
Keycloak

Reference Guide

SSO for Web Apps and REST Services

1.0-beta-1

iii

Preface ... v

1. License .. 1

2. Overview .. 3

2.1. Key Concepts in Keycloak ... 4

2.2. How Does Security Work in Keycloak? .. 4

2.2.1. Permission Scopes .. 5

3. Installation and Configuration of Keycloak Server .. 7

3.1. Appliance Install ... 7

3.2. WAR Distribution Installation ... 7

3.3. Configuring the Server .. 8

3.3.1. Database Configuration .. 9

3.3.2. MongoDB based model .. 11

3.3.3. AS7/EAP6.x Logging .. 12

3.3.4. SSL/HTTPS Setup ... 12

4. Running Keycloak Server on OpenShift .. 17

4.1. Create Keycloak instance with the web tool .. 17

4.2. Create Keycloak instance with the command-line tool .. 17

4.3. Next steps .. 18

5. Master Admin Access Control ... 19

5.1. Global Roles ... 19

5.2. Realm Specific Roles .. 19

6. Per Realm Admin Access Control ... 21

6.1. Realm Roles ... 21

7. Adapters .. 23

7.1. General Adapter Config ... 23

7.2. JBoss/Wildfly Adapter ... 26

7.2.1. Adapter Installation ... 26

7.2.2. Per WAR Configuration .. 29

7.2.3. Securing WARs via Keycloak Subsystem ... 30

7.3. Pure Client Javascript Adapter ... 31

7.3.1. Session status iframe ... 34

7.3.2. JavaScript Adapter reference .. 34

7.4. Installed Applications ... 37

7.4.1. http://localhost .. 38

7.4.2. urn:ietf:wg:oauth:2.0:oob ... 38

8. Social ... 39

8.1. Social Login Config ... 39

8.1.1. Enable social login ... 39

8.1.2. Social-only login ... 39

8.1.3. Social Callback URL ... 39

8.2. Facebook ... 39

8.3. GitHub .. 40

8.4. Google ... 40

8.5. Twitter .. 41

Keycloak Reference Guide

iv

8.6. Social Provider SPI ... 41

9. Themes .. 43

9.1. Configure theme ... 43

9.2. Default themes ... 43

9.3. Creating a theme .. 43

9.3.1. Stylesheets .. 44

9.3.2. .. 44

9.3.3. Images .. 45

9.3.4. Messages .. 45

9.3.5. Modifying HTML ... 45

9.4. SPIs ... 45

9.4.1. Theme SPI .. 45

9.4.2. Account SPI ... 46

9.4.3. Login SPI .. 46

10. Email .. 47

10.1. Email Server Config .. 47

10.1.1. Enable SSL or TLS .. 47

10.1.2. Authentication .. 48

11. Application and Client Access Types .. 49

12. Roles .. 51

12.1. Composite Roles ... 51

13. Direct Access Grants ... 53

14. CORS ... 57

15. Cookie settings, Session Timeouts, and Token Lifespans 59

15.1. Remember Me .. 59

15.2. Session Timeouts .. 59

15.3. Token Timeouts .. 59

16. Admin REST API .. 61

17. Audit .. 63

17.1. Events .. 63

17.2. Audit Listener .. 63

17.3. Audit Provider ... 64

17.4. Configure Audit Settings for Realm .. 64

18. Authentication SPI ... 67

18.1. Available Authentication Providers .. 67

18.2. Features and configuration .. 67

18.3. Creating your own Authentication Provider .. 68

19. LDAP Integration ... 69

20. Export and Import .. 71

21. Migration from older versions ... 73

21.1. Migrating from 1.0 Alpha 4 to Beta 1 .. 73

21.2. Migrating from 1.0 Alpha 2 to Alpha 3 .. 73

21.3. Migrating from 1.0 Alpha 1 to Alpha 2 .. 73

v

Preface

In some of the example listings, what is meant to be displayed on one line does not fit inside the

available page width. These lines have been broken up. A '\' at the end of a line means that a

break has been introduced to fit in the page, with the following lines indented. So:

Let's pretend to have an extremely \

long line that \

does not fit

This one is short

Is really:

Let's pretend to have an extremely long line that does not fit

This one is short

vi

Chapter 1.

1

Chapter 1. License
Keycloak is distributed under the ASL 2.0 license. It does not distribute any thirdparty libraries that

are GPL. It does ship thirdparty libraries licensed under Apache ASL 2.0 and LGPL.

2

Chapter 2.

3

Chapter 2. Overview
Keycloak is an SSO solution for web apps, mobile and RESTful web services. It is an

authentication server where users can centrally login, logout, register, and manage their user

accounts. The Keycloak admin UI can manage roles and role mappings for any application

secured by Keycloak. The Keycloak Server can also be used to perform social logins via the user's

favorite social media site i.e. Google, Facebook, Twitter etc.

Features:

• SSO and Single Log Out for browser applications

• Social Login. Enable Google, GitHub, Facebook, Twitter social login with no code required.

• LDAP and Active Directory support.

• Optional User Registration

• Password and TOTP support (via Google Authenticator). Client cert auth coming soon.

• Forgot password support. User can have an email sent to them

• Reset password/totp. Admin can force a password reset, or set up a temporary password.

• Not-before revocation policies per realm, application, or user.

• User session management. Admin can view user sessions and what applications/clients have

an access token. Sessions can be invalidated per realm or per user.

• Pluggable theme and style support for user facing screens. Login, grant pages, account mgmt,

and admin console all can be styled, branded, and tailored to your application and organizational

needs.

• OAuth Bearer token auth for REST Services

• Integrated Browser App to REST Service token propagation

• OAuth Bearer token auth for REST Services

• OAuth 2.0 Grant requests

• OpenID Connect Support.

• CORS Support

• CORS Web Origin management and validation

• Completely centrally managed user and role mapping metadata. Minimal configuration at the

application side

Chapter 2. Overview

4

• Admin Console for managing users, roles, role mappings, applications, user sessions, allowed

CORS web origins, and OAuth clients.

• Account Management console that allows users to manage their own account, view their open

sessions, reset passwords, etc.

• Deployable as a WAR, appliance, or on Openshift.

• Multitenancy support. You can host and manage multiple realms for multiple organizations.

• Supports JBoss AS7, EAP 6.x, Wildfly and JavaScript applications. Plans to support Node.js,

RAILS, GRAILS, and other non-Java deployments

2.1. Key Concepts in Keycloak

The core concept in Keycloak is a Realm. A realm secures and manages security metadata for

a set of users, applications, and registered oauth clients. Users can be created within a specific

realm within the Administration console. Roles (permission types) can be defined at the realm

level and you can also set up user role mappings to assign these permissions to specific users.

An application is a service that is secured by a realm. When a user browses an application's web

site, the application can redirect the user agent to the Keycloak Server and request a login. Once

a user is logged in, they can visit any other application managed by the realm and not have to re-

enter credentials. This also hold true for logging out. Roles can also be defined at the application

level and assigned to specific users. Depending on the application type, you may also be able to

view and manage user sessions from the administration console.

An oauth client is similar to an application in that it can request something like a login when a user

visits the site of the oauth client. The difference is that oauth clients are not immediately granted

all permissions of the user. In addition to requesting the login credentials of the user, the Keycloak

Server will also display a grant page asking the user if it is ok to grant allowed permissions to

the oauth client.

2.2. How Does Security Work in Keycloak?

Keycloak uses access tokens to secure web invocations. Access tokens contains security

metadata specifying the identity of the user as well as the role mappings for that user. The format of

these tokens is a Keycloak extension to the JSON Web Token [http://tools.ietf.org/html/draft-ietf-

oauth-json-web-token-14] specification. Each realm has a private and public key pair which it uses

to digitally sign the access token using the JSON Web Signature [http://tools.ietf.org/html/draft-

ietf-jose-json-web-signature-19] specification. Applications can verify the integrity of the digitally

signed access token using the public key of the realm. The protocols used to obtain this token is

defined by the OAuth 2.0 [http://tools.ietf.org/html/rfc6749] specification.

The interesting thing about using these smart access tokens is that applications themselves are

completely stateless as far as security metadata goes. All the information they need about the

user is contained in the token and there's no need for them to store any security metadata locally

other than the public key of the realm.

http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-14
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-14
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-14
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-19
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-19
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-19
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

Permission Scopes

5

Signed access tokens can also be propagated by REST client requests within an Authorization

header. This is great for distributed integration as applications can request a login from a client

to obtain an access token, then invoke any aggregated REST invocations to other services using

that access token. So, you have a distributed security model that is centrally managed, yet does

not require a Keycloak Server hit per request, only for the initial login.

2.2.1. Permission Scopes

Each application and oauth client are configured with a set of permission scopes. These are a

set of roles that an application or oauth client is allowed to ask permission for. Access tokens are

always granted at the request of a specific application or oauth client. This also holds true for SSO.

As you visit different sites, the application will redirect back to the Keycloak Server via the OAuth

2.0 protocol to obtain an access token specific to that application. The role mappings contained

within the token are the union between the set of user role mappings and the permission scope

of the application/oauth client. So, access tokens are tailor made for each application/oauth client

and contain only the information required for by them.

6

Chapter 3.

7

Chapter 3. Installation and

Configuration of Keycloak Server
The Keycloak Server has two downloadable distributions.

• keycloak-appliance-dist-all-1.0-beta-1.zip

• keycloak-war-dist-all-1.0-beta-1.zip

3.1. Appliance Install

The keycloak-appliance-dist-all.zip is quite large, but contains a complete server (backed

by Wildfly) that runs out of the box. The only thing you'll have to enable and configure is SSL.

Unzipping it, the directory layout looks something like this:

keycloak-appliance-dist-all-1.0-beta-1/

 keycloak/

 bin/

 standalone.sh

 standalone.bat

 standalone/deployments/

 auth-server.war/

 standalone/configuration/

 keycloak-server.json

 themes/

 adapters/

 keycloak-as7-adapter-dist-1.0-beta-1.zip

 keycloak-eap6-adapter-dist-1.0-beta-1.zip

 keycloak-wildfly-adapter-dist-1.0-beta-1.zip

 examples/

 docs/

The standalone.sh or standalone.bat script is used to start the server. After executing that, log

into the admin console at http://localhost:8080/auth/admin/index.html [http://localhost:8080/auth/

admin/index.html]. Username: admin Password: admin. Keycloak will then prompt you to enter

in a new password.

3.2. WAR Distribution Installation

The keycloak-war-dist-all.zip contains just the bits you need to install keycloak on your

favorite web container. We currently only support installing it on top of an existing JBoss AS 7.1.1,

http://localhost:8080/auth/admin/index.html
http://localhost:8080/auth/admin/index.html
http://localhost:8080/auth/admin/index.html

Chapter 3. Installation and C...

8

JBoss EAP 6.x, or Wildfly 8 distribution. We may in the future provide directions on how to install it

on another web container like Tomcat or Jetty. If anybody in the community is interested in pulling

this together, please contact us. Its mostly Maven pom work.

The directory structure of this distro looks like this:

keycloak-war-dist-all-1.0-beta-1/

 deployments/

 auth-server.war/

 keycloak-ds.xml

 configuration/

 keycloak-server.json

 themes/

 adapters/

 keycloak-as7-adapter-dist-1.0-beta-1.zip

 keycloak-eap6-adapter-dist-1.0-beta-1.zip

 keycloak-wildfly-adapter-dist-1.0-beta-1.zip

 examples/

 docs/

After unzipping this file, copy everything in deployments directory into the standalone/

deployments of your JBoss or Wildfly distro. Also, copy everything in configuration directory

into the standalone/configuration directory.

 $ cd keycloak-war-dist-all-1.0-beta-1

 $ cp -r deployments $JBOSS_HOME/standalone

After booting up the JBoss or Wildfly distro, you can then make sure it is installed

properly by logging into the admin console at http://localhost:8080/auth/admin/index.html [http://

localhost:8080/auth/admin/index.html]. Username: admin Password: admin. Keycloak will then

prompt you to enter in a new password.

3.3. Configuring the Server

Although the Keycloak Server is designed to run out of the box, there's some things you'll need

to configure before you go into production. Specifically:

• Configuring keycloak to use a production database.

• Setting up SSL/HTTPS

• Enforcing HTTPS connections

http://localhost:8080/auth/admin/index.html
http://localhost:8080/auth/admin/index.html
http://localhost:8080/auth/admin/index.html

Database Configuration

9

3.3.1. Database Configuration

The datasource used to store Keycloak data is configured in the .../standalone/deployments/

keycloak-ds.xml file of your Keycloak Server installation if you used Section 3.2, “WAR

Distribution Installation” or in .../standalone/configuration/standalone.xml if you used

Section 3.1, “Appliance Install”. File keycloak-ds.xml is used in WAR distribution, so that

you have datasource available out of the box and you don't need to edit standalone.xml file.

However a good thing is to always delete the file keycloak-ds.xml and move its configuration

text into the centrally managed standalone.xml file. This will allow you to manage the database

connection pool from the Wildfly/JBoss administration console. Here's what .../standalone/

configuration/standalone.xml should look like after you've done this:

<subsystem xmlns="urn:jboss:domain:datasources:2.0">

 <datasources>

 <datasource jndi-name="java:jboss/datasources/ExampleDS"

 pool-name="ExampleDS" enabled="true" use-java-context="true">

 <connection-

url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1;DB_CLOSE_ON_EXIT=FALSE</connection-url>

 <driver>h2</driver>

 <security>

 <user-name>sa</user-name>

 <password>sa</password>

 </security>

 </datasource>

 <datasource jndi-name="java:jboss/datasources/KeycloakDS"

 pool-name="KeycloakDS" enabled="true" use-java-context="true">

 <connection-url>jdbc:h2:${jboss.server.data.dir}/

keycloak;AUTO_SERVER=TRUE</connection-url>

 <driver>h2</driver>

 <security>

 <user-name>sa</user-name>

 <password>sa</password>

 </security>

 </datasource>

 <drivers>

 <driver name="h2" module="com.h2database.h2">

 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>

 </driver>

 </drivers>

 </datasources>

 </subsystem>

Besides moving the database config into the central standalone.xml configuration file

you might want to use a better relational database for Keycloak like PostgreSQL or

Chapter 3. Installation and C...

10

MySQL. You might also want to tweak the configuration settings of the datasource. Please

see the Wildfly [https://docs.jboss.org/author/display/WFLY8/DataSource+configuration], JBoss

AS7 [https://docs.jboss.org/author/display/AS71/DataSource+configuration], or JBoss EAP 6.x

[https://docs.jboss.org/author/display/AS71/DataSource+configuration] documentation on how to

do this.

Keycloak also runs on a Hibernate/JPA backend which is configured in the .../standalone/

deployments/auth-server.war/WEB-INF/classes/META-INF/persistence.xml. Please see

the Hibernate and JPA documentation [http://hibernate.org/orm/documentation/] for more

information on tweaking the backend datamodel.

3.3.1.1. Tested databases

Here is list of RDBMS databases and corresponding JDBC drivers, which were tested with

Keycloak. Note that Hibernate dialect is usually set automatically according to your database,

but in some cases, you must manually set the proper dialect, as the default dialect may not

work correctly. You can setup dialect either by adding property hibernate.dialect to the

persistence.xml file mentioned above or simply by adding system property hibernate.dialect

with corresponding value. For example, if you are using MS-SQL you can start keycloak with

command:

./standalone.sh -Dhibernate.dialect=org.hibernate.dialect.SQLServer2008Dialect

This command will set system property hibernate.dialect to value

org.hibernate.dialect.SQLServer2008Dialect and this one will take precedence over the

value from persistence.xml file.

Table 3.1. Tested databases

Database JDBC driver Hibernate Dialect

H2 1.3.161 H2 1.3.161 auto

MySQL 5.5 MySQL Connector/J 5.1.25 auto

PostgreSQL 9.2 JDBC4 Postgresql Driver,

Version 9.3-1100

auto

Oracle 11g R1 Oracle JDBC Driver v11.1.0.7 auto

Microsoft SQL Server 2012 Microsoft SQL Server JDBC

Driver 4.0.2206.100

org.hibernate.dialect.SQLServer2008Dialect

Sybase ASE 15.7 JDBC(TM)/7.07 ESD #5

(Build 26792)/P/EBF20686

auto

https://docs.jboss.org/author/display/WFLY8/DataSource+configuration
https://docs.jboss.org/author/display/WFLY8/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration
http://hibernate.org/orm/documentation/
http://hibernate.org/orm/documentation/

MongoDB based model

11

3.3.2. MongoDB based model

Keycloak provides MongoDB [http://www.mongodb.com] based model implementation, which

means that your identity data will be saved in MongoDB instead of traditional RDBMS. To

configure Keycloak to use Mongo open standalone/configuration/keycloak-server.json in

your favourite editor, then change:

"audit": {

 "provider": "jpa",

 "jpa": {

 "exclude-events": ["REFRESH_TOKEN"]

 }

},

"model": {

 "provider": "jpa"

},

to:

"audit": {

 "provider": "mongo",

 "mongo": {

 "exclude-events": ["REFRESH_TOKEN"],

 "host": "<hostname>",

 "port": <port>,

 "user": "<user>",

 "password": "<password>",

 "db": "<db name>"

 }

},

"model": {

 "provider": "mongo",

 "mongo": {

 "host": "<hostname>",

 "port": <port>,

 "user": "<user>",

 "password": "<password>",

 "db": "<db name>"

 }

},

http://www.mongodb.com
http://www.mongodb.com

Chapter 3. Installation and C...

12

All configuration options are optional. Default values for host and port are localhost and 27017.

If user and password are not specified Keycloak will connect unauthenticated to your MongoDB.

Finally, default values for db are keycloak for the model, and keycloak-audit for audit. If you switch

to Mongo model, it could be a good idea to remove RDBMS related stuff from your distribution to

reduce startup time and memory footprint. To do it, you need to:

• Comment/remove datasource KeycloakDS from standalone/configuration/

standalone.xml or standalone/deployments/keycloak-ds.xml

• Remove file standalone/deployments/auth-server.war/WEB-INF/classes/META-INF/

persistence.xml

3.3.3. AS7/EAP6.x Logging

Accessing the admin console will get these annoying log messages:

 WARN [org.jboss.resteasy.core.ResourceLocator] (http-/127.0.0.1:8080-3)

 Field providers of subresource xxx will not be injected

 according to spec

These can be ignored by editing standalone.xml of your jboss installation:

 <logger category="org.jboss.resteasy.core.ResourceLocator">

 <level name="ERROR"/>

 </logger>

3.3.4. SSL/HTTPS Setup

Warning

Keycloak is not set up by default to handle SSL/HTTPS in either the war distribution

or appliance. It is highly recommended that you enable it!

The following things need to be done

• Generate a self signed or third-party signed certificate and import it into a Java keystore using

keytool.

SSL/HTTPS Setup

13

• Enable JBoss or Wildfly to use this certificate and turn on SSL/HTTPS.

• Configure the Keycloak Server to enforce HTTPS connections.

3.3.4.1. Creating the Certificate and Java Keystore

In order to allow HTTPS connections, you need to obtain a self signed or third-party signed

certificate and import it into a Java keystore before you can enable HTTPS in the web container

you are deploying the Keycloak Server to.

3.3.4.1.1. Self Signed Certificate

In development, you will probably not have a third party signed certificate available to test a

Keycloak deployment so you'll need to generate a self-signed on. Generate one is very easy to

do with the keytool utility that comes with the Java jdk.

$ keytool -genkey -alias localhost -keyalg RSA -keystore keycloak.jks -validity

 10950

 Enter keystore password: secret

 Re-enter new password: secret

 What is your first and last name?

 [Unknown]: localhost

 What is the name of your organizational unit?

 [Unknown]: Keycloak

 What is the name of your organization?

 [Unknown]: Red Hat

 What is the name of your City or Locality?

 [Unknown]: Westford

 What is the name of your State or Province?

 [Unknown]: MA

 What is the two-letter country code for this unit?

 [Unknown]: US

 Is CN=localhost, OU=Keycloak, O=Test, L=Westford, ST=MA, C=US correct?

 [no]: yes

You should answer the What is your first and last name? question with the DNS name

of the machine you're installing the server on. For testing purposes, localhost should be used.

After executing this command, the keycloak.jks file will be generated in the same directory as

you executed the keytool command in.

If you want a third-party signed certificate, but don't have one, you can obtain one for free at

cacert.org [http://cacert.org]. You'll have to do a little set up first before doing this though.

The first thing to do is generate a Certificate Request:

http://cacert.org
http://cacert.org

Chapter 3. Installation and C...

14

$ keytool -certreq -alias yourdomain -keystore keycloak.jks > keycloak.careq

Where yourdomain is a DNS name for which this certificate is generated for. Keytool generates

the request:

-----BEGIN NEW CERTIFICATE REQUEST-----

MIIC2jCCAcICAQAwZTELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAk1BMREwDwYDVQQHEwhXZXN0Zm9y

ZDEQMA4GA1UEChMHUmVkIEhhdDEQMA4GA1UECxMHUmVkIEhhdDESMBAGA1UEAxMJbG9jYWxob3N0

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr7kck2TaavlEOGbcpi9c0rncY4HhdzmY

Ax2nZfq1eZEaIPqI5aTxwQZzzLDK9qbeAd8Ji79HzSqnRDxNYaZu7mAYhFKHgixsolE3o5Yfzbw1

29Rvy+eUVe+WZxv5oo9wolVVpdSINIMEL2LaFhtX/c1dqiqYVpfnvFshZQaIg2nL8juzZcBjj4as

H98gIS7khql/dkZKsw9NLvyxgJvp7PaXurX29fNf3ihG+oFrL22oFyV54BWWxXCKU/GPn61EGZGw

Ft2qSIGLdctpMD1aJR2bcnlhEjZKDksjQZoQ5YMXaAGkcYkG6QkgrocDE2YXDbi7GIdf9MegVJ35

2DQMpwIDAQABoDAwLgYJKoZIhvcNAQkOMSEwHzAdBgNVHQ4EFgQUQwlZJBA+fjiDdiVzaO9vrE/i

n2swDQYJKoZIhvcNAQELBQADggEBAC5FRvMkhal3q86tHPBYWBuTtmcSjs4qUm6V6f63frhveWHf

PzRrI1xH272XUIeBk0gtzWo0nNZnf0mMCtUBbHhhDcG82xolikfqibZijoQZCiGiedVjHJFtniDQ

9bMDUOXEMQ7gHZg5q6mJfNG9MbMpQaUVEEFvfGEQQxbiFK7hRWU8S23/d80e8nExgQxdJWJ6vd0X

MzzFK6j4Dj55bJVuM7GFmfdNC52pNOD5vYe47Aqh8oajHX9XTycVtPXl45rrWAH33ftbrS8SrZ2S

vqIFQeuLL3BaHwpl3t7j2lMWcK1p80laAxEASib/fAwrRHpLHBXRcq6uALUOZl4Alt8=

-----END NEW CERTIFICATE REQUEST-----

Send this ca request to your CA. The CA will issue you a signed certificate and send it to you.

Before you import your new cert, you must obtain and import the root certificate of the CA. You

can download the cert from CA (ie.: root.crt) and import as follows:

$ keytool -import -keystore keycloak.jks -file root.crt -alias root

Last step is import your new CA generated certificate to your keystore:

$ keytool -import -alias yourdomain -keystore keycloak.jks -file your-

certificate.cer

3.3.4.2. Installing the keystore to WildFly

Now that you have a Java keystore with the appropriate certificates, you need to configure your

Wildfly installation to use it. First step is to move the keystore file to a directory you can reference in

configuration. I like to put it in standalone/configuration. Then you need to edit standalone/

configuration/standalone.xml to enable SSL/HTTPS.

SSL/HTTPS Setup

15

To the security-realms element add:

<security-realm name="UndertowRealm">

 <server-identities>

 <ssl>

 <keystore path="keycloak.jks" relative-to="jboss.server.config.dir"

 keystore-password="secret" />

 </ssl>

 </server-identities>

</security-realm>

Find the element <server name="default-server"> (it's a child element of <subsystem

xmlns="urn:jboss:domain:undertow:1.0">) and add:

<https-listener name="https" socket-binding="https" security-

realm="UndertowRealm"/>

Check the Wildfly Undertow [https://docs.jboss.org/author/display/WFLY8/Undertow

+(web)+subsystem+configuration] documentation for more information on fine tuning the socket

connections.

3.3.4.3. Installing the keystore to JBoss EAP6/AS7

Now that you have a Java keystore with the appropriate certificates, you need to configure your

JBoss EAP6/AS7 installation to use it. First step is to move the keystore file to a directory you can

reference in configuration. I like to put it in standalone/configuration. Then you need to edit

standalone/configuration/standalone.xml to enable SSL/HTTPS.

<subsystem xmlns="urn:jboss:domain:web:1.1" default-virtual-server="default-

host" native="false">

 <connector name="http" protocol="HTTP/1.1" scheme="http" socket-binding="http"

 redirect-port="443" />

 <connector name="https" scheme="https" protocol="HTTP/1.1" socket-

binding="https"

 enable-lookups="false" secure="true">

 <ssl name="localhost-ssl" password="secret" protocol="TLSv1"

 key-alias="localhost" certificate-key-file="${jboss.server.config.dir}/

keycloak.jks" />

 </connector>

 ...

</subsystem>

https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration
https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration
https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration

Chapter 3. Installation and C...

16

Check the JBoss [https://docs.jboss.org/author/display/AS71/SSL+setup+guide] documentation

for more information on fine tuning the socket connections.

3.3.4.4. Enforce HTTPS For Server Connections

Servlet containers can force browsers and other HTTP clients to use HTTPS. You have to

configure this in .../standalone/deployments/auth-server.war/WEB-INF/web.xml. All you

have to do is uncomment out the security constraint.

<web-app>

 ...

 <security-constraint>

 <web-resource-collection>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

</web-app>

3.3.4.5. Enforce HTTPS at Realm Level

In Keycloak, each realm has an "Require SSL" switch that you should turn on. Log into the

adminstration console and set this switch for each realm that Keycloak manages. This switch is on

the Settings>>General page. While this switch does do similar checks as the security constraint

in web.xml, it will also force applications and oauth clients to only register HTTPS based redirect

URLs.

https://docs.jboss.org/author/display/AS71/SSL+setup+guide
https://docs.jboss.org/author/display/AS71/SSL+setup+guide

Chapter 4.

17

Chapter 4. Running Keycloak

Server on OpenShift
Keycloak provides a OpenShift cartridge to make it easy to get it running on OpenShift. If you don't

already have an account or don't know how to create applications go to https://www.openshift.com/

first. You can create the Keycloak instance either with the web tool or the command line tool, both

approaches are described below.

Warning

It's important that immediately after creating a Keycloak instance you open the

Administration Console and login to reset the password. If this is not done

anyone can easily gain admin rights to your Keycloak instance.

4.1. Create Keycloak instance with the web tool

Open https://openshift.redhat.com/app/console/applications and click on Add Application.

Scroll down to the bottom of the page to find the Code

Anything section. Insert http://cartreflect-claytondev.rhcloud.com/github/keycloak/

openshift-keycloak-cartridge into the URL to a cartridge definition field and click on

Next. Fill in the following form and click on Create Application.

Click on Continue to the application overview page. Under the list of applications you

should find your Keycloak instance and the status should be Started. Click on it to open the

Keycloak servers homepage.

4.2. Create Keycloak instance with the command-line

tool

Run the following command from a terminal:

rhc app create <APPLICATION NAME> http://cartreflect-claytondev.rhcloud.com/

github/keycloak/openshift-keycloak-cartridge

Replace <APPLICATION NAME> with the name you want (for example keycloak).

Once the instance is created the rhc tool outputs details about it. Open the returned URL in a

browser to open the Keycloak servers homepage.

https://www.openshift.com/
https://openshift.redhat.com/app/console/applications

Chapter 4. Running Keycloak S...

18

4.3. Next steps

The Keycloak servers homepage shows the Keycloak logo and Welcome to Keycloak. There

is also a link to the Administration Console. Open that and log in using username admin and

password admin. On the first login you are required to change the password.

Tip

On OpenShift Keycloak has been configured to only accept requests over https. If

you try to use http you will be redirected to https.

Chapter 5.

19

Chapter 5. Master Admin Access

Control
You can create and manage multiple realms by logging into the master Keycloak admin console

at /{keycloak-root}/admin/index.html

Users in the Keycloak master realm can be granted permission to manage zero or more realms

that are deployed on the Keycloak server. When a realm is created, Keycloak automatically

creates various roles that grant fine-grain permissions to access that new realm. Access to The

Admin Console and REST endpoints can be controlled by mapping these roles to users in the

master realm. It's possible to create multiple super users as well as users that have only access

to certain operations in specific realms.

5.1. Global Roles

There are two realm roles in the master realm. These are:

• admin - This is the super-user role and grants permissions to all operations on all realms

• create-realm - This grants the user permission to create new realms. A user that creates a

realm is granted all permissions to the newly created realm.

To add these roles to a user select the master realm, then click on Users. Find the user you want

to grant permissions to, open the user and click on Role Mappings. Under Realm Roles assign

any of the above roles to the user by selecting it and clicking on the right-arrow.

5.2. Realm Specific Roles

Each realm in Keycloak is represented by an application in the master realm. The name of the

application is <realm name>-realm. This allows assigning access to users for individual realms.

The roles available are:

• view-realm - View the realm configuration

• view-users - View users (including details for specific user) in the realm

• view-applications - View applications in the realm

• view-clients - View clients in the realm

• manage-realm - Modify the realm configuration (and delete the realm)

• manage-users - Create, modify and delete users in the realm

• manage-applications - Create, modify and delete applications in the realm

Chapter 5. Master Admin Acces...

20

• manage-clients - Create, modify and delete clients in the realm

Manage roles includes permissions to view (for example a user with manage-realm role can also

view the realm configuration).

To add these roles to a user select the master realm, then click on Users. Find the user you want

to grant permissions to, open the user and click on Role Mappings. Under Application Roles

select the application that represents the realm you're adding permissions to (<realm name>-

realm), then assign any of the above roles to the user by selecting it and clicking on the right-arrow.

Chapter 6.

21

Chapter 6. Per Realm Admin

Access Control
Administering your realm through the master realm as discussed in Chapter 5, Master Admin

Access Control may not always be ideal or feasible. For example, maybe you have more than one

admin application that manages various admin aspects of your organization and you want to unify

all these different "admin consoles" under one realm so you can do SSO between them. Keycloak

allows you to grant realm admin privleges to users within that realm. These realm admins can

participate in SSO for that realm and visit a keycloak admin console instance that is dedicated

solely for that realm by going to the url: /{keycloak-root}/admin/{realm}/console

6.1. Realm Roles

Each realm has a built-in application called realm-management. This application defines roles that

define permissions that can be granted to manage the realm.

• realm-admin - This is a composite role that grants all admin privileges for managing security

for that realm.

These are more fine-grain roles you can assign to the user.

• view-realm - View the realm configuration

• view-users - View users (including details for specific user) in the realm

• view-applications - View applications in the realm

• view-clients - View clients in the realm

• manage-realm - Modify the realm configuration (and delete the realm)

• manage-users - Create, modify and delete users in the realm

• manage-applications - Create, modify and delete applications in the realm

• manage-clients - Create, modify and delete clients in the realm

Manage roles includes permissions to view (for example a user with manage-realm role can also

view the realm configuration).

To add these roles to a user select the realm you want. Then click on Users. Find the user you

want to grant permissions to, open the user and click on Role Mappings. Under Application

Roles select realm-management, then assign any of the above roles to the user by selecting it

and clicking on the right-arrow.

22

Chapter 7.

23

Chapter 7. Adapters
Keycloak can secure a wide variety of application types. This section defines which application

types are supported and how to configure and install them so that you can use Keycloak to secure

your applications.

7.1. General Adapter Config

Each adapter supported by Keycloak can be configured by a simple JSON text file. This is what

one might look like:

{

 "realm" : "demo",

 "resource" : "customer-portal",

 "realm-public-key" : "MIGfMA0GCSqGSIb3D...31LwIDAQAB",

 "auth-server-url" : "https://localhost:8443/auth",

 "ssl-not-required" : false,

 "user-resource-role-mappings" : false,

 "enable-cors" : true,

 "cors-max-age" : 1000,

 "cors-allowed-methods" : ["POST", "PUT", "DELETE", "GET"],

 "bearer-only" : false,

 "expose-token" : true,

 "credentials" : {

 "secret" : "234234-234234-234234"

 }

 "connection-pool-size" : 20,

 "disable-trust-manager" false,

 "allow-any-hostname" : false,

 "truststore" : "path/to/truststore.jks",

 "truststore-password" : "geheim",

 "client-keystore" : "path/to/client-keystore.jks",

 "client-keystore-password" : "geheim",

 "client-key-password" : "geheim"

}

Some of these configuration switches may be adapter specific and some are common across all

adapters. For Java adapters you can use ${...} enclosure as System property replacement.

For example ${jboss.server.config.dir}. Also, you can obtain a template for this config file

from the admin console. Go to the realm and application you want a template for. Go to the

Installation tab and this will provide you with a template that includes the public key of the

realm.

Chapter 7. Adapters

24

Here is a description of each item:

realm

Name of the realm representing the users of your distributed applications and services. This

is REQUIRED.

resource

Username of the application. Each application has a username that is used when the

application connects with the Keycloak server to turn an access code into an access token

(part of the OAuth 2.0 protocol). This is REQUIRED.

realm-public-key

PEM format of public key. You can obtain this from the administration console. This is

REQUIRED.

auth-server-url

The base URL of the Keycloak Server. All other Keycloak pages and REST services are

derived from this. It is usually of the form https://host:port/auth This is REQUIRED.

ssl-not-required

Ensures that all communication to and from the Keycloak server from the adapter is over

HTTPS. This is OPTIONAL. The default value is false meaning that HTTPS is required by

default.

user-resource-role-mappings

If set to true, the adapter will look inside the token for application level role mappings for the

user. If false, it will look at the realm level for user role mappings. This is OPTIONAL. The

default value is false.

enable-cors

This enables CORS support. It will handle CORS preflight requests. It will also look into the

access token to determine valid origins. This is OPTIONAL. The default value is false.

cors-max-age

If CORS is enabled, this sets the value of the Access-Control-Max-Age header. This is

OPTIONAL. If not set, this header is not returned in CORS responses.

cors-allowed-methods

If CORS is enabled, this sets the value of the Access-Control-Allow-Methods header. This

should be a JSON list of strings. This is OPTIONAL. If not set, this header is not returned in

CORS responses.

bearer-only

This tells the adapter to only do bearer token authentication. That is, it will not do OAuth

2.0 redirects, but only accept bearer tokens through the Authorization header. This is

OPTIONAL. The default value is false.

General Adapter Config

25

expose-token

If true, an authenticated browser client (via a Javascript HTTP invocation) can obtain the

signed access token via the URL root/k_query_bearer_token. This is OPTIONAL. The

default value is false.

credentials

Specify the credentials of the application. This is an object notation where the key is the

credential type and the value if the value of the credential type. Currently only password is

supported. This is REQUIRED.

connection-pool-size

Adapters will make separate HTTP invocations to the Keycloak Server to turn an access code

into an access token. This config option defines how many connections to the Keycloak Server

should be pooled. This is OPTIONAL. The default value is 20.

disable-trust-manager

If the Keycloak Server requires HTTPS and this config option is set to true you do not have

to specify a truststore. While convenient, this setting is not recommended as you will not be

verifying the host name of the Keycloak Server. This is OPTIONAL. The default value is false.

allow-any-hostname

If the Keycloak Server requires HTTPS and this config option is set to true the Keycloak

Server's certificate is validated via the truststore, but host name validation is not done. This

is not a recommended. This seting may be useful in test environments This is OPTIONAL.

The default value is false.

truststore

This setting is for Java adapters. This is the file path to a Java keystore file. Used for outgoing

HTTPS communications to the Keycloak server. Client making HTTPS requests need a way

to verify the host of the server they are talking to. This is what the trustore does. The keystore

contains one or more trusted host certificates or certificate authorities. You can create this

truststore by extracting the public certificate of the Keycloak server's SSL keystore. This is

OPTIONAL if ssl-not-required is false or disable-trust-manager is true. The default

value isfalse.

truststore-password

Password for the truststore keystore. This is REQUIRED if truststore is set.

client-keystore

Not supported yet, but we will support in future versions. This setting is for Java adapters.

This is the file path to a Java keystore file. This keystore contains client certificate for two-way

SSL when the adapter makes HTTPS requests to the Keycloak server. This is OPTIONAL.

client-keystore-password

Not supported yet, but we will support in future versions. Password for the client keystore.

This is REQUIRED if client-keystore is set.

Chapter 7. Adapters

26

client-key-password

Not supported yet, but we will support in future versions. Password for the client's key. This

is REQUIRED if client-keystore is set.

7.2. JBoss/Wildfly Adapter

To be able to secure WAR apps deployed on JBoss AS 7.1.1, JBoss EAP 6.x, or Wildfly, you

must install and configure the Keycloak Subsystem. You then have two options to secure your

WARs. You can provide a keycloak config file in your WAR and change the auth-method to

KEYCLOAK within web.xml. Alternatively, you don't have to crack open your WARs at all and can

apply Keycloak via the Keycloak Subsystem configuration in standalone.xml. Both methods are

described in this section.

7.2.1. Adapter Installation

This is a adapter zip file for AS7, EAP, and Wildfly in the adapters/ directory in the Keycloak

distribution.

Install on Wildfly:

$ cd $WILDFLY_HOME

$ unzip keycloak-wildfly-adapter-dist.zip

Install on JBoss EAP 6.x:

$ cd $JBOSS_HOME

$ unzip keycloak-eap6-adapter-dist.zip

Install on JBoss AS 7.1.1:

$ cd $JBOSS_HOME

$ unzip keycloak-as7-adapter-dist.zip

This zip file creates new JBoss Modules specific to the Wildfly Keycloak Adapter within your Wildfly

distro.

After adding the Keycloak modules, you must then enable the Keycloak Subsystem within your

app server's server configuration: domain.xml or standalone.xml.

For Wildfly:

Adapter Installation

27

<server xmlns="urn:jboss:domain:1.4">

 <extensions>

 <extension module="org.keycloak.keycloak-wildfly-subsystem"/>

 ...

 </extensions>

 <profile>

 <subsystem xmlns="urn:jboss:domain:keycloak:1.0"/>

 ...

 </profile>

For JBoss AS 7.1.1 and EAP 6.x:

<server xmlns="urn:jboss:domain:1.4">

 <extensions>

 <extension module="org.keycloak.keycloak-as7-subsystem"/>

 ...

 </extensions>

 <profile>

 <subsystem xmlns="urn:jboss:domain:keycloak:1.0"/>

 ...

 </profile>

Finally, for both AS7, EAP 6.x, and Wildfly installations you must specify a shared keycloak security

domain. This security domain should be used with EJBs and other components when you need

the security context created in the secured web tier to be propagated to the EJBs (other EE

component) you are invoking. Otherwise this configuration is optional.

<server xmlns="urn:jboss:domain:1.4">

 <subsystem xmlns="urn:jboss:domain:security:1.2">

 <security-domains>

...

 <security-domain name="keycloak">

 <authentication>

 <login-module code="org.keycloak.adapters.jboss.KeycloakLoginModule"

 flag="required"/>

Chapter 7. Adapters

28

 </authentication>

 </security-domain>

 </security-domains>

For example, if you have a JAX-RS service that is an EJB within your WEB-INF/classes directory,

you'll want to annotate it with the @SecurityDomain annotation as follows:

import org.jboss.ejb3.annotation.SecurityDomain;

import org.jboss.resteasy.annotations.cache.NoCache;

import javax.annotation.security.RolesAllowed;

import javax.ejb.EJB;

import javax.ejb.Stateless;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import java.util.ArrayList;

import java.util.List;

@Path("customers")

@Stateless

@SecurityDomain("keycloak")

public class CustomerService {

 @EJB

 CustomerDB db;

 @GET

 @Produces("application/json")

 @NoCache

 @RolesAllowed("db_user")

 public List<String> getCustomers() {

 return db.getCustomers();

 }

}

We hope to improve our integration in the future so that you don't have to specify the

@SecurityDomain annotation when you want to propagate a keycloak security context to the EJB

tier.

Per WAR Configuration

29

7.2.2. Per WAR Configuration

This section describes how to secure a WAR directly by adding config and editing files within your

WAR package.

The first thing you must do is create a keycloak.json adapter config file within the WEB-INF

directory of your WAR. The format of this config file is describe in the general adapter configuration

section.

Next you must set the auth-method to KEYCLOAK in web.xml. You also have to use standard

servlet security to specify role-base constraints on your URLs. Here's an example pulled from one

of the examples that comes distributed with Keycloak.

<web-app xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/

xml/ns/javaee/web-app_3_0.xsd"

 version="3.0">

 <module-name>customer-portal</module-name>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Admins</web-resource-name>

 <url-pattern>/admin/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>admin</role-name>

 </auth-constraint>

 </security-constraint>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Customers</web-resource-name>

 <url-pattern>/customers/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>user</role-name>

 </auth-constraint>

 </security-constraint>

 <security-constraint>

 <web-resource-collection>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

Chapter 7. Adapters

30

 </user-data-constraint>

 </security-constraint>

 <login-config>

 <auth-method>KEYCLOAK</auth-method>

 <realm-name>this is ignored currently/realm-name>

 </login-config>

 <security-role>

 <role-name>admin</role-name>

 </security-role>

 <security-role>

 <role-name>user</role-name>

 </security-role>

</web-app>

7.2.3. Securing WARs via Keycloak Subsystem

You do not have to crack open a WAR to secure it with Keycloak. Alternatively, you can externally

secure it via the Keycloak Subsystem. While you don't have to specify KEYCLOAK as an auth-

method, you still have to define the security-constraints in web.xml. You do not, however,

have to create a WEB-INF/keycloak.json file. This metadata is instead defined within XML in

your server's domain.xml or standalone.xml subsystem configuration section.

<server xmlns="urn:jboss:domain:1.4">

 <profile>

 <subsystem xmlns="urn:jboss:domain:keycloak:1.0">

 <secure-deployment name="WAR MODULE NAME.war">

 <realm>demo</realm>

 <realm-public-key>MIGfMA0GCSqGSIb3DQEBAQUAA</realm-public-key>

 <auth-server-url>http://localhost:8081/auth</auth-server-url>

 <ssl-not-required>true</ssl-not-required>

 <resource>customer-portal</resource>

 <credential name="secret">password</credential>

 </secure-deployment>

 </subsystem>

 </profile>

The security-deployment name attribute identifies the WAR you want to secure. Its value is the

module-name defined in web.xml with .war appended. The rest of the configuration corresponds

pretty much one to one with the keycloak.json configuration options defined in general adapter

configuration. The exception is the credential element.

Pure Client Javascript Adapter

31

To make it easier for you, you can go to the Keycloak Adminstration Console and go to the

Application/Installation tab of the application this WAR is aligned with. It provides an example XML

file you can cut and paste.

There is an additional convenience format for this XML if you have multiple WARs you are

deployment that are secured by the same domain. This format allows you to define common

configuration items in one place under the realm element.

<subsystem xmlns="urn:jboss:domain:keycloak:1.0">

 <realm name="demo">

 <realm-public-key>MIGfMA0GCSqGSIb3DQEBA</realm-public-key>

 <auth-server-url>http://localhost:8080/auth</auth-server-url>

 <ssl-not-required>true</ssl-not-required>

 </realm>

 <secure-deployment name="customer-portal.war">

 <realm>demo</realm>

 <resource>customer-portal</resource>

 <credential name="secret">password</credential>

 </secure-deployment>

 <secure-deployment name="product-portal.war">

 <realm>demo</realm>

 <resource>product-portal</resource>

 <credential name="secret">password</credential>

 </secure-deployment>

 <secure-deployment name="database.war">

 <realm>demo</realm>

 <resource>database-service</resource>

 <bearer-only>true</bearer-only>

 </secure-deployment>

</subsystem>

7.3. Pure Client Javascript Adapter

The Keycloak Server comes with a Javascript library you can use to secure pure HTML/Javascript

applications. It works in the same way as other application adapters except that your browser is

driving the OAuth redirect protocol rather than the server.

The disadvantage of using this approach is that you end up having a non-confidential, public client.

This can be mitigated by registering valid redirect URLs. You are still vulnerable if somebody

hijacks the IP/DNS name of your pure HTML/Javascript application though.

To use this adapter, you must first configure an application (or client) through the Keycloak

Admin Console. You should select public for the Client Type field. As public clients can't

be verified with a client secret you are required to configure one or more valid redirect uris as

Chapter 7. Adapters

32

well. Once you've configured the application click on the Installation tab and download the

keycloak.json file. This file should be hosted in your web-server at the same root as your HTML

pages. Alternatively you can either specify the URL for this file, or manually configure the adapter.

Next you have to initialize the adapter in your application. An example on how to do this is shown

below.

<head>

 <script src="http://<keycloak server>/auth/js/keycloak.js"></script>

 <script>

 var keycloak = Keycloak();

 keycloak.init().success(function(authenticated) {

 alert(authenticated ? 'authenticated' : 'not authenticated');

 }).error(function() {

 alert('failed to initialize');

 });

 </script>

</head>

To specify the location of the keycloak.json file:

var keycloak = Keycloak('http://localhost:8080/myapp/keycloak.json'));

Or finally to manually configure the adapter:

var keycloak = Keycloak({

 url: 'http://keycloak-server/auth',

 realm: 'myrealm',

 clientId: 'myapp'

});

You can also pass login-required or check-sso to the init function. Login required will redirect

to the login form on the server, while check-sso will redirect to the auth server to check if the user

is already logged in to the realm. For example:

keycloak.init({ onLoad: 'login-required' })

Pure Client Javascript Adapter

33

After you login, your application will be able to make REST calls using bearer token authentication.

Here's an example pulled from the customer-portal-js example that comes with the distribution.

<script>

 var loadData = function () {

 document.getElementById('username').innerText = keycloak.username;

 var url = 'http://localhost:8080/database/customers';

 var req = new XMLHttpRequest();

 req.open('GET', url, true);

 req.setRequestHeader('Accept', 'application/json');

 req.setRequestHeader('Authorization', 'Bearer ' + keycloak.token);

 req.onreadystatechange = function () {

 if (req.readyState == 4) {

 if (req.status == 200) {

 var users = JSON.parse(req.responseText);

 var html = '';

 for (var i = 0; i < users.length; i++) {

 html += '<p>' + users[i] + '</p>';

 }

 document.getElementById('customers').innerHTML = html;

 console.log('finished loading data');

 }

 }

 }

 req.send();

 };

 var loadFailure = function () {

 document.getElementById('customers').innerHTML = 'Failed to load

 data. Check console log';

 };

 var reloadData = function () {

 keycloak.updateToken().success(loadData).error(loadFailure);

 }

</script>

<button onclick="loadData()">Submit</button>

The loadData() method builds an HTTP request setting the Authorization header to a bearer

token. The keycloak.token points to the access token the browser obtained when it logged

Chapter 7. Adapters

34

you in. The loadFailure() method is invoked on a failure. The reloadData() function calls

keycloak.onValidAccessToken() passing in the loadData() and loadFailure() callbacks.

The keycloak.onValidAcessToken() method checks to see if the access token hasn't expired. If

it hasn't, and your oauth login returned a refresh token, this method will refresh the access token.

Finally, if successful, it will invoke the success callback, which in this case is the loadData()

method.

To refresh the token if it's expired call the updateToken method. This method returns a promise

object which can be used to invoke a function on success or failure. This method can be used to

wrap functions that should only be called with a valid token. For example the following method

will refresh the token if it expires within 30 seconds, and then invoke the specified function. If the

token is valid for more than 30 seconds it will just call the specified function.

keycloak.updateToken(30).success(function() {

 // send request with valid token

}).error(function() {

 alert('failed to refresh token');

);

7.3.1. Session status iframe

By default the JavaScript adapter creates a non-visible iframe that is used to detect if a single-sign

out has occured. This does not require any network traffic, instead the status is retrieved from a

special status cookie. This feature can be disabled by setting checkLoginIframe: false in the

options passed to the init method.

7.3.2. JavaScript Adapter reference

7.3.2.1. Constructor

new Keycloak();

new Keycloak('http://localhost/keycloak.json');

new Keycloak({ url: 'http://localhost/auth', realm: 'myrealm', clientId:

 'myApp' });

7.3.2.2. Properties

• authenticated - true if the user is authenticated

• token - the base64 encoded token that can be sent in the Authorization header in requests

to services

JavaScript Adapter reference

35

• tokenParsed - the parsed token

• subject - the user id

• idToken - the id token if claims is enabled for the application, null otherwise

• realmAccess - the realm roles associated with the token

• resourceAccess - the resource roles assocaited with the token

• refreshToken - the base64 encoded token that can be used to retrieve a new token

• refreshTokenParsed - the parsed refresh token

7.3.2.3. Methods

init(options)

Called to initialize the adapter.

Options is an Object, where:

• onLoad - specifies an action to do on load, can be either 'login-required' or 'check-sso'

• token - set an initial value for the token

• refreshToken - set an initial value for the refresh token

• checkLoginIframe - set to enable/disable monitoring login state (default is true)

• checkLoginIframeInterval - set the interval to check login state (default is 5 seconds)

Returns promise to set functions to be invoked on success or error.

login(options)

Redirects to login form on (options is an optional object with redirectUri and/or prompt fields)

Options is an Object, where:

• redirectUri - specifies the uri to redirect to after login

• prompt - can be set to 'none' to check if the user is logged in already (if not logged in a login

form is not displayed)

createLoginUrl(options)

Returns the url to login form on (options is an optional object with redirectUri and/or prompt fields)

Chapter 7. Adapters

36

Options is an Object, where:

• redirectUri - specifies the uri to redirect to after login

• prompt - can be set to 'none' to check if the user is logged in already (if not logged in a login

form is not displayed)

logout(options)

Redirects to logout

Options is an Object, where:

• redirectUri - specifies the uri to redirect to after logout

createLogoutUrl(options)

Returns logout out

Options is an Object, where:

• redirectUri - specifies the uri to redirect to after logout

accountManagement()

Redirects to account management

createAccountUrl()

Returns the url to account management

hasRealmRole(role)

Returns true if the token has the given realm role

hasResourceRole(role, resource)

Returns true if the token has the given role for the resource (resource is optional, if not specified

clientId is used)

loadUserProfile()

Loads the users profile

Returns promise to set functions to be invoked on success or error.

Installed Applications

37

isTokenExpired(minValidity)

Returns true if the token has less than minValidity seconds left before it expires (minValidity is

optional, if not specified 0 is used)

updateToken(minValidity)

If the token expires within minValidity seconds (minValidity is optional, if not specified 0 is used)

the token is refreshed. If the session status iframe is enabled, the session status is also checked.

Returns promise to set functions that can be invoked if the token is still valid, or if the token is

no longer valid. For example:

keycloak.updateToken(5).success(function(refreshed) {

 if (refreshed) {

 alert('token was successfully refreshed');

 } else {

 alert('token is still valid');

 }

 }).error(function() {

 alert('failed to refresh the token, or the session has expired');

 });

7.3.2.4. Callback Events

The adapter supports setting callback listeners for certain events. For example:

keycloak.onAuthSuccess = function() { alert('authenticated'); }

• onReady(authenticated) - called when the adapter is initialized

• onAuthSuccess - called when a user is successfully authenticated

• onAuthError - called if there was an error during authentication

• onAuthRefreshSuccess - called when the token is refreshed

• onAuthRefreshError - called if there was an error while trying to refresh the token

• onAuthLogout - called if the user is logged out (will only be called if the session status iframe

is enabled, or in Cordova mode)

7.4. Installed Applications

Keycloak provides two special redirect uris for installed applications.

Chapter 7. Adapters

38

7.4.1. http://localhost

This returns the code to a web server on the client as a query parameter. Any port number is

allowed. This makes it possible to start a web server for the installed application on any free port

number without requiring changes in the Admin Console.

7.4.2. urn:ietf:wg:oauth:2.0:oob

If its not possible to start a web server in the client (or a browser is not available) it is possible to

use the special urn:ietf:wg:oauth:2.0:oob redirect uri. When this redirect uri is used Keycloak

displays a page with the code in the title and in a box on the page. The application can either

detect that the browser title has changed, or the user can copy/paste the code manually to the

application. With this redirect uri it is also possible for a user to use a different device to obtain

a code to paste back to the application.

Chapter 8.

39

Chapter 8. Social
Keycloak makes it easy to let users log in to your application using an existing account with a social

network. Currently Facebook, Google and Twitter is supported with more planned for the future.

There's also a Social Provider SPI that makes it relatively simple to add additional social networks.

8.1. Social Login Config

To enable log in with a social network you need to enable social login for your realm and configure

one or more social providers.

8.1.1. Enable social login

To configure social login, open the Keycloak Admin Console, select your realm from the drop-

down box in the top left corner. In the Login Options section click on Social login to set it to

ON. Click save settings, then click on Social in the menu at the top.

To enable a social provider select the provider you want from the drop-down and click on Add

Provider. Then continue to the section below that provides specific instructions for the provider

you are adding.

8.1.2. Social-only login

It's possible to configure a realm to only allow social login. To do this open the Keycloak Admin

Console, select your realm from the drop-down box in the top left corner. Click the Credentials

tab, and click on the x next to password in the Required User Credentials. This will disable

login with username and password.

8.1.3. Social Callback URL

There is a single callback url used by all realms and social providers. This makes it possible to

share the configuration for a social network between multiple realms. An example callback url is

http://localhost:8080/auth/rest/social/callback. To get the callback url for your server

replace http://localhost:8080 with the base address of your server. You can also find the

callback url in the Keycloak Admin Console under social settings.

8.2. Facebook

To enable login with Facebook you first have to create an app in the Facebook Developer

Console [https://developers.facebook.com/]. Then you need to copy the client id and secret into

the Keycloak Admin Console.

1. Log in to the Facebook Developer Console [https://developers.facebook.com/]. Click Apps in

the menu and select Create a New App. Use any value for Display Name and Category

https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/

Chapter 8. Social

40

you want, then click the Create App button. Wait for the project to be created (this may take

a while). If after creating the app you are not redirected to the app settings, click on Apps in

the menu and select the app you created.

2. Once the app has been created click on Settings in sidebar on the left. Then click on Advanced.

Under Security make sure Client OAuth Login is enabled. In Valid OAuth redirect URIs

insert the social callback url. Scroll down and click on the Save Changes button.

3. Click Status & Review and select YES for Do you want to make this app and all its

live features available to the general public?.

4. Click Basic. Copy App ID and App Secret (click show) from the Facebook Developer Console

[https://developers.facebook.com/] into the settings page in the Keycloak Admin Console as the

Key and Secret. Then click Save in the Keycloak Admin Console to enable login with Facebook.

8.3. GitHub

To enable login with Google you first have to create an application in GitHub Settings [https://

github.com/settings/applications]. Then you need to copy the client id and secret into the Keycloak

Admin Console.

1. Log in to GitHub Settings [https://github.com/settings/applications]. Click the Register new

application button. Use any value for Application name, Homepage URL and Application

Description you want. In Authorization callback URL enter the social callback url for your

realm. Click the Register application button.

2. Copy Client ID and Client secret from the GitHub Settings [https://github.com/settings/

applications] into the settings page in the Keycloak Admin Console as the Key and Secret.

Then click Save in the Keycloak Admin Console to enable login with Google.

8.4. Google

To enable login with Google you first have to create a project and a client in the Google Developer

Console [https://cloud.google.com/console/project]. Then you need to copy the client id and secret

into the Keycloak Admin Console.

1. Log in to the Google Developer Console [https://cloud.google.com/console/project]. Click the

Create Project button. Use any value for Project name and Project ID you want, then

click the Create button. Wait for the project to be created (this may take a while).

2. Once the project has been created click on APIs & auth in sidebar on the left. To retrieve user

profiles the Google+ API has to be enabled. Scroll down to find it in the list. If its status is OFF,

click on OFF to enable it (it should move to the top of the list and the status should be ON).

3. Now click Credentials in the sidebar on the left. Then click Create New Client ID. Select Web

application as Application type. Empty the Authorized Javascript origins textarea.

https://developers.facebook.com/
https://developers.facebook.com/
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project

Twitter

41

In Authorized redirect URI enter the social callback url for your realm. Click the Create

Client ID button.

4. Copy Client ID and Client secret from the Google Developer Console [https://

cloud.google.com/console/project] into the settings page in the Keycloak Admin Console as the

Key and Secret. Then click Save in the Keycloak Admin Console to enable login with Google.

You may also want to configure how the Google Consent Screen looks when users log in to your

application via Google. To do this go to Google Developer Console [https://cloud.google.com/

console/project] and click on Consent Screen in the sidebar to the left.

8.5. Twitter

To enable login with Twtter you first have to create an application in the Twitter Developer

Console [https://dev.twitter.com/apps]. Then you need to copy the consumer key and secret into

the Keycloak Admin Console.

1. Log in to the Twitter Developer Console [https://dev.twitter.com/apps]. Click the Create a new

application button. Use any value for Name, Description and Website you want. Insert the

social callback url in Callback URL. Then click Create your Twitter application.

2. Now click on Settings and tick the box Allow this application to be used to Sign in

with Twitter, then click on Update this Twitter application's settings.

3. Now click Details. Copy Consumer key and Consumer secret from the Twitter Developer

Console [https://dev.twitter.com/apps] into the settings page in the Keycloak Admin Console

as the Key and Secret. Then click Save in the Keycloak Admin Console to enable login with

Twitter.

Tip

Twitter doesn't allow localhost in the redirect URI. To test on a local server

replace localhost with 127.0.0.1.

8.6. Social Provider SPI

Keycloak provides an SPI to make it easy to add additional social providers. This is done by

implementing org.keycloak.social.SocialProvider in social/core and adding a provider

configuration file (META-INF/services/org.keycloak.social.SocialProvider).

A good reference for implementing a Social Provider is the Google provider which you can find in

social/google on GitHub or in the source download.

https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps

42

Chapter 9.

43

Chapter 9. Themes
Keycloak provides theme support for login forms and account management. This allows

customizing the look and feel of end-user facing pages so they can be integrated with your brand

and applications.

9.1. Configure theme

To configure the theme used by a realm open the Keycloak Admin Console, select your realm

from the drop-down box in the top left corner. In the Optional Settings use the drop-down

boxes for Login Theme and Account Theme to select the theme used by login forms and account

management pages.

9.2. Default themes

Keycloak comes bundled with default themes in standalone/configuration/themes. It is not

recommended to edit these themes directly. Instead you should create a new theme to extend a

default theme. A good reference is to copy the keycloak themes as these extend the base theme

to add styling.

9.3. Creating a theme

There are several types of themes in Keycloak:

• Account - Account management

• Admin - Admin console

• Common - Shared resources for themes

• Email - Emails

• Login - Login forms

A theme consists of:

• FreeMarker [http://freemarker.org] templates

• Stylesheets

• Scripts

• Images

• Message bundles

• Theme properties

http://freemarker.org
http://freemarker.org

Chapter 9. Themes

44

A theme can extend another theme. When extending a theme you can override individual files

(templates, stylesheets, etc.). The recommended way to create a theme is to extend the base

theme. The base theme provides templates and a default message bundle. It should be possible

to achieve the customization required by styling these templates.

To create a new theme, create a folder in .../standalone/configuration/themes/< theme

type>. The name of the folder is the name of the theme. Then create a file theme.properties

inside the theme folder. The contents of the file should be:

parent=base

You have now created your theme. Check that it works by configuring it for a realm. It should

look the same as the base theme as you've not added anything to it yet. The next sections will

describe how to modify the theme.

9.3.1. Stylesheets

A theme can have one or more stylesheets, to add a stylesheet create a file inside resources/

css (for example resources/css/styles.css) inside your theme folder. Then registering it in

theme.properties by adding:

styles=css/styles.css

The styles property supports a space separated list so you can add as many as you want. For

example:

styles=css/styles.css css/more-styles.css

A theme can have one or more scripts, to add a script create a file inside resources/

js (for example resources/js/script.js) inside your theme folder. Then registering it in

theme.properties by adding:

scripts=js/script.js

The scripts property supports a space separated list so you can add as many as you want. For

example:

scripts=js/script.js js/more-script.js

Images

45

9.3.3. Images

To make images available to the theme add them to resources/img. They can then be used

through stylesheets. For example:

body {

 background-image: url('../img/image.jpg');

}

Or in templates, for example:

9.3.4. Messages

Text in the templates are loaded from message bundles. Currently internationalization isn't

supported, but that will be added in a later release. A theme that extends another theme will

inherit all messages from the parents message bundle, but can override individual messages. For

example to replace Username on the login form with Your Username create the file messages/

messages.properties inside your theme folder and add the following content:

username=Your Username

9.3.5. Modifying HTML

Keycloak uses Freemarker Templates [http://freemarker.org] in order to generate HTML. These

templates are defined in .ftl files and can be overriden from the base theme. Check out the

Freemarker website on how to form a template file.

9.4. SPIs

For full control of login forms and account management Keycloak provides a number of SPIs.

9.4.1. Theme SPI

The Theme SPI allows creating different mechanisms to providing themes for the default

FreeMarker based implementations of login forms and account management. To create a

theme provider you will need to implement org.keycloak.freemarker.ThemeProvider and

org.keycloak.freemarker.Theme in forms/common-freemarker.

Keycloak comes with two theme providers, one that loads themes from the classpath (used by

default themes) and another that loads themes from a folder (used by custom themes). Looking

http://freemarker.org
http://freemarker.org

Chapter 9. Themes

46

at these would be a good place to start to create your own theme provider. You can find them

inside forms/common-themes on GitHub or the source download.

9.4.2. Account SPI

The Account SPI allows implementing the account management pages using

whatever web framework or templating engine you want. To create an

Account provider implement org.keycloak.account.AccountProviderFactory and

org.keycloak.account.AccountProvider in forms/account-api.

Keycloaks default account management provider is built on the FreeMarker template

engine (forms/account-freemarker). To make sure your provider is loaded you

will either need to delete standalone/deployments/auth-server.war/WEB-INF/lib/

keycloak-account-freemarker-1.0-beta-1.jar or disable it with the system property

org.keycloak.account.freemarker.FreeMarkerAccountProviderFactory.

9.4.3. Login SPI

The Login SPI allows implementing the login forms using whatever

web framework or templating engine you want. To create a Login

forms provider implement org.keycloak.login.LoginFormsProviderFactory and

org.keycloak.login.LoginFormsProvider in forms/login-api.

Keycloaks default login forms provider is built on the FreeMarker template

engine (forms/login-freemarker). To make sure your provider is loaded you

will either need to delete standalone/deployments/auth-server.war/WEB-INF/lib/

keycloak-login-freemarker-1.0-beta-1.jar or disable it with the system property

org.keycloak.login.freemarker.FreeMarkerLoginFormsProviderFactory.

Chapter 10.

47

Chapter 10. Email
Keycloak sends emails to users to verify their email address. Emails are also used to allow users

to safely restore their username and passwords.

10.1. Email Server Config

To enable Keycloak to send emails you need to provide Keycloak with your SMTP server settings.

If you don't have a SMTP server you can use one of many hosted solutions (such as Sendgrid

or smtp2go).

To configure your SMTP server, open the Keycloak Admin Console, select your realm from the

drop-down box in the top left corner. Then click on Email in the menu at the top.

You are required to fill in the Host and Port for your SMTP server (the default port for SMTP is

25). You also have to specify the sender email address (From). The other options are optional.

The screenshot below shows a simple example where the SMTP server doesn't use SSL or TLS

and doesn't require authentication.

10.1.1. Enable SSL or TLS

As emails are used for recovering usernames and passwords it's recommended to use SSL or

TLS, especially if the SMTP server is on an external network. To enable SSL click on Enable SSL

Chapter 10. Email

48

or to enable TLS click on Enable TLS. You will most likely also need to change the Port (the

default port for SSL/TLS is 465).

10.1.2. Authentication

If your SMTP server requires authentication click on Enable Authentication and insert the

Username and Password.

Chapter 11.

49

Chapter 11. Application and Client

Access Types
When you create an Application or OAuth Client you may be wondering what the "Access Types"

are.

confidential

Confidential access type is for clients that need to perform a browser login and that you want

to require a client secret when they turn an access code into an access token, (see Access

Token Request [http://tools.ietf.org/html/rfc6749#section-4.1.3] in the OAuth 2.0 spec for more

details). The advantages of this is that it is a little extra security. Since Keycloak requires you

to register valid redirect-uris, I'm not exactly sure what this little extra security is though. :)

The disadvantages of this access type is that confidential access type is pointless for pure

Javascript clients as anybody could easily figure out your client's secret!

public

Public access type is for clients that need to perform a browser login and that you feel that

the added extra security of confidential access type is not needed. FYI, Pure javascript clients

are by nature public.

bearer-only

Bearer-only access type means that the application only allows bearer token requests. If this

is turned on, this application cannot participate in browser logins.

direct access only

For OAuth clients, you would also see a "Direct Access Only" switch when creating the OAuth

Client. This switch is for oauth clients that only use the Direct Access Grant protocol to obtain

access tokens.

http://tools.ietf.org/html/rfc6749#section-4.1.3
http://tools.ietf.org/html/rfc6749#section-4.1.3
http://tools.ietf.org/html/rfc6749#section-4.1.3

50

Chapter 12.

51

Chapter 12. Roles
In Keycloak, roles (or permissions) can be defined globally at the realm level, or individually per

application. Each role has a name which must be unique at the level it is defined in, i.e. you can

have only one "admin" role at the realm level. You may have that a role named "admin" within an

Application too, but "admin" must be unique for that application.

The description of a role is displayed in the OAuth Grant page when Keycloak is processing

a browser OAuth Grant request. Look for more features being added here in the future like

internationalization and other fine grain options.

12.1. Composite Roles

Any realm or application level role can be turned into a Composite Role. A Composite Role is

a role that has one or more additional roles associated with it. I guess another term for it could

be Role Group. When a composite role is mapped to the user, the user gains the permission of

that role, plus any other role the composite is associated with. This association is dynamic. So,

if you add or remove an associated role from the composite, then all users that are mapped to

the composite role will automatically have those permissions added or removed. Composites can

also be used to define Application or OAuth Client scopes.

Composite roles can be associated with any type of role Realm or Application. In the admin

console simple flip the composite switch in the Role detail, and you will get a screen that will allow

you to associate roles with the composite.

52

Chapter 13.

53

Chapter 13. Direct Access Grants
Keycloak allows you to make direct REST invocations to obtain an access token. (See Resource

Owner Password Credentials Grant [http://tools.ietf.org/html/rfc6749#section-4.3] from OAuth 2.0

spec). To use it, Direct Access Grants must be allowed by your realm. This is a configuration

switch in the admin console under Settings->General, specifically the "Direct Grant API" switch.

You must also have registered a valid OAuth Client or Application to use as the "client_id" for

this grant request.

Warning

It is highly recommended that you do not use Direct Access Grants to write your

own login pages for your application. You will lose a lot of features that Keycloak

has if you do this. Specifically all the account management, remember me, lost

password, account reset features of Keycloak. Instead, if you want to tailor the look

and feel of Keycloak login pages, you should create your own theme.

It is even highly recommended that you use the browser to log in for native mobile

applications! Android and iPhone applications allow you to redirect to and from the

browser. You can use this to redirect the user from your native mobile app to the

web browser to perform login, then the browser will redirect back to your native

application.

The REST URL to invoke on is /{keycloak-root}/realms/{realm-name}/tokens/grants/

access. Invoking on this URL is a POST request and requires you to post the username and

credentials of the user you want an access token for. You must also pass along the "client_id" of the

application or oauth client you are creating an access token for. This "client_id" is the application

or oauth client name (not it's id!). Depending on whether your application/oauth client is "public"

or "confidential", you may also have to pass along it's client secret as well.

For public applications or oauth client's, the POST invocation requires form parameters that

contain the username, credentials, and client_id of your application. For example:

 POST /auth/realms/demo/tokens/grants/access

 Content-Type: application/x-www-form-urlencoded

 username=bburke&password=geheim&client_id=customer-portal

The response would be this standard JSON document [http://tools.ietf.org/html/

rfc6749#section-4.3.3] from the OAuth 2.0 specification.

http://tools.ietf.org/html/rfc6749#section-4.3
http://tools.ietf.org/html/rfc6749#section-4.3
http://tools.ietf.org/html/rfc6749#section-4.3
http://tools.ietf.org/html/rfc6749#section-4.3.3
http://tools.ietf.org/html/rfc6749#section-4.3.3
http://tools.ietf.org/html/rfc6749#section-4.3.3

Chapter 13. Direct Access Grants

54

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"bearer",

 "expires_in":3600,

 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",

 "id_token":"tGzv3JOkF0XG5Qx2TlKWIA",

 "session-state":"234234-234234-234234"

}

For confidential applications or oauth client's, you must create a Basic Auth Authorization

header that contains the client_id and client secret. And pass in the form parameters for username

and for each user credential. For example:

 POST /auth/realms/demo/tokens/grants/access

 Authorization: Basic atasdf023l2312023

 Content-Type: application/x-www-form-urlencoded

 username=bburke&password=geheim

Here's a Java example using Apache HTTP Client and some Keycloak utility classes.:

HttpClient client = new HttpClientBuilder()

 .disableTrustManager().build();

try {

 HttpPost post = new HttpPost(

 KeycloakUriBuilder.fromUri("http://localhost:8080/auth")

 .path(ServiceUrlConstants.TOKEN_SERVICE_DIRECT_GRANT_PATH).build("demo"));

 List <NameValuePair> formparams = new ArrayList <NameValuePair>();

 formparams.add(new BasicNameValuePair("username", "bburke"));

 formparams.add(new BasicNameValuePair("password", "password"));

 if (isPublic()) { // if client is public access type

 formparams.add(new BasicNameValuePair(OAuth2Constants.CLIENT_ID,

 "customer-portal"));

55

 } else {

 String authorization = BasicAuthHelper.createHeader("customer-portal",

 "secret-secret-secret);

 post.setHeader("Authorization", authorization);

 }

 UrlEncodedFormEntity form = new UrlEncodedFormEntity(formparams, "UTF-8");

 post.setEntity(form);

 HttpResponse response = client.execute(post);

 int status = response.getStatusLine().getStatusCode();

 HttpEntity entity = response.getEntity();

 if (status != 200) {

 throw new IOException("Bad status: " + status);

 }

 if (entity == null) {

 throw new IOException("No Entity");

 }

 InputStream is = entity.getContent();

 try {

 AccessTokenResponse tokenResponse = JsonSerialization.readValue(is,

 AccessTokenResponse.class);

 } finally {

 try {

 is.close();

 } catch (IOException ignored) { }

 }

} finally {

 client.getConnectionManager().shutdown();

}

Once you have the access token string, you can use it in REST HTTP bearer token authorized

requests, i.e

GET /my/rest/api

Authorization: Bearer 2YotnFZFEjr1zCsicMWpAA

56

Chapter 14.

57

Chapter 14. CORS
CORS stands for Cross-Origin Resource Sharing. If executing browser Javascript tries to make

an AJAX HTTP request to a server's whose domain is different than the one the Javascript code

came from, then the request uses the CORS protocol [http://www.w3.org/TR/cors/]. The server

must handle CORS requests in a special way, otherwise the browser will not display or allow the

request to be processed. This protocol exists to protect against XSS and other Javascript-based

attacks. Keycloak has support for validated CORS requests.

Keycloak's CORS support is configured per application and oauth client. You specify the allowed

origins in the application's or oauth client's configuration page in the admin console. You can add

as many you want. The value must be what the browser would send as a value in the Origin

header. For example http://example.com is what you must specify to allow CORS requests from

example.com. When an access token is created for the application or OAuth client, these allowed

origins are embedded within the token. On authenticated CORS requests, your application's

Keycloak adapter will handle the CORS protocol and validate the Origin header against the

allowed origins embedded in the token. If there is no match, then the request is denied.

To enable CORS processing in your application's server, you must set the enable-cors setting

to true in your adapter's configuration file. When this setting is enabled, the Keycloak adapter

will handle all CORS preflight requests. It will validate authenticated requests (protected resource

requests), but will let unauthenticated requests (unprotected resource requests) pass through.

http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/

58

Chapter 15.

59

Chapter 15. Cookie settings,

Session Timeouts, and Token

Lifespans
Keycloak has a bunch of fine-grain settings to manage browser cookies, user login sessions, and

token lifespans. Sessions can be viewed and managed within the admin console for all users,

and individually in the user's account management pages. This chapter goes over configuration

options for cookies, sessions, and tokens.

15.1. Remember Me

If you go to the admin console page of Settings->General, you should see a Remember Me on/off

switch. Your realm sets a SSO cookie so that you only have to enter in your login credentials once.

This Remember Me admin config option, when turned on, will show a "Remember Me" checkbox

on the user's login page. If the user clicks this, the realm's SSO. cookie will be persistent. This

means that if the user closes their browser they will still be logged in the next time they start up

their browser.

15.2. Session Timeouts

If you go to the Sesions and Tokens->Token Settings page of the Keycloak adminstration console

there is a bunch of fine tuning you can do as far as login session timeouts go.

The SSO Session Idle Timeout is the idle time of a user session. If there is no activity in

the user's session for this amount of time, the user session will be destroyed, and the user will

become logged out. The idle time is refreshed with every action against the keycloak server for

that session, i.e.: a user login, SSO, a refresh token grant, etc.

The SSO Session Max Lifespan setting is the maximum time a user session is allowed to be

alive. This max lifespan countdown starts from when the user first logs in and is never refreshed.

This works great with Remember Me in that it allow you to force a relogin after a set timeframe.

15.3. Token Timeouts

The Access Token Lifespan is how long an access token is valid for. An access token contains

everything an application needs to authorize a client. It contains roles allowed as well as other

user information. When an access token expires, your application will attempt to refresh it using

a refresh token that it obtained in the initial login. The value of this configuration option should be

however long you feel comfortable with the application not knowing if the user's permissions have

changed. This value is usually in minutes.

Chapter 15. Cookie settings, ...

60

The Access Code Lifespan is how long an access code is valid for. An access code is obtained

on the 1st leg of the OAuth 2.0 redirection protocol. This should be a short time limit. Usually

seconds.

The Access Code Action Lifespan is how long a user is allowed to attempt a login. When a

user tries to login, they may have to change their password, set up TOTP, or perform some other

action before they are redirected back to your application as an authentnicated user. This value

is relatively short and is usually measured in minutes.

Chapter 16.

61

Chapter 16. Admin REST API
The Keycloak Admin Console is implemented entirely with a fully functional REST admin API. You

can invoke this REST API from your Java applications by obtaining an access token. You must

have the appropriate permissions set up as describe in Chapter 5, Master Admin Access Control

and Chapter 6, Per Realm Admin Access Control

The documentation for this REST API is auto-generated and is contained in the distribution of

keycloak under the docs/rest-api/overview-index.html directory, or directly from the docs page at

the keycloak website.

There are a number of examples that come with the keycloak distribution that show you how to

invoke on this REST API. examples/preconfigured-demo/admin-access-app shows you how

to access this api from java. examples/cors/angular-product-app shows you how to invoke

on it from Javascript.

62

Chapter 17.

63

Chapter 17. Audit
Keycloak provides an Audit SPI that makes it possible to register listeners for events in the system.

There are two interfaces that can be implemented, the first is a pure listener, the second is a

provider which listens for events as well as providing a query over persisted events. If a realm has

a audit provider registered it's possible to view events for the realm through the admin console

and account management.

17.1. Events

Login events:

• Login - A user has logged in

• Register - A user has registered

• Logout - A user has logged out

• Code to Token - An application/client has exchanged a code for a token

• Refresh Token - An application/client has refreshed a token

Account events

• Social Link - An account has been linked to a social provider

• Remove Social Link - A social provider has been removed from an account

• Update Email - The email address for an account has changed

• Update Profile - The profile for an account has changed

• Send Password Reset - A password reset email has been sent

• Update Password - The password for an account has changed

• Update TOTP - The TOTP settings for an account has changed

• Remove TOTP - TOTP has been removed from an account

• Send Verify Email - A email verification email has been sent

• Verify Email - The email address for an account has been verified

For all events there is a corresponding error event.

17.2. Audit Listener

Keycloak comes with an Email Audit Listener and a JBogg Logging Audit Listener. The Email

Audit Listener sends an email to the users account when an event occurs. The JBoss Logging

Audit Listener writes to a log file when an events occurs.

Chapter 17. Audit

64

The Email Audit Listener only supports the following events at the moment:

• Login Error

• Update Password

• Update TOTP

• Remove TOTP

You can exclude one or more events by editing standalone/configuration/keycloak-

server.json and adding for example:

"audit-listener": {

 "email": {

 "exclude-events": ["UPDATE_TOTP", "REMOVE_TOTP"]

 }

}

17.3. Audit Provider

Audit Providers listen for events and is expected to persist the events to make it possible to

query for them later. This is used by the admin console and account management to view events.

Keycloak includes providers to persist audit events to JPA and Mongo. For production you will

most likely want to use a separate database for audit events. You may even want to use a RDBMS

for your model, and Mongo for your audit.

You can specify events to include or exclude by editing standalone/configuration/keycloak-

server.json, and adding for example:

"audit": {

 "jpa": {

 "exclude-events": ["LOGIN", "REFRESH_TOKEN", "CODE_TO_TOKEN"]

 }

}

17.4. Configure Audit Settings for Realm

To enable audit for a realm you firstly need to make sure you have a audit provider registered for

Keycloak. By default the JPA audit provider is registered. Once you've done that open the admin

console, select the realm you're configuring, select Audit. Then click on Config. You can enable

audit for your realm by toggling Enabled to ON. You can also set an expiration on audit events.

This will deleted events from the database that are older than the specified time.

Configure Audit Settings for Realm

65

To configure listeners for a realm on the same page as above add one or more audit listeners to

the Audit Listeners select box. This will allow you to enable any registered Audit Listeners

with the realm.

66

Chapter 18.

67

Chapter 18. Authentication SPI
Keycloak provides Authentication SPI, which allows to choose the AuthenticationProvider

for authenticating users. AuthenticationProvider is the interface, which states how will

be your usernames/passwords validated. You can choose from the set of available

AuthenticationProviders or you can even implement and plug your own AuthenticationProvider,

which will allow to provide your own way how will Keycloak validates users and their passwords.

18.1. Available Authentication Providers

• Model - This provider validates users and their passwords based on the Keycloak model. So it

just delegates to model implementation provided either by RDBMS or Mongo at this moment.

This is default AuthenticationProvider, which is configured for keycloak-admin realm by default

and it's also automatically configured for newly created realms.

• External-model - This provider also uses Keycloak model, but it uses different realm to validate

your users against. For example if you want to create new realm "foo" and you want all users of

already existing realm "bar" that they are automatically able to login into realm "foo" with their

usernames and passwords, you can choose this provider.

• Picketlink - This provider delegates Authentication to Picketlink IDM [http://docs.jboss.org/

picketlink/2/latest/reference/html-single/#chap-Identity_Management_-_Overview] framework.

Right now, Picketlink IDM in Keycloak is configured to always use LDAP based Identity

store, which means that picketlink provider allows you to authenticate your users against

LDAP server. Note that you will first need to configure LDAP server as described here .

PicketlinkAuthenticationProvider configured for the realm will automatically use LDAP

configuration for this realm.

18.2. Features and configuration

• You can configure AuthenticationProviders separately for each realm. So for example

you can choose that just realm "foo" will use PicketlinkAuthenticationProvider

and authenticate users against LDAP but realm "keycloak-admin" will still use default

ModelAuthenticationProvider.

• There is also possibility to choose more authentication providers for the realm, which actually

means that Keycloak will use first available AuthenticationProvider and just in case that user

doesn't exist here, it will fallback to second AuthenticationProvider in chain. So this may allow

for example scenario, in which you authenticate user against Keycloak database (model) and

just if he doesn't exist in database, it will fallback to LDAP (picketlink).

• You can configure for each AuthenticationProvider if you want to update passwords - option

passwordUpdateSupported. This means that when user update password or his profile

through Keycloak UI, this change will be propagated into AuthenticationProvider. So for

http://docs.jboss.org/picketlink/2/latest/reference/html-single/#chap-Identity_Management_-_Overview
http://docs.jboss.org/picketlink/2/latest/reference/html-single/#chap-Identity_Management_-_Overview
http://docs.jboss.org/picketlink/2/latest/reference/html-single/#chap-Identity_Management_-_Overview

Chapter 18. Authentication SPI

68

example password in LDAP will be updated if it's true, but for read-only LDAP, you will

likely switch it to false. It also means that newly registered users will be propagated to

particular AuthenticationProvider too, but note that each user is always bind just to one

AuthenticationProvider.

• You can add/edit/remove AuthenticationProviders in the Authentication tab in admin

console, which is under URL http://localhost:8080/auth/admin/keycloak-admin/console/#/

realms/YOUR_REALM/auth-settings

18.3. Creating your own Authentication Provider

You need to implement interface AuthenticationProvider and add the

name of your AuthenticationProviderFactory class into META-INF/services/

org.keycloak.authentication.AuthenticationProviderFactory file inside your JAR with

AuthenticationProvider. You also need to copy this JAR into standalone/deployments/auth-

server.war/WEB-INF/lib . The best is to look at example [https://github.com/keycloak/keycloak/

tree/master/examples/providers/authentication-properties] and try it out.

http://localhost:8080/auth/admin/keycloak-admin/console/#/realms/YOUR_REALM/auth-settings
http://localhost:8080/auth/admin/keycloak-admin/console/#/realms/YOUR_REALM/auth-settings
https://github.com/keycloak/keycloak/tree/master/examples/providers/authentication-properties
https://github.com/keycloak/keycloak/tree/master/examples/providers/authentication-properties
https://github.com/keycloak/keycloak/tree/master/examples/providers/authentication-properties

Chapter 19.

69

Chapter 19. LDAP Integration
Right now, LDAP server is configured separately for each Realm. Configuration is in admin

console in tab Ldap under realm settings. It's under URL like http://localhost:8080/auth/admin/

keycloak-admin/console/index.html#/realms/YOUR_REALM/ldap-settings . There is nothing like

"shared" LDAP server for more realms in Keycloak, but it's planned for the future.

LDAP is currently used just for authentication of users done through

PicketlinkAuthenticationProvider as described here . In the future, we have plan to have

full Sync SPI, which will allow one-way or two-way synchronization between LDAP server and

Keycloak database including users and roles.

http://localhost:8080/auth/admin/keycloak-admin/console/index.html#/realms/YOUR_REALM/ldap-settings
http://localhost:8080/auth/admin/keycloak-admin/console/index.html#/realms/YOUR_REALM/ldap-settings

70

Chapter 20.

71

Chapter 20. Export and Import
Export/import is useful especially if you want to migrate your whole Keycloak database from one

environment to another or migrate to different database (For example from MySQL to Oracle). You

can trigger export/import at startup of Keycloak server and it's configurable with System properties

right now. The fact it's done at server startup means that no-one can access Keycloak UI or REST

endpoints and edit Keycloak database on the fly when export or import is in progress. Otherwise

it could lead to inconsistent results.

You can export/import your database either to directory on local filesystem (useful just for testing

purposes or if your filesystem is properly protected) or to encrypted ZIP file on local filesystem.

Encrypted ZIP is recommended as export contains many sensitive informations like passwords

of your users (even if they are hashed), but also their email addresses, and especially private

keys of the realms.

So to export the content of your Keycloak database into encrypted ZIP, you can execute Keycloak

server with the System properties like:

bin/standalone.sh -Dkeycloak.migration.action=export

-Dkeycloak.migration.provider=zip -Dkeycloak.migration.zipFile=<FILE TO EXPORT

 TO>

-Dkeycloak.migration.zipPassword=<PASSWORD TO DECRYPT EXPORT>

Then you can move or copy the encrypted ZIP file into second environment and you

can trigger import from it into Keycloak server with the same command but use -

Dkeycloak.migration.action=import instead of export .

To export into unencrypted directory you can use:

bin/standalone.sh -Dkeycloak.migration.action=export

-Dkeycloak.migration.provider=dir -Dkeycloak.migration.dir=<DIR TO EXPORT TO>

And similarly for import just use -Dkeycloak.migration.action=import instead of export .

72

Chapter 21.

73

Chapter 21. Migration from older

versions

21.1. Migrating from 1.0 Alpha 4 to Beta 1

• DB Schema has changed. We have added export of the database to Beta 1, but not the ability

to import the database from older versions. This will be supported in future releases.

• For all clients except bearer-only applications, you must specify at least one redirect uri.

Keycloak will not allow you to log in unless you have specified a valid redirect uri for that

application.

• Resource Owner Password Credentials flow is now disabled by default. It can be enabled by

setting the toggle for Direct Grant API ON under realm config in the admin console.

• Configuration is now done through standalone/configuration/keycloak-server.json.

This should mainly affect those that use MongoDB.

• JavaScript adapter has been refactored. See the JavaScript adapter section for more details.

• The "Central Login Lifespan" setting no longer exists. Please see the Session Timeout section

for me details.

21.2. Migrating from 1.0 Alpha 2 to Alpha 3

• SkeletonKeyToken, SkeletonKeyScope, SkeletonKeyPrincipal, and SkeletonKeySession

have been renamed to: AccessToken, AccessScope, KeycloakPrincipal, and

KeycloakAuthenticatedSession respectively.

• ServleOAuthClient.getBearerToken() method signature has changed. It now returns an

AccessTokenResponse so that you can obtain a refresh token too.

• Adapters now check the access token expiration with every request. If the token is expired, they

will attempt to invoke a refresh on the auth server using a saved refresh token.

• Subject in AccessToken has been changed to the User ID.

21.3. Migrating from 1.0 Alpha 1 to Alpha 2

• DB Schema has changed. We don't have any data migration utilities yet as of Alpha 2.

• JBoss and Wildfly adapters are now installed via a JBoss/Wildfly subsystem. Please review the

adapter installation documentation. Edits to standalone.xml are now required.

Chapter 21. Migration from ol...

74

• There is a new credential type "secret". Unlike other credential types, it is stored in plain text in

the database and can be viewed in the admin console.

• There is no longer required Application or OAuth Client credentials. These client types are now

hard coded to use the "secret" credential type.

• Because of the "secret" credential change to Application and OAuth Client, you'll have to update

your keycloak.json configuration files and regenarate a secret within the Application or OAuth

Client credentials tab in the administration console.

	Keycloak Reference Guide
	Table of Contents
	Preface
	Chapter 1. License
	Chapter 2. Overview
	2.1. Key Concepts in Keycloak
	2.2. How Does Security Work in Keycloak?
	2.2.1. Permission Scopes

	Chapter 3. Installation and Configuration of Keycloak Server
	3.1. Appliance Install
	3.2. WAR Distribution Installation
	3.3. Configuring the Server
	3.3.1. Database Configuration
	3.3.1.1. Tested databases

	3.3.2. MongoDB based model
	3.3.3. AS7/EAP6.x Logging
	3.3.4. SSL/HTTPS Setup
	3.3.4.1. Creating the Certificate and Java Keystore
	3.3.4.1.1. Self Signed Certificate

	3.3.4.2. Installing the keystore to WildFly
	3.3.4.3. Installing the keystore to JBoss EAP6/AS7
	3.3.4.4. Enforce HTTPS For Server Connections
	3.3.4.5. Enforce HTTPS at Realm Level

	Chapter 4. Running Keycloak Server on OpenShift
	4.1. Create Keycloak instance with the web tool
	4.2. Create Keycloak instance with the command-line tool
	4.3. Next steps

	Chapter 5. Master Admin Access Control
	5.1. Global Roles
	5.2. Realm Specific Roles

	Chapter 6. Per Realm Admin Access Control
	6.1. Realm Roles

	Chapter 7. Adapters
	7.1. General Adapter Config
	7.2. JBoss/Wildfly Adapter
	7.2.1. Adapter Installation
	7.2.2. Per WAR Configuration
	7.2.3. Securing WARs via Keycloak Subsystem

	7.3. Pure Client Javascript Adapter
	7.3.1. Session status iframe
	7.3.2. JavaScript Adapter reference
	7.3.2.1. Constructor
	7.3.2.2. Properties
	7.3.2.3. Methods
	7.3.2.4. Callback Events

	7.4. Installed Applications
	7.4.1. http://localhost
	7.4.2. urn:ietf:wg:oauth:2.0:oob

	Chapter 8. Social
	8.1. Social Login Config
	8.1.1. Enable social login
	8.1.2. Social-only login
	8.1.3. Social Callback URL

	8.2. Facebook
	8.3. GitHub
	8.4. Google
	8.5. Twitter
	8.6. Social Provider SPI

	Chapter 9. Themes
	9.1. Configure theme
	9.2. Default themes
	9.3. Creating a theme
	9.3.1. Stylesheets
	9.3.2.
	9.3.3. Images
	9.3.4. Messages
	9.3.5. Modifying HTML

	9.4. SPIs
	9.4.1. Theme SPI
	9.4.2. Account SPI
	9.4.3. Login SPI

	Chapter 10. Email
	10.1. Email Server Config
	10.1.1. Enable SSL or TLS
	10.1.2. Authentication

	Chapter 11. Application and Client Access Types
	Chapter 12. Roles
	12.1. Composite Roles

	Chapter 13. Direct Access Grants
	Chapter 14. CORS
	Chapter 15. Cookie settings, Session Timeouts, and Token Lifespans
	15.1. Remember Me
	15.2. Session Timeouts
	15.3. Token Timeouts

	Chapter 16. Admin REST API
	Chapter 17. Audit
	17.1. Events
	17.2. Audit Listener
	17.3. Audit Provider
	17.4. Configure Audit Settings for Realm

	Chapter 18. Authentication SPI
	18.1. Available Authentication Providers
	18.2. Features and configuration
	18.3. Creating your own Authentication Provider

	Chapter 19. LDAP Integration
	Chapter 20. Export and Import
	Chapter 21. Migration from older versions
	21.1. Migrating from 1.0 Alpha 4 to Beta 1
	21.2. Migrating from 1.0 Alpha 2 to Alpha 3
	21.3. Migrating from 1.0 Alpha 1 to Alpha 2

