
jBPM Form modeller -

Getting Started guide
Version 6.1.0-SNAPSHOT

by The JBoss Drools team [http://www.jboss.org/drools/team.html]

http://www.jboss.org/drools/team.html
http://www.jboss.org/drools/team.html

iii

... v

1. What is jBPM Form modeler ... 1

2. First steps to create a form driven process .. 3

2.1. Configure process and human tasks .. 5

2.2. Generate forms from task definitions .. 7

2.3. Edit forms ... 10

2.3.1. Form generated description .. 10

2.3.2. Customizing form ... 10

2.3.3. Field types ... 38

3. Data Modeller ... 51

3.1. What is Data Modeller ... 51

3.2. First steps to create a data model ... 51

3.3. Entities ... 55

3.4. Properties & relationships .. 58

3.5. Additional options .. 60

3.5.1. Additional entity properties ("Data object tab") .. 60

3.5.2. Additional field properties ("Field tab") ... 61

3.6. Generate data model code. ... 61

3.7. Using external models ... 66

3.7.1. Dependency to a JAR file in local M2 repository 66

3.7.2. Dependency to a JAR file in current "Guvnor M2 repository". 68

3.7.3. Using the external objects .. 72

iv

v

vi

Chapter 1.

1

Chapter 1. What is jBPM Form

modeler
jBPM Form modeler is a form engine and editor that enables users to create forms to capture and

display information during task execution, without needing any coding or template markup skills.

It provides a WYSIWYG environment to model forms that it's easy to use for less technical users.

Key features:

• Form Modeling WYSIWYG UI for forms

• Form autogeneration from data model / Java objects

• Data binding for Java objects

• Formula and expressions

• Customized forms layouts

• Forms embedding

The form modeler's user interfaces is aimed both at process analyst and developers for building

and testing forms.

Developers or advanced used will also have some advanced features to customize form behavior

and look&feel.

This guide intends to describe in a simple ways all the steps required to create a process with

human tasks, generate and modify the forms for these tasks and execute them.

It will provide initial guidance to perform all initial steps, but it will not provide a full description of

all available features.

2

Chapter 2.

3

Chapter 2. First steps to create a

form driven process
This guide intends to describe in a simple ways all the steps required to create a process with

human tasks, generate and modify the forms for these tasks and execute them. It will provide initial

guidance to perform all initial steps, but it will not provide a full description of all available features.

Given that forms are going to be used in tasks, it's possible to generate forms automatically from

process variables and task definitions. These forms can be later be modified by using the form

editor. In runtime, forms will receive data from process variables, display it to the user and capture

his input, and then finally updating process variables again with the new values.

The following example will show all the steps to follow to create a form for the 'Create order' task

in the process below.

Figure 2.1. Process example

This form must look like the following in execution:

Chapter 2. First steps to cre...

4

Figure 2.2. Process example

Configure process and human tasks

5

2.1. Configure process and human tasks

To hold values capture by forms, process variables can be created. These variables can be of a

simple type like 'String' or a complex type. These complex types can be defined by using the Data

Modeler tool, or be just regular POJOs (Plain Java Objects) created with any Java IDE.

In this example, we define a variable 'po' of type 'org.jbpm.examples.purchases.PurchaseOrder',

defined with the Data Modeler tool.

Figure 2.3. Process variable definition

This variable is declared in the 'variables definition' property for the process.

After that, we must configure which variables are set as input parameters to the task, which

ones will receive the response back from the form and establish the mappings. This is done by

setting the 'DataInputSet', 'DataOutputSet' and 'Assignments' properties for any human task. See

screenshots below for details.

Chapter 2. First steps to cre...

6

Figure 2.4. Data input variable definition

Figure 2.5. Data output variable definition

Generate forms from task definitions

7

Figure 2.6. Variable mapping definition

2.2. Generate forms from task definitions

The Process Designer module provides some functionality to generate the forms automatically

from task and variable definitions, as well as easily open the right form from the modeler.

This is done with the following menu option.

Figure 2.7. Form automatic generation

You can also click on the icon on top of task to open the form directly.

Chapter 2. First steps to cre...

8

Figure 2.8. Access to form edition

Forms are related to tasks by following a naming convention. If a form with a name formName-

taskform is defined in the same package as the process, then this form is used by the human task

engine to display and capture information from user.

Also, if a form named ProcessId-task form is created, it will be used as the initial form when starting

this process.

For example, for our process the following forms would be generated.

Generate forms from task definitions

9

Figure 2.9. Access to form edition

Chapter 2. First steps to cre...

10

2.3. Edit forms

Once the forms have been generated, you can start editing them. There are several artifacts that

are generated in the previous process, but also can be created manually.

2.3.1. Form generated description

When the form has been generated automatically, this tab contain the process variables as data

origins. This allow bind form fields with them, this relation it’s linked creating data bindings.

A data binding define how task inputs will be mapped to form variables, and when the form is

validated and submitted, how the values will update the task outputs.

Figure 2.10. Generated form

For example, for this process, the following bindings are generated. Notice that the identifiers are

automatically generated. You can have as many data origins as required, and can use a different

colour to identify it.

In automatic form generation, a data origin is created for each process variable. The generated

form have a field for each data origin bindable item (view FieldTypes) and this automatic fields

have the binding defined too.

When these fields are displayed in editor the color of the data origin is shown over the field to

make easy view if the field is correctly bound and the data origin implied.

2.3.2. Customizing form

We can change the way the form is displayed to the user in the task list. Next, we will show different

levels of customization that will allow change it

2.3.2.1. Moving fields

The fields may be placed in different regions of the form. To move a field the user can access the

contextual menu of the field and select 'Move field'.

Customizing form

11

Figure 2.11. Move field option

This will display the different regions of the form where you can place it.

Figure 2.12. Destination areas to move the field

A field can be moved to the first or the last region with the contextual icons for that purpose.

2.3.2.2. Adding new fields

You can add fields to forms either by its origin or by selecting one type of form field.

Let's see what has been created automatically for this purchase order form.

Chapter 2. First steps to cre...

12

Figure 2.13.

Note

All the properties have been added by default, but are not still configured.

Note

• Add fields by origin: this tab allows you to add fields to the form based on the

data origins defined. These fields will have the correct configuration on the "Input

binding expression" and "Output binding expression" properties so whe the form

is submitted the fields values will be stored in the corresponding Data Origin.

Customizing form

13

Figure 2.14. Add field by origin

• Add fields by type: this tab allows you to freely add fields to the form from the

Field Types palette on the Form Modeler. This fields won't be storing it's value

on any Data Origin until they have a correct configuration on the "Input binding

expression" and "Output binding expression" properties.

Figure 2.15. Add field by type

Chapter 2. First steps to cre...

14

To see a complete list of the available field types go to Field types section.

Notice the data model 'po' of type 'org.jbpm.examples.purchases.PurchaseOrder'

is composed of three properties.

• Simple : property of type text (description). We will adjust the view settings.

• Complex: property of type object (header).

• Complex: property of type array of objects (lines)

Now all these properties had to be configured.

2.3.2.3. Field configuration

Each field can be configured to enhance performance in the form. There are a group of common

properties, that we call ‘Generic field properties’ and a group of specific properties that depends

on the field type.

2.3.2.3.1. Generic field properties

There are a group of properties that are common to all field types. We will detail them below:

Table 2.1.

Field type Can change the field type to other compatible

field types

Field Name Will be used as identifier in formulas

calculation

Label The text that will be shown as field label

Error message When something goes wrong with the

field, like validations,.. this message will be

displayed

Label ccs class Allows enter a class css to apply in label

visualization

Label css style to enter directly the style to apply to the label.

Help text The text introduced is displayed as

alt attribute to help to the user in data

introduction

Style class Allows enter a class css to apply in field

visualization

Css style to enter directly the style to apply to the label.

Customizing form

15

Read Only When this check is on, the field will be used

only for read

Input binding expression This expression defines the link between field

and process task input variable. It will be used

in runtime to set the field value with that task

input variable data.

Output binding expression This expression defines the link between

field and process task output variable. It will

be used in runtime to set that task output

variable.

2.3.2.3.2. Specific field properties

Let's explain the specific properties of each field type:

• Short Text (java.lang.String)

• Compatible field type: Long text, E-mail, Rich text

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Show html: indicates whether the contents of the field is interpreted as html in show mode.

• Formula. to enter expressions that will be evaluated to set the field value. These

expressions are descrived in Formula & expression section .

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section

• Pattern. Allow introduce an expression to specify the validation of the field. In case that

the field value introduced hasn’t match the expression, and error is thrown and the error

message has to be shown.

• Default Value formula. Expression to set the field default value.

• Long Text (java.lang.String)

• Compatible field type: Long text, E-mail, Rich text

• Specific properties

• Size: input text length.

Chapter 2. First steps to cre...

16

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Height: The number or rows to show at text area.

• Formula. to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section .

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section

• Pattern. Allow introduce an expression to specify the validation of the field. In case that

the field value introduced hasn’t match the expression, and error is thrown and the error

message has to be shown.

• Default Value formula. Expression to set the field default value.

• Float (java.lang.Float)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section .

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section

• Pattern. Allow introduce an expression to specify how the Float value has to be displayed.

The pattern allowed is show in section pattern in http://docs.oracle.com/javase/6/

docs/api/java/text/DecimalFormat.html [http://docs.oracle.com/javase/6/docs/api/java/text/

DecimalFormat.html]

• Default Value formula. Expression to set the field default value.

• Decimal (java.lang.Double)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html

Customizing form

17

• Required: Indicates if it’s mandatory to fill this field.

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section .

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Pattern. Allow introduce an expression to specify how the Double value has to be

displayed. The pattern allowed is show in section pattern in http://docs.oracle.com/

javase/6/docs/api/java/text/DecimalFormat.html [http://docs.oracle.com/javase/6/docs/api/

java/text/DecimalFormat.html]

• Default Value formula. Expression to set the field default value.

• BigDecimal (java.math.BigDecimal)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section .

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Pattern. Allow introduce an expression to specify how the BigDecimal value has to be

displayed. The pattern allowed is show in section pattern in http://docs.oracle.com/

javase/6/docs/api/java/text/DecimalFormat.html [http://docs.oracle.com/javase/6/docs/api/

java/text/DecimalFormat.html]

• Default Value formula. Expression to set the field default value.

• Big integer (java.math.BigInteger)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html

Chapter 2. First steps to cre...

18

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section .

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Default Value formula. Expression to set the field default value.

• Short (java.lang.Short)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section .

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Default Value formula. Expression to set the field default value.

• Integer (java.lang.Integer)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section .

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Default Value formula. Expression to set the field default value.

• Long Integer (java.lang.Long)

• Specific properties

Customizing form

19

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section .

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Default Value formula. Expression to set the field default value.

• E-mail (java.lang.String)

• Compatible field type: Short text, Long text, Rich text

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Default Value formula. Expression to set the field default value.

• Checkbox (java.lang.Boolean)

• Specific properties

• Required: Indicates if it’s mandatory to fill this field.

• Default Value formula. Expression to set the field default value.

• Rich text: (java.lang.String)

• Compatible field type: Short text, Long text, E-mail

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Height: The number or rows to show at text area.

• Default Value formula. Expression to set the field default value.

Chapter 2. First steps to cre...

20

• Timestamp (java.util.Date)

• Compatible field type: Short date

• Specific properties

• Size: input text length.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section .

• Default Value formula. Expression to set the field default value.

• Short date (java.util.Date)

• Compatible field type: Timestamp

• Specific properties

• Size: input text length.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section .

• Default Value formula. Expression to set the field default value.

• Simple subform (Object)

• For more details see section Simple Object (Subform field Type).

Specific properties

• Default form. Show the list of available forms to select what one will be displayed to show

the object.

• Multiple subform (Multiple Object)

• For more details see section Arrays of objects.(Multiple subform field Type).

Specific properties

• Default form. Show the list of available forms to select what one will be displayed to show

the object when no other form is configured with an specific purpose.

• Preview form. If a form is specified, it will be used to show the item details

• Table form. If a form is specified, it will be used to show the table columns when the item

list is showed

Customizing form

21

• New item text. Text to show at New Item button

• Add item text. Text to show at Add Item button

• Cancel text. Text to show at Cancel button

• Allow remove Items. If this check is selected, the form allow remove items in table view.

• Allow edit items. If this check is selected, the form allow edit items in table view.

• Allow preview items. If this check is selected, the form allow preview items in table view.

• Hide creation button. Check to not show the creation button

• Expanded. If is checked, when a new item is being added, the field display the table with

the existing items and the creation form at same time

• Allow data enter in table mode. Allow modify data in table view directly.

2.3.2.3.3. Complex Fields Configuration

There are two types of complex fields: fields representing an object, and fields representing an

object array.

Once the field is added to the form, either automatically or manually, it must be configured so that

the form had to know how to display the objects that will contain in execution time.

Next we describe how can be the configuration process:

• The first thing to do is define how the contained object will be displayed. This is done creating

a form that represents the object.

• In case of the object array, you can define a form to show in preview(edition), or to show when

table is shown

Once the form to represent the object, the parent form has to be configured to use them in the

parent Subform or Multiple subform.

Below we will describe how the setup would be:

2.3.2.3.3.1. Simple Object (Subform field Type)

One possible way of setting the value for an object property is by using an existing form, and

embedding this form into the parent. This is called subform.

In this example, the Purchase Order header data is held in an object. Therefore, we must create

a form to enter all the purchase order header data and link it from the parent task form.

We will follow the steps:

Chapter 2. First steps to cre...

22

1. Create new form.

Figure 2.16. Create new form

2. Create new data origin, selecting the type of the purchase order header.

Customizing form

23

Figure 2.17. Create new data origin

Figure 2.18. Data origin

3. Add fields by origin. All the properties are shown, and can be added to the form, either one

by one or all of them at once.

Chapter 2. First steps to cre...

24

Figure 2.19. Add fields by origin

All the properties have been added to the form, and now we can edit each of them and move

them around.

Figure 2.20. All data origin fields added

4. Configure the fields and customize form.

5. Once the form has been saved, open the initial parent form and set the field property 'Default

form'.

Customizing form

25

Figure 2.21. Configure the parent form

This will insert the subform inside the parent form, and will be shown as below:

Chapter 2. First steps to cre...

26

Figure 2.22. Parent form visualization after subform configuration

2.3.2.3.3.2. Arrays of objects.(Multiple subform field Type)

Now, we want to be able to create, edit and remove purchase order lines, by displaying a table with

all the values and being able to capture information through a form. This will be done as follows:

Create a form that will hold and capture the information for each line's value (description, amount,

unitPrice and total), following the same steps as above. This will be done as follows:

1. Create new form.

Customizing form

27

Figure 2.23. Create new form

2. Create new data origin.

Chapter 2. First steps to cre...

28

Figure 2.24. Create new data origin

3. Add fields by origin. All the properties are shown, and can be added to the form, either one

by one or all of them at once.

Figure 2.25. Configure the parent form

4. Customize form. Change display options to improve the form visualization

Customizing form

29

5. Configure the fields. After creating the basic form structure, we can use a formula to calculate

automatically the total field. This formulas and expressions are described in Formula &

expression section .

Figure 2.26. Configuring formulas

6. Finally, we save the lines form and go back to the parent form and configure all the lines

properties.

Chapter 2. First steps to cre...

30

Figure 2.27. Configure the parent form

2.3.2.3.4. Formulas

Form Modeler provides a Formula Engine that you can use to automatically calculate field values.

That Formula engine supports Java and XPATH expressions to access the form fields values.

Let’s see some examples.

• Setting a Default value formula

Imagine that you have a form that contains a date field “Creation date” that has to be set by

default with the current date. To do that you should edit the field properties and set a Default

value formula like:

=new java.util.Date();

Customizing form

31

Figure 2.28. Setting default value formula

After setting a Default formula value on a field properties, when the form is rendered by the first

time the field will have the specified value.

Figure 2.29. Rendering field with default formula

As you can see, you can use a default formula any expression that return a value supported

for the field.

• Setting a Formula

The formula engine allows you to calculate formulas that depend on other Field values using

XPATH expressions to refer to fields values like {a_field_nane}, standard operators (+, -, *, /,

%...) to operate with them or calls to Java Functions for more complex operations.

To start let’s see how you can create a formula to calculate the line_total of a Purchase Order

Line. Look at the image below and look at the formula on the line_total properties.

Chapter 2. First steps to cre...

32

Figure 2.30. Rendering field with default formula

With this expression:

={line_unitPrice}*{line_amount}

we’re forcing the Total of the line value to be the result of the the Unit price multiplied by the

Amount, so when the user fills the Amount and Unit Price fields automatically the Total Amount

field value is going to be calculated and filled with the operation result:

Figure 2.31. Rendering field with default formula result

Is possible to create formulas to operate with values stored in subforms using expressions like

={a_field/a_subform_field}

Look at the next image to see how it works:

Customizing form

33

Figure 2.32.

This form has a subform field called po_header that is showing a form with the fields

header_creationDate, header_customer and header_project. We want the Description field

on our parent form to show some information from the header. Look at the Description field

properties formula.

="Customer: " + {po_header/header_customer} + " Project: " + {po_header/

header_project}

This formula returns a text when the fields header_customer and header_projects are filled on

the child form, so from now the parent form will be filled like this:

Chapter 2. First steps to cre...

34

Figure 2.33.

Ok, you’ve seen how to create formulas that access to a subform fields values, now we are

going to see how to work with values stored in Multiple Subforms. Imagine that we have a

Purchase Order Line form that contains a multiple subform of Purchase Order Lines, and we

want to calculate the total amount of the lines created. Look at the image below and how the

TOTAL field is configured.

Customizing form

35

Figure 2.34.

On the formula expression:

="

" + {sum(po_lines/line_total)} + "

"

we are using the XPATH function sum() that is going to sumarize the totals of all the lines. So

after creating some Lines the form will look like this

Chapter 2. First steps to cre...

36

Figure 2.35.

Note that the line_total child field corresponds with the field line_total field on then form selected

as a Default Form selected on the Lines field configuratio

Customizing form

37

On this sample we are using the sum() XPATH function to calculate the total of the Purchase

Order, but XPATH provides a lot of possibilities to select values from a set of children and also

a lot functions to summarize values (sum, count, avg...). For more information about XPATH

you can take a look at http://www.w3schools.com/xpath/

• Setting a Range Formula

A range formula allows you to let you specify the values that the user can select from an

specific field, showing it like a select box. It can be used on all simple types except Dates and

Checkboxes.

To see how it works look the next image and look at the Review Status field configuration.

Figure 2.36. Setting default value formula

As you can see that field is being shown as a select box and it has a range formula that specifies

the values like this:

{approve,Approve order;reject,Reject order;modifications,Request

 Modifications}

This expression is defining 3 duos of value/”text to show” separated with the character ‘,’ and

each of this duos is separated from each other other with the ‘;’ character. So due this formula

the resulting select box will show:

http://www.w3schools.com/xpath/

Chapter 2. First steps to cre...

38

Table 2.2.

Value stored in input Text shown on Select Box

approve Approve order

reject Reject order

modifications Request Modifications

2.3.2.4. Customizing form layout

When you need an extra customization level and have more control over the html that is displayed.

The form modeler provides the ability to edit the html directly.

To use this functionality, the user have to specify that in the ‘Form properties’ tab, 'Custom form

layout' option and save.

Now the form is displayed with the custom html. To access this html editing we click on the icon

'Edit'

The html editor is displayed, the html code will define how the form has to be shown. In this editor

the user can directly create the html i locate the fields and labels with the syntax described below:

$field{fieldName} for field identified fieldName

$label{fieldName} for field identified fieldName label

These expressions will be replaced by the field or label rendering when the form will be shown.

Form modeler also provides two ways to help in the form html creation.

• 'Insert form elements'

Two select: one for the fields and another for the labels. Clicking on that, the field or label text

is added to html. These selects only show the form fields haven’t been added yet.

• 'Generate template based on'

This functionality generates the html using all fields (default, alignment fields or Not aligned)

depending on the selected value and overwrite the html.

2.3.3. Field types

There are three types of field types that you can use to model your form:

• Simple types

These field types are used to represent simple properties like texts, numeric, dates, etc. The

supported Field types are:

Field types

39

Table 2.3.

Name Description Java Type Default on

generated forms

Short Text Simple input to enter

short texts.

java.lang.String yes

Long Text Text area to enter

long text.

java.lang.String no

Rich Text HTMLEditor to enter

formatted texts .

java.lang.String no

Email Simple input to enter

short text with email

pattern.

java.lang.String no

Float Input to enter short

decimals.

java.lang.Float yes

Decimal Input to enter number

with decimals.

java.lang.Double yes

BigDecimal Input to enter big

decimal numbers.

java.math.BigDecimal yes

BigInteger Input to enter big

integers.

java.math.BigInteger yes

Short Input to enter short

integers

java.lang.Short yes

Integer Input to enter

integers.

java.lang.Integer yes

Long Integer Input to enter long

integers

java.lang.Long yes

Checkbox Checkbox to enter

true/false values

java.lang.Boolean yes

Timestamp Input to enter date &

time values

java.util.Date yes

Short Date Input to enter date

values.

java.util.Date no

• Complex types

These field types are made to deal with properties that are Java Objects instead of basic types.

These field types need extra forms to be created in order to show and write values onto the

specified Java Object/s

Chapter 2. First steps to cre...

40

Table 2.4.

Name Description Java Type Default on

generated forms

Simple subform Renders the a form,

it is used to deal with

1:1 relationships.

java.lang.Object yes

Multiple subform This field type is

used to deal with

1:N relationships. It

allows to create, edit

and delete a set child

Objects.Text area to

enter long text.

java.util.List yes

• Decorators

Decorators are a type of field types that don’t store data in the Object shown on the form. They

can be used with aesthetic purpose

Table 2.5.

Name Description

HTML label Allows the user to create HTML code that

will be rendered in the form

Separator Renders an HTML separator

2.3.3.1. Custom Field Types

Is possible to extend the platform to add Custom Field Types that make a specific field (of any

type) on the form to look and behave totally different than the standard platform fields. On this

section we will take a look on how to create them and how to configure them.

2.3.3.1.1. How to create Custom Field Types

Basically a Custom Field Type is a Java class that implements the

org.jbpm.formModeler.core.fieldTypes.CustomFieldType interface and is packaged inside inside

a jar file that is placed on the Application Server classpath or inside the application War.

Lets take a look at org.jbpm.formModeler.core.fieldTypes.CustomFieldType:

 package org.jbpm.formModeler.core.fieldTypes;

 import java.util.Locale;

Field types

41

 import java.util.Map;

 /**

 * Definition interface for custom fields

 */

 public interface CustomFieldType {

 /**

 * This method returns a text definition for the custom type. This text will be shown on the UI to identify the CustomFieldType

 * @param locale The current user locale

 * @return A String that describes the field type on the specified locale.

 */

 public String getDescription(Locale locale);

 /**

 * This method returns a string that contains the HTML code that will be used to show the field value.

 * shown on screen

 * @param value The current field value

 * @param fieldName The field name

 * @param namespace The unique id for the rendered form, it should be used to generate identifiers inside the html code.

 * @param required Determines if the field is required or not

 * @param readonly Determines if the field must be shown on read only mode

 * @param params A list of configuration params that can be set on the field configuration screen

 * @return The HTML that will be used to show the field value

 */

 public String getShowHTML(Object value, String fieldName, String namespace, boolean required, boolean readonly, String... params);

 /**

 * This method returns a String that contains the HTML code that will show the input view of the field. That will be used to set the field value.

 * @param value The current field value

 * @param fieldName The field name

 * @param namespace The unique id for the rendered form, it should be used to generate identifiers inside the html code.

 * @param required Determines if the field is required or not

 * @param readonly Determines if the field must be shown on read only mode

 * @param params A list of configuration params that can be set on the field configuration screen

 * @return The HTML code that will be used to show the input view of the field.

 */

 public String getInputHTML(Object value, String fieldName, String namespace, boolean required, boolean readonly, String... params);

 /**

 * This method is used to obtain the field value from the submitted values.

 * @param requestParameters A Map containing the request parameters for the submitted form

 * @param requestFiles A Map containing the java.io.Files uploaded on the request

 * @param fieldName The field name

 * @param namespace The unique id for the rendered form, it should be used to generate identifiers inside the html code.

 * @param previousValue The previous value of the current field

 * @param required Determines if the field is required or not

 * @param readonly Determines if the field must be shown on read only mode

 * @param params A list of configuration params that can be set on the field configuration screen

 * @return The value of the field based on the submitted form values.

Chapter 2. First steps to cre...

42

 */

 public Object getValue(Map requestParameters, Map requestFiles, String fieldName, String namespace, Object previousValue, boolean required, boolean readonly, String... params);

 }

As you can see this Interface defines the methods that determines how the field has to be

shown on the screen for when the form is shown on insert(getInputHTML(...)) or readonly

(getShowHTML(...)) mode. It also provides the method (getValue(...)) that reads the needed

parameters from the request and to obtain the correct field value. Te returned value type must

match with the type of the field added on the form. So (for example) you can create a File input

that uploads a file to a server folder and saves a String with the storage path as the field value,

so on your forms you can turn all the text compatible fields (Short Text, Long Text, Rich Text and

Email) on Input File.

To see ho can it be done look at the example

on https://github.com/droolsjbpm/jbpm-form-modeler/tree/master/jbpm-form-modeler-sample-

custom-types/jbpm-form-modeler-custom-file-type.

Please note that this is just a sample and it only should be used with learning purposes.

2.3.3.1.2. Configuring and using Custom Field Types

Now let's see how to use and configure and use a Custom Field type. Following the example on

the previous chapter, we have created a File Input type and we have it already installed on our

application. So now we are going to create a new form and add a Short Text property and turn it into

a File Input and edit the field properties changing the Field Type from Short text to Custom field.

Figure 2.37.

https://github.com/droolsjbpm/jbpm-form-modeler/tree/master/jbpm-form-modeler-sample-custom-types/jbpm-form-modeler-custom-file-type
https://github.com/droolsjbpm/jbpm-form-modeler/tree/master/jbpm-form-modeler-sample-custom-types/jbpm-form-modeler-custom-file-type

Field types

43

Note

Changing a field type to Custom field.

After changing the field type a new set of properties will appear:

Chapter 2. First steps to cre...

44

Figure 2.38.

Field types

45

Note

The properties are:

Table 2.6.

Field type Can change the field type to other

compatible field types

Field Name Will be used as identifier in formulas

calculation

Label The text that will be shown as field

label

Custom field A list containing all the Custom Field

Types available on the platform

First parameter A String parameter that can be user to

pass custom configuration neede by

the Custom Field Type implementation

Second parameter A String parameter that can be user to

pass custom configuration neede by

the Custom Field Type implementation

Third parameter A String parameter that can be user to

pass custom configuration neede by

the Custom Field Type implementation

Fourth parameter A String parameter that can be user to

pass custom configuration neede by

the Custom Field Type implementation

Fifth parameter A String parameter that can be user to

pass custom configuration neede by

the Custom Field Type implementation

Required Indicates if it’s mandatory to fill this

field.

Read Only When this check is on, the field will be

used only for read

Input binding expression This expression defines the link

between field and process task input

variable. It will be used in runtime to

set the field value with that task input

variable data.

Output binding expression This expression defines the link

between field and process task output

Chapter 2. First steps to cre...

46

variable. It will be used in runtime to

set that task output variable.

So opening the Custom field select box we'll be able to select the File Input from the available

custom types:

Field types

47

Figure 2.39.

Chapter 2. First steps to cre...

48

Note

Available custom types

After selecting the File Input type on the list and saving the field properties the form will look like:

Figure 2.40.

If we build a simple process and configure a Short text to be shown as the sample File Input, if

we build the project on runtime the field will behave uploading the choosen files to the server and

allowing the user to download it like this:

Figure 2.41.

Field types

49

Note
Choosing the file to upload.

Figure 2.42.

Note
File uploaded, showing the download link.

If we take a look at what's the process variable value, we'll see that is storing a String with the

file path stored in server.

Figure 2.43.

50

Chapter 3.

51

Chapter 3. Data Modeller

3.1. What is Data Modeller

Neither the Drools platform (the rules engine) nor the jBPM platform (the business process engine)

make sense if they do not have some kind of data to work with.

Typically, a business process analyst or data analyst will capture the requirements for a process or

application and turn these into a formal set of interrelated data structures. The new Data Modeller

tool provides an easy, straightforward and visual aid for building both logical and physical data

models, without the need for advanced development skills or explicit coding, and transparently

integrate and avail them for use by both platforms. Its main goals are to make data models into

first class citizens in the process improvement cycle and allow for full process automation through

the integrated use of data structures (and the forms that will be used to interact with them - see

the chapter on the form modeller).

Note

The data modeller tool effectively replaces the former Drools Fact Modeller. The

latter is therefore no longer available.

3.2. First steps to create a data model

By default, a data model is always constrained to the context of a project. For the purpose of this

tutorial, we will assume that a correctly configured project already exists.

To start the creation of a data model inside a project, take the following steps:

1. From the home panel, select the authoring perspective

Figure 3.1. Go to authoring perspective

Chapter 3. Data Modeller

52

2. If not open already, start the Project Explorer panel

Figure 3.2. Open project explorer panel

3. From Project Explorer panel (the "Business" tab), select the organizational unit, repository, and

the project the data model has to be created for. For this tutorial's example, the values "Tutorial",

"Examples", and "Purchases" were respectively chosen

Figure 3.3. Choose project

4. Open the Data Modeller tool by clicking on the "Tools" authoring-menu entry, and selecting the

"Data Modeller" option from the drop-down menu

First steps to create a data model

53

Figure 3.4. Open data modeller

This will start up the Data Modeller tool, which has the following general aspect:

Figure 3.5. Data modeller overview

The Data Modeller panel is divided into the following sections:

• The leftmost "model browser" section, which shows a list of already existing data entities (if any

are present, as in this example's case). Above the list the project's name and a button for new

object creation are shown. Note that as soon as any changes are applied to the project, an '*' will

be appended to the project's name to notify the user of the existence of non-persisted changes.

Chapter 3. Data Modeller

54

Figure 3.6. The data model browser

• The central section consists of three distinct parts:

At the top, the "bread crumb widget": this is a navigational aid, which allows navigating back and

forth through the data model, when accessing properties that themselves are model entities. The

bread crumb trail shown in the image indicates that the object browser is currently visualizing

the properties of an entity called "Purchase Order Line", which we accessed through another

entity ("Purchase Order"), where it is defined as a field.

Figure 3.7. The bread crumb

the section beneath the bread crumb widget, is dedicated to the creation of new fields.

Figure 3.8. New field creation

the bottom section comprises the Entity's "field browser", which displays a list of the currently

selected data object's (in the model browser) fields.

Entities

55

Figure 3.9. The entity field browser

• The "entity / field property editor". This is the rightmost section of the Data Modeller screen

which visualizes a tabbed pane. The Data object tab allows the user to edit the properties of

the currently selected entity in the model browser, whilst the Field tab enables edition of the

properties of any of the currently selected object's fields.

Figure 3.10. The entity/field property editor

3.3. Entities

A data model consists of data entities which are a logical representation of some real-world data.

Such data entities have a fixed set of modeller (or application-owned) properties, such as its

Chapter 3. Data Modeller

56

internal identifier, a label, description, package etc. Besides those, an entity also has a variable

set of user-defined fields, which are an abstraction of a real-world property of the type of data that

this logical entity represents.

Creating a data entity can be achieved either by clicking the "Create" button in the model browser

section (see fig. "The data model browser" above), or by clicking the one in the top data modeller

menu:

Figure 3.11. Starting creation of an entity from the top menu

This will pop up the new object screen:

Figure 3.12. The new entity pop up screen

Some initial information needs to be provided before creating the new object:

• The object's internal identifier (mandatory). The value of this field must be unique per package,

i.e. if the object's proposed identifier already exists in the selected package, an error message

will be displayed.

Entities

57

• A label (optional): this field allows the user to define a user-friendly label for the data entity about

to be created. This is purely conceptual info that has no further influence on how objects of this

entity will be treated. If a label is defined, then this is how the entity will be displayed throughout

the data modeller tool.

• A package (mandatory): a data entity must always be created within a package (or name space,

in which this entity will be unique at a platform level). By default, the option for selecting an

already existing package will be activated, in which case the corresponding drop-down shows

all the packages that are currently defined. If a new package needs to be defined for this entity,

then the "New package" option should be selected. In this case the new to be created package

should be input into the corresponding text-field. The format for defining new packages is the

same as the one for standard Java packages.

• A superclass (optional): this will indicate that this entity extends from another already existing

one. Since the data modeller entities are translated into standard Java classes, indicating a

superclass implies normal Java object extension at the generated-code level.

Once the user has provided at least the mandatory information, by pushing the "Ok" button at the

bottom of the screen the new data entity will be created. It will be added to the model browser's

entity listing.

It will also appear automatically selected, to make it easy for the user to complete the definition

of the newly created entity, by completing the entity's properties in the Data Object Properties

browser, or by adding new fields.

Figure 3.13. New entity has been created

Note

As can be seen in the above figure, after performing changes to the data model, the

model name will appear with an '*' to alert the user of the existence of un-persisted

changes to the model.

Chapter 3. Data Modeller

58

In the Data Modeller's object browsing section, an entity can be deleted by clicking upon the 'x'

icon to the right of each entity. If an entity is being referenced from within another entity (as a

field type), then the modeller tool will not allow it to be deleted, and an error message will appear

on the screen.

3.4. Properties & relationships

Once the data entity has been created, it now has to be completed by adding user-defined

properties to its definition. This can be achieved by providing the required information in the

"Create new field" section (see fig. "New field creation"), and clicking on the "Create" button when

finished. The following fields can (or must) be filled out:

• The field's internal identifier (mandatory). The value of this field must be unique per data entity,

i.e. if the proposed identifier already exists within current entity, an error message will be

displayed.

• A label (optional): as with the entity definition, the user can define a user-friendly label for the

data entity field which is about to be created. This has no further implications on how fields

from objects of this entity will be treated. If a label is defined, then this is how the field will be

displayed throughout the data modeller tool.

• A field type (mandatory): each entity field needs to be assigned with a type.

This type can be either of the following:

1. A 'primitive' type: these include most of the object equivalents of the standard Java primitive

types, such as Boolean, Short, Float, etc, as well as String, Date, BigDecimal and BigInteger.

Figure 3.14. Primitive field types

2. An 'entity' type: any user defined entity automatically becomes a candidate to be defined as

a field type of another entity, thus enabling the creation of relationships between entities. As

Properties & relationships

59

can be observed in the above figure, our recently defined 'Tutorial Example Entity' already

appears in the types list and can be used as a field type, even for a field of itself. An entity

type field can be created either in 'single' or in 'multiple' form, the latter implying that the field

will be defined as a collection of this type, which will be indicated by the extension '[0..N]'

in the type drop-down or in the entity fields table (as can be seen for the 'Lines' field of the

'Purchase Order' entity, for example).

Figure 3.15. Entity field types

When finished introducing the initial information for a new field, clicking the 'Create' button will add

the newly created field to the end of the entity's fields table below:

Figure 3.16. New field has been created

The new field will also automatically be selected in the entity's field list, and its properties will be

shown in the Field tab of the Property editor. The latter facilitates completion of some additional

properties of the new field by the user (see below).

At any time, any field (without restrictions) can be deleted from an entity definition by clicking on

the corresponding 'x' icon in the entity's fields table.

Chapter 3. Data Modeller

60

3.5. Additional options

As stated before, both entities as well as entity fields require some of their initial properties to be

set upon creation. These are by no means the only properties entities and fields have. Below we

will give a detailed description of the additional entity and field properties.

3.5.1. Additional entity properties ("Data object tab")

Figure 3.17. The entity's properties

• Description: this field allows the user to introduce some kind of description for the current entity,

for documentation purposes only. As with the label property, this is conceptual information that

will not influence the use or treatment of this entity or its instances in any way.

• Role: this property allows the assignment of a Role to the entity. The Role is a concept inherited

from Drools Fusion, which for the time being only allows one possible value ("Event"). An entity

that is designated with this value will be treated by the rules engine as an event type Fact (See

Drools Fusion for more information on this matter).

Additional field properties ("Field tab")

61

3.5.2. Additional field properties ("Field tab")

Figure 3.18. The entity's field properties

• Description: this field allows the user to introduce some kind of description for the current field,

for documentation purposes only. As with the label property, this is conceptual information that

will not influence the use or treatment of this entity or its instances in any way.

• Equals: checking this property for an entity field implies that it will be taken into account, at

the code generation level, for the creation of both the equals() and hashCode() methods in the

generated Java class. We will explain this in more detail in the following section.

• Position: this field requires a zero or positive integer. When set, this field will be interpreted

by the Drools engine as a positional argument (see the section below and also the Drools

documentation for more information on this subject).

3.6. Generate data model code.

The data model in itself is merely a visual tool that allows the user to define high-level data

structures, for them to interact with the Drools Engine on the one hand, and the jBPM platform

on the other. In order for this to become possible, these high-level visual structures have to be

transformed into low-level artifacts that can effectively be consumed by these platforms. These

artifacts are Java POJOs (Plain Old Java Objects), and they are generated every time the data

model is saved, by pressing the "Save" button in the top Data Modeller Menu.

Chapter 3. Data Modeller

62

Figure 3.19. Save the data model from the top menu

At this time each entity that has been defined in the model will be translated into a Java class,

according to the following transformation rules:

• The entity's identifier property will become the Java class's name. It therefore needs to be a

valid Java identifier.

• The entity's package property becomes the Java class's package declaration.

• The entity's superclass property (if present) becomes the Java class's extension declaration.

• The entity's label and description properties will translate into the Java

annotations "@org.kie.workbench.common.services.datamodeller.annotations.Label" and

"@org.kie.workbench.common.services.datamodeller.annotations.Description", respectively.

These annotations are merely a way of preserving the associated information, and as yet are

not processed any further.

• The entity's role property (if present) will be translated into the

"@org.kie.api.definition.type.Role" Java annotation, that IS interpreted by the application

platform, in the sense that it marks this Java class as a Drools Event Fact-Type.

A standard Java default (or no parameter) constructor is generated, as well as a full parameter

constructor, i.e. a constructor that accepts as parameters a value for each of the entity's user-

defined fields.

The entity's user-defined fields are translated into Java class fields, each one of them with its own

getter and setter method, according to the following transformation rules:

• The entity field's identifier will become the Java field identifier. It therefore needs to be a valid

Java identifier.

• The entity field's type is directly translated into the Java class's field type. In case the entity field

was declared to be multiple (i.e. '[0..N]'), then the generated field is of the "java.util.List" type.

• The equals property: when it is set for a specific field, then this class property will be

annotated with the "@org.kie.api.definition.type.Key" annotation, which is interpreted by the

Drools Engine, and it will 'participate' in the generated equals() method, which overwrites the

equals() method of the Object class. The latter implies that if the field is a 'primitive' type, the

equals method will simply compares its value with the value of the corresponding field in another

Generate data model code.

63

instance of the class. If the field is a sub-entity or a collection type, then the equals method will

make a method-call to the equals method of the corresponding entity's Java class, or of the

java.util.List standard Java class, respectively.

If the equals property is checked for ANY of the entity's user defined fields, then this also implies

that in addition to the default generated constructors another constructor is generated, accepting

as parameters all of the fields that were marked with Equals. Furthermore, generation of the

equals() method also implies that also the Object class's hashCode() method is overwritten, in

such a manner that it will call the hashCode() methods of the corresponding Java class types

(be it 'primitive' or user-defined types) for all the fields that were marked with Equals in the Data

Model.

• The position property: this field property is automatically set for all user-defined fields, starting

from 0, and incrementing by 1 for each subsequent new field. However the user can freely

changes the position among the fields. At code generation time this property is translated into

the "@org.kie.api.definition.type.Position" annotation, which can be interpreted by the Drools

Engine. Also, the established property order determines the order of the constructor parameters

in the generated Java class.

• The entity's role property (if present) will be translated into the

"@org.kie.api.definition.type.Role" Java annotation, that IS interpreted by the application

platform, in the sense that it marks this Java class as a Drools Event Fact-Type.

As an example, the generated Java class code for the Purchase Order entity, corresponding to

its definition as shown in the following figure purchase_example.jpg is visualized in the figure at

the bottom of this chapter. Note that the two of the entity's fields, namely 'header' and 'lines' were

marked with Equals, and have been assigned with the positions 2 and 1, respectively).

Figure 3.20. Purchase Order configuration

Chapter 3. Data Modeller

64

package org.jbpm.examples.purchases;

/**

 * This class was automatically generated by the data modeler tool.

 */

@org.kie.api.definition.type.Role(value =

 org.kie.api.definition.type.Role.Type.EVENT)

@org.kie.workbench.common.services.datamodeller.annotations.Label(value =

 "Purchase Order")

@org.kie.workbench.common.services.datamodeller.annotations.Description(value =

 "This entity models the client purchase orders.")

public class PurchaseOrder extends org.jbpm.examples.purchases.parent

 implements java.io.Serializable {

static final long serialVersionUID = 1L;

 @org.kie.workbench.common.services.datamodeller.annotations.Label(value =

 "Description")

 @org.kie.api.definition.type.Position(value = 0)

 @org.kie.workbench.common.services.datamodeller.annotations.Description(value =

 "A description for this purchase order.")

 private java.lang.String description;

 @org.kie.workbench.common.services.datamodeller.annotations.Label(value =

 "Lines")

 @org.kie.api.definition.type.Position(value = 1)

 @org.kie.workbench.common.services.datamodeller.annotations.Description(value =

 "The purchase order items (collection of Purchase Order Line sub-entities).")

 @org.kie.api.definition.type.Key

 private java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines;

 @org.kie.workbench.common.services.datamodeller.annotations.Label(value =

 "Header")

 @org.kie.api.definition.type.Position(value = 2)

 @org.kie.workbench.common.services.datamodeller.annotations.Description(value =

 "The purchase order header (Purchase Order Header sub-entity).")

 @org.kie.api.definition.type.Key

 private org.jbpm.examples.purchases.PurchaseOrderHeader header;

 public PurchaseOrder() {}

 public PurchaseOrder(

 java.lang.String description,

 java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines,

 org.jbpm.examples.purchases.PurchaseOrderHeader header)

 {

 this.description = description;

 this.lines = lines;

 this.header = header;

Generate data model code.

65

 }

 public PurchaseOrder(

 java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines,

 org.jbpm.examples.purchases.PurchaseOrderHeader header)

 {

 this.lines = lines;

 this.header = header;

 }

 public java.lang.String getDescription() {

 return this.description;

 }

 public void setDescription(java.lang.String description) {

 this.description = description;

 }

 public java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine>

 getLines()

 {

 return this.lines;

 }

 public void setLines(

 java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines)

 {

 this.lines = lines;

 }

 public org.jbpm.examples.purchases.PurchaseOrderHeader getHeader() {

 return this.header;

 }

 public void setHeader(org.jbpm.examples.purchases.PurchaseOrderHeader

 header)

 {

 this.header = header;

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return false;

 org.jbpm.examples.purchases.PurchaseOrder that =

 (org.jbpm.examples.purchases.PurchaseOrder)o;

 if (lines != null ? !lines.equals(that.lines) : that.lines != null)

 return false;

 if (header != null ? !header.equals(that.header) : that.header != null)

Chapter 3. Data Modeller

66

 return false;

 return true;

 }

 @Override

 public int hashCode() {

 int result = 17;

 result = 13 * result + (lines != null ? lines.hashCode() : 0);

 result = 13 * result + (header != null ? header.hashCode() : 0);

 return result;

 }

}

3.7. Using external models

Using an external model means the ability to use a set for already defined POJOs in current

project context. In order to make those POJOs available a dependency to the given JAR should

be added. Once the dependency has been added the external POJOs can be referenced from

current project data model.

There are two ways to add a dependency to an external JAR file:

• Dependency to a JAR file already installed in current local M2 repository (typically associated

the the user home).

• Dependency to a JAR file installed in current Kie Workbench/Drools Workbench "Guvnor M2

repository". (internal to the application)

3.7.1. Dependency to a JAR file in local M2 repository

To add a dependency to a JAR file in local M2 repository follow this steps.

Dependency to a JAR file in local M2 repository

67

3.7.1.1. Open the Project Editor for current project and select the

Dependencies view.

3.7.1.2. Click on the "Add" button to add a new dependency line.

Chapter 3. Data Modeller

68

3.7.1.3. Complete the GAV for the JAR file already installed in local

M2 repository.

3.7.1.4. Save the project to update its dependencies.

When project is saved the POJOs defined in the external file will be available.

3.7.2. Dependency to a JAR file in current "Guvnor M2

repository".

To add a dependency to a JAR file in current "Guvnor M2 repository" follow this steps.

Dependency to a JAR file in current "Guvnor M2 repository".

69

3.7.2.1. Open the Guvnor M2 Repository editor.

3.7.2.2. Browse your local file system and select the JAR file to be

uploaded using the Browse button.

Chapter 3. Data Modeller

70

3.7.2.3. Upload the file using the Upload button.

3.7.2.4. Guvnor M2 repository files.

Once the file has been loaded it will be displayed in the repository files list.

3.7.2.5. Provide a GAV for the uploaded file (optional).

If the uploaded file is not a valid maven JAR (don't have a pom.xml file) the system will prompt

the user in order to provide a GAV for the file to be installed.

Dependency to a JAR file in current "Guvnor M2 repository".

71

3.7.2.6. Add dependency from repository.

Open the project editor (see bellow) and click on the "Add from repository" button to open the JAR

selector to see all the installed JAR files in current "Guvnor M2 repository". When the desired file

is selected the project should be saved in order to make the new dependency available.

Chapter 3. Data Modeller

72

3.7.3. Using the external objects

When a dependency to an external JAR has been set, the external POJOs can be used in the

context of current project data model in the following ways:

• External POJOs can be extended by current model data objects.

• External POJOs can be used as field types for current model data objects.

The following screenshot shows how external objects are prefixed with the string " -ext- " in order

to be quickly identified.

	jBPM Form modeller - Getting Started guide
	Table of Contents
	
	Chapter 1. What is jBPM Form modeler
	Chapter 2. First steps to create a form driven process
	2.1. Configure process and human tasks
	2.2. Generate forms from task definitions
	2.3. Edit forms
	2.3.1. Form generated description
	2.3.2. Customizing form
	2.3.2.1. Moving fields
	2.3.2.2. Adding new fields
	2.3.2.3. Field configuration
	2.3.2.3.1. Generic field properties
	2.3.2.3.2. Specific field properties
	2.3.2.3.3. Complex Fields Configuration
	2.3.2.3.3.1. Simple Object (Subform field Type)
	2.3.2.3.3.2. Arrays of objects.(Multiple subform field Type)

	2.3.2.3.4. Formulas

	2.3.2.4. Customizing form layout

	2.3.3. Field types
	2.3.3.1. Custom Field Types
	2.3.3.1.1. How to create Custom Field Types
	2.3.3.1.2. Configuring and using Custom Field Types

	Chapter 3. Data Modeller
	3.1. What is Data Modeller
	3.2. First steps to create a data model
	3.3. Entities
	3.4. Properties & relationships
	3.5. Additional options
	3.5.1. Additional entity properties ("Data object tab")
	3.5.2. Additional field properties ("Field tab")

	3.6. Generate data model code.
	3.7. Using external models
	3.7.1. Dependency to a JAR file in local M2 repository
	3.7.1.1. Open the Project Editor for current project and select the Dependencies view.
	3.7.1.2. Click on the "Add" button to add a new dependency line.
	3.7.1.3. Complete the GAV for the JAR file already installed in local M2 repository.
	3.7.1.4. Save the project to update its dependencies.

	3.7.2. Dependency to a JAR file in current "Guvnor M2 repository".
	3.7.2.1. Open the Guvnor M2 Repository editor.
	3.7.2.2. Browse your local file system and select the JAR file to be uploaded using the Browse button.
	3.7.2.3. Upload the file using the Upload button.
	3.7.2.4. Guvnor M2 repository files.
	3.7.2.5. Provide a GAV for the uploaded file (optional).
	3.7.2.6. Add dependency from repository.

	3.7.3. Using the external objects

