Continuous Queries can use the full power of the Query DSL except: grouping,
aggregation, and sorting operations.

13.18.2. Running Continuous Queries

To create a continuous query you’ll start by creating a Query object first. This is described in the
Query DSL section. Then you’ll need to obtain the ContinuousQuery
(org.infinispan.query.api.continuous.ContinuousQuery) object of your cache and register the query
and a continuous query listener (org.infinispan.query.api.continuous.ContinuousQueryListener) with
it. A ContinuousQuery object associated to a cache can be obtained by calling the static method
org.infinispan.client.hotrod.Search.getContinuousQuery(RemoteCache<K, V> cache) if running in
remote mode or org.infinispan.query.Search.getContinuousQuery(Cache<K, V> cache) when running
in embedded mode. Once the listener has been created it may be registered by using the
addContinuousQueryListener method of ContinuousQuery:

continuousQuery.addContinuousQueryListener(query, listener);

The following example demonstrates a simple continuous query use case in embedded mode: ⁠

Registering a Continuous Query

import org.infinispan.query.api.continuous.ContinuousQuery;
import org.infinispan.query.api.continuous.ContinuousQueryListener;
import org.infinispan.query.Search;
import org.infinispan.query.dsl.QueryFactory;
import org.infinispan.query.dsl.Query;

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

[...]

148

#infinispan_s_query_dsl
#infinispan_s_query_dsl

// We have a cache of Persons
Cache<Integer, Person> cache = ...

// We begin by creating a ContinuousQuery instance on the cache
ContinuousQuery<Integer, Person> continuousQuery = Search.getContinuousQuery(cache);

// Define our query. In this case we will be looking for any Person instances under 21
years of age.
QueryFactory queryFactory = Search.getQueryFactory(cache);
Query query = queryFactory.from(Person.class)
 .having("age").lt(21)
 .toBuilder().build();

final Map<Integer, Person> matches = new ConcurrentHashMap<Integer, Person>();

// Define the ContinuousQueryListener
ContinuousQueryListener<Integer, Person> listener = new ContinuousQueryListener
<Integer, Person>() {
 @Override
 public void resultJoining(Integer key, Person value) {
 matches.put(key, value);
 }

 @Override
 public void resultUpdated(Integer key, Person value) {
 // just ignore it
 }

 @Override
 public void resultLeaving(Integer key) {
 matches.remove(key);
 }
};

// Add the listener and the query
continuousQuery.addContinuousQueryListener(query, listener);

[...]

// Remove the listener to stop receiving notifications
continuousQuery.removeContinuousQueryListener(listener);

As Person instances having an age less than 21 are added to the cache they will be received by the
listener and will be placed into the matches map, and when these entries are removed from the
cache or their age is modified to be greater or equal than 21 they will be removed from matches.

13.18.3. Removing Continuous Queries

To stop the query from further execution just remove the listener:

149

continuousQuery.removeContinuousQueryListener(listener);

13.18.4. Notes on performance of Continuous Queries

Continuous queries are designed to provide a constant stream of updates to the application,
potentially resulting in a very large number of events being generated for particularly broad
queries. A new temporary memory allocation is made for each event. This behavior may result in
memory pressure, potentially leading to OutOfMemoryErrors (especially in remote mode) if queries
are not carefully designed. To prevent such issues it is strongly recommended to ensure that each
query captures the minimal information needed both in terms of number of matched entries and
size of each match (projections can be used to capture the interesting properties), and that each
ContinuousQueryListener is designed to quickly process all received events without blocking and to
avoid performing actions that will lead to the generation of new matching events from the cache it
listens to.

13.19. More Query DSL samples
Probably the best way to explore using the Query DSL API is to have a look at our tests suite.
QueryDslConditionsTest is a fine example.

150

https://github.com/infinispan/infinispan/blob/master/query/src/test/java/org/infinispan/query/dsl/embedded/QueryDslConditionsTest.java

Chapter 14. CDI Support
Infinispan includes integration with Contexts and Dependency Injection (better known as CDI) via
Infinispan’s infinispan-cdi-embedded or infinispan-cdi-remote module. CDI is part of Java EE
specification and aims for managing beans' lifecycle inside the container. The integration allows to
inject Cache interface and bridge Cache and CacheManager events. JCache annotations (JSR-107)
are supported by infinispan-jcache and infinispan-jcache-remote artifacts. For more information
have a look at Chapter 11 of the JCACHE specification.

14.1. Maven Dependencies
To include CDI support for Infinispan in your project, use one of the following dependencies:

pom.xml for Embedded mode

<dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-cdi-embedded</artifactId>
 <version>${infinispan.version}</version>
</dependency>

pom.xml for Remote mode

<dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-cdi-remote</artifactId>
 <version>${infinispan.version}</version>
</dependency>


Which version of Infinispan should I use?

We recommend using the latest final version Infinispan.

14.2. Embedded cache integration

14.2.1. Inject an embedded cache

By default you can inject the default Infinispan cache. Let’s look at the following example:

151

http://www.cdi-spec.org
http://www.oracle.com/technetwork/java/javaee/tech/index-jsp-142185.html
http://www.oracle.com/technetwork/java/javaee/tech/index-jsp-142185.html
http://download.oracle.com/otndocs/jcp/jcache-1_0-fr-spec/index.html

Default cache injection

...
import javax.inject.Inject;

public class GreetingService {

 @Inject
 private Cache<String, String> cache;

 public String greet(String user) {
 String cachedValue = cache.get(user);
 if (cachedValue == null) {
 cachedValue = "Hello " + user;
 cache.put(user, cachedValue);
 }
 return cachedValue;
 }
}

If you want to use a specific cache rather than the default one, you just have to provide your own
cache configuration and cache qualifier. See example below:

Qualifier example

...
import javax.inject.Qualifier;

@Qualifier
@Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface GreetingCache {
}

Injecting Cache with qualifier

...
import org.infinispan.configuration.cache.Configuration;
import org.infinispan.configuration.cache.ConfigurationBuilder;
import org.infinispan.cdi.ConfigureCache;
import javax.enterprise.inject.Produces;

public class Config {

 @ConfigureCache("greeting-cache") // This is the cache name.
 @GreetingCache // This is the cache qualifier.
 @Produces
 public Configuration greetingCacheConfiguration() {
 return new ConfigurationBuilder()

152

 .eviction()
 .strategy(EvictionStrategy.LRU)
 .maxEntries(1000)
 .build();
 }

 // The same example without providing a custom configuration.
 // In this case the default cache configuration will be used.
 @ConfigureCache("greeting-cache")
 @GreetingCache
 @Produces
 public Configuration greetingCacheConfiguration;
}

To use this cache in the GreetingService add the @GeetingCache qualifier on your cache injection
point.

14.2.2. Override the default embedded cache manager and configuration

You can override the default cache configuration used by the default EmbeddedCacheManager. For that,
you just have to create a Configuration producer with default qualifiers as illustrated in the
following snippet:

Overriding Configuration

public class Config {

 // By default CDI adds the @Default qualifier if no other qualifier is provided.
 @Produces
 public Configuration defaultEmbeddedCacheConfiguration() {
 return new ConfigurationBuilder()
 .eviction()
 .strategy(EvictionStrategy.LRU)
 .maxEntries(100)
 .build();
 }
}

It’s also possible to override the default EmbeddedCacheManager. The newly created manager must
have default qualifiers and Application scope.

153

Overriding EmbeddedCacheManager

...
import javax.enterprise.context.ApplicationScoped;

public class Config {

 @Produces
 @ApplicationScoped
 public EmbeddedCacheManager defaultEmbeddedCacheManager() {
 return new DefaultCacheManager(new ConfigurationBuilder()
 .eviction()
 .strategy(EvictionStrategy.LRU)
 .maxEntries(100)
 .build());
 }
}

14.2.3. Configure the transport for clustered use

To use Infinispan in a clustered mode you have to configure the transport with the
GlobalConfiguration. To achieve that override the default cache manager as explained in the
previous section. Look at the following snippet:

Overriding default EmbeddedCacheManager

...
package org.infinispan.configuration.global.GlobalConfigurationBuilder;

@Produces
@ApplicationScoped
public EmbeddedCacheManager defaultClusteredCacheManager() {
 return new DefaultCacheManager(
 new GlobalConfigurationBuilder().transport().defaultTransport().build(),
 new ConfigurationBuilder().eviction().maxEntries(7).build()
);
}

14.3. Remote cache integration

14.3.1. Inject a remote cache

With the CDI integration it’s also possible to use a RemoteCache as illustrated in the following snippet:

154

Injecting RemoteCache

public class GreetingService {

 @Inject
 private RemoteCache<String, String> cache;

 public String greet(String user) {
 String cachedValue = cache.get(user);
 if (cachedValue == null) {
 cachedValue = "Hello " + user;
 cache.put(user, cachedValue);
 }
 return cachedValue;
 }
}

If you want to use another cache, for example the greeting-cache, add the @Remote qualifier on the
cache injection point which contains the cache name.

Injecting RemoteCache with qualifier

public class GreetingService {

 @Inject
 @Remote("greeting-cache")
 private RemoteCache<String, String> cache;

 ...
}

Adding the @Remote cache qualifier on each injection point might be error prone. That’s why the
remote cache integration provides another way to achieve the same goal. For that you have to
create your own qualifier annotated with @Remote:

RemoteCache qualifier

@Remote("greeting-cache")
@Qualifier
@Target({ElementType.FIELD, ElementType.PARAMETER, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface RemoteGreetingCache {
}

To use this cache in the GreetingService add the qualifier @RemoteGreetingCache qualifier on your
cache injection.

155

14.3.2. Override the default remote cache manager

Like the embedded cache integration, the remote cache integration comes with a default remote
cache manager producer. This default RemoteCacheManager can be overridden as illustrated in the
following snippet:

Overriding default RemoteCacheManager

public class Config {

 @Produces
 @ApplicationScoped
 public RemoteCacheManager defaultRemoteCacheManager() {
 return new RemoteCacheManager(localhost, 1544);
 }
}

14.4. Use a custom remote/embedded cache manager
for one or more cache
It’s possible to use a custom cache manager for one or more cache. You just need to annotate the
cache manager producer with the cache qualifiers. Look at the following example:

public class Config {

 @GreetingCache
 @Produces
 @ApplicationScoped
 public EmbeddedCacheManager specificEmbeddedCacheManager() {
 return new DefaultCacheManager(new ConfigurationBuilder()
 .expiration()
 .lifespan(60000l)
 .build());
 }

 @RemoteGreetingCache
 @Produces
 @ApplicationScoped
 public RemoteCacheManager specificRemoteCacheManager() {
 return new RemoteCacheManager("localhost", 1544);
 }
}

With the above code the GreetingCache or the RemoteGreetingCache will be associated with the
produced cache manager.

156


Producer method scope

To work properly the producers must have the scope @ApplicationScoped .
Otherwise each injection of cache will be associated to a new instance of cache
manager.

14.5. Use JCache caching annotations


There is now a separate module for JSR 107 (JCACHE) integration, including API.
See this chapter for details.

When CDI integration and JCache artifacts are present on the classpath, it is possible to use JCache
annotations with CDI managed beans. These annotations provide a simple way to handle common
use cases. The following caching annotations are defined in this specification:

• @CacheResult - caches the result of a method call

• @CachePut - caches a method parameter

• @CacheRemoveEntry - removes an entry from a cache

• @CacheRemoveAll - removes all entries from a cache


Annotations target type

These annotations must only be used on methods.

To use these annotations, proper interceptors need to be declared in beans.xml file:

Interceptors for managed environments such as Application Servers

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
 version="1.2" bean-discovery-mode="annotated">

 <class>org.infinispan.jcache.annotation.InjectedCacheResultInterceptor</class>
 <class>org.infinispan.jcache.annotation.InjectedCachePutInterceptor</class>
 <class>
org.infinispan.jcache.annotation.InjectedCacheRemoveEntryInterceptor</class>
 <class>org.infinispan.jcache.annotation.InjectedCacheRemoveAllInterceptor</class>
</beans>

157

Interceptors for unmanaged environments such as standalone applications

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
 version="1.2" bean-discovery-mode="annotated">

 <class>org.infinispan.jcache.annotation.CacheResultInterceptor</class>
 <class>org.infinispan.jcache.annotation.CachePutInterceptor</class>
 <class>org.infinispan.jcache.annotation.CacheRemoveEntryInterceptor</class>
 <class>org.infinispan.jcache.annotation.CacheRemoveAllInterceptor</class>
</beans>

The following snippet of code illustrates the use of @CacheResult annotation. As you can see it
simplifies the caching of the Greetingservice#greet method results.

Using JCache annotations

import javax.cache.interceptor.CacheResult;

public class GreetingService {

 @CacheResult
 public String greet(String user) {
 return "Hello" + user;
 }
}

The first version of the GreetingService and the above version have exactly the same behavior. The
only difference is the cache used. By default it’s the fully qualified name of the annotated method
with its parameter types (e.g. org.infinispan.example.GreetingService.greet(java.lang.String)).

Using other cache than default is rather simple. All you need to do is to specify its name with the
cacheName attribute of the cache annotation. For example:

Specifying cache name for JCache

@CacheResult(cacheName = "greeting-cache")

14.6. Use Cache events and CDI
It is possible to receive Cache and Cache Manager level events using CDI Events. You can achieve it
using @Observes annotation as shown in the following snippet:

158

Event listeners based on CDI

import javax.enterprise.event.Observes;
import org.infinispan.notifications.cachemanagerlistener.event.CacheStartedEvent;
import org.infinispan.notifications.cachelistener.event.*;

public class GreetingService {

 // Cache level events
 private void entryRemovedFromCache(@Observes CacheEntryCreatedEvent event) {
 ...
 }

 // Cache Manager level events
 private void cacheStarted(@Observes CacheStartedEvent event) {
 ...
 }
}


Check Listeners and Notifications section for more information about event
types.

159

Chapter 15. JCache (JSR-107) provider
Starting with version 7.0.0, Infinispan provides an implementation of JCache 1.0.0 API (JSR-107).
JCache specifies a standard Java API for caching temporary Java objects in memory. Caching java
objects can help get around bottlenecks arising from using data that is expensive to retrieve (i.e. DB
or web service), or data that is hard to calculate. Caching these type of objects in memory can help
speed up application performance by retrieving the data directly from memory instead of doing an
expensive roundtrip or recalculation. This document specifies how to use JCache with Infinispan’s
implementation of the specification, and explains key aspects of the API.

15.1. Dependencies
In order to start using Infinispan JCache implementation, a single dependency needs to be added to
the Maven pom.xml file:

pom.xml

<dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-jcache</artifactId>
 <version>...</version> <!-- i.e. 7.0.0.Final -->
 <scope>test</scope>
</dependency>

15.2. Create a local cache
Creating a local cache, using default configuration options as defined by the JCache API
specification, is as simple as doing the following:

import javax.cache.*;
import javax.cache.configuration.*;

// Retrieve the system wide cache manager
CacheManager cacheManager = Caching.getCachingProvider().getCacheManager();
// Define a named cache with default JCache configuration
Cache<String, String> cache = cacheManager.createCache("namedCache",
 new MutableConfiguration<String, String>());



By default, the JCache API specifies that data should be stored as storeByValue, so
that object state mutations outside of operations to the cache, won’t have an
impact in the objects stored in the cache. Infinispan has so far implemented this
using serialization/marshalling to make copies to store in the cache, and that way
adhere to the spec. Hence, if using default JCache configuration with Infinispan,
data stored must be marshallable.

Alternatively, JCache can be configured to store data by reference (just like Infinispan or JDK

160

http://www.jcp.org/en/jsr/detail?id=107

Collections work). To do that, simply call:

Cache<String, String> cache = cacheManager.createCache("namedCache",
 new MutableConfiguration<String, String>().setStoreByValue(false));

15.3. Store and retrieve data
Even though JCache API does not extend neither java.util.Map not
java.util.concurrent.ConcurrentMap, it providers a key/value API to store and retrieve data:

import javax.cache.*;
import javax.cache.configuration.*;

CacheManager cacheManager = Caching.getCacheManager();
Cache<String, String> cache = cacheManager.createCache("namedCache",
 new MutableConfiguration<String, String>());
cache.put("hello", "world"); // Notice that javax.cache.Cache.put(K) returns void!
String value = cache.get("hello"); // Returns "world"

Contrary to standard java.util.Map, javax.cache.Cache comes with two basic put methods called put
and getAndPut. The former returns void whereas the latter returns the previous value associated
with the key. So, the equivalent of java.util.Map.put(K) in JCache is javax.cache.Cache.getAndPut(K).



Even though JCache API only covers standalone caching, it can be plugged with a
persistence store, and has been designed with clustering or distribution in mind.
The reason why javax.cache.Cache offers two put methods is because standard
java.util.Map put call forces implementors to calculate the previous value. When
a persistent store is in use, or the cache is distributed, returning the previous
value could be an expensive operation, and often users call standard
java.util.Map.put(K) without using the return value. Hence, JCache users need to
think about whether the return value is relevant to them, in which case they need
to call javax.cache.Cache.getAndPut(K) , otherwise they can call
java.util.Map.put(K, V) which avoids returning the potentially expensive
operation of returning the previous value.

15.4. Comparing java.util.concurrent.ConcurrentMap
and javax.cache.Cache APIs
Here’s a brief comparison of the data manipulation APIs provided by
java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs.

Operation java.util.concurrent.Concurren
tMap<K, V>

javax.cache.Cache<K, V>

store and no return N/A void put(K key)

161

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java#L230
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java#L230
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java

Operation java.util.concurrent.Concurren
tMap<K, V>

javax.cache.Cache<K, V>

store and return previous value V put(K key) V getAndPut(K key)

store if not present V putIfAbsent(K key, V value) boolean putIfAbsent(K key, V
value)

retrieve V get(Object key) V get(K key)

delete if present V remove(Object key) boolean remove(K key)

delete and return previous
value

V remove(Object key) V getAndRemove(K key)

delete conditional boolean remove(Object key,
Object value)

boolean remove(K key, V
oldValue)

replace if present V replace(K key, V value) boolean replace(K key, V value)

replace and return previous
value

V replace(K key, V value) V getAndReplace(K key, V value)

replace conditional boolean replace(K key, V
oldValue, V newValue)

boolean replace(K key, V
oldValue, V newValue)

Comparing the two APIs, it’s obvious to see that, where possible, JCache avoids returning the
previous value to avoid operations doing expensive network or IO operations. This is an overriding
principle in the design of JCache API. In fact, there’s a set of operations that are present in
java.util.concurrent.ConcurrentMap , but are not present in the javax.cache.Cache because they
could be expensive to compute in a distributed cache. The only exception is iterating over the
contents of the cache:

Operation java.util.concurrent.Concurren
tMap<K, V>

javax.cache.Cache<K, V>

calculate size of cache int size() N/A

return all keys in the cache Set<K> keySet() N/A

return all values in the cache Collection<V> values() N/A

return all entries in the cache Set<Map.Entry<K, V>>
entrySet()

 N/A

iterate over the cache use iterator() method on
keySet, values or entrySet

Iterator<Cache.Entry<K, V>>
iterator()

15.5. Clustering JCache instances
Infinispan JCache implementation goes beyond the specification in order to provide the possibility
to cluster caches using the standard API. Given a Infinispan configuration file configured to
replicate caches like this:

162

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0-RC1/src/main/java/javax/cache/Cache.java

infinispan.xml

<infinispan>
 <cache-container default-cache="namedCache">
 <transport cluster="jcache-cluster" />
 <replicated-cache name="namedCache" />
 </cache-container>
</infinispan>

You can create a cluster of caches using this code:

import javax.cache.*;
import java.net.URI;

// For multiple cache managers to be constructed with the standard JCache API
// and live in the same JVM, either their names, or their classloaders, must
// be different.
// This example shows how to force their classloaders to be different.
// An alternative method would have been to duplicate the XML file and give
// it a different name, but this results in unnecessary file duplication.
ClassLoader tccl = Thread.currentThread().getContextClassLoader();
CacheManager cacheManager1 = Caching.getCachingProvider().getCacheManager(
 URI.create("infinispan-jcache-cluster.xml"), new TestClassLoader(tccl));
CacheManager cacheManager2 = Caching.getCachingProvider().getCacheManager(
 URI.create("infinispan-jcache-cluster.xml"), new TestClassLoader(tccl));

Cache<String, String> cache1 = cacheManager1.getCache("namedCache");
Cache<String, String> cache2 = cacheManager2.getCache("namedCache");

cache1.put("hello", "world");
String value = cache2.get("hello"); // Returns "world" if clustering is working

// --

public static class TestClassLoader extends ClassLoader {
 public TestClassLoader(ClassLoader parent) {
 super(parent);
 }
}

163

Chapter 16. Management Tooling
Management of Infinispan instances is all about exposing as much relevant statistical information
that allows administrators to get a view of the state of each Infinispan instance. Taking in account
that a single installation could be made up of several tens or hundreds Infinispan instances,
providing clear and concise information in an efficient manner is imperative. The following
sections dive into the range of management tooling that Infinispan provides.

16.1. JMX
Over the years, JMX has become the de facto standard for management and administration of
middleware and as a result, the Infinispan team has decided to standardize on this technology for
the exposure of management and statistical information.

16.1.1. Understanding The Exposed MBeans

By connecting to the VM(s) where Infinispan is running with a standard JMX GUI such as JConsole
or VisualVM you should find the following MBeans:

• For CacheManager level JMX statistics, without further configuration, you should see an MBean
called org.infinispan:type=CacheManager,name="DefaultCacheManager" with properties
specified by the CacheManager MBean .

• Using the cacheManagerName attribute in globalJmxStatistics XML element, or using the
corresponding GlobalJmxStatisticsConfigurationBuilder.cacheManagerName(String
cacheManagerName) call, you can name the cache manager in such way that the name is used
as part of the JMX object name. So, if the name had been "Hibernate2LC", the JMX name for the
cache manager would have been: org.infinispan:type=CacheManager,name="Hibernate2LC" .
This offers a nice and clean way to manage environments where multiple cache managers are
deployed, which follows JMX best practices .

• For Cache level JMX statistics, you should see several different MBeans depending on which
configuration options have been enabled. For example, if you have configured a write behind
cache store, you should see an MBean exposing properties belonging to the cache store
component. All Cache level MBeans follow the same format though which is the following:
org.infinispan:type=Cache,name="${name-of-cache}(${cache-mode})",manager="${name-of-cache-

manager}",component=${component-name} where:

• ${name-of-cache} has been substituted by the actual cache name. If this cache represents the
default cache, its name will be ___defaultCache.

• ${cache-mode} has been substituted by the cache mode of the cache. The cache mode is
represented by the lower case version of the possible enumeration values shown here.

• ${name-of-cache-manager} has been substituted by the name of the cache manager to which
this cache belongs. The name is derived from the cacheManagerName attribute value in
globalJmxStatistics element.

• ${component-name} has been substituted by one of the JMX component names in the JMX
reference documentation .

164

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
https://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html
https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/
https://docs.jboss.org/infinispan/9.0/apidocs/jmxComponents.html#CacheManager
https://docs.jboss.org/infinispan/9.0/apidocs/jmxComponents.html#CacheManager
http://www.oracle.com/technetwork/java/javase/tech/best-practices-jsp-136021.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/configuration/cache/CacheMode
https://docs.jboss.org/infinispan/9.0/apidocs/jmxComponents.html
https://docs.jboss.org/infinispan/9.0/apidocs/jmxComponents.html

For example, the cache store JMX component MBean for a default cache configured with
synchronous distribution would have the following name:
org.infinispan:type=Cache,name="___defaultcache(dist_sync)",manager="DefaultCacheManager",compo
nent=CacheStore

Please note that cache and cache manager names are quoted to protect against illegal characters
being used in these user-defined names.

16.1.2. Enabling JMX Statistics

The MBeans mentioned in the previous section are always created and registered in the
MBeanServer allowing you to manage your caches but some of their attributes do not expose
meaningful values unless you take the extra step of enabling collection of statistics. Gathering and
reporting statistics via JMX can be enabled at 2 different levels:

CacheManager level

The CacheManager is the entity that governs all the cache instances that have been created from it.
Enabling CacheManager statistics collections differs depending on the configuration style:

• If configuring the CacheManager via XML, make sure you add the following XML under the
<cache-container /> element:

<cache-container statistics="true"/>

• If configuring the CacheManager programmatically, simply add the following code:

GlobalConfigurationBuilder globalConfigurationBuilder = ...
globalConfigurationBuilder.globalJmxStatistics().enable();

Cache level

At this level, you will receive management information generated by individual cache instances.
Enabling Cache statistics collections differs depending on the configuration style:

• If configuring the Cache via XML, make sure you add the following XML under the one of the
top level cache elements, such as <local-cache />:

<local-cache statistics="true"/>

• If configuring the Cache programmatically, simply add the following code:

ConfigurationBuilder configurationBuilder = ...
configurationBuilder.jmxStatistics().enable();

165

16.1.3. Multiple JMX Domains

There can be situations where several CacheManager instances are created in a single VM, or Cache
names belonging to different CacheManagers under the same VM clash.

Using different JMX domains for multi cache manager environments should be last resort. Instead,
it’s possible to name a cache manager in such way that it can easily be identified and used by
monitoring tools. For example:

• Via XML:

<cache-container statistics="true" name="Hibernate2LC"/>

• Programmatically:

GlobalConfigurationBuilder globalConfigurationBuilder = ...
globalConfigurationBuilder.globalJmxStatistics()
 .enable()
 .cacheManagerName("Hibernate2LC");

Using either of these options should result on the CacheManager MBean name being:
org.infinispan:type=CacheManager,name="Hibernate2LC"

For the time being, you can still set your own jmxDomain if you need to and we also allow duplicate
domains, or rather duplicate JMX names, but these should be limited to very special cases where
different cache managers within the same JVM are named equally.

16.1.4. Registering MBeans In Non-Default MBean Servers

Let’s discuss where Infinispan registers all these MBeans. By default, Infinispan registers them in
the standard JVM MBeanServer platform . However, users might want to register these MBeans in a
different MBeanServer instance. For example, an application server might work with a different
MBeanServer instance to the default platform one. In such cases, users should implement the
MBeanServerLookup interface provided by Infinispan so that the getMBeanServer() method
returns the MBeanServer under which Infinispan should register the management MBeans. Once
you have your implementation ready, simply configure Infinispan with the fully qualified name of
this class. For example:

• Via XML:

<cache-container statistics="true">
 <jmx mbean-server-lookup="com.acme.MyMBeanServerLookup" />
</cache-container>

• Programmatically:

166

https://docs.oracle.com/javase/8/docs/api/java/lang/management/ManagementFactory.html#getPlatformMBeanServer--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/jmx/MBeanServerLookup.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/jmx/MBeanServerLookup.html#getMBeanServer--

GlobalConfigurationBuilder globalConfigurationBuilder = ...
globalConfigurationBuilder.globalJmxStatistics()
 .enable()
 .mBeanServerLookup(new com.acme.MyMBeanServerLookup());

16.1.5. MBeans added in Infinispan 5.0

There has been a couple of noticeable additions in Infinispan 5.0 in terms of exposed MBeans:

1. MBeans related to Infinispan servers are now available that for the moment focus on the
transport layer. A new MBean named
org.infinispan:type=Server,name={Memcached|HotRod},component=Transport offers information
such as: host name, port, bytes read, byte written, number of worker threads, etc.

2. When global JMX statistics are enabled, the JGroups channel MBean is also registered
automatically under the name org.infinispan:type=channel,cluster={name-of-your-cluster}, so
you can get key information of the group communication transport layer that’s used to cluster
Infinispan instances.

16.2. Command-Line Interface (CLI)
Infinispan offers a simple Command-Line Interface (CLI) with which it is possible to interact with
the data within the caches and with most of the internal components (e.g. transactions, cross-site
backups, rolling upgrades).

The CLI is built out of two elements: a server-side module and the client command tool. The server-
side module (infinispan-cli-server-$VERSION.jar) provides the actual interpreter for the
commands and needs to be included alongside your application. Infinispan Server includes CLI
support out of the box.

Currently the server (and the client) use the JMX protocol to communicate, but in a future release
we plan to support other communication protocols (in particular our own Hot Rod).

The CLI offers both an interactive and a batch mode. To invoke the client, just run the provided
bin/ispn-cli.[sh|bat] script. The following is a list of command-line switches which affect how the
CLI can be started:

167

-c, --connect=URL connects to a running instance of Infinispan.
 JMX over RMI
jmx://[username[:password]]@host:port[/container[/cache]]
 JMX over JBoss remoting
remoting://[username[:password]]@host:port[/container[/cache]]
-f, --file=FILE reads input from the specified file instead of using

 interactive mode. If FILE is '-', then commands will be read
 from stdin
-h, --help shows this help page
-v, --version shows version information

• JMX over RMI is the traditional way in which JMX clients connect to MBeanServers. Please refer
to the JDK Monitoring and Management documentation for details on how to configure the
process to be monitored

• JMX over JBoss Remoting is the protocol of choice when your Infinispan application is running
within JBoss AS7 or EAP6.

The connection to the application can also be initiated from within the CLI using the connect
command.

[disconnected//]> connect jmx://localhost:12000
[jmx://localhost:12000/MyCacheManager/>

The CLI prompt will show the active connection information, including the currently selected
CacheManager. Initially no cache is selected so, before performing any cache operations, one must
be selected. For this the cache command is used. The CLI supports tab-completion for all commands
and options and for most parameters where it makes sense to do so. Therefore typing cache and
pressing TAB will show a list of active caches:

[jmx://localhost:12000/MyCacheManager/> cache
___defaultcache namedCache
[jmx://localhost:12000/MyCacheManager/]> cache ___defaultcache
[jmx://localhost:12000/MyCacheManager/___defaultcache]>

Pressing TAB at an empty prompt will show the list of all available commands:

alias cache container encoding get locate remove
site upgrade
abort clearcache create end help put replace
start version
begin commit disconnect evict info quit rollback
stats

The CLI is based on Æsh and therefore offers many keyboard shortcuts to navigate and search the

168

http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html
https://github.com/aeshell/aesh

history of commands, to manipulate the cursor at the prompt, including both Emacs and VI modes
of operation.

16.2.1. Commands

abort

The abort command is used to abort a running batch initiated by the start command

[jmx://localhost:12000/MyCacheManager/namedCache]> start
[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> abort
[jmx://localhost:12000/MyCacheManager/namedCache]> get a
null

begin

The begin command starts a transaction. In order for this command to work, the cache(s) on which
the subsequent operations are invoked must have transactions enabled.

[jmx://localhost:12000/MyCacheManager/namedCache]> begin
[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> put b b
[jmx://localhost:12000/MyCacheManager/namedCache]> commit

cache

The cache command selects the cache to use as default for all subsequent operations. If it is invoked
without parameters it shows the currently selected cache.

[jmx://localhost:12000/MyCacheManager/namedCache]> cache ___defaultcache
[jmx://localhost:12000/MyCacheManager/___defaultcache]> cache
___defaultcache
[jmx://localhost:12000/MyCacheManager/___defaultcache]>

clearcache

The clearcache command clears a cache from all content.

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> clearcache
[jmx://localhost:12000/MyCacheManager/namedCache]> get a
null

169

commit

The commit command commits an ongoing transaction

[jmx://localhost:12000/MyCacheManager/namedCache]> begin
[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> put b b
[jmx://localhost:12000/MyCacheManager/namedCache]> commit

container

The container command selects the default container (cache manager). Invoked without parameters
it lists all available containers

[jmx://localhost:12000/MyCacheManager/namedCache]> container
MyCacheManager OtherCacheManager
[jmx://localhost:12000/MyCacheManager/namedCache]> container OtherCacheManager
[jmx://localhost:12000/OtherCacheManager/]>

create

The create command creates a new cache based on the configuration of an existing cache definition

[jmx://localhost:12000/MyCacheManager/namedCache]> create newCache like namedCache
[jmx://localhost:12000/MyCacheManager/namedCache]> cache newCache
[jmx://localhost:12000/MyCacheManager/newCache]>

deny

When authorization is enabled and the role mapper has been configured to be the
ClusterRoleMapper, principal to role mappings are stored within the cluster registry (a replicated
cache available to all nodes). The deny command can be used to deny roles previously assigned to a
principal:

[remoting://localhost:9999]> deny supervisor to user1

disconnect

The disconnect command disconnects the currently active connection allowing the CLI to connect to
another instance.

[jmx://localhost:12000/MyCacheManager/namedCache]> disconnect
[disconnected//]

170

encoding

The encoding command is used to set a default codec to use when reading/writing entries from/to a
cache. When invoked without arguments it shows the currently selected codec. This command is
useful since currently remote protocols such as HotRod and Memcached wrap keys and values in
specialized structures.

[jmx://localhost:12000/MyCacheManager/namedCache]> encoding
none
[jmx://localhost:12000/MyCacheManager/namedCache]> encoding --list
memcached
hotrod
none
rest
[jmx://localhost:12000/MyCacheManager/namedCache]> encoding hotrod

end

The end command is used to successfully end a running batch initiated by the start command

[jmx://localhost:12000/MyCacheManager/namedCache]> start
[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> end
[jmx://localhost:12000/MyCacheManager/namedCache]> get a
a

evict

The evict command is used to evict from the cache the entry associated with a specific key.

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> evict a

get

The get command is used to show the value associated to a specified key. For primitive types and
Strings, the get command will simply print the default representation. For other objects, a JSON
representation of the object will be printed.

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> get a
a

grant

When authorization is enabled and the role mapper has been configured to be the

171

ClusterRoleMapper, principal to role mappings are stored within the cluster registry (a replicated
cache available to all nodes). The grant command can be used to grant new roles to a principal:

[remoting://localhost:9999]> grant supervisor to user1

info

The info command is used to show the configuration of the currently selected cache or container.

[jmx://localhost:12000/MyCacheManager/namedCache]> info
GlobalConfiguration{asyncListenerExecutor=ExecutorFactoryConfiguration{factory=org.inf
inispan.executors.DefaultExecutorFactory@98add58},
asyncTransportExecutor=ExecutorFactoryConfiguration{factory=org.infinispan.executors.D
efaultExecutorFactory@7bc9c14c},
evictionScheduledExecutor=ScheduledExecutorFactoryConfiguration{factory=org.infinispan
.executors.DefaultScheduledExecutorFactory@7ab1a411},
replicationQueueScheduledExecutor=ScheduledExecutorFactoryConfiguration{factory=org.in
finispan.executors.DefaultScheduledExecutorFactory@248a9705},
globalJmxStatistics=GlobalJmxStatisticsConfiguration{allowDuplicateDomains=true,
enabled=true, jmxDomain='jboss.infinispan',
mBeanServerLookup=org.jboss.as.clustering.infinispan.MBeanServerProvider@6c0dc01,
cacheManagerName='local', properties={}},
transport=TransportConfiguration{clusterName='ISPN', machineId='null', rackId='null',
siteId='null', strictPeerToPeer=false, distributedSyncTimeout=240000, transport=null,
nodeName='null', properties={}},
serialization=SerializationConfiguration{advancedExternalizers={1100=org.infinispan.se
rver.core.CacheValue$Externalizer@5fabc91d,
1101=org.infinispan.server.memcached.MemcachedValue$Externalizer@720bffd,
1104=org.infinispan.server.hotrod.ServerAddress$Externalizer@771c7eb2},
marshaller=org.infinispan.marshall.VersionAwareMarshaller@6fc21535, version=52,
classResolver=org.jboss.marshalling.ModularClassResolver@2efe83e5},
shutdown=ShutdownConfiguration{hookBehavior=DONT_REGISTER}, modules={},
site=SiteConfiguration{localSite='null'}}

locate

The locate command shows the physical location of a specified entry in a distributed cluster.

[jmx://localhost:12000/MyCacheManager/namedCache]> locate a
[host/node1,host/node2]

put

The put command inserts an entry in the cache. If the cache previously contained a mapping for the
key, the old value is replaced by the specified value. The user can control the type of data that the
CLI will use to store the key and value. See the Data Types section.

172

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> put b 100
[jmx://localhost:12000/MyCacheManager/namedCache]> put c 4139l
[jmx://localhost:12000/MyCacheManager/namedCache]> put d true
[jmx://localhost:12000/MyCacheManager/namedCache]> put e { "package.MyClass": {"i": 5,
"x": null, "b": true } }

The put command can optionally specify a lifespan and a maximum idle time.

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a expires 10s
[jmx://localhost:12000/MyCacheManager/namedCache]> put a a expires 10m maxidle 1m

replace

The replace command replaces an existing entry in the cache. If an old value is specified, then the
replacement happens only if the value in the cache coincides.

[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> replace a b
[jmx://localhost:12000/MyCacheManager/namedCache]> get a
b
[jmx://localhost:12000/MyCacheManager/namedCache]> replace a b c
[jmx://localhost:12000/MyCacheManager/namedCache]> get a
c
[jmx://localhost:12000/MyCacheManager/namedCache]> replace a b d
[jmx://localhost:12000/MyCacheManager/namedCache]> get a
c

roles

When authorization is enabled and the role mapper has been configured to be the
ClusterRoleMapper, principal to role mappings are stored within the cluster registry (a replicated
cache available to all nodes). The roles command can be used to list the roles associated to a specific
user, or to all users if one is not given:

[remoting://localhost:9999]> roles user1
[supervisor, reader]

rollback

The rollback command rolls back an ongoing transaction

173

[jmx://localhost:12000/MyCacheManager/namedCache]> begin
[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> put b b
[jmx://localhost:12000/MyCacheManager/namedCache]> rollback

site

The site command performs operations related to the administration of cross-site replication. It can
be used to obtain information related to the status of a site and to change the status (online/offline)

[jmx://localhost:12000/MyCacheManager/namedCache]> site --status NYC
online
[jmx://localhost:12000/MyCacheManager/namedCache]> site --offline NYC
ok
[jmx://localhost:12000/MyCacheManager/namedCache]> site --status NYC
offline
[jmx://localhost:12000/MyCacheManager/namedCache]> site --online NYC

start

The start command initiates a batch of operations.

[jmx://localhost:12000/MyCacheManager/namedCache]> start
[jmx://localhost:12000/MyCacheManager/namedCache]> put a a
[jmx://localhost:12000/MyCacheManager/namedCache]> put b b
[jmx://localhost:12000/MyCacheManager/namedCache]> end

stats

The stats command displays statistics about a cache

174

[jmx://localhost:12000/MyCacheManager/namedCache]> stats
Statistics: {
 averageWriteTime: 143
 evictions: 10
 misses: 5
 hitRatio: 1.0
 readWriteRatio: 10.0
 removeMisses: 0
 timeSinceReset: 2123
 statisticsEnabled: true
 stores: 100
 elapsedTime: 93
 averageReadTime: 14
 removeHits: 0
 numberOfEntries: 100
 hits: 1000
}
LockManager: {
 concurrencyLevel: 1000
 numberOfLocksAvailable: 0
 numberOfLocksHeld: 0
}

16.2.2. upgrade

The upgrade command performs operations used during the rolling upgrade procedure. For a
detailed description of this procedure please see Rolling Upgrades

[jmx://localhost:12000/MyCacheManager/namedCache]> upgrade --synchronize=hotrod --all
[jmx://localhost:12000/MyCacheManager/namedCache]> upgrade --disconnectsource=hotrod
--all

16.2.3. version

The version command displays version information about both the CLI client and the server

[jmx://localhost:12000/MyCacheManager/namedCache]> version
Client Version 5.2.1.Final
Server Version 5.2.1.Final

16.2.4. Data Types

The CLI understands the following types:

• string strings can either be quoted between single (') or double (") quotes, or left unquoted. In
this case it must not contain spaces, punctuation and cannot begin with a number e.g. 'a string',

175

key001

• int an integer is identified by a sequence of decimal digits, e.g. 256

• long a long is identified by a sequence of decimal digits suffixed by 'l', e.g. 1000l

• double

• a double precision number is identified by a floating point number(with optional exponent
part) and an optional 'd' suffix, e.g.3.14

• float

• a single precision number is identified by a floating point number(with optional exponent
part) and an 'f' suffix, e.g. 10.3f

• boolean a boolean is represented either by the keywords true and false

• UUID a UUID is represented by its canonical form XXXXXXXX-XXXX-XXXX-XXXX-
XXXXXXXXXXXX

• JSON serialized Java classes can be represented using JSON notation, e.g.
{"package.MyClass":{"i":5,"x":null,"b":true}}. Please note that the specified class must be
available to the CacheManager’s class loader.

16.2.5. Time Values

A time value is an integer number followed by time unit suffix: days (d), hours (h), minutes (m),
seconds (s), milliseconds (ms).

16.3. Hawt.io
Hawt.io, a slick, fast, HTML5-based open source management console, also has support for
Infinispan. Refer to Hawt.io’s documentation for information regarding this plugin.

16.4. Writing plugins for other management tools
Any management tool that supports JMX already has basic support for Infinispan. However, custom
plugins could be written to adapt the JMX information for easier consumption.

176

http://hawt.io
http://hawt.io/plugins/infinispan/

Chapter 17. Custom Interceptors
It is possible to add custom interceptors to Infinispan, both declaratively and programatically.
Custom interceptors are a way of extending Infinispan by being able to influence or respond to any
modifications to cache. Example of such modifications are: elements are added/removed/updated
or transactions are committed. For a detailed list refer to CommandInterceptor API.

17.1. Adding custom interceptors declaratively
Custom interceptors can be added on a per named cache basis. This is because each named cache
have its own interceptor stack. Following xml snippet depicts the ways in which a custom
interceptor can be added.

 <local-cache name="cacheWithCustomInterceptors">
 <!--
 Define custom interceptors. All custom interceptors need to extend
org.jboss.cache.interceptors.base.CommandInterceptor
 -->
 <custom-interceptors>
 <interceptor position="FIRST" class="com.mycompany.CustomInterceptor1">
 <property name="attributeOne">value1</property>
 <property name="attributeTwo">value2</property>
 </interceptor>
 <interceptor position="LAST" class="com.mycompany.CustomInterceptor2"/>
 <interceptor index="3" class="com.mycompany.CustomInterceptor1"/>
 <interceptor before="org.infinispanpan.interceptors.CallInterceptor" class=
"com.mycompany.CustomInterceptor2"/>
 <interceptor after="org.infinispanpan.interceptors.CallInterceptor" class=
"com.mycompany.CustomInterceptor1"/>
 </custom-interceptors>
 </local-cache>

17.2. Adding custom interceptors programatically
In order to do that one needs to obtain a reference to the AdvancedCache . This can be done ass
follows:

CacheManager cm = getCacheManager();//magic
Cache aCache = cm.getCache("aName");
AdvancedCache advCache = aCache.getAdvancedCache();

Then one of the addInterceptor() methods should be used to add the actual interceptor. For further
documentation refer to AdvancedCache javadoc.

177

{javadoc.root}/org/infinispan/interceptors/base/CommandInterceptor.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html
{javadocJroot}/org/infinispan/AdvancedCache.html

17.3. Custom interceptor design
When writing a custom interceptor, you need to abide by the following rules.

• Custom interceptors must extend BaseCustomInterceptor

• Custom interceptors must declare a public, empty constructor to enable construction.

• Custom interceptors will have setters for any property defined through property tags used in
the XML configuration.

178

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/interceptors/base/BaseCustomInterceptor.html

Chapter 18. Running on Cloud Services
In order to turn on Cloud support for Infinispan library mode, one needs to add a new dependency
to the classpath:

Cloud support in library mode

<dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-cloud</artifactId>
 <version>${infinispan.version}</version>
</dependency>

The above dependency adds infinispan-core to the classpath as well as some default
configurations.

18.1. Amazon Web Services
Infinispan can be used on the Amazon Web Service (AWS) platform and similar cloud based
environment in several ways. As Infinispan uses JGroups as the underlying communication
technology, the majority of the configuration work is done JGroups. The default auto discovery
won’t work on EC2 as multicast is not allowed, but JGroups provides several other discovery
protocols so we only have to choose one.

18.1.1. TCPPing, GossipRouter, S3_PING

The TCPPing approach contains a static list of the IP address of each member of the cluster in the
JGroups configuration file. While this works it doesn’t really help when cluster nodes are
dynamically added to the cluster.

Sample TCPPing configuration

<config>
 <TCP bind_port="7800" />
 <TCPPING timeout="3000"
 initial_hosts=
"${jgroups.tcpping.initial_hosts:localhost[7800],localhost[7801]}"
 port_range="1"
 num_initial_members="3"/>
...
...
</config>

See http://community.jboss.org/wiki/JGroupsTCPPING for more information about TCPPing.

179

http://community.jboss.org/wiki/JGroupsTCPPING

18.1.2. GossipRouter

Another approach is to have a central server (Gossip, which each node will be configured to
contact. This central server will tell each node in the cluster about each other node.

The address (ip:port) that the Gossip router is listening on can be injected into the JGroups
configuration used by Infinispan. To do this pass the gossip routers address as a system property to
the JVM e.g. -DGossipRouterAddress="10.10.2.4[12001]" and reference this property in the JGroups
configuration that Infinispan is using e.g.

Sample TCPGOSSIP configuration

<config>
 <TCP bind_port="7800" />
 <TCPGOSSIP timeout="3000" initial_hosts="${GossipRouterAddress}"
num_initial_members="3" />
...
...
</config>

More on Gossip Router @ http://www.jboss.org/community/wiki/JGroupsGossipRouter

18.1.3. S3_PING

Finally you can configure your JGroups instances to use a shared storage to exchange the details of
the cluster nodes. S3_PING was added to JGroups in 2.6.12 and 2.8, and allows the Amazon S3 to be
used as the shared storage. It is experimental at the moment but offers another method of
clustering without a central server. Be sure that you have signed up for Amazon S3 as well as EC2 to
use this method.

Sample S3PING configuration

<config>
 <TCP bind_port="7800" />
 <S3_PING
 secret_access_key="replace this with you secret access key"
 access_key="replace this with your access key"
 location="replace this with your S3 bucket location" />
</config>

18.1.4. JDBC_PING

A similar approach to S3_PING, but using a JDBC connection to a shared database. On EC2 that is
quite easy using Amazon RDS. See the JDBC_PING Wiki page for details.

180

http://community.jboss.org/docs/DOC-10890
http://community.jboss.org/wiki/JDBCPING

Chapter 19. Kubernetes and OpenShift
Since OpenShift uses Kubernetes underneath both of them can use the same discovery protocol -
Kube_PING. The configuration is very straightforward:

Sample KUBE_PING configuration

<config>
 <TCP bind_addr="${match-interface:eth.*}" />
 <kubernetes.KUBE_PING />
...
...
</config>

The most important thing is to bind JGroups to eth0 interface, which is used by Docker containers
for network communication.

KUBE_PING protocol is configured by environmental variables (which should be available inside a
container). The most important thing is to set OPENSHIFT_KUBE_PING_NAMESPACE to proper namespace.
It might be either hardcoded or populated via Kubernetes' Downward API.

Since KUBE_PING uses Kubernetes API for obtaining available Pods, OpenShift requires adding
additional privileges. Assuming that oc project -q returns current namespace and default is the
service account name, one needs to run:

Adding additional OpenShift privileges

oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default -n $(oc
project -q)

After performing all above steps, the clustering should be enabled and all Pods should
automatically form a cluster within a single namespace. == Server Modules Infinispan offers two
alternative access methods: embedded mode and client-server mode.

• In Embedded mode the Infinispan libraries co-exist with the user application in the same JVM
as shown in the following diagram

181

https://github.com/jgroups-extras/jgroups-kubernetes
https://docs.docker.com/engine/userguide/networking/dockernetworks/
https://docs.docker.com/engine/userguide/networking/dockernetworks/
https://github.com/kubernetes/kubernetes/tree/release-1.0/docs/user-guide/downward-api

Figure 13. Peer-to-peer access

• Client-server mode is when applications access the data stored in a remote Infinispan server
using some kind of network protocol

19.1. Why Client-Server?
There are situations when accessing Infinispan in a client-server mode might make more sense
than embedding it within your application, for example, when trying to access Infinispan from a
non-JVM environment. Since Infinispan is written in Java, if someone had a C\\ application that
wanted to access it, it couldn’t just do it in a p2p way. On the other hand, client-server would be
perfectly suited here assuming that a language neutral protocol was used and the corresponding
client and server implementations were available.

182

Figure 14. Non-JVM access

In other situations, Infinispan users want to have an elastic application tier where you start/stop
business processing servers very regularly. Now, if users deployed Infinispan configured with
distribution or state transfer, startup time could be greatly influenced by the shuffling around of
data that happens in these situations. So in the following diagram, assuming Infinispan was
deployed in p2p mode, the app in the second server could not access Infinispan until state transfer
had completed.

183

Figure 15. Elasticity issue with P2P

This effectively means that bringing up new application-tier servers is impacted by things like state
transfer because applications cannot access Infinispan until these processes have finished and if
the state being shifted around is large, this could take some time. This is undesirable in an elastic
environment where you want quick application-tier server turnaround and predictable startup
times. Problems like this can be solved by accessing Infinispan in a client-server mode because
starting a new application-tier server is just a matter of starting a lightweight client that can
connect to the backing data grid server. No need for rehashing or state transfer to occur and as a
result server startup times can be more predictable which is very important for modern cloud-
based deployments where elasticity in your application tier is important.

184

Figure 16. Achieving elasticity

Other times, it’s common to find multiple applications needing access to data storage. In this cases,
you could in theory deploy an Infinispan instance per each of those applications but this could be
wasteful and difficult to maintain. Think about databases here, you don’t deploy a database
alongside each of your applications, do you? So, alternatively you could deploy Infinispan in client-
server mode keeping a pool of Infinispan data grid nodes acting as a shared storage tier for your
applications.

Figure 17. Shared data storage

185

Deploying Infinispan in this way also allows you to manage each tier independently, for example,
you can upgrade you application or app server without bringing down your Infinispan data grid
nodes.

19.2. Why use embedded mode?
Before talking about individual Infinispan server modules, it’s worth mentioning that in spite of all
the benefits, client-server Infinispan still has disadvantages over p2p. Firstly, p2p deployments are
simpler than client-server ones because in p2p, all peers are equals to each other and hence this
simplifies deployment. So, if this is the first time you’re using Infinispan, p2p is likely to be easier
for you to get going compared to client-server.

Client-server Infinispan requests are likely to take longer compared to p2p requests, due to the
serialization and network cost in remote calls. So, this is an important factor to take in account
when designing your application. For example, with replicated Infinispan caches, it might be more
performant to have lightweight HTTP clients connecting to a server side application that accesses
Infinispan in p2p mode, rather than having more heavyweight client side apps talking to Infinispan
in client-server mode, particularly if data size handled is rather large. With distributed caches, the
difference might not be so big because even in p2p deployments, you’re not guaranteed to have all
data available locally.

Environments where application tier elasticity is not so important, or where server side
applications access state-transfer-disabled, replicated Infinispan cache instances are amongst
scenarios where Infinispan p2p deployments can be more suited than client-server ones.

19.3. Server Modules
So, now that it’s clear when it makes sense to deploy Infinispan in client-server mode, what are
available solutions? All Infinispan server modules are based on the same pattern where the server
backend creates an embedded Infinispan instance and if you start multiple backends, they can
form a cluster and share/distribute state if configured to do so. The server types below primarily
differ in the type of listener endpoint used to handle incoming connections.

Here’s a brief summary of the available server endpoints.

• Hot Rod Server Module - This module is an implementation of the Hot Rod binary protocol
backed by Infinispan which allows clients to do dynamic load balancing and failover and smart
routing.

• A variety of clients exist for this protocol.

• If you’re clients are running Java, this should be your defacto server module choice because
it allows for dynamic load balancing and failover. This means that Hot Rod clients can
dynamically detect changes in the topology of Hot Rod servers as long as these are clustered,
so when new nodes join or leave, clients update their Hot Rod server topology view. On top
of that, when Hot Rod servers are configured with distribution, clients can detect where a
particular key resides and so they can route requests smartly.

• Load balancing and failover is dynamically provided by Hot Rod client implementations
using information provided by the server.

186

http://www.infinispan.org/hotrod-clients

• REST Server Module - The REST server, which is distributed as a WAR file, can be deployed in
any servlet container to allow Infinispan to be accessed via a RESTful HTTP interface.

• To connect to it, you can use any HTTP client out there and there’re tons of different client
implementations available out there for pretty much any language or system.

• This module is particularly recommended for those environments where HTTP port is the
only access method allowed between clients and servers.

• Clients wanting to load balance or failover between different Infinispan REST servers can do
so using any standard HTTP load balancer such as mod_cluster . It’s worth noting though
these load balancers maintain a static view of the servers in the backend and if a new one
was to be added, it would require manual update of the load balancer.

• Memcached Server Module - This module is an implementation of the Memcached text
protocol backed by Infinispan.

• To connect to it, you can use any of the existing Memcached clients which are pretty diverse.

• As opposed to Memcached servers, Infinispan based Memcached servers can actually be
clustered and hence they can replicate or distribute data using consistent hash algorithms
around the cluster. So, this module is particularly of interest to those users that want to
provide failover capabilities to the data stored in Memcached servers.

• In terms of load balancing and failover, there’re a few clients that can load balance or
failover given a static list of server addresses (perl’s Cache::Memcached for example) but
any server addition or removal would require manual intervention.

• Websocket Server Module - This module enables Infinispan to be accessed over a Websocket
interface via a Javascript API.

• This module is very specifically designed for Javascript clients and so that is the only client
implementation available.

• This module is particularly suited for developers wanting to enable access to Infinispan
instances from their Javascript codebase.

• Since websockets work on the same HTTP port, any HTTP load balancer would do to load
balance and failover.

• This module is EXPERIMENTAL! Beware!

19.4. Using Hot Rod Server
The Infinispan Server distribution contains a server module that implements Infinispan’s custom
binary protocol called Hot Rod. The protocol was designed to enable faster client/server
interactions compared to other existing text based protocols and to allow clients to make more
intelligent decisions with regards to load balancing, failover and even data location operations.
Please refer to Infinispan Server’s documentation for instructions on how to configure and run a
HotRod server.

187

http://www.jboss.org/mod_cluster
http://github.com/memcached/memcached/blob/master/doc/protocol.txt
http://github.com/memcached/memcached/blob/master/doc/protocol.txt
http://code.google.com/p/memcached/wiki/Clients
http://en.wikipedia.org/wiki/WebSockets
../infinispan_server_guide/infinispan_server_guide.html

19.4.1. Hot Rod Protocol

The following articles provides detailed information about each version of the custom TCP
client/server Hot Rod protocol.

• Hot Rod Protocol 1.0

• Hot Rod Protocol 1.1

• Hot Rod Protocol 1.2

• Hot Rod Protocol 1.3

• Hot Rod Protocol 2.0

• Hot Rod Protocol 2.1

• Hot Rod Protocol 2.2

• Hot Rod Protocol 2.3

• Hot Rod Protocol 2.4

• Hot Rod Protocol 2.5

• Hot Rod Protocol 2.6

Hot Rod Protocol 1.0


Infinispan versions

This version of the protocol is implemented since Infinispan 4.1.0.Final


All key and values are sent and stored as byte arrays. Hot Rod makes no
assumptions about their types.

Some clarifications about the other types:

• vInt : Variable-length integers are defined defined as compressed, positive integers where the
high-order bit of each byte indicates whether more bytes need to be read. The low-order seven
bits are appended as increasingly more significant bits in the resulting integer value making it
efficient to decode. Hence, values from zero to 127 are stored in a single byte, values from 128
to 16,383 are stored in two bytes, and so on:

Value First byte Second byte Third byte

0 00000000

1 00000001

2 00000010

…

127 01111111

128 10000000 00000001

129 10000001 00000001

130 10000010 00000001

188

#hot_rod_protocol_1_0
#hot_rod_protocol_1_1
#hot_rod_protocol_1_2
#hot_rod_protocol_1_3
#hot_rod_protocol_2_0
#hot_rod_protocol_2_1
#hot_rod_protocol_2_2
#hot_rod_protocol_2_3
#hot_rod_protocol_2_4
#hot_rod_protocol_2_5
#hot_rod_protocol_2_6

Value First byte Second byte Third byte

…

16,383 11111111 01111111

16,384 10000000 10000000 00000001

16,385 10000001 10000000 00000001

…

• signed vInt: The vInt above is also able to encode negative values, but will always use the
maximum size (5 bytes) no matter how small the endoded value is. In order to have a small
payload for negative values too, signed vInts uses ZigZag encoding on top of the vInt encoding.
More details here

• vLong : Refers to unsigned variable length long values similar to vInt but applied to longer
values. They’re between 1 and 9 bytes long.

• String : Strings are always represented using UTF-8 encoding.

Request Header

The header for a request is composed of:

Table 7. Request header

Field Name Size Value

Magic 1 byte 0xA0 = request

Message ID vLong ID of the message that will be copied back in the response. This
allows for hot rod clients to implement the protocol in an
asynchronous way.

Version 1 byte Infinispan hot rod server version. In this particular case, this is
10

189

http://developers.google.com/protocol-buffers/docs/encoding#types

Field Name Size Value

Opcode 1 byte Request operation code:
0x01 = put (since 1.0)
0x03 = get (since 1.0)
0x05 = putIfAbsent (since 1.0)
0x07 = replace (since 1.0)
0x09 = replaceIfUnmodified (since 1.0)
0x0B = remove (since 1.0)
0x0D = removeIfUnmodified (since 1.0)
0x0F = containsKey (since 1.0)
0x11 = getWithVersion (since 1.0)
0x13 = clear (since 1.0)
0x15 = stats (since 1.0)
0x17 = ping (since 1.0)
0x19 = bulkGet (since 1.2)
0x1B = getWithMetadata (since 1.2)
0x1D = bulkGetKeys (since 1.2)
0x1F = query (since 1.3)
0x21 = authMechList (since 2.0)
0x23 = auth (since 2.0)
0x25 = addClientListener (since 2.0)
0x27 = removeClientListener (since 2.0)
0x29 = size (since 2.0)
0x2B = exec (since 2.1)
0x2D = putAll (since 2.1)
0x2F = getAll (since 2.1)
0x31 = iterationStart (since 2.3)
0x33 = iterationNext (since 2.3)
0x35 = iterationEnd (since 2.3)
0x37 = getStream (since 2.6)
0x39 = putStream (since 2.6)

Cache Name
Length

vInt Length of cache name. If the passed length is 0 (followed by no
cache name), the operation will interact with the default cache.

Cache Name string Name of cache on which to operate. This name must match the
name of predefined cache in the Infinispan configuration file.

Flags vInt A variable length number representing flags passed to the
system. Each flags is represented by a bit. Note that since this
field is sent as variable length, the most significant bit in a byte is
used to determine whether more bytes need to be read, hence
this bit does not represent any flag. Using this model allows for
flags to be combined in a short space. Here are the current values
for each flag:
0x0001 = force return previous value

Client Intelligence 1 byte This byte hints the server on the client capabilities:
0x01 = basic client, interested in neither cluster nor hash
information
0x02 = topology-aware client, interested in cluster information
0x03 = hash-distribution-aware client, that is interested in both
cluster and hash information

190

Field Name Size Value

Topology Id vInt This field represents the last known view in the client. Basic
clients will only send 0 in this field. When topology-aware or
hash-distribution-aware clients will send 0 until they have
received a reply from the server with the current view id.
Afterwards, they should send that view id until they receive a
new view id in a response.

Transaction Type 1 byte This is a 1 byte field, containing one of the following well-known
supported transaction types (For this version of the protocol, the
only supported transaction type is 0):
0 = Non-transactional call, or client does not support transactions.
The subsequent TX_ID field will be omitted.
1 = X/Open XA transaction ID (XID). This is a well-known, fixed-
size format.

Transaction Id byte array The byte array uniquely identifying the transaction associated to
this call. Its length is determined by the transaction type. If
transaction type is 0, no transaction id will be present.

Response Header

The header for a response is composed of:

Table 8. Response header

Field Name Size Value

Magic 1 byte 0xA1 = response

Message ID vLong ID of the message, matching the request for which the response is
sent.

191

Field Name Size Value

Opcode 1 byte Response operation code:
0x02 = put (since 1.0)
0x04 = get (since 1.0)
0x06 = putIfAbsent (since 1.0)
0x08 = replace (since 1.0)
0x0A = replaceIfUnmodified (since 1.0)
0x0C = remove (since 1.0)
0x0E = removeIfUnmodified (since 1.0)
0x10 = containsKey (since 1.0)
0x12 = getWithVersion (since 1.0)
0x14 = clear (since 1.0)
0x16 = stats (since 1.0)
0x18 = ping (since 1.0)
0x1A = bulkGet (since 1.0)
0x1C = getWithMetadata (since 1.2)
0x1E = bulkGetKeys (since 1.2)
0x20 = query (since 1.3)
0x22 = authMechList (since 2.0)
0x24 = auth (since 2.0)
0x26 = addClientListener (since 2.0)
0x28 = removeClientListener (since 2.0)
0x2A = size (since 2.0)
0x2C = exec (since 2.1)
0x2E = putAll (since 2.1)
0x30 = getAll (since 2.1)
0x32 = iterationStart (since 2.3)
0x34 = iterationNext (since 2.3)
0x36 = iterationEnd (since 2.3)
0x38 = getStream (since 2.6)
0x40 = putStream (since 2.6)
0x50 = error (since 1.0)

Status 1 byte Status of the response, possible values:
0x00 = No error
0x01 = Not put/removed/replaced
0x02 = Key does not exist
0x81 = Invalid magic or message id
0x82 = Unknown command
0x83 = Unknown version
0x84 = Request parsing error
0x85 = Server Error
0x86 = Command timed out

Topology Change
Marker

string This is a marker byte that indicates whether the response is
prepended with topology change information. When no topology
change follows, the content of this byte is 0. If a topology change
follows, its contents are 1.


Exceptional error status responses, those that start with 0x8 …, are followed by
the length of the error message (as a vInt) and error message itself as String.

192

Topology Change Headers

The following section discusses how the response headers look for topology-aware or hash-
distribution-aware clients when there’s been a cluster or view formation change. Note that it’s the
server that makes the decision on whether it sends back the new topology based on the current
topology id and the one the client sent. If they’re different, it will send back the new topology.

Topology-Aware Client Topology Change Header

This is what topology-aware clients receive as response header when a topology change is sent
back:

Field Name Size Value

Response header
with topology
change marker

variable See previous section.

Topology Id vInt Topology ID

Num servers in
topology

vInt Number of Infinispan Hot Rod servers running within the cluster.
This could be a subset of the entire cluster if only a fraction of
those nodes are running Hot Rod servers.

m1: Host/IP length vInt Length of hostname or IP address of individual cluster member
that Hot Rod client can use to access it. Using variable length here
allows for covering for hostnames, IPv4 and IPv6 addresses.

m1: Host/IP
address

string String containing hostname or IP address of individual cluster
member that Hot Rod client can use to access it.

m1: Port 2 bytes
(Unsigned

Short)

Port that Hot Rod clients can use to communicate with this cluster
member.

m2: Host/IP length vInt

m2: Host/IP
address

string

m2: Port 2 bytes
(Unsigned

Short)

…etc

Distribution-Aware Client Topology Change Header

This is what hash-distribution-aware clients receive as response header when a topology change is
sent back:

Field Name Size Value

Response header
with topology
change marker

variable See previous section.

193

Field Name Size Value

Topology Id vInt Topology ID

Num Key Owners 2 bytes
(Unsigned

Short)

Globally configured number of copies for each Infinispan
distributed key

Hash Function
Version

1 byte Hash function version, pointing to a specific hash function in use.
See Hot Rod hash functions for details.

Hash space size vInt Modulus used by Infinispan for for all module arithmetic related
to hash code generation. Clients will likely require this
information in order to apply the correct hash calculation to the
keys.

Num servers in
topology

vInt Number of Infinispan Hot Rod servers running within the cluster.
This could be a subset of the entire cluster if only a fraction of
those nodes are running Hot Rod servers.

m1: Host/IP length vInt Length of hostname or IP address of individual cluster member
that Hot Rod client can use to access it. Using variable length here
allows for covering for hostnames, IPv4 and IPv6 addresses.

m1: Host/IP
address

string String containing hostname or IP address of individual cluster
member that Hot Rod client can use to access it.

m1: Port 2 bytes
(Unsigned

Short)

Port that Hot Rod clients can use to communicat with this cluster
member.

m1: Hashcode 4 bytes 32 bit integer representing the hashcode of a cluster member that
a Hot Rod client can use indentify in which cluster member a key
is located having applied the CSA to it.

m2: Host/IP length vInt

m2: Host/IP
address

string

m2: Port 2 bytes
(Unsigned

Short)

m2: Hashcode 4 bytes

…etc

It’s important to note that since hash headers rely on the consistent hash algorithm used by the
server and this is a factor of the cache interacted with, hash-distribution-aware headers can only be
returned to operations that target a particular cache. Currently ping command does not target any
cache (this is to change as per ISPN-424) , hence calls to ping command with hash-topology-aware
client settings will return a hash-distribution-aware header with "Num Key Owners", "Hash
Function Version", "Hash space size" and each individual host’s hash code all set to 0. This type of
header will also be returned as response to operations with hash-topology-aware client settings that
are targeting caches that are not configured with distribution.

194

#hot_rod_hash_functions
https://jira.jboss.org/jira/browse/ISPN-424

Operations

Get (0x03)/Remove (0x0B)/ContainsKey (0x0F)/GetWithVersion (0x11)

Common request format:

Field Name Size Value

Header variable Request header

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

Get response (0x04):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if key retrieved
0x02 = if key does not exist

Value Length vInt If success, length of value

Value byte array If success, the requested value

Remove response (0x0C):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if key removed
0x02 = if key does not exist

Previous value
Length

vInt If force return previous value flag was sent in the request and the
key was removed, the length of the previous value will be
returned. If the key does not exist, value length would be 0. If no
flag was sent, no value length would be present.

Previous value byte array If force return previous value flag was sent in the request and the
key was removed, previous value.

ContainsKey response (0x10):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if key exists
0x02 = if key does not exist

195

GetWithVersion response (0x12):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if key retrieved
0x02 = if key does not exist

Entry Version 8 bytes Unique value of an existing entry’s modification. The protocol
does not mandate that entry_version values are sequential. They
just need to be unique per update at the key level.

Value Length vInt If success, length of value

Value byte array If success, the requested value

BulkGet

Request (0x19):

Field Name Size Value

Header variable Request header

Entry count vInt Maximum number of Infinispan entries to be returned by the
server (entry == key + associated value). Needed to support
CacheLoader.load(int). If 0 then all entries are returned (needed
for CacheLoader.loadAll()).

Response (0x20):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, data follows

More 1 byte One byte representing whether more entries need to be read
from the stream. So, when it’s set to 1, it means that an entry
follows, whereas when it’s set to 0, it’s the end of stream and no
more entries are left to read. For more information on BulkGet
look here

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

Value 1 Length vInt Length of value

Value 1 byte array Retrieved value

More 1 byte

Key 2 Length vInt

Key 2 byte array

196

http://community.jboss.org/docs/DOC-15592

Field Name Size Value

Value 2 Length vInt

Value 2 byte array

… etc

Put (0x01)/PutIfAbsent (0x05)/Replace (0x07)

Common request format:

Field Name Size Value

Header variable Request header

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

Lifespan vInt Number of seconds that a entry during which the entry is allowed
to life. If number of seconds is bigger than 30 days, this number
of seconds is treated as UNIX time and so, represents the number
of seconds since 1/1/1970. If set to 0, lifespan is unlimited.

Max Idle vInt Number of seconds that a entry can be idle before it’s evicted
from the cache. If 0, no max idle time.

Value Length vInt Length of value

Value byte-array Value to be stored

Put response (0x02):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if stored

Previous value
Length

vInt If force return previous value flag was sent in the request and the
key was put, the length of the previous value will be returned. If
the key does not exist, value length would be 0. If no flag was
sent, no value length would be present.

Previous value byte array If force return previous value flag was sent in the request and the
key was put, previous value.

Replace response (0x08):

Field Name Size Value

Header variable Response header

197

Field Name Size Value

Response status 1 byte 0x00 = success, if stored
0x01 = if store did not happen because key does not exist

Previous value
Length

vInt If force return previous value flag was sent in the request, the
length of the previous value will be returned. If the key does not
exist, value length would be 0. If no flag was sent, no value length
would be present.

Previous value byte array If force return previous value flag was sent in the request and the
key was replaced, previous value.

PutIfAbsent response (0x06):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if stored
0x01 = if store did not happen because key was present

Previous value
Length

vInt If force return previous value flag was sent in the request, the
length of the previous value will be returned. If the key does not
exist, value length would be 0. If no flag was sent, no value length
would be present.

Previous value byte array If force return previous value flag was sent in the request and the
key was replaced, previous value.

ReplaceIfUnmodified

Request (0x09):

Field Name Size Value

Header variable Request header

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

Lifespan vInt Number of seconds that a entry during which the entry is allowed
to life. If number of seconds is bigger than 30 days, this number
of seconds is treated as UNIX time and so, represents the number
of seconds since 1/1/1970. If set to 0, lifespan is unlimited.

Max Idle vInt Number of seconds that a entry can be idle before it’s evicted
from the cache. If 0, no max idle time.

Entry Version 8 bytes Use the value returned by GetWithVersion operation.

Value Length vInt Length of value

198

Field Name Size Value

Value byte-array Value to be stored

Response (0x0A):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if replaced
0x01 = if replace did not happen because key had been modified
0x02 = if not replaced because if key does not exist

Previous value
Length

vInt If force return previous value flag was sent in the request, the
length of the previous value will be returned. If the key does not
exist, value length would be 0. If no flag was sent, no value length
would be present.

Previous value byte array If force return previous value flag was sent in the request and the
key was replaced, previous value.

RemoveIfUnmodified

Request (0x0D):

Field Name Size Value

Header variable Request header

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

Entry Version 8 bytes Use the value returned by GetWithMetadata operation.

Response (0x0E):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if removed
0x01 = if remove did not happen because key had been modified
0x02 = if not removed because key does not exist

Previous value
Length

vInt If force return previous value flag was sent in the request, the
length of the previous value will be returned. If the key does not
exist, value length would be 0. If no flag was sent, no value length
would be present.

199

Field Name Size Value

Previous value byte array If force return previous value flag was sent in the request and the
key was removed, previous value.

Clear

Request (0x13):

Field Name Size Value

Header variable Request header

Response (0x14):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if cleared

PutAll

Bulk operation to put all key value entries into the cache at the same time.

Request (0x2D):

Field Name Size Value

Header variable Request header

Lifespan vInt Number of seconds that provided entries are allowed to live. If
number of seconds is bigger than 30 days, this number of seconds
is treated as UNIX time and so, represents the number of seconds
since 1/1/1970. If set to 0, lifespan is unlimited.

Max Idle vInt Number of seconds that each entry can be idle before it’s evicted
from the cache. If 0, no max idle time.

Entry count vInt How many entries are being inserted

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

Value 1 Length vInt Length of value

Value 1 byte array Retrieved value

Key 2 Length vInt

Key 2 byte array

Value 2 Length vInt

Value 2 byte array

200

Field Name Size Value

… continues until
entry count is
reached

Response (0x2E):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if all put

GetAll

Bulk operation to get all entries that map to a given set of keys.

Request (0x2F):

Field Name Size Value

Header variable Request header

Key count vInt How many keys to find entries for

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

Key 2 Length vInt

Key 2 byte array

… continues until
key count is
reached

Response (0x30):

Field Name Size Value

Header variable Response header

Response status 1 byte

Entry count vInt How many entries are being returned

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

Value 1 Length vInt Length of value

Value 1 byte array Retrieved value

Key 2 Length vInt

201

Field Name Size Value

Key 2 byte array

Value 2 Length vInt

Value 2 byte array

… continues until
entry count is
reached

0x00 = success, if the get returned sucessfully

Stats

Returns a summary of all available statistics. For each statistic returned, a name and a value is
returned both in String UTF-8 format. The supported stats are the following:

Name Explanation

timeSinceStart Number of seconds since Hot Rod started.

currentNumberOfEntries Number of entries currently in the Hot Rod
server.

totalNumberOfEntries Number of entries stored in Hot Rod server.

stores Number of put operations.

retrievals Number of get operations.

hits Number of get hits.

misses Number of get misses.

removeHits Number of removal hits.

removeMisses Number of removal misses.

Request (0x15):

Field Name Size Value

Header variable Request header

Response (0x16):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if stats retrieved

Number of stats vInt Number of individual stats returned.

Name 1 length vInt Length of named statistic.

Name 1 string String containing statistic name.

Value 1 length vInt Length of value field.

202

Field Name Size Value

Value 1 string String containing statistic value.

Name 2 length vInt

Name 2 string

Value 2 length vInt

Value 2 String

…etc

Ping

Application level request to see if the server is available.

Request (0x17):

Field Name Size Value

Header variable Request header

Response (0x18):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if no errors

Error Handling

Error response (0x50)

Field Name Size Value

Header variable Response header

Response status 1 byte 0x8x = error response code

Error Message
Length

vInt Length of error message

Error Message string Error message. In the case of 0x84 , this error field contains the
latest version supported by the hot rod server. Length is defined
by total body length.

Multi-Get Operations

A multi-get operation is a form of get operation that instead of requesting a single key, requests a
set of keys. The Hot Rod protocol does not include such operation but remote Hot Rod clients could
easily implement this type of operations by either parallelizing/pipelining individual get requests.
Another possibility would be for remote clients to use async or non-blocking get requests. For
example, if a client wants N keys, it could send send N async get requests and then wait for all the
replies. Finally, multi-get is not to be confused with bulk-get operations. In bulk-gets, either all or a

203

number of keys are retrieved, but the client does not know which keys to retrieve, whereas in
multi-get, the client defines which keys to retrieve.

Example - Put request

• Coded request

Byte 0 1 2 3 4 5 6 7

8 0xA0 0x09 0x41 0x01 0x07 0x4D
('M')

0x79 ('y') 0x43 ('C')

16 0x61 ('a') 0x63 ('c') 0x68 ('h') 0x65 ('e') 0x00 0x03 0x00 0x00

24 0x00 0x05 0x48 ('H') 0x65 ('e') 0x6C ('l') 0x6C ('l') 0x6F ('o') 0x00

32 0x00 0x05 0x57 ('W') 0x6F ('o') 0x72 ('r') 0x6C ('l') 0x64 ('d')

• Field explanation

Field Name Value Field Name Value

Magic (0) 0xA0 Message Id (1) 0x09

Version (2) 0x41 Opcode (3) 0x01

Cache name length (4) 0x07 Cache name(5-11) 'MyCache'

Flag (12) 0x00 Client Intelligence (13) 0x03

Topology Id (14) 0x00 Transaction Type (15) 0x00

Transaction Id (16) 0x00 Key field length (17) 0x05

Key (18 - 22) 'Hello' Lifespan (23) 0x00

Max idle (24) 0x00 Value field length (25) 0x05

Value (26-30) 'World'

• Coded response

Byte 0 1 2 3 4 5 6 7

8 0xA1 0x09 0x01 0x00 0x00

• Field Explanation

Field Name Value Field Name Value

Magic (0) 0xA1 Message Id (1) 0x09

Opcode (2) 0x01 Status (3) 0x00

Topology change
marker (4)

0x00

204

Hot Rod Protocol 1.1


Infinispan versions

This version of the protocol is implemented since Infinispan 5.1.0.FINAL

Request Header

The version field in the header is updated to 11.

Distribution-Aware Client Topology Change Header


Updated for 1.1

This section has been modified to be more efficient when talking to distributed
caches with virtual nodes enabled.

This is what hash-distribution-aware clients receive as response header when a topology change is
sent back:

Field Name Size Value

Response header
with topology
change marker

variable See previous section.

Topology Id vInt Topology ID

Num Key Owners 2 bytes
(Unsigned

Short)

Globally configured number of copies for each Infinispan
distributed key

Hash Function
Version

1 byte Hash function version, pointing to a specific hash function in use.
See Hot Rod hash functions for details.

Hash space size vInt Modulus used by Infinispan for for all module arithmetic related
to hash code generation. Clients will likely require this
information in order to apply the correct hash calculation to the
keys.

Num servers in
topology

vInt Number of Infinispan Hot Rod servers running within the cluster.
This could be a subset of the entire cluster if only a fraction of
those nodes are running Hot Rod servers.

Num Virtual
Nodes Owners

vInt Field added in version 1.1 of the protocol that represents the
number of configured virtual nodes. If no virtual nodes are
configured or the cache is not configured with distribution, this
field will contain 0.

m1: Host/IP length vInt Length of hostname or IP address of individual cluster member
that Hot Rod client can use to access it. Using variable length here
allows for covering for hostnames, IPv4 and IPv6 addresses.

m1: Host/IP
address

string String containing hostname or IP address of individual cluster
member that Hot Rod client can use to access it.

205

#hot_rod_hash_functions

Field Name Size Value

m1: Port 2 bytes
(Unsigned

Short)

Port that Hot Rod clients can use to communicat with this cluster
member.

m1: Hashcode 4 bytes 32 bit integer representing the hashcode of a cluster member that
a Hot Rod client can use indentify in which cluster member a key
is located having applied the CSA to it.

m2: Host/IP length vInt

m2: Host/IP
address

string

m2: Port 2 bytes
(Unsigned

Short)

m2: Hashcode 4 bytes

…etc

Server node hash code calculation

Adding support for virtual nodes has made version 1.0 of the Hot Rod protocol impractical due to
bandwidth it would have taken to return hash codes for all virtual nodes in the clusters (this
number could easily be in the millions). So, as of version 1.1 of the Hot Rod protocol, clients are
given the base hash id or hash code of each server, and then they have to calculate the real hash
position of each server both with and without virtual nodes configured. Here are the rules clients
should follow when trying to calculate a node’s hash code:

1\. With virtual nodes disabled : Once clients have received the base hash code of the server, they
need to normalize it in order to find the exact position of the hash wheel. The process of
normalization involves passing the base hash code to the hash function, and then do a small
calculation to avoid negative values. The resulting number is the node’s position in the hash wheel:

public static int getNormalizedHash(int nodeBaseHashCode, Hash hashFct) {
 return hashFct.hash(nodeBaseHashCode) & Integer.MAX_VALUE; // make sure no negative
numbers are involved.
}

2\. With virtual nodes enabled : In this case, each node represents N different virtual nodes, and to
calculate each virtual node’s hash code, we need to take the the range of numbers between 0 and N-
1 and apply the following logic:

• For virtual node with 0 as id, use the technique used to retrieve a node’s hash code, as shown in
the previous section.

• For virtual nodes from 1 to N-1 ids, execute the following logic:

206

public static int virtualNodeHashCode(int nodeBaseHashCode, int id, Hash hashFct) {
 int virtualNodeBaseHashCode = id;
 virtualNodeBaseHashCode = 31 * virtualNodeBaseHashCode + nodeBaseHashCode;
 return getNormalizedHash(virtualNodeBaseHashCode, hashFct);
}

Hot Rod Protocol 1.2



Infinispan versions

This version of the protocol is implemented since Infinispan 5.2.0.Final. Since
Infinispan 5.3.0, HotRod supports encryption via SSL. However, since this only
affects the transport, the version number of the protocol has not been
incremented.

Request Header

The version field in the header is updated to 12.

Two new request operation codes have been added:

• 0x1B = getWithMetadata request

• 0x1D = bulkKeysGet request

Two new flags have been added too:

• 0x0002	= use cache-level configured default lifespan

• 0x0004	= use cache-level configured default max idle

Response Header

Two new response operation codes have been added:

• 0x1C = getWithMetadata response

• 0x1E = bulkKeysGet response

Operations

GetWithMetadata

Request (0x1B):

Field Name Size Value

Header variable Request header

207

Field Name Size Value

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

Response (0x1C):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if key retrieved
0x02 = if key does not exist

Flag 1 byte A flag indicating whether the response contains expiration
information. The value of the flag is obtained as a bitwise OR
operation between INFINITE_LIFESPAN (0x01) and
INFINITE_MAXIDLE (0x02).

Created Long (optional) a Long representing the timestamp when the entry was
created on the server. This value is returned only if the flag’s
INFINITE_LIFESPAN bit is not set.

Lifespan vInt (optional) a vInt representing the lifespan of the entry in seconds.
This value is returned only if the flag’s INFINITE_LIFESPAN bit is
not set.

LastUsed Long (optional) a Long representing the timestamp when the entry was
last accessed on the server. This value is returned only if the
flag’s INFINITE_MAXIDLE bit is not set.

MaxIdle vInt (optional) a vInt representing the maxIdle of the entry in seconds.
This value is returned only if the flag’s INFINITE_MAXIDLE bit is not
set.

Entry Version 8 bytes Unique value of an existing entry’s modification. The protocol
does not mandate that entry_version values are sequential. They
just need to be unique per update at the key level.

Value Length vInt If success, length of value

Value byte array If success, the requested value

BulkKeysGet

Request (0x1D):

Field Name Size Value

Header variable Request header

208

Field Name Size Value

Scope vInt 0 = Default Scope - This scope is used by RemoteCache.keySet()
method. If the remote cache is a distributed cache, the server
launch a stream operation to retrieve all keys from all of the
nodes. (Remember, a topology-aware Hot Rod Client could be
load balancing the request to any one node in the cluster).
Otherwise, it’ll get keys from the cache instance local to the
server receiving the request (that is because the keys should be
the same across all nodes in a replicated cache).
1 = Global Scope - This scope behaves the same to Default Scope.
2 = Local Scope - In case when remote cache is a distributed
cache, the server will not launch a stream operation to retrieve
keys from all nodes. Instead, it’ll only get keys local from the
cache instance local to the server receiving the request.

Response (0x1E):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, data follows

More 1 byte One byte representing whether more keys need to be read from
the stream. So, when it’s set to 1, it means that an entry follows,
whereas when it’s set to 0, it’s the end of stream and no more
entries are left to read. For more information on BulkGet look
here

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

More 1 byte

Key 2 Length vInt

Key 2 byte array

… etc

Hot Rod Protocol 1.3


Infinispan versions

This version of the protocol is implemented since Infinispan 6.0.0.Final.

Request Header

The version field in the header is updated to 13.

A new request operation code has been added:

• 0x1F = query request

209

http://community.jboss.org/docs/DOC-15592

Response Header

A new response operation code has been added:

• 0x20 = query response

Operations

Query

Request (0x1F):

Field Name Size Value

Header variable Request header

Query Length vInt The length of the protobuf encoded query object

Query byte array Byte array containing the protobuf encoded query object, having
a length specified by previous field.

Response (0x20):

Field Name Size Value

Header variable Response header

Response payload
Length

vInt The length of the protobuf encoded response object

Response payload byte array Byte array containing the protobuf encoded response object,
having a length specified by previous field.

As of Infinispan 6.0, the query and response objects are specified by the protobuf message types
'org.infinispan.client.hotrod.impl.query.QueryRequest' and
'org.infinispan.client.hotrod.impl.query.QueryResponse' defined in remote-query/remote-query-
client/src/main/resources/org/infinispan/query/remote/client/query.proto. These definitions could
change in future Infinispan versions, but as long as these evolutions will be kept backward
compatible (according to the rules defined here) no new Hot Rod protocol version will be
introduced to accommodate this.

Hot Rod Protocol 2.0


Infinispan versions

This version of the protocol is implemented since Infinispan 7.0.0.Final.

Request Header

The request header no longer contains Transaction Type and Transaction ID elements since they’re
not in use, and even if they were in use, there are several operations for which they would not
make sense, such as ping or stats commands. Once transactions are implemented, the protocol
version will be upped, with the necessary changes in the request header.

210

https://github.com/infinispan/infinispan/blob/master/remote-query/remote-query-client/src/main/resources/org/infinispan/query/remote/client/query.proto
https://github.com/infinispan/infinispan/blob/master/remote-query/remote-query-client/src/main/resources/org/infinispan/query/remote/client/query.proto
https://developers.google.com/protocol-buffers/docs/proto#updating

The version field in the header is updated to 20.

Two new flags have been added:

• 0x0008 = operation skips loading from configured cache loader.

• 0x0010 = operation skips indexing. Only relevant when the query module is enabled for the
cache

The following new request operation codes have been added:

• 0x21 = auth mech list request

• 0x23 = auth request

• 0x25 = add client remote event listener request

• 0x27 = remove client remote event listener request

• 0x29 = size request

Response Header

The following new response operation codes have been added:

• 0x22 = auth mech list response

• 0x24 = auth mech response

• 0x26 = add client remote event listener response

• 0x28 = remove client remote event listener response

• 0x2A = size response

Two new error codes have also been added to enable clients more intelligent decisions, particularly
when it comes to fail-over logic:

• 0x87 = Node suspected. When a client receives this error as response, it means that the node
that responded had an issue sending an operation to a third node, which was suspected.
Generally, requests that return this error should be failed-over to other nodes.

• 0x88 = Illegal lifecycle state. When a client receives this error as response, it means that the
server-side cache or cache manager are not available for requests because either stopped,
they’re stopping or similar situation. Generally, requests that return this error should be failed-
over to other nodes.

Some adjustments have been made to the responses for the following commands in order to better
handle response decoding without the need to keep track of the information sent. More precisely,
the way previous values are parsed has changed so that the status of the command response
provides clues on whether the previous value follows or not. More precisely:

• Put response returns 0x03 status code when put was successful and previous value follows.

• PutIfAbsent response returns 0x04 status code only when the putIfAbsent operation failed
because the key was present and its value follows in the response. If the putIfAbsent worked,
there would have not been a previous value, and hence it does not make sense returning

211

anything extra.

• Replace response returns 0x03 status code only when replace happened and the previous or
replaced value follows in the response. If the replace did not happen, it means that the cache
entry was not present, and hence there’s no previous value that can be returned.

• ReplaceIfUnmodified returns 0x03 status code only when replace happened and the previous or
replaced value follows in the response.

• ReplaceIfUnmodified returns 0x04 status code only when replace did not happen as a result of
the key being modified, and the modified value follows in the response.

• Remove returns 0x03 status code when the remove happened and the previous or removed
value follows in the response. If the remove did not occur as a result of the key not being
present, it does not make sense sending any previous value information.

• RemoveIfUnmodified returns 0x03 status code only when remove happened and the previous or
replaced value follows in the response.

• RemoveIfUnmodified returns 0x04 status code only when remove did not happen as a result of
the key being modified, and the modified value follows in the response.

Distribution-Aware Client Topology Change Header

In Infinispan 5.2, virtual nodes based consistent hashing was abandoned and instead segment
based consistent hash was implemented. In order to satisfy the ability for Hot Rod clients to find
data as reliably as possible, Infinispan has been transforming the segment based consistent hash to
fit Hot Rod 1.x protocol. Starting with version 2.0, a brand new distribution-aware topology change
header has been implemented which suppors segment based consistent hashing suitably and
provides 100% data location guarantees.

Field Name Size Value

Response header
with topology
change marker

variable

Topology Id vInt Topology ID

Num servers in
topology

vInt Number of Infinispan Hot Rod servers running within the cluster.
This could be a subset of the entire cluster if only a fraction of
those nodes are running Hot Rod servers.

m1: Host/IP length vInt Length of hostname or IP address of individual cluster member
that Hot Rod client can use to access it. Using variable length here
allows for covering for hostnames, IPv4 and IPv6 addresses.

m1: Host/IP
address

string String containing hostname or IP address of individual cluster
member that Hot Rod client can use to access it.

m1: Port 2 bytes
(Unsigned

Short)

Port that Hot Rod clients can use to communicat with this cluster
member.

m2: Host/IP length vInt

212

Field Name Size Value

m2: Host/IP
address

string

m2: Port 2 bytes
(Unsigned

Short)

… …

Hash Function
Version

1 byte Hash function version, pointing to a specific hash function in use.
See Hot Rod hash functions for details.

Num segments in
topology

vInt Total number of segments in the topology

Number of owners
in segment

1 byte This can be either 0, 1 or 2 owners.

First owner’s
index

vInt Given the list of all nodes, the position of this owner in this list.
This is only present if number of owners for this segment is 1 or
2.

Second owner’s
index

vInt Given the list of all nodes, the position of this owner in this list.
This is only present if number of owners for this segment is 2.

Given this information, Hot Rod clients should be able to recalculate all the hash segments and be
able to find out which nodes are owners for each segment. Even though there could be more than 2
owners per segment, Hot Rod protocol limits the number of owners to send for efficiency reasons.

Operations

Auth Mech List

Request (0x21):

Field Name Size Value

Header variable Request header

Response (0x22):

Field Name Size Value

Header variable Response header

Mech count vInt The number of mechs

Mech 1 string String containing the name of the SASL mech in its IANA-
registered form (e.g. GSSAPI, CRAM-MD5, etc)

Mech 2 string

…etc

The purpose of this operation is to obtain the list of valid SASL authentication mechs supported by

213

#hot_rod_hash_functions

the server. The client will then need to issue an Authenticate request with the preferred mech.

Authenticate

Request (0x23):

Field Name Size Value

Header variable Request header

Mech string String containing the name of the mech chosen by the client for
authentication. Empty on the successive invocations

Response length vInt Length of the SASL client response

Response data byte array The SASL client response

Response (0x24):

Field Name Size Value

Header variable Response header

Completed byte 0 if further processing is needed, 1 if authentication is complete

Challenge length vInt Length of the SASL server challenge

Challenge data byte array The SASL server challenge

The purpose of this operation is to authenticate a client against a server using SASL. The
authentication process, depending on the chosen mech, might be a multi-step operation. Once
complete the connection becomes authenticated

Add client listener for remote events

Request (0x25):

Field Name Size Value

Header variable Request header

Listener ID byte array Listener identifier

Include state byte When this byte is set to 1, cached state is sent back to remote
clients when either adding a cache listener for the first time, or
when the node where a remote listener is registered changes in a
clustered environment. When enabled, state is sent back as cache
entry created events to the clients. If set to 0, no state is sent back
to the client when adding a listener, nor it gets state when the
node where the listener is registered changes.

Key/value filter
factory name

string Optional name of the key/value filter factory to be used with this
listener. The factory is used to create key/value filter instances
which allow events to be filtered directly in the Hot Rod server,
avoiding sending events that the client is not interested in. If no
factory is to be used, the length of the string is 0.

214

Field Name Size Value

Key/value filter
factory parameter
count

byte The key/value filter factory, when creating a filter instance, can
take an arbitrary number of parameters, enabling the factory to
be used to create different filter instances dynamically. This
count field indicates how many parameters will be passed to the
factory. If no factory name was provided, this field is not present
in the request.

Key/value filter
factory parameter
1

byte array First key/value filter factory parameter

Key/value filter
factory parameter
2

byte array Second key/value filter factory parameter

…

Converter factory
name

string Optional name of the converter factory to be used with this
listener. The factory is used to transform the contents of the
events sent to clients. By default, when no converter is in use,
events are well defined, according to the type of event generated.
However, there might be situations where users want to add
extra information to the event, or they want to reduce the size of
the events. In these cases, a converter can be used to transform
the event contents. The given converter factory name produces
converter instances to do this job. If no factory is to be used, the
length of the string is 0.

Converter factory
parameter count

byte The converter factory, when creating a converter instance, can
take an arbitrary number of parameters, enabling the factory to
be used to create different converter instances dynamically. This
count field indicates how many parameters will be passed to the
factory. If no factory name was provided, this field is not present
in the request.

Converter factory
parameter 1

byte array First converter factory parameter

Converter factory
parameter 2

byte array Second converter factory parameter

…

Response (0x26):

Field Name Size Value

Header variable Response header

Remove client listener for remote events

Request (0x27):

215

Field Name Size Value

Header variable Request header

Listener ID byte array Listener identifier

Response (0x28):

Field Name Size Value

Header variable Response header

Size

Request (0x29):

Field Name Size Value

Header variable Request header

Response (0x2A):

Field Name Size Value

Header variable Response header

Size vInt Size of the remote cache, which is calculated globally in the
clustered set ups, and if present, takes cache store contents into
account as well.

Exec

Request (0x2B):

Field Name Size Value

Header variable Request header

Script string Name of the script to execute

Parameter Count vInt The number of parameters

Parameter 1 Name string The name of the first parameter

Parameter 1
Length

vInt The length of the first parameter

Parameter 1 Value byte array The value of the first parameter

Response (0x2C):

Field Name Size Value

Header variable Response header

216

Field Name Size Value

Response status 1 byte 0x00 = success, if execution completed successfully
0x85 = server error

Value Length vInt If success, length of return value

Value byte array If success, the result of the execution

Remote Events

Starting with Hot Rod 2.0, clients can register listeners for remote events happening in the server.
Sending these events commences the moment a client adds a client listener for remote events.

Event Header:

Field Name Size Value

Magic 1 byte 0xA1 = response

Message ID vLong ID of event

Opcode 1 byte Event type:
0x60 = cache entry created event
0x61 = cache entry modified event
0x62 = cache entry removed event
0x50 = error

Status 1 byte Status of the response, possible values:
0x00 = No error

Topology Change
Marker

1 byte Since events are not associated with a particular incoming
topology ID to be able to decide whether a new topology is
required to be sent or not, new topologies will never be sent with
events. Hence, this marker will always have 0 value for events.

Table 9. Cache entry created event

Field Name Size Value

Header variable Event header with 0x60 operation code

Listener ID byte array Listener for which this event is directed

Custom marker byte Custom event marker. For created events, this is 0.

Command retried byte Marker for events that are result of retried commands. If
command is retried, it returns 1, otherwise 0.

Key byte array Created key

Version long Version of the created entry. This version information can be
used to make conditional operations on this cache entry.

Table 10. Cache entry modified event

217

Field Name Size Value

Header variable Event header with 0x61 operation code

Listener ID byte array Listener for which this event is directed

Custom marker byte Custom event marker. For created events, this is 0.

Command retried byte Marker for events that are result of retried commands. If
command is retried, it returns 1, otherwise 0.

Key byte array Modified key

Version long Version of the modified entry. This version information can be
used to make conditional operations on this cache entry.

Table 11. Cache entry removed event

Field Name Size Value

Header variable Event header with 0x62 operation code

Listener ID byte array Listener for which this event is directed

Custom marker byte Custom event marker. For created events, this is 0.

Command retried byte Marker for events that are result of retried commands. If
command is retried, it returns 1, otherwise 0.

Key byte array Removed key

Table 12. Custom event

Field Name Size Value

Header variable Event header with event specific operation code

Listener ID byte array Listener for which this event is directed

Custom marker byte Custom event marker. For custom events, this is 1.

Event data byte array Custom event data, formatted according to the converter
implementation logic.

Hot Rod Protocol 2.1


Infinispan versions

This version of the protocol is implemented since Infinispan 7.1.0.Final.

Request Header

The version field in the header is updated to 21.

Operations

Add client listener for remote events

An extra byte parameter is added at the end which indicates whether the client prefers client

218

listener to work with raw binary data for filter/converter callbacks. If using raw data, its value is 1
otherwise 0.

Request format:

Field Name Size Value

Header variable Request header

Listener ID byte array …

Include state byte …

Key/value filter
factory parameter
count

byte …

…

Converter factory
name

string …

Converter factory
parameter count

byte …

…

Use raw data byte If filter/converter parameters should be raw binary, then 1,
otherwise 0.

Custom event

Starting with Hot Rod 2.1, custom events can return raw data that the Hot Rod client should not try
to unmarshall before passing it on to the user. The way this is transmitted to the Hot Rod client is by
sending 2 as the custom event marker. So, the format of the custom event remains like this:

Field Name Size Value

Header variable Event header with event specific operation code

Listener ID byte array Listener for which this event is directed

Custom marker byte Custom event marker. For custom events whose event data needs
to be unmarshalled before returning to user the value is 1. For
custom events that need to return the event data as-is to the user,
the value is 2.

Event data byte array Custom event data. If the custom marker is 1, the bytes represent
the marshalled version of the instance returned by the converter.
If custom marker is 2, it represents the byte array, as returned by
the converter.

Hot Rod Protocol 2.2


Infinispan versions

This version of the protocol is implemented since Infinispan 8.0

219

Added support for different time units.

Operations

Put/PutAll/PutIfAbsent/Replace/ReplaceIfUnmodified

Common request format:

Field Name Size Value

TimeUnits Byte Time units of lifespan (first 4 bits) and maxIdle (last 4 bits).
Special units DEFAULT and INFINITE can be used for default
server expiration and no expiration respectively. Possible values:
0x00 = SECONDS
0x01 = MILLISECONDS
0x02 = NANOSECONDS
0x03 = MICROSECONDS
0x04 = MINUTES
0x05 = HOURS
0x06 = DAYS
0x07 = DEFAULT
0x08 = INFINITE

Lifespan vLong Duration which the entry is allowed to life. Only sent when time
unit is not DEFAULT or INFINITE

Max Idle vLong Duration that each entry can be idle before it’s evicted from the
cache. Only sent when time unit is not DEFAULT or INFINITE

Hot Rod Protocol 2.3


Infinispan versions

This version of the protocol is implemented since Infinispan 8.0

Operations

Iteration Start

Request (0x31):

Field Name Size Value

Segments size signed vInt Size of the bitset encoding of the segments ids to iterate on. The
size is the maximum segment id rounded to nearest multiple of 8.
A value -1 indicates no segment filtering is to be done

220

Field Name Size Value

Segments byte array (Optional) Contains the segments ids bitset encoded, where each
bit with value 1 represents a segment in the set. Byte order is
little-endian.
Example: segments [1,3,12,13] would result in the following
encoding:
00001010 00110000
size: 16 bits
first byte: represents segments from 0 to 7, from which 1 and 3
are set
second byte: represents segments from 8 to 15, from which 12
and 13 are set
More details in the java.util.BitSet implementation. Segments will
be sent if the previous field is not negative

FilterConverter
size

signed vInt The size of the String representing a KeyValueFilterConverter
factory name deployed on the server, or -1 if no filter will be used

FilterConverter UTF-8 byte
array

(Optional) KeyValueFilterConverter factory name deployed on the
server. Present if previous field is not negative

BatchSize vInt number of entries to transfers from the server at one go

Response (0x32):

Field Name Size Value

IterationId String The unique id of the iteration

Iteration Next

Request (0x33):

Field Name Size Value

IterationId String The unique id of the iteration

Response (0x34):

Field Name Size Value

Finished segments
size

vInt size of the bitset representing segments that were finished
iterating

Finished segments byte array bitset encoding of the segments that were finished iterating

Entry count vInt How many entries are being returned

Key 1 Length vInt Length of key

Key 1 byte array Retrieved key

Value 1 Length vInt Length of value

Value 1 byte array Retrieved value

221

Field Name Size Value

Key 2 Length vInt

Key 2 byte array

Value 2 Length vInt

Value 2 byte array

… continues until
entry count is
reached

Iteration End

Request (0x35):

Field Name Size Value

IterationId String The unique id of the iteration

Response (0x36):

Header variable Response header

Response status 1 byte 0x00 = success, if execution completed successfully
0x05 = for non existent IterationId

Hot Rod Protocol 2.4


Infinispan versions

This version of the protocol is implemented since Infinispan 8.1

This Hot Rod protocol version adds three new status code that gives the client hints on whether the
server has compatibility mode enabled or not:

• 0x06: Success status and compatibility mode is enabled.

• 0x07: Success status and return previous value, with compatibility mode is enabled.

• 0x08: Not executed and return previous value, with compatibility mode is enabled.

The Iteration Start operation can optionally send parameters if a custom filter is provided and it’s
parametrised:

Operations

Iteration Start

Request (0x31):

Field Name Size Value

Segments size signed vInt same as protocol version 2.3.

222

Field Name Size Value

Segments byte array same as protocol version 2.3.

FilterConverter
size

signed vInt same as protocol version 2.3.

FilterConverter UTF-8 byte
array

same as protocol version 2.3.

Parameters size byte the number of params of the filter. Only present when
FilterConverter is provided.

Parameters byte[][] an array of parameters, each parameter is a byte array. Only
present if Parameters size is greater than 0.

BatchSize vInt same as protocol version 2.3.

The Iteration Next operation can optionally return projections in the value, meaning more than one
value is contained in the same entry.

Iteration Next

Response (0x34):

Field Name Size Value

Finished segments
size

vInt same as protocol version 2.3.

Finished segments byte array same as protocol version 2.3.

Entry count vInt same as protocol version 2.3.

Number of value
projections

vInt Number of projections for the values. If 1, behaves like version
protocol version 2.3.

Key1 Length vInt same as protocol version 2.3.

Key1 byte array same as protocol version 2.3.

Value1 projection1
length

vInt length of value1 first projection

Value1 projection1 byte array retrieved value1 first projection

Value1 projection2
length

vInt length of value2 second projection

Value1 projection2 byte array retrieved value2 second projection

… continues until
all projections for
the value
retrieved

Key2
Length

vInt

same as protocol
version 2.3.

Key2 byte array

223

Field Name Size Value

same as protocol
version 2.3.

Value2
projection1

length

vInt

length of value 2
first projection

Value2
projection1

byte array

retrieved value 2
first projection

Value2
projection2

length

vInt

length of value 2
second projection

Value2
projection2

byte array

retrieved value 2
second projection

…
continues
until entry

count is
reached

1. Stats:

Statistics returned by previous Hot Rod protocol versions were local to the node where the Hot Rod
operation had been called. Starting with 2.4, new statistics have been added which provide global
counts for the statistics returned previously. If the Hot Rod is running in local mode, these statistics
are not returned:

Name Explanation

globalCurrentNumberOfEntries Number of entries currently across the Hot Rod
cluster.

globalStores Total number of put operations across the Hot
Rod cluster.

globalRetrievals Total number of get operations across the Hot
Rod cluster.

globalHits Total number of get hits across the Hot Rod
cluster.

globalMisses Total number of get misses across the Hot Rod
cluster.

globalRemoveHits Total number of removal hits across the Hot Rod
cluster.

globalRemoveMisses Total number of removal misses across the Hot
Rod cluster.

Hot Rod Protocol 2.5

224


Infinispan versions

This version of the protocol is implemented since Infinispan 8.2

This Hot Rod protocol version adds support for metadata retrieval along with entries in the iterator.
It includes two changes:

• Iteration Start request includes an optional flag

• IterationNext operation may include metadata info for each entry if the flag above is set

Iteration Start

Request (0x31):

Field Name Size Value

Segments size signed vInt same as protocol version 2.4.

Segments byte array same as protocol version 2.4.

FilterConverter
size

signed vInt same as protocol version 2.4.

FilterConverter UTF-8 byte
array

same as protocol version 2.4.

Parameters size byte same as protocol version 2.4.

Parameters byte[][] same as protocol version 2.4.

BatchSize vInt same as protocol version 2.4.

Metadata 1 byte 1 if metadata is to be returned for each entry, 0 otherwise

Iteration Next

Response (0x34):

Field Name Size Value

Finished segments
size

vInt same as protocol version 2.4.

Finished segments byte array same as protocol version 2.4.

Entry count vInt same as protocol version 2.4.

Number of value
projections

vInt same as protocol version 2.4.

Metadata (entry
1)

1 byte If set, entry has metadata associated

Expiration (entry
1)

1 byte A flag indicating whether the response contains expiration
information. The value of the flag is obtained as a bitwise OR
operation between INFINITE_LIFESPAN (0x01) and
INFINITE_MAXIDLE (0x02). Only present if the metadata flag above
is set

225

Field Name Size Value

Created (entry 1) Long (optional) a Long representing the timestamp when the entry was
created on the server. This value is returned only if the flag’s
INFINITE_LIFESPAN bit is not set.

Lifespan (entry 1) vInt (optional) a vInt representing the lifespan of the entry in seconds.
This value is returned only if the flag’s INFINITE_LIFESPAN bit is
not set.

LastUsed (entry 1) Long (optional) a Long representing the timestamp when the entry was
last accessed on the server. This value is returned only if the
flag’s INFINITE_MAXIDLE bit is not set.

MaxIdle (entry 1) vInt (optional) a vInt representing the maxIdle of the entry in seconds.
This value is returned only if the flag’s INFINITE_MAXIDLE bit is not
set.

Entry Version
(entry 1)

8 bytes Unique value of an existing entry’s modification. Only present if
Metadata flag is set

Key 1 Length vInt same as protocol version 2.4.

Key 1 byte array same as protocol version 2.4.

Value 1 Length vInt same as protocol version 2.4.

Value 1 byte array same as protocol version 2.4.

Metadata (entry 2) 1 byte Same as for entry 1

Expiration (entry
2)

1 byte Same as for entry 1

Created (entry 2) Long Same as for entry 1

Lifespan (entry 2) vInt Same as for entry 1

LastUsed (entry 2) Long Same as for entry 1

MaxIdle (entry 2) vInt Same as for entry 1

Entry Version
(entry 2)

8 bytes Same as for entry 1

Key 2 Length vInt

Key 2 byte array

Value 2 Length vInt

Value 2 byte array

… continues until
entry count is
reached

226

Hot Rod Protocol 2.6


Infinispan versions

This version of the protocol is implemented since Infinispan 9.0

This Hot Rod protocol version adds support for streaming get and put operations. It includes two
new operations:

• GetStream for retrieving data as a stream, with an optional initial offset

• PutStream for writing data as a stream, optionally by specifying a version

GetStream

Request (0x37):

Field Name Size Value

Header variable Request header

Offset vInt The offset in bytes from which to start retrieving. Set to 0 to
retrieve from the beginning

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

GetStream

Response (0x38):

Field Name Size Value

Header variable Response header

Response status 1 byte 0x00 = success, if key retrieved
0x02 = if key does not exist

Flag 1 byte A flag indicating whether the response contains expiration
information. The value of the flag is obtained as a bitwise OR
operation between INFINITE_LIFESPAN (0x01) and
INFINITE_MAXIDLE (0x02).

Created Long (optional) a Long representing the timestamp when the entry was
created on the server. This value is returned only if the flag’s
INFINITE_LIFESPAN bit is not set.

Lifespan vInt (optional) a vInt representing the lifespan of the entry in seconds.
This value is returned only if the flag’s INFINITE_LIFESPAN bit is
not set.

227

Field Name Size Value

LastUsed Long (optional) a Long representing the timestamp when the entry was
last accessed on the server. This value is returned only if the
flag’s INFINITE_MAXIDLE bit is not set.

MaxIdle vInt (optional) a vInt representing the maxIdle of the entry in seconds.
This value is returned only if the flag’s INFINITE_MAXIDLE bit is not
set.

Entry Version 8 bytes Unique value of an existing entry’s modification. The protocol
does not mandate that entry_version values are sequential. They
just need to be unique per update at the key level.

Value Length vInt If success, length of value

Value byte array If success, the requested value

PutStream

Request (0x39)

Field Name Size Value

Header variable Request header

Entry Version 8 bytes Possible values
0 = Unconditional put
-1 = Put If Absent
Other values = pass a version obtained by GetWithMetadata
operation to perform a conditional replace.

Key Length vInt Length of key. Note that the size of a vint can be up to 5 bytes
which in theory can produce bigger numbers than
Integer.MAX_VALUE. However, Java cannot create a single array
that’s bigger than Integer.MAX_VALUE, hence the protocol is
limiting vint array lengths to Integer.MAX_VALUE.

Key byte array Byte array containing the key whose value is being requested.

Value Chunk 1
Length

vInt The size of the first chunk of data. If this value is 0 it means the
client has completed transferring the value and the operation
should be performed.

Value Chunk 1 byte array Array of bytes forming the fist chunk of data.

…continues until
the value is
complete

Response (0x3A):

Field Name Size Value

Header variable Response header

228

19.4.2. Hot Rod Hash Functions

Infinispan makes use of a consistent hash function to place nodes on a hash wheel, and to place
keys of entries on the same wheel to determine where entries live.

In Infinispan 4.2 and earlier, the hash space was hardcoded to 10240, but since 5.0, the hash space
is Integer.MAX_INT . Please note that since Hot Rod clients should not assume a particular hash
space by default, every time a hash-topology change is detected, this value is sent back to the client
via the Hot Rod protocol.

When interacting with Infinispan via the Hot Rod protocol, it is mandated that keys (and values)
are byte arrays, to ensure platform neutral behavior. As such, smart-clients which are aware of
hash distribution on the backend would need to be able to calculate the hash codes of such byte
array keys, again in a platform-neutral manner. To this end, the hash functions used by Infinispan
are versioned and documented, so that it can be re-implemented by non-Java clients if needed.

The version of the hash function in use is provided in the Hot Rod protocol, as the hash function
version parameter.

1. Version 1 (single byte, 0x01) The initial version of the hash function in use is based on Austin
Appleby’s MurmurHash 2.0 algorithm , a fast, non-cryptographic hash that exhibits excellent
distribution, collision resistance and avalanche behavior. The specific version of the algorithm
used is the slightly slower, endian-neutral version that allows consistent behavior across both
big- and little-endian CPU architectures. Infinispan’s version also hard-codes the hash seed as
-1. For details of the algorithm, please visit Austin Appleby’s MurmurHash 2.0 page. Other
implementations are detailed on Wikipedia . This hash function was the default one used by the
Hot Rod server until Infinispan 4.2.1. Since Infinispan 5.0, the server never uses hash version 1.
Since Infinispan 9.0, the client ignores hash version 1.

2. Version 2 (single byte, 0x02) Since Infinispan 5.0, a new hash function is used by default which
is based on Austin Appleby’s MurmurHash 3.0 algorithm. Detailed information about the hash
function can be found in this wiki. Compared to 2.0, it provides better performance and spread.
Since Infinispan 7.0, the server only uses version 2 for HotRod 1.x clients.

3. Version 3 (single byte, 0x03) Since Infinispan 7.0, a new hash function is used by default. The
function is still based on wiki, but is also aware of the hash segments used in the server’s
ConsistentHash.

19.4.3. Java Hot Rod client

Hot Rod is a binary, language neutral protocol. This article explains how a Java client can interact
with a server via the Hot Rod protocol. A reference implementation of the protocol written in Java
can be found in all Infinispan distributions, and this article focuses on the capabilities of this java
client.


Looking for more clients? Visit this website for clients written in a variety of
different languages.

229

https://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html#MAX_VALUE
https://github.com/infinispan/infinispan/blob/master/commons/src/main/java/org/infinispan/commons/hash/MurmurHash2.java
https://github.com/infinispan/infinispan/blob/master/commons/src/main/java/org/infinispan/commons/hash/MurmurHash2.java
http://sites.google.com/site/murmurhash/
http://en.wikipedia.org/wiki/MurmurHash
https://github.com/infinispan/infinispan/blob/master/commons/src/main/java/org/infinispan/commons/hash/MurmurHash3.java
http://code.google.com/p/smhasher/wiki/MurmurHash3
http://code.google.com/p/smhasher/wiki/MurmurHash3
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/distribution/ch/ConsistentHash.java
http://infinispan.org/hotrod-clients

Configuration

The Java Hot Rod client can be configured both programmatically and externally, through a
configuration file.

The code snippet below illustrates the creation of a client instance using the available Java fluent
API:

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb
 = new org.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.tcpNoDelay(true)
 .connectionPool()
 .numTestsPerEvictionRun(3)
 .testOnBorrow(false)
 .testOnReturn(false)
 .testWhileIdle(true)
 .addServer()
 .host("localhost")
 .port(11222);
RemoteCacheManager rmc = new RemoteCacheManager(cb.build());

For a complete reference to the available configuration option please refer to the
ConfigurationBuilder's javadoc.

It is also possible to configure the Java Hot Rod client using an properties file, e.g.:

infinispan.client.hotrod.transport_factory =
org.infinispan.client.hotrod.impl.transport.tcp.TcpTransportFactory
infinispan.client.hotrod.server_list = 127.0.0.1:11222
infinispan.client.hotrod.marshaller =
org.infinispan.commons.marshall.jboss.GenericJBossMarshaller
infinispan.client.hotrod.async_executor_factory =
org.infinispan.client.hotrod.impl.async.DefaultAsyncExecutorFactory
infinispan.client.hotrod.default_executor_factory.pool_size = 1
infinispan.client.hotrod.default_executor_factory.queue_size = 10000
infinispan.client.hotrod.tcp_no_delay = true
infinispan.client.hotrod.request_balancing_strategy =
org.infinispan.client.hotrod.impl.transport.tcp.RoundRobinBalancingStrategy
infinispan.client.hotrod.key_size_estimate = 64
infinispan.client.hotrod.value_size_estimate = 512
infinispan.client.hotrod.force_return_values = false
infinispan.client.hotrod.client_intelligence = HASH_DISTRIBUTION_AWARE

below is connection pooling config
maxActive=-1
maxTotal = -1
maxIdle = -1
whenExhaustedAction = 1
timeBetweenEvictionRunsMillis=120000

230

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/configuration/ConfigurationBuilder.html

minEvictableIdleTimeMillis=300000
testWhileIdle = true
minIdle = 1

The properties file is then passed to one of constructors of RemoteCacheManager. For a complete
reference of the available configuration options for the properties file please refer to
RemoteCacheManager's javadoc.

Basic API

Below is a sample code snippet on how the client API can be used to store or retrieve information
from a Hot Rod server using the Java Hot Rod client. It assumes that a Hot Rod server has been
started bound to the default location (localhost:11222)

//API entry point, by default it connects to localhost:11222
CacheContainer cacheContainer = new RemoteCacheManager();

//obtain a handle to the remote default cache
Cache<String, String> cache = cacheContainer.getCache();

//now add something to the cache and make sure it is there
cache.put("car", "ferrari");
assert cache.get("car").equals("ferrari");

//remove the data
cache.remove("car");
assert !cache.containsKey("car") : "Value must have been removed!";

The client API maps the local API: RemoteCacheManager corresponds to DefaultCacheManager
(both implement CacheContainer). This common API facilitates an easy migration from local calls
to remote calls through Hot Rod: all one needs to do is switch between DefaultCacheManager and
RemoteCacheManager - which is further simplified by the common CacheContainer interface that
both inherit.

All keys can be retrieved from the remote cache (whether it’s local, replicated, or distributed) by
using keySet() method. If the remote cache is a distributed cache, the server will perform a
distributed stream operation to retrieve all keys from clustered nodes, and return all keys to the
client. Please use this method with care if there are large number of keys.

Set keys = remoteCache.keySet();

Alternatively, if memory is a concern, use the remote iterator api to retrieve entries from the
server:

// Retrieve all entries in batches of 1000
int batchSize = 1000;
try (CloseableIterator<Entry<Object, Object>> iterator = remoteCache.retrieveEntries

231

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html#RemoteCacheManager-java.net.URL-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/DefaultCacheManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/CacheContainer.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/DefaultCacheManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/manager/CacheContainer.html

(null, batchSize)) {
 while(iterator.hasNext()) {
 // Do something
 }
}

// Filter by segment
Set<Integer> segments = ...
try (CloseableIterator<Entry<Object, Object>> iterator = remoteCache.retrieveEntries
(null, segments, batchSize)) {
 while(iterator.hasNext()) {
 // Do something
 }
}

// Filter by custom filter
try (CloseableIterator<Entry<Object, Object>> iterator = remoteCache.retrieveEntries(
"myFilterConverterFactory", segments, batchSize)) {
 while(iterator.hasNext()) {
 // Do something
 }
}

In order to use custom filters, it’s necessary to deploy them first in the server. Follow the steps:

• Create a factory for the filter extending KeyValueFilterConverterFactory, annotated with
@NamedFactory containing the name of the factory, example:

import java.io.Serializable;

import org.infinispan.filter.AbstractKeyValueFilterConverter;
import org.infinispan.filter.KeyValueFilterConverter;
import org.infinispan.filter.KeyValueFilterConverterFactory;
import org.infinispan.filter.NamedFactory;
import org.infinispan.metadata.Metadata;

@NamedFactory(name = "myFilterConverterFactory")
public class MyKeyValueFilterConverterFactory implements
KeyValueFilterConverterFactory {

 @Override
 public KeyValueFilterConverter<String, SampleEntity1, SampleEntity2>
getFilterConverter() {
 return new MyKeyValueFilterConverter();
 }
 // Filter implementation. Should be serializable or externalizable for DIST caches
 static class MyKeyValueFilterConverter extends AbstractKeyValueFilterConverter
<String, SampleEntity1, SampleEntity2> implements Serializable {
 @Override
 public SampleEntity2 filterAndConvert(String key, SampleEntity1 entity, Metadata

232

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/filter/KeyValueFilterConverterFactory.html

metadata) {
 // returning null will case the entry to be filtered out
 // return SampleEntity2 will convert from the cache type SampleEntity1
 }
 }
}

• Create a jar with a META-INF/services/org.infinispan.filter.KeyValueFilterConverterFactory file
and within it, write the fully qualified class name of the filter factory class implementation.

• Optional: If the filter uses custom key/value classes, these must be included in the JAR so that
the filter can correctly unmarshall key and/or value instances.

• Deploy the JAR file in the Infinispan Server.

Versioned API

A RemoteCacheManager provides instances of RemoteCache interface that represents a handle to
the named or default cache on the remote cluster. API wise, it extends the Cache interface to which
it also adds some new methods, including the so called versioned API. Please find below some
examples of this API but to understand the motivation behind it, make sure you read this section.

The code snippet bellow depicts the usage of these versioned methods:

// To use the versioned API, remote classes are specifically needed
RemoteCacheManager remoteCacheManager = new RemoteCacheManager();
RemoteCache<String, String> cache = remoteCacheManager.getCache();

remoteCache.put("car", "ferrari");
RemoteCache.VersionedValue valueBinary = remoteCache.getVersioned("car");

// removal only takes place only if the version has not been changed
// in between. (a new version is associated with 'car' key on each change)
assert remoteCache.remove("car", valueBinary.getVersion());
assert !cache.containsKey("car");

In a similar way, for replace:

remoteCache.put("car", "ferrari");
RemoteCache.VersionedValue valueBinary = remoteCache.getVersioned("car");
assert remoteCache.replace("car", "lamborghini", valueBinary.getVersion());

For more details on versioned operations refer to RemoteCache 's javadoc.

Async API

This is "borrowed" from the Infinispan core and it is largely discussed here

233

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html

Streaming API

When sending / receiving large objects, it might make sense to stream them between the client and
the server. The Streaming API implements methods similar to the Basic API and Versioned API
described above but, instead of taking the value as a parameter, they return instances of
InputStream and OutputStream. The following example shows how one would write a potentially
large object:

RemoteStreamingCache<String> streamingCache = remoteCache.streaming();
OutputStream os = streamingCache.put("a_large_object");
os.write(...);
os.close();

Reading such an object through streaming:

RemoteStreamingCache<String> streamingCache = remoteCache.streaming();
InputStream is = streamingCache.get("a_large_object");
for(int b = is.read(); b >= 0; b = is.read()) {
 ...
}
is.close();


The streaming API does not apply marshalling/unmarshalling to the values. For
this reason you cannot access the same entries using both the streaming and non-
streaming API at the same time, unless you provide your own marshaller to
detect this situation.

The InputStream returned by the RemoteStreamingCache.get(K key) method implements the
VersionedMetadata interface, so you can retrieve version and expiration information:

RemoteStreamingCache<String> streamingCache = remoteCache.streaming();
InputStream is = streamingCache.get("a_large_object");
int version = ((VersionedMetadata) is).getVersion();
for(int b = is.read(); b >= 0; b = is.read()) {
 ...
}
is.close();


Conditional write methods (putIfAbsent, replace) only perform the actual
condition check once the value has been completely sent to the server (i.e. when
the close() method has been invoked on the OutputStream.

Client Event Listener API

Starting with Infinispan 7.0, Java Hot Rod clients can register listeners to receive cache-entry level
events. In 7.0, cache entry created, modified and removed events are supported.

234

Creating a Client Event Listener

Creating a client listener is very similar to embedded listeners, except that different annotations
and event classes are used. Here’s an example of a client listener that prints out each event
received:

import org.infinispan.client.hotrod.annotation.*;
import org.infinispan.client.hotrod.event.*;

@ClientListener
public class EventPrintListener {

 @ClientCacheEntryCreated
 public void handleCreatedEvent(ClientCacheEntryCreatedEvent e) {
 System.out.println(e);
 }

 @ClientCacheEntryModified
 public void handleModifiedEvent(ClientCacheEntryModifiedEvent e) {
 System.out.println(e);
 }

 @ClientCacheEntryRemoved
 public void handleRemovedEvent(ClientCacheEntryRemovedEvent e) {
 System.out.println(e);
 }

}

ClientCacheEntryCreatedEvent and ClientCacheEntryModifiedEvent instances provide information on
the affected key, and the version of the entry. This version can be used to invoke conditional
operations on the server, such as replaceWithVersion or removeWithVersion.

ClientCacheEntryRemovedEvent events are only sent when the remove operation succeeds. In other
words, if a remove operation is invoked but no entry is found or no entry should be removed, no
event is generated. Users interested in removed events, even when no entry was removed, can
develop event customization logic to generate such events. More information can be found in the
customizing client events section.

All ClientCacheEntryCreatedEvent, ClientCacheEntryModifiedEvent and ClientCacheEntryRemovedEvent
event instances also provide a boolean isCommandRetried() method that will return true if the write
command that caused this had to be retried again due to a topology change. This could be a sign
that this event has been duplicated or another event was dropped and replaced (eg:
ClientCacheEntryModifiedEvent replaced ClientCacheEntryCreatedEvent).

Once the client listener implementation has been created, it needs to be registered with the server.
To do so, execute:

235

RemoteCache<?, ?> cache = ...
cache.addClientListener(new EventPrintListener());

Remove a Client Event Listener

When an client event listener is not needed any more, it can be removed:

EventPrintListener listener = ...
cache.removeClientListener(listener);

Filtering Client Events

In order to avoid inundating clients with events, users can provide filtering functionality to limit
the number of events fired by the server for a particular client listener. To enable filtering, a cache
event filter factory needs to be created that produces filter instances:

import org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory;
import org.infinispan.filter.NamedFactory;

@NamedFactory(name = "static-filter")
class StaticCacheEventFilterFactory implements CacheEventFilterFactory {
 @Override
 public CacheEventFilterFactory<Integer, String> getFilter(Object[] params) {
 return new StaticCacheEventFilter();
 }
}

// Serializable, Externalizable or marshallable with Infinispan Externalizers
// needed when running in a cluster
class StaticCacheEventFilter implements CacheEventFilter<Integer, String>,
Serializable {
 @Override
 public boolean accept(Integer key, String oldValue, Metadata oldMetadata,
 String newValue, Metadata newMetadata, EventType eventType) {
 if (key.equals(1)) // static key
 return true;

 return false;
 }
}

The cache event filter factory instance defined above creates filter instances which statically filter
out all entries except the one whose key is 1.

To be able to register a listener with this cache event filter factory, the factory has to be given a
unique name, and the Hot Rod server needs to be plugged with the name and the cache event filter
factory instance. Plugging the Infinispan Server with a custom filter involves the following steps:

236

1. Create a JAR file with the filter implementation within it.

2. Optional: If the cache uses custom key/value classes, these must be included in the JAR so that
the callbacks can be executed with the correctly unmarshalled key and/or value instances. If the
client listener has useRawData enabled, this is not necessary since the callback key/value
instances will be provided in binary format.

3. Create a META-

INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory file
within the JAR file and within it, write the fully qualified class name of the filter class
implementation.

4. Deploy the JAR file in the Infinispan Server.

On top of that, the client listener needs to be linked with this cache event filter factory by adding
the factory’s name to the @ClientListener annotation:

@ClientListener(filterFactoryName = "static-filter")
public class EventPrintListener { ... }

And, register the listener with the server:

RemoteCache<?, ?> cache = ...
cache.addClientListener(new EventPrintListener());

Dynamic filter instances that filter based on parameters provided when the listener is registered
are also possible. Filters use the parameters received by the filter factories to enable this option. For
example:

import org.infinispan.notifications.cachelistener.filter.CacheEventFilterFactory;
import org.infinispan.notifications.cachelistener.filter.CacheEventFilter;

class DynamicCacheEventFilterFactory implements CacheEventFilterFactory {
 @Override
 public CacheEventFilter<Integer, String> getFilter(Object[] params) {
 return new DynamicCacheEventFilter(params);
 }
}

// Serializable, Externalizable or marshallable with Infinispan Externalizers
// needed when running in a cluster
class DynamicCacheEventFilter implements CacheEventFilter<Integer, String>,
Serializable {
 final Object[] params;

 DynamicCacheEventFilter(Object[] params) {
 this.params = params;
 }

237

 @Override
 public boolean accept(Integer key, String oldValue, Metadata oldMetadata,
 String newValue, Metadata newMetadata, EventType eventType) {
 if (key.equals(params[0])) // dynamic key
 return true;

 return false;
 }
}

The dynamic parameters required to do the filtering are provided when the listener is registered:

RemoteCache<?, ?> cache = ...
cache.addClientListener(new EventPrintListener(), new Object[]{1}, null);



Filter instances have to marshallable when they are deployed in a cluster so that
the filtering can happen right where the event is generated, even if the even is
generated in a different node to where the listener is registered. To make them
marshallable, either make them extend Serializable, Externalizable, or provide a
custom Externalizer for them.

Customizing Client Events contents

The events generated by default contain just enough information to make the event relevant but
they avoid cramming too much information in order to reduce the cost of sending them. Optionally,
the information shipped in the events can be customised in order to contain more information,
such as values, or to contain even less information. This customization is done with
CacheEventConverter instances generated by a CacheEventConverterFactory:

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory;
import org.infinispan.notifications.cachelistener.filter.CacheEventConverter;
import org.infinispan.filter.NamedFactory;

@NamedFactory(name = "static-converter")
class StaticConverterFactory implements CacheEventConverterFactory {
 final CacheEventConverter<Integer, String, CustomEvent> staticConverter = new
StaticCacheEventConverter();
 public CacheEventConverter<Integer, String, CustomEvent> getConverter(final
Object[] params) {
 return staticConverter;
 }
}

// Serializable, Externalizable or marshallable with Infinispan Externalizers
// needed when running in a cluster
class StaticCacheEventConverter implements CacheEventConverter<Integer, String,
CustomEvent>, Serializable {
 public CustomEvent convert(Integer key, String oldValue, Metadata oldMetadata,

238

String newValue, Metadata newMetadata, EventType eventType) {
 return new CustomEvent(key, newValue);
 }
}

// Needs to be Serializable, Externalizable or marshallable with Infinispan
Externalizers
// regardless of cluster or local caches
static class CustomEvent implements Serializable {
 final Integer key;
 final String value;
 CustomEvent(Integer key, String value) {
 this.key = key;
 this.value = value;
 }
}

In the example above, the converter generates a new custom event which includes the value as well
as the key in the event. This will result in bigger event payloads compared with default events, but
if combined with filtering, it can reduce its network bandwidth cost.


The target type of the converter must be either Serializable or Externalizable. In
this particular case of converters, providing an Externalizer will not work by
default since the default Hot Rod client marshaller does not support them.

Handling custom events requires a slightly different client listener implementation to the one
demonstrated previously. To be more precise, it needs to handle ClientCacheEntryCustomEvent
instances:

import org.infinispan.client.hotrod.annotation.*;
import org.infinispan.client.hotrod.event.*;

@ClientListener
public class CustomEventPrintListener {

 @ClientCacheEntryCreated
 @ClientCacheEntryModified
 @ClientCacheEntryRemoved
 public void handleCustomEvent(ClientCacheEntryCustomEvent<CustomEvent> e) {
 System.out.println(e);
 }

}

The ClientCacheEntryCustomEvent received in the callback exposes the custom event via getEventData
method, and the getType method provides information on whether the event generated was as a
result of cache entry creation, modification or removal.

Similar to filtering, to be able to register a listener with this converter factory, the factory has to be

239

given a unique name, and the Hot Rod server needs to be plugged with the name and the cache
event converter factory instance. Plugging the Infinispan Server with an event converter involves
the following steps:

1. Create a JAR file with the converter implementation within it.

2. Optional: If the cache uses custom key/value classes, these must be included in the JAR so that
the callbacks can be executed with the correctly unmarshalled key and/or value instances. If the
client listener has useRawData enabled, this is not necessary since the callback key/value
instances will be provided in binary format.

3. Create a META-

INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory

file within the JAR file and within it, write the fully qualified class name of the converter class
implementation.

4. Deploy the JAR file in the Infinispan Server.

On top of that, the client listener needs to be linked with this converter factory by adding the
factory’s name to the @ClientListener annotation:

@ClientListener(converterFactoryName = "static-converter")
public class CustomEventPrintListener { ... }

And, register the listener with the server:

RemoteCache<?, ?> cache = ...
cache.addClientListener(new CustomEventPrintListener());

Dynamic converter instances that convert based on parameters provided when the listener is
registered are also possible. Converters use the parameters received by the converter factories to
enable this option. For example:

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory;
import org.infinispan.notifications.cachelistener.filter.CacheEventConverter;

@NamedFactory(name = "dynamic-converter")
class DynamicCacheEventConverterFactory implements CacheEventConverterFactory {
 public CacheEventConverter<Integer, String, CustomEvent> getConverter(final
Object[] params) {
 return new DynamicCacheEventConverter(params);
 }
}

// Serializable, Externalizable or marshallable with Infinispan Externalizers needed
when running in a cluster
class DynamicCacheEventConverter implements CacheEventConverter<Integer, String,
CustomEvent>, Serializable {
 final Object[] params;

240

 DynamicCacheEventConverter(Object[] params) {
 this.params = params;
 }

 public CustomEvent convert(Integer key, String oldValue, Metadata oldMetadata,
 String newValue, Metadata newMetadata, EventType eventType) {
 // If the key matches a key given via parameter, only send the key information
 if (params[0].equals(key))
 return new CustomEvent(key, null);

 return new CustomEvent(key, newValue);
 }
}

The dynamic parameters required to do the conversion are provided when the listener is
registered:

RemoteCache<?, ?> cache = ...
cache.addClientListener(new EventPrintListener(), null, new Object[]{1});



Converter instances have to marshallable when they are deployed in a cluster, so
that the conversion can happen right where the event is generated, even if the
even is generated in a different node to where the listener is registered. To make
them marshallable, either make them extend Serializable, Externalizable, or
provide a custom Externalizer for them.

Filtering and Customizing Client Events

If you want to do both event filtering and customization, it’s easier to implement
org.infinispan.notifications.cachelistener.filter.CacheEventFilterConverter which allows both
filter and customization to happen in a single step. For convenience, it’s recommended to extend
org.infinispan.notifications.cachelistener.filter.AbstractCacheEventFilterConverter instead of
implementing org.infinispan.notifications.cachelistener.filter.CacheEventFilterConverter

directly. For example:

import org.infinispan.notifications.cachelistener.filter.CacheEventConverterFactory;
import org.infinispan.notifications.cachelistener.filter.CacheEventConverter;

@NamedFactory(name = "dynamic-filter-converter")
class DynamicCacheEventFilterConverterFactory implements
CacheEventFilterConverterFactory {
 public CacheEventFilterConverter<Integer, String, CustomEvent> getFilterConverter
(final Object[] params) {
 return new DynamicCacheEventFilterConverter(params);
 }
}

241

// Serializable, Externalizable or marshallable with Infinispan Externalizers needed
when running in a cluster
//
class DynamicCacheEventFilterConverter extends AbstractCacheEventFilterConverter
<Integer, String, CustomEvent>, Serializable {
 final Object[] params;

 DynamicCacheEventFilterConverter(Object[] params) {
 this.params = params;
 }

 public CustomEvent filterAndConvert(Integer key, String oldValue, Metadata
oldMetadata,
 String newValue, Metadata newMetadata, EventType eventType) {
 // If the key matches a key given via parameter, only send the key information
 if (params[0].equals(key))
 return new CustomEvent(key, null);

 return new CustomEvent(key, newValue);
 }
}

Similar to filters and converters, to be able to register a listener with this combined filter/converter
factory, the factory has to be given a unique name via the @NamedFactory annotation, and the Hot
Rod server needs to be plugged with the name and the cache event converter factory instance.
Plugging the Infinispan Server with an event converter involves the following steps:

1. Create a JAR file with the converter implementation within it.

2. Optional: If the cache uses custom key/value classes, these must be included in the JAR so that
the callbacks can be executed with the correctly unmarshalled key and/or value instances. If the
client listener has useRawData enabled, this is not necessary since the callback key/value
instances will be provided in binary format.

3. Create a META-
INF/services/org.infinispan.notifications.cachelistener.filter.CacheEventFilterConverterFac

tory file within the JAR file and within it, write the fully qualified class name of the converter
class implementation.

4. Deploy the JAR file in the Infinispan Server.

From a client perspective, to be able to use the combined filter and converter class, the client
listener must define the same filter factory and converter factory names, e.g.:

@ClientListener(filterFactoryName = "dynamic-filter-converter", converterFactoryName =
"dynamic-filter-converter")
public class CustomEventPrintListener { ... }

The dynamic parameters required in the example above are provided when the listener is
registered via either filter or converter parameters. If filter parameters are non-empty, those are

242

used, otherwise, the converter parameters:

RemoteCache<?, ?> cache = ...
cache.addClientListener(new CustomEventPrintListener(), new Object[]{1}, null);

Event Marshalling

Hot Rod servers store data as byte arrays, but in spite of that, Java Hot Rod client users can still
develop CacheEventConverter or CacheEventFilter instances that worked on typed objects. The way
this is done is by making the Hot Rod server use the same marshaller as the one used by the Java
Hot Rod client. This is enabled by default.

However, users are free to plug a custom org.infinispan.commons.marshall.Marshaller

implementation in order to marshall objects using alternative techniques to the one used by default
by the Hot Rod Java client. For example, a user might want to marshall objects using Google
Protocol Buffers.

As indicated in the Marshalling data section, Hot Rod Java clients can be configured to use a
different org.infinispan.commons.marshall.Marshaller instance. If doing this and deploying
CacheEventConverter or CacheEventFilter instances, the same marshaller instance needs to be
deployed in the server so that callback parameters of CacheEventConverter or CacheEventFilter
instances can be correctly unmarshalled.

To deploy a Marshaller instance server-side, follow a similar method to the one used to deploy
CacheEventConverter or CacheEventFilter instances:

1. Create a JAR file with the converter implementation within it.

2. Create a META-INF/services/org.infinispan.commons.marshall.Marshaller file within the JAR file
and within it, write the fully qualified class name of the marshaller class implementation.

3. Deploy the JAR file in the Infinispan Server.

Note that the Marshaller could be deployed in either a separate jar, or in the same jar as the
CacheEventConverter and/or CacheEventFilter instances. Also, currently deployment of a single
org.infinispan.commons.marshall.Marshaller instance is supported. If multiple marshaller instances
are deployed, warning messages will be displayed as reminder indicating which marshaller
instance will be used.

Client Event Listener State Consumption

Client listener annotation has an optional includeCurrentState attribute that specifies whether state
will be sent to the client when the listener is added or when there’s a failover of the listener.

By default, includeCurrentState is false, but if set to true and a client listener is added in a cache
already containing data, the server iterates over the cache contents and sends an event for each
entry to the client as a ClientCacheEntryCreated (or custom event if configured). This allows clients
to build some local data structures based on the existing content. Once the content has been
iterated over, events are received as normal, as cache updates are received. If the cache is
clustered, the entire cluster wide contents are iterated over.

243

includeCurrentState also controls whether state is received when the node where the client event
listener is registered fails and it’s moved to a different node. The next section discusses this topic in
depth.

Client Event Listener Failure Handling

When a Hot Rod client registers a client listener, it does so in a single node in a cluster. If that node
fails, the Java Hot Rod client detects that transparently and fails over all listeners registered in the
node that failed to another node.

During this fail over the client might miss some events. To avoid missing these events, the client
listener annotation contains an optional parameter called includeCurrentState which if set to true,
when the failover happens, the cache contents can iterated over and ClientCacheEntryCreated
events (or custom events if configured) are generated. By default, includeCurrentState is set to false.

Java Hot Rod clients can be made aware of such fail over event by adding a callback to handle it:

@ClientCacheFailover
public void handleFailover(ClientCacheFailoverEvent e) {
 ...
}

This is very useful in use cases where the client has cached some data, and as a result of the fail
over, taking in account that some events could be missed, it could decide to clear any locally cached
data when the fail over event is received, with the knowledge that after the fail over event, it will
receive events for the contents of the entire cache.

Near Caching

The Java Hot Rod client can be optionally configured with a near cache, which means that the Hot
Rod client can keep a local cache that stores recently used data. Enabling near caching can
significantly improve the performance of read operations get and getVersioned since data can
potentially be located locally within the Hot Rod client instead of having to go remote.

To enable near caching, the user must set the near cache mode to INVALIDATED. By doing that near
cache is populated upon retrievals from the server via calls to get or getVersioned operations. When
near cached entries are updated or removed server-side, the cached near cache entries are
invalidated. If a key is requested after it’s been invalidated, it’ll have to be re-fetched from the
server.

When near cache is enabled, its size must be configured by defining the maximum number of
entries to keep in the near cache. When the maximum is reached, near cached entries are evicted
using a least-recently-used (LRU) algorithm. If providing 0 or a negative value, it is assumed that the
near cache is unbounded.


Users should be careful when configuring near cache to be unbounded since it
shifts the responsibility to keep the near cache’s size within the boundaries of the
client JVM to the user.

244

The Hot Rod client’s near cache mode is configured using the NearCacheMode enumeration and
calling:

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;
import org.infinispan.client.hotrod.configuration.NearCacheMode;
...

// Unbounded invalidated near cache
ConfigurationBuilder unbounded = new ConfigurationBuilder();
unbounded.nearCache().mode(NearCacheMode.INVALIDATED).maxEntries(-1);

// Bounded invalidated near cache
ConfigurationBuilder bounded = new ConfigurationBuilder();
bounded.nearCache().mode(NearCacheMode.INVALIDATED).maxEntries(100);


Near caches work the same way for local caches as they do for clustered caches,
but in a clustered cache scenario, if the server node sending the near cache
notifications to the Hot Rod client goes down, the Hot Rod client transparently
fails over to another node in the cluster, clearing the near cache along the way.

Unsupported methods

Some of the Cache methods are not being supported by the RemoteCache . Calling one of these
methods results in an UnsupportedOperationException being thrown. Most of these methods do not
make sense on the remote cache (e.g. listener management operations), or correspond to methods
that are not supported by local cache as well (e.g. containsValue). Another set of unsupported
operations are some of the atomic operations inherited from ConcurrentMap :

boolean remove(Object key, Object value);
boolean replace(Object key, Object value);
boolean replace(Object key, Object oldValue, Object value);

RemoteCache offers alternative versioned methods for these atomic operations, that are also
network friendly, by not sending the whole value object over the network, but a version identifier.
See the section on versioned API.

Each one of these unsupported operation is documented in the RemoteCache javadoc.

19.4.4. Return values

There is a set of methods that alter a cached entry and return the previous existing value, e.g.:

V remove(Object key);
V put(K key, V value);

By default on RemoteCache, these operations return null even if such a previous value exists. This

245

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.oracle.com/javase/8/docs/api/java/lang/UnsupportedOperationException.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html

approach reduces the amount of data sent over the network. However, if these return values are
needed they can be enforced on a per invocation basis using flags:

cache.put("aKey", "initialValue");
assert null == cache.put("aKey", "aValue");
assert "aValue".equals(cache.withFlags(Flag.FORCE_RETURN_VALUE).put("aKey",
 "newValue"));

This default behavior can can be changed through force-return-value=true configuration
parameter (see configuration section bellow).

19.4.5. Intelligence

HotRod defines three level of intelligence for the clients:

1. basic client, interested in neither cluster nor hash information

2. topology-aware client, interested in cluster information

3. hash-distribution-aware client, that is interested in both cluster and hash information

The java client supports all 3 levels of intelligence. It is transparently notified whenever a new
server is added/removed from the HotRod cluster. At startup it only needs to know the address of
one HotRod server (ip:host). On connection to the server the cluster topology is piggybacked to the
client, and all further requests are being dispatched to all available servers. Any further topology
change is also piggybacked.

Distribution-aware client

Another aspect of the 3rd level of intelligence is the fact that it is hash-distribution-aware. This
means that, for each operation, the client chooses the most appropriate remote server to go to: the
data owner. As an example, for a put(k,v) operation, the client calculates k’s hash value and knows
exactly on which server the data resides on. Then it picks up a tcp connection to that particular
server and dispatches the operation to it. This means less burden on the server side which would
otherwise need to lookup the value based on the key’s hash. It also results in a quicker response
from the server, as an additional network roundtrip is skipped. This hash-distribution-aware aspect
is only relevant to the distributed HotRod clusters and makes no difference for replicated server
deployments.

19.4.6. Request Balancing

Request balancing is only relevant when the server side is configured with replicated infinispan
cluster (on distributed clusters the hash-distribution-aware client logic is used, as discussed in the
previos paragraph). Because the client is topology-aware, it knows the list of available servers at all
the time. Request balancing has to do with how the client dispatches requests to the available
servers.

The default strategy is round-robin: requests are being dispatched to all existing servers in a
circular manner. E.g. given a cluster of servers {s1, s2, s3} here is how request will be dispatched:

246

CacheContainer cacheContainer = new RemoteCacheManager();
Cache<String, String> cache = cacheContainer.getCache();

cache.put("key1", "aValue"); //this goes to s1
cache.put("key2", "aValue"); //this goes to s2
String value = cache.get("key1"); //this goes to s3

cache.remove("key2"); //this is dispatched to s1 again, and so on...

Custom types of balancing policies can defined by implementing the
FailoverRequestBalancingStrategy and by specifying it through the infinispan.client.hotrod.request-
balancing-strategy configuration property. Please refer to configuration section for more details on
this.

WARNING: FailoverRequestBalancingStrategy

is a newly added interface in Infinispan 7.0. Previously, users had to provide implementations of
FailoverRequestBalancingStrategy , which it has been deprecated starting with Infinispan 7.0.

Persistent connections

In order to avoid creating a TCP connection on each request (which is a costly operation), the client
keeps a pool of persistent connections to all the available servers and it reuses these connections
whenever it is possible. The validity of the connections is checked using an async thread that
iterates over the connections in the pool and sends a HotRod ping command to the server. By using
this connection validation process the client is being proactive: there’s a hight chance for broken
connections to be found while being idle in the pool and no on actual request from the application.

The number of connections per server, total number of connections, how long should a connection
be kept idle in the pool before being closed - all these (and more) can be configured. Please refer to
the javadoc of RemoteCacheManager for a list of all possible configuration elements.

Marshalling data

The Hot Rod client allows one to plug in a custom marshaller for transforming user objects into
byte arrays and the other way around. This transformation is needed because of Hot Rod’s binary
nature - it doesn’t know about objects.

The marshaller can be plugged through the "marshaller" configuration element (see Configuration
section): the value should be the fully qualified name of a class implementing the Marshaller
interface. This is a optional parameter, if not specified it defaults to the GenericJBossMarshaller - a
highly optimized implementation based on the JBoss Marshalling library.

Since version 6.0, there’s a new marshaller available to Java Hot Rod clients based on Protostream
which generates portable payloads. You can find more information about it here

Statistics

Various server usage statistics can be obtained through the RemoteCache .stats() method. This
returns a ServerStatistics object - please refer to javadoc for details on the available statistics.

247

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/impl/transport/tcp/FailoverRequestBalancingStrategy.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/impl/transport/tcp/FailoverRequestBalancingStrategy.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/impl/transport/tcp/FailoverRequestBalancingStrategy.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/marshall/Marshaller.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/marshall/jboss/GenericJBossMarshaller.html
http://www.jboss.org/jbossmarshalling
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/ServerStatistics.html

Configuration

All the configurations are passed to the RemoteCacheManager’s constructor as key-value pairs,
through an instance of java.util.Properties or reference to a .properties file. Please refer to the
javadoc of RemoteCacheManager for a exhaustive list of the possible configuration elements.

Multi-Get Operations

The Java Hot Rod client does not provide multi-get functionality out of the box but clients can build
it themselves with the given APIs.

More info

It is highly recommended to read the following Javadocs (this is pretty much all the public API of
the client):

• RemoteCacheManager

• RemoteCache

19.4.7. Failover capabilities

Hot Rod clients' capabilities to keep up with topology changes helps with request balancing and
more importantly, with the ability to failover operations if one or several of the servers fail.

Some of the conditional operations mentioned above, including putIfAbsent, replace with and
without version, and conditional remove have strict method return guarantees, as well as those
operations where returning the previous value is forced.

In spite of failures, these methods return values need to be guaranteed, and in order to do so, it’s
necessary that these methods are not applied partially in the cluster in the event of failure. For
example, imagine a replace() operation called in a server for key=k1 with Flag.FORCE_RETURN_VALUE,
whose current value is A and the replace wants to set it to B. If the replace fails, it could happen that
some servers contain B and others contain A, and during the failover, the original replace() could
end up returning B, if the replace failovers to a node where B is set, or could end up returning A.

To avoid this kind of situations, whenever Java Hot Rod client users want to use conditional
operations, or operations whose previous value is required, it’s important that the cache is
configured to be transactional in order to avoid incorrect conditional operations or return values.

Site Cluster Failover

On top of the in-cluster failover, Hot Rod clients are also able to failover to different clusters, which
could be represented as an independent site.

 This feature was introduced in Infinispan 8.1.

The way site cluster failover works is that if all the main cluster nodes are not available, the client
checks to see if any other clusters have been defined in which cases it tries to failover to the
alternative cluster. If the failover succeeds, the client will remain connected to the alternative
cluster until this becomes unavailable, in which case it’ll try any other clusters defined, and

248

https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCacheManager.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/RemoteCache.html

ultimately, it’ll try the original server settings.

To configure a cluster in the Hot Rod client, one host/port pair details must be provided for each of
the clusters configured. For example:

org.infinispan.client.hotrod.configuration.ConfigurationBuilder cb
 = new org.infinispan.client.hotrod.configuration.ConfigurationBuilder();
cb.addCluster().addClusterNode("remote-cluster-host", 11222);
RemoteCacheManager rmc = new RemoteCacheManager(cb.build());


Remember that regardless of the cluster definitions, the initial server(s)
configuration must be provided unless the initial servers can be resolved using
the default server host and port details.

Manual Site Cluster Switch

As well as supporting automatic site cluster failover, Java Hot Rod clients can also switch between
site clusters manually by calling RemoteCacheManager’s switchToCluster(clusterName) and
switchToDefaultCluster().

Using switchToCluster(clusterName), users can force a client to switch to one of the clusters pre-
defined in the Hot Rod client configuration. To switch to the initial servers defined in the client
configuration, call switchToDefaultCluster().

19.4.8. Consistent Concurrent Updates With Hot Rod Versioned Operations

Data structures, such as Infinispan Cache , that are accessed and modified concurrently can suffer
from data consistency issues unless there’re mechanisms to guarantee data correctness. Infinispan
Cache, since it implements ConcurrentMap , provides operations such as conditional replace ,
putIfAbsent , and conditional remove to its clients in order to guarantee data correctness. It even
allows clients to operate against cache instances within JTA transactions, hence providing the
necessary data consistency guarantees.

However, when it comes to Hot Rod protocol backed servers, clients do not yet have the ability to
start remote transactions but they can call instead versioned operations to mimic the conditional
methods provided by the embedded Infinispan cache instance API. Let’s look at a real example to
understand how it works.

Data Consistency Problem

Imagine you have two ATMs that connect using Hot Rod to a bank where an account’s balance is
stored. Two closely followed operations to retrieve the latest balance could return 500 CHF (swiss
francs) as shown below:

249

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#putIfAbsent-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#remove-java.lang.Object-java.lang.Object-
http://community.jboss.org/wiki/HotRodProtocol

Figure 18. Concurrent readers

Next a customer connects to the first ATM and requests 400 CHF to be retrieved. Based on the last
value read, the ATM could calculate what the new balance is, which is 100 CHF, and request a put
with this new value. Let’s imagine now that around the same time another customer connects to
the ATM and requests 200 CHF to be retrieved. Let’s assume that the ATM thinks it has the latest
balance and based on its calculations it sets the new balance to 300 CHF:

Obviously, this would be wrong. Two concurrent updates have resulted in an incorrect account
balance. The second update should not have been allowed since the balance the second ATM had
was incorrect. Even if the ATM would have retrieved the balance before calculating the new
balance, someone could have updated between the new balance being retrieved and the update.
Before finding out how to solve this issue in a client-server scenario with Hot Rod, let’s look at how
this is solved when Infinispan clients run in peer-to-peer mode where clients and Infinispan live
within the same JVM.

Embedded-mode Solution

If the ATM and the Infinispan instance storing the bank account lived in the same JVM, the ATM
could use the conditional replace API referred at the beginning of this article. So, it could send the
previous known value to verify whether it has changed since it was last read. By doing so, the first

250

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-

operation could double check that the balance is still 500 CHF when it was to update to 100 CHF.
Now, when the second operation comes, the current balance would not be 500 CHF any more and
hence the conditional replace call would fail, hence avoiding data consistency issues:

Figure 19. P2P solution

Client-Server Solution

In theory, Hot Rod could use the same p2p solution but sending the previous value would be not
practical. In this example, the previous value is just an integer but the value could be a lot bigger
and hence forcing clients to send it to the server would be rather wasteful. Instead, Hot Rod offers
versioned operations to deal with this situation.

Basically, together with each key/value pair, Hot Rod stores a version number which uniquely
identifies each modification. So, using an operation called getVersioned or getWithVersion , clients
can retrieve not only the value associated with a key, but also the current version. So, if we look at
the previous example once again, the ATMs could call getVersioned and get the balance’s version:

Figure 20. Get versioned

When the ATMs wanted to modify the balance, instead of just calling put, they could call

251

http://community.jboss.org/wiki/HotRodProtocol#getWithVersion_response

replaceIfUnmodified operation passing the latest version number of which the clients are aware of.
The operation will only succeed if the version passed matches the version in the server. So, the first
modification by the ATM would be allowed since the client passes 1 as version and the server side
version for the balance is also 1. On the other hand, the second ATM would not be able to make the
modification because after the first ATMs modification the version would have been incremented
to 2, and now the passed version (1) and the server side version (2) would not match:

Figure 21. Replace if versions match

19.4.9. Interacting With Hot Rod Server From Within Same JVM

Normally, a Hot Rod server is accessed via a Hot Rod protocol client such as the Java Hot Rod client.
However, there might be situations where not only do you want to access the Hot Rod server
remotely, you might also want to access it locally from within the same JVM that the Hot Rod server
is running. For example, you might have an Infinispan cache pushing changes via the
RemoteCacheStore to a Hot Rod server, and if the cache goes down, you might want to access the
data directly from the Hot Rod server itself.

In this situations, we have to remember that the Hot Rod protocol specifies that keys and values are
stored as byte arrays. This means that if the client code, using an existing Hot Rod client, stored
Strings or Integers, or any other complex serializable or externalizable object, you won’t be able to
retrieve these objects straight from the cache that the Hot Rod server uses.

To actually get the fully constructed objects that you’re after, you’re gonna need to take the byte
arrays stored within the Hot Rod server and unmarshall them into something that you can use. In
the future, this is something that might be done for you, as suggested in ISPN-706 (superseded by
ISPN-2281), but for the time being, clients wanting to access Hot Rod server data will have to do it
themselves.

Two different use cases need to be differentiated at this stage and to explain how to transform the
Hot Rod server data into something usable, we’ll assume that the clients are java clients:

Data Stored Directly Via A Hot Rod Client

The most common case is for a client to use a Hot Rod client library directly to store data in the Hot
Rod server. In this case, assuming that the client used the existing Java Hot Rod client, the default

252

http://community.jboss.org/wiki/HotRodProtocol#removeIfUnmodified_request
https://jira.jboss.org/browse/ISPN-706
https://issues.jboss.org/browse/ISPN-2281

marshaller used to marshall objects into byte arrays is the GenericJBossMarshaller . So, if a user
wants to read data from the Hot Rod server directly, it would need to execute something along the
lines of:

import org.infinispan.marshall.jboss.GenericJBossMarshaller;
import org.infinispan.util.ByteArrayKey;
import org.infinispan.server.core.CacheValue;
...

// Create a new instance of the marshaller:
GenericJBossMarshaller marshaller = new GenericJBossMarshaller();
Object key = ...

// Take the cache key and convert into a byte array,
// and wrap it with an instance of ByteArrayKey
ByteArrayKey bytesKey = new ByteArrayKey(marshaller.objectToByteBuffer(key));

// Internally, Hot Rod stores values wrapped in a CacheValue, so retrieve it
CacheValue cacheValue = (CacheValue) cache.get(bytesKey);

// Take the data part which is byte array and unmarshall it to retrieve the value
Object value = marshaller.objectFromByteBuffer(cacheValue.data());

If you want to store data directly in the HotRod server, you’d have to execute something like this:

import org.infinispan.marshall.jboss.GenericJBossMarshaller;
import org.infinispan.util.ByteArrayKey;
import org.infinispan.server.core.CacheValue;
...

// Create a new instance of the marshaller:
GenericJBossMarshaller marshaller = new GenericJBossMarshaller();
Object key = ...
Object value = ...

// Take the cache key and convert into a byte array,
// and wrap it with an instance of ByteArrayKey
ByteArrayKey bytesKey = new ByteArrayKey(marshaller.objectToByteBuffer(key));

// Internally, Hot Rod stores values wrapped in a CacheValue, so create instance
// Remember that you need to give it a version number, so either:
// 1. Increment previous value's version
// 2. Or generate a new version number that minimises potential clash
// with a concurrent update to the same key in the cluster
CacheValue cacheValue = new CacheValue(marshaller.objectToByteBuffer(value), 1)

// Finally, store it in the cache
cache.put(bytesKey, cacheValue);

253

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/marshall/jboss/GenericJBossMarshaller.html

Data Stored Via Remote Cache Store

A Hot Rod server might be storing data coming from a Remote Store , rather than user code. In this
case, there’re a couple of differences to the code above. First of all, the marshaller is slightly
different. Instead, the RemoteCacheStore uses the VersionAwareMarshaller which all it does is add
Infinispan version information to the byte array generated. The second difference is that
RemoteCacheStore stores internal cache entry classes, which apart from the value part, they
contain other extra information. So, any code trying to read these directly from the Hot Rod server
would need to take in account. For example, to read data from such Hot Rod server:

import org.infinispan.marshall.VersionAwareMarshaller;
import org.infinispan.util.ByteArrayKey;
import org.infinispan.server.core.CacheValue;
import org.infinispan.container.entries.CacheEntry;
...

// Create a new instance of the marshaller
VersionAwareMarshaller marshaller = new VersionAwareMarshaller();
Object key = ...

// Take the cache key and convert into a byte array,
// and wrap it with an instance of ByteArrayKey
ByteArrayKey bytesKey = new ByteArrayKey(marshaller.objectToByteBuffer(key));

// Internally, Hot Rod stores values wrapped in a CacheValue, so retrieve it
CacheValue cacheValue = (CacheValue) cache.get(bytesKey);

// However, in this case the data part of CacheValue does not contain directly
// the value Instead, it contains an instance of CacheEntry, so we need to
// unmarshall that and then get the actual value
CacheEntry cacheEntry = (CacheEntry)
 marshaller.objectFromByteBuffer(cacheValue.data());
Object value = cacheEntry.getValue();

And to actually write data back into the Hot Rod server directly:

import org.infinispan.marshall.VersionAwareMarshaller;
import org.infinispan.util.ByteArrayKey;
import org.infinispan.server.core.CacheValue;
import org.infinispan.container.entries.CacheEntry;
import org.infinispan.container.entries.InternalEntryFactory;
...

// Create a new instance of the marshaller:
VersionAwareMarshaller marshaller = new VersionAwareMarshaller();
Object key = ...
Object value = ...

// Take the cache key and convert into a byte array

254

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/marshall/VersionAwareMarshaller.html

ByteArrayKey bytesKey = new ByteArrayKey(marshaller.objectToByteBuffer(key));

// With the value to store, a new CacheEntry instance needs to be created:
CacheEntry cacheEntry = InternalEntryFactory.create(bytesKey, value, ...)

// Internally, Hot Rod stores values wrapped in a CacheValue, so create instance
// Remember that you need to give it a version number, so either:
// 1. Increment previous value's version
// 2. Or generate a new version number that minimises potential clash
// with a concurrent update to the same key in the cluster
CacheValue cacheValue = new CacheValue(
 marshaller.objectToByteBuffer(cacheEntry), 1)

// Finally, store it in the cache
cache.put(bytesKey, cacheValue);

Multiple Tiers of Caches

A combination of the Hot Rod protocol and RemoteCacheLoader opened the way for a set of new
architectures in Infinispan, where layers of caches can exists and interact. This article takes a look
at such a layered architecture.

Sample architecture/near caching

255

http://community.jboss.org/docs/DOC-14893?uniqueTitle=false#Remote_cache_loader

Figure 22. Multiple caching tiers

The diagram above shows an Infinispan server cluster running 3 hotrod servers. This cluster is
accessed remotely, through HotRod, by another infinispan cluster: client cluster (upper part of the
image). All the nodes in the server cluster are configured to run HotRod servers, so requests from
remote loader are being balanced between them. The client cluster is configured with invalidation
as cluster mode and a RemoteCacheLoader to access data stored in the server cluster. Application
data is held on the server cluster which runs in DIST mode for scalability.

In this deployment the client code, running in same address space with the client cluster, holds all
its data in the server cluster. Client cluster acts as an near-cache for frequently accessed entries.

19.4.10. Querying via the Java Hot Rod client

While previous Infinispan versions were already providing indexing and searching of Java entities
to embedded clients, starting with Infinispan 6.0 and the introduction of the new Hot Rod protocol
version 1.3 we add support for remote, language neutral, querying.

This leap required two major changes:

• Since non-JVM clients cannot benefit from directly using Apache Lucene's Java API, Infinispan
defines its own new query language, based on an internal DSL that is easily implementable in
all languages for which we currently have an implementation of the Hot Rod client.

• In order to enable indexing, the entities put in the cache by clients can no longer be opaque
binary blobs understood solely by the client. Their structure has to be known to both server and
client, so a common way of encoding structured data had to be adopted. Furthermore, allowing
multi-language clients to access the data requires a language and platform-neutral encoding.
Google’s Protocol Buffers was elected as an encoding format for both over-the-wire and storage
due to its efficiency, robustness, good multi-language support and support for schema evolution.

Storing Protobuf encoded entities

Remote clients that want to be able to index and query their stored entities must do so using the
Protobuf encoding format. This is key for the search capability to work. But it’s also possible to store
Protobuf entities just for gaining the benefit of platform independence and not enable indexing if
you do not need it.

Protobuf is all about structured data, so first thing you do to use it is define the structure of your
data. This is accomplished by declaring protocol buffer message types in .proto files, like in the
following example. Protobuf is a broad subject, we will not detail it here, so please consult the
Protobuf Developer Guide for an in-depth explanation. It suffices to say for now that our example
defines an entity (message type in protobuf speak) named Book, placed in a package named
book_sample. Our entity declares several fields of primitive types and a repeatable field (an array
basically) named authors. The Author message instances are embedded in the Book message
instance.

256

http://lucene.apache.org/
#infinispan_s_query_dsl
http://code.google.com/p/protobuf/
https://developers.google.com/protocol-buffers/docs/overview

library.proto

package book_sample;

message Book {
 required string title = 1;
 required string description = 2;
 required int32 publicationYear = 3; // no native Date type available in Protobuf

 repeated Author authors = 4;
}

message Author {
 required string name = 1;
 required string surname = 2;
}

There are a few important notes we need to make about Protobuf messages:

• nesting of messages is possible, but the resulting structure is strictly a tree, never a graph

• there is no concept of type inheritance

• collections are not supported but arrays can be easily emulated using repeated fields

Using Protobuf with the Java Hot Rod client is a two step process. First, the client must be
configured to use a dedicated marshaller, ProtoStreamMarshaller. This marshaller uses the
ProtoStream library to assist you in encoding your objects. The second step is instructing
ProtoStream library on how to marshall your message types. The following example highlights this
process.

257

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/client/hotrod/marshall/ProtoStreamMarshaller.html
https://github.com/infinispan/protostream

import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;
import org.infinispan.client.hotrod.marshall.ProtoStreamMarshaller;
import org.infinispan.protostream.SerializationContext;
...

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
clientBuilder.addServer()
 .host("127.0.0.1").port(11234)
 .marshaller(new ProtoStreamMarshaller());

RemoteCacheManager remoteCacheManager = new RemoteCacheManager(clientBuilder.build());

SerializationContext srcCtx = ProtoStreamMarshaller.getSerializationContext
(remoteCacheManager);

serCtx.registerProtofiles("/library.proto");
serCtx.registerMarshaller(Book.class, new BookMarshaller());
serCtx.registerMarshaller(Author.class, new AuthorMarshaller());

// Book and Author classes omitted for brevity

The interesting part in this sample is obtaining the SerializationContext associated to the
RemoteCacheManager and then instructing ProtoStream about the protobuf types we want to
marshall. The SerializationContext is provided by the library for this purpose. The
SerializationContext.registerProtoFiles method receives the name of one or more classpath
resources that is expected to be a protobuf definition containing our type declarations.


A RemoteCacheManager has no SerializationContext associated with it unless it
was configured to use a ProtoStreamMarshaller.

The next relevant part is the registration of per entity marshallers for our domain model types.
They must be provided by the user for each type or marshalling will fail. Writing marshallers is a
simple process. The BookMarshaller example should get you started. The most important thing you
need to consider is they need to be stateless and threadsafe as a single instance of them is being
used.

BookMarshaller.java

import org.infinispan.protostream.MessageMarshaller;
...

public class BookMarshaller implements MessageMarshaller<Book> {

 @Override
 public String getTypeName() {
 return "book_sample.Book";
 }

 @Override

258

 public Class<? extends Book> getJavaClass() {
 return Book.class;
 }

 @Override
 public void writeTo(ProtoStreamWriter writer, Book book) throws IOException {
 writer.writeString("title", book.getTitle());
 writer.writeString("description", book.getDescription());
 writer.writeCollection("authors", book.getAuthors(), Author.class);
 }

 @Override
 public Book readFrom(ProtoStreamReader reader) throws IOException {
 String title = reader.readString("title");
 String description = reader.readString("description");
 int publicationYear = reader.readInt("publicationYear");
 Set<Author> authors = reader.readCollection("authors", new HashSet<Author>(),
Author.class);
 return new Book(title, description, publicationYear, authors);
 }
}

Once you’ve followed these steps to setup your client you can start reading and writing Java objects
to the remote cache and the actual data stored in the cache will be protobuf encoded provided that
marshallers were registered with the remote client for all involved types (Book and Author in our
example). Keeping your objects stored in protobuf format has the benefit of being able to consume
them with compatible clients written in different languages.

TODO Add reference to sample in C++ client user guide

Indexing of Protobuf encoded entries

After configuring the client as described in the previous section you can start configuring indexing
for your caches on the server side. Activating indexing and the various indexing specific
configurations is identical to embedded mode and is detailed in the Querying Infinispan chapter.

There is however an extra configuration step involved. While in embedded mode the indexing
metadata is obtained via Java reflection by analyzing the presence of various Hibernate Search
annotations on the entry’s class, this is obviously not possible if the entry is protobuf encoded. The
server needs to extract the relevant metadata from the same descriptor (.proto file) as the client.
The descriptors are stored in a dedicated cache on the server '___protobuf_metadata'. Registering a
new schema is therefore as simple as performing a put operation on that cache using the schema’s
name as a key and the schema itself as the value. Alternatively you can use the CLI (via the cache-
container=*:register-proto-schemas() operation), the Console or the ProtobufMetadataManager
MBean via JMX. Be aware that, when security is enabled, access to the schema cache via the remote
protocols requires that the user belongs to the '___schema_manager' role. NOTE: Once indexing is
enabled for a cache all fields of Protobuf encoded entries are going to be indexed. Future versions
will allow you to select which fields to index (see ISPN-3718).

259

https://issues.jboss.org/browse/ISPN-3718

A remote query example

You’ve managed to configure both client and server to talk protobuf and you’ve enabled indexing.
Let’s put some data in the cache and try to search for it then!

import org.infinispan.client.hotrod.*;
import org.infinispan.query.dsl.*;
...

RemoteCacheManager remoteCacheManager = ...;
RemoteCache<Integer, Book> remoteCache = remoteCacheManager.getCache();

Book book1 = new Book();
book1.setTitle("Hibernate in Action");
remoteCache.put(1, book1);

Book book2 = new Book();
book2.setTile("Infinispan Data Grid Platform");
remoteCache.put(2, book2);

QueryFactory qf = Search.getQueryFactory(remoteCache);
Query query = qf.from(Book.class)
 .having("title").like("%Infinispan%").toBuilder()
 .build();

List<Book> list = query.list(); // Voila! We have our book back from the cache!

The key part of creating a query is obtaining the QueryFactory for the remote cache using the
org.infinispan.client.hotrod.Search.getQueryFactory() method. Once you have this creating the query
is similar to embedded mode which is covered in this section.

Running in Compatibility Mode

TODO

19.5. Scripting
Scripting is a feature of Infinispan Server which allows invoking server-side scripts from remote
clients. Scripting leverages the JDK’s javax.script ScriptEngines, therefore allowing the use of any
JVM languages which offer one. By default, the JDK comes with Nashorn, a ScriptEngine capable of
running JavaScript.

19.5.1. Installing scripts

Scripts are stored in a special script cache, named '___script_cache'. Adding a script is therefore as
simple as put+ting it into the cache itself. If the name of the script contains a filename extension,
e.g. +myscript.js, then that extension determines the engine that will be used to execute it.
Alternatively the script engine can be selected using script metadata (see below). Be aware that,
when security is enabled, access to the script cache via the remote protocols requires that the user

260

#infinispan_s_query_dsl

belongs to the '___script_manager' role.

19.5.2. Script metadata

Script metadata is additional information about the script that the user can provide to the server to
affect how a script is executed. It is contained in a specially-formatted comment on the first lines of
the script.

Properties are specified as key=value pairs, separated by commas. You can use several different
comment styles: The //, ;;, # depending on the scripting language you use. You can split metadata
over multiple lines if necessary, and you can use single (') or double (") quotes to delimit your
values.

The following are examples of valid metadata comments:

// name=test, language=javascript
// mode=local, parameters=[a,b,c]

Metadata properties

The following metadata property keys are available

• mode: defines the mode of execution of a script. Can be one of the following values:

• local: the script will be executed only by the node handling the request. The script itself
however can invoke clustered operations

• distributed: runs the script using the Distributed Executor Service

• language: defines the script engine that will be used to execute the script, e.g. Javascript

• extension: an alternative method of specifying the script engine that will be used to execute the
script, e.g. js

• role: a specific role which is required to execute the script

• parameters: an array of valid parameter names for this script. Invocations which specify
parameter names not included in this list will cause an exception.

• datatype: optional property providing information, in the form of Media Types (also known as
MIME) about the type of the data stored in the caches, as well as parameter and return values.
Currently it only accepts a single value which is text/plain; charset=utf-8, indicating that data
is String UTF-8 format. This metadata parameter is designed for remote clients that only support
a particular type of data, making it easy for them to retrieve, store and work with parameters.

Since the execution mode is a characteristic of the script, nothing special needs to be done on the
client to invoke scripts in different modes.

19.5.3. Script bindings

The script engine within Infinispan exposes several internal objects as bindings in the scope of the
script execution. These are:

261

• cache: the cache against which the script is being executed

• marshaller: the marshaller to use for marshalling/unmarshalling data to the cache

• cacheManager: the cacheManager for the cache

• scriptingManager: the instance of the script manager which is being used to run the script. This
can be used to run other scripts from a script.

19.5.4. Script parameters

Aside from the standard bindings described above, when a script is executed it can be passed a set
of named parameters which also appear as bindings. Parameters are passed as name,value pairs
where name is a string and value can be any value that is understood by the marshaller in use.

The following is an example of a JavaScript script which takes two parameters, multiplicand and
multiplier and multiplies them. Because the last operation is an expression evaluation, its result is
returned to the invoker.

// mode=local,language=javascript
multiplicand * multiplier

To store the script in the script cache, use the following Hot Rod code:

RemoteCache<String, String> scriptCache = cacheManager.getCache("___script_cache");
scriptCache.put("multiplication.js",
 "// mode=local,language=javascript\n" +
 "multiplicand * multiplier\n");

19.5.5. Running Scripts using the Hot Rod Java client

The following example shows how to invoke the above script by passing two named parameters.

RemoteCache<String, Integer> cache = cacheManager.getCache();
// Create the parameters for script execution
Map<String, Object> params = new HashMap<>();
params.put("multiplicand", 10);
params.put("multiplier", 20);
// Run the script on the server, passing in the parameters
Object result = cache.execute("multiplication.js", params);

19.5.6. Distributed execution

The following is a script which runs within a Distributed Executor. Each node will return its
address, and the results from all nodes will be collected in a List and returned to the client.

262

// mode:distributed,language=javascript
cacheManager.getAddress().toString();

19.6. Infinispan REST Server
The Infinispan Server distribution contains a server module that implements RESTful HTTP access
to the Infinispan data grid, built on JAX_RS. Please refer to Infinispan Server’s documentation for
instructions on how to configure and run a REST server.

19.6.1. REST API

HTTP PUT and POST methods are used to place data in the cache, with URLs to address the cache
name and key(s) - the data being the body of the request (the data can be anything you like). It is
important that a Content-Type header is set. Other headers are used to control the cache settings
and behaviour (detailed in that link).

Putting data in

PUT /{cacheName}/{cacheKey}

A PUT request of the above URL form will place the payload (body) in the given cache, with the
given key (the named cache must exist on the server). For example http://someserver/hr/payRoll/3
(in which case hr is the cache name, and payRoll/3 is the key). Any existing data will be replaced,
and Time-To-Live and Last-Modified values etc will updated (if applicable).

POST /{cacheName}/{cacheKey}

Exactly the same as PUT, only if a value in a cache/key already exists, it will return a Http CONFLICT
status (and the content will not be updated).

Headers

• Content-Type : MANDATORY (use media/mime-types for example: "application/json"). If you set
the Content-Type to application/x-java-serialized-object, then it will be stored as a Java object

• performAsync : OPTIONAL true/false (if true, this will return immediately, and then replicate
data to the cluster on its own. Can help with bulk data inserts/large clusters.)

• timeToLiveSeconds : OPTIONAL number (the number of seconds before this entry will
automatically be deleted). If no parameter is sent, Infinispan assumes -1 as default value, which
means that the entry will not expire. Passing any negative value will have the same effect.

• maxIdleTimeSeconds : OPTIONAL number (the number of seconds after last usage of this entry
when it will automatically be deleted). If no parameter is sent, Infinispan assumes -1 as default
value, which means that the entry will not expire as a result of idle time. Passing any negative
value will have the same effect.

Passing 0 as parameter for timeToLiveSeconds and/or maxIdleTimeSeconds

• If both timeToLiveSeconds and maxIdleTimeSeconds are 0, the cache will use the default lifespan
and maxIdle values configured in XML/programmatically

263

http://en.wikipedia.org/wiki/Representational_State_Transfer
../infinispan_server_guide/infinispan_server_guide.html
http://someserver/hr/payRoll/3
http://www.iana.org/assignments/media-types/

• If only maxIdleTimeSeconds is 0, it uses the timeToLiveSeconds value passed as parameter (or -1 if
not present), and default maxIdle configured in XML/programmatically

• If only timeToLiveSeconds is 0, it uses default lifespan configured in XML/programmatically, and
maxIdle is set to whatever came as parameter (or -1 if not present)

Getting data back out

HTTP GET and HEAD are used to retrieve data from entries.

GET /{cacheName}/{cacheKey}

This will return the data found in the given cacheName, under the given key - as the body of the
response. A Content-Type header will be supplied which matches what the data was inserted as
(other then if it is a Java object, see below). Browsers can use the cache directly of course (eg as a
CDN). An ETag will be returned unique for each entry, as will the Last-Modified and Expires
headers field indicating the state of the data at the given URL. ETags allow browsers (and other
clients) to ask for data only in the case where it has changed (to save on bandwidth) - this is
standard HTTP and is honoured by Infinispan.

Since Infinispan 5.3 it is possible to obtain additional information by appending the "extended"
parameter on the query string, as follows:

GET /cacheName/cacheKey?extended

This will return the following custom headers:

• Cluster-Primary-Owner: the node name of the primary owner for this key

• Cluster-Node-Name: the JGroups node name of the server that has handled the request

• Cluster-Physical-Address: the physical JGroups address of the server that has handled the
request.

HEAD /{cacheName}/{cacheKey}

The same as GET, only no content is returned (only the header fields). You will receive the same
content that you stored. E.g., if you stored a String, this is what you get back. If you stored some
XML or JSON, this is what you will receive. If you stored a binary (base 64 encoded) blob, perhaps a
serialized; Java; object - you will need to; deserialize this yourself.

Similarly to the GET method, the HEAD method also supports returning extended information via
headers. See above.

Listing keys

GET /{cacheName}

This will return a list of keys present in the given cacheName as the body of the response. The
format of the response can be controlled via the Accept header as follows:

• application/xml - the list of keys will be returned in XML format.

264

http://en.wikipedia.org/wiki/HTTP_ETag

• application/json - the list of keys will be return in JSON format.

• text/html - the list of keys will be returned in HTML format.

• text/plain - the list of keys will be returned in plain text format, one key per line

If the cache identified by cacheName is distributed, only the keys owned by the node handling the
request will be returned. To return all keys, append the "global" parameter to the query, as follows:

GET /cacheName?global

Removing data

Data can be removed at the cache key/element level, or via a whole cache name using the HTTP
delete method.

DELETE /{cacheName}/{cacheKey}

Removes the given key name from the cache.

DELETE /{cacheName}

Removes ALL the entries in the given cache name (i.e., everything from that path down). If the
operation is successful, it returns 200 code.


Make it quicker!

Set the header performAsync to true to return immediately and let the removal
happen in the background.

19.6.2. Client side code

Part of the point of a RESTful service is that you don’t need to have tightly coupled client
libraries/bindings. All you need is a HTTP client library. For Java, Apache HTTP Commons Client
works just fine (and is used in the integration tests), or you can use java.net API.

Ruby example

Shows how to interact with Infinispan REST api from ruby.
No special libraries, just standard net/http
#
Author: Michael Neale
#
require 'net/http'

http = Net::HTTP.new('localhost', 8080)

#Create new entry
http.post('/infinispan/rest/MyData/MyKey', 'DATA HERE', {"Content-Type" => "
text/plain"})

265

#get it back
puts http.get('/infinispan/rest/MyData/MyKey').body

#use PUT to overwrite
http.put('/infinispan/rest/MyData/MyKey', 'MORE DATA', {"Content-Type" => "text/plain
"})

#and remove...
http.delete('/infinispan/rest/MyData/MyKey')

#Create binary data like this... just the same...
http.put('/infinispan/rest/MyImages/Image.png', File.read(
'/Users/michaelneale/logo.png'), {"Content-Type" => "image/png"})

#and if you want to do json...
require 'rubygems'
require 'json'

#now for fun, lets do some JSON !
data = {:name => "michael", :age => 42 }
http.put('/infinispan/rest/Users/data/0', data.to_json, {"Content-Type" =>
"application/json"})

Python example

Sample python code using the standard http lib only
#

import httplib

#putting data in
conn = httplib.HTTPConnection("localhost:8080")
data = "SOME DATA HERE \!" #could be string, or a file...
conn.request("POST", "/infinispan/rest/Bucket/0", data, {"Content-Type": "text/plain"
})
response = conn.getresponse()
print response.status

#getting data out
import httplib
conn = httplib.HTTPConnection("localhost:8080")
conn.request("GET", "/infinispan/rest/Bucket/0")
response = conn.getresponse()
print response.status
print response.read()

266

Java example

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.HttpURLConnection;
import java.net.URL;

/**
 * Rest example accessing Infinispan Cache.
 * @author Samuel Tauil (samuel@redhat.com)
 *
 */
public class RestExample {

 /**
 * Method that puts a String value in cache.
 * @param urlServerAddress
 * @param value
 * @throws IOException
 */
 public void putMethod(String urlServerAddress, String value) throws IOException {
 System.out.println("--");
 System.out.println("Executing PUT");
 System.out.println("--");
 URL address = new URL(urlServerAddress);
 System.out.println("executing request " + urlServerAddress);
 HttpURLConnection connection = (HttpURLConnection) address.openConnection();
 System.out.println("Executing put method of value: " + value);
 connection.setRequestMethod("PUT");
 connection.setRequestProperty("Content-Type", "text/plain");
 connection.setDoOutput(true);

 OutputStreamWriter outputStreamWriter = new OutputStreamWriter(connection
.getOutputStream());
 outputStreamWriter.write(value);

 connection.connect();
 outputStreamWriter.flush();

 System.out.println("--");
 System.out.println(connection.getResponseCode() + " " + connection
.getResponseMessage());
 System.out.println("--");

 connection.disconnect();
 }

 /**
 * Method that gets a value by a key in url as param value.

267

 * @param urlServerAddress
 * @return String value
 * @throws IOException
 */
 public String getMethod(String urlServerAddress) throws IOException {
 String line = new String();
 StringBuilder stringBuilder = new StringBuilder();

 System.out.println("--");
 System.out.println("Executing GET");
 System.out.println("--");

 URL address = new URL(urlServerAddress);
 System.out.println("executing request " + urlServerAddress);

 HttpURLConnection connection = (HttpURLConnection) address.openConnection();
 connection.setRequestMethod("GET");
 connection.setRequestProperty("Content-Type", "text/plain");
 connection.setDoOutput(true);

 BufferedReader bufferedReader = new BufferedReader(new InputStreamReader
(connection.getInputStream()));

 connection.connect();

 while ((line = bufferedReader.readLine()) \!= null) {
 stringBuilder.append(line + '\n');
 }

 System.out.println("Executing get method of value: " + stringBuilder.toString()
);

 System.out.println("--");
 System.out.println(connection.getResponseCode() + " " + connection
.getResponseMessage());
 System.out.println("--");

 connection.disconnect();

 return stringBuilder.toString();
 }

 /**
 * Main method example.
 * @param args
 * @throws IOException
 */
 public static void main(String\[\] args) throws IOException {
 //Attention to the cache name "cacheX" it was configured in xml file with tag
<*-cache name="cacheX">
 RestExample restExample = new RestExample();

268

 restExample.putMethod("http://localhost:8080/infinispan/rest/cacheX/1",
"Infinispan REST Test");
 restExample.getMethod("http://localhost:8080/infinispan/rest/cacheX/1");

 }
}

19.7. Using Infinispan Memcached Server
The Infinispan Server distribution contains a server module that implements the Memcached text
protocol. This allows Memcached clients to talk to one or several Infinispan backed Memcached
servers. These servers could either be working standalone just like Memcached does where each
server acts independently and does not communicate with the rest, or they could be clustered
where servers replicate or distribute their contents to other Infinispan backed Memcached servers,
thus providing clients with failover capabilities. Please refer to Infinispan Server’s documentation
for instructions on how to configure and run a Memcached server.

19.7.1. Command Clarifications

Flush All

Even in a clustered environment, flush_all command leads to the clearing of the Infinispan
Memcached server where the call lands. There’s no attempt to propagate this flush to other nodes
in the cluster. This is done so that flush_all with delay use case can be reproduced with the
Infinispan Memcached server. The aim of passing a delay to flush_all is so that different
Memcached servers in a full can be flushed at different times, and hence avoid overloading the
database with requests as a result of all Memcached servers being empty. For more info, check the
Memcached text protocol section on flush_all .

19.7.2. Unsupported Features

This section explains those parts of the memcached text protocol that for one reason or the other,
are not currently supported by the Infinispan based memcached implementation.

Individual Stats

Due to difference in nature between the original memcached implementation which is C/C\\ based
and the Infinispan implementation which is Java based, there’re some general purpose stats that
are not supported. For these unsupported stats, Infinispan memcached server always returns 0.

Unsupported statistics

• pid

• pointer_size

• rusage_user

• rusage_system

• bytes

269

http://github.com/memcached/memcached/blob/master/doc/protocol.txt
http://github.com/memcached/memcached/blob/master/doc/protocol.txt
../infinispan_server_guide/infinispan_server_guide.html
http://github.com/memcached/memcached/blob/master/doc/protocol.txt

• curr_connections

• total_connections

• connection_structures

• auth_cmds

• auth_errors

• limit_maxbytes

• threads

• conn_yields

• reclaimed

Statistic Settings

The settings statistics section of the text protocol has not been implemented due to its volatility.

Settings with Arguments Parameter

Since the arguments that can be send to the Memcached server are not documented, Infinispan
Memcached server does not support passing any arguments to stats command. If any parameters
are passed, the Infinispan Memcached server will respond with a CLIENT_ERROR .

Delete Hold Time Parameter

Memcached does no longer honor the optional hold time parameter to delete command and so the
Infinispan based memcached server does not implement such feature either.

Verbosity Command

Verbosity command is not supported since Infinispan logging cannot be simplified to defining the
logging level alone.

19.7.3. Talking To Infinispan Memcached Servers From Non-Java Clients

This section shows how to talk to Infinispan memcached server via non-java client, such as a
python script.

Multi Clustered Server Tutorial

The example showcases the distribution capabilities of Infinispan memcached severs that are not
available in the original memcached implementation.

• Start two clustered nodes: This configuration is the same one used for the GUI demo:

$./bin/standalone.sh -c clustered.xml -Djboss.node.name=nodeA
$./bin/standalone.sh -c clustered.xml -Djboss.node.name=nodeB
-Djboss.socket.binding.port-offset=100

270

Alternatively use

$./bin/domain.sh

Which automatically starts two nodes.

• Execute test_memcached_write.py script which basically executes several write operations
against the Infinispan memcached server bound to port 11211. If the script is executed
successfully, you should see an output similar to this:

Connecting to 127.0.0.1:11211
Testing set ['Simple_Key': Simple value] ... OK
Testing set ['Expiring_Key' : 999 : 3] ... OK
Testing increment 3 times ['Incr_Key' : starting at 1]
Initialise at 1 ... OK
Increment by one ... OK
Increment again ... OK
Increment yet again ... OK
Testing decrement 1 time ['Decr_Key' : starting at 4]
Initialise at 4 ... OK
Decrement by one ... OK
Testing decrement 2 times in one call ['Multi_Decr_Key' : 3]
Initialise at 3 ... OK
Decrement by 2 ... OK

• Execute test_memcached_read.py script which connects to server bound to 127.0.0.1:11311 and
verifies that it can read the data that was written by the writer script to the first server. If the
script is executed successfully, you should see an output similar to this:

Connecting to 127.0.0.1:11311
Testing get ['Simple_Key'] should return Simple value ... OK
Testing get ['Expiring_Key'] should return nothing... OK
Testing get ['Incr_Key'] should return 4 ... OK
Testing get ['Decr_Key'] should return 3 ... OK
Testing get ['Multi_Decr_Key'] should return 1 ... OK

19.8. Infinispan WebSocket Server
The Infinispan Server distribution contains a server module that implements the WebSocket
Interface via a very simple Javascript "Cache" API. The WebSocket Interface was introduced as part
of the HTML 5 specification. It defines a full-duplex communication channel to the browser,
operating over a single socket (unlike Comet or Ajax) and is exposed to the browser via a Javascript
interface. Please refer to Infinispan Server’s documentation for instructions on how to configure
and run a WebSocket server.

271

https://github.com/infinispan/infinispan/tree/master/server/memcached/src/test/resources/test_memcached_write.py
https://github.com/infinispan/infinispan/tree/master/server/memcached/src/test/resources/test_memcached_read.py
http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/websockets/
../infinispan_server_guide/infinispan_server_guide.html

 This is a highly experimental module.

19.8.1. Javascript API

Writing a web page that uses the Infinispan Cache API is trivial. The page simply needs to include a
<script /> declaration for the infinispan-ws.js Javascript source file. This script is served up by
WebSocket Server.

So, for loading infinispan-ws.js from a WebSocket Server instance running on www.acme.com:8181
(default port):

<script type="text/javascript" src="<a href="http://www.acme.com:61999/infinispan-
ws.js" target="_blank">http://www.acme.com:8181/infinispan-ws.js" />

Creating a Client-Side Cache Object Instance

The client-side interface to a server-side Infinispan cache is the Cache Javascript object. It can be
constructed as follows:

<script type="text/javascript">
 var cache = new Cache();

 // etc...
</script>

By default, the Cache instance will interface to the default Infinispan Cache associated with the
WebSocket Server from which the infinispan-ws.js Javascript source file was loaded. So, in the
above case, the Cache object instance will connect to the WebSocket Server running on
www.acme.com:8181 (i.e. ws://www.acme.com:8181).

The Infinispan Cache name and WebSocket Server address can be specified in the Cache object
constructor as follows:

var cache = new Cache("omCache", "ws://ws.acmews.com:8181");
// etc...

Cache Operations

A number of cache operations can be performed via the Cache object instance such as get , put ,
remove , notify and unnotify .

The get and notify operations require a callback function to be registered with the Cache object
instance. This callback function receives all add/update/remove notifications on any cache entries
for which the notify function was invoked. It also asynchronously receives the result of a single
invocation of the get function i.e. get can be thought of as "notify once, immediately".

272

The callback function is registered with the Cache object instance via the registerCallback function.
The function should have 2 parameters - key and value , relating to the cache key and value.

var cache = new Cache();

// Ask to be notified about some cache entries...
cache.notify("orderStatus");
cache.notify("expectedDeliveryTime");

// Register the callback function for receiving notifcations...
cache.registerCallback(cacheCallback);

// Cache callback function...
function cacheCallback(key, value) {
 // Handle notification...
}

Getting and updating data in the cache is done by simply calling the get , put and remove functions
on the Cache object instance. These operations could be triggered by user interaction with a web
form e.g.

<form onsubmit="return false;">

 <!-- Other form components... -->

 <!-- Buttons for making cache updates... -->
 <input type="button" value="Put"
 onclick="cache.put(this.form.key.value, this.form.val.value)" />
 <input type="button" value="Get"
 onclick="cache.get(this.form.key.value)" />
 <input type="button" value="Remove"
 onclick="cache.remove(this.form.key.value)" />
</form>

19.8.2. Sample code

Infinispan’s source tree contains a sample HTML document that makes use of the WebSocket
server. Browse through the source of this HTML document here .

19.8.3. Screencast

See the following demo of the Infinispan WebSocket Server in action.

19.8.4. Status

Prototype/Alpha.

273

https://github.com/infinispan/infinispan/blob/master/server/websocket/src/main/release/etc/sample-websocket-client.html
http://www.screencast.com/t/ZGEzNDJlY

19.8.5. Source

Browse Infinispan’s Git repository .

274

https://github.com/infinispan/infinispan/tree/master/server/websocket

Chapter 20. Embedded/Remote
Compatibility
Infinispan offers the possibility to store and retrieve data in a local embedded way, and also
remotely thanks to the multiple endpoints offered, but until now if you choose one way to access
the data, you were stuck with it. For example, you could not store data using the embedded
interface and retrieve it via REST.

Starting with Infinispan 5.3, it is now possible to configure Infinispan caches to work in a special,
compatibility mode for those users interested in accessing Infinispan in multiple ways. Achieving
such compatibility requires extra work from Infinispan in order to make sure that contents are
converted back and forth between the different formats of each endpoint and this is the reason
why compatibility mode is disabled by default.

20.1. Enable Compatibility Mode
For compatibility mode to work as expected, all endpoints need to be configured with the same
cache manager, and need to talk to the same cache. If you’re using the brand new Infinispan Server
distribution , this is all done for you. If you’re in the mood to experiment with this in a standalone
unit test, this class shows you how you can start multiple endpoints from a single class.

So, to get started using Infinispan’s compatibility mode, it needs to be enabled, either via XML:

infinispan.xml

<local-cache>
 <compatibility/>
</local-cache>

Or programmatically:

ConfigurationBuilder builder = ...
builder.compatibility().enable();

The key thing to remember about Infinispan’s compatibility mode is that where possible, it tries to
store data unmarshalling or deserializing it. It does so because the most common use case is for it to
store Java objects and having Java objects stored in deserialized form means that they’re very easy
to use from an embedded cache. With this in mind, it makes some assumptions. For example, if
something is stored via Hot Rod, it’s most likely coming from the reference Hot Rod client, which is
written in Java, and which uses a marshaller that keeps binary payloads very compact. So, when
the Hot Rod operation reaches the compatibility layer, it will try to unmarshall it, by default using
the same default marshaller used by the Java Hot Rod client, hence providing good out-of-the-box
support for the majority of cases.

275

http://www.jboss.org/infinispan/downloads
http://www.jboss.org/infinispan/downloads
https://github.com/infinispan/infinispan/blob/master/integrationtests/compatibility-mode-it/src/test/java/org/infinispan/it/compatibility/CompatibilityCacheFactory.java

20.1.1. Optional: Configuring Compatibility Marshaller

It could happen though the client might be using a Hot Rod client written for another language
other than Java, say Ruby or Python . In this case, some kind of custom marshaller needs to be
configured that either translates that serialized payload into a Java object to be stored in the cache,
or keeps it in serialized form. Both options are valid, but of course it will have an impact on what
kind of objects are retrieved from Infinispan if using the embedded cache. The marshaller is
expected to implement this interface . Configuring the compatibility marshaller is optional and can
be done via XML:

infinispan.xml

<local-cache>
 <compatibility marshaller="com.acme.CustomMarshaller"/>
</local-cache>

Or programmatically:

ConfigurationBuilder builder = ...
builder.compatibility().enable().marshaller(new com.acme.CustomMarshaller());

One concrete example of this marshaller logic can be found in the
SpyMemcachedCompatibleMarshaller . Spy Memcached uses their own transcoders in order to
marshall objects, so the compatibility marshaller created is in charge of marshalling/unmarshalling
data stored via Spy Memcached client. If you want to retrieve data stored via Spy Memcached via
say Hot Rod, you can configure the Java Hot Rod client to use this same marshaller, and this is
precisely what the test where the Spy Memcached marshaller is located is demonstrating.

20.2. Code examples
The best code examples available showing compatibility in action can be found in the Infinispan
Compatibility Mode testsuite, but more will be developed in the near future.

276

https://github.com/infinispan/ruby-client
https://github.com/infinispan/python-client
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/Marshaller.html
https://github.com/infinispan/infinispan/blob/master/integrationtests/compatibility-mode-it/src/test/java/org/infinispan/it/compatibility/EmbeddedRestMemcachedHotRodTest.java#L161
https://code.google.com/p/spymemcached/
https://github.com/infinispan/infinispan/tree/master/integrationtests/compatibility-mode-it/src/test/java/org/infinispan/it/compatibility
https://github.com/infinispan/infinispan/tree/master/integrationtests/compatibility-mode-it/src/test/java/org/infinispan/it/compatibility

Chapter 21. Security
Security within Infinispan is implemented at several layers:

• within the core library, to provide coarse-grained access control to CacheManagers, Caches and
data

• over remote protocols, to obtain credentials from remote clients and to secure the transport
using encryption

• between nodes in a cluster, so that only authorized nodes can join and to secure the transport
using encryption

In order to maximize compatibility and integration, Infinispan uses widespread security standards
where possible and appropriate, such as X.509 certificates, SSL/TLS encryption and
Kerberos/GSSAPI. Also, to avoid pulling in any external dependencies and to increase the ease of
integration with third party libraries and containers, the implementation makes use of any facilities
provided by the standard Java security libraries (JAAS, JSSE, JCA, JCE, SASL, etc). For this reason, the
Infinispan core library only provides interfaces and a set of basic implementations.

21.1. Embedded Security
Applications interact with Infinispan using its API within the same JVM. The two main components
which are exposed by the Infinispan API are CacheManagers and Caches. If an application wants to
interact with a secured CacheManager and Cache, it should provide an identity which Infinispan’s
security layer will validate against a set of required roles and permissions. If the identity provided
by the user application has sufficient permissions, then access will be granted, otherwise an
exception indicating a security violation will be thrown. The identity is represented by the
javax.security.auth.Subject class which is a wrapper around multiple Principals, e.g. a user and all
the groups it belongs to. Since the Principal name is dependent on the owning system (e.g. a
Distinguished Name in LDAP), Infinispan needs to be able to map Principal names to roles. Roles, in
turn, represent one or more permissions. The following diagram shows the relationship between
the various elements:

Figure 23. Roles/Permissions mapping

21.1.1. Embedded Permissions

Access to a cache manager or a cache is controlled by using a list of required permissions.
Permissions are concerned with the type of action that is performed on one of the above entities

277

and not with the type of data being manipulated. Some of these permissions can be narrowed to
specifically named entities, where applicable (e.g. a named cache). Depending on the type of entity,
there are different types of permission available:

Cache Manager permissions

• CONFIGURATION (defineConfiguration): whether a new cache configuration can be defined

• LISTEN (addListener): whether listeners can be registered against a cache manager

• LIFECYCLE (stop): whether the cache manager can be stopped

• ALL: a convenience permission which includes all of the above

Cache permissions

• READ (get, contains): whether entries can be retrieved from the cache

• WRITE (put, putIfAbsent, replace, remove, evict): whether data can be
written/replaced/removed/evicted from the cache

• EXEC (distexec, streams): whether code execution can be run against the cache

• LISTEN (addListener): whether listeners can be registered against a cache

• BULK_READ (keySet, values, entrySet, query): whether bulk retrieve operations can be executed

• BULK_WRITE (clear, putAll): whether bulk write operations can be executed

• LIFECYCLE (start, stop): whether a cache can be started / stopped

• ADMIN (getVersion, addInterceptor*, removeInterceptor, getInterceptorChain,
getEvictionManager, getComponentRegistry, getDistributionManager,
getAuthorizationManager, evict, getRpcManager, getCacheConfiguration, getCacheManager,
getInvocationContextContainer, setAvailability, getDataContainer, getStats, getXAResource):
whether access to the underlying components/internal structures is allowed

• ALL: a convenience permission which includes all of the above

• ALL_READ: combines READ and BULK_READ

• ALL_WRITE: combines WRITE and BULK_WRITE

Some permissions might need to be combined with others in order to be useful. For example,
suppose you want to allow only "supervisors" to be able to run stream operations, while "standard"
users can only perform puts and gets, you would define the following mappings:

<role name="standard" permission="READ WRITE" />
<role name="supervisors" permission="READ WRITE EXEC BULK"/>

21.1.2. Embedded API

When a DefaultCacheManager has been constructed with security enabled using either the
programmatic or declarative configuration, it returns a SecureCache which will check the security
context before invoking any operations on the underlying caches. A SecureCache also makes sure
that applications cannot retrieve lower-level insecure objects (such as DataContainer). In Java,

278

executing code with a specific identity usually means wrapping the code to be executed within a
PrivilegedAction:

import org.infinispan.security.Security;

Security.doAs(subject, new PrivilegedExceptionAction<Void>() {
public Void run() throws Exception {
 cache.put("key", "value");
}
});

If you are using Java 8, the above call can be simplified to:

Security.doAs(mySubject, PrivilegedAction<String>() -> cache.put("key", "value"));

Notice the use of Security.doAs() in place of the typical Subject.doAs(). While in Infinispan you can
use either, unless you really need to modify the AccessControlContext for reasons specific to your
application’s security model, using Security.doAs() provides much better performance. If you need
the current Subject, use the following:

Security.getSubject();

which will automatically retrieve the Subject either from the Infinispan’s context or from the
AccessControlContext.

Infinispan also fully supports running under a full-blown SecurityManager. The Infinispan
distribution contains an example security.policy file which you should customize with the
appropriate paths before supplying it to your JVM.

21.1.3. Embedded Configuration

There are two levels of configuration: global and per-cache. The global configuration defines the set
of roles/permissions mappings while each cache can decide whether to enable authorization checks
and the required roles.

279

Programmatic

 GlobalConfigurationBuilder global = new GlobalConfigurationBuilder();
 global
 .security()
 .authorization()
 .principalRoleMapper(new IdentityRoleMapper())
 .role("admin")
 .permission(CachePermission.ALL)
 .role("supervisor")
 .permission(CachePermission.EXEC)
 .permission(CachePermission.READ)
 .permission(CachePermission.WRITE)
 .role("reader")
 .permission(CachePermission.READ);
 ConfigurationBuilder config = new ConfigurationBuilder();
 config
 .security()
 .enable()
 .authorization()
 .role("admin")
 .role("supervisor")
 .role("reader");

Declarative

<infinispan>
 <cache-container default-cache="secured">
 <security>
 <authorization enabled="true">
 <identity-role-mapper />
 <role name="admin" permissions="ALL" />
 <role name="reader" permissions="READ" />
 <role name="writer" permissions="WRITE" />
 <role name="supervisor" permissions="READ WRITE EXEC BULK"/>
 </authorization>
 </security>
 <local-cache name="secured">
 <security>
 <authorization roles="admin reader writer supervisor" />
 </security>
 </local-cache>
 </cache-container>

</infinispan>

Role Mappers

In order to convert the Principals in a Subject into a set of roles to be used when authorizing, a

280

suitable PrincipalRoleMapper must be specified in the global configuration. Infinispan comes with
3 mappers and also allows you to provide a custom one:

• IdentityRoleMapper (Java: org.infinispan.security.impl.IdentityRoleMapper, XML: <identity-role-
mapper />): this mapper just uses the Principal name as the role name

• CommonNameRoleMapper (Java: org.infinispan.security.impl.CommonRoleMapper, XML:
<common-name-role-mapper />): if the Principal name is a Distinguished Name (DN), this
mapper extracts the Common Name (CN) and uses it as a role name. For example the DN
cn=managers,ou=people,dc=example,dc=com will be mapped to the role managers

• ClusterRoleMapper (Java: org.infinispan.security.impl.ClusterRoleMapper XML: <cluster-role-
mapper />): a mapper which uses the ClusterRegistry to store principal to role mappings. This
allows the use of the CLI’s GRANT and DENY commands to add/remove roles to a principal.

• Custom role mappers (XML: <custom-role-mapper class="a.b.c" />): just supply the fully-
qualified class name of an implementation of org.infinispan.security.PrincipalRoleMapper

21.2. Security Audit
Infinispan offers a pluggable audit logger which tracks whether a cache or a cache manager
operation was allowed or denied. The audit logger is configured at the cache container
authorization level:

Programmatic

 GlobalConfigurationBuilder global = new GlobalConfigurationBuilder();
 global
 .authorization()
 .auditLogger(new LoggingAuditLogger());

Declarative

<infinispan>
 <cache-container default-cache="secured">
 <security>
 <authorization audit-logger="org.infinispan.security.impl.LoggingAuditLogger
">
 ...
 </authorization>
 </security>
 ...
 </cache-container>
</infinispan>

In embedded mode the default audit logger is org.infinispan.security.impl.NullAuditLogger which
does nothing. Infinispan also comes with the org.infinispan.security.impl.LoggingAuditLogger
which outputs audit logs through the available logging framework (e.g. Log4J) at level TRACE and
category AUDIT. These logs look like:

281

[ALLOW|DENY] user READ cache[defaultCache]

Using an appropriate logging appender it is possible to send the AUDIT category either to a log file,
a JMS queue, a database, etc. The user which is included in the log above is the name of the first
non-java.security.acl.Group principal in the Subject.

21.3. Cluster security
JGroups can be configured so that nodes need to authenticate each other when joining / merging.
The authentication uses SASL and is setup by adding the SASL protocol to your JGroups XML
configuration above the GMS protocol, as follows:

<SASL mech="DIGEST-MD5"
 client_name="node_user"
 client_password="node_password"
 server_callback_handler_class=
"org.example.infinispan.security.JGroupsSaslServerCallbackHandler"
 client_callback_handler_class=
"org.example.infinispan.security.JGroupsSaslClientCallbackHandler"
 sasl_props="com.sun.security.sasl.digest.realm=test_realm" />

In the above example, the SASL mech will be DIGEST-MD5. Each node will need to declare the user
and password it will use when joining the cluster. The behaviour of a node differs depending on
whether it is the coordinator or any other node. The coordinator acts as the SASL server, whereas
joining/merging nodes act as SASL clients. Therefore two different CallbackHandlers are required,
the server_callback_handler_class will be used by the coordinator, and the
client_callback_handler_class will be used by the other nodes. The SASL protocol in JGroups is only
concerned with the authentication process. If you wish to implement node authorization, you can
do so within the server callback handler, by throwing an Exception. The following example shows
how this can be done:

282

public class AuthorizingServerCallbackHandler implements CallbackHandler {

 @Override
 public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {
 for (Callback callback : callbacks) {
 ...
 if (callback instanceof AuthorizeCallback) {
 AuthorizeCallback acb = (AuthorizeCallback) callback;
 UserProfile user = UserManager.loadUser(acb.getAuthenticationID());
 if (!user.hasRole("myclusterrole")) {
 throw new SecurityException("Unauthorized node " +user);
 }
 }
 ...
 }
 }
}

283

Chapter 22. Integrations
Infinispan can be integrated with a number of other projects, as detailed below.

22.1. Apache Spark
Infinispan provides an Apache Spark connector capable of exposing caches as an RDD, allowing
batch and stream jobs to be run against data stored in Infinispan. For further details, see the
Infinispan Spark connector documentation. Also check the Docker based Twitter demo.

22.2. Apache Hadoop
The Infinispan Hadoop connector can be used to expose Infinispan as a Hadoop compliant data
source and sink that implements InputFormat/OutputFormat. For further details, refer to the full
documentation.

22.3. Apache Lucene
Infinispan includes a highly scalable distributed Apache Lucene Directory implementation.

This directory closely mimics the same semantics of the traditional filesystem and RAM-based
directories, being able to work as a drop-in replacement for existing applications using Lucene and
providing reliable index sharing and other features of Infinispan like node auto-discovery,
automatic failover and rebalancing, optionally transactions, and can be backed by traditional
storage solutions as filesystem, databases or cloud store engines.

The implementation extends Lucene’s org.apache.lucene.store.Directory so it can be used to store
the index in a cluster-wide shared memory, making it easy to distribute the index. Compared to
rsync-based replication this solution is suited for use cases in which your application makes
frequent changes to the index and you need them to be quickly distributed to all nodes. Consistency
levels, synchronicity and guarantees, total elasticity and auto-discovery are all configurable; also
changes applied to the index can optionally participate in a JTA transaction, optionally supporting
XA transactions with recovery.

Two different LockFactory implementations are provided to guarantee only one IndexWriter at a
time will make changes to the index, again implementing the same semantics as when opening an
index on a local filesystem. As with other Lucene Directories, you can override the LockFactory if
you prefer to use an alternative implementation.

22.3.1. Lucene compatibility

Apache Lucene versions 5.5.x

22.3.2. Maven dependencies

All you need is org.infinispan:infinispan-lucene-directory :

284

http://spark.apache.org
https://github.com/infinispan/infinispan-spark/blob/master/README.md
https://github.com/infinispan/infinispan-spark/tree/master/examples/twitter/README.md
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/InputFormat.html
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/OutputFormat.html
https://github.com/infinispan/infinispan-hadoop/blob/master/README.md
http://lucene.apache.org

pom.xml

<dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-lucene-directory</artifactId>
 <version>9.0</version>
</dependency>

22.3.3. How to use it

See the below example of using the Infinispan Lucene Directory in order to index and query a
single Document:

import java.io.IOException;

import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.StringField;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.index.Term;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.store.Directory;
import org.infinispan.lucene.directory.DirectoryBuilder;
import org.infinispan.manager.DefaultCacheManager;

// Create caches that will store the index. Here the Infinispan programmatic
configuration is used
DefaultCacheManager defaultCacheManager = new DefaultCacheManager();
Cache metadataCache = defaultCacheManager.getCache("metadataCache");
Cache dataCache = defaultCacheManager.getCache("dataCache");
Cache lockCache = defaultCacheManager.getCache("lockCache");

// Create the directory
Directory directory = DirectoryBuilder.newDirectoryInstance(metadataCache, dataCache,
lockCache, indexName).create();

// Use the directory in Lucene
IndexWriterConfig indexWriterConfig = new IndexWriterConfig(new StandardAnalyzer())
.setOpenMode(IndexWriterConfig.OpenMode.CREATE_OR_APPEND);

IndexWriter indexWriter = new IndexWriter(directory, indexWriterConfig);

// Index a single document
Document doc = new Document();

285

doc.add(new StringField("field", "value", Field.Store.NO));
indexWriter.addDocument(doc);
indexWriter.close();

// Querying the inserted document
DirectoryReader directoryReader = DirectoryReader.open(directory);
IndexSearcher searcher = new IndexSearcher(directoryReader);
TermQuery query = new TermQuery(new Term("field", "value"));
TopDocs topDocs = searcher.search(query, 10);
System.out.println(topDocs.totalHits);

The indexName in the DirectoryBuilder is a unique key to identify your index. It takes the same role
as the path did on filesystem based indexes: you can create several different indexes giving them
different names. When you use the same indexName in another instance connected to the same
network (or instantiated on the same machine, useful for testing) they will join, form a cluster and
share all content. Using a different indexName allows you to store different indexes in the same set
of Caches.

The metadataCache, dataCache and lockCache are the caches that will store the indexes. More
details provided below.

New nodes can be added or removed dynamically, making the service administration very easy and
also suited for cloud environments: it’s simple to react to load spikes, as adding more memory and
CPU power to the search system is done by just starting more nodes.

22.3.4. Configuration

Infinispan can be configured as LOCAL clustering mode, in which case it will disable clustering
features and serve as a cache for the index, or any clustering mode. A transaction manager is not
mandatory, but when enabled the changes to the index can participate in transactions.

Batching was required in previous versions, it’s not strictly needed anymore.

As pointed out in the javadocs of DirectoryBuilder, it’s possible for it to use more than a single
cache, using specific configurations for different purposes. Each cache is explained below:

Lock Cache

The lock cache is used to store a single entry per index that will function as the directory lock.
Given the small storage requirement this cache is usually configured as REPL_SYNC. Example of
declarative configuration:

<replicated-cache name="LuceneIndexesLocking" mode="SYNC" remote-timeout="25000">
 <transaction mode="NONE"/>
 <indexing index="NONE" />
 <eviction strategy="NONE" max-entries="-1"/>
</replicated-cache>

286

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/lucene/directory/DirectoryBuilder.html

Metadata Cache

The metadata cache is used to store information about the files of the directory, such as buffer sizes
and number of chunks. It uses more space than the Lock Cache, but not as much as the Data Cache,
so using a REPL_SYNC cache should be fine for most cases. Example of configuration:

<replicated-cache name="LuceneIndexesMetadaData" mode="SYNC" remote-timeout="25000">
 <transaction mode="NONE"/>
 <indexing index="NONE" />
 <eviction strategy="NONE" max-entries="-1"/>
</replicated-cache>

Data Cache

The Infinispan Lucene directory splits large (bigger than the chunkSize configuration) files into
chunks and stores them in the Data cache. This is the largest of the 3 index caches, and both
DIST_SYNC/REPL_SYNC cache modes can be used. Usage of REPL_SYNC offers lower latencies for
queries since each node holds the whole index locally; DIST_SYNC, on the other hand, will affect
query latency due to remote calls to fetch for chunks, but offers better scalability.

Example of configuration:

<distributed-cache name="LuceneIndexesData" mode="SYNC" remote-timeout="25000">
 <transaction mode="NONE"/>
 <indexing index="NONE" />
 <eviction strategy="NONE" max-entries="-1"/>
</distributed-cache>

22.3.5. Using a CacheLoader

Using a CacheLoader you can have the index content backed up to a permanent storage; you can
use a shared store for all nodes or one per node, see cache passivation for more details.

When using a CacheLoader to store a Lucene index, to get best write performance you would need
to configure the CacheLoader with async=true .

22.3.6. Storing the index in a database

It might be useful to store the Lucene index in a relational database; this would be very slow but
Infinispan can act as a cache between the application and the JDBC interface, making this
configuration useful in both clustered and non-clustered configurations. When storing indexes in a
JDBC database, it’s suggested to use the JdbcStringBasedCacheStore , which will need this attribute:

<property name="key2StringMapperClass" value=
"org.infinispan.lucene.LuceneKey2StringMapper" />

287

22.3.7. Loading an existing Lucene Index

The org.infinispan.lucene.cachestore.LuceneCacheLoader is an Infinispan CacheLoader able to have
Infinispan directly load data from an existing Lucene index into the grid. Currently this supports
reading only.

Property Description Default

location The path where the indexes are
stored. Subdirectories (of first
level only) should contain the
indexes to be loaded, each
directory matching the index
name attribute of the
InfinispanDirectory
constructor.

none (mandatory)

autoChunkSize A threshold in bytes: if any
segment is larger than this, it
will be transparently chunked
in smaller cache entries up to
this size.

32MB

It’s worth noting that the IO operations are delegated to Lucene’s standard
org.apache.lucene.store.FSDirectory , which will select an optimal approach for the running
platform.

Implementing write-through should not be hard: you’re welcome to try implementing it.

22.3.8. Architectural limitations

This Directory implementation makes it possible to have almost real-time reads across multiple
nodes. A fundamental limitation of the Lucene design is that only a single IndexWriter is allowed to
make changes on the index: a pessimistic lock is acquired by the writer; this is generally ok as a
single IndexWriter instance is very fast and accepts update requests from multiple threads. When
sharing the Directory across Infinispan nodes the IndexWriter limitation is not lifted: since you can
have only one instance, that reflects in your application as having to apply all changes on the same
node. There are several strategies to write from multiple nodes on the same index:

Index write strategies

• One node writes, the other delegate to it sending messages

• Each node writes on turns

• You application makes sure it will only ever apply index writes on one node

The Infinispan Lucene Directory protects its content by implementing a distributed locking strategy,
though this is designed as a last line of defense and is not to be considered an efficient mechanism
to coordinate multiple writes: if you don’t apply one of the above suggestions and get high write
contention from multiple nodes you will likely get timeout exception.

288

22.3.9. Suggestions for optimal performance

JGroups and networking stack

JGroups manages all network IO and as such it is a critical component to tune for your specific
environment. Make sure to read the JGroups reference documentation, and play with the
performance tests included in JGroups to make sure your network stack is setup appropriately.
Don’t forget to check also operating system level parameters, for example buffer sizes dedicated for
networking. JGroups will log warning when it detects something wrong, but there is much more
you can look into.

Using a CacheStore

Currently all CacheStore implementations provided by Infinispan have a significant slowdown; we
hope to resolve that soon but for the time being if you need high performance on writes with the
Lucene Directory the best option is to disable any CacheStore; the second best option is to configure
the CacheStore as async . If you only need to load a Lucene index from read-only storage, see the
above description for org.infinispan.lucene.cachestore.LuceneCacheLoader .

Apply standard Lucene tuning

All known options of Lucene apply to the Infinispan Lucene Directory as well; of course the effect
might be less significant in some cases, but you should definitely read the Apache Lucene
documentation .

Disable batching and transactions

Early versions required Infinispan to have batching or transactions enabled. This is no longer a
requirement, and in fact disabling them should provide little improvement in performance.

Set the right chunk size

The chunk size can be specified using the DirectoryBuilder fluent API. To correctly set this variable
you need to estimate what the expected size of your segments is; generally this is trivial by looking
at the file size of the index segments generated by your application when it’s using the standard
FSDirectory. You then have to consider:

• The chunk size affects the size of internally created buffers, and large chunk sizes will cause
memory usage to grow. Also consider that during index writing such arrays are frequently
allocated.

• If a segment doesn’t fit in the chunk size, it’s going to be fragmented. When searching on a
fragmented segment performance can’t peak.

Using the org.apache.lucene.index.IndexWriterConfig you can tune your index writing to
approximately keep your segment size to a reasonable level, from there then tune the chunksize,
after having defined the chunksize you might want to revisit your network configuration settings.

289

http://jgroups.org/manual-3.x/html/index.html
http://lucene.apache.org/core/index.html
http://lucene.apache.org/core/index.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/lucene/directory/DirectoryBuilder.html

22.3.10. Demo

There is a simple command-line demo of its capabilities distributed with Infinispan under
demos/lucene-directory; make sure you grab the "Binaries, server and demos" package from
download page, which contains all demos.

Start several instances, then try adding text in one instance and searching for it on the other. The
configuration is not tuned at all, but should work out-of-the box without any changes. If your
network interface has multicast enabled, it will cluster across the local network with other
instances of the demo.

22.3.11. Additional Links

• Issue tracker: https://jira.jboss.org/browse/ISPN/component/12312732

• Source code: https://github.com/infinispan/infinispan/tree/master/lucene/lucene-
directory/src/main/java/org/infinispan/lucene

22.4. Directory Provider for Hibernate Search
Hibernate Search applications can use Infinispan as a directory provider, taking advantage of
Infinispan’s distribution and low latency capabilities to store the Lucene indexes.

22.4.1. Maven dependencies

pom.xml

<dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-directory-provider</artifactId>
 <version>9.0</version>
</dependency>

22.4.2. How to use it

The directory provider alias is "infinispan", and to enable it for an index, the following property
should be in the Hibernate Search configuration:

hibernate.search.MyIndex.directory_provider = infinispan

to enable it by default for all indexes:

hibernate.search.default.directory_provider = infinispan

The Infinispan cluster will start with a default configuration, see below how to override it.

290

https://jira.jboss.org/browse/ISPN/component/12312732
https://github.com/infinispan/infinispan/tree/master/lucene/lucene-directory/src/main/java/org/infinispan/lucene
https://github.com/infinispan/infinispan/tree/master/lucene/lucene-directory/src/main/java/org/infinispan/lucene
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#configuration
https://github.com/infinispan/infinispan/blob/master/lucene/directory-provider/src/main/resources/default-hibernatesearch-infinispan.xml

22.4.3. Configuration

Optional properties allow for a custom Infinispan configuration or to use an existent
EmbeddedCacheManager:

Property Description Example value

hibernate.search.infinispan.con
figuration_resourcename

Custom configuration for
Infinispan

config/infinispan.xml

hibernate.search.infinispan.con
figuration.transport_override_r
esourcename

Overrides the JGroups stack in
the Infinispan configuration
file

jgroups-ec2.xml

hibernate.search.infinispan.cac
hemanager_jndiname

Specifies the JNDI name under
which the
EmbeddedCacheManager to use
is bound. Will cause the
properties above to be ignored
when present

java:jboss/infinispan/container/h
ibernate-search

22.4.4. Architecture considerations

The same limitations presented in the Lucene Directory apply here, meaning the index will be
shared across several nodes and only one IndexWriter can have the lock.

One common strategy is to use Hibernate Search’s JMS Master/Slave or JGroups backend together
with the Infinispan directory provider: instead of sending updates directly to the index, they are
sent to a JMS queue or JGroups channel and a single node applies all the changes on behalf of all
other nodes.

Refer to the Hibernate Search documentation for instructions on how to setup JMS or JGroups
backends.

22.5. Using Infinispan as JPA-Hibernate Second Level
Cache Provider
If you’re unfamiliar with JPA/Hibernate Second Level Caching, please read this guide which
explains the different types of data that can be cached.


On Caching

Query result caching, or entity caching, may or may not improve application
performance. Be sure to benchmark your application with and without caching.

22.5.1. Configuration

1\. First of all, to enable JPA/Hibernate second level cache with query result caching enabled, add
either of the following:

291

https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/
https://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#caching

<!-- If using JPA, add to your persistence.xml -->
<property name="hibernate.cache.use_second_level_cache" value="true" />
<property name="hibernate.cache.use_query_cache" value="true" />

<!-- If using Hibernate, add to your hibernate.cfg.xml -->
<property name="hibernate.cache.use_second_level_cache">true</property>
<property name="hibernate.cache.use_query_cache">true</property>

2\. Now, configure the Infinispan cache region factory using one of the two options below:

• If the Infinispan CacheManager instance happens to be bound to JNDI select
JndiInfinispanRegionFactory as the cacheregion factory and add the cache manager’s JNDI
name:

<!-- If using JPA, add to your persistence.xml -->
<property name="hibernate.cache.region.factory_class" value=
"org.hibernate.cache.infinispan.JndiInfinispanRegionFactory" />
<property name="hibernate.cache.infinispan.cachemanager" value="java:CacheManager" />

<!-- If using Hibernate, add to your hibernate.cfg.xml -->
<property name="hibernate.cache.region.factory_class"
>org.hibernate.cache.infinispan.JndiInfinispanRegionFactory</property>
<property name="hibernate.cache.infinispan.cachemanager">
java:CacheManager/entity</property>



JBoss Application Server

JBoss Application Server 6 and 7 deploy a shared Infinispan cache manager that
can be used by all services, so when trying to configure applications with
Infinispan second level cache, you should use the JNDI name for the cache
manager responsible for the second level cache. By default, this is
"java:CacheManager/entity". In any other application server, you can deploy your
own cache manager and bind the CacheManager to JNDI, but in this cases it’s
generally preferred that the following method is used.

• If running JPA/Hibernate and Infinispan standalone or within third party Application Server,
select the InfinispanRegionFactory as the cache region factory:

<!-- If using JPA, add to your persistence.xml -->
<property name="hibernate.cache.region.factory_class" value=
"org.hibernate.cache.infinispan.InfinispanRegionFactory"/>

292

<!-- If using Hibernate, add to your hibernate.cfg.xml -->
<property name="hibernate.cache.region.factory_class"
>org.hibernate.cache.infinispan.InfinispanRegionFactory</property>

This is all the configuration you need to have JPA/Hibernate use Infinispan as cache provider with
the default settings. You will still need to define which entities and queries need to be cached as
defined in the Hibernate reference documentation, but that configuration aspect is not peculiar to
Infinispan. This default configuration should suit the majority of use cases but sometimes, further
configuration is required and to help with such situations, please check the following section where
more advanced settings are discussed.

22.5.2. Default Configuration Explained

The aim of this section is to explain the default settings for each of the different global data type
(entity, collection, query and timestamps) caches, why these were chosen and what are the
available alternatives.

Defaults for Entity/Collection Caching

• For all entities and collections, whenever a new entity or collection is read from database and
needs to be cached, it’s only cached locally in order to reduce intra-cluster traffic. This option
cannot be changed.

• All entities and collections are configured to use a synchronous invalidation as clustering mode.
This means that when an entity is updated, the updated cache will send a message to the other
members of the cluster telling them that the entity has been modified. Upon receipt of this
message, the other nodes will remove this data from their local cache, if it was stored there. This
option can be changed to use replication by configuring entities or collections to use "replicated-
entity" cache but it’s generally not a recommended choice.

• All entities and collections have initial state transfer disabled since there’s no need for it. It’s not
recommended that this is enabled.

• entities and collections are configured to use READ_COMMITTED as cache isolation level. It
would only make sure to configure REPEATABLE_READ if the application evicts/clears entities
from the Hibernate Session and then expects to repeatably re-read them in the same
transaction. Otherwise, the Session’s internal cache provides repeatable-read semantics. If you
really need to use REPEATABLE_READ, you can simply configure entities or collections to use
"entity-repeatable" cache.

• Entities and collections are configured with the following eviction settings. You can change
these settings on a per entity or collection basis or per individual entity or collection type. More
information in the "Advanced Configuration" section below.

• Eviction wake up interval is 5 seconds.

• Max number of entries are 10,000

• Max idle time before expiration is 100 seconds

• entites and collections are configured with lazy deserialization which helps deserialization when
entities or collections are stored in isolated deployments. If you’re sure you’ll never deploy your

293

entities or collections in classloader isolated deployment archives, you can disable this setting.

Defaults for Query Caching

• The query cache is configured so that queries are only cached locally . Alternatively, you can
configure query caching to use replication by selecting the "replicated-query" as query cache
name. However, replication for query cache only makes sense if, and only if, all of this
conditions are true:

• Performing the query is quite expensive.

• The same query is very likely to be repeatedly executed on different cluster nodes.

• The query is unlikely to be invalidated out of the cache (Note: Hibernate must aggressively
invalidate query results from the cache any time any instance of one of the entity types
targeted by the query. All such query results are invalidated, even if the change made to the
specific entity instance would not have affected the query result)

• query cache uses the same cache isolation levels and eviction/expiration settings as for
entities/collections .

• query cache has initial state transfer disabled . It is not recommended that this is enabled.

Defaults for Timestamps Cache

• The timestamps cache is configured with asynchronous replication as clustering mode. Local or
invalidated cluster modes are not allowed, since all cluster nodes must store all timestamps. As
a result, no eviction/expiration is allowed for timestamp caches either .

• The timestamps cache is configured with a cluster cache loader (in Hibernate 3.6.0 or earlier it
had state transfer enabled) so that joining nodes can retrieve all timestamps. You shouldn’t
attempt to disable the cluster cache loader for the timestamps cache.

22.5.3. JTA Transactions Configuration

It is highly recommended that Hibernate is configured with JTA transactions so that both Hibernate
and Infinispan cooperate within the same transaction and the interaction works as expected.

Otherwise, if Hibernate is configured for example with JDBC transactions, Hibernate will create a
Transaction instance via java.sql.Connection and Infinispan will create a transaction via whatever
TransactionManager returned by hibernate.transaction.manager_lookup_class. If
hibernate.transaction.manager_lookup_class has not been populated, it will default on the dummy
transaction manager. So, any work on the 2nd level cache will be done under a different
transaction to the one used to commit the stuff to the database via Hibernate. In other words, your
operations on the database and the 2LC are not treated as a single unit. Risks here include failures
to update the 2LC leaving it with stale data while the database committed data correctly. It has also
been observed that under some circumstances where JTA was not used, commit/rollbacks are not
propagated to Infinispan.

To sum up, if you configure Hibernate with Infinispan, apply the following changes to your
configuration file:

294

1\. Unless your application uses JPA, you need to select the correct Hibernate transaction factory via
the property hibernate.transaction.factory_class :

• If you’re running within an application server, it’s recommended that you use:

<!-- If using JPA, add to your persistence.xml -->
<property name="hibernate.transaction.factory_class" value=
"org.hibernate.transaction.CMTTransactionFactory"/>

<!-- If using Hibernate, add to your hibernate.cfg.xml -->
<property name="hibernate.transaction.factory_class"
>org.hibernate.transaction.CMTTransactionFactory</property>

• If you’re running in a standalone environment and you wanna enable JTA transaction factory,
use:

<!-- If using JPA, add to your persistence.xml -->
<property name="hibernate.transaction.factory_class" value=
"org.hibernate.transaction.JTATransactionFactory"/>

<!-- If using Hibernate, add to your hibernate.cfg.xml -->
<property name="hibernate.transaction.factory_class"
>org.hibernate.transaction.JTATransactionFactory</property>

The reason why JPA does not require a transaction factory class to be set up is because the entity
manager already sets it to a variant of CMTTransactionFactory.

2\. Select the correct Hibernate transaction manager lookup:

• If you’re running within an application server, select the appropriate lookup class according to
"JTA Transaction Managers" table .

For example if you were running with the JBoss Application Server you would set:

 <!-- If using JPA, add to your persistence.xml -->
<property name="hibernate.transaction.manager_lookup_class"
 value="org.hibernate.transaction.JBossTransactionManagerLookup"/>

<!-- If using Hibernate, add to your hibernate.cfg.xml -->
<property name="hibernate.transaction.manager_lookup_class">
 org.hibernate.transaction.JBossTransactionManagerLookup
</property>

• If you are running standalone and you want to add a JTA transaction manager lookup, things

295

http://docs.jboss.org/hibernate/core/3.3/reference/en/html/session-configuration.html#configuration-optional-transactionstrategy

get a bit more complicated. Due to a current limitation, Hibernate does not support injecting a
JTA TransactionManager or JTA UserTransaction that are not bound to JNDI. In other words, if
you want to use JTA, Hibernate expects your TransactionManager to be bound to JNDI and it
also expects that UserTransaction instances are retrieved from JNDI. This means that in a
standalone environment, you need to add some code that binds your TransactionManager and
UserTransaction to JNDI. With this in mind and with the help of one of our community
contributors, we’ve created an example that does just that: JBoss Standalone JTA Example . Once
you have the code in place, it’s just a matter of selecting the correct Hibernate transaction
manager lookup class, based on the JNDI names given. If you take JBossStandaloneJtaExample as
an example, you simply have to add:

 <!-- If using JPA, add to your persistence.xml -->
<property name="hibernate.transaction.manager_lookup_class"
 value="org.hibernate.transaction.JBossTransactionManagerLookup"/>

<!-- If using Hibernate, add to your hibernate.cfg.xml -->
<property name="hibernate.transaction.manager_lookup_class">
 org.hibernate.transaction.JBossTransactionManagerLookup
</property>

As you probably have noted through this section, there wasn’t a single mention of the need to
configure Infinispan’s transaction manager lookup and there’s a good reason for that. Basically, the
code within Infinispan cache provider takes the transaction manager that has been configured at
the Hibernate level and uses that. Otherwise, if no Hibernate transaction manager lookup class has
been defined, Infinispan uses a default dummy transaction manager.

Since Hibernate 4.0, the way Infinispan hooks into the transaction manager can be configured. By
default, since 4.0, Infinispan interacts with the transaction manager as a JTA synchronization,
resulting in a faster interaction with the 2LC thanks to some key optimisations that the transaction
manager can apply. However if desired, users can configure Infinispan to act as an XA resource
(just like it did in 3.6 and earlier) by disabling the use of the synchronization. For example:

<!-- If using JPA, add to your persistence.xml: -->
<property name="hibernate.cache.infinispan.use_synchronization" value="false"/>

<!-- If using Hibernate, add to your hibernate.cfg.xml: -->
<property name="hibernate.cache.infinispan.use_synchronization">
 false
</property>

22.5.4. Advanced Configuration

Infinispan has the capability of exposing statistics via JMX and since Hibernate 3.5.0.Beta4, you can
enable such statistics from the Hibernate/JPA configuration file. By default, Infinispan statistics are

296

http://anonsvn.jboss.org/repos/hibernate/core/trunk/cache-infinispan/src/test/java/org/hibernate/test/cache/infinispan/tm/JBossStandaloneJtaExampleTest.java
http://docs.jboss.org/infinispan/5.0/apidocs/config.html#ce_default_transaction

turned off but when these are disabled via the following method, statistics for the Infinispan Cache
Manager and all the managed caches (entity, collection, etc) are enabled:

<!-- If using JPA, add to your persistence.xml -->
<property name="hibernate.cache.infinispan.statistics" value="true"/>

<!-- If using Hibernate, add to your hibernate.cfg.xml: -->
<property name="hibernate.cache.infinispan.statistics">true</property>

The Infinispan cache provider jar file contains an Infinispan configuration file, which is the one
used by default when configuring the Infinispan standalone cache region factory. This file contains
default cache configurations for all Hibernate data types that should suit the majority of use cases.
However, if you want to use a different configuration file, you can configure it via the following
property:

<!-- If using JPA, add to your persistence.xml -->
<property name="hibernate.cache.infinispan.cfg"
 value="/home/infinispan/cacheprovider-configs.xml"/>

<!-- If using Hibernate, add to your hibernate.cfg.xml: -->
<property name="hibernate.cache.infinispan.cfg">
 /home/infinispan/cacheprovider-configs.xml
</property>

For each Hibernate cache data types, Infinispan cache region factory has defined a default cache
name to look up in either the default, or the user defined, Infinispan cache configuration file. These
default values can be found in the Infinispan cache provider javadoc . You can change these cache
names using the following properties:

<!-- If using JPA, add to your persistence.xml: -->
<property name="hibernate.cache.infinispan.entity.cfg"
 value="custom-entity"/>
<property name="hibernate.cache.infinispan.collection.cfg"
 value="custom-collection"/>
<property name="hibernate.cache.infinispan.query.cfg"
 value="custom-collection"/>
<property name="hibernate.cache.infinispan.timestamp.cfg"
 value="custom-timestamp"/>

297

http://docs.jboss.org/hibernate/core/4.0/javadocs/constant-values.html#org.hibernate.cache.infinispan.InfinispanRegionFactory.INFINISPAN_CONFIG_RESOURCE_PROP

<!-- If using Hibernate, add to your hibernate.cfg.xml -->
<property name="hibernate.cache.infinispan.entity.cfg">
 custom-entity
</property>
<property name="hibernate.cache.infinispan.collection.cfg">
 custom-collection
</property>
<property name="hibernate.cache.infinispan.query.cfg">
 custom-collection
</property>
<property name="hibernate.cache.infinispan.timestamp.cfg">
 custom-timestamp
</property>

One of the key improvements brought in by Infinispan is the fact that cache instances are more
lightweight than they used to be in JBoss Cache. This has enabled a radical change in the way
entity/collection type cache management works. With the Infinispan cache provider, each
entity/collection type gets each own cache instance, whereas in old JBoss Cache based cache
providers, all entity/collection types would be sharing the same cache instance. As a result of this,
locking issues related to updating different entity/collection types concurrently are avoided
completely.

This also has an important bearing on the meaning of hibernate.cache.infinispan.entity.cfg and
hibernate.cache.infinispan.collection.cfg properties. These properties define the template cache
name that should be used for all entity/collection data types. So, with the above
hibernate.cache.infinispan.entity.cfg configuration, when a region needs to be created for entity
com.acme.Person, the cache instance to be assigned to this entity will be based on a "custom-entity"
named cache.

On top of that, this finer grained cache definition enables users to define cache settings on a per
entity/collection basis. For example:

<!-- If using JPA, add to your persistence.xml -->
<property name="hibernate.cache.infinispan.com.acme.Person.cfg"
 value="person-entity"/>
<property name="hibernate.cache.infinispan.com.acme.Person.addresses.cfg"
 value="addresses-collection"/>

<!-- If using Hibernate, add to your hibernate.cfg.xml -->
<property name="hibernate.cache.infinispan.com.acme.Person.cfg">
 person-entity
</property>
<property name="hibernate.cache.infinispan.com.acme.Person.addresses.cfg">
 addresses-collection
</property>

298



For any entity or collection specific properties, if you are running within JBoss
Application Server, JBoss EAP, or Widlfly, providing just the entity name is not
enough. You need to add unit name and deployment name as well to each
property in the following format:
hibernate.cache.infinispan.<warname>.<unitname>.<FQN of entity>…..

Here, we’re configuring the Infinispan cache provider so that for com.acme.Person entity type, the
cache instance assigned will be based on a "person-entity" named cache, and for
com.acme.Person.addresses collection type, the cache instance assigned will be based on a
"addresses-collection" named cache. If either of these two named caches did not exist in the
Infinispan cache configuration file, the cache provider would create a cache instance for
com.acme.Person entity and com.acme.Person.addresses collection based on the default cache in
the configuration file.

Furthermore, thanks to the excellent feedback from the Infinispan community and in particular,
Brian Stansberry, we’ve decided to allow users to define the most commonly tweaked Infinispan
cache parameters via hibernate.cfg.xml or persistence.xml, for example eviction/expiration
settings. So, with the Infinispan cache provider, you can configure eviction/expiration this way:

<!-- If using JPA, add to your persistence.xml -->
<property name="hibernate.cache.infinispan.entity.eviction.strategy"
 value= "LRU"/>
<property name="hibernate.cache.infinispan.entity.eviction.wake_up_interval"
 value= "2000"/>
<property name="hibernate.cache.infinispan.entity.eviction.max_entries"
 value= "5000"/>
<property name="hibernate.cache.infinispan.entity.expiration.lifespan"
 value= "60000"/>
<property name="hibernate.cache.infinispan.entity.expiration.max_idle"
 value= "30000"/>

<!-- If using Hibernate, add to your hibernate.cfg.xml -->
<property name="hibernate.cache.infinispan.entity.eviction.strategy">
 LRU
</property>
<property name="hibernate.cache.infinispan.entity.eviction.wake_up_interval">
 2000
</property>
<property name="hibernate.cache.infinispan.entity.eviction.max_entries">
 5000
</property>
<property name="hibernate.cache.infinispan.entity.expiration.lifespan">
 60000
</property>
<property name="hibernate.cache.infinispan.entity.expiration.max_idle">
 30000
</property>

299

With the above configuration, you’re overriding whatever eviction/expiration settings were defined
for the default entity cache name in the Infinispan cache configuration used, regardless of whether
it’s the default one or user defined. More specifically, we’re defining the following:

• All entities to use LRU eviction strategy

• The eviction thread to wake up every 2000 milliseconds

• The maximum number of entities for each entity type to be 5000 entries

• The lifespan of each entity instance to be 600000 milliseconds

• The maximum idle time for each entity instance to be 30000

You can also override eviction/expiration settings on a per entity/collection type basis in such way
that the overriden settings only afftect that particular entity (i.e. com.acme.Person) or collection
type (i.e. com.acme.Person.addresses). For example:

<!-- If using JPA, add to your persistence.xml -->
<property name="hibernate.cache.infinispan.com.acme.Person.eviction.strategy"
 value= "FIFO"/>
<property name="hibernate.cache.infinispan.com.acme.Person.eviction.wake_up_interval"
 value= "2500"/>
<property name="hibernate.cache.infinispan.com.acme.Person.eviction.max_entries"
 value= "5500"/>
<property name="hibernate.cache.infinispan.com.acme.Person.expiration.lifespan"
 value= "65000"/>
<property name="hibernate.cache.infinispan.com.acme.Person.expiration.max_idle"
 value= "35000"/>

<!-- If using Hibernate, add to your hibernate.cfg.xml -->
<property name="hibernate.cache.infinispan.com.acme.Person.eviction.strategy">
 FIFO
</property>
<property name="hibernate.cache.infinispan.com.acme.Person.eviction.wake_up_interval">
 2500
</property>
<property name="hibernate.cache.infinispan.com.acme.Person.eviction.max_entries">
 5500
</property>
<property name="hibernate.cache.infinispan.com.acme.Person.expiration.lifespan">
 65000
</property>
<property name="hibernate.cache.infinispan.com.acme.Person.expiration.max_idle">
 35000
</property>

The aim of these configuration capabilities is to reduce the number of files needed to modify in
order to define the most commonly tweaked parameters. So, by enabling eviction/expiration
configuration on a per generic Hibernate data type or particular entity/collection type via

300

hibernate.cfg.xml or persistence.xml, users don’t have to touch to Infinispan’s cache configuration
file any more. We believe users will like this approach and so, if you there are any other Infinispan
parameters that you often tweak and these cannot be configured via hibernate.cfg.xml or
persistence.xml, please let the Infinispan team know by sending an email to infinispan-
dev@lists.jboss.org .

Please note that query/timestamp caches work the same way they did with JBoss Cache based cache
providers. In other words, there’s a query cache instance and timestamp cache instance shared by
all. It’s worth noting that eviction/expiration settings are allowed for query cache but not for
timestamp cache. So configuring an eviction strategy other than NONE for timestamp cache would
result in a failure to start up.

Finally, from Hibernate 3.5.4 and 3.6 onwards, queries with specific cache region names are stored
under matching cache instances. This means that you can now set query cache region specific
settings. For example, assuming you had a query like this:

Query query = session.createQuery(
 "select account.branch from Account as account where account.holder = ?");
query.setCacheable(true);
query.setCacheRegion("AccountRegion");

The query would be stored under "AccountRegion" cache instance and users could control settings
in similar fashion to what was done with entities and collections. So, for example, you could define
specific eviction settings for this particular query region doing something like this:

<!-- If using JPA, add to your persistence.xml -->
<property name="hibernate.cache.infinispan.AccountRegion.eviction.strategy"
 value= "FIFO"/>
<property name="hibernate.cache.infinispan.AccountRegion.eviction.wake_up_interval"
 value= "10000"/>

<!-- If using Hibernate, add to your hibernate.cfg.xml -->
<property name="hibernate.cache.infinispan.AccountRegion.eviction.strategy">
 FIFO
</property>
<property name="hibernate.cache.infinispan.AccountRegion.eviction.wake_up_interval">
 10000
</property>

22.5.5. Handling custom identifiers types

When custom identifier types are used in Hibernate/JPA entities, specially in the case of composite
identifiers, the resulting cache keys can end up holding references to SessionFactory instances.
Serializing those properly in a clustered environment depends on being able to resolve the proper
SessionFactory reference on deserialization, which can happen based on UUID (same JVM) or name
(across JVMs).

301

mailto:infinispan-dev@lists.jboss.org
mailto:infinispan-dev@lists.jboss.org

When the resolution does not succeed, it’s common to see errors similar to this:

java.io.InvalidObjectException: Could not find a SessionFactory [uuid=0d0cdf26-dfe6-
4285-9725-dfaa4821ecba,name=null]
 at org.hibernate.internal.SessionFactoryImpl.
locateSessionFactoryOnDeserialization(SessionFactoryImpl.java:1781)
 at org.hibernate.internal.SessionFactoryImpl.readResolve(SessionFactoryImpl.java
:1761)

The way to get around these error is by locking down the name of the SessionFactory across JVMs.
This can be done by adding the following properties in the clustered application’s configuration:

hibernate.session_factory_name = MySessionFactory
hibernate.session_factory_name_is_jndi = false


These properties are not necessary if deploying in JBoss Application Server,
Wildfly or EAP containers, since the integration code already populates session
factory name based on deployment unit information.

22.5.6. Integration with WildFly

In WildFly, Infinispan is the default second level cache provider and you can find details about its
configuration in the JPA reference guide .

Infinispan based Hibernate 2LC was developed as part of Hibernate 3.5 release and so it currently
only works within AS 6 or higher. Hibernate 3.5 is not designed to work with AS/EAP 5.x or lower.
To be able to run Infinispan based Hibernate 2LC in a lower AS version such as 5.1, the Infinispan
2LC module would require porting to Hibernate 3.3.


Looking to integrate Infinispan with Hibernate in JBoss AS/EAP 5.x? Read this
section!

22.5.7. Using Infinispan as remote Second Level Cache?

Lately, several questions (here and here) have appeared in the Infinispan user forums asking
whether it’d be possible to have an Infinispan second level cache that instead of living in the same
JVM as the Hibernate code, it resides in a remote server, i.e. an Infinispan Hot Rod server. It’s
important to understand that trying to set up second level cache in this way is generally not a good
idea for the following reasons:

• The purpose of a JPA/Hibernate second level cache is to store entities/collections recently
retrieved from database or to maintain results of recent queries. So, part of the aim of the
second level cache is to have data accessible locally rather than having to go to the database to
retrieve it everytime this is needed. Hence, if you decide to set the second level cache to be
remote as well, you’re losing one of the key advantages of the second level cache: the fact that
the cache is local to the code that requires it.

302

https://docs.jboss.org/author/display/WFLY10/JPA%20Reference%20Guide
http://community.jboss.org/message/575814#575814
http://community.jboss.org/message/585841#585841

• Setting a remote second level cache can have a negative impact in the overall performance of
your application because it means that cache misses require accessing a remote location to
verify whether a particular entity/collection/query is cached. With a local second level cache
however, these misses are resolved locally and so they are much faster to execute than with a
remote second level cache.

There are however some edge cases where it might make sense to have a remote second level
cache, for example:

• You are having memory issues in the JVM where JPA/Hibernate code and the second level cache
is running. Off loading the second level cache to remote Hot Rod servers could be an interesting
way to separate systems and allow you find the culprit of the memory issues more easily.

• Your application layer cannot be clustered but you still want to run multiple application layer
nodes. In this case, you can’t have multiple local second level cache instances running because
they won’t be able to invalidate each other for example when data in the second level cache is
updated. In this case, having a remote second level cache could be a way out to make sure your
second level cache is always in a consistent state, will all nodes in the application layer pointing
to it.

• Rather than having the second level cache in a remote server, you want to simply keep the
cache in a separate VM still within the same machine. In this case you would still have the
additional overhead of talking across to another JVM, but it wouldn’t have the latency of across
a network. The benefit of doing this is that:

• Size the cache separate from the application, since the cache and the application server have
very different memory profiles. One has lots of short lived objects, and the other could have lots
of long lived objects.

• To pin the cache and the application server onto different CPU cores (using numactl), and even
pin them to different physically memory based on the NUMA nodes.

22.6. Implementing standalone JPA JTA Hibernate
application outside J2EE server using Infinispan 2nd
level cache


From Hibernate 4.0.1 onwards, Infinispan now interacts as a synchronization
rather than as an XA resource with the transaction manager when used as
second-level cache, so there’s no longer need to apply any of the changes
suggested below!

Infinispans predecessor JBoss Cache requires integration with JTA when used as 2L-cache for a
Hibernate application. At the moment of writing this article (Hibernate 3.5.0.Beta3) also Infinispan
requires integration with JTA. Hibernate integrated with JTA is already largely used in EJB
applications servers, but most users using Hibernate with Java SE outside any EJB container, still
use the plain JDBC approach instead to use JTA.

According Hibernate documentation it should also possible to integrate JTA in a standalone
application outside any EJB container, but I did hardly find any documentation how to do that in

303

http://www.jboss.org/file-access/default/members/jbossclustering/freezone/docs/hibernate-caching/3.3/en-US/html/introduction-requirements.html

detail. (probably the reason is, that probably 95% of people is using hibernate within a EJB app.
server or using SPRING). This article should give you some example how to realize a standalone
Hibernate app. outside of a EJB container with JTA integration (and using Infinispan 2nd level
cache).

As first thing you have to choose which implementation of TransactionManager to take. This article
comes with examples for following OpenSource TransactionManagers:

1. JBoss

2. JOTM

3. Bitronix

4. Atomikos



Datasource/Transaction interaction

A very important aspect is not forgetting to couple the datasource with your
transaction manager. In other words, the corresponding XAResource must be
onto the transaction manager, otherwise only DML-statements but no
commits/rollbacks are propagated to your database.

22.6.1. JBoss Transactions

The example with JBoss Transactions Transaction Manager was the most complex to implement, as
JBoss’s TransactionManager and UserTransaction objects are not declared serializable whilst its
JNDI-server isn’t able to bind non serializable objects out of the box. Special use of
NonSerializableFactory is needed, requiring some additional custom code:

import hello.A; // a persistent class
import java.io.Serializable;
import java.sql.Connection;
import java.sql.SQLException;
import java.util.Properties;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.Name;
import javax.naming.NameNotFoundException;
import javax.naming.Reference;
import javax.naming.StringRefAddr;
import javax.persistence.EntityManager;
import javax.persistence.Persistence;
import javax.transaction.TransactionManager;
import javax.transaction.UserTransaction;

import org.enhydra.jdbc.standard.StandardXADataSource;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.ejb.HibernateEntityManagerFactory;
import org.hibernate.transaction.JBossTransactionManagerLookup;

304

import org.infinispan.transaction.lookup.JBossStandaloneJTAManagerLookup;
import org.jboss.util.naming.NonSerializableFactory;
import org.jnp.interfaces.NamingContext;
import org.jnp.server.Main;
import org.jnp.server.NamingServer;

public class JTAStandaloneExampleJBossTM {

 static JBossStandaloneJTAManagerLookup _ml = new JBossStandaloneJTAManagerLookup
();

 public static void main(String[] args) {
 try {
 // Create an in-memory jndi
 NamingServer namingServer = new NamingServer();
 NamingContext.setLocal(namingServer);
 Main namingMain = new Main();
 namingMain.setInstallGlobalService(true);
 namingMain.setPort(-1);
 namingMain.start();

 Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
"org.jnp.interfaces.NamingContextFactory");
 props.put("java.naming.factory.url.pkgs",
"org.jboss.naming:org.jnp.interfaces");

 InitialContext ictx = new InitialContext(props);

 // as JBossTransactionManagerLookup extends JNDITransactionManagerLookup
we must also register the TransactionManager
 bind("java:/TransactionManager", _ml.getTransactionManager(), _ml
.getTransactionManager().getClass(), ictx);

 // also the UserTransaction must be registered on jndi:
org.hibernate.transaction.JTATransactionFactory#getUserTransaction() requires this
 bind(new JBossTransactionManagerLookup().getUserTransactionName(),_ml
.getUserTransaction(),_ml.getUserTransaction().getClass(), ictx);

 ExtendedXADataSource xads = new ExtendedXADataSource();
 xads.setDriverName("org.hsqldb.jdbcDriver");
 xads.setDriverName("com.p6spy.engine.spy.P6SpyDriver"); // comment this
line if you don't want p6spy-logging
 xads.setUrl("jdbc:hsqldb:hsql://localhost");
 //xads.setTransactionManager(_ml.getTransactionManager()); useless here as
this information is not serialized

 ictx.bind("java:/MyDatasource", xads);

305

 final HibernateEntityManagerFactory emf = (HibernateEntityManagerFactory)
Persistence.createEntityManagerFactory("helloworld");

 UserTransaction userTransaction = _ml.getUserTransaction();
 userTransaction.setTransactionTimeout(300000);
 //SessionFactory sf = (SessionFactory)
ictx.lookup("java:/hibernate/MySessionFactory"); // if hibernate.session_factory_name
set
 final SessionFactory sf = emf.getSessionFactory();

 userTransaction.begin();
 EntityManager em = emf.createEntityManager();

 // do here your persistent work
 A a = new A();
 a.name= "firstvalue";
 em.persist(a);
 em.flush(); // do manually flush here as apparently
FLUSH_BEFORE_COMPLETION seems not work, bug ?

 System.out.println("\nCreated and flushed instance a with id : " + a.oid +
" a.name set to:" + a.name);

 System.out.println("Calling userTransaction.commit() (Please check if the
commit is effectively executed!)");
 userTransaction.commit();

 ictx.close();
 namingMain.stop();
 emf.close();

 } catch (Exception e) {
 e.printStackTrace();
 }
 System.exit(0);
 }

 public static class ExtendedXADataSource extends StandardXADataSource { // XAPOOL

 @Override
 public Connection getConnection() throws SQLException {

 if (getTransactionManager() == null) { // although already set before, it
results null again after retrieving the datasource by jndi
 TransactionManager tm; // this is because the TransactionManager
information is not serialized.
 try {
 tm = _ml.getTransactionManager();
 } catch (Exception e) {
 throw new SQLException(e);

306

 }
 setTransactionManager(tm); // resets the TransactionManager on the
datasource retrieved by jndi,
 // this makes the datasource JTA-aware
 }

 // According to Enhydra documentation, here we must return the connection
of our XAConnection
 // see http://cvs.forge.objectweb.org/cgi-
bin/viewcvs.cgi/xapool/xapool/examples/xapooldatasource/DatabaseHelper.java?sortby=rev
 return super.getXAConnection().getConnection();
 }
 }

 /**
 * Helper method that binds the a non serializable object to the JNDI tree.
 *
 * @param jndiName Name under which the object must be bound
 * @param who Object to bind in JNDI
 * @param classType Class type under which should appear the bound object
 * @param ctx Naming context under which we bind the object
 * @throws Exception Thrown if a naming exception occurs during binding
 */
 private static void bind(String jndiName, Object who, Class classType, Context
ctx) throws Exception {
 // Ah ! This service isn't serializable, so we use a helper class
 NonSerializableFactory.bind(jndiName, who);
 Name n = ctx.getNameParser("").parse(jndiName);
 while (n.size() > 1) {
 String ctxName = n.get(0);
 try {
 ctx = (Context) ctx.lookup(ctxName);
 } catch (NameNotFoundException e) {
 System.out.println("Creating subcontext:" + ctxName);
 ctx = ctx.createSubcontext(ctxName);
 }
 n = n.getSuffix(1);
 }

 // The helper class NonSerializableFactory uses address type nns, we go on to
 // use the helper class to bind the service object in JNDI
 StringRefAddr addr = new StringRefAddr("nns", jndiName);
 Reference ref = new Reference(classType.getName(), addr,
NonSerializableFactory.class.getName(), null);
 ctx.rebind(n.get(0), ref);
 }

 private static void unbind(String jndiName, Context ctx) throws Exception {
 NonSerializableFactory.unbind(jndiName);
 ctx.unbind(jndiName);
 }

307

}

The content of the corresponding complete persistence.xml:

<persistence xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=
"http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0">
 <persistence-unit name="helloworld" transaction-type="JTA">
 <jta-data-source>java:/MyDatasource</jta-data-source>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value = "create"/>
 <property name="hibernate.archive.autodetection" value="class, hbm"/>
 <property name="hibernate.dialect" value="
org.hibernate.dialect.HSQLDialect"/>

 <property name="hibernate.jndi.class" value=
"org.jnp.interfaces.NamingContextFactory"/>
 <property name="hibernate.transaction.manager_lookup_class" value=
"org.hibernate.transaction.JBossTransactionManagerLookup"/>

 <property name="current_session_context_class" value="jta"/>
 <!-- <property name="hibernate.session_factory_name"
value="java:/hibernate/MySessionFactory"/> optional -->
 <property name="hibernate.transaction.factory_class" value=
"org.hibernate.transaction.JTATransactionFactory"/>
 <property name="hibernate.connection.release_mode" value="auto"/>
 <!-- setting above is important using XA-DataSource on SQLServer,
 otherwise SQLServerException: The function START: has failed. No
transaction cookie was returned.-->

 <property name="hibernate.cache.use_second_level_cache" value="true"/>
 <property name="hibernate.cache.use_query_cache" value="true"/>

 <property name="hibernate.cache.region.factory_class" value=
"org.hibernate.cache.infinispan.InfinispanRegionFactory"/>

 </properties>
 </persistence-unit>
</persistence>

22.6.2. JOTM

The example with JOTM is more simple, but apparently its JNDI implementation is not useable
without wasting any rmi port. So it is not completely 'standalone' as the JNDI service is exposed
outside your virtual machine.

308

import hello.A; // a persistent class

import java.sql.Connection;
import java.sql.SQLException;
import java.util.Properties;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;
import javax.transaction.TransactionManager;
import javax.transaction.UserTransaction;

import org.enhydra.jdbc.standard.StandardXADataSource;
import org.hibernate.transaction.JOTMTransactionManagerLookup;
import org.objectweb.jotm.Jotm;
import org.objectweb.transaction.jta.TMService;

public class JTAExampleJOTM {

 static JOTMTransactionManagerLookup _ml = new JOTMTransactionManagerLookup();

 public static class ExtendedXADataSource extends StandardXADataSource { // XAPOOL
 @Override
 public Connection getConnection() throws SQLException {
 if (getTransactionManager() == null) { // although already set before, it
results null again after retrieving the datasource by jndi
 TransactionManager tm; // this is because the TransactionManager
information is not serialized.
 try {
 tm = _ml.getTransactionManager(null);
 } catch (Exception e) {
 throw new SQLException(e);
 }
 setTransactionManager(tm); // resets the TransactionManager on the
datasource retrieved by jndi,
 // this makes the datasource JTA-aware
 }

 // According to Enhydra documantation, here we must return the connection
of our XAConnection
 // see http://cvs.forge.objectweb.org/cgi-
bin/viewcvs.cgi/xapool/xapool/examples/xapooldatasource/DatabaseHelper.java?sortby=rev
 return super.getXAConnection().getConnection();
 }
 }

 public static void main(String[] args)

309

 {
 try
 {
 java.rmi.registry.LocateRegistry.createRegistry(1099); // also possible to
lauch by command line rmiregistry
 System.out.println("RMI registry ready.");

 // following properties can be left out if specifying thes values in a file
jndi.properties located into classpath
 Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
"org.ow2.carol.jndi.spi.MultiOrbInitialContextFactory");
 InitialContext jndiCtx = new InitialContext(props);

 // XAPOOL
 ExtendedXADataSource xads = new ExtendedXADataSource();
 xads.setDriverName("org.hsqldb.jdbcDriver");
 xads.setDriverName("com.p6spy.engine.spy.P6SpyDriver");
 xads.setUrl("jdbc:hsqldb:hsql://localhost");

 jndiCtx.bind("java:/MyDatasource", xads);

 /* startup JOTM */
 TMService jotm = new Jotm(true, false);
 jotm.getUserTransaction().setTransactionTimeout(36000); // secs, important
JOTM default is only 60 secs !

 /* and get a UserTransaction */
 UserTransaction userTransaction = jotm.getUserTransaction();

 jndiCtx.bind("java:comp/UserTransaction", jotm.getUserTransaction()); //
this is needed by hibernates JTATransactionFactory

 /* get the Hibernate SessionFactory */
 EntityManagerFactory emf = Persistence.createEntityManagerFactory(
"helloworld");
 //SessionFactory sf = (SessionFactory)
jndiCtx.lookup("java:/hibernate/MySessionFactory");

 // begin a new Transaction
 userTransaction.begin();
 EntityManager em = emf.createEntityManager();

 A a = new A();
 a.name= "firstvalue";

310

 em.persist(a);
 em.flush(); // do manually flush here as apparently
FLUSH_BEFORE_COMPLETION seems not work, bug ?

 System.out.println("Calling userTransaction.commit() (Please check if the
commit is effectively executed!)");
 userTransaction.commit();

 // stop the transaction manager
 jotm.stop();
 jndiCtx.close();
 emf.close();

 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 System.exit(0);
 }

}

Adjust following 2 properties in your persistence.xml:

persistence.xml

<property name="hibernate.jndi.class" value=
"org.ow2.carol.jndi.spi.MultiOrbInitialContextFactory"/>
<property name="hibernate.transaction.manager_lookup_class" value=
"org.hibernate.transaction.JOTMTransactionManagerLookup"/>

For using the JTA Hibernate application as servlet in tomcat please read
http://jotm.objectweb.org/current/jotm/doc/howto-tomcat-jotm.html and also
https://forum.hibernate.org/viewtopic.php?f=1&t=1003866

22.6.3. Bitronix

The Transaction Manager comes bundled with a fake in memory jndi-implementation which is
ideal for standalone purpose. To integrate with Infinispan I did need a ad-hoc pre-alpha
improvement (see attached btm-ispn.jar by courtesy of Mr. Ludivic Orban). BitronixTM offers the
so-called Last Resource Commit optimization (aka Last Resource Gambit or Last Agent
optimization) and it allows a single non-XA database to participate in a XA transaction by cleverly
ordering the resources. "Last Resource Commit" is not part of the XA spec as it doesn’t cover the
transaction-recovery aspect, so if your database does not support XA (or if you don’t wish to have
the Xa-driver performance overhead against the plain jdbc) then the "Last Resource Commit"
feature should be ideal for the combination 1 single database plus infinispan.

311

http://jotm.objectweb.org/current/jotm/doc/howto-tomcat-jotm.html
https://forum.hibernate.org/viewtopic.php?f=1&t=1003866
https://docs.jboss.org/author/download/attachments/68355081/btm-ispn.jar?version=1&modificationDate=1308852871000

import hello.A; // a persistent class

import java.util.Properties;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.persistence.EntityManager;
import javax.persistence.Persistence;
import javax.transaction.UserTransaction;

import org.hibernate.cache.infinispan.InfinispanRegionFactory;
import org.hibernate.ejb.HibernateEntityManagerFactory;
import org.hibernate.impl.SessionFactoryImpl;
import org.infinispan.manager.CacheManager;

import bitronix.tm.resource.ResourceRegistrar;
import bitronix.tm.resource.infinispan.InfinispanCacheManager;
import bitronix.tm.resource.jdbc.PoolingDataSource;

public class JTAExampleBTM {
 public static void main(String[] args) {
 try {
 Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
"bitronix.tm.jndi.BitronixInitialContextFactory");
 // Attention: BitronixInitialContextFactory is'nt a real jndi
implementation: you can't do explicit bindings
 // It is ideal for hiberante standalone usage, as it automatically
'binds' the needed things: datasource + usertransaction

 System.out.println("create initial context");
 InitialContext ictx = new InitialContext(props);

 PoolingDataSource myDataSource = new PoolingDataSource();
 myDataSource.setClassName("bitronix.tm.resource.jdbc.lrc.LrcXADataSource
");

 myDataSource.setMaxPoolSize(5);
 myDataSource.setAllowLocalTransactions(true);

 myDataSource.getDriverProperties().setProperty("driverClassName",
"com.p6spy.engine.spy.P6SpyDriver");
 myDataSource.getDriverProperties().setProperty("url",
"jdbc:hsqldb:hsql://localhost");
 myDataSource.getDriverProperties().setProperty("user", "sa");
 myDataSource.getDriverProperties().setProperty("password", "");
 myDataSource.setUniqueName("java:/MyDatasource");
 myDataSource.setAutomaticEnlistingEnabled(true); // important to keep it

312

to true (default), otherwise commits/rollbacks are not propagated
 myDataSource.init(); // does also register the datasource on the Fake-
JNDI with Unique Name

 org.hibernate.transaction.BTMTransactionManagerLookup lokhiberante = new
org.hibernate.transaction.BTMTransactionManagerLookup();

 HibernateEntityManagerFactory emf = (HibernateEntityManagerFactory)
Persistence.createEntityManagerFactory("helloworld");
 SessionFactoryImpl sfi = (SessionFactoryImpl) emf.getSessionFactory();
 InfinispanRegionFactory infinispanregionfactory =
(InfinispanRegionFactory) sfi.getSettings().getRegionFactory();
 CacheManager manager = infinispanregionfactory.getCacheManager();

 // register Inifinispan as a BTM resource
 InfinispanCacheManager icm = new InfinispanCacheManager();
 icm.setUniqueName("infinispan");
 ResourceRegistrar.register(icm);
 icm.setManager(manager);

 final UserTransaction userTransaction = (UserTransaction) ictx.lookup
(lokhiberante.getUserTransactionName());

 // begin a new Transaction
 userTransaction.begin();
 EntityManager em = emf.createEntityManager();

 A a = new A();
 a.name= "firstvalue";
 em.persist(a);
 em.flush(); // do manually flush here as apparently
FLUSH_BEFORE_COMPLETION seems not work, bug ?

 System.out.println("Calling userTransaction.commit() (Please check if the
commit is effectively executed!)");
 userTransaction.commit();

 emf.close();

 } catch (Exception e) {
 e.printStackTrace();
 System.exit(1);
 }
 System.exit(0);

 }
}

Adjust following 2 properties in your corresponding persistence.xml:

313

persistence.xml

<property name="hibernate.jndi.class" value=
"bitronix.tm.jndi.BitronixInitialContextFactory"/>
<property name="hibernate.transaction.manager_lookup_class" value=
"org.hibernate.transaction.BTMTransactionManagerLookup"/>

22.6.4. Atomikos

Last but not least, the Atomikos Transaction manager. It is currently the unique Transaction
manager I’ve found with a online-documentation on how to integrate with Hiberante without
Spring, outside any J2EE container. . It seems to be the unique supporting XaDataSource together
with Pooling, so it doesn’t matter that It does not come with its own JNDI implementation (we will
use the one of JBoss in following example).

import hello.A; // a persistent class

import java.io.Serializable;
import java.sql.Connection;
import java.sql.SQLException;
import java.util.Properties;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.Name;
import javax.naming.NameNotFoundException;
import javax.naming.Reference;
import javax.naming.StringRefAddr;
import javax.persistence.EntityManager;
import javax.persistence.Persistence;
import javax.transaction.TransactionManager;
import javax.transaction.UserTransaction;

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.ejb.HibernateEntityManagerFactory;
import org.hibernate.impl.SessionFactoryImpl;

import org.jboss.util.naming.NonSerializableFactory;
import org.jnp.interfaces.NamingContext;
import org.jnp.server.Main;
import org.jnp.server.NamingServer;

import com.atomikos.icatch.jta.hibernate3.TransactionManagerLookup;
import com.atomikos.jdbc.AtomikosDataSourceBean;
import com.atomikos.jdbc.SimpleDataSourceBean;

public class JTAStandaloneExampleAtomikos {

314

http://www.atomikos.com/Documentation/HibernateIntegration#Without_Spring
http://www.atomikos.com/Documentation/HibernateIntegration#Without_Spring
http://www.atomikos.com/Documentation/HibernateIntegration#Without_Spring

 public static void main(String[] args) {
 try {
 // Create an in-memory jndi
 NamingServer namingServer = new NamingServer();
 NamingContext.setLocal(namingServer);
 Main namingMain = new Main();
 namingMain.setInstallGlobalService(true);
 namingMain.setPort(-1);
 namingMain.start();

 Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
"org.jnp.interfaces.NamingContextFactory");
 props.put("java.naming.factory.url.pkgs",
"org.jboss.naming:org.jnp.interfaces");

 InitialContext ictx = new InitialContext(props);

 AtomikosDataSourceBean ds = new AtomikosDataSourceBean();
 ds.setUniqueResourceName("sqlserver_ds");
 ds.setXaDataSourceClassName(
"com.microsoft.sqlserver.jdbc.SQLServerXADataSource");
 Properties p = new Properties();
 p.setProperty ("user" , "sa");
 p.setProperty ("password" , "");
 p.setProperty ("serverName" , "myserver");
 ds.setXaProperties (p);
 ds.setPoolSize(5);
 bind("java:/MyDatasource", ds, ds.getClass(), ictx);

 TransactionManagerLookup _ml = new TransactionManagerLookup();
 UserTransaction userTransaction = new com.atomikos.icatch.jta
.UserTransactionImp();

 bind("java:/TransactionManager", _ml.getTransactionManager(null), _ml
.getTransactionManager(null).getClass(), ictx);
 bind("java:comp/UserTransaction", userTransaction, userTransaction
.getClass(), ictx);

 HibernateEntityManagerFactory emf = (HibernateEntityManagerFactory)
Persistence.createEntityManagerFactory("helloworld");

 // begin a new Transaction
 userTransaction.begin();
 EntityManager em = emf.createEntityManager();

 A a = new A();
 a.name= "firstvalue";
 em.persist(a);
 em.flush(); // do manually flush here as apparently
FLUSH_BEFORE_COMPLETION seems not work, bug ?

315

 System.out.println("Calling userTransaction.commit() (Please check if the
commit is effectively executed!)");
 userTransaction.commit();

 emf.close();

 } catch (Exception e) {
 e.printStackTrace();
 System.exit(1);
 }
 System.exit(0);
 }

 /**
 * Helper method that binds the a non serializable object to the JNDI tree.
 *
 * @param jndiName Name under which the object must be bound
 * @param who Object to bind in JNDI
 * @param classType Class type under which should appear the bound object
 * @param ctx Naming context under which we bind the object
 * @throws Exception Thrown if a naming exception occurs during binding
 */
 private static void bind(String jndiName, Object who, Class<?> classType, Context
ctx) throws Exception {
 // Ah ! This service isn't serializable, so we use a helper class
 NonSerializableFactory.bind(jndiName, who);
 Name n = ctx.getNameParser("").parse(jndiName);
 while (n.size() > 1) {
 String ctxName = n.get(0);
 try {
 ctx = (Context) ctx.lookup(ctxName);
 } catch (NameNotFoundException e) {
 System.out.println("Creating subcontext:" + ctxName);
 ctx = ctx.createSubcontext(ctxName);
 }
 n = n.getSuffix(1);
 }

 // The helper class NonSerializableFactory uses address type nns, we go on to
 // use the helper class to bind the service object in JNDI
 StringRefAddr addr = new StringRefAddr("nns", jndiName);
 Reference ref = new Reference(classType.getName(), addr,
NonSerializableFactory.class.getName(), null);
 ctx.rebind(n.get(0), ref);
 }

 private static void unbind(String jndiName, Context ctx) throws Exception {
 NonSerializableFactory.unbind(jndiName);
 ctx.unbind(jndiName);
 }

316

}

Adjust follwing 2 properties in your corresponding persistence.xml:

persistence.xml

<property name="hibernate.jndi.class" value="org.jnp.interfaces.NamingContextFactory
"/>
<property name="hibernate.transaction.manager_lookup_class" value=
"com.atomikos.icatch.jta.hibernate3.TransactionManagerLookup"/>

And create a file named jta.properties in your classpath with following content:

jta.properties

com.atomikos.icatch.service=com.atomikos.icatch.standalone.UserTransactionServiceFacto
ry
com.atomikos.icatch.automatic_resource_registration=false
com.atomikos.icatch.console_log_level=WARN
com.atomikos.icatch.force_shutdown_on_vm_exit=true
com.atomikos.icatch.enable_logging=false

22.7. Infinispan as Hibernate 2nd-Level Cache in JBoss
AS 5.x
A JBoss AS 5.x application can be configured to use Infinispan 4.x as the Hibernate 2nd-level cache,
replacing JBoss Cache.

1\. Add the attached jar files to the ear lib directory. These include the core 4.1.0.GA Infinispan jar
(infinispan-core.jar), the Hibernate/Infinispan integration jar back-ported from Hibernate 3.5
(hibernate-infinispan-3.3.2.GA_CP03.jar), the JGroups jar required by Infinispan 4.1.0 (jgroups-
2.10.0.GA.jar), and other required 3rd party jars (river-1.2.3.GA.jar, marshalling-api-1.2.3.GA.jar)

2\. Isolate the classloading to be ear-scoped by adding META-INF/jboss-classloading.xml

META-INF/jboss-classloading.xml

<classloading xmlns="urn:jboss:classloading:1.0" domain="simple-scoped" parent-first=
"false" />

3\. Configure persistence.xml to use Infinispan instead of JBoss Cache:

persistence.xml

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

317

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">
<persistence-unit name="jpa-test">
 <jta-data-source>java:/PostgresDS</jta-data-source>
 <properties>
 <property name="hibernate.dialect" value=
"org.hibernate.dialect.HSQLDialect" />

 <property name="hibernate.session_factory_name" value=
"SessionFactories/infinispan" />

 <property name="hibernate.cache.use_query_cache" value="true" />
 <property name="hibernate.cache.use_second_level_cache" value="true" />
 <property name="hibernate.generate_statistics" value="true" />
 <property name="hibernate.cache.use_structured_entries" value="true" />

 <property name="hibernate.cache.region_prefix" value="infinispan" />

 <property name="hibernate.show_sql" value="true" />

 <property name="hibernate.hbm2ddl.auto" value="validate" />

 <!-- Infinispan second level cache configuration -->
 <property name="hibernate.cache.region.factory_class" value=
"org.hibernate.cache.infinispan.InfinispanRegionFactory" />
 </properties>
 </persistence-unit>
</persistence>

22.8. Using Infinispan as a Spring Cache provider
Starting with version 3.1, the Spring Framework offers a cache abstraction, enabling users to
declaratively add caching support to applications via two simple annotations, @Cacheable and
@CacheEvict. While out of the box Spring’s caching support is backed by EHCache it has been
designed to easily support different cache providers. To that end Spring defines a simple and
straightforward SPI other caching solutions may implement. Infinispan’s very own spring modules
do - amongst other things - exactly this and therefore users invested in Spring’s programming
model may easily have all their caching needs fulfilled through Infinispan.

Here’s how.

22.8.1. Activating Spring Cache support

You activate Spring’s cache support using xml:

318

http://spring.io/
http://docs.spring.io/spring-framework/docs/4.1.1.RELEASE/spring-framework-reference/html/cache.html
http://ehcache.org

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cache="http://www.springframework.org/schema/cache"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache.xsd">

 <cache:annotation-driven />

</beans>

somewhere in your application context. This enable the cache annotations in Spring. Alternatively,
it can be done programmatically:

@EnableCaching @Configuration
public class Config {
}

Now, you will need to add Infinispan and Spring integration module to your classpath. For Maven
users this might be achieved by adding these dependencies:

pom.xml for Spring 4 (embedded mode)

 <dependencies>
 <dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-embedded</artifactId>
 </dependency>
 <dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-spring4-embedded</artifactId>
 <version>${version.spring}</version>
 </dependency>
 <!-- depending on a use case, one should use Spring Context or Spring Boot
jars -->
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>${version.spring}</version>
 </dependency>
 </dependencies>

319

22.8.2. Telling Spring to use Infinispan as its caching provider

Spring cache provider SPI comprises two interfaces, org.springframework.cache.CacheManager and
org.springframework.cache.Cache where a CacheManager serves as a factory for named Cache

instances. By default Spring will look at runtime for a CacheManager implementation having the bean
name "cacheManager" in an application’s application context. So by putting

<!-- Infinispan cache manager -->
<bean id="cacheManager"
 class="org.infinispan.spring.provider.SpringEmbeddedCacheManagerFactoryBean"
 p:configurationFileLocation=
"classpath:/org/infinispan/spring/provider/sample/books-infinispan-config.xml" />

or using java config:

@EnableCaching
@Configuration
public class Config {

 @Bean
 public CacheManager cacheManager() {
 return new SpringEmbeddedCacheManager(infinispanCacheManager());
 }

 private EmbeddedCacheManager infinispanCacheManager() {
 return new DefaultCacheManager();
 }

}

somewhere in your application context you tell Spring to henceforth use Infinispan as its caching
provider.

22.8.3. Adding caching to your application code

As outlined above enabling caching in your application code is as simple as adding @Cacheable and
@CacheEvict to select methods. Suppose you’ve got a DAO for, say, books and you want book
instances to be cached once they’ve been loaded from the underlying database using
BookDao#findBook(Integer bookId). To that end you annotate findBook(Integer bookId) with
@Cacheable, as in

@Transactional
@Cacheable(value = "books", key = "#bookId")
Book findBook(Integer bookId) {...}

This will tell Spring to cache Book instances returned from calls to findBook(Integer bookId) in a
named cache "books", using the parameter’s "bookId" value as a cache key. Here, "#bookId" is an

320

expression in the Spring Expression Language that evaluates to the bookId argument. If you don’t
specify the key attribute Spring will generate a hash from the supplied method arguments - in this
case only bookId - and use that as a cache key. Essentially, you relinquish control over what cache
key to use to Spring. Which may or may not be fine depending on your application’s needs.Though
the notion of actually deleting a book will undoubtedly seem alien and outright abhorrent to any
sane reader there might come the time when your application needs to do just that. For whatever
reason. In this case you will want for such a book to be removed not only from the underlying
database but from the cache, too. So you annotate deleteBook(Integer bookId) with @CacheEvict as
in

@Transactional
@CacheEvict(value = "books", key = "#bookId")
void deleteBook(Integer bookId) {...}

and you may rest assured that no stray books be left in your application once you decide to remove
them.

22.8.4. Externalizing session using Spring Session

Spring Session is a very convenient way to externalize user session into Infinispan cluster.

Spring Session integration allows to use both - embedded and client/server mode. Each mode
requires using proper artifacts (infinispan-spring4-embedded or infinispan-spring4-remote). An
example is shown below:

 <dependencies>
 <dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-embedded</artifactId>
 </dependency>
 <dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-spring4-embedded</artifactId>
 <version>${version.spring}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>${version.spring}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-session</artifactId>
 <version>${version.spring}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>

321

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring-session/docs/current/reference/html5

 <version>${version.spring}</version>
 </dependency>
 </dependencies>

Spring Session integration has been based on Infinispan Spring Cache support so it requires
creating a SpringEmbeddedCacheManagerFactoryBean or SpringRemoteCacheManagerFactoryBean. The next
step it to use @EnableInfinispanEmbeddedHttpSession or @EnableInfinispanRemoteHttpSession

configuration annotation which turns on Spring Session.

@EnableInfinispanEmbeddedHttpSession or @EnableInfinispanRemoteHttpSession annotations have 2
optional parameters:

• maxInactiveIntervalInSeconds - which sets session expiration time in seconds. The default is set
to 1800.

• cacheName - cache name which is used for storing sessions. The default is set to sessions.

A complete, annotation based configuration example is shown below:

@EnableInfinispanEmbeddedHttpSession
@Configuration
public class Config {

 @Bean
 public SpringEmbeddedCacheManagerFactoryBean springCacheManager() {
 return new SpringEmbeddedCacheManagerFactoryBean();
 }

 //An optional configuration bean which is responsible for replacing the default
cookie
 //for obtaining configuration.
 //For more information refer to Spring Session documentation.
 @Bean
 public HttpSessionStrategy httpSessionStrategy() {
 return new HeaderHttpSessionStrategy();
 }
}

22.8.5. Conclusion

Hopefully you enjoyed our quick tour of Infinispan’s support for Spring’s cache and session
abstraction and saw how easy it is for all your caching woes to be taken care of by Infinispan. More
information may be found in Spring’s reference documentation. Also see this link - a very nice
posting on the official Spring blog for a somewhat more comprehensive introduction to Spring’s
cache abstraction.

322

http://docs.spring.io/spring-framework/docs/4.1.1.RELEASE/spring-framework-reference/html/cache.html
http://spring.io/blog/2011/02/23/spring-3-1-m1-cache-abstraction

22.9. Infinispan modules for WildFly
As the Infinispan modules shipped with Wildfly application server are tailored to its internal usage,
it is recommend to install separate modules if you want to use Infinispan in your application that is
deployed to Wildfy. By installing these modules, it is possible to deploy user applications without
packaging the Infinispan JARs within the deployments (WARs, EARs, etc), thus minimizing their
size. Also, there will be no conflict with Wildfly’s internal modules since the slot will be different.

22.9.1. Installation

The modules for Wildfly are available in the downloads section of our site. The zip should be
extracted to WILDFLY_HOME/modules, so that for example the infinispan core module would be under
WILDFLY_HOME/modules/org/infinispan/core.

22.9.2. Usage

If you are using Maven to build your application, mark the Infinispan dependencies as provided
and configure your artifact archiver to generate the appropriate MANIFEST.MF file:

pom.xml

<dependencies>
 <dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-core</artifactId>
 <version>9.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-cachestore-jdbc</artifactId>
 <version>9.0</version>
 <scope>provided</scope>
 </dependency>
</dependencies>
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <configuration>
 <archive>
 <manifestEntries>
 <Dependencies>org.infinispan.core:ispn-9.0 services,
org.infinispan.cachestore.jdbc:ispn-9.0 services</Dependencies>
 </manifestEntries>
 </archive>
 </configuration>
 </plugin>
 </plugins>

323

http://wildfly.org/
http://infinispan.org/download/

</build>

The next section illustrates the manifest entries for different types of Infinispan’s dependencies.

Infinispan core

In order expose only Infinispan core dependencies to your application, add the follow to the
manifest:

MANIFEST.MF

Manifest-Version: 1.0
Dependencies: org.infinispan:ispn-9.0 services

Remote

If you need to connect to remote Infinispan servers via Hot Rod, including execution of remote
queries, use the module org.infinispan.remote that exposes the needed dependencies conveniently:

MANIFEST.MF

Manifest-Version: 1.0
Dependencies: org.infinispan.remote:ispn-9.0 services

Embedded Query

For embedded querying, including the Infinispan Query DSL, Lucene and Hibernate Search
Queries, add the following:

MANIFEST.MF

Manifest-Version: 1.0
Dependencies: org.infinispan:ispn-9.0 services, org.infinispan.query:ispn-9.0 services

Lucene Directory

Lucene users who wants to simple use Infinispan as a org.apache.lucene.store.Directory don’t need
to add the query module, the entry below is sufficient:

MANIFEST.MF

Manifest-Version: 1.0
Dependencies: org.infinispan.lucene-directory:ispn-9.0

Hibernate Search directory provider for Infinispan

The Hibernate Search directory provider for Infinispan is also contained within the Infinispan
modules zip. It is not necessary to add an entry to the manifest file since the Hibernate Search

324

module already has an optional dependency to it. When choosing the Infinispan module zip to use,
start by checking which Hibernate Search is in use, more details below.

Usage with Wildfy’s internal Hibernate Search modules

The Hibernate Search module present in Wildfly 10.x has slot "5.5", which in turn has an optional
dependency to org.infinispan.hibernate-search.directory-provider:for-hibernatesearch-5.5. This
dependency will be available once the Infinispan modules are installed.

Usage with other Hibernate Search modules

The module org.hibernate.search:ispn-9.0 distributed with Infinispan is to be used together with
Infinispan Query only (querying data from caches), and should not be used by Hibernate ORM
applications. To use a Hibernate Search with a different version that is present in Wildfly, please
consult the Hibernate Search documentation.

Make sure that the chosen Hibernate Search optional slot for org.infinispan.hibernate-

search.directory-provider matches the one distributed with Infinispan.

22.9.3. Troubleshooting

Enable logging

Enabling trace on org.jboss.modules can be useful to debug issues like LinkageError and
ClassNotFoundException. To enable it at runtime using the Wildfly CLI:

bin/jboss-cli.sh -c '/subsystem=logging/logger=org.jboss.modules:add'
bin/jboss-cli.sh -c '/subsystem=logging/logger=org.jboss.modules:write-
attribute(name=level,value=TRACE)'

Print dependency tree

The following command can be used to print all dependencies for a certain module. For example, to
obtain the tree for the module org.infinispan:ispn-9.0, execute from WILDFLY_HOME:

java -jar jboss-modules.jar -deptree -mp modules/ "org.infinispan:ispn-9.0"

325

https://docs.jboss.org/hibernate/search/5.6/reference/en-US/html_single/#search-configuration-deploy-on-wildfly

Chapter 23. Grid File System
Infinispan’s GridFileSystem is a new, experimental API that exposes an Infinispan-backed data grid
as a file system.

 This is an experimental API. Use at your own risk.

Specifically, the API works as an extension to the JDK’s File , InputStream and OutputStream
classes: specifically, GridFile, GridInputStream and GridOutputStream. A helper class,
GridFilesystem, is also included.

Essentially, the GridFilesystem is backed by 2 Infinispan caches - one for metadata (typically
replicated) and one for the actual data (typically distributed). The former is replicated so that each
node has metadata information locally and would not need to make RPC calls to list files, etc. The
latter is distributed since this is where the bulk of storage space is used up, and a scalable
mechanism is needed here. Files themselves are chunked and each chunk is stored as a cache entry,
as a byte array.

Here is a quick code snippet demonstrating usage:

Cache<String,byte[]> data = cacheManager.getCache("distributed");
Cache<String,GridFile.Metadata> metadata = cacheManager.getCache("replicated");
GridFilesystem fs = new GridFilesystem(data, metadata);

// Create directories
File file=fs.getFile("/tmp/testfile/stuff");
fs.mkdirs(); // creates directories /tmp/testfile/stuff

// List all files and directories under "/usr/local"
file=fs.getFile("/usr/local");
File[] files=file.listFiles();

// Create a new file
file=fs.getFile("/tmp/testfile/stuff/README.txt");
file.createNewFile();

Copying stuff to the grid file system:

InputStream in=new FileInputStream("/tmp/my-movies/dvd-image.iso");
OutputStream out=fs.getOutput("/grid-movies/dvd-image.iso");
byte[] buffer=new byte[20000];
int len;
while((len=in.read(buffer, 0, buffer.length)) != -1) out.write(buffer, 0, len);
in.close();
out.close();

Reading stuff from the grid:

326

https://docs.oracle.com/javase/8/docs/api/java/io/File.html
https://docs.oracle.com/javase/8/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/8/docs/api/java/io/OutputStream.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/io/GridFile.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/io/GridInputStream.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/io/GridOutputStream.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/io/GridFilesystem.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/io/GridFilesystem.html

InputStream in=in.getInput("/grid-movies/dvd-image.iso");
OutputStream out=new FileOutputStream("/tmp/my-movies/dvd-image.iso");
byte[] buffer=new byte[200000];
int len;
while((len=in.read(buffer, 0, buffer.length)) != -1) out.write(buffer, 0, len);
in.close();
out.close();

23.1. WebDAV demo
Infinispan ships with a demo WebDAV application that makes use of the grid file system APIs. This
demo app is packaged as a WAR file which can be deployed in a servlet container, such as JBoss AS
or Tomcat, and exposes the grid as a file system over WebDAV. This could then be mounted as a
remote drive on your operating system.

327

http://en.wikipedia.org/wiki/WebDAV
http://en.wikipedia.org/wiki/WAR_(Sun_file_format)

Chapter 24. Cross site replication
Cross site (x-site) replication allows backing up the data from one cluster to other clusters,
potentially situated in different geographical location. The cross-site replication is built on top of
JGroups' RELAY2 protocol . This document describes the technical design of cross site replication in
more detail.


Cross site replication needs the backup cache running in the site master node(s)
(i.e. node which receives the backup and applies it). The backup cache starts
automatically when it receives the first backup request.

24.1. Sample deployment
The diagram below depicts a possible setup of replicated sites, followed by a description of
individual elements present in the deployment. Options are then explained at large in future
paragraphs. Comments on the diagram above:

• there are 3 sites: LON, NYC and SFO.

• in each site there is a running Infinispan cluster with a (potentially) different number of

328

http://www.jgroups.org/manual-3.x/html/user-advanced.html#Relay2Advanced
https://community.jboss.org/wiki/DesignForCrossSiteReplication

physical nodes: 3 nodes in LON, 4 nodes in NYC and 3 nodes in SFO

• the "users" cache is active in LON, NYC and SFO. Updates on the "users" cache in any of these
sites gets replicated to the other sites as well

• it is possible to use different replication mechanisms between sites. E.g. One can configure SFO
to backup data synchronously to NYC and asynchronously to LON

• the "users" cache can have a different configuration from one site to the other. E.g. it might be
configured as distributed with numOwners=2 in the LON site, REPL in the NYC site and
distributed with numOwners=1 in the SFO site

• JGroups is used for both inter-site and intra-site communication. RELAY2 is used for inter-site
communication

• "orders" is a site local to LON, i.e. updates to the data in "orders" don’t get replicated to the
remote sites The following sections discuss specific aspects of cross site replication into more
detail. The foundation of the cross-site replication functionality is RELAY2 so it highly
recommended to read JGroups' RELAY2 documentation before moving on into cross-site.
Configuration

The cross-site replication configuration spreads over the following files:

1. the backup policy for each individual cache is defined in infinispan’s .xml configuration file
(infinispan.xml)

2. cluster’s JGroups xml configuration file: RELAY2 protocol needs to be added to the JGroups
protocol stack (jgroups.xml)

3. RELAY2 configuration file: RELAY2 has an own configuration file (relay2.xml)

4. the JGroups channel that is used by RELAY2 has its own configuration file (jgroups-relay2.xml)
Infinispan XML configuration file

The local site is defined in the the global configuration section. The local is the site where the node
using this configuration file resides (in the example above local site is "LON").

infinispan.xml

<transport site="LON" />

The same setup can be achieved programatically:

GlobalConfigurationBuilder lonGc = GlobalConfigurationBuilder.defaultClusteredBuilder
();
lonGc.site().localSite("LON");

The names of the site (case sensitive) should match the name of a site as defined within JGroups'
RELAY2 protocol configuration file. Besides the global configuration, each cache specifies its backup
policy in the "site" element:

329

http://www.jgroups.org/manual-3.x/html/user-advanced.html#Relay2Advanced
http://www.jgroups.org/manual-3.x/html/user-advanced.html#Relay2Advanced
https://gist.github.com/maniksurtani/cdd5420af764c907e342
http://www.jgroups.org/manual-3.x/html/user-advanced.html#Relay2Advanced
https://gist.github.com/maniksurtani/409fe5ece5fe4bcf679f
https://gist.github.com/maniksurtani/8c7238dae7921d2c883e
https://gist.github.com/maniksurtani/cbc1a297a367b1176feb

infinispan.xml

<distributed-cache name="users">
 <backups>
 <backup site="NYC" failure-policy="WARN" strategy="SYNC" timeout="12000"/>
 <backup site="SFO" failure-policy="IGNORE" strategy="ASYNC"/>
 <backup site="LON" strategy="SYNC" enabled="false"/>
 </backups>
</distributed-cache>

The "users" cache backups its data to the "NYC" and "SFO" sites. Even though the "LON" appears as a
backup site, it has the "enabled" attribute set to false so it will be ignored . For each site backup, the
following configuration attributes can be specified:

• strategy - the strategy used for backing up data, either "SYNC" or "ASYNC". Defaults to "ASYNC"

• failure-policy - Decides what the system would do in case of failure during backup. Possible
values are:

• IGNORE - allow the local operation/transaction to succeed

• WARN - same as IGNORE but also logs a warning message. Default.

• FAIL - only in effect if "strategy" is "SYNC" - fails local cluster operation/transaction by
throwing an exception to the user

• CUSTOM - user provided, see "failurePolicyClass" below

• failurePolicyClass - If the 'failure-policy' is set to 'CUSTOM' then this attribute is required and
should contain the fully qualified name of a class implementing
org.infinispan.xsite.CustomFailurePolicy

• timeout - The timeout(milliseconds) to be used when backing up data remotely. Defaults to
10000 (10 seconds)

The same setup can be achieved programatically:

ConfigurationBuilder lon = new ConfigurationBuilder();
lon.sites().addBackup()
 .site("NYC")
 .backupFailurePolicy(BackupFailurePolicy.WARN)
 .strategy(BackupConfiguration.BackupStrategy.SYNC)
 .replicationTimeout(12000)
 .sites().addInUseBackupSite("NYC")
 .sites().addBackup()
 .site("SFO")
 .backupFailurePolicy(BackupFailurePolicy.IGNORE)
 .strategy(BackupConfiguration.BackupStrategy.ASYNC)
 .sites().addInUseBackupSite("SFO")

The "users" cache above doesn’t know on which cache on the remote sites its data is being
replicated. By default the remote site writes the backup data to a cache having the same name as

330

the originator, i.e. "users". This behaviour can be overridden with an "backupFor" element. For
example the following configuration in SFO makes the "usersLONBackup" cache act as the backup
cache for the "users" cache defined above in the LON site:

infinispan.xml

<infinispan>
 <cache-container default-cache="">
 <distributed-cache name="usersLONBackup">
 <backup-for remote-cache="users" remote-site="LON"/>
 </distributed-cache>
 </cache-container>
</infinispan>

The same setup can be achieved programatically:

ConfigurationBuilder cb = new ConfigurationBuilder();
cb.sites().backupFor().remoteCache("users").remoteSite("LON");

24.1.1. Local cluster’s jgroups .xml configuration

This is the configuration file for the local (intra-site) infinispan cluster. It is referred from the
infinispan configuration file, see "configurationFile" below:

infinispan.xml

<infinispan>
 <jgroups>
 <stack-file name="external-file" path="jgroups.xml"/>
 </jgroups>
 <cache-container>
 <transport stack="external-file" />
 </cache-container>

 ...

</infinispan>

In order to allow inter-site calls, the RELAY2 protocol needs to be added to the protocol stack
defined in the jgroups configuration (see attached jgroups.xml for an example).

24.1.2. RELAY2 configuration file

The RELAY2 configuration file is linked from the jgroups.xml (see attached relay2.xml). It defines
the sites seen by this cluster and also the JGroups configuration file that is used by RELAY2 in order
to communicate with the remote sites.

331

https://gist.github.com/maniksurtani/409fe5ece5fe4bcf679f
https://gist.github.com/maniksurtani/8c7238dae7921d2c883e

24.2. Data replication
For both transactional and non-transactional caches, the backup calls are performed in parallel
with local cluster calls, e.g. if we write data to node N1 in LON then replication to the local nodes N2
and N3 and remote backup sites SFO and NYC happen in parallel.

24.2.1. Non transactional caches

In the case of non-transactional caches the replication happens during each operation. Given that
data is sent in parallel to backups and local caches, it is possible for the operations to succeed
locally and fail remotely, or the other way, causing inconsistencies

24.2.2. Transactional caches

For synchronous transactional caches, Infinispan internally uses a two phase commit protocol: lock
acquisition during the 1st phase (prepare) and apply changes during the 2nd phase (commit). For
asynchronous caches the two phases are merged, the "apply changes" message being sent
asynchronously to the owners of data. This 2PC protocol maps to 2PC received from the JTA
transaction manager. For transactional caches, both optimistic and pessimistic, the backup to
remote sites happens during the prepare and commit phase only.

Synchronous local cluster with async backup

In this scenario the backup call happens during local commit phase(2nd phase). That means that if
the local prepare fails, no remote data is being sent to the remote backup.

Synchronous local cluster with sync backup

In this case there are two backup calls:

• during prepare a message is sent across containing all the modifications that happened within
this transaction

• if the remote backup cache is transactional then a transaction is started remotely and all these
modifications are being written within this transaction’s scope. The transaction is not
committed yet (see below)

• if the remote backup cache is not transactional, then the changes are applied remotely

• during the commit/rollback, a commit/rollback message is sent across

• if the remote backups cache is transactional then the transaction started at the previous phase
is committed/rolled back

• if the remote backup is not transactional then this call is ignored

Both the local and the backup call(if the "backupFailurePolicy" is set to "FAIL") can veto
transaction’s prepare outcome

Asynchronous local cluster

In the case of asynchronous local clusters, the backup data is sent during the commit phase. If the

332

backup call fails and the "backupFailurePolicy" is set to "FAIL" then the user is notified through an
exception.

24.3. Taking a site offline
If backing up to a site fails for a certain number of times during a time interval, then it is possible to
automatically mark that site as offline. When a site is marked as offline the local site won’t try to
backup data to it anymore. In order to be taken online a system administrator intervention being
required.

24.3.1. Configuration

The taking offline of a site can be configured as follows:

infinispan.xml

<replicated-cache name="bestEffortBackup">
 ...
 <backups>
 <backup site="NYC" strategy="SYNC" failure-policy="FAIL">
 <take-offline after-failures="500" min-wait="10000"/>
 </backup>
 </backups>
 ...
</replicated-cache>

The take-offline element under the backup configures the taking offline of a site:

• after-failures - the number of failed backup operations after which this site should be taken
offline. Defaults to 0 (never). A negative value would mean that the site will be taken offline
after minTimeToWait

• min-wait - the number of milliseconds in which a site is not marked offline even if it is
unreachable for 'afterFailures' number of times. If smaller or equal to 0, then only afterFailures
is considered.

The equivalent programmatic configuration is:

lon.sites().addBackup()
 .site("NYC")
 .backupFailurePolicy(BackupFailurePolicy.FAIL)
 .strategy(BackupConfiguration.BackupStrategy.SYNC)
 .takeOffline()
 .afterFailures(500)
 .minTimeToWait(10000);

333

24.3.2. Taking a site back online

In order to bring a site back online after being taken offline, one can use the JMX console and
invoke the "bringSiteOnline(siteName)" operation on the XSiteAdmin managed bean. At the moment
this method would need to be invoked on all the nodes within the site(further releases will
overcome this limitation).

24.4. State Transfer between sites

 This feature is available since Infinispan 7.0.0.Alpha2

When a new site is bough back online, it is necessary to re-sync the site with the most recent
updates. This feature allows state to be transferred from one site to another.

The state transfer is triggered manually by a system administrator (or other responsible entity) via
JMX. The operation can be found over the XSiteAdminOperations managed bean and it is named
pushState(String). The system administrator should invoke this operation in the provider site (i.e.
the site that will send the state) and set the name of the consumer site (i.e. the site that will receive
the state). The figure below shows where to find the pushState(String) operation using JConsole:

Figure 24. Pushing state via JConsole


The pushState(siteName) operation will automatically bring the new site online.
The system administrator does not need to bring the site online first.

334

 The receiver site can only receive state from a single site.

The consumer site can be in any state (online or offline) in respect to the provider site and the
system administrator can trigger the push state at any time. The system will ignore multiple
invocations if the provider site is already pushing state to the consumer site.

It is worth to refer that it is not necessary to consumer site to be in an empty state. But be aware,
the existing keys can be overwritten but they are never deleted. In other words, if a key K does not
exists in the provider site but it exists in consumer site, it will not be deleted. In other way, if a key
K exists in both sites, it will be overwritten in the consumer site.

24.4.1. Handling join/leave nodes

The current implementation automatically handles the topology changes in producer or consumer
site. Also, the cross-site state transfer can run in parallel with a local site state transfer.

24.4.2. Handling broken link between sites

A System Administrator action is needed if the link between the producer and consumer site is
broken during the cross-site state transfer (data consistency is not ensured in consumer site). The
producer site retries for a while before giving up. Then, it gets back to normal state. However, the
consumer site is not able to get back to normal state and, here, an action from System
Administrator is need. The System Administrator should use the operation
cancelReceiveState(String siteName) to bring the consumer site to normal state.

24.4.3. System Administrator Operations

A set of operations can be performed to control the cross-site state transfer:

• pushState(String siteName) - It starts the cross-site state transfer to the site name specified;

• cancelPushState(String siteName) - It cancels the cross-site state transfer to the site name
specified;

• getRunningStateTransfer() - It returns a list of site name to which this site is pushing the state;

• getSendingSiteName() - It returns the site name that is pushing state to this site;

• cancelReceiveState(String siteName) - It restores the site to normal state. Should be used when
the link between the sites is broken during the state transfer (as described above);

• getPushStateStatus() - It returns the status of completed cross-site state transfer;

• clearPushStateStatus() - It clears the status of completed cross-site state transfer.

For more technical information, you can check the Cross Site design document (See Reference).

24.4.4. Configuration

State transfer between sites cannot be enabled or disabled but it allows to tune some parameters.
The values shown below are the default values:

335

infinispan.xml

<replicated-cache name="xSiteStateTransfer">
 ...
 <backups>
 <backup site="NYC" strategy="SYNC" failure-policy="FAIL">
 <state-transfer chunk-size="512" timeout="1200000" max-retries="30" wait-
time="2000" />
 </backup>
 </backups>
 ...
</replicated-cache>

The equivalent programmatic configuration is:

lon.sites().addBackup()
 .site("NYC")
 .backupFailurePolicy(BackupFailurePolicy.FAIL)
 .strategy(BackupConfiguration.BackupStrategy.SYNC)
 .stateTransfer()
 .chunkSize(512)
 .timeout(1200000)
 .maxRetries(30)
 .waitingTimeBetweenRetries(2000);

Below, it is the parameters description:

• chunk-size - The number of keys to batch before sending them to the consumer site. A negative
or a zero value is not a valid value. Default value is 512 keys.

• timeout - The time (in milliseconds) to wait for the consumer site acknowledge the reception
and appliance of a state chunk. A negative or zero value is not a valid value. Default value is 20
minutes.

• max-retries - The maximum number of retries when a push state command fails. A negative or a
zero value means that the command will not retry in case of failure. Default value is 30.

• wait-time - The waiting time (in milliseconds) between each retry. A negative or a zero value is
not a valid value. Default value is 2 seconds.

24.5. Reference
This document describes the technical design of cross site replication in more detail.

336

https://community.jboss.org/wiki/DesignForCrossSiteReplication

Chapter 25. Rolling upgrades
Rolling upgrades is the process by which an Infinispan installation is upgraded without a service
shutdown. In the case of Infinispan library/embedded mode, it refers to an installation to the nodes
where Infinispan is running in library/embedded mode. For Infinispan servers, it refers to the
server side components, not the client side. The upgrade could involve hardware change, or
software change, such as upgrading the Infinispan version in use.

Rolling upgrades can be done in Infinispan installations using Infinispan in embedded or library
mode, or in server mode. Here are the instructions for each use case:

25.1. Rolling upgrades for Infinispan
library/embedded mode
Rolling upgrades for Infinispan library/embedded mode are done taking advantage of the
Command-Line Interface (CLI) that Infinispan provides in order to interact with a remote
Infinispan cluster. When a new cluster is started, it will get the data from the existing cluster using
the CLI, so the existing cluster must be ready to receive CLI requests. Please check the Command-
Line Interface (CLI) chapter for information on how to set up a cluster to receive CLI requests.


Rolling upgrades for Infinispan library/embedded mode are only supported for
caches using standard JDK types as keys. Custom keys are not currently
supported. Custom value types are supported, using JSON as the format to ship
them between source and target cluster.

25.1.1. Steps

1. Start a new cluster (Target Cluster) with the new version of Infinispan, using either different
network settings or JGroups cluster name so that the old cluster (Source Cluster) and the new
one don’t overlap.

2. For each cache to be migrated, the Target Cluster is configured with a Command-Line Interface
cache loader which will retrieve data from the source cluster, with these settings:

3. connection: JMX connection string to use to connect to Source Cluster. The connection string
specifies how to connect to one of the source cluster members. Connection to one of the nodes is
enough, there’s no need to specify connection information for all nodes in the Source Cluster.
The connection URL contains cache name information and this name must coincide with the
name of the cache on the Source Cluster. The URL might change depending on the set up, check
the Command-Line Interface chapter for more information. Here is a sample connection value:
jmx://1.1.1.1:4444/MyCacheManager/myCache

4. Configure clients to point to the Target Cluster instead of the Source Cluster , and one by one,
restart each client node. Gradually, all requests will be handled by the Target Cluster rather
than the Source Cluster . The Target Cluster will lazily load data from the Source Cluster on
demand via the Command-Line Interface cache loader.

5. Once all connections have switched to using the Target Cluster the keyset on the Source Cluster
must be dumped. This can be achieved either via a JMX operation or via the CLI:

337

6. JMX: invoke the recordKnownGlobalKeyset operation on the RollingUpgradeManager MBean on
the Source Cluster for all of the caches that need to be migrated

7. CLI: invoke the upgrade --dumpkeys command on the Source Cluster for all of the caches that
need to be migrated (additionally the --all switch can be used to dump all caches in the cluster)

8. At this point the Target Cluster needs to fetch all remaining data from the Source Cluster :

9. JMX: invoke the synchronizeData operation specifying the "cli" parameter on the
RollingUpgradeManager MBean on the Target Cluster for all of the caches that need to be
migrated

10. CLI: invoke the upgrade --synchronize=cli command on the Target Cluster for all of the caches
that need to be migrated (additionally the --all switch can be used to synchronize all caches in
the cluster)

11. Once the above operation is complete, the CLInterfaceLoader on the Target Cluster must be
disabled as follows:

12. JMX: invoke the disconnectSource operation specifying the "cli" parameter on the
RollingUpgradeManager MBean on the Target Cluster for all of the caches that have been
migrated

13. CLI: invoke the upgrade --disconnectsource=cli command on the Target Cluster for all of the
caches that have been migrated (additionally the --all switch can be used to disconnect all
caches in the cluster)

14. The Source Cluster can be decomissioned now.

25.2. Rolling upgrades for Infinispan Servers
This process is used for installations making use of Infinispan as a remote grid, via Hot Rod. This
assumes an upgrade of the Infinispan grid, and not the client application.

In the following description we will refer to the Source and Target clusters, where the Source
cluster is the old cluster which is currently in use and the Target cluster is the new cluster to which
the data will be migrated to.

25.3. Steps
1. Start a new cluster (Target Cluster) with the new version of Infinispan, using either different

network settings or JGroups cluster name so that the old cluster (Source Cluster) and the new
one don’t overlap.

2. For each cache to be migrated, the Target Cluster is configured with a RemoteCacheStore with
the following settings:

a. servers should point to the Source Cluster

b. remoteCacheName must coincide with the name of the cache on the Source Cluster

c. hotRodWrapping must be enabled (true)

d. read-only should be true

338

3.

Configure clients to point to the Target Cluster instead of the Source Cluster , and one by one,
restart each client node. Gradually, all requests will be handled by the Target Cluster rather
than the Source Cluster . The Target Cluster will lazily load data from the Source Cluster on
demand via the RemoteCacheStore.

4. If the Source Cluster version is older than 8.2, its keyset must be dumped. This can be achieved
either via a JMX operation or via the CLI:

a. JMX: invoke the recordKnownGlobalKeyset operation on the RollingUpgradeManager MBean
on the Source Cluster for all of the caches that need to be migrated

b. CLI: invoke the upgrade --dumpkeys command on the Source Cluster for all of the caches that
need to be migrated (additionally the --all switch can be used to dump all caches in the
cluster)

5. At this point the Target Cluster needs to fetch all remaining data from the Source Cluster . This
can be achieved either via a JMX operation or via the CLI:

a. JMX: invoke the synchronizeData operation specifying the "hotrod" parameter on the
RollingUpgradeManager MBean on the Target Cluster for all of the caches that need to be
migrated

b. CLI: invoke the upgrade --synchronize=hotrod command on the Target Cluster for all of the
caches that need to be migrated (additionally the --all switch can be used to synchronize all
caches in the cluster)

6. Once the above operation is complete, the RemoteCacheStore on the Target Cluster must be
disabled either via JMX or CLI:

a. JMX: invoke the disconnectSource operation specifying the "hotrod" parameter on the
RollingUpgradeManager MBean on the Target Cluster for all of the caches that have been
migrated

b. CLI: invoke the upgrade --disconnectsource=hotrod command on the Target Cluster for all of
the caches that have been migrated (additionally the --all switch can be used to disconnect
all caches in the cluster)

7. The Source Cluster can be decomissioned now.

339

Chapter 26. Customizing Key/Value
Comparisons

26.1. The Problem of Caching Arrays
There are times when users want to store data into Infinispan caches whose default equals() and/or
hashCode() implementations produce undesirable results. One of those data types are arrays. When
users want to store arrays into Infinispan caches, the big majority of users want equals() function to
be calculated based on the contents of the arrays as opposed to comparing the object reference, so
if we take byte arrays are example, users would like to call up the static
java.util.Arrays.equals(byte[], byte[]) method instead of Object.equals() . The same thing happens
with hashCode() . The default implementation of Object.hashCode() for arrays suffers from the
same issue, because the result is not produced based on the contents of the array, but rather based
on the object reference to the array.

26.2. Old workaround: Wrapper Classes
Until Infinispan 5.2, the way to get around these issues was by wrapping arrays, or any other object
whose equals()/hashCode() implementations are not best suited for being stored in Infinispan
caches, around another object which would override Object.equals() and Object.hashCode() to do
the correct calculations. This is where classes such as ByteArrayKey originated:

public final class ByteArrayKey implements Serializable {

 private final byte[] data;
 private final int hashCode;

 public ByteArrayKey(byte[] data) {
 this.data = data;
 this.hashCode = 41 + Arrays.hashCode(data);
 }

 public byte[] getData() {
 return data;
 }

 @Override
 public boolean equals(Object obj) {
 if (this == obj) return true;
 if (obj == null || ByteArrayKey.class != obj.getClass()) return false;
 ByteArrayKey key = (ByteArrayKey) obj;
 return Arrays.equals(key.data, this.data);
 }

 @Override
 public int hashCode() {

340

https://github.com/infinispan/infinispan/blob/5.3.x/core/src/main/java/org/infinispan/util/ByteArrayKey.java

 return hashCode;
 }

 @Override
 public String toString() {
 return new StringBuilder().append("ByteArrayKey").append("{")
 .append("data=").append(Util.printArray(data, true))
 .append("}").toString();
 }

}

The problem with these classes is that they result in extra memory consumption due to the extra
objects required to support data types such as arrays and really, these classes just a workaround for
the lack of ability to provide a way to pass in a function that specifies how two byte arrays are are
compared, or how to calculate the hash code of a given array.

26.3. New solution: Plugging Equivalence functions
Starting with Infinispan 5.3, Infinispan users can provide these functions for both keys and values
implementing the new Equivalence<T> interface:

public interface Equivalence<T> extends Serializable {

 /**
 * Returns a hash code value for the object passed.
 *
 * As an example, implementors can provide an alternative implementation
 * for the hash code calculation for arrays. So, instead of relying on
 * {@link Object#hashCode()}, call {@link java.util.Arrays.hashCode()}.
 *
 * @param obj instance to calculate hash code for
 * @return a hash code value for the object passed as parameter
 */
 int hashCode(Object obj);

 /**
 * Indicates whether the objects passed are "equal to" each other.
 *
 * As an example, implementors can provide an alternative implementation
 * for the equals for arrays. So, instead of relying on
 * {@link Object#equals(Object)}}, call {@link java.util.Arrays.equals())}.
 *
 * @param obj to be compared with second parameter
 * @param otherObj to be compared with first parameter
 * @return <code>true</code> if both objects are the same;
 * <code>false</code> otherwise
 */
 boolean equals(T obj, Object otherObj);

341

https://github.com/infinispan/infinispan/blob/master/commons/src/main/java/org/infinispan/commons/equivalence/Equivalence.java

 /**
 * Returns a string representation of the given object.
 *
 * @param obj whose string representation is to be returned
 * @return a string representation of the passed object
 */
 String toString(Object obj);

 /**
 * Returns whether the given object is comparable. In other words, if
 * given an instance of the object, a sensible comparison can be computed
 * using {@link #compare(Object, Object)} method.
 *
 * @param obj instance to check if it's comparable
 * @return <code>true</code> if the object is comparable;
 * <code>false</code> otherwise
 */
 boolean isComparable(Object obj); // For future support for objects that are not
comparable, i.e. arrays

 /**
 * Compares the two given objects for order. Returns a negative integer,
 * zero, or a positive integer as the first object is less than, equal to,
 * or greater than the second object.
 *
 * @param obj first object to be compared
 * @param otherObj second object to be compared
 * @return a negative integer, zero, or a positive integer as the
 * first object is less than, equal to, or greater than the
 * second object
 */
 int compare(Object obj, Object otherObj); // For future support for objects that
are not comparable, i.e. arrays

}

Implementations of these function can be pretty flexible. On one side, they could focus on a single,
particular type, such as ByteArrayEquivalence below which expects nothing else other than byte
arrays, such as in the case of Hot Rod based Infinispan remote caches:

package com.acme;

public class ByteArrayEquivalence implements Equivalence<byte[]> {

 public static final Equivalence<byte[]> INSTANCE = new ByteArrayEquivalence();

 @Override
 public int hashCode(Object obj) {
 return 41 + Arrays.hashCode((byte[]) obj);

342

 }

 @Override
 public boolean equals(byte[] obj, Object otherObj) {
 if (obj == otherObj) return true;
 if (obj == null) return false;
 if (otherObj == null || byte[].class != otherObj.getClass()) return false;
 byte[] otherByteArray = (byte[]) otherObj;
 return Arrays.equals(obj, otherByteArray);
 }

 @Override
 public String toString(Object obj) {
 return Arrays.toString((byte[]) obj);
 }

 @Override
 public boolean isComparable(Object obj) {
 return false;
 }

 @Override
 public int compare(Object obj, Object otherObj) {
 return 0; // irrelevant
 }

}

Or you could have implementations that support multiple different types, in case you store varied
information, for example AnyServerEquivalence which supports both arrays and normal objects:

public class AnyServerEquivalence implements Equivalence<Object> {

 private static boolean isByteArray(Object obj) {
 return byte[].class == obj.getClass();
 }

 @Override
 public int hashCode(Object obj) {
 if (isByteArray(obj)) {
 return 41 + Arrays.hashCode((byte[]) obj);
 } else {
 return obj.hashCode();
 }
 }

 @Override
 public boolean equals(Object obj, Object otherObj) {
 if (obj == otherObj)
 return true;

343

https://github.com/infinispan/infinispan/blob/master/server/integration/infinispan/src/main/java/org/jboss/as/clustering/infinispan/equivalence/AnyServerEquivalence.java

 if (obj == null || otherObj == null)
 return false;
 if (isByteArray(obj) && isByteArray(otherObj))
 return Arrays.equals((byte[]) obj, (byte[]) otherObj);
 return obj.equals(otherObj);
 }

 @Override
 public String toString(Object obj) {
 if (isByteArray(obj))
 return Arrays.toString((byte[]) obj);
 else
 return obj.toString();
 }

 @Override
 public boolean isComparable(Object obj) {
 return obj instanceof Comparable;
 }

 @Override
 @SuppressWarnings("unchecked")
 public int compare(Object obj, Object otherObj) {
 return ((Comparable<Object>) obj).compareTo(otherObj);
 }

}

26.3.1. Configuring Equivalence functions

Using XML

The way to configure Infinispan with these Equivalence implementations is by adding them to the
<data-container /> XML element. For example, if we wanted to have byte array based keys, but the
values would be normal objects, we’d define:

<dataContainer keyEquivalence="com.acme.ByteArrayEquivalence" />

If you were trying to store both byte arrays as keys and values, you’d configure valueEquivalence
attribute in <dataContainer /> XML element:

<dataContainer keyEquivalence="com.acme.ByteArrayEquivalence" valueEquivalence=
"com.acme.ByteArrayEquivalence" />

If no key or value equivalence is configured, they default to
org.infinispan.commons.equivalence.AnyEquivalence, which behaves like any standard java object,
delegating the equals/hashCode() calls to the objects themselves.

344

https://github.com/infinispan/infinispan/blob/master/commons/src/main/java/org/infinispan/commons/equivalence/AnyEquivalence.java

Using Programmatic Configuration

Key and/or value equivalence could also have been configured programmatically, for example:

EmbeddedCacheManager cacheManager = ...;
ConfigurationBuilder builder = new ConfigurationBuilder();
builder.dataContainer()
 .keyEquivalence(com.acme.ByteArrayEquivalence.INSTANCE)
 .valueEquivalence(com.acme.ByteArrayEquivalence.INSTANCE);
cacheManager.defineConfiguration("myCache", builder.build());

26.3.2. Byte array storage example

Assuming you’ve configured both keyEquivalence (via XML, or programmatically) to be
com.acme.ByteArrayEquivalence , you should now be able to write code like this and get the
assertion to succeed. If keyEquivalence has not been configured correctly, this test will fail:

Cache<byte[], byte[]> cache = ...
byte[] key = {1, 2, 3};
byte[] value = {4, 5, 6};
cache.put(key, value);

byte[] expectedValue = {4, 5, 6};
byte[] lookupKey = {1, 2, 3};
assert Arrays.equals(expectedValue, cache.get(lookupKey));

26.3.3. Other methods in Equivalence interface

Finally, Equivalence defines some extra methods, such as toString(Object obj) , isComparable(Object
obj) and compare(Object obj, Object otherObj) , which again can be used to provide different
implementations to the ones provided for the JDK. For example, the toString() method can be used
to provide a different String representation of the object, which is again useful for arrays since the
default JDK implementation does not print the array contents. The comparable functions are not
yet used by Infinispan but they’ve been defined in order to help with potential future support of
tree-based storage in inner data structures.

345

Chapter 27. Extending Infinispan
Infinispan can be extended to provide the ability for an end user to add additional configurations,
operations and components outside of the scope of the ones normally provided by Infinispan.

27.1. Custom Commands
Infinispan makes use of a command/visitor pattern to implement the various top-level methods you
see on the public-facing API. This is explained in further detail in the Architectural Overview
section below. While the core commands - and their corresponding visitors - are hard-coded as a
part of Infinispan’s core module, module authors can extend and enhance Infinispan by creating
new custom commands.

As a module author (such as infinispan-query, etc.) you can define your own commands.

You do so by:

1. Create a META-INF/services/org.infinispan.commands.module.ModuleCommandExtensions file and
ensure this is packaged in your jar.

2. Implementing ModuleCommandFactory, ModuleCommandInitializer and ModuleCommandExtensions

3. Specifying the fully-qualified class name of the ModuleCommandExtensions implementation in
META-INF/services/org.infinispan.commands.module.ModuleCommandExtensions.

4. Implement your custom commands and visitors for these commands

27.1.1. An Example

Here is an example of an META-

INF/services/org.infinispan.commands.module.ModuleCommandExtensions file, configured accordingly:

org.infinispan.commands.module.ModuleCommandExtensions

org.infinispan.query.QueryModuleCommandExtensions

For a full, working example of a sample module that makes use of custom commands and visitors,
check out Infinispan Sample Module .

27.1.2. Preassigned Custom Command Id Ranges

This is the list of Command identifiers that are used by Infinispan based modules or frameworks.
Infinispan users should avoid using ids within these ranges. (RANGES to be finalised yet!) Being this
a single byte, ranges can’t be too large.

Infinispan Query: 100 - 119

Hibernate Search: 120 - 139

346

http://en.wikipedia.org/wiki/Command_pattern
https://github.com/infinispan/infinispan/tree/master/query
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/commands/module/ModuleCommandFactory.java
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/commands/module/ModuleCommandInitializer.java
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/commands/module/ModuleCommandExtensions.java
https://github.com/infinispan/infinispan/blob/master/core/src/main/java/org/infinispan/commands/module/ModuleCommandExtensions.java
https://github.com/infinispan/infinispan-sample-module

27.2. Extending the configuration builders and parsers
If your custom module requires configuration, it is possible to enhance Infinispan’s configuration
builders and parsers. Look at the custom module tests for a detail example on how to implement
this. == Architectural Overview

This section contains a high level overview of Infinispan’s internal architecture. This document is
geared towards people with an interest in extending or enhancing Infinispan, or just curious about
Infinispan’s internals.

27.3. Cache hierarchy
Infinispan’s Cache interface extends the JRE’s ConcurrentMap interface which provides for a
familiar and easy-to-use API.

public interface Cache<K, V> extends BasicCache<K, V> {
 ...
}

public interface BasicCache<K, V> extends ConcurrentMap<K, V> { … } ---

Caches are created by using a CacheContainer instance - either the EmbeddedCacheManager or a
RemoteCacheManager. In addition to their capabilities as a factory for Caches, CacheContainers
also act as a registry for looking up Caches.

EmbeddedCacheManagers create either clustered or standalone Caches that reside in the same
JVM. RemoteCacheManagers, on the other hand, create RemoteCaches that connect to a remote
cache tier via the Hot Rod protocol.

27.4. Commands
Internally, each and every cache operation is encapsulated by a command. These command objects
represent the type of operation being performed, and also hold references to necessary parameters.
The actual logic of a given command, for example a ReplaceCommand, is encapsulated in the
command’s perform() method. Very object-oriented and easy to test.

All of these commands implement the VisitableCommand inteface which allow a Visitor (described
in next section) to process them accordingly.

public class PutKeyValueCommand extends VisitableCommand {
 ...
}

public class GetKeyValueCommand extends VisitableCommand { … }

347

https://github.com/infinispan/infinispan/blob/master/core/src/test/java/org/infinispan/configuration/module

i. etc … ---

27.5. Visitors
Commands are processed by the various Visitors. The visitor interface, displayed below, exposes
methods to visit each of the different types of commands in the system. This gives us a type-safe
mechanism for adding behaviour to a call.Commands are processed by `Visitor`s. The visitor
interface, displayed below, exposes methods to visit each of the different types of commands in the
system. This gives us a type-safe mechanism for adding behaviour to a call.

public interface Vistor {
 Object visitPutKeyValueCommand(InvocationContext ctx, PutKeyValueCommand command)
throws Throwable;

Object visitRemoveCommand(InvocationContext ctx, RemoveCommand command) throws
Throwable;

Object visitReplaceCommand(InvocationContext ctx, ReplaceCommand command) throws
Throwable;

Object visitClearCommand(InvocationContext ctx, ClearCommand command) throws
Throwable;

Object visitPutMapCommand(InvocationContext ctx, PutMapCommand command) throws
Throwable;

i. etc … } ---

An AbstractVisitor class in the org.infinispan.commands package is provided with no-op
implementations of each of these methods. Real implementations then only need override the
visitor methods for the commands that interest them, allowing for very concise, readable and
testable visitor implementations.

27.6. Interceptors
Interceptors are special types of Visitors, which are capable of visiting commands, but also acts in a
chain. A chain of interceptors all visit the command, one in turn, until all registered interceptors
visit the command.

The class to note is the CommandInterceptor. This abstract class implements the interceptor
pattern, and also implements Visitor. Infinispan’s interceptors extend CommandInterceptor, and
these add specific behaviour to specific commands, such as distribution across a network or writing

348

://https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/interceptors/base/CommandInterceptor.html

through to disk.

There is also an experimental asynchronous interceptor which can be used. The interface used for
asynchronous interceptors is AsyncInterceptor and a base implementation which should be used
when a custom implementation is desired BaseCustomAsyncInterceptor. Note this class also
implements the Visitor interface.

27.7. Putting it all together
So how does this all come together? Invocations on the cache cause the cache to first create an
invocation context for the call. Invocation contexts contain, among other things, transactional
characteristics of the call. The cache then creates a command for the call, making use of a
command factory which initialises the command instance with parameters and references to other
subsystems.

The cache then passes the invocation context and command to the InterceptorChain, which calls
each and every registered interceptor in turn to visit the command, adding behaviour to the call.
Finally, the command’s perform() method is invoked and the return value, if any, is propagated
back to the caller.

27.8. Subsystem Managers
The interceptors act as simple interception points and don’t contain a lot of logic themselves. Most
behavioural logic is encapsulated as managers in various subsystems, a small subset of which are:

27.8.1. DistributionManager

Manager that controls how entries are distributed across the cluster.

27.8.2. TransactionManager

Manager than handles transactions, usually supplied by a third party.

27.8.3. RpcManager

Manager that handles replicating commands between nodes in the cluster.

27.8.4. LockManager

Manager that handles locking keys when operations require them.

27.8.5. PersistenceManager

Manager that handles persisting data to any configured cache stores.

27.8.6. DataContainer

Container that holds the actual in memory entries.

349

://https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/interceptors/AsyncInterceptor.html
://https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/interceptors/BaseCustomAsyncInterceptor.html

27.8.7. Configuration

A component detailing all of the configuration in this cache.

27.9. ComponentRegistry
A registry where the various managers above and components are created and stored for use in the
cache. All of the other managers and crucial componanets are accesible through the registry.

The registry itself is a lightweight dependency injection framework, allowing components and
managers to reference and initialise one another. Here is an example of a component declaring a
dependency on a DataContainer and a Configuration, and a DataContainerFactory declaring its
ability to construct DataContainers on the fly.

 @Inject
 public void injectDependencies(DataContainer container, Configuration
configuration) {
 this.container = container;
 this.configuration = configuration;
 }

 @DefaultFactoryFor
 public class DataContainerFactory extends AbstractNamedCacheComponentFactory {

Components registered with the ComponentRegistry may also have a lifecycle, and methods
annotated with @Start or @Stop will be invoked before and after they are used by the component
registry.

 @Start
 public void init() {
 useWriteSkewCheck = configuration.locking().writeSkewCheck();
 }

 @Stop(priority=20)
 public void stop() {
 notifier.removeListener(listener);
 executor.shutdownNow();
 }

In the example above, the optional priority parameter to @Stop is used to indicate the order in
which the component is stopped, in relation to other components. This follows a Unix Sys-V style

350

ordering, where smaller priority methods are called before higher priority ones. The default
priority, if not specified, is 10.

351

Chapter 28. Functional Map API
Infinispan 8 introduces a new experimental API for interacting with your data which takes
advantage of the functional programming additions and improved asynchronous programming
capabilities available in Java 8.

Infinispan’s Functional Map API is a distilled map-like asynchronous API which uses functions to
interact with data.

28.1. Asynchronous and Lazy
Being an asynchronous API, all methods that return a single result, return a CompletableFuture
which wraps the result, so you can use the resources of your system more efficiently by having the
possibility to receive callbacks when the CompletableFuture has completed, or you can chain or
compose them with other CompletableFuture.

For those operations that return multiple results, the API returns instances of a Traversable
interface which offers a lazy pull-style API for working with multiple results. Traversable , being a
lazy pull-style API, can still be asynchronous underneath since the user can decide to work on the
traversable at a later stage, and the Traversable implementation itself can decide when to compute
those results.

28.2. Function transparency
Since the content of the functions is transparent to Infinispan, the API has been split into 3
interfaces for read-only (ReadOnlyMap), read-write (ReadWriteMap) and write-only (WriteOnlyMap)
operations respectively, in order to provide hints to the Infinispan internals on the type of work
needed to support functions.

28.3. Constructing Functional Maps
To construct any of the read-only, write-only or read-write map instances, an Infinispan
AdvancedCache is required, which is retrieved from the Cache Manager, and using the AdvancedCache ,
static method factory methods are used to create ReadOnlyMap , ReadWriteMap or WriteOnlyMap :

import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.functional.impl.*;

AdvancedCache<String, String> cache = ...

FunctionalMapImpl<String, String> functionalMap = FunctionalMapImpl.create(cache);
ReadOnlyMap<String, String> readOnlyMap = ReadOnlyMapImpl.create(functionalMap);
WriteOnlyMap<String, String> writeOnlyMap = WriteOnlyMapImpl.create(functionalMap);
ReadWriteMap<String, String> readWriteMap = ReadWriteMapImpl.create(functionalMap);

352

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Traversable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/AdvancedCache.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html


At this stage, the Functional Map API is experimental and hence the way
FunctionalMap, ReadOnlyMap, WriteOnlyMap and ReadWriteMap are
constructed is temporary.

28.4. Read-Only Map API
Read-only operations have the advantage that no locks are acquired for the duration of the
operation. Here’s an example on how to the equivalent operation for Map.get(K) :

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadOnlyMap<String, String> readOnlyMap = ...
CompletableFuture<Optional<String>> readFuture = readOnlyMap.eval("key1",
ReadEntryView::find);
readFuture.thenAccept(System.out::println);

Read-only map also exposes operations to retrieve multiple keys in one go:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Traversable;

ReadOnlyMap<String, String> readOnlyMap = ...

Set<String> keys = new HashSet<>(Arrays.asList("key1", "key2"));
Traversable<String> values = readOnlyMap.evalMany(keys, ReadEntryView::get);
values.forEach(System.out::println);

Finally, read-only map also exposes methods to read all existing keys as well as entries, which
include both key and value information.

28.4.1. Read-Only Entry View

The function parameters for read-only maps provide the user with a read-only entry view to
interact with the data in the cache, which include these operations:

• key() method returns the key for which this function is being executed.

• find() returns a Java 8 Optional wrapping the value if present, otherwise it returns an empty
optional. Unless the value is guaranteed to be associated with the key, it’s recommended to use
find() to verify whether there’s a value associated with the key.

• get() returns the value associated with the key. If the key has no value associated with it, calling
get() throws a NoSuchElementException. get() can be considered as a shortcut of
ReadEntryView.find().get() which should be used only when the caller has guarantees that
there’s definitely a value associated with the key.

353

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#get-java.lang.Object-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#key--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#find--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#get--

• findMetaParam(Class<T> type) allows metadata parameter information associated with the cache
entry to be looked up, for example: entry lifespan, last accessed time…etc. See Metadata
Parameter Handling section to find out more.

28.5. Write-Only Map API
Write-only operations include operations that insert or update data in the cache and also removals.
Crucially, a write-only operation does not attempt to read any previous value associated with the
key. This is an important optimization since that means neither the cluster nor any persistence
stores will be looked up to retrieve previous values. In the main Infinispan Cache, this kind of
optimization was achieved using a local-only per-invocation flag, but the use case is so common
that in this new functional API, this optimization is provided as a first-class citizen.

Using write-only map API , an operation equivalent to javax.cache.Cache (JCache) 's void returning
put can be achieved this way, followed by an attempt to read the stored value using the read-only
map API:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

WriteOnlyMap<String, String> writeOnlyMap = ...
ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", "value1",
 (v, view) -> view.set(v));
CompletableFuture<String> readFuture = writeFuture.thenCompose(r ->
 readOnlyMap.eval("key1", ReadEntryView::get));
readFuture.thenAccept(System.out::println);

Multiple key/value pairs can be stored in one go using evalMany API:

WriteOnlyMap<String, String> writeOnlyMap = ...

Map<K, String> data = new HashMap<>();
data.put("key1", "value1");
data.put("key2", "value2");
CompletableFuture<Void> writerAllFuture = writeOnlyMap.evalMany(data, (v, view) ->
view.set(v));
writerAllFuture.thenAccept(x -> "Write completed");

To remove all contents of the cache, there are two possibilities with different semantics. If using
evalAll each cached entry is iterated over and the function is called with that entry’s information.
Using this method also results in listeners (see functional listeners section for more information)
being invoked:

354

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html#findMetaParam-java.lang.Class-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java#L194
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#evalMany-java.util.Map-java.util.function.BiConsumer-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#evalAll-java.util.function.Consumer-

WriteOnlyMap<String, String> writeOnlyMap = ...

CompletableFuture<Void> removeAllFuture = writeOnlyMap.evalAll(WriteEntryView::remove
);
removeAllFuture.thenAccept(x -> "All entries removed");

The alternative way to remove all entries is to call truncate operation which clears the entire cache
contents in one go without invoking any listeners and is best-effort:

WriteOnlyMap<String, String> writeOnlyMap = ...

CompletableFuture<Void> truncateFuture = writeOnlyMap.truncate();
truncateFuture.thenAccept(x -> "Cache contents cleared");

28.5.1. Write-Only Entry View

The function parameters for write-only maps provide the user with a write-only entry view to
modify the data in the cache, which include these operations:

• set(V, MetaParam.Writable…) method allows for a new value to be associated with the cache
entry for which this function is executed, and it optionally takes zero or more metadata
parameters to be stored along with the value (see Metadata Parameter Handling section to find
out more).

• remove() method removes the cache entry, including both value and metadata parameters
associated with this key.

28.6. Read-Write Map API
The final type of operations we have are readwrite operations, and within this category CAS-like
(CompareAndSwap) operations can be found. This type of operations require previous value
associated with the key to be read and for locks to be acquired before executing the function. The
vast majority of operations within ConcurrentMap and JCache APIs fall within this category, and they
can easily be implemented using the read-write map API . Moreover, with read-write map API , you
can make CASlike comparisons not only based on value equality but based on metadata parameter
equality such as version information, and you can send back previous value or boolean instances to
signal whether the CASlike comparison succeeded.

Implementing a write operation that returns the previous value associated with the cache entry is
easy to achieve with the read-write map API:

355

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#truncate--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#set-V-org.infinispan.commons.api.functional.MetaParam.Writable…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.WriteEntryView.html#remove--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadWriteMap<String, String> readWriteMap = ...

CompletableFuture<Optional<String>> readWriteFuture = readWriteMap.eval("key1",
"value1",
 (v, view) -> {
 Optional<V> prev = rw.find();
 view.set(v);
 return prev;
 });
readWriteFuture.thenAccept(System.out::println);

ConcurrentMap.replace(K, V, V) is a replace function that compares the value present in the map
and if it’s equals to the value passed in as first parameter, the second value is stored, returning a
boolean indicating whether the replace was successfully completed. This operation can easily be
implemented using the read-write map API:

ReadWriteMap<String, String> readWriteMap = ...

String oldValue = "old-value";
CompletableFuture<Boolean> replaceFuture = readWriteMap.eval("key1", "value1", (v,
view) -> {
 return view.find().map(prev -> {
 if (prev.equals(oldValue)) {
 rw.set(v);
 return true; // previous value present and equals to the expected one
 }
 return false; // previous value associated with key does not match
 }).orElse(false); // no value associated with this key
});
replaceFuture.thenAccept(replaced -> System.out.printf("Value was replaced? %s%n",
replaced));


The function in the example above captures oldValue which is an external value
to the function which is valid use case.

Read-write map API contains evalMany and evalAll operations which behave similar to the write-
only map offerings, except that they enable previous value and metadata parameters to be read.

28.6.1. Read-Write Entry View

The function parameters for read-write maps provide the user with the possibility to query the
information associated with the key, including value and metadata parameters, and the user can
also use this read-write entry view to modify the data in the cache.

356

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#replace-K-V-V-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadWriteEntryView.html

The operations are exposed by read-write entry views are a union of the operations exposed by
read-only entry views and write-only entry views

28.7. Metadata Parameter Handling
Metadata parameters provide extra information about the cache entry, such as version
information, lifespan, last accessed/used time…etc. Some of these can be provided by the user, e.g.
version, lifespan…etc, but some others are computed internally and can only be queried, e.g. last
accessed/used time.

The functional map API provides a flexible way to store metadata parameters along with an cache
entry. To be able to store a metadata parameter, it must extend MetaParam.Writable interface, and
implement the methods to allow the internal logic to extra the data. Storing is done via the set(V,
MetaParam.Writable…) method in write-only entry view or read-write entry view function
parameters.

Querying metadata parameters is available via the findMetaParam(Class) method available via read-
write entry view or read-only entry view or function parameters.

Here is an example showing how to store metadata parameters and how to query them:

import java.time.Duration;
import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.MetaParam.*;

WriteOnlyMap<String, String> writeOnlyMap = ...
ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", "value1",
 (v, view) -> view.set(v, new MetaLifespan(Duration.ofHours(1).toMillis())));
CompletableFuture<MetaLifespan> readFuture = writeFuture.thenCompose(r ->
 readOnlyMap.eval("key1", view -> view.findMetaParam(MetaLifespan.class).get()));
readFuture.thenAccept(System.out::println);

If the metadata parameter is generic, for example MetaEntryVersion<T> , retrieving the metadata
parameter along with a specific type can be tricky if using .class static helper in a class because it
does not return a Class<T> but only Class, and hence any generic information in the class is lost:

357

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/MetaParam.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/MetaParam.Lookup.html#findMetaParam-java.lang.Class-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/MetaParam.MetaEntryVersion.html

ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<String> readFuture = readOnlyMap.eval("key1", view -> {
 // If caller depends on the typed information, this is not an ideal way to retrieve
it
 // If the caller does not depend on the specific type, this works just fine.
 Optional<MetaEntryVersion> version = view.findMetaParam(MetaEntryVersion.class);
 return view.get();
});

When generic information is important the user can define a static helper method that coerces the
static class retrieval to the type requested, and then use that helper method in the call to
findMetaParam:

class MetaEntryVersion<T> implements MetaParam.Writable<EntryVersion<T>> {
 ...
 public static <T> T type() { return (T) MetaEntryVersion.class; }
 ...
}

ReadOnlyMap<String, String> readOnlyMap = ...

CompletableFuture<String> readFuture = readOnlyMap.eval("key1", view -> {
 // The caller wants guarantees that the metadata parameter for version is numeric
 // e.g. to query the actual version information
 Optional<MetaEntryVersion<Long>> version = view.findMetaParam(MetaEntryVersion.
type());
 return view.get();
});

Finally, users are free to create new instances of metadata parameters to suit their needs. They are
stored and retrieved in the very same way as done for the metadata parameters already provided
by the functional map API.

28.8. Invocation Parameter
Per-invocation parameters are applied to regular functional map API calls to alter the behaviour of
certain aspects. Adding per invocation parameters is done using the withParams(Param<?>…)

method.

Param.FutureMode tweaks whether a method returning a CompletableFuture will span a thread to
invoke the method, or instead will use the caller thread. By default, whenever a call is made to a
method returning a CompletableFuture , a separate thread will be span to execute the method
asynchronously. However, if the caller will immediately block waiting for the CompletableFuture to
complete, spanning a different thread is wasteful, and hence Param.FutureMode.COMPLETED can be
passed as per-invocation parameter to avoid creating that extra thread. Example:

358

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Param.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.html#withParams-org.infinispan.commons.api.functional.Param…​-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Param.FutureMode.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Param.FutureMode.html#COMPLETED

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Param.*;

ReadOnlyMap<String, String> readOnlyMap = ...
ReadOnlyMap<String, String> readOnlyMapCompleted = readOnlyMap.withParams(FutureMode
.COMPLETED);
Optional<String> readFuture = readOnlyMapCompleted.eval("key1", ReadEntryView::find)
.get();

Param.PersistenceMode controls whether a write operation will be propagated to a persistence
store. The default behaviour is for all write-operations to be propagated to the persistence store if
the cache is configured with a persistence store. By passing PersistenceMode.SKIP as parameter, the
write operation skips the persistence store and its effects are only seen in the in-memory contents
of the cache. PersistenceMode.SKIP can be used to implement an Cache.evict() method which
removes data from memory but leaves the persistence store untouched:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Param.*;

WriteOnlyMap<String, String> writeOnlyMap = ...
WriteOnlyMap<String, String> skiPersistMap = writeOnlyMap.withParams(PersistenceMode
.SKIP);
CompletableFuture<Void> removeFuture = skiPersistMap.eval("key1", WriteEntryView:
:remove);

Note that there’s no need for another PersistenceMode option to skip reading from the persistence
store, because a write operation can skip reading previous value from the store by calling a write-
only operation via the WriteOnlyMap.

Finally, new Param implementations are normally provided by the functional map API since they
tweak how the internal logic works. So, for the most part of users, they should limit themselves to
using the Param instances exposed by the API. The exception to this rule would be advanced users
who decide to add new interceptors to the internal stack. These users have the ability to query
these parameters within the interceptors.

28.9. Functional Listeners
The functional map offers a listener API, where clients can register for and get notified when events
take place. These notifications are post-event, so that means the events are received after the event
has happened.

The listeners that can be registered are split into two categories: write listeners and read-write
listeners.

359

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/Cache.html#evict-K-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html

28.9.1. Write Listeners

Write listeners enable user to register listeners for any cache entry write events that happen in
either a read-write or write-only functional map.

Listeners for write events cannot distinguish between cache entry created and cache entry
modify/update events because they don’t have access to the previous value. All they know is that a
new non-null entry has been written.

However, write event listeners can distinguish between entry removals and cache entry
create/modify-update events because they can query what the new entry’s value via
ReadEntryView.find() method.

Adding a write listener is done via the WriteListeners interface which is accessible via both
ReadWriteMap.listeners() and WriteOnlyMap.listeners() method.

A write listener implementation can be defined either passing a function to
onWrite(Consumer<ReadEntryView<K, V>>) method, or passing a WriteListener implementation to
add(WriteListener<K, V>) method. Either way, all these methods return an AutoCloseable instance
that can be used to de-register the function listener:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.api.functional.Listeners.WriteListeners.WriteListener;

WriteOnlyMap<String, String> woMap = ...

AutoCloseable writeFunctionCloseHandler = woMap.listeners().onWrite(written -> {
 // `written` is a ReadEntryView of the written entry
 System.out.printf("Written: %s%n", written.get());
});
AutoCloseable writeCloseHanlder = woMap.listeners().add(new WriteListener<String,
String>() {
 @Override
 public void onWrite(ReadEntryView<K, V> written) {
 System.out.printf("Written: %s%n", written.get());
 }
});

// Either wrap handler in a try section to have it auto close...
try(writeFunctionCloseHandler) {
 // Write entries using read-write or write-only functional map API
 ...
}
// Or close manually
writeCloseHanlder.close();

360

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/EntryView.ReadEntryView.html#find--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html#listeners--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.WriteOnlyMap.html#listeners--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html#onWrite-java.util.function.Consumer-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.html#add-org.infinispan.commons.api.functional.Listeners.WriteListeners.WriteListener-
https://docs.oracle.com/javase/8/docs/api/java/lang/AutoCloseable.html

28.9.2. Read-Write Listeners

Read-write listeners enable users to register listeners for cache entry created, modified and
removed events, and also register listeners for any cache entry write events.

Entry created, modified and removed events can only be fired when these originate on a read-write
functional map, since this is the only one that guarantees that the previous value has been read,
and hence the differentiation between create, modified and removed can be fully guaranteed.

Adding a read-write listener is done via the ReadWriteListeners interface which is accessible via
ReadWriteMap.listeners() method.

If interested in only one of the event types, the simplest way to add a listener is to pass a function to
either onCreate , onModify or onRemove methods. All these methods return an AutoCloseable instance
that can be used to de-register the function listener:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

ReadWriteMap<String, String> rwMap = ...
AutoCloseable createClose = rwMap.listeners().onCreate(created -> {
 // `created` is a ReadEntryView of the created entry
 System.out.printf("Created: %s%n", created.get());
});
AutoCloseable modifyClose = rwMap.listeners().onModify((before, after) -> {
 // `before` is a ReadEntryView of the entry before update
 // `after` is a ReadEntryView of the entry after update
 System.out.printf("Before: %s%n", before.get());
 System.out.printf("After: %s%n", after.get());
});
AutoCloseable removeClose = rwMap.listeners().onRemove(removed -> {
 // `removed` is a ReadEntryView of the removed entry
 System.out.printf("Removed: %s%n", removed.get());
});
AutoCloseable writeClose = woMap.listeners().onWrite(written -> {
 // `written` is a ReadEntryView of the written entry
 System.out.printf("Written: %s%n", written.get());
});
...
// Either wrap handler in a try section to have it auto close...
try(createClose) {
 // Create entries using read-write functional map API
 ...
}
// Or close manually
modifyClose.close();

If listening for two or more event types, it’s better to pass in an implementation of
ReadWriteListener interface via the ReadWriteListeners.add() method. ReadWriteListener offers the
same onCreate/onModify/onRemove callbacks with default method implementations that are empty:

361

https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/FunctionalMap.ReadWriteMap.html#listeners--
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onCreate-org.infinispan.commons.api.functional.EntryView.ReadEntryView-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onModify-org.infinispan.commons.api.functional.EntryView.ReadEntryView-org.infinispan.commons.api.functional.EntryView.ReadEntryView-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.ReadWriteListener.html#onRemove-org.infinispan.commons.api.functional.EntryView.ReadEntryView-
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.WriteListeners.WriteListener.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/api/functional/Listeners.ReadWriteListeners.html#add-org.infinispan.commons.api.functional.Listeners.ReadWriteListeners.ReadWriteListener-

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import
org.infinispan.commons.api.functional.Listeners.ReadWriteListeners.ReadWriteListener;

ReadWriteMap<String, String> rwMap = ...
AutoCloseable readWriteClose = rwMap.listeners.add(new ReadWriteListener<String,
String>() {
 @Override
 public void onCreate(ReadEntryView<String, String> created) {
 System.out.printf("Created: %s%n", created.get());
 }

 @Override
 public void onModify(ReadEntryView<String, String> before, ReadEntryView<String,
String> after) {
 System.out.printf("Before: %s%n", before.get());
 System.out.printf("After: %s%n", after.get());
 }

 @Override
 public void onRemove(ReadEntryView<String, String> removed) {
 System.out.printf("Removed: %s%n", removed.get());
 }
);
AutoCloseable writeClose = rwMap.listeners.add(new WriteListener<String, String>() {
 @Override
 public void onWrite(ReadEntryView<K, V> written) {
 System.out.printf("Written: %s%n", written.get());
 }
);

// Either wrap handler in a try section to have it auto close...
try(readWriteClose) {
 // Create/update/remove entries using read-write functional map API
 ...
}
// Or close manually
writeClose.close();

28.10. Marshalling of Functions
Running functional map in a cluster of nodes involves marshalling and replication of the operation
parameters under certain circumstances.

To be more precise, when write operations are executed in a cluster, regardless of read-write or
write-only operations, all the parameters to the method and the functions are replicated to other
nodes.

362

There are multiple ways in which a function can be marshalled. The simplest way, which is also the
most costly option in terms of payload size, is to mark the function as Serializable :

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;

WriteOnlyMap<String, String> writeOnlyMap = ...

// Force a function to be Serializable
Consumer<WriteEntryView<String>> function =
 (Consumer<WriteEntryView<String>> & Serializable) wv -> wv.set("one");

CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", function);

A more economical way to marshall a function is to provide an Infinispan Externalizer for it:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.marshall.Externalizer;
import org.infinispan.commons.marshall.SerializeFunctionWith;

WriteOnlyMap<String, String> writeOnlyMap = ...

// Force a function to be Serializable
Consumer<WriteEntryView<String>> function = new SetStringConstant<>();
CompletableFuture<Void> writeFuture = writeOnlyMap.eval("key1", function);

@SerializeFunctionWith(value = SetStringConstant.Externalizer0.class)
class SetStringConstant implements Consumer<WriteEntryView<String>> {
 @Override
 public void accept(WriteEntryView<String> view) {
 view.set("value1");
 }

 public static final class Externalizer0 implements Externalizer<Object> {
 public void writeObject(ObjectOutput oo, Object o) {
 // No-op
 }
 public Object readObject(ObjectInput input) {
 return new SetStringConstant<>();
 }
 }
}

To help users take advantage of the tiny payloads generated by Externalizer-based functions, the
functional API comes with a helper class called
org.infinispan.commons.marshall.MarshallableFunctions which provides marshallable functions for
some of the most commonly user functions.

363

https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/Externalizer.html
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/MarshallableFunctions.html

In fact, all the functions required to implement ConcurrentMap and JCache using the functional map
API have been defined in MarshallableFunctions. For example, here is an implementation of
JCache’s boolean putIfAbsent(K, V) using functional map API which can be run in a cluster:

import org.infinispan.commons.api.functional.EntryView.*;
import org.infinispan.commons.api.functional.FunctionalMap.*;
import org.infinispan.commons.marshall.MarshallableFunctions;

ReadWriteMap<String, String> readWriteMap = ...

CompletableFuture<Boolean> future = readWriteMap.eval("key1,
 MarshallableFunctions.setValueIfAbsentReturnBoolean());
future.thenAccept(stored -> System.out.printf("Value was put? %s%n", stored));

28.11. Use cases for Functional API
This new API is meant to complement existing Key/Value Infinispan API offerings, so you’ll still be
able to use ConcurrentMap or JCache standard APIs if that’s what suits your use case best.

The target audience for this new API is either:

• Distributed or persistent caching/inmemorydatagrid users that want to benefit from
CompletableFuture and/or Traversable for async/lazy data grid or caching data manipulation.
The clear advantage here is that threads do not need to be idle waiting for remote operations to
complete, but instead these can be notified when remote operations complete and then chain
them with other subsequent operations.

• Users wanting to go beyond the standard operations exposed by ConcurrentMap and JCache , for
example, if you want to do a replace operation using metadata parameter equality instead of
value equality, or if you want to retrieve metadata information from values…etc.

364

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://docs.jboss.org/infinispan/9.0/apidocs/org/infinispan/commons/marshall/MarshallableFunctions.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java#L283
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html
https://github.com/jsr107/jsr107spec/blob/v1.0.0/src/main/java/javax/cache/Cache.java

365

366

367

368

	Infinispan 9.0 User Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. What is Infinispan ?
	1.2. Why use Infinispan ?
	1.2.1. As a local cache
	1.2.2. As a clustered cache
	1.2.3. As a clustering building block for your applications
	1.2.4. As a remote cache
	1.2.5. As a data grid
	1.2.6. As a geographical backup for your data

	Chapter 2. Configuration
	2.1. Configuring caches declaratively
	2.1.1. Cache configuration templates
	2.1.2. Declarative configuration reference

	2.2. Configuring caches programmatically
	2.2.1. ConfigurationBuilder Programmatic Configuration API
	2.2.2. Advanced programmatic configuration

	2.3. Configuration Migration Tools
	2.4. Clustered Configuration
	2.4.1. Using an external JGroups file
	2.4.2. Use one of the pre-configured JGroups files
	2.4.3. Further reading

	Chapter 3. The CacheManager API
	3.1. Clustering Information
	3.1.1. Member Information
	3.1.2. Other methods

	3.2. Cluster Executor
	3.2.1. Example: Dynamically Start and Stop Clustered Cache

	Chapter 4. The Cache API
	4.1. The Cache interface
	4.1.1. Performance Concerns of Certain Map Methods
	4.1.2. Mortal and Immortal Data
	4.1.3. Example of Using Expiry and Mortal Data
	4.1.4. putForExternalRead operation

	4.2. The AdvancedCache interface
	4.2.1. Flags
	4.2.2. Custom Interceptors

	4.3. Listeners and Notifications
	4.3.1. Cache-level notifications
	4.3.2. Cache manager-level notifications
	4.3.3. Synchronicity of events

	4.4. Asynchronous API
	4.4.1. Why use such an API?
	4.4.2. Which processes actually happen asynchronously?
	4.4.3. Notifying futures
	4.4.4. Further reading

	4.5. Invocation Flags
	4.5.1. DecoratedCache
	4.5.2. Examples

	4.6. Tree API Module
	4.6.1. What is Tree API about?
	4.6.2. Using the Tree API
	4.6.3. Creating a Tree Cache
	4.6.4. Manipulating data in a Tree Cache
	4.6.5. Common Operations
	4.6.6. Locking in the Tree API
	4.6.7. Listeners for tree cache events

	Chapter 5. Eviction
	5.1. Enabling Eviction
	5.1.1. Eviction strategies
	5.1.2. Eviction types
	5.1.3. More defaults

	5.2. Expiration
	5.2.1. Difference between Eviction and Expiration

	5.3. Eviction Examples
	5.3.1. Configuration
	5.3.2. Memory Based Eviction Configuration
	5.3.3. Default values
	5.3.4. Using expiration

	5.4. Expiration designs

	Chapter 6. Persistence
	6.1. Configuration
	6.2. Cache Passivation
	6.2.1. Cache Loader Behavior with Passivation Disabled vs Enabled

	6.3. Cache Loaders and transactional caches
	6.4. Write-Through And Write-Behind Caching
	6.4.1. Write-Through (Synchronous)
	6.4.2. Write-Behind (Asynchronous)

	6.5. Filesystem based cache stores
	6.5.1. Single File Store
	6.5.2. Soft-Index File Store

	6.6. LevelDB Cache Store
	6.6.1. Introduction
	6.6.2. Configuration
	6.6.3. Additional References

	6.7. Remote store
	6.8. Cluster cache loader
	6.9. Command-Line Interface cache loader
	6.10. RocksDB Cache Store
	6.10.1. Introduction
	6.10.2. Configuration
	6.10.3. Additional References

	6.11. LevelDB Cache Store
	6.12. REST Cache Store
	6.12.1. Introduction
	6.12.2. Javadoc
	6.12.3. Configuration

	6.13. JPA Cache Store
	6.13.1. Introduction
	6.13.2. Configuration
	6.13.3. Additional References
	6.13.4. Javadoc

	6.14. Custom Cache Store deployment
	6.15. Data Migration
	6.16. API
	6.17. More implementations

	Chapter 7. Clustering
	7.1. Local Mode
	7.1.1. Simple Cache

	7.2. Invalidation Mode
	7.3. Replicated Mode
	7.4. Distribution Mode
	7.4.1. Read consistency
	7.4.2. Key ownership
	7.4.3. Initial cluster size
	7.4.4. L1 Caching
	7.4.5. Server Hinting
	7.4.6. Key affinity service
	7.4.7. The Grouping API

	7.5. Asynchronous Options
	7.5.1. Asynchronous Communications
	7.5.2. Asynchronous API
	7.5.3. Return Values

	7.6. Partition handling
	7.6.1. Split brain
	7.6.2. Successive nodes stopped
	7.6.3. Configuring partition handling
	7.6.4. Monitoring and administration

	Chapter 8. Marshalling
	8.1. The Role Of JBoss Marshalling
	8.2. Support For Non-Serializable Objects
	8.2.1. Store As Binary

	8.3. Advanced Configuration
	8.3.1. Troubleshooting

	8.4. User Defined Externalizers
	8.4.1. Benefits of Externalizers
	8.4.2. User Friendly Externalizers
	8.4.3. Advanced Externalizers

	Chapter 9. Transactions
	9.1. Configuring transactions
	9.2. Isolation levels
	9.3. Transaction locking
	9.3.1. Pessimistic transactional cache
	9.3.2. Optimistic transactional cache
	9.3.3. What do I need - pessimistic or optimistic transactions?

	9.4. Write Skew
	9.5. Deadlock detection
	9.6. Dealing with exceptions
	9.7. Enlisting Synchronizations
	9.8. Batching
	9.8.1. API
	9.8.2. Batching and JTA

	9.9. Transaction recovery
	9.9.1. When to use recovery
	9.9.2. How does it work
	9.9.3. Configuring recovery
	9.9.4. Recovery cache
	9.9.5. Integration with the transaction manager
	9.9.6. Reconciliation
	9.9.7. Want to know more?

	9.10. Total Order based commit protocol
	9.10.1. Overview
	9.10.2. Configuration
	9.10.3. When to use it?

	Chapter 10. Locking and Concurrency
	10.1. Locking implementation details
	10.1.1. How does it work in clustered caches?
	10.1.2. Transactional caches
	10.1.3. Isolation levels
	10.1.4. The LockManager
	10.1.5. Lock striping
	10.1.6. Concurrency levels
	10.1.7. Lock timeout
	10.1.8. Consistency

	10.2. Data Versioning

	Chapter 11. Streams
	11.1. Common stream operations
	11.1.1. Key filtering
	11.1.2. Segment based filtering

	11.2. Local/Invalidation
	11.2.1. Example

	11.3. Distribution/Replication
	11.3.1. Rehash Aware
	11.3.2. Serialization
	11.3.3. Parallel Computation
	11.3.4. Task timeout
	11.3.5. Injection
	11.3.6. Distributed Stream execution
	11.3.7. Key based rehash aware operators
	11.3.8. Intermediate operation exceptions

	11.4. Examples

	Chapter 12. Distributed Execution
	12.1. DistributedCallable API
	12.2. Callable and CDI
	12.3. DistributedExecutorService, DistributedTaskBuilder and DistributedTask API
	12.4. Distributed task failover
	12.5. Distributed task execution policy
	12.6. Examples

	Chapter 13. Querying
	13.1. The infinispan-query module
	13.2. Simple example
	13.2.1. Notable differences with Hibernate Search
	13.2.2. Requirements for the Key: @Transformable

	13.3. Configuration
	13.3.1. Configuration via XML
	13.3.2. Automatic configuration
	13.3.3. Lucene Directory
	13.3.4. Using programmatic configuration and index mapping

	13.4. Cache modes and managing indexes
	13.4.1. LOCAL
	13.4.2. REPLICATION
	13.4.3. DISTRIBUTION
	13.4.4. INVALIDATION

	13.5. Sharing the Index
	13.6. Clustering the Index in Infinispan
	13.7. Rebuilding the Index
	13.8. Obtaining query statistics
	13.9. Infinispan’s Query DSL
	13.10. Filtering operators
	13.10.1. Filtering based on attributes of embedded entities

	13.11. Boolean conditions
	13.12. Nested conditions
	13.13. Projections
	13.14. Sorting
	13.15. Pagination
	13.16. Grouping and Aggregation
	13.16.1. Aggregations
	13.16.2. Evaluation of queries with grouping and aggregation

	13.17. Using Named Query Parameters
	13.18. Continuous Queries
	13.18.1. Continuous Query Execution
	13.18.2. Running Continuous Queries
	13.18.3. Removing Continuous Queries
	13.18.4. Notes on performance of Continuous Queries

	13.19. More Query DSL samples

	Chapter 14. CDI Support
	14.1. Maven Dependencies
	14.2. Embedded cache integration
	14.2.1. Inject an embedded cache
	14.2.2. Override the default embedded cache manager and configuration
	14.2.3. Configure the transport for clustered use

	14.3. Remote cache integration
	14.3.1. Inject a remote cache
	14.3.2. Override the default remote cache manager

	14.4. Use a custom remote/embedded cache manager for one or more cache
	14.5. Use JCache caching annotations
	14.6. Use Cache events and CDI

	Chapter 15. JCache (JSR-107) provider
	15.1. Dependencies
	15.2. Create a local cache
	15.3. Store and retrieve data
	15.4. Comparing java.util.concurrent.ConcurrentMap and javax.cache.Cache APIs
	15.5. Clustering JCache instances

	Chapter 16. Management Tooling
	16.1. JMX
	16.1.1. Understanding The Exposed MBeans
	16.1.2. Enabling JMX Statistics
	16.1.3. Multiple JMX Domains
	16.1.4. Registering MBeans In Non-Default MBean Servers
	16.1.5. MBeans added in Infinispan 5.0

	16.2. Command-Line Interface (CLI)
	16.2.1. Commands
	16.2.2. upgrade
	16.2.3. version
	16.2.4. Data Types
	16.2.5. Time Values

	16.3. Hawt.io
	16.4. Writing plugins for other management tools

	Chapter 17. Custom Interceptors
	17.1. Adding custom interceptors declaratively
	17.2. Adding custom interceptors programatically
	17.3. Custom interceptor design

	Chapter 18. Running on Cloud Services
	18.1. Amazon Web Services
	18.1.1. TCPPing, GossipRouter, S3_PING
	18.1.2. GossipRouter
	18.1.3. S3_PING
	18.1.4. JDBC_PING

	Chapter 19. Kubernetes and OpenShift
	19.1. Why Client-Server?
	19.2. Why use embedded mode?
	19.3. Server Modules
	19.4. Using Hot Rod Server
	19.4.1. Hot Rod Protocol
	19.4.2. Hot Rod Hash Functions
	19.4.3. Java Hot Rod client
	19.4.4. Return values
	19.4.5. Intelligence
	19.4.6. Request Balancing
	19.4.7. Failover capabilities
	19.4.8. Consistent Concurrent Updates With Hot Rod Versioned Operations
	19.4.9. Interacting With Hot Rod Server From Within Same JVM
	19.4.10. Querying via the Java Hot Rod client

	19.5. Scripting
	19.5.1. Installing scripts
	19.5.2. Script metadata
	19.5.3. Script bindings
	19.5.4. Script parameters
	19.5.5. Running Scripts using the Hot Rod Java client
	19.5.6. Distributed execution

	19.6. Infinispan REST Server
	19.6.1. REST API
	19.6.2. Client side code

	19.7. Using Infinispan Memcached Server
	19.7.1. Command Clarifications
	19.7.2. Unsupported Features
	19.7.3. Talking To Infinispan Memcached Servers From Non-Java Clients

	19.8. Infinispan WebSocket Server
	19.8.1. Javascript API
	19.8.2. Sample code
	19.8.3. Screencast
	19.8.4. Status
	19.8.5. Source

	Chapter 20. Embedded/Remote Compatibility
	20.1. Enable Compatibility Mode
	20.1.1. Optional: Configuring Compatibility Marshaller

	20.2. Code examples

	Chapter 21. Security
	21.1. Embedded Security
	21.1.1. Embedded Permissions
	21.1.2. Embedded API
	21.1.3. Embedded Configuration

	21.2. Security Audit
	21.3. Cluster security

	Chapter 22. Integrations
	22.1. Apache Spark
	22.2. Apache Hadoop
	22.3. Apache Lucene
	22.3.1. Lucene compatibility
	22.3.2. Maven dependencies
	22.3.3. How to use it
	22.3.4. Configuration
	22.3.5. Using a CacheLoader
	22.3.6. Storing the index in a database
	22.3.7. Loading an existing Lucene Index
	22.3.8. Architectural limitations
	22.3.9. Suggestions for optimal performance
	22.3.10. Demo
	22.3.11. Additional Links

	22.4. Directory Provider for Hibernate Search
	22.4.1. Maven dependencies
	22.4.2. How to use it
	22.4.3. Configuration
	22.4.4. Architecture considerations

	22.5. Using Infinispan as JPA-Hibernate Second Level Cache Provider
	22.5.1. Configuration
	22.5.2. Default Configuration Explained
	22.5.3. JTA Transactions Configuration
	22.5.4. Advanced Configuration
	22.5.5. Handling custom identifiers types
	22.5.6. Integration with WildFly
	22.5.7. Using Infinispan as remote Second Level Cache?

	22.6. Implementing standalone JPA JTA Hibernate application outside J2EE server using Infinispan 2nd level cache
	22.6.1. JBoss Transactions
	22.6.2. JOTM
	22.6.3. Bitronix
	22.6.4. Atomikos

	22.7. Infinispan as Hibernate 2nd-Level Cache in JBoss AS 5.x
	22.8. Using Infinispan as a Spring Cache provider
	22.8.1. Activating Spring Cache support
	22.8.2. Telling Spring to use Infinispan as its caching provider
	22.8.3. Adding caching to your application code
	22.8.4. Externalizing session using Spring Session
	22.8.5. Conclusion

	22.9. Infinispan modules for WildFly
	22.9.1. Installation
	22.9.2. Usage
	22.9.3. Troubleshooting

	Chapter 23. Grid File System
	23.1. WebDAV demo

	Chapter 24. Cross site replication
	24.1. Sample deployment
	24.1.1. Local cluster’s jgroups .xml configuration
	24.1.2. RELAY2 configuration file

	24.2. Data replication
	24.2.1. Non transactional caches
	24.2.2. Transactional caches

	24.3. Taking a site offline
	24.3.1. Configuration
	24.3.2. Taking a site back online

	24.4. State Transfer between sites
	24.4.1. Handling join/leave nodes
	24.4.2. Handling broken link between sites
	24.4.3. System Administrator Operations
	24.4.4. Configuration

	24.5. Reference

	Chapter 25. Rolling upgrades
	25.1. Rolling upgrades for Infinispan library/embedded mode
	25.1.1. Steps

	25.2. Rolling upgrades for Infinispan Servers
	25.3. Steps

	Chapter 26. Customizing Key/Value Comparisons
	26.1. The Problem of Caching Arrays
	26.2. Old workaround: Wrapper Classes
	26.3. New solution: Plugging Equivalence functions
	26.3.1. Configuring Equivalence functions
	26.3.2. Byte array storage example
	26.3.3. Other methods in Equivalence interface

	Chapter 27. Extending Infinispan
	27.1. Custom Commands
	27.1.1. An Example
	27.1.2. Preassigned Custom Command Id Ranges

	27.2. Extending the configuration builders and parsers
	27.3. Cache hierarchy
	27.4. Commands
	27.5. Visitors
	27.6. Interceptors
	27.7. Putting it all together
	27.8. Subsystem Managers
	27.8.1. DistributionManager
	27.8.2. TransactionManager
	27.8.3. RpcManager
	27.8.4. LockManager
	27.8.5. PersistenceManager
	27.8.6. DataContainer
	27.8.7. Configuration

	27.9. ComponentRegistry

	Chapter 28. Functional Map API
	28.1. Asynchronous and Lazy
	28.2. Function transparency
	28.3. Constructing Functional Maps
	28.4. Read-Only Map API
	28.4.1. Read-Only Entry View

	28.5. Write-Only Map API
	28.5.1. Write-Only Entry View

	28.6. Read-Write Map API
	28.6.1. Read-Write Entry View

	28.7. Metadata Parameter Handling
	28.8. Invocation Parameter
	28.9. Functional Listeners
	28.9.1. Write Listeners
	28.9.2. Read-Write Listeners

	28.10. Marshalling of Functions
	28.11. Use cases for Functional API

