POJO Cache

User Documentation

Ben Wang

Jason Greene
ISBN:
Publication date: November 2008

POJO Cache

POJO Cache: User Documentation

Ben Wang
Jason Greene

POJO Cache

=Y 7= o Vii

1. TeIMINOIOQY «.ceveneiiii ettt 1
I @ =T o T P 1

b2 111 Yo [8 o 1 o] o PPN 3
I @ =T o T P 3

2. FRALUIES ..o 5

TR - T [PSPPI 6

4. REQUITEIMEIES ..ttt et e e et e e e e eenans 7

G Y ol o1 (= Tox 11] PP 9
1. POJO Cache interceptor Stackcooveiiiiiiiiiiiiiiieiiiii e 9

2. Field INtErCePLIONciie e e 11

3. Object relationship ManNagemMentc.oooeiiiiiiiiiiiiec e 12

4. ObJeCt INNEMTANCE . .c.vuiiii e 15

5. Physical object cache mapping modelcoiiiiiiiiiii e 15

(ST O] | [=Tox 1To] 1Y/ F= T] o 1T PSP 19

6.1, LIMItAtiONS ..oeeniiieieii e 20

A N1 = YA Y=] 1 T T PPN 21

N o I @Y= V1= P 23
1. PojoCacheFactory Classcccviiiiiiiiiieiii e 23

2. PojoCache INerfacecoouuiiiiiiiiii e 24

2.1 AACNMENT .oiee e 24

2.2. DetaChment ... 25

2.3, QU ittt e 25

5. Configuration and DeployMENtocieuuiiiiiiiiiiieiei et 27
1. Cache configuration Xml fileccocoiiiiiiiiii 27

A = LS Y= L1 T o PP 27

3. AOP CoNnfigurationccuuiiiiieiii e e e e e e eaae e 28

4. Deployment OPLIONSoiiiiiiiieiii e 28

4.1. Programatic Deploymentcceeeuiieiiiiiiiii e 29

4.2. IMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.X)........ 29

4.3. Via JBoss Microcontainer (JBoSS AS 5.X) ...vevuvveviieviiiieiieeeineenn, 30

5. POJO Cache MBEANSuuiiiiiiieii et 31

6. Registering the PojoCacheJMXWIapPerccuovvviieeiiiieeieeeieeeeeee e 32

6.1. Programatic RegiStrationocoeeuuiiiiiiiinieiiiii e 32

6.2. IMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.X)........ 33

6.3. Via JBoss Microcontainer (JBoSS AS 5.X)cccuveiveiiiiinieiiiiinieeenn, 34

7. Runtime Statistics and JMX Notificationscccoovveiiiiiiiiiiiii e 36

6. INSTIUMENTALIONeeeii e e e e e e e eenns 37
1. Load-time iNStrumentationooeeeuiieiiiiiie e 37

2. Compile-time iNStrumMeNtationooooeviiiiiiiiie e 38

3. Understanding the provided AOP descCriptorccoevviieiiiieiiiieiiiieeiiees 38

Y o 0o = 1o o [PPSR 39

4.1. POJO annotation for instrumentationc..cooeiiieeiiiiineeiinnnnnn. 39

4.2. JDK5.0 field level annotationscocceoveveiiiiiiieiiee e 39

POJO Cache

B WBAVING ..ttt ettt et e e e a e 41

5.1. Ant target for running load-time instrumentation using
specialized class 10aderooiviiiiiiiin i 41
5.2. Ant target fOr 0PCcoevvuniiiiiiii e 42
7. TroubIESNOOtING ..vuiiii e 43
8. APPENGIX ..t 45
1. EXampPIe POJO oo 45
2. Sample Cache configuration Xmlcoooiiiiiiiiiiii e 46
3. PojoCache configuration Xmlcoooiiiiiiiiiiiii e 48

vi

Preface

POJO Cache is an in-memory, transactional, and clustered cache system that allows
users to operate on a POJO (Plain Old Java Object) transparently and without active
user management of either replication or persistence aspects. JBoss Cache, which
includes POJO Cache, is a 100% Java based library that can be run either as a
standalone program or inside an application server.

This document is meant to be a user and reference guide to explain the architecture,
api, configuration, and examples for POJO Cache. We assume the readers are
familiar with both JGroups and the core JBoss Cache usages.

If you have questions, use the user forum
[http://lwww.jboss.com/index.html?module=bb&op=viewforum&f=157] linked on the
JBoss Cache website. We also provide tracking links for tracking bug reports and
feature requests on JBoss Jira web site [http://jira.jboss.com] . If you are interested in
the development of POJO Cache, post a message on the forum. If you are interested
in translating this documentation into your language, contact us on the developer
mailing list.

JBoss Cache is an open source product, using the business and OEM-friendly
OSl-approved LGPL license. Commercial development support, production support
and training for JBoss Cache is available through JBoss, a division of Red Hat Inc.
[http://www.jboss.com]

In some of the example listings, what is meant to be displayed on one line does not

fit inside the available page width. These lines have been broken up. A '\ at the end

of a line means that a break has been introduced to fit in the page, with the following
lines indented. So:

Let's pretend to have an extrenely \
long line that \

does not fit

This one is short

Is really:

Let's pretend to have an extrenely long |ine that does
not fit
This one is short

Vii

http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://jira.jboss.com
http://jira.jboss.com
http://www.jboss.com
http://www.jboss.com

viii

Chapter 1.

Terminology

1. Overview

The section lists some basic terminology that will be used throughout this guide.

Aop

Aspect-Oriented Programming (AOP) is a new paradigm that allows you to
organize and layer your software applications in ways that are impossible with
traditional object-oriented approaches. Aspects allow you to transparently glue
functionality together so that you can have a more layered design. AOP allows
you to intercept any event in a Java program and trigger functionality based on
those events.

JBoss Aop

JBoss Aop is an open-source Aop framework library developed by JBoss.

Itis 100% Java based and can be run either as a standalone or inside an
application server environment. More details can be found at www.jboss.com.
PojoCache uses JBoss Aop library in two ways. It uses JBoss Aop firstly for
its own interceptor-based architecture and secondly to realize the fine-grained
replication aspects.

Dynamic Aop

Dynamic Aop is a feature of JBoss Aop that provides a hook so that a caller can
insert event interception on the POJO at runtime. PojoCache currently uses this
feature to perform field level interception.

JGroups

JGroups is a reliable Java group messaging library that is open-source and
LGPL. In addition to reliable messaging transport, it also performs group
membership management. It has been a de facto replication layer used by
numerous open-source projects for clustering purposes. It is also used by
JBossCache for replication layer.

Core Cache

Core Cache is a tree-structured, clustered, transactional cache. Simple and
Serializable java types are stored as key/value pairs on nodes within the tree
using a collection-like API. It also provides a number of configurable aspects
such as node locking strategies, data isolation, eviction, and so on. POJO Cache
leverages Core Cache as the underlying data-store in order to provide the same
capabilities.

POJO

Plain old Java object.

Chapter 1. Terminology

Annotation
Annotation is a new feature in JDK5.0. It introduces metadata along side the
Java code that can be accessed at runtime. PojoCache currently uses JDK50
annotation to support POJO instrumentation (JDK1.4 annotation has been
deprecated since release 2.0).

Prepare
Prepare is a keyword in JBoss Aop pointcut language used to specify which
POJO needs to be instrumented. It appears in a poj ocache- aop. xni file.
However, if you can use annotation to specify the POJO instrumentation, there
is no need for a poj ocache- aop. xnm listing. Note that When a POJO is declared
properly either through the xml or annotation, we consider it "aspectized".

Instrumentation
Instrumentation is an Aop process that basically pre-processes (e.g., performing
byte-code weaving) on the POJO. There are two modes: compile- or load-time.
Compile-time weaving can be done with an Aop precompiler (aopc) while
load-time is done to specify a special classloader in the run script. This step is
necessary for an Aop system to intercept events that are interesting to users.

Chapter 2.

Introduction

1. Overview

JBoss Cache consists of two components, Core Cache, and POJO Cache. Core
Cache provides efficient memory storage, transactions, replication, eviction,
persistent storage, and many other "core" features you would expect from a
distributed cache. The Core Cache API is tree based. Data is arranged on the tree
using nodes that each offer a map of attributes. This map-like API is intuitive and
easy to use for caching data, but just like the Java Collection API, it operates only off
of simple and serializable types. Therefore, it has the following constraints:

« If replication or persistence is needed, the object will then need to implement the
Seri al i zabl e interface. E.g.,

public Cl ass Foo inplenents Serializable

« If the object is mutable, any field change will require a successive put operation on
the cache:

val ue = new Foo();

cache. put (fgn, key, val ue);

val ue. update(); // update val ue

cache. put (fgn, key, value); // Need to repeat this step again to
ask cache to persist or replicate the changes

« Java serialization always writes the entire object, even if only one field was
changed. Therefore, large objects can have significant overhead, especially if they
are updated frequently:

t housand = new ThousandFi el dObj ect () ;

cache. put (fgn, key, thousand);

t housand. set Fi el d1("bl ah"); // Only one field was nodified
cache. put (fgn, key, thousand); // Replicates 1000 fields

» The object structure can not have a graph relationship. That is, the object can not
have references to objects that are shared (multiple referenced) or to itself (cyclic).
Otherwise, the relationship will be broken upon serialization (e.g., when replicate
each parent object separately). For example, Figure 1 illustrates this problem
during replication. If we have two Per son instances that share the same Addr ess
upon replication, it will be split into two separate Addr ess instances (instead of just
one). The following is the code snippet using Cache that illustrates this problem:

Chapter 2. Introduction

joe = new Person("joe");

mary = new Person("mary");
addr = new Address("Tai pei");
j oe. set Addr ess(addr);

mary. set Addr ess(addr) ;

cache. put ("/joe", "person", joe);
cache. put ("/mary", "person", mary);
Joe Mary Joe Mary

L L xR

.
ot
L]
.
s
e
.
EEEEN
EEEER

2 Address
instances!

Figure 2.1. lllustration of shared objects problem during
replication

POJO Cache attempts to address these issues by building a layer on top of Core
Cache which transparently maps normal Java object model operations to individual
Node operations on the cache. This offers the following improvements:

« Objects do not need to implement Seri al i zabl e interface. Instead they are
instrumented, allowing POJO Cache to intercept individual operations.

» Replication is fine-grained. Only modified fields are replicated, and they can be
optionally batched in a transaction.

« Object identity is preserved, so graphs and cyclical references are allowed.

« Once attached to the cache, all subsequent object operationis will trigger a cache
operation (like replication) automatically:

PQJO poj o = new PAIQ) ;

poj oCache. attach("i d", pojo);

poj 0. set Nane("sone pojo"); // This will trigger replication
aut omatical ly.

Features

In POJO Cache, these are the typical development and programming steps:

« Annotate your object with @repl i cabl e
e Use attach() to put your POJO under cache management.

« Operate on the object directly. The cache will then manage the replication or
persistence automatically and transparently.

More details on these steps will be given in later chapters.

Since POJO Cache is a layer on-top of Core Cache, all features available in Core
Cache are also available in POJO Cache. Furthermore, you can obtain an instance
to the underlying Core Cache by calling Poj oCache. get Cache() . This is useful for
resusing the same cache instance to store custom data, along with the POJO model.

2. Features

Here are the current features and benefits of PojoCache:

» Fine-grained replication. The replication modes supported are the same as that
of Core Cache: LOCAL, REPL_SYNC, REPL_ASYNC, | NVALI DATI ON_SYNC, and
I NVALI DATI ON_ASYNC (see the main JBoss Cache reference documentation for
details). The replication level is fine-grained and is performed automatically once
the POJO is mapped into the internal cache store. When a POJO field is updated,
a replication request will be sent out only to the key corresponding to that modified
attribute (instead of the whole object). This can have a potential performance boost
during the replication process; e.g., updating a single key in a big HashMap will
only replicate the single field instead of the whole map!

« Transactions. All attached objects participate in a user transaction context. If a
rollback occurs, the previous internal field state of the object will be restored:

PQIO p = new PQIQ();

p. set Name("ol d val ue");

poj oCache. attach("id", p);

tx.begin(); // start a user transaction

p. set Name(" sone poj 0");

tx.rollback(); // this will cause the rollback
p.getNane(); // is "old val ue"

In addition, operations under a transaction is batched. That is, the update is not
performed until the commi t phase. Further, if replication is enabled, other nodes
will not see the changes until the transaction has completed successfully.

» Passivation. POJO Cache supports the same passivation provided by Core Cache.
When a node mapped by POJO Cache has reached a configured threshold,

Chapter 2. Introduction

it is evicted from memory and stored using a cache loader. When the node is
accessed again, it will be retrieved from the cache loader and put into memory.
The configuration parameters are the same as those of the Cache counterpart. To
configure the passivation, you will need to configure both the eviction policy and
cache loader.

» Object cache by reachability, i.e., recursive object mapping into the cache store.
On attach, PQJIO Cache will attach all referenced objects as well. This feature is
explained in more detail later.

* Natural Object Relationships. Java references are preserved as they were written.
That is, a user does not need to declare any object relationship (e.g., one-to-one,
or one-to-many) to use the cache.

» Object Identity. Object identity is preserved. Not only can a cached object be
compared using equal s() , but the comparison operator, ==, can be used as
well. For example, an object such as Addr ess may be multiple referenced by two
Per sons (e.g., j oe and nar y). The objects retrieved from j oe. get Addr ess() and
mary. get Addr ess() should be identicali, when when retrieved from a different
node in the cluster then that which attached them.

« Inheritance. POJO Cache preserves the inheritance hierarchy of any object in
the cache. For example, if a St udent class inherits from a Person class, once a
St udent object is mapped to POJO Cache (e.g., at t ach call), the fields in the
base class Per son are mapped as well.

 Collections. Java Collection types (e.g. List, Set, and Map) are transparently
mapped using Java proxies. Details are described later.

* Annotation based. Starting from release 2.0, JDK 5 annotations are used to
indicate that an object should be instrumented for use under POJO Cache (once
attached).

« Transparent. Once a POJO is attached to the cache, subsequent object model
changes are transparently handled. No further API calls are required.

3. Usage

To use POJO Cache, you obtain the instance from the PojoCacheFactory by
supplying a config file that is used by the delegating Cache implementation. Once the
PojoCache instance is obtained, you can call the cache life cycle method to start the
cache. Below is a code snippet that creates and starts the cache:

String configFile = "repl Sync-service. xm";

bool ean toStart = fal se;

Poj oCache pcache = Poj oCacheFactory. createCache(confi gFi el
toStart);

Requirements

pcache.
cache
pcache.
/1

pcache.
the cl

start(); // if toStart above is true, it will starts the
aut omatical ly.
attach(id, pojo);

stop(); // stop the cache. This will take Poj oCache out of
ustering group, if any, e.g

4. Requirements

PQIO Cache is currently supported on JDK 5 (since release 2.0). It requires the
following libraries (in addition to jboss-cache.jar and the required libraries for Core
Cache) to start up:

* Library:

» pojocache.jar. Main POJO Cache library.

jboss-aop-jdk50.jar. Main JBoss Aop library.

* javassist.jar. Java byte code manipulation library.

trove.jar. High performance collections for Java.

Chapter 3.

1. POJ

Architecture

POJO Cache internally uses the JBoss Aop framework to both intercept object field
access, and to provide an internal interceptor stack for centralizing common behavior
(e.g. locking, transactions).

The following figure is a simple overview of the POJO Cache architecture. From the
top, it can be can seen that when a call comes in (e.g., at t ach or det ach), it will go
through the POJO Cache interceptor stack first. After that, it will store the object's
fields into the underlying Core Cache, which will be replicated (if enabled) using

JGroups.
[nfercepiors| pojocache-aop.xml [nterceptors
Cache cache-service. xml Cache
JGroups JGroups

I replication I

Figure 3.1. POJO Cache architecture overview

O Cache interceptor stack

As mentioned, the JBoss Aop framework is used to provide a configurable
interceptor stack. In the current implementation, the main POJO Cache

methods have their own independant stack. These are specified in

META- | NF/ poj ocache- aop. xnl In most cases, this file should be left alone, although
advanced users may wish to add their own interceptors. The Following is the default
configuration:

<l-- Check id range validity -->
<i nt ercept or nanme="Checkl d"
cl ass="org.j boss. cache. poj o. i nt er cept ors. Checkl dl nt er cept or"
scope="PER _| NSTANCE"/ >

<I-- Track Tx undo operation -->

Chapter 3. Architecture

<i nt ercept or nanme="Undo"
cl ass="org. j boss. cache. poj o. i nt er cept or s. Poj oTxUndol nt er cept or "
scope="PER _| NSTANCE"/ >

<!-- Begining of interceptor chain -->
<i nterceptor name="Start"
cl ass="org.j boss. cache. poj o. i nt ercept or s. Poj oBegi nl nt er cept or"
scope="PER _| NSTANCE"/ >

<l-- Check if we need a local tx for batch processing -->
<i nt ercept or name="Tx"
cl ass="org.j boss. cache. poj 0. i ntercept ors. Poj oTx| nt ercept or"
scope="PER _| NSTANCE"/ >

<I--
Mockup failed tx for testing. You will need to set
Poj oFai | edTxMockupl nt er cept or . set Rol | back(true)
to activate it.
2o
<i nt ercept or nane="MyckupTx" cl ass="org.j boss. cache. poj o.i nterceptors. PojoFail ed
scope="PER _| NSTANCE"/ >

<l-- Perform parent |evel node |ocking -->
<i nterceptor name="TxLock"
cl ass="org. j boss. cache. poj o. i nt ercept ors. Poj oTxLockl nt er cept or"
scope="PER _| NSTANCE"/ >

<I-- Interceptor to performPojo |evel rollback -->
<i nt ercept or nanme="TxUndo"
cl ass="org.j boss. cache. poj o. i nt er cept or s. Poj oTxUndoSynchr oni zat i onl nt er cept or"
scope="PER | NSTANCE"/ >

<I-- Interceptor to used to check recursive field interception.
-->
<i nterceptor nanme="Reentrant" class="org.]jboss. cache. pojo.interceptors. Met hodReel
scope="PER _| NSTANCE" / >

<I-- Whether to allow non-serializable pojo. Default is fal se.
2o
<i nt ercept or nane="Marshal | NonSeri al i zabl e" cl ass="org. j boss. cache. poj 0. i nt ercept
scope="PER_| NSTANCE" >
<attribute
name="mar shal | NonSeri al i zabl e" >f al se</attri but e>
</int erceptor>

<stack nane="Attach">
<interceptor-ref nane="Start"/>
<i nterceptor-ref nane="Checkld"/>
<interceptor-ref name="Tx"/>

10

Field interception

<i nterceptor-ref nane="TxLock"/>
<i nterceptor-ref nane="TxUndo"/>
</ st ack>

<stack nane="Detach">
<interceptor-ref nane="Start"/>
<i nterceptor-ref nane="Checkld"/>
<interceptor-ref nane="Tx"/>
<i nterceptor-ref nane="TxLock"/>
<i nterceptor-ref nane="TxUndo"/>
</ st ack>

<stack nanme="Fi nd">

<interceptor-ref nane="Start"/>

<i nterceptor-ref nane="Checkld"/>
</ st ack>

The stack should be self-explanatory. For example, for the At t ach stack, we
currently have Start, Checkld, Tx, TxLock, and TxUndo interceptors. The stack
always starts with a St ar t interceptor such that initialization can be done properly.
Checkl d is to ensure the validity of the Id (e.g., it didn't use any internal Id string).
Finally, Tx, TxLock, and TxUndo are handling the the proper transaction locking and
rollback behavior (if needed).

2. Field interception

POJO Cache currently uses JBoss AOP to intercept field operations. If a class

has been properly instrumented (by either using the @epl i cabl e annotation, or

if the object has already been advised by JBoss AOP), then a cache interceptor

is added during an att ach() call. Afterward, any field modification will invoke the
corresponding CacheFi el di nt er cept or instance. Below is a schematic illustration
of this process.

Only fields, and not methods are intercepted, since this is the most efficient and
accurate way to gaurantee the same data is visible on all nodes in the cluster.
Further, this allows for objects that do not conform to the JavaBean specficiation to
be replicable. There are two important aspects of field interception:

« All access qualifiers are intercepted. In other words, all pri vat e, all pr ot ect ed, all
default, and all publ i c fields will be intercepted.

< Any field with fi nal , st ati c, and/or t r ansi ent qualifiers, will be skipped.
Therefore, they will not be replicated, passivated, or manipulated in any way by
POJO Cache.

The figure below illustrates both field read and write operations. Once an POJO
is managed by POJO Cache (i.e., after an at t ach() method has been called),

11

Chapter 3. Architecture

JBoss Aop will invoke the CacheFi el di nt er cept or every time a class operates

on a field. The cache is always consulted, since it is in control of the mapped data
(i.e. it gaurantess the state changes made by other nodes in the cluster are visible).
Afterwords, the in-memmory copy is updated. This is mainly to allow transaction
rollbacks to restore the previous state of the object.

1 { 2
Cachelnterceptor
A — A —
6 3
o 4 addr skill lang
In Memaory

Figure 3.2. POJO Cache field interception

3. Object relationship management

As previously mentioned, unlike a traditional cache system, POJO Cache preserves
object identity. This allows for any type of object relationship available in the Java
language to be transparently handled.

During the mapping process, all object references are checked to see if they are
already stored in the cache. If already stored, instead of duplicating the data, a

reference to the original object is written in the cache. All referenced objects are
reference counted, so they will be removed once they are no longer referenced.

To look at one example, let's say that multiple Per sons ("joe" and "mary") objects
can own the same Addr ess (e.g., a household). The following diagram is a graphical
representation of the pysical cache data. As can be seen, the "San Jose" address is
only stored once.

12

Object relationship management

Person p (key="husband)

H

name: Joe” name | Joe

Perzon p (key=wife)

U

name: , Mary™

addr
<1 hobbiee

addr

hobbies

3\

:

Figure 3.3. Schematic illustration of object relationship mapping

In the following code snippet, we show programmatically the object sharing example.

i mport org.jboss. cache. poj o. Poj oCache;

i mport org.jboss. cache. poj 0. Poj oCacheFact ory;

i mport org.jboss.test.cache.test.standAl oneAop. Person;

i mport org.jboss.test.cache.test.standAl oneAop. Addr ess;

String configFile = "META-I NF/ repl Sync-servi ce. xm ";
Poj oCache cache = Poj oCacheFactory. creat eCache(configFile); // This
will start PojoCache autonmatically

Person joe = new Person(); // instantiate a Person object naned joe
j oe. set Nane("Joe Bl ack");
j oe. set Age(41);

Person mary = new Person(); // instantiate a Person object naned
mary

mary. set Nane("Mary Wiite");

mary. set Age(30) ;

Address addr = new Address(); // instantiate a Address object named
addr

addr.set G ty("Sunnyval e");

addr. set Street ("123 Al bert Ave");

addr . set Zi p(94086) ;

j oe.set Address(addr); // set the address reference

13

Chapter 3. Architecture

mary. set Address(addr); // set the address reference

cache. attach("pojo/joe", joe); // add aop sancti oned object (and
sub- obj ects) into cache.

cache. attach("pojo/ mary", mary); // add aop sanctioned object (and
sub- obj ects) into cache.

Addr ess j oeAddr = joe. get Address();
Addr ess maryAddr = nmary. get Address(); // joeAddr and naryAddr
shoul d be the sanme instance

cache. det ach(" poj o/ j oe");
mar yAddr = mary. get Address(); // Should still have the address.

If j oe is removed from the cache, mar y should still have reference the same Addr ess
object in the cache store.

To further illustrate this relationship management, let's examine the Java code under
a replicated environment. Imagine two separate cache instances in the cluster now
(cachel and cache?2). On the first cache instance, both j oe and mary are attached
as above. Then, the application fails over to cache2. Here is the code snippet for
cache2 (assume the objects were already attached):

/**
* Code sni ppet on cache2 during fail-over
*/
i nport org.jboss. cache. PropertyConfi gurator;
i mport org.jboss. cache. poj o. Poj oCache;
i mport org.jboss.test.cache.test.standAl oneAop. Person;
i mport org.jboss.test.cache.test.standAl oneAop. Addr ess;

String configFile = "META-|I NF/ repl Sync-servi ce. xm ";
Poj oCache cache2 = Poj oCacheFactory. creat eCache(configFile); //
This will start PojoCache autonatically

Person joe = cache2.find("pojo/joe"); // retrieve the PQIO
ref erence.

Person mary = cache2.find("pojo/mary"); // retrieve the PQIO
ref erence.

Addr ess j oeAddr = joe.get Address();
Addr ess maryAddr = mary. get Address(); // joeAddr and maryAddr
shoul d be the sane instance!!!

mar yAddr = mary. get Address() . set Zi p(95123) ;
int zip = joeAddr.get Address().getZip(); // Should be 95123 as well
i nstead of 94086!

14

Object Inheritance

4. Object Inheritance

POJO Cache preserves the inheritance hierarchy of all attached objects. For
example, if a St udent extends Per son with an additional field year , then once

St udent is put into the cache, all the class attributes of Per son are mapped to the
cache as well.

Following is a code snippet that illustrates how the inheritance behavior of a POJO is
maintained. Again, no special configuration is needed.

i mport org.jboss.test.cache.test.standAl oneAop. St udent ;

Student joe = new Student(); // Student extends Person class
j oe.set Nane("Joe Black"); // This is base class attributes
joe.set Age(22); // This is also base class attributes
joe.setYear("Senior"); // This is Student class attribute

cache. attach(" poj o/ student/j oe", joe);
/...

joe = (Student)cache. attach("poj o/ student/j oe");

Person person = (Person)joe; // it will be correct here
joe.setYear("Junior"); // will be intercepted by the cache

j oe.set Nane("Joe Black I1"); // also intercepted by the cache

5. Physical object cache mapping model

The previous sections describe the logical object mapping model. In this section,
we will explain the physical mapping model, that is, how do we map the POJO into
Core Cache for transactional state replication. However, it should be noted that the
physical structure of the cache is purely an internal implementation detail, it should
not be treated as an API as it may change in future releases. This information is
provided solely to aid in better understanding the mapping process in POJO Cache.

When an object is first attached in POJO Cache, the Core Cache node
representation is created in a special internal area. The | d fgn that is passed to
attach() is used to create an empty node that references the internal node. Future
references to the same object will point to the same internal node location, and that
node will remain until all such references have been removed (detached).

The example below demonstrates the mapping of the Per son object under id
"pojo/joe" and "pojo/mary" as metioned in previous sections. It is created from a two
node replication group where one node is a Beanshell window and the other node
is a Swing Gui window (shown here). For clarity, multiple snapshots were taken to
highlight the mapping process.

15

Chapter 3. Architecture

The first figure illustrates the first step of the mapping approach.

From the bottom of the figure, it can be seen that the Poj oRef er ence

field under poj o/ j oe is pointing to an internal location,

/ __JBosslnternal __/5c4012-1 paf 5g- esl 49n5e- 1- esl 49n50- 2. That is, under
the user-specified Id string, we store only an indirect reference to the internal area.
Please note that Mar y has a similar reference.

£ TreeCacheGui2: mbr=192.168.1.2:2243

Operations

o] _JBossinternal__
o] acdol2-lpafSg-esl49n5e-1-e5l40n50-2
D address
D Acdol 2-Ipafag-esld9nie-1-esl489ngs-3
o] acdol2-lpafSg-esl4dnfe-1-esl480a0-4

D address
Marne Walue
lock LOCK
FojoReference Internal Fgn --=1__JBossinternal__fAcdol 2-Ipafag-esld49nse-1-esl49n50-2
—_— —

Figure 3.4. Object cache mapping for Joe

£ TreeCacheGui2: mbr=192.168.1.2:2243

Operations

¢ [0 __JBossinternal__
¢ [5cdol2-IpafSg-esl49nse-1-es148n50-2
D address
D Acdnl 2-lpafag-esl49nae-1-es149nos-3
o] acdol2-lpafSg-esl4dnfe-1-esl480a0-4

D address
Marne Walue
lock LOCK
FojoReference Internal Fgn --=1__JBossinternal__fAcdol 2-Ipafag-esld89nsae-1-esl490a0-4
—_— —

Figure 3.5. Object cache mapping for mvary

Then by clicking on the referenced internal node (from the following figure), it can
seen that the primitive fields for Joe are stored there. E.g., Age is 41 and Nane is Joe
Bl ack. And similarly for Mary as well.

16

Physical object cache mapping model

£ TreeCacheGui2: mbr=192.168.1.2:2243
Operations

| =
7 Cd poio
D joe
D mary
o] _JBossinternal__
¢ [C3[6cdo1 - Ipafiy-es49n5e-1-e5149n50-2|
D address
D Acdol 2-Ipafag-esld9nie-1-esl489ngs-3
o] acdol2-lpafSg-esl4dnfe-1-esl480a0-4

D address

Marne Walue
age 41
Fojolnstance org.jboss.cache.pojo.Pojoinstance@ra0ghs
lock LOCK
narme Joe Black

Figure 3.6. Object cache mapping for internal node Joe

£ TreeCacheGui2: mbr=192.168.1.2:2243
Operations

I
7 Cd poio
D joe
D mary
o] _JBossinternal__
o] acdol2-lpafSg-esl49n5e-1-e5l40n50-2
D address
D Acdol 2-Ipafag-esld9nie-1-esl489ngs-3
¢ CI[6cdo1 2-Ipafig-es49n5e-1-es4G0a0-4]

D address

Marne Walue
age an
Fojolnstance org.jboss.cache.pojo.Pojoinstance@addal
lock LOCK
name Mary Higgins

Figure 3.7. Object cache mapping for internal node mary

Underthe / __JBossli nternal __/5c4012-1 paf 5g- esl 49n5e- 1- esl 49n50- 2,

it can be seen that there is an Addr ess node. Clicking on the

Addr ess node shows that it references another internal location:

/ __JBosslInternal __/5c4012-1 paf 5g- esl 49n5e- 1- esl 49ngs- 3 as shown

in the following figure. Then by the same token, the Addr ess node under

/ __JBosslInternal __/5c4012-1 paf 5g- esl 49n5e- 1- esl 49na0- 4 points to the same
address reference. That is, both Joe and Mary share the same Addr ess reference.

17

Chapter 3. Architecture

£ TreeCacheGui2: mbr=192.168.1.2:2243

Operations

=
9 poio
[ioe
[mary
¢ O __JBassintermnal __
o CJ Gcdol -pafig-esl40nfe-1-e5148n50-2

[faoress|

D Acdol 2-Ipafag-esld9nie-1-esl489ngs-3
o] acdol2-lpafSg-esl4dnfe-1-esl480a0-4

D address
Marne Walue
FojoReference Internal Fan --=1__JBossinternal__facdal 2-IpafSg-eslddnde-1-esld9ngs-3
—_—

Figure 3.8. Object cache mapping: Joe's internal address

£ TreeCacheGui2: mbr=192.168.1.2:2243

Operations

¢ [0 __JBossinternal__
9 [5cdol2-IpafSg-esl49nse-1-es149n50-2
D address
D acd40l2-lpafig-esl49nde-1-esl49ngs-3
¢ [5cdol2-IpafSg-esl49nse-1-es1480a0-4

[facaress|

MHame Walue
FojoReference Internal Fan --=1__JBossinternal__facdal 2-IpafSg-eslddnde-1-esld9ngs-3
e ————————————————

Figure 3.9. Object cache mapping: Mary's internal address

Finally, the / __JBossl nternal __/5c4012-| paf 5g- esl 49n5e- 1- esl 49ngs- 3 node
contains the various various primitive fields of Addr ess, e.g., Street, Zip,and Ci ty.
This is illustrated in the following figure.

18

Collection Mapping

£ TreeCacheGui2: mbr=192.168.1.2:2243

=BX

Operations

=

] poio
D joe
[} rary

D address

¢ O __JBassintermnal __
o] acdol2-lpafSg-esl49n5e-1-e5l40n50-2

D |50401 2-Ipafag-esld8nae-1-es/49ngs-3

D address

o] acdol2-lpafSg-esl4dnfe-1-esl480a0-4

Marne

Walue

Fojolnstance

org.jboss.cache.pojo.Pojoinstance @h3cdel

street

123 Albert Ave

Zip

44056

City

Sunmywale

Figure 3.10. Object cache mapping: Address fields

6. Collection Mapping

Due to current Java limitations, Collection classes that implement Set, Li st, and Map
are substituted with a Java proxy. That is, whenever POJO Cache encounters any
Collection instance, it will:

« Create a Collection proxy instance and place it in the cache (instead of the
original reference). The mapping of the Collection elements will still be carried out
recursively as expected.

« If the Collection instance is referenced from another object, POJO Cache will swap
out the original reference with the new proxy, so that operations performed by the
refering object will be picked up by the cache.

The drawback to this approach is that the calling application must re-get any
collection references that were attached. Otherwise, the cache will not be aware of
future changes. If the collection is referenced from another object, then the calling
app can obtain the proxy by using the publishing mechanism provided by the object
(e.g. Person.getHobbies()). If, however, the collection is directly attached to the
cache, then a subsequent fi nd() call will need to be made to retrieve the proxy.

The following code snippet illustrates obtaining a direct Collection proxy reference:

List list = new ArrayList();

list.add("ONE");
list.add(" TWD');

cache. attach("pojo/list", list);
list.add("THREE"); // This won't be intercepted by the cache!

19

Chapter 3. Architecture

Li st proxyList = cache.find("pojo/list"; // Note that list is a
proxy reference
proxyLi st.add("FOUR'); // This will be intercepted by the cache

This snippet illustrates obtaining the proxy reference from a refering object:

Person joe = new Person();

j oe.set Nane("Joe Black"); // This is base class attributes
List lang = new ArrayList();

| ang. add(" Engl i sh");

| ang. add(" Mandari n");

j oe. set Languages(| ang) ;

/1l This will map the | anguages List automatically and swap it out
with the proxy reference.

cache. attach(" poj o/ student/j oe", joe);

| ang = j oe.getLanguages(); // Note that lang is now a proxy
ref erence

| ang. add("French"); // This will be intercepted by the cache

Finally, when a Collection is removed from the cache (e.g., via det ach), you still can
use the proxy reference. POJO Cache will just redirect the call back to the in-memory
copy. See below:

List list = new ArrayList();
list.add("ONE");
l'ist.add("TWD'");

cache. attach("pojo/list", list);

Li st proxyList = cache.find("pojo/list"); // Note that list is a
proxy reference

proxylList.add("THREE"); // This will be intercepted by the cache

cache. detach("pojo/list"); // detach fromthe cache
proxyLi st.add("FOUR'); // proxyList has 4 elenents still.

6.1. Limitations

The current implementation has the following limitations with collections:

« Only List, Set and Map are supported. Also it should be noted that the Java
Collection API does not fully describe the behavior of implementations, so the
cache versions may differ slightly from the common Java implementations (e.qg.
handling of NULL)

20

Array Mapping

» As of PojoCache 2.0, HashMap keys must be serializable. Prior to PojoCache 2.0,
HashMap keys were converted to String. This was fixed as you couldn't get the key
back in its original form. See issue JBCACHE-399 for more details.

7. Array Mapping

As of 2.2, array fields of any attached object are updated transparently, provided that
the array is written/read from a class marked with @repl i cabl e. If this is the case,
only the indexes of the array that are modified are replicated. However, if the array

is passed externally to a class that is not marked as @epl i cabl e, then the changes
will not be noticed. For this reason, it is recommended to abstract access to the array
where possible (i.e. setlitem(item, index)). If an external, non-replicable class needs
access to the array, then it is recommended to pass a copy, and add a method to the
container object that reapplies the changes. Also, due to JVM limitations, an array
can not be monitored if it is directly attached to the cache (i.e. a first class object).
POJO Cache still allows this, but they are treated as a serializable type. As with other
serializable type, they must be reattached after every change.

The following code snippet illustrates accessing a replicated array through
abstraction:

@Repl i cabl e public class Team

{ private String[] nmenbers = new String[10];
public String get Menber (int index)
{
return menmbers[index];
}
public void set Menber(int index, String menber)
{
menber s[i ndex] = nenber;
}
}

public class SoneExternal Cl ass

{

public void someMet hod()
{

Team t eam = new Team() ;
cache. attach("/team 1", teamn;

t eam set Menber (0, "John");
t eam set Menber (1, "Joe");

21

Chapter 3. Architecture

22

Chapter 4.

API Overview

This section provides a brief overview of the POJO Cache APIs. Please consult the
javadoc for the full API.

1. PojoCacheFactory Class

PojoCacheFactory provides a couple of static methods to instantiate and obtain a
PojoCache instance.

] **
* Create a PojoCache instance. Note that this will start the cache
life cycle automatically.

* @aram config A configuration string that represents the file
name that is used to

* configure the underlying Cache instance.

* @eturn PojoCache

*/

public static PojoCache createlnstance(String config);

/**

* Create a PojoCache instance.

* @aram config A configuration string that represents the file
nane that is used to

* configure the underlying Cache instance.

* @aramstart If true, it will start the cache life cycle.

* @eturn PojoCache

*/

public static PojoCache createl nstance(String config, bool ean
start);

/**

* Create a PojoCache instance.

* @aram config A configuration object that is used to configure
the underlyi ng Cache instance.

* @aramstart If true, it will start the cache life cycle.

* @eturn PojoCache

*/

public static PojoCache createl nstance(Configuration config,

bool ean start);

For example, to obtain a PojoCache instance and start the cache lifestyle
automatically, we can do:

String configFile = "META-I NF/ repl Sync-service. xm";

23

Chapter 4. API Overview

Poj oCache cache = Poj oCacheFactory. creat el nst ance(confi gFil e);

2. PojoCache Interface

Poj oCache is the main interface for POJO Cache operations. Since most of the
cache interaction is performed against the application domain model, there are only a
few methods on this interface.

2.1. Attachment

/**

* Attach a PQIO into PojoCache. It will also recursively put
any sub-PQJO into

* the cache system A PQJO can be the foll owi ng and have the
consequences when attached:

*

* |t is PojoCacheable, that is, it has been annotated with

* {@ee org.jboss. cache. aop. annot at i on. Poj oCacheabl e}
annotation (or via XM.), and has

* pbeen "instrunmented" either conpile- or load-tine. The PQIO

wi || be mapped recursively to
* the systemand fine-grained replication will be perforned.
*
* It is Serializable. The PQDOw Il still be stored in the

cache system However, it is

* treated as an "opaque" object per se. That is, the PQIO will
neither be intercepted

* (for fine-grained operation) or object relationship will be
mai nt ai ned.

*

* Neither of above. In this case, a user can specify whether it
wants this PQJO to be

* stored (e.g., replicated or persistent). If not, a
Poj oCacheException will be thrown.

*

* @aramid An id String to identify the object in the cache.
To pronote concurrency, we

* recomrend t he use of hierarchical String
separating by a designated separator. Default
* is "/" but it can be set differently via a System

property, jbosscache. separ ator

& in the future rel ease. E. g.,
"student/joe", etc.

* @aram pojo object to be inserted into the cache. If null, it
will nullify the fqgn node.

* @eturn Existing PQJO or null if there is none.

ben", or

24

Detachment

* @hrows PojoCacheException Throws if there is an error
related to the cache operation.

*/

oj ect attach(String id, Object pojo) throws Poj oCacheExcepti on;

As described in the above javadoc, this method "attaches" the passed object to the
cache at the specified location (i d). The passed in object (poj 0) must have been
instrumented (using the @repl i cabl e annotation) or implement the Seri al i zabl e
interface.

If the object is not instrumented, but serializable, POJO Cache will simply treat it as

an opaque "primitive" type. That is, it will simply store it without mapping the object's
fields into the cache. Replication is done on the object wide level and therefore it will
not be fine-grained.

If the object has references to other objects, this call will issue att ach() calls
recursively until the entire object graph is traversed. In addition, object identity and
object references are preserved. So both circular and multiply referenced objects are
mapped as expected.

The return value after the call is the previous object under i d, if any. As a result, a
successful call i will replace that old value with the new instance. Note that a user will
only need to issue this call once for each top-level object. Further calls can be made
directly on the graph, and they will be mapped as expected.

2.2. Detachment

/**

* Renpve PQJO object from the cache.

*

* @aramid Is string that associates with this node.

* @eturn Oiginal value object fromthis node.

* @hrows PojoCacheException Throws if there is an error
related to the cache operation.

*/

oj ect detach(String id) throws Poj oCacheExcepti on;

This call will detach the POJO from the cache by removing the contents under i d
and return the POJO instance stored there (null if it doesn't exist). If successful,
further operations against this object will not affect the cache. Note this call will also
remove everything stored under i d even if you have put other plain cache data there.

2.3. Query

/**

25

Chapter 4. API Overview

* Retrieve PQJO fromthe cache system Return null if object
does not exist in the cache.

* Note that this operation is fast if there is already a PQIO
i nstance attached to the cache.

*

* @aramid that associates with this node.

* @eturn Current content value. Null if does not exist.

* @hrows PojoCacheException Throws if there is an error
related to the cache operation.

*/

Qoject find(String id) throws PojoCacheExcepti on;

This call will return the current object content located under i d. This method call is
useful when you don't have the exact POJO reference. For example, when you fail
over to the replicated node, you want to get the object reference from the replicated
cache instance. In this case, PojoCache will create a new Java object if it does not
exist and then add the cache interceptor such that every future access will be in sync
with the underlying cache store.

/**

* Query all managed PQJO objects under the id recursively. Note
that this will not return

* the sub-object PQJCs, e.g., if Person has a sub-object of
Address, it

* won't return Address pojo. Also note also that this operation
is not thread-safe

* now. In addition, it assunes that once a PQJOis found with a
id, no nore PQJOis stored

* under the children of the id. That is, we don't nmix the id
with different PQICs.

*

* @aramid The starting place to find all PQIGCs.

* @eturn Map of all PQIOs found with (id, PQJO) pair. Return
size of 0, if not found.

* @hrows PojoCacheException Throws if there is an error
related to the cache operation.

*/

Map findAll (String id) throws Poj oCacheExcepti on;

This call will return all the managed POJOs under cache with a base Fgn name. It is
recursive, meaning that it will traverse all the sub-trees to find the POJOs under that
base. For example, if you specify the fgn to be root, e.g., "/ " , then it will return all
the managed POJOs under the cache.

26

Chapter 5.

Configuration and Deployment

Since POJO Cache uses Core Cache for the underlying node replication,
transaction, locking, and passivation behavior, the configuration is mostly the same.

1. Cache configuration xml file

When a PojoCache instance is obtained from a PojoCacheFactory, it is required

that the either a or g. j boss. cache. confi g. Confi gur ati on object is passed, or
more typically a String indicating the location on the classpath or filesystem of an xml
configuration file is provided. In the latter case, PojoCacheFactory will parse the xml
to create a Confi gur ati on. PojoCache will simply pass the resulting Confi gur ati on
to the underlying Core Cache implementation. For details on the configuration please
see the "Configuration" chapter in the the JBoss Cache User Guide.

2. Passivation

A common use-case is to configure the underlying Core Cache to enable
passivation. Passivation is a feature used to reduce cache memory usage by evicting
stale data that can later be reloaded. In JBoss Cache, it is done via a combination

of an eviction policy and a cache loader. That is, when a node is evicted from the
Cache's in-memory store, it will be stored in a persistent store by the cache loader.
When the node is requested again, it will be loaded from the persistent store and
stored into memory.

There is a restriction, however. Since POJO Cache maps object data into an
internal area, there are two places that have object information. One is under

the regular String ID that the user specifies, and the other is located under

/ __JBossl nternal __. Therefore, to maintain consistentency, when you specify the
eviction region, you can only specify one global (i.e., / _def aul t _) region. This way,
when the nodes associated with a POJO are passivated, they will do so across the
whole region.

Below is a snippet from a cache configuration xml illustrating how the eviction policy
along with cache loader can be configured. Please note that this is simply an aspect
of the underlying Cache. That is, PojoCache layer is agnostic to this behavior.

<attribute name="EvictionPolicyConfig">
<confi g>
<attribute nane="wakeUpl nt er val Seconds" >5</attri but e>
<attribute
name="pol i cyCl ass">org. j boss. cache. evi cti on. LRUPol i cy</attri bute>
<!-- Cache w de default -->
<regi on nane="/_default_">

27

Chapter 5. Configuration and ...

<attribute nanme="nmaxNodes">5000</attri bute>
<attribute nanme="ti neToLi veSeconds" >3</attri bute>
</ r egi on>
</ confi g>
</attribute>

<attribute nane="CachelLoader Confi guration">
<confi g>
<passi vat i on>t r ue</ passi vati on>
<pr el oad>/ </ pr el oad>
<shar ed>f al se</ shar ed>

<I-- we can now have multiple cache | oaders, which get
chai ned -->
<cachel oader >
<cl ass>or g. j boss. cache. | oader . Fi | eCacheLoader </ cl ass>
<I-- whether the cache | oader wites are asynchronous -->
<async>f al se</ async>
<l-- only one cache |oader in the chain may set
fetchPersistentState to true.
An exception is thrown if nore than one cache | oader

sets this to true. -->

<f et chPer si st ent St at e>t r ue</ f et chPer si st ent St at e>

<I-- determ nes whether this cache | oader ignores wites -
defaults to false. -->

<i gnor eModi f i cati ons>f al se</i gnor eMbdi fi cati ons>
</ cachel oader >
</ confi g>
</attribute>

Another way to support multiple regions in eviction is to use region-based
marshalling. See the "Architecture" chapter in the JBoss Cache User Guide for

more information on region-based marshalling. When the Cache uses region-based
marshalling, POJO Cache will store internal node data on the region that is specified.
This allows for a more flexible eviction policy.

3. AOP Configuration

POJO Cache supplies a poj ocache- aop. xnl that is required to be set via a system
property: j boss. aop. pat h during compile- or load-time, or placed in the user's
classpath. The file now consists of the interceptor stack specification, as well as
annotations for POJO instrumentation. It is listed fully in the Appendix section. Note
that the file should not normally need to be modified. Only an advanced use-case
would require changes.

4. Deployment Options

There are a number of ways to deploy POJO Cache:

28

Programatic Deployment

4.1. Programatic Deployment

Simply instantiate a PojoCacheFactory and invoke one of the overloaded
cr eat eCache methods shown in the API Overview.

4.2. IMX-Based Deployment in JBoss AS (JBoss AS 5.x and

4.X)

If PojoCache is run in JBoss AS then your cache can be deployed as an MBean
simply by copying a standard cache configuration file to the server's depl oy
directory. The standard format of PojoCache's standard XML configuration file (as
shown in the Appendix) is the same as a JBoss AS MBean deployment descriptor,
so the AS's SAR Deployer has no trouble handling it. Also, you don't have to place
the configuration file directly in depl oy; you can package it along with other services
or JEE components in a SAR or EAR.

In AS 5, if you're using a server config based on the standard al | config, then

that's all you need to do; all required jars will be on the classpath. Otherwise, you
will need to ensure poj ocache. j ar, j bosscache. jar andj groups-all.jar

are on the classpath. You may need to add other jars if you're using things

like JdbnCacheLoader . The simplest way to do this is to copy the jars from the
PojoCache distribution's | i b directory to the server config's | i b directory. You could
also package the jars with the configuration file in Service Archive (.sar) file or an
EAR.

It is possible, to deploy a POJO Cache 2.0 instance in JBoss AS 4.x However, the
significant API changes between the 2.x and 1.x releases mean none of the standard
AS 4.x clustering services (e.g. http session replication) that rely on the 1.x API will
work with PojoCache 2.x. Also, be aware that usage of PojoCache 2.x in AS 4.x is
not something the cache developers are making any significant effort to test, so be
sure to test your application well (which of course you're doing anyway.)

Note in the example the value of the nhean element's code attribute:

org. j boss. cache. poj o. j nx. Poj oCacheJnxW apper . This is the class JBoss
Cache uses to handle JMX integration; the PojoCache itself does not expose
an MBean interface. See the JBoss Cache MBeans section for more on the
PojoCacheJmxWrapper.

Once your cache is deployed, in order to use it with an in-VM client such as a servlet,
a JMX proxy can be used to get a reference to the cache:

MBeanServer server = MBeanServerLocator.| ocateJBoss();
Obj ect Nane on = new Obj ect Name("] boss. cache: servi ce=Poj oCache") ;
Poj oCacheJnxW apper MBean cacheW apper =
(Poj oCacheJmxW apper MBean)
MBeanSer ver | nvocat i onHandl er . newPr oxyl nst ance(server, on,

29

Chapter 5. Configuration and ...

Poj oCacheJnxW apper MBean. cl ass, fal se);
Poj oCache cache = cacheW apper. get Poj oCache();

The MBeanServerLocator class is a helper to find the (only) JBoss MBean server
inside the current JVM. The j avax. managenent . MBeanSer ver | nvocat i onHandl er
class' newPr oxyl nst ance method creates a dynamic proxy implementing the given
interface and uses JMX to dynamically dispatch methods invoked against the
generated interface to the MBean. The name used to look up the MBean is the same
as defined in the cache's configuration file.

Once the proxy to the Poj oCacheJnxW apper is obtained, the get Poj oCache() will
return a reference to the PojoCache itself.

4.3. Via JBoss Microcontainer (JBoss AS 5.x)

Beginning with AS 5, JBoss AS also supports deployment of POJO services

via deployment of a file whose name ends with - beans. xnl . A POJO service is

one whose implementation is via a "Plain Old Java Object", meaning a simple

java bean that isn't required to implement any special interfaces or extend any
particular superclass. A PojoCache is a POJO service, and all the components in a
Confi gur ati on are also POJOS, so deploying a cache in this way is a natural step.

Deployment of the cache is done using the JBoss Microcontainer that forms the
core of JBoss AS. JBoss Microcontainer is a sophisticated 10C framework (similar to
Spring). A - beans. xn file is basically a descriptor that tells the IOC framework how
to assemble the various beans that make up a POJO service.

The rules for how to deploy the file, how to package it, how to ensure the required
jars are on the classpath, etc. are the same as for a JMX-based deployment.

Following is an abbreviated example - beans. xni file. The details of building

up the Configuration are omitted; see the "Deploying JBoss Cache" chapter in
the JBoss Cache User Guide for a more complete example. If you look in the
server/ al | / depl oy directory of an AS 5 installation, you can find several more
examples.

<?xm version="1.0" encodi ng="UTF-8"?>

<depl oynent xm ns="ur n: j boss: bean- depl oyer: 2. 0" >
<l-- First we create a Configuration object for the cache -->
<bean name="Exanpl eCacheConfi g"

cl ass="org.] boss. cache. confi g. Confi guration">

details omtted

30

POJO Cache MBeans

</ bean>

<!-- The cache itself. -->
<bean nane="Exanpl eCache"
cl ass="org. j boss. cache. poj o. i npl . Poj oCachel npl " >

<const ruct or
factoryCd ass="org. j boss. cache. poj 0. Poj oCacheFact ory
f act or yMet hod="cr eat eCache" >
<par anet er ><i nj ect
bean="Exanpl eCacheConfi g"/ ></ par anet er >
<par anet er >f al se</f al se>
</ const ruct or >

</ bean>

</ depl oynent >

An interesting thing to note in the above example is the difference between

POJO Cache and a plain Cache in the use of a factory to create the cache. (See

the "Deploying JBoss Cache" chapter in the JBoss Cache User Guide for the
comparable plain Cache example.) The PojoCacheFactory exposes static methods
for creating a PojoCache; as a result there is no need to add a separate bean
element for the factory. Core Cache's Def aul t CacheFact ory creates caches from a
singleton instance, requiring a bit more boilerplate in the config file.

5. POJO Cache MBeans

POJO Cache provides an MBean that can be registered with your environment's
JMX server to allow access to the cache instance via JMX. This MBean is the

or g. j boss. cache. poj o. j nx. Poj oCacheJnxW apper . It is a StandardMBean, so it's
MBean interface is or g. j boss. cache. poj 0. j nx. Poj oCacheJnxW apper MBean. This
MBean can be used to:

» Get a reference to the underlying PojoCache.
 Invoke create/start/stop/destroy lifecycle operations on the underlying PojoCache.

« See numerous details about the cache's configuration, and change those
configuration items that can be changed when the cache has already been started.
See the Poj oCacheJnxW apper MBean javadoc for more details.

It is important to note a significant architectural difference between PojoCache 1.x
and 2.x. In 1.x, the old Tr eeCacheAop class was itself an MBean, and essentially
exposed the cache's entire API via JMX. In 2.x, JMX has been returned to it's
fundamental role as a management layer. The PojoCache object itself is completely

31

Chapter 5. Configuration and ...

unaware of JMX; instead JMX functionality is added through a wrapper class
designed for that purpose. Furthermore, the interface exposed through JMX has
been limited to management functions; the general PojoCache API is no longer
exposed through JMX. For example, it is no longer possible to invoke a cache
attach or det ach via the JMX interface.

If a Poj oCacheJmxW apper is registered, the

wrapper also registers MBeans for the underlying

plain Cache and for each interceptor configured

in the cache's interceptor stack. These MBeans

are used to capture and expose statistics related

to cache operations; see the JBoss Cache

User Guide for more. They are hierarchically
associated with the Poj oCacheJnxW apper

MBean and have service names that reflect this
relationship. For example, a plain Cache associated
with a j boss. cache: servi ce=Poj oCache

will be accessible through an mbean named

j boss. cache: servi ce=Poj oCache, cacheType=Cache.
The replication interceptor MBean for that cache will be
accessible through the mbean named

j boss. cache: servi ce=Poj oCache, cacheType=Cache, cache-

i nt erceptor=Replicationlnterceptor.

6. Registering the PojoCacheJmxWrapper

The best way to ensure the Poj oCacheJnxW apper is registered in JIMX depends on
how you are deploying your cache:

6.1. Programatic Registration

Simplest way to do this is to create your Poj oCache and pass it to the
Poj oCacheJnxW apper constructor.

/1 Build but don't start the cache
/1 (although it would work OK if we started it)
Poj oCache cache =
Poj oCacheFact ory. cr eat eCache("cache-confi guration.xm ", false);

Poj oCacheJnxW apper MBean wr apper = new
Poj oCacheJnxW apper (cache) ;
MBeanServer server = get MBeanServer(); // however you do it
Obj ect Name on = new Obj ect Nane("j boss. cache: servi ce=Poj oCache") ;
server. regi st er MBean(w apper, on);

/'l Invoking |lifecycle nethods on the w apper results

32

JMX-Based Deployment in JBoss AS (JBoss

AS 4.x and 5.x)
/1 in a call through to the cache
wr apper . create();
wr apper.start();

use the cache
on application shutdown

/1 Invoking lifecycle nethods on the w apper results
/1 in a call through to the cache

wr apper . stop();

wr apper . destroy();

Alternatively, build a Conf i gur ati on object and pass it to the
Poj oCacheJnmxW apper . The wrapper will construct the Poj oCache:

Configuration config = buildConfiguration(); // whatever it does

Poj oCacheJnxW apper MBean wr apper = new
Poj oCacheJnxW apper (confi g);
MBeanServer server = get MBeanServer(); // however you do it
oj ect Name on = new Obj ect Nane("j boss. cache: servi ce=Tr eeCache") ;
server.regi st er MBean(w apper, on);

/1 Call to wapper.create() will build the Cache if one wasn't
i njected

wr apper.create();

wr apper.start();

/1 Now that it's built, created and started, get the cache from
the wrapper

Poj oCache cache = wrapper. get Poj oCache();

/1 ... use the cache

/1 ... on application shutdown

wr apper . st op() ;
wr apper . destroy();

6.2. JMX-Based Deployment in JBoss AS (JBoss AS 4.x and
5.x)

When you deploy your cache in JBoss AS using a -service.xml file, a
Poj oCacheJnmxW apper is automatically registered. There is no need to do anything

33

Chapter 5. Configuration and ...

further. The Poj oCacheJmxW apper is accessible through the service name specified
in the cache configuration file's nbean element.

6.3. Via JBoss Microcontainer (JBoss AS 5.x)

Poj oCacheJnxW apper is a POJO, so the microcontainer has no problem creating
one. The trick is getting it to register your bean in JMX. This can be done by
specifying the or g. j boss. aop. i cr ocont ai ner. aspect s. j nx. JMX annotation on
the Poj oCacheJnxW apper bean:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<depl oynment xm ns="ur n:j boss: bean- depl oyer: 2. 0" >

<I-- First we create a Configuration object for the cache -->
<bean nane="Exanpl eCacheConfi g"
cl ass="org. j boss. cache. confi g. Confi gurati on">

build up the Configuration
</ bean>

<!-- The cache itself. -->
<bean nane="Exanpl eCache"
cl ass="org. j boss. cache. poj o. i npl . Poj oCachel npl " >

<const ruct or
factoryCd ass="org. j boss. cache. poj 0. Poj oCacheFact ory
f act or yMet hod="cr eat eCache" >
<par anet er ><i nj ect
bean="Exanpl eCacheConfi g"/ ></ par anet er >
<par anet er >f al se</f al se>
</ const ruct or >

</ bean>
<l-- JMX Managenent -->
<bean name="Exanpl eCacheJmxW apper"

cl ass="org. j boss. cache. j nx. CacheJnxW apper " >

<annot ati on>@r g. j boss. aop. m crocont ai ner. aspects. j mx. JMX(
nanme="j boss. cache: servi ce=Exanpl ePoj oCache",

exposedl nt er f ace=or g. j boss. cache. poj o. j nx. Poj oCacheJnxW apper MBean. cl ass,

registerDirectly=true)
</ annot ati on>

34

Via JBoss Microcontainer (JBoss AS 5.x)

<constructor >
<par anet er ><i nj ect bean="Exanpl eCache"/ ></ par anet er >
</ constructor>

</ bean>

</ depl oynent >

As discussed in the Programatic Registration section, Poj oCacheJnxW apper can
do the work of building, creating and starting the PojoCache if it is provided with a
Confi gurati on:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<depl oyment xm ns="ur n:j boss: bean- depl oyer: 2. 0" >
<I-- First we create a Configuration object for the cache -->
<bean nane="Exanpl eCacheConfi g"
cl ass="org. j boss. cache. confi g. Confi guration">
build up the Configuration

</ bean>

<bean nane="Exanpl eCache"
cl ass="org.j boss. cache. poj 0. j nx. Poj oCacheJnmxW apper " >

<annot ati on>@r g. j boss. aop. m crocont ai ner. aspects. j mx. JMX(
nanme="j boss. cache: servi ce=Exanpl ePoj oCache"

exposedl nt er f ace=or g. j boss. cache. poj o. j nx. Poj oCacheJnxW apper MBean. cl ass,

regi sterDirectly=true)
</ annot at i on>

<constructor >
<par anet er ><i nj ect
bean="Exanpl eCacheConfi g"/ ></ par anet er >
</ const ruct or >

</ bean>

</ depl oynent >

35

Chapter 5. Configuration and ...

7. Runtime Statistics and JMX Notifications

As mentioned above, the cache exposes a variety of statistical information through
its MBeans. It also emits JMX notifications when events occur in the cache. See
the JBoss Cache User Guide for more on the statistics and notifications that are
available.

The only PojoCache addition to the plain JBoss Cache behavior described in the
User Guide is that you can register with the PojoCacheJmxWrapper to get the
notifications. There is no requirement to figure out the ObjectName of the underlying
cache's CacheJmxWrapper and register with that.

36

Chapter 6.

Instrumentation

In order to store an object in POJO Cache, it must be either instrumented or made
serializable. Instrumentation is the most optimal approach since it preserves object
identity and provides field granular replication. POJO Cache currently uses the JBoss
AOP project to provide instrumentation, so the same processes described in the
AOP documentation are used with POJO Cache.

The primary input to JBoss AOP is the AOP binding file, which is responsible for
specifying which classes should be instrumented. POJO Cache provides a binding
file, poj ocache- aop. xnl , which matches all classes that have been annotated with
the @repl i cabl e annotation. Advanced users may choose to alter this definition to
instrument classes in other various interesting ways. However, it is recommended to
just stick with the default annotation binding.

The instrumentation process can be executed at either load-time, or compile-time.
Load-time instrumentation uses a Java agent to intercept and modify classes as they
are loaded; whereas compile-time instrumentation requires running aopc as part of
the compilation process.

G

n Note

Load-time is the recommended approach, since compile-time
instrumentation adds hard dependencies to the weaved bytecode
which ties the output to a particular version of JBoss AOP.

1. Load-time instrumentation

Load-time instrumentation uses a Java agent to intercept all classes loaded by the
JVM. As they are loaded JBoss AOP instruments them, allowing POJO Cache to
monitor field changes. To enable load time instrumentation the JVM must be started
with the following specified:

1. The j boss. aop. pat h system property set to the location of poj ocache- aop. xni

2. A javaagent argument which includes jboss-aop-jdk50.jar

These requirements lead to the following example ant task:

<j ava cl assnane="Foo" fork="yes">
<jvmarg val ue="-j avaagent:|ib/j boss-aop.jar"/>
<jvmarg
val ue="- Dj boss. aop. pat h=et ¢/ META- | NF/ poj ocache- aop. xm "/ >

37

Chapter 6. Instrumentation

<cl asspath refid="test.classpath"/>
</java>

Once the JVM is executed in this manner, any class with the @Repl i cabl e
annotation will be instrumented when it is loaded.

2. Compile-time instrumentation

While load-time is the preffered approach, it is also possible to instrument classes at
compile-time. To do this, the aopc tool is used, with the following requirements:

1. The aoppat h option must point to the location of pojocache-aop.xml

2. The src option must point to the location of your class files that are to be
instrumented. This is typically the output folder of a j avac run.

The following is an example ant task which performs compile-time instrumentation:

<t askdef name="aopc" cl assnanme="org.jboss. aop. ant. AopC’
cl asspat hr ef ="aop. cl asspat h"/ >
<t arget name="aopc" depends="conpile" descripti on="Preconpile aop
cl ass" >
<aopc conpi |l ercl asspat hr ef =" aop. cl asspat h" verbose="true" >
<src pat h="${build}"/>
<i ncl ude nanme="org/j boss/cache/ aop/test/**/*. class"/>
<aoppat h pat h="${out put}/resour ces/ poj ocache-aop. xm "/ >
<cl asspat h pat h="${bui l d}"/>
<cl asspath refid="lib.classpath"/>
</ aopc>
</target>

In this example, once the aopc target is executeed the clasess in the build directory
are modified. They can then be packaged in a jar and loaded using the normal Java
mechanisms.

3. Understanding the provided AOP descriptor

The advanced user might decide to alter the provided AOP descritor. In order to do
this, it is important to understand the reaons behind what is provided, and what is
required by POJO Cache. Previous sections have mentioned that any class with the
@=epl i cabl e annotation will be instrumented. This happens, because the provided
AOP descriptor, poj ocache- aop. xm , has a perpare statement which matches any
class (or subclass) using the annotation. This is shown in the following snippet:

38

Annotation

<prepare expr="field(*
$i nst anceof { @r g. j boss. cache. poj 0. annot ati on. Repl i cabl e}->*)"/>

More specifically, any code which accesses a field on a class which has been
annotated with @Repl i cabl e, will be instrumented: The "field" pointcut in the
expression matches both read and write operations. The wildcard "*" indicates that
all java protection modes are intercepted (private, package, protected, public). The
$i nst anceof expression refers to any annotation that subclasses @repl i cabl e.
Finally, the ending wildcard allows the matched field to have any name.

4. Annotation

Annotation is a new feature in Java 5.0 that when declared can contain metadata at
compile and run time. It is well suited for aop declaration since there will be no need
for external metadata xml descriptor.

4.1. POJO annotation for instrumentation

To support annotation (in order to simplify user's development effort), the JBoss
Cache distribution ships with a poj ocache- aop. xnml under the r esour ces directory.
For reference, here is annotation definition from poj ocache- aop. xm again :

<aop>

<pr epar e
expr="field(*@rg.]jboss. cache. poj 0. annot ati on. Repl i cabl e->*)"/>
</ aop>

Basically, it simply states that any annotation with both marker interfaces will be
"aspectized" accordingly.

Here is a code snippet that illustrate the declaration:

@r g. j boss. cache. poj 0. annot ati on. Repl i cabl e public class
Person {...}

The above declaration will instrument the class Per son and all of its sub-classes.
That is, if St udent sub-class from Per sonal , then it will get instrumented
automatically without further annotation declaration.

4.2. JDK5.0 field level annotations

In Release 2.0, we have added two additional field level annotations for customized
behavior. The first one is @r g. j boss. cache. poj 0. annot ati on. Tr ansi ent . When

39

Chapter 6. Instrumentation

applied to a field variable, it has the same effect as the Java language t r ansi ent

keyword. That is, PojoCache won't put this field into cache management (and

therefore no replication).

The second one is @r g. j boss. cache. poj 0. annot ati on. Seri al i zabl e

, when

applied to a field variable, PojoCache will treat this variable as Seri al i zabl e , even
when it is Repl i cabl e . However, the field will need to implement the Seri al i zabl e
interface such that it can be replicated.

Here is a code snippet that illustrates usage of these two annotations. Assuming that
you have a Gadget class:

public class Gadget

{

/1 resource won't be replicated
@r ansi ent
Resour ce resource;

/| special Address is treated as a Serializable object but still

has object relationship

@seri ali zabl e
Speci al Addr ess speci al Addr ess;

// other state variabl es

Then when we do:

Gadget gadget = new Gadget ();
Resource resource = new Resource();
Speci al Addr ess speci al Address = new Speci al Address();

/] setters
gadget . set Resour ce(resource);
gadget . set Speci al Addr ess(speci al Addr ess);

/1 put into PojoCache managenent
cachel. put Qoj ect ("/ gadget”, gadget);

/] retrieve it from anot her cache instance
Gadget g2 = (Gadget) cache2. get Obj ect("/gadget");

/1 This is should be null because of @ransient tag so it
replicated.

g2. get Resource() ;

i's not

40

Weaving

Sepci al Address d2 = g2. get Speci al Address();

d2.set Nane("inet"); // This won't get replicated automatically
because of @perializable tag

ge. set Speci al Address(d2); // Now this wll.

5. Weaving

As already mentioned, a user can use the aop precompiler (aopc) to precompile the
POJO classes such that, during runtime, there is no additional system class loader
needed. The precompiler will read in poj ocache- aop. xm and weave the POJO byte
code at compile time. This is a convenient feature to make the aop less intrusive.

Below is an Ant snippet that defines the library needed for the various Ant targets
that we are listing here. User can refer to the bui | d. xm in the distribution for full
details.

<pat h i d="aop. cl asspat h">
<fileset dir="${lib}">
<i ncl ude name="**/*_jar" />
<excl ude name="**/jboss-cache.jar" />
<excl ude nane="**/j*unit.jar" />
<excl ude nanme="**/bsh*.jar" />
</fil eset>
</ pat h>

5.1. Ant target for running load-time instrumentation using
specialized class loader

In JDK5.0, you can use the j avaagent option that does not require a separate
Classloader. Here are the ant snippet from one- t est - poj o , for example.

<t arget name="one.test.pojo" depends="conpile" description="run one
junit test case.">
<junit printsunmary="yes" tineout="${junit.timeout}" fork="yes">
<j vhar g
val ue="- D boss. aop. pat h=${ out put }/ r esour ces/ poj ocache- aop. xm "/ >
<jvmarg val ue="-j avaagent: ${li b}/j boss-aop-j dk50.jar"/>
<cl asspat h pat h="${output}/etc" />
<sysproperty key="I|og4j.configuration"
val ue="file: ${output}/etc/l og4j.xm" />
<cl asspath refid="lib.classpath"/>
<cl asspath refid="buil d.cl asspath"/>
<formatter type="xml" usefile="true"/>

41

Chapter 6. Instrumentation

<test name="${test}" todir="%{reports}"/>
</junit>
</target>

5.2. Ant target for aopc

Below is the code snippet for the aopc Ant target. Running this target will do
compile-time weaving of the POJO classes specified.

<t askdef nanme="aopc" cl assname="org.jboss. aop. ant. AopC'
cl asspat hr ef =" aop. cl asspat h"/ >
<target nanme="aopc" depends="conpile" descripti on="Preconpile aop
cl ass" >
<aopc conpi |l ercl asspat href =" aop. cl asspat h" verbose="true">
<src path="${build}"/>
<i ncl ude nane="or g/ boss/cache/ aop/test/**/*.cl ass"/>
<aoppat h pat h="${ out put }/r esour ces/ poj ocache- aop. xm "/ >
<cl asspat h pat h="${build}"/>
<cl asspath refid="lib.classpath"/>
</ aopc>
</target>

Below is a snapshot of files that are generated when aopc is applied. Notice that
couple extra classes have been generated because of aopc .

W test r;|ﬂ| |

Fz Edr Vew Favortes Toos Hep
{3 Back - T search || roiders | [ED] T
Adddress |2 By boss\ IBassCac et outau et -rlsases ong | Joasshoac hie\aop test bl Go
Foiders % pame See Type
F— Pl T e GHB CLASS Pl
= ani || Addresssoy_Get 2KB CLASS Fle
L [Addrsssory_sat 2ZKB CLASS Fle
- S
) clessas [AdressSstrest_tet 2HB CLASS Fle
I cte | Adiressgadresl_Sel 2HR CLASS Fie
|\ raenunves | hdoresssnn Gt 2KB CLASS Pl
2 test-classes || Addresssrip Set 2KB CLASS Fle
= B e | Person 13 KB CLASS Fl
= Persongoaddress_Ge p 55 Fie
- bass [Persongaddress_Get 2HB CLASS Fie
= | Persangadiliess_Set 2KR CLASS Fie
<D wche | Persangage Gat KB CLASS Fle
B 1 aop || Persongage._set 2KB CLASS Fle
I colecton ﬂ_[':fsa'.‘*ra.ln'tnrstnu.ls_u:t 2KB CLASE Fie
153 intagrated =] PersongourrentStatus_Set 2 KB CLASS Fie
&) bader [~ Persanghotivies_Get 2 KB CLASS Fie
3 [| Personghatises_Ser 2KB CLASS Pl
— || Personglanguages et 2 KB CLASS Fle
P= || Perscnglnguages_set 2HB CLASE Pl
!3 benchmark = Persongmedicaton_iSet 2 KB CLASS Fie
I3 eviction [~ Persangmesication_Set KB CLASS Fie
) bader “%| Pereonsname_Get JKB CLASS Fle
& bk || Persongname_Sex 3EB CLASS Fle
& marshal [Persongskis_Get KB CLASS Al
o = |7 Persongskils_Set 3 KB CLASS Fie
———
£ * £ x>

Figure 6.1. Classes generated after aopc

42

Chapter 7.

TroubleShooting

We have maintained a PojoCache wiki troubleshooting page
[http://wiki.jboss.org/wiki/Wiki.jsp?page=PojoCacheTroubleshooting]. Please refer it
first. We will keep adding troubleshooting tips there.

All the current outstanding issues are documented in JBossCache Jira page
[http://jira.jboss.coml/jira/secure/BrowseProject.jspa?id=10051] . Please check it for
details. If you have discovered additional issues, please report it there as well.

43

http://wiki.jboss.org/wiki/Wiki.jsp?page=PojoCacheTroubleshooting
http://wiki.jboss.org/wiki/Wiki.jsp?page=PojoCacheTroubleshooting
http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10051
http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10051

44

Chapter 8.

Appendix

1. Example POJO

The example POJO classes used for are: Per son, Student, and Addr ess. Below
are their definition (note that neither class implements Seri al i zabl e) along with the
annotation.

@r g. j boss. cache. poj 0. annot ati on. Repl i cabl e
public class Person {

String nane=nul |

i nt age=0;

Map hobbi es=nul |

Addr ess addr ess=nul |

Set skills;

Li st | anguages;

public String getNanme() { return nane; }
public void setNane(String name) { this.nane=nane; }

public int getAge() { return age; }
public void setAge(int age) { this.age = age; }

public Map get Hobbi es() { return hobbies; }
public void set Hobbi es(Map hobbi es) { this.hobbies = hobbies; }

publ i c Address get Address() { return address; }
public void set Address(Address address) { this.address =
addr ess; }

public Set getSkills() { return skills; }
public void setSkills(Set skills) { this.skills = skills; }

public List getlLanguages() { return |anguages; }
public void setlLanguages(List |anguages) { this.|anguages =
| anguages; }

}

public class Student extends Person {
String year=null

public String getYear() { return year; }
public void setYear(String year) { this.year=year; }

45

Chapter 8. Appendix

@r g. j boss. cache. poj 0. annot ati on. Repl i cabl e
public class Address {

String street=null

String city=null;

int zip=0;

public String getStreet() { return street; }
public void setStreet(String street) { this.street=street;
I

2. Sample Cache configuration xml

Below is a sample xml configuration for Cache that you can use for PojoCache
creation.

<?xm version="1.0" encodi ng="UTF-8" ?>

<server>
<nmbean code="org.j boss. cache. poj 0. j nx. Poj oCacheJmxW apper
nane="j boss. cache: servi ce=Poj oCache" >

<depends>j boss: servi ce=Tr ansact i onManager </ depends>

<l-- Configure the TransactionManager -->
<attribute nane="Transacti onManager Lookupd ass" >

org.j boss. cache. transacti on. DunmyTr ansact i onManager Lookup

</attribute>

<l-- Isolation |level : SERIALI ZABLE
REPEATABLE_READ (def aul t)
READ_COWM TTED
READ_UNCOWM TTED
NONE

—e =

<attribute nanme="Isol ati onLevel ">REPEATABLE READ</ attri but e>

<l-- Valid nodes are LOCAL, REPL_ASYNC and REPL_SYNC -->
<attri bute nanme="CacheMbde">REPL SYNC</ attri but e>

<l-- Nanme of cluster. Needs to be the sane for all caches,

in order for themto find each other
—e =

<attribute nane="Cl ust er Nane" >Poj oCacheCl uster</attribute>

<l-- JGoups protocol stack properties. -->

46

Sample Cache configuration xml

<attribute nane="d uster Config">
<confi g>
<l-- UDP: if you have a multihomed machi ne, set the
bi nd_addr
attribute to the appropriate NIC | P address -->
<l-- UDP: On Wndows machi nes, because of the nedia
sense feature
bei ng broken with multicast (even after disabling
medi a sense)
set the | oopback attribute to true -->
<UDP ntast _addr="228.1.2.3" ntast_port="48866"
ip_ttl="64" ip_ntast="true"
ncast _send_buf si ze="150000"
ncast _recv_buf _si ze="80000"
ucast _send_buf _si ze="150000"
ucast _recv_buf _si ze="80000"
| oopback="fal se"/>
<PI NG ti meout ="2000" num.initial menmbers="3"/>
<MERGE2 mi n_i nterval ="10000" max_i nt erval ="20000"/ >
<FD shun="true"/>
<FD_SOCK/ >
<VERI FY_SUSPECT ti neout =" 1500"/ >
<pbcast . NAKACK gc_| ag="50"
retransmt _ti neout ="600, 1200, 2400, 4800"
mex_xmt_size="8192"/>
<UNI CAST ti neout =" 600, 1200, 2400", 4800/ >
<pbcast . STABLE desi red_avg_gossi p="400000"/ >
<FC max_cr edi t s="2000000" mi n_t hreshol d="0. 10"/ >
<FRAX2 frag_si ze="8192"/>
<pbcast. GV5 j oi n_t i meout =" 5000"
join_retry_tineout="2000"
shun="true" print_|ocal _addr="true"/>
<pbcast . STATE_TRANSFER/ >
</ confi g>
</attribute>

<I-- VWether or not to fetch state on joining a cluster -->
<attribute name="Fetchl nMenoryState">true</attri bute>

<l-- The max anpunt of tinme (in mlliseconds) we wait until
t he
initial state (ie. the contents of the cache) are
retrieved from
exi sting nenbers in a clustered environnment
-->
<attribute
name="Initial StateRetri eval Ti meout">15000</attri but e>

<I-- Nunmber of mlliseconds to wait until all responses for a

47

Chapter 8. Appendix

synchronous call have been received
-->

<attribute nanme="SyncRepl Ti neout">15000</attri bute>
<l-- Max nunber of mlliseconds to wait for a | ock
acquisition -->

<attribute nanme="LockAcqui sitionTi neout">10000</attri bute>

</ mbean>

</ server >

3. PojoCache configuration xml|

Attached is a full listing for poj ocache- aop. xni .

<?xm version="1.0" encodi ng="UTF- 8" ?>
<I--
This is the PojoCache configuration file that specifies
1. Interceptor stack for AP
2. Annotation binding for POJO (via "prepare" el enent)

Basically, this is a variant of jboss-aop.xm . Note that

except for the custom zation of interceptor stack, you
shoul d

not need to nmodify this file.

To run PojoCache, you will need to define a system property:
j boss. aop. path that contains the path to this file such that
JBoss Aop
can |locate it.
-->

<aop>

<l--
Thi s defines the PojoCache 2.0 interceptor stack. Unless

necessary, don't nodify the stack here!
-->

<l-- Check id range validity -->
<i nt ercept or name="Checkl d"
cl ass="org.j boss. cache. poj o. i nt er cept ors. Checkl dl nt er cept or"
scope="PER _| NSTANCE"/ >

<I-- Track Tx undo operation -->
<i nt ercept or name="Undo"
cl ass="org. j boss. cache. poj 0. i nt ercept ors. Poj oTxUndol nt er cept or "
scope="PER _| NSTANCE"/ >

48

PojoCache configuration xml

<I-- Begining of interceptor chain -->
<i nterceptor name="Start"
cl ass="org.j boss. cache. poj 0. i nt ercept ors. Poj oBegi nl nt er cept or"
scope="PER _| NSTANCE"/ >

<l-- Check if we need a local tx for batch processing -->
<i nterceptor name="Tx"
cl ass="org.j boss. cache. poj 0. i nterceptors. Poj oTx| nt ercept or"
scope="PER _| NSTANCE"/ >

<l--
Mockup failed tx for testing. You will need to set
Poj oFai | edTxMockupl nt er cept or . set Rol | back(true)
to activate it.
2o
<i nterceptor name="MckupTx" cl ass="org.jboss. cache. pojo.i nterceptors. Poj oFai |
scope="PER _| NSTANCE"/ >

<I-- Performparent |evel node |ocking -->
<i nterceptor nanme="TxLock"
cl ass="org. j boss. cache. poj o. i nt ercept ors. Poj oTxLockl nt er cept or"
scope="PER _| NSTANCE"/ >

<I-- Interceptor to performPojo |evel rollback -->
<i ntercept or name="TxUndo" cl ass="org. | boss. cache. poj o.i nt erceptors. Poj oTxUnd«
scope="PER _| NSTANCE"/ >

<I-- Interceptor to used to check recursive field
interception. -->
<i nterceptor name="Reentrant" class="org.]j boss. cache. poj o.i nterceptors. Met hodl
scope="PER _| NSTANCE"/ >

<I-- VWether to allow non-serializable pojo. Default is
false. -->
<i nterceptor name="Mrshal | NonSeri al i zabl e"

cl ass="org. j boss. cache. poj o. i nterceptors. CheckNonSeri al i zabl el nt ercept or"
scope="PER_| NSTANCE" >
<attribute
nanme="mar shal | NonSeri al i zabl e">f al se</attri but e>
</interceptor>

<l-- This defines the stack macro -->
<stack name="Attach">
<interceptor-ref nane="Start"/>
<i nterceptor-ref name="Checkld"/>
<i nterceptor-ref nane="Marshal | NonSeri al i zabl e"/>
<interceptor-ref nane="Tx"/>

49

Chapter 8. Appendix

<I-- NOTE: You can comment this out during production
al t hough leaving it here is OK -->
<i nterceptor-ref name="MckupTx"/>
<interceptor-ref nane="TxLock"/>
<i nterceptor-ref nane="TxUndo"/>
</ st ack>

<stack name="Detach">
<interceptor-ref nane="Start"/>
<i nterceptor-ref name="Checkld"/>
<interceptor-ref nane="Tx"/>
<I-- NOTE: You can comment this out during production
al t hough leaving it here is OK -->
<i nterceptor-ref name="MckupTx"/>
<i nterceptor-ref nane="TxLock"/>
<i nterceptor-ref nane="TxUndo"/>
</ st ack>

<stack name="Fi nd">
<interceptor-ref name="Start"/>
<i nterceptor-ref name="Checkld"/>
</ st ack>

<l--
The followi ng section should be READ-ONLY!! It defines the
annot ati on binding to the stack
S

<I-- This binds the jointpoint to specific in-menory
operations. Currently in PojoUtil. -->
<bi nd poi nt cut =" executi on(*
@r g. j boss. cache. poj 0. annot ati on. Reentrant->toString())">
<i nterceptor-ref name="Reentrant"/>
</ bi nd>

<bi nd poi nt cut ="executi on(*

org.j boss. cache. poj 0. Poj oUti | -
>@r g. j boss. cache. poj 0. annot ati on. TxUndo(..))">
<i nterceptor-ref nane="Undo"/>
</ bi nd>

<bi nd poi nt cut =" execution(*
org.j boss. cache. poj o. i nmpl . Poj oCachel npl -
>@r g. j boss. cache. poj o. annot ati on. Attach(..))">
<stack-ref nane="Attach"/>
</ bi nd>

50

PojoCache configuration xml

<bi nd poi nt cut =" executi on(*
org.j boss. cache. poj o. i nmpl . Poj oCachel npl -
>@r g. j boss. cache. poj o. annot ati on. Detach(..))">
<st ack-ref nane="Detach"/>
</ bi nd>

<bi nd poi nt cut =" execution(*
org.j boss. cache. poj o. i nmpl . Poj oCachel npl -
>@r g. j boss. cache. poj o. annotati on. Find(..))">
<st ack-ref nanme="Find"/>
</ bi nd>

<l--
Fol l owi ng i s declaration for JDK50 annotati on. You use the
speci fi ¢ annotation on your
PQJO such that it can be instrunmented. Idea is user wll
then need only to annotate I|ike:
@r g. j boss. cache. poj 0. annot ati on. Repl i cabl e
in his PQDO There will be no need of jboss-aop.xm fromuser's
si de.
-->

<I-- If a PQJO has Poj oCachabl e annotation, it will be
asepcti zed. -->

<prepare expr="field(*
$i nst anceof { @r g. j boss. cache. poj 0. annot ati on. Repl i cabl e}->*)" />

<I-- (Cbserver and Cbservable to monitor field nodification
-->
<bi nd poi nt cut ="
set (*
$i nst anceof { @r g. j boss. cache. poj 0. annot at i on. Repl i cabl e} - >*)
">

<i nt er cept or
cl ass="org.j boss. cache. poj 0. observabl e. Subj ect| nt erceptor"/>
</ bi nd>

<i ntroduction
cl ass="$i nst anceof { @r g. j boss. cache. poj 0. annot ati on. Repl i cabl e}" >
<m Xxi n>

<i nterfaces>org.jboss. cache. poj 0. observabl e. Subj ect</i nterfaces>

<cl ass>or g. j boss. cache. poj 0. obser vabl e. Subj ect | npl </ cl ass>
<constructi on>new
org.j boss. cache. poj 0. obser vabl e. Subj ect | npl (t hi s) </ constructi on>
</ m xi n>
</introduction>

51

Chapter 8. Appendix

</ aop>

52

	POJO Cache
	Table of Contents
	Preface
	Chapter 1. Terminology
	1. Overview

	Chapter 2. Introduction
	1. Overview
	2. Features
	3. Usage
	4. Requirements

	Chapter 3. Architecture
	1. POJO Cache interceptor stack
	2. Field interception
	3. Object relationship management
	4. Object Inheritance
	5. Physical object cache mapping model
	6. Collection Mapping
	6.1. Limitations

	7. Array Mapping

	Chapter 4. API Overview
	1. PojoCacheFactory Class
	2. PojoCache Interface
	2.1. Attachment
	2.2. Detachment
	2.3. Query

	Chapter 5. Configuration and Deployment
	1. Cache configuration xml file
	2. Passivation
	3. AOP Configuration
	4. Deployment Options
	4.1. Programatic Deployment
	4.2. JMX-Based Deployment in JBoss AS (JBoss AS 5.x and 4.x)
	4.3. Via JBoss Microcontainer (JBoss AS 5.x)

	5. POJO Cache MBeans
	6. Registering the PojoCacheJmxWrapper
	6.1. Programatic Registration
	6.2. JMX-Based Deployment in JBoss AS (JBoss AS 4.x and 5.x)
	6.3. Via JBoss Microcontainer (JBoss AS 5.x)

	7. Runtime Statistics and JMX Notifications

	Chapter 6. Instrumentation
	1. Load-time instrumentation
	2. Compile-time instrumentation
	3. Understanding the provided AOP descriptor
	4. Annotation
	4.1. POJO annotation for instrumentation
	4.2. JDK5.0 field level annotations

	5. Weaving
	5.1. Ant target for running load-time instrumentation using specialized class loader
	5.2. Ant target for aopc

	Chapter 7. TroubleShooting
	Chapter 8. Appendix
	1. Example POJO
	2. Sample Cache configuration xml
	3. PojoCache configuration xml

