Keycloak
Reference Guide

SSO for Web Apps and REST Services

1.0-beta-3

[l (=] = Vo1 < T \Y;

R I o =T 1] PPN 1
B O AV QTP 3
2.1. Key Concepts in KEYCIOAKcc.uoiiiiiiiii e 4

2.2. How Does Security WOrk in KeycCloaK?oooiiuiiiiiiiiiiieiiii e 4
2.2.1. PErmMISSION SCOPES ..civvuiiiiieiiiieiiiee e et e e e e e e e e e et e e et e e et e e eeenaas 5

3. Installation and Configuration of Keycloak Server ..o, 7
3.1 ApplianCe INSAllceeii e 7

3.2. WAR Distribution Installationoooeiiiiiii e 7

3.3. ConfiguriNg thE SEIVERioi i e 8
3.3.1. Database Configurationcoveeiiiiiiiiiiiiie e 9

3.3.2. MongoDB based MOdelccouuiiiiiiiii 11

3.3.3. AST/EAPB.X LOGGING -.eertneiiiiinaeiiii ettt e ettt e e et e et e e eeat e eeni e eeens 12

3.3.4. SSLIHTTPS SEIUP .. oeiiiiiiei ittt e et e e et e eeeees 12

4. Running Keycloak Server on OpenShiftcooiiiiiiiiiii e 19
4.1. Create Keycloak instance with the web tool ..o, 19

4.2. Create Keycloak instance with the command-line toolcccccooviiiiiiiiiiinneennnn, 19

T N\ = =] o1 S PP PPRPPPR 20

5. Master Admin ACCESS CONTIOl ...iiueiiiii e 21
L I] o] o F= 1 o 1= PP 21

5.2. Realm SPeCific ROIES ... 21

6. Per Realm Admin ACCESS CONLIOI .ooiiiuiiiiiiiiie e 23
6.1, REAIM ROIES ...eiiiiiiiii et e e e e e e e e 23

o F= 1] 1= €= N 25
7.1. General Adapter CONFIQccouuuiiiiiie et 25

7.2. IBOSS/WIlATlY AAPLET ... e e e e e e 28
7.2.1. Adapter INStallationc.uuiiiiiiii e 28

7.2.2. Per WAR Configurationccoceuiiiiiiiiiie e e e e e e e e e e eaen 31

7.2.3. Securing WARs via Keycloak SUDSYSIEMccooiiiiiiiiiiiiiii e 32

7.3. Pure Client Javascript AQapLercociuuiiiiieii e e e e e e 33
7.3.1. SesSIoN Status iframecoouiiiiie e 36

7.3.2. JavaScript Adapter referenCecovviviiiii e 36

7.4. Installed APPLICALIONSiiiiiiiiii e 39
T7.4.1. httP://IOCAINOSTcviiiii e 40

7.4.2. urnzietf:wg:0auth:2.0:00D ... 40

S TS Yo o - | PSP 41
8.1. Social LOGIN CONFIG ivrtiiiiiiiiee e 41
8.1.1. Enable social 10ginooiiiiiiii e 41

8.1.2. SOCIal-0NIY 10GIN ..ot 41

8.1.3. Social Callback URLiiiiiiiiiiiiiiii e 41

8.2, FACEDOOK ..eeiiiie e e 41

8.3, GIEHUD et e 42

B4, GOOGIE ..ot 42

ST N1 (T PSSP 43

Keycloak Reference Guide

8.6. Social Provider SPI ... 43

LS T I 1T o = PSP 45
9.1. CoNfigUuIe thEIME ... e 45

9.2, DefaUlt tNEMES ... e e e e 45

9.3. Creating @ theME ... e 45
9.3.1. StYIESNEELS . ovniii e 46

LS 30U 46

0.3.3. IMAGES eniiiiiii it 47

O.3.4. MEBSSAUES ... ivuniietiieii et ettt 47

9.3.5. MOdIfYiNg HTIML ..ot e e 47

0.4, SIS i a1 47
9.4.1. TREME SPI .ooiii e 47

9.4.2. ACCOUNL SPI ..o eans 48

9.4.3. LOGIN SPI oeiiiiii e 48

0 R o 2 = 1 49
10.1. Email Server Config oo e 49
10.1.1. EN@ble SSL OF TLS .iiiiiiiiii it e e e e e e e e eaaaas 49

OB 7 U 1 1= o1 (o= i o] o PP 50

11. Application and Client ACCESS TYPES ..oiiiiiiiiiiiiie et 51
2 Lo =P 53
12.1. COMPOSIE ROIES ...eeiiiiii e e e e 53

13. DIr€Ct ACCESS GIaNTS ..uuiiiiiiiiiiiiii e ittt e e et e et e e et e e et e e e et e e e et e e e eran s 55
B O @ = 1 TSP 59
15. Cookie settings, Session Timeouts, and Token Lifespanscccooveiiviiiiiiiineiinens 61
15.1. REMEMDBEN M ..oeiiiiiie et e e e e e 61
15.2. SESSION TIMEOULS ...ciiviiiiieiiiie ettt e e et e e et e e et e e e e et e e e e et e e e eaen s 61
15.3. TOKEN TIMEBOULS ..ovuiiiiiieiiii et e e e e e e e e e et a e e e e eanaeeeen 61

16. AMIN REST AP Lot e e e e e e e et e e e e et s 63
N U o | PP 65
R R =T o | PPN 65
A e 8 To 11] (=T = 65
A T AN T 1) 0 /o = PRSPPI 66
17.4. Configure Audit Settings for Realmcoooiiiiiiiiiiiiii e 66

18. AULhENTICALION SPI oottt e e et e e et 69
18.1. Available Authentication ProViderscccouiiiiiiiiiiiiiiee e 69
18.2. Features and CONfIQUIALIONoeiiiiiiiii e e e e e 69
18.3. Creating your own Authentication ProViderccoiiiiiiiiinieiiiiine e 70

S I 7 o o) =Y] = Lo o 71
20. EXPOIt @nd IMPOIT oottt et e e eee 73
21. Migration from OlAEr VEISIONSiiiiiiiii e e e e e e 75
21.1. Migrating from 1.0 Alpha 4 t0 Beta 1ouuiiiiiiiiiiiiii e 75
21.2. Migrating from 1.0 Alpha 2 to Alpha 3 ..o, 75
21.3. Migrating from 1.0 Alpha 1 t0 Alpha 2 ... 75

Preface

In some of the example listings, what is meant to be displayed on one line does not fit inside the
available page width. These lines have been broken up. A '\' at the end of a line means that a
break has been introduced to fit in the page, with the following lines indented. So:

Let's pretend to have an extrenely \
long line that \

does not fit

This one is short

Is really:

Let's pretend to have an extrenmely long |line that does not fit
This one is short

Vi

Chapter 1.

Chapter 1. License

Keycloak is distributed under the ASL 2.0 license. It does not distribute any thirdparty libraries that
are GPL. It does ship thirdparty libraries licensed under Apache ASL 2.0 and LGPL.

Chapter 2.

Chapter 2. Overview

Keycloak is an SSO solution for web apps, mobile and RESTful web services. It is an
authentication server where users can centrally login, logout, register, and manage their user
accounts. The Keycloak admin Ul can manage roles and role mappings for any application
secured by Keycloak. The Keycloak Server can also be used to perform social logins via the user's
favorite social media site i.e. Google, Facebook, Twitter etc.

Features:

SSO and Single Log Out for browser applications

Social Login. Enable Google, GitHub, Facebook, Twitter social login with no code required.
LDAP and Active Directory support.

Optional User Registration

Password and TOTP support (via Google Authenticator). Client cert auth coming soon.
Forgot password support. User can have an email sent to them

Reset password/totp. Admin can force a password reset, or set up a temporary password.
Not-before revocation policies per realm, application, or user.

User session management. Admin can view user sessions and what applications/clients have
an access token. Sessions can be invalidated per realm or per user.

Pluggable theme and style support for user facing screens. Login, grant pages, account mgmt,
and admin console all can be styled, branded, and tailored to your application and organizational
needs.

OAuth Bearer token auth for REST Services

Integrated Browser App to REST Service token propagation
OAuth Bearer token auth for REST Services

OAuth 2.0 Grant requests

OpenlD Connect Support.

CORS Support

CORS Web Origin management and validation

Completely centrally managed user and role mapping metadata. Minimal configuration at the
application side

Chapter 2. Overview

< Admin Console for managing users, roles, role mappings, applications, user sessions, allowed
CORS web origins, and OAuth clients.

« Account Management console that allows users to manage their own account, view their open
sessions, reset passwords, etc.

» Deployable as a WAR, appliance, or on Openshift.
» Multitenancy support. You can host and manage multiple realms for multiple organizations.

» Supports JBoss AS7, EAP 6.x, Wildfly and JavaScript applications. Plans to support Node.js,
RAILS, GRAILS, and other non-Java deployments

2.1. Key Concepts in Keycloak

The core concept in Keycloak is a Realm. A realm secures and manages security metadata for
a set of users, applications, and registered oauth clients. Users can be created within a specific
realm within the Administration console. Roles (permission types) can be defined at the realm
level and you can also set up user role mappings to assign these permissions to specific users.

An application is a service that is secured by a realm. When a user browses an application's web
site, the application can redirect the user agent to the Keycloak Server and request a login. Once
a user is logged in, they can visit any other application managed by the realm and not have to re-
enter credentials. This also hold true for logging out. Roles can also be defined at the application
level and assigned to specific users. Depending on the application type, you may also be able to
view and manage user sessions from the administration console.

An oauth client is similar to an application in that it can request something like a login when a user
visits the site of the oauth client. The difference is that oauth clients are not immediately granted
all permissions of the user. In addition to requesting the login credentials of the user, the Keycloak
Server will also display a grant page asking the user if it is ok to grant allowed permissions to
the oauth client.

2.2. How Does Security Work in Keycloak?

Keycloak uses access tokens to secure web invocations. Access tokens contains security
metadata specifying the identity of the user as well as the role mappings for that user. The format of
these tokens is a Keycloak extension to the JSON Web Token [http://tools.ietf.org/html/draft-ietf-
oauth-json-web-token-14] specification. Each realm has a private and public key pair which it uses
to digitally sign the access token using the JSON Web Signature [http://tools.ietf.org/html/draft-
ietf-jose-json-web-signature-19] specification. Applications can verify the integrity of the digitally
signed access token using the public key of the realm. The protocols used to obtain this token is
defined by the OAuth 2.0 [http://tools.ietf.org/html/rfc6749] specification.

The interesting thing about using these smart access tokens is that applications themselves are
completely stateless as far as security metadata goes. All the information they need about the
user is contained in the token and there's no need for them to store any security metadata locally
other than the public key of the realm.

http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-14
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-14
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-14
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-19
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-19
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-19
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

Permission Scopes

Signed access tokens can also be propagated by REST client requests within an Aut hori zat i on
header. This is great for distributed integration as applications can request a login from a client
to obtain an access token, then invoke any aggregated REST invocations to other services using
that access token. So, you have a distributed security model that is centrally managed, yet does
not require a Keycloak Server hit per request, only for the initial login.

2.2.1. Permission Scopes

Each application and oauth client are configured with a set of permission scopes. These are a
set of roles that an application or oauth client is allowed to ask permission for. Access tokens are
always granted at the request of a specific application or oauth client. This also holds true for SSO.
As you visit different sites, the application will redirect back to the Keycloak Server via the OAuth
2.0 protocol to obtain an access token specific to that application. The role mappings contained
within the token are the union between the set of user role mappings and the permission scope
of the application/oauth client. So, access tokens are tailor made for each application/oauth client
and contain only the information required for by them.

Chapter 3.

Chapter 3. Installation and
Configuration of Keycloak Server

The Keycloak Server has two downloadable distributions.

 keycloak-appliance-dist-all-1.0-beta-3.zip

 keycloak-war-dist-all-1.0-beta-3.zip

3.1. Appliance Install

The keycl oak- appl i ance-di st-al | . zi p is quite large, but contains a complete server (backed
by Wildfly) that runs out of the box. The only thing you'll have to enable and configure is SSL.
Unzipping it, the directory layout looks something like this:

keycl oak- appl i ance-di st-al | -1. 0- bet a- 3/
keycl oak/
bi n/
st andal one. sh
st andal one. bat
st andal one/ depl oynent s/
aut h-server. war/
st andal one/ confi gurati on/
keycl oak- server.json
t henes/
adapt ers/
keycl oak- as7- adapter-di st-1.0-beta-3.zip
keycl oak- eap6- adapt er-di st-1. 0-beta-3. zip
keycl oak-wi | df | y-adapt er-di st-1. 0-beta-3. zip
exanpl es/
docs/

The st andal one. sh or st andal one. bat scriptis used to start the server. After executing that, log
into the admin console at http://localhost:8080/auth/admin/index.html [http://localhost:8080/auth/
admin/index.html]. Username: admin Password: admin. Keycloak will then prompt you to enter
in a new password.

3.2. WAR Distribution Installation

The keycl oak-war-di st-al | .zi p contains just the bits you need to install keycloak on your
favorite web container. We currently only support installing it on top of an existing JBoss AS 7.1.1,

http://localhost:8080/auth/admin/index.html
http://localhost:8080/auth/admin/index.html
http://localhost:8080/auth/admin/index.html

Chapter 3. Installation and C...

JBoss EAP 6.x, or Wildfly 8 distribution. We may in the future provide directions on how to install it
on another web container like Tomcat or Jetty. If anybody in the community is interested in pulling
this together, please contact us. Its mostly Maven pom work.

The directory structure of this distro looks like this:

keycl oak-war-di st-all-1.0-beta-3/
depl oynent s/
aut h- server. war/
keycl oak-ds. xni
configuration/
keycl oak- server.json
t hermres/
adapt er s/
keycl oak-as7-adapter-dist-1.0-beta-3.zip
keycl oak- eap6- adapt er-di st-1. 0-beta-3. zip
keycl oak-wi | df | y- adapt er-di st-1. 0-beta-3. zip
exanpl es/
docs/

After unzipping this file, copy everything in depl oynents directory into the standal one/
depl oyment s of your JBoss or Wildfly distro. Also, copy everything in confi gur ati on directory
into the st andal one/ confi gur ati on directory.

$ cd keycl oak-war-dist-all-1.0-beta-3
$ cp -r depl oynents $JBOSS_HOVE/ st andal one

After booting up the JBoss or Wildfly distro, you can then make sure it is installed
properly by logging into the admin console at http://localhost:8080/auth/admin/index.html [http://
localhost:8080/auth/admin/index.html]. Username: admin Password: admin. Keycloak will then
prompt you to enter in a new password.

3.3. Configuring the Server

Although the Keycloak Server is designed to run out of the box, there's some things you'll need
to configure before you go into production. Specifically:

Configuring keycloak to use a production database.

Setting up SSL/HTTPS

Enforcing HTTPS connections

http://localhost:8080/auth/admin/index.html
http://localhost:8080/auth/admin/index.html
http://localhost:8080/auth/admin/index.html

Database Configuration

3.3.1. Database Configuration

The datasource used to store Keycloak data is configured inthe . . . / st andal one/ depl oynent s/
keycl oak-ds. xm file of your Keycloak Server installation if you used Section 3.2, “WAR
Distribution Installation” or in .../ standal one/ confi gurati on/ st andal one. xnl if you used
Section 3.1, “Appliance Install’. File keycl oak-ds. xm is used in WAR distribution, so that
you have datasource available out of the box and you don't need to edit st andal one. xni file.
However a good thing is to always delete the file keycl oak- ds. xnl and move its configuration
text into the centrally managed st andal one. xmi file. This will allow you to manage the database
connection pool from the Wildfly/JBoss administration console. Here's what . . . / st andal one/
confi gurati on/ standal one. xm should look like after you've done this:

<subsyst em xm ns="ur n: j boss: donai n: dat asour ces: 2. 0" >
<dat asour ces>
<dat asource j ndi -nane="j ava: j boss/ dat asour ces/ Exanpl eDS"
pool - name="Exanpl eDS" enabl ed="true" use-java-context="true">
<connecti on-
url >j dbc: h2: mem t est ; DB_CLOSE_DELAY=-1; DB_CLOSE_ON_EXI T=FALSE</ connecti on-ur| >
<driver>h2</driver>
<security>
<user - nanme>sa</ user - nane>
<passwor d>sa</ passwor d>
</security>
</ dat asour ce>
<dat asource j ndi - nane="j ava: j boss/ dat asour ces/ Keycl oakDS"
pool - name="Keycl oakDS" enabl ed="true" use-java-context="true">
<connection-url >j dbc: h2: ${j boss. server.data.dir}/
keycl oak; AUTO _SERVER=TRUE</ connecti on-url >
<driver>h2</driver>
<security>
<user - nane>sa</ user - nane>
<passwor d>sa</ passwor d>
</security>
</ dat asour ce>
<drivers>
<driver nanme="h2" nodul e="com h2dat abase. h2" >
<xa- dat asour ce- cl ass>or g. h2. j dbcx. JdbcDat aSour ce</ xa- dat asour ce-cl ass>
</driver>
</drivers>
</ dat asour ces>
</ subsyst enr

Besides moving the database config into the central standal one.xm configuration file
you might want to use a better relational database for Keycloak like PostgreSQL or

Chapter 3. Installation and C...

MySQL. You might also want to tweak the configuration settings of the datasource. Please
see the Wildfly [https://docs.jboss.org/author/display/WFLY8/DataSource+configuration], JBoss
AS7 [https://docs.jboss.org/author/display/AS71/DataSource+configuration], or JBoss EAP 6.x
[https://docs.jboss.org/author/display/AS71/DataSource+configuration] documentation on how to
do this.

Keycloak also runs on a Hibernate/JPA backend which is configured in the .../ st andal one/
depl oynment s/ aut h- server. war/ WEB- | NF/ ¢l asses/ META- | NF/ per si st ence. xnl . Please see
the Hibernate and JPA documentation [http://hibernate.org/orm/documentation/] for more
information on tweaking the backend datamodel.

3.3.1.1. Tested databases

Here is list of RDBMS databases and corresponding JDBC drivers, which were tested with
Keycloak. Note that Hibernate dialect is usually set automatically according to your database,
but in some cases, you must manually set the proper dialect, as the default dialect may not
work correctly. You can setup dialect either by adding property hi bernate. di al ect to the
persi st ence. xm file mentioned above or simply by adding system property hi ber nat e. di al ect
with corresponding value. For example, if you are using MS-SQL you can start keycloak with
command:

./ st andal one. sh - Dhi ber nat e. di al ect =or g. hi ber nat e. di al ect. SQLSer ver 2008Di al ect

This command will set system property hibernate. dial ect to value
org. hi bernate. di al ect. SQLSer ver 2008Di al ect and this one will take precedence over the
value from per si st ence. xm file.

Table 3.1. Tested databases

Database JDBC driver Hibernate Dialect
H2 1.3.161 H2 1.3.161 auto
MySQL 5.5 MySQL Connector/J 5.1.25 auto
PostgreSQL 9.2 JDBC4 Postgresql Driver, auto

Version 9.3-1100

Oracle 11g R1 Oracle JDBC Driver v11.1.0.7 auto

Driver 4.0.2206.100

Sybase ASE 15.7 JDBC(TM)/7.07 ESD #5 auto
(Build 26792)/P/EBF20686

10

Microsoft SQL Server 2012 Microsoft SQL Server JDBC org.hibernate.dialect. SQLServer2008Dialect

https://docs.jboss.org/author/display/WFLY8/DataSource+configuration
https://docs.jboss.org/author/display/WFLY8/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration
http://hibernate.org/orm/documentation/
http://hibernate.org/orm/documentation/

MongoDB based model

3.3.2. MongoDB based model

Keycloak provides MongoDB [http://www.mongodb.com] based model implementation, which
means that your identity data will be saved in MongoDB instead of traditional RDBMS. To
configure Keycloak to use Mongo open st andal one/ confi gurati on/ keycl oak-server.jsonin
your favourite editor, then change:

"audit": {
"provider": "jpa",
"jpat: |
"excl ude-events": ["REFRESH TOKEN']
}
e
"model ": {
“provider": "jpa"
e
to:
"audit": {
"provider": "nongo",
"mongo": {
"excl ude-events": ["REFRESH TOKEN'],
"host": "<hostname>",
"port": <port>,
"user":. "<user>",
"password": "<password>",
"db": "<db nanme>"
}
i
"model ": {
"provider": "nongo",
"mongo": {
"host": "<host nane>",
"port": <port>,
"user": "<user>",
"password": "<password>",
"db": "<db nane>"
}
e

11

http://www.mongodb.com
http://www.mongodb.com

Chapter 3. Installation and C...

All configuration options are optional. Default values for host and port are localhost and 27017.
If user and password are not specified Keycloak will connect unauthenticated to your MongoDB.
Finally, default values for db are keycloak for the model, and keycloak-audit for audit. If you switch
to Mongo model, it could be a good idea to remove RDBMS related stuff from your distribution to
reduce startup time and memory footprint. To do it, you need to:

e Comment/remove datasource Keycl oakDS from st andal one/ confi gurati on/
st andal one. xm or st andal one/ depl oynent s/ keycl oak-ds. xm

« Remove file standal one/ depl oyment s/ aut h-server. war/WEB- | NF/ cl asses/ META- | NF/
persi st ence. xn

3.3.3. AS7/EAP6.x Logging

Accessing the admin console will get these annoying log messages:

WARN [org.jboss. resteasy.core. ResourceLocator] (http-/127.0.0.1:8080-3)
Field providers of subresource xxx will not be injected
accordi ng to spec

These can be ignored by editing standalone.xml of your jboss installation:

<l ogger category="org.jboss.resteasy.core. ResourcelLocator">
<l evel nane="ERROR'/ >
</l ogger >

3.3.4. SSL/HTTPS Setup

Warning

Keycloak is not set up by default to handle SSL/HTTPS in either the war distribution
or appliance. Itis highly recommended that you either enable SSL on the Keycloak
server itself or on a reverse proxy in front of the Keycloak server.

First enable SSL on Keycloak or on a reverse proxy in front of Keycloak. Then configure the
Keycloak Server to enforce HTTPS connections.

12

SSL/HTTPS Setup

3.3.4.1. Enable SSL on Keycloak

The following things need to be done

« Generate a self signed or third-party signed certificate and import it into a Java keystore using
keyt ool .

« Enable JBoss or Wildfly to use this certificate and turn on SSL/HTTPS.
3.3.4.1.1. Creating the Certificate and Java Keystore

In order to allow HTTPS connections, you need to obtain a self signed or third-party signed
certificate and import it into a Java keystore before you can enable HTTPS in the web container
you are deploying the Keycloak Server to.

3.3.4.1.1.1. Self Signed Certificate

In development, you will probably not have a third party signed certificate available to test a
Keycloak deployment so you'll need to generate a self-signed on. Generate one is very easy to
do with the keyt ool utility that comes with the Java jdk.

$ keytool -genkey -alias |ocal host -keyalg RSA -keystore keycloak.jks -
validity 10950
Enter keystore password: secret
Re-ent er new password: secret
What is your first and | ast nane?

[Unknown] : | ocal host
What is the name of your organizational unit?
[Unknown] : Keycl oak

What is the name of your organization?

[Unknown] : Red Hat

What is the name of your Gty or Locality?

[Unknown] : Westford

What is the name of your State or Province?

[Unknown]: MA

What is the two-letter country code for this unit?

[Unknown]: US

I s CN=l ocal host, OU=Keycl oak, O=Test, L=Westford, ST=MA, C=US correct?
[no]: yes

You should answer the What is your first and |ast nanme? question with the DNS name
of the machine you're installing the server on. For testing purposes, | ocal host should be used.
After executing this command, the keycl oak. j ks file will be generated in the same directory as
you executed the keyt ool command in.

13

Chapter 3. Installation and C...

If you want a third-party signed certificate, but don't have one, you can obtain one for free at
cacert.org [http://cacert.org]. You'll have to do a little set up first before doing this though.

The first thing to do is generate a Certificate Request:

$ keytool -certreq -alias yourdomain -keystore keycl oak.j ks > keycl oak. careq

Where your domai n is a DNS name for which this certificate is generated for. Keytool generates
the request:

----- BEG N NEW CERTI FI CATE REQUEST- - - - -
M | C2j CCAcl CAQAWZTEL MAk GA1UEBhMCVVIVK Cz AJ BgNVBAg TAK 1 BVREWDWY DVQOHEWh XZXNOZnBy
ZDEQVA4 GALUEChMHUnVVK | Ehhd DEQVAA GALUECX MHUNVK | Ehhd DESMBAGAL UEAX MIb&9j YWkob3NO
M | Bl j ANBgkghki GOWOBAQEFAACCA@AM | BCgKCAQEAr 7kck2Taavl EOGhcpi 9¢0r ncY4HhdzmY
Ax2nZzZf qleZEal Pql 5aTxwQZzzLDK9gbeAd8Ji 79Hz SqnRDxNYaZu7mAYhFKHgi xsol E305Yf zbwl
29Rvy+eUVe+WZxv5009wol VWpdSI NI MEL2LaFht X/ c1dqi qYVpf nvFshZQal g2nL8j uzZcBj j 4as
HI98gl S7khql / dkZKswONLvyxgJvp7PaXur X29f Nf 3i hG+oFr L220oFyV54BWWXCKU GPn61EGZGw
Ft 2qSI GLdct pMDlaJR2bcenl hEj ZKDksj QZoQ6YMXaAGkc YkG6Qkgr oc DE2YXDbi 7d df 9MegVJ 35
2DQVpw DAQABoDAWLgYJKoZI hvc NAQk OMSEWHz AdBgNVHQAEFgQUQM ZJBA+ j i Ddi VzaOvr E/ i
n2swDQYJKoZIl hvcNAQELBQADggEBACSFRy Mk hal 3986t HPBYWBUTt nt Sj s4qUnBV6Ef 63f r hv eWHf
PzRr | 1xH272XUl eBk0gt zZWOnNznf OnmMCt UBbHhhDc G32xol i kf qi bZi j 0QZCi G edVj HIFt ni DQ
9b MDUOXEMY7 gHZg5q6mJ f NGO Mo MpQaUVEEFRVT GEQQxbi FK7hRWIJ8S23/ d80e8nExgQxdJW 6vd0X
MzzFK6j 4Dj 55bJVuMr G-nf dNC52pNOD5v Ye47Aqh8oaj HX9XTycVt PXI 45r r WAH33f t br S8Sr Z2S

vql FQeuLL3BaHwpl 3t 7j 21 MMEK1p80Il aAXEASI b/ f Amr RHpLHBXRcq6uALUCZI 4Al t 8=

----- END NEW CERTI FI CATE REQUEST- - - - -

Send this ca request to your CA. The CA will issue you a signed certificate and send it to you.
Before you import your new cert, you must obtain and import the root certificate of the CA. You
can download the cert from CA (ie.: root.crt) and import as follows:

$ keytool -inport -keystore keycloak.jks -file root.crt -alias root

Last step is import your new CA generated certificate to your keystore:

$ keytool -inmport -alias yourdomain -keystore keycloak.jks -file your-
certificate. cer

14

http://cacert.org
http://cacert.org

SSL/HTTPS Setup

3.3.4.1.2. Installing the keystore to WildFly

Now that you have a Java keystore with the appropriate certificates, you need to configure your
Wildfly installation to use it. First step is to move the keystore file to a directory you can reference in
configuration. | like to put it in st andal one/ confi gur ati on. Then you need to edit st andal one/
confi guration/ st andal one. xml to enable SSL/HTTPS.

To the securi ty-real ms element add:

<security-real m nane="Undert owReal ni >

<server-identities>
<ssl >
<keyst ore pat h="keycl oak. j ks" rel ative-to="jboss. server.config.dir"

keyst or e- passwor d="secret" />

</ ssl >

</server-identities>

</security-real n>

Find the element <server nane="default-server"> (it's a child element of <subsystem
xm ns="urn: j boss: domai n: undert ow 1. 0">) and add:

<https-1istener nane="htt ps" socket - bi ndi ng="htt ps" security-
real m=" Under t owReal ni'/ >

Check the Wildfly Undertow [https://docs.jboss.org/author/display/WFLY8/Undertow
+(web)+subsystem+configuration] documentation for more information on fine tuning the socket
connections.

3.3.4.1.3. Installing the keystore to JBoss EAP6/AS7

Now that you have a Java keystore with the appropriate certificates, you need to configure your
JBoss EAP6/ASY installation to use it. First step is to move the keystore file to a directory you can
reference in configuration. | like to put it in st andal one/ confi gur ati on. Then you need to edit
st andal one/ confi gur ati on/ st andal one. xm to enable SSL/HTTPS.

<subsystem xm ns="urn:jboss: domain: web: 1. 1" default-virtual -server="default-
host" native="fal se">
<connect or nane="http" protocol ="HTTP/ 1. 1" schene="http" socket - bi ndi ng="htt p"
redirect-port="443" />
<connector name="https" scheme="https" protocol ="HTTP/1.1" socket-
bi ndi ng="htt ps"

15

https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration
https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration
https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration

Chapter 3. Installation and C...

enabl e- | ookups="fal se" secure="true">
<ssl name="local host-ssl" password="secret" protocol ="TLSv1"
key-al i as="1ocal host" certificate-key-file="${jboss.server.config.dir}/
keycl oak. j ks" />
</ connect or >

</ subsyst enp

Check the JBoss [https://docs.jboss.org/author/display/AS71/SSL+setup+guide] documentation
for more information on fine tuning the socket connections.

3.3.4.2. Enable SSL on a Reverse Proxy

Follow the documentation for your web server to enable SSL and configure reverse proxy for
Keycloak. It is important that you make sure the web server sets the X- For war ded- For and X-
For war ded- Pr ot o headers on the requests made to Keycloak. Next you need to enable pr oxy-
addr ess- f or war di ng on the Keycloak http connector. Assuming that your reverse proxy doesn't
use port 8443 for SSL you also need to configure what port http traffic is redirected to. This is
done by editing st andal one/ confi gur ati on/ st andal one. xmi .

First add pr oxy- addr ess- f or war di ng and r edi r ect - socket to the http-1i stener element:

<subsyst em xm ns="ur n: j boss: donai n: undertow 1. 1" >

<http-listener nane="default" socket-binding="http" proxy-address-
forwardi ng="true" redirect-socket="proxy-https"/>

</ subsyst en®

Then add a new socket - bi ndi ng element to the socket - bi ndi ng- gr oup element:

<socket - bi ndi ng- group nane="st andar d-sockets" default-interface="public" port-
of f set =" ${j boss. socket . bi ndi ng. port-offset:0}">

<socket - bi ndi ng name="proxy-https" port="443"/>
</ socket - bi ndi ng- gr oup>

Check the WildFly [https://docs.jboss.org/author/display/WFLY 8/Undertow+(web)+subsystem
+configuration] documentation for more information.

16

https://docs.jboss.org/author/display/AS71/SSL+setup+guide
https://docs.jboss.org/author/display/AS71/SSL+setup+guide
https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration
https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration
https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration

SSL/HTTPS Setup

3.3.4.3. Enforce HTTPS For Server Connections

Servlet containers can force browsers and other HTTP clients to use HTTPS. You have to

configure this in . ../ st andal one/ depl oyment s/ aut h- ser ver. war / WVEB- | NF/ web. x
have to do is uncomment out the security constraint.

<web- app>

<security-constraint>
<web-resource-col | ecti on>
<url-pattern>/*</url-pattern>
</ web-resour ce-col | ecti on>
<user - dat a- constrai nt >
<transport - guar ant ee>CONFI DENTI AL</t r ansport - guar ant ee>
</ user-dat a- constrai nt >
</ security-constraint>
</ web- app>

3.3.4.4. Enforce HTTPS at Realm Level

. All you

In Keycloak, each realm has an "Require SSL" switch that you should turn on. Log into the
adminstration console and set this switch for each realm that Keycloak manages. This switch is on
the Set ti ngs>>Gener al page. While this switch does do similar checks as the security constraint
in web. xm , it will also force applications and oauth clients to only register HTTPS based redirect

URLs.

17

18

Chapter 4.

Chapter 4. Running Keycloak
Server on OpenShift

Keycloak provides a OpenShift cartridge to make it easy to get it running on OpenShift. If you don't
already have an account or don't know how to create applications go to https://www.openshift.com/
first. You can create the Keycloak instance either with the web tool or the command line tool, both
approaches are described below.

Warning

It's important that immediately after creating a Keycloak instance you open the
Adni ni strati on Consol e and login to reset the password. If this is not done
anyone can easily gain admin rights to your Keycloak instance.

4.1. Create Keycloak instance with the web tool

Open https://openshift.redhat.com/app/console/applications and click on Add Application.
Scroll down to the bottom of the page to find the Code
Anyt hi ng section. Insert http://cartreflect-claytondev. rhcl oud. con gi t hub/ keycl oak/
openshi ft-keycl oak-cartridgeintothe URL to a cartridge definition field and click on
Next . Fill in the following form and click on Creat e Applicati on.

Click on Continue to the application overview page. Under the list of applications you
should find your Keycloak instance and the status should be St arted. Click on it to open the
Keycloak servers homepage.

4.2. Create Keycloak instance with the command-line
tool

Run the following command from a terminal:

rhc app create <APPLICATION NAME> http://cartreflect-claytondev.rhcloud. com
gi t hub/ keycl oak/ openshi ft - keycl oak-cartridge
Replace <APPLI CATI ON NAME> with the name you want (for example keycloak).

Once the instance is created the rhc tool outputs details about it. Open the returned URL in a
browser to open the Keycloak servers homepage.

19

https://www.openshift.com/
https://openshift.redhat.com/app/console/applications

Chapter 4. Running Keycloak S...

4.3. Next steps

The Keycloak servers homepage shows the Keycloak logo and Wl come to Keycl oak. There
is also a link to the Admi ni strati on Consol e. Open that and log in using username adni n and
password adni n. On the first login you are required to change the password.

Tip

On OpenShift Keycloak has been configured to only accept requests over https. If
you try to use http you will be redirected to https.

20

Chapter 5.

Chapter 5. Master Admin Access
Control

You can create and manage multiple realms by logging into the nmast er Keycloak admin console
at/ {keycl oak-root}/adm n/i ndex. ht m

Users in the Keycloak nast er realm can be granted permission to manage zero or more realms
that are deployed on the Keycloak server. When a realm is created, Keycloak automatically
creates various roles that grant fine-grain permissions to access that new realm. Access to The
Admin Console and REST endpoints can be controlled by mapping these roles to users in the
mast er realm. It's possible to create multiple super users as well as users that have only access
to certain operations in specific realms.

5.1. Globhal Roles

There are two realm roles in the mast er realm. These are:

e adni n - This is the super-user role and grants permissions to all operations on all realms

* create-real m- This grants the user permission to create new realms. A user that creates a
realm is granted all permissions to the newly created realm.

To add these roles to a user select the mast er realm, then click on User s. Find the user you want
to grant permissions to, open the user and click on Rol e Mappi ngs. Under Real m Rol es assign
any of the above roles to the user by selecting it and clicking on the right-arrow.

5.2. Realm Specific Roles

Each realm in Keycloak is represented by an application in the mast er realm. The name of the
application is <r eal m nane>-r eal m This allows assigning access to users for individual realms.
The roles available are:

* vi ew r eal m- View the realm configuration

» vi ew users - View users (including details for specific user) in the realm

e vi ew appl i cati ons - View applications in the realm

e viewclients - View clients in the realm

« manage- r eal m- Modify the realm configuration (and delete the realm)

e manage- user s - Create, modify and delete users in the realm

e manage- appl i cati ons - Create, modify and delete applications in the realm

21

Chapter 5. Master Admin Acces...

* manage- cl i ent s - Create, modify and delete clients in the realm
Manage roles includes permissions to view (for example a user with manage-realm role can also
view the realm configuration).

To add these roles to a user select the mast er realm, then click on User s. Find the user you want
to grant permissions to, open the user and click on Rol e Mappi ngs. Under Appl i cation Rol es
select the application that represents the realm you're adding permissions to (<r eal m name>-
r eal m), then assign any of the above roles to the user by selecting it and clicking on the right-arrow.

22

Chapter 6.

Chapter 6. Per Realm Admin
Access Control

Administering your realm through the nast er realm as discussed in Chapter 5, Master Admin
Access Control may not always be ideal or feasible. For example, maybe you have more than one
admin application that manages various admin aspects of your organization and you want to unify
all these different "admin consoles" under one realm so you can do SSO between them. Keycloak
allows you to grant realm admin privleges to users within that realm. These realm admins can
participate in SSO for that realm and visit a keycloak admin console instance that is dedicated
solely for that realm by going to the url: / { keycl oak-r oot }/ adni n/{real n}/ consol e

6.1. Realm Roles

Each realm has a built-in application called r eal m managenent . This application defines roles that
define permissions that can be granted to manage the realm.

* real madni n - This is a composite role that grants all admin privileges for managing security
for that realm.

These are more fine-grain roles you can assign to the user.

* vi ewreal m- View the realm configuration

« vi ew users - View users (including details for specific user) in the realm

* view appl i cati ons - View applications in the realm

e viewclients - View clients in the realm

« manage- r eal m- Modify the realm configuration (and delete the realm)

e manage- users - Create, modify and delete users in the realm

e manage- appl i cati ons - Create, modify and delete applications in the realm

* manage- cl i ent s - Create, modify and delete clients in the realm
Manage roles includes permissions to view (for example a user with manage-realm role can also
view the realm configuration).

To add these roles to a user select the realm you want. Then click on User s. Find the user you
want to grant permissions to, open the user and click on Rol e Mappi ngs. Under Appl i cati on
Rol es select r eal m managenent , then assign any of the above roles to the user by selecting it
and clicking on the right-arrow.

23

24

Chapter 7.

Chapter 7. Adapters

Keycloak can secure a wide variety of application types. This section defines which application
types are supported and how to configure and install them so that you can use Keycloak to secure
your applications.

7.1. General Adapter Config

Each adapter supported by Keycloak can be configured by a simple JSON text file. This is what
one might look like:

{
"realnt' : "denpn",
"resource" : "custoner-portal",
"real mpublic-key" : "M G MAOGCSgGSI b3D. . . 31Lwi DAQAB",
"aut h-server-url" : "https://|ocal host: 8443/ aut h",
"ssl-not-required" : fal se,
"user-resource-rol e-mappi ngs" : fal se,
"enabl e-cors" : true,
"cors- max-age" : 1000,
"cors-all owed- net hods" : ["POST", "PUT", "DELETE', "GET"],
"bearer-only" : false,
"expose-token" : true,
"credential s" : {
"secret" : "234234-234234-234234"
}
"connecti on- pool -si ze" : 20,
"di sabl e-trust - manager" fal se,
"al | ow any- host name" : fal se,
"truststore" : "path/to/truststore.jks",
"truststore-password" : "geheint,
"client-keystore" : "path/to/client-keystore.jks",
"client-keystore-password" : "geheint,
"client-key-password" : "geheint
}

Some of these configuration switches may be adapter specific and some are common across all
adapters. For Java adapters you can use ${...} enclosure as System property replacement.
For example ${j boss. server. config. dir}. Also, you can obtain a template for this config file
from the admin console. Go to the realm and application you want a template for. Go to the
Instal | ation tab and this will provide you with a template that includes the public key of the
realm.

25

Chapter 7. Adapters

Here is a description of each item:

realm
Name of the realm representing the users of your distributed applications and services. This
is REQUIRED.

resource
Username of the application. Each application has a username that is used when the
application connects with the Keycloak server to turn an access code into an access token
(part of the OAuth 2.0 protocol). This is REQUIRED.

realm-public-key
PEM format of public key. You can obtain this from the administration console. This is
REQUIRED.

auth-server-url
The base URL of the Keycloak Server. All other Keycloak pages and REST services are
derived from this. It is usually of the form ht t ps: // host : port/ aut h This is REQUIRED.

ssl-not-required
Ensures that all communication to and from the Keycloak server from the adapter is over
HTTPS. This is OPTIONAL. The default value is false meaning that HTTPS is required by
default.

user-resource-role-mappings
If set to true, the adapter will look inside the token for application level role mappings for the
user. If false, it will look at the realm level for user role mappings. This is OPTIONAL. The
default value is false.

enable-cors
This enables CORS support. It will handle CORS preflight requests. It will also look into the
access token to determine valid origins. This is OPTIONAL. The default value is false.

cors-max-age
If CORS is enabled, this sets the value of the Access- Control - Max- Age header. This is
OPTIONAL. If not set, this header is not returned in CORS responses.

cors-allowed-methods
If CORS is enabled, this sets the value of the Access- Control - Al | ow Met hods header. This
should be a JSON list of strings. This is OPTIONAL. If not set, this header is not returned in
CORS responses.

bearer-only
This tells the adapter to only do bearer token authentication. That is, it will not do OAuth
2.0 redirects, but only accept bearer tokens through the Aut hori zati on header. This is
OPTIONAL. The default value is false.

26

General Adapter Config

expose-token
If t rue, an authenticated browser client (via a Javascript HTTP invocation) can obtain the
signed access token via the URL root/ k_query_bearer _t oken. This is OPTIONAL. The
default value is false.

credentials
Specify the credentials of the application. This is an object notation where the key is the
credential type and the value if the value of the credential type. Currently only passwor d is
supported. This is REQUIRED.

connection-pool-size
Adapters will make separate HTTP invocations to the Keycloak Server to turn an access code
into an access token. This config option defines how many connections to the Keycloak Server
should be pooled. This is OPTIONAL. The default value is 20.

disable-trust-manager
If the Keycloak Server requires HTTPS and this config option is set to t r ue you do not have
to specify a truststore. While convenient, this setting is not recommended as you will not be
verifying the host name of the Keycloak Server. Thisis OPTIONAL. The default value isf al se.

allow-any-hostname
If the Keycloak Server requires HTTPS and this config option is set to t r ue the Keycloak
Server's certificate is validated via the truststore, but host name validation is not done. This
is not a recommended. This seting may be useful in test environments This is OPTIONAL.
The default value is f al se.

truststore

This setting is for Java adapters. This is the file path to a Java keystore file. Used for outgoing
HTTPS communications to the Keycloak server. Client making HTTPS requests need a way
to verify the host of the server they are talking to. This is what the trustore does. The keystore
contains one or more trusted host certificates or certificate authorities. You can create this
truststore by extracting the public certificate of the Keycloak server's SSL keystore. This is
OPTIONAL if ssl -not -requi red is f al se or di sabl e-trust-manager is true. The default
value isfalse.

truststore-password
Password for the truststore keystore. This is REQUIRED if t r ust st or e is set.

client-keystore
Not supported yet, but we will support in future versions. This setting is for Java adapters.
This is the file path to a Java keystore file. This keystore contains client certificate for two-way
SSL when the adapter makes HTTPS requests to the Keycloak server. This is OPTIONAL.

client-keystore-password
Not supported yet, but we will support in future versions. Password for the client keystore.
This is REQUIRED if cl i ent - keyst or e is set.

27

Chapter 7. Adapters

client-key-password
Not supported yet, but we will support in future versions. Password for the client's key. This
is REQUIRED if cl i ent - keyst or e is set.

7.2. JBoss/Wildfly Adapter

To be able to secure WAR apps deployed on JBoss AS 7.1.1, JBoss EAP 6.x, or Wildfly, you
must install and configure the Keycloak Subsystem. You then have two options to secure your
WARSs. You can provide a keycloak config file in your WAR and change the auth-method to
KEYCLOAK within web.xml. Alternatively, you don't have to crack open your WARSs at all and can
apply Keycloak via the Keycloak Subsystem configuration in standalone.xml. Both methods are
described in this section.

7.2.1. Adapter Installation

This is a adapter zip file for AS7, EAP, and Wildfly in the adapt ers/ directory in the Keycloak
distribution.

Install on Wildfly:

$ cd $WLDFLY_HOVE
$ unzip keycl oak-w | df | y-adapter-dist.zip

Install on JBoss EAP 6.x:

$ cd $JBOSS_HOME
$ unzip keycl oak- eap6- adapter-dist.zip

Install on JBoss AS 7.1.1:

$ cd $JBOSS_HOVE
$ unzi p keycl oak-as7-adapter-dist.zip

This zip file creates new JBoss Modules specific to the Wildfly Keycloak Adapter within your Wildfly
distro.

After adding the Keycloak modules, you must then enable the Keycloak Subsystem within your
app server's server configuration: domai n. xm or st andal one. xm .

For Wildfly:

28

Adapter Installation

<server xm ns="urn:jboss: domain: 1.4">

<ext ensi ons>
<ext ensi on nodul e="or g. keycl oak. keycl oak-wi | df | y- subsystent'/>

</ ext ensi ons>

<profil e>
<subsystem xm ns="urn: j boss: domai n: keycl oak: 1. 0"/ >

</profile>

For JBoss AS 7.1.1 and EAP 6.x:

<server xm ns="urn:jboss:donmain:1.4">

<ext ensi ons>
<ext ensi on nodul e="or g. keycl oak. keycl oak- as7- subsyst ent'/ >

</ ext ensi ons>

<profile>
<subsyst em xm ns="ur n: j boss: donai n: keycl oak: 1. 0"/ >

</profile>

Finally, for both AS7, EAP 6.x, and Wildfly installations you must specify a shared keycloak security
domain. This security domain should be used with EJBs and other components when you need
the security context created in the secured web tier to be propagated to the EJBs (other EE
component) you are invoking. Otherwise this configuration is optional.

<server xm ns="urn:jboss: domain: 1.4">
<subsyst em xm ns="urn: j boss: dommi n: security:1.2">
<security-domai ns>

<security-donmai n nane="keycl oak">

<aut henti cati on>
<l ogi n- nodul e code="or g. keycl oak. adapt ers. j boss. Keycl oakLogi nModul e"

flag="required"/>

29

Chapter 7. Adapters

</ aut henti cati on>
</ security-domai n>
</ security-domai ns>

For example, if you have a JAX-RS service that is an EJB within your WEB-INF/classes directory,
you'll want to annotate it with the @ SecurityDomain annotation as follows:

i nport org.jboss. ej b3. annot ati on. Securit yDomai n;
i mport org.jboss.resteasy. annot ati ons. cache. NoCache;

i mport javax.annotation.security. Rol esAl | owed;
i nport javax.ejb. EJB;

i mport javax.ejb. Stateless;

i mport javax.ws.rs. CET;

i mport javax.ws.rs. Path;

i nport javax.ws.rs. Produces;

i mport java.util.Arraylist;

i mport java.util.List;

@Pat h("custoners")

@t at el ess

@ecuritybDomai n("keycl oak")
public class CustonerService {

@JB
Cust orrer DB db;

@ET

@r oduces("application/json")

@oCache

@Rol esAl | owed("db_user")

public List<String> getCustoners() {
return db. get Custoners();

We hope to improve our integration in the future so that you don't have to specify the
@SecurityDomain annotation when you want to propagate a keycloak security context to the EJB
tier.

30

Per WAR Configuration

7.2.2. Per WAR Configuration

This section describes how to secure a WAR directly by adding config and editing files within your
WAR package.

The first thing you must do is create a keycl oak. j son adapter config file within the WEB- | NF
directory of your WAR. The format of this config file is describe in the general adapter configuration
section.

Next you must set the aut h- met hod to KEYCLQAK in web. xm . You also have to use standard
servlet security to specify role-base constraints on your URLs. Here's an example pulled from one
of the examples that comes distributed with Keycloak.

<web-app xm ns="http://java.sun.coni xm /ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
Xsi : schemaLocati on="http://java. sun. coni xm / ns/j avaee http://java. sun. com
xm / ns/j avaee/ web- app_3_0. xsd"
version="3.0">

<nmodul e- name>cust oner - por t al </ nodul e- name>

<security-constraint>
<web-resour ce-col | ecti on>
<web- r esour ce- name>Adm ns</ web- r esour ce- nane>
<url -pattern>/adni n/*</url -pattern>
</ web-resource-col | ecti on>
<aut h- constrai nt >
<r ol e- nane>adni n</r ol e- nane>
</ aut h-constrai nt >
</ security-constraint>
<security-constraint>
<web-resource-col | ecti on>
<web- r esour ce- nane>Cust oner s</ web- r esour ce- nane>
<url -pattern>/custoners/*</url -pattern>
</ web-resource-col | ecti on>
<aut h- constrai nt >
<rol e- nane>user </ rol e- nane>
</ aut h-constrai nt>
</ security-constraint>

<security-constraint>
<web-resour ce-col | ecti on>
<url -pattern>/*</url-pattern>
</ web-resource-col | ecti on>
<user - dat a- constrai nt >
<transport - guar ant ee>CONFI DENTI AL</t r ansport - guar ant ee>

31

Chapter 7. Adapters

</ user-dat a- constrai nt >
</ security-constraint>

<l ogi n-confi g>

<aut h- met hod>KEYCLQAK</ aut h- net hod>

<real mnane>this is ignored currently/real mname>
</l ogi n-confi g>

<security-rol e>
<r ol e- nanme>adni n</r ol e- nane>
</security-rol e>
<security-rol e>
<r ol e- nane>user </ r ol e- name>
</security-rol e>
</ web- app>

7.2.3. Securing WARs via Keycloak Subsystem

You do not have to crack open a WAR to secure it with Keycloak. Alternatively, you can externally
secure it via the Keycloak Subsystem. While you don't have to specify KEYCLOAK as an aut h-
met hod, you still have to define the security-constraints in web. xnl . You do not, however,
have to create a EB- | NF/ keycl oak. j son file. This metadata is instead defined within XML in
your server's domai n. xml or st andal one. xm subsystem configuration section.

<server xm ns="urn:jboss: domain: 1.4">

<profil e>
<subsyst em xm ns="ur n: j boss: donai n: keycl oak: 1. 0" >
<secur e- depl oyment nane="WAR MODULE NAME. war " >
<r eal mrdeno</real e
<real m publ i c- key>M G MAOGCSqGS| h3DQEBAQUAA</ r eal m publ i c- key>
<aut h-server-url >http://| ocal host: 8081/ aut h</ aut h-server-url >
<ssl - not - requi red>t rue</ ssl - not - requi r ed>
<resour ce>cust oner - portal </ resource>
<credential name="secret" >password</credential >
</ secur e- depl oynent >
</ subsyst en®
</profile>

The security-depl oyment nane attribute identifies the WAR you want to secure. Its value is the
modul e- nanme defined in web. xm with . war appended. The rest of the configuration corresponds
pretty much one to one with the keycl oak. j son configuration options defined in general adapter
configuration. The exception is the cr edenti al element.

32

Pure Client Javascript Adapter

To make it easier for you, you can go to the Keycloak Adminstration Console and go to the
Application/Installation tab of the application this WAR is aligned with. It provides an example XML
file you can cut and paste.

There is an additional convenience format for this XML if you have multiple WARS you are
deployment that are secured by the same domain. This format allows you to define common
configuration items in one place under the r eal melement.

<subsyst em xm ns="ur n: j boss: donai n: keycl oak: 1. 0" >
<r eal m name="deno" >
<real m publ i c- key>M G MAOGCSqGSI b3DQEBA</ r eal m publ i c- key>
<aut h-server-url >http://| ocal host: 8080/ aut h</ aut h- server-url >
<ssl - not - requi red>t rue</ ssl - not - r equi r ed>
</ real m»
<secur e- depl oyment name="cust oner-portal .war">
<r eal mpdeno</real m»
<resour ce>cust oner - portal </ resour ce>
<credenti al nanme="secret">passwor d</credenti al >
</ secur e- depl oynment >
<secur e- depl oynment name="product - portal .war">
<r eal npdeno</r eal np
<r esour ce>pr oduct - portal </ resour ce>
<credential name="secret" >password</credential >
</ secur e- depl oynment >
<secur e- depl oynent nane="dat abase. war" >
<r eal mrdeno</r eal >
<r esour ce>dat abase- servi ce</resource>
<bear er - onl y>t rue</ bearer-onl y>
</ secur e- depl oynment >
</ subsyst en®

7.3. Pure Client Javascript Adapter

The Keycloak Server comes with a Javascript library you can use to secure pure HTML/Javascript
applications. It works in the same way as other application adapters except that your browser is
driving the OAuth redirect protocol rather than the server.

The disadvantage of using this approach is that you end up having a non-confidential, public client.
This can be mitigated by registering valid redirect URLs. You are still vulnerable if somebody
hijacks the IP/DNS name of your pure HTML/Javascript application though.

To use this adapter, you must first configure an application (or client) through the Keycl oak
Adni n Consol e. You should select public for the dient Type field. As public clients can't
be verified with a client secret you are required to configure one or more valid redirect uris as

33

Chapter 7. Adapters

well. Once you've configured the application click on the I nstal | ati on tab and download the
keycl oak. j son file. This file should be hosted in your web-server at the same root as your HTML
pages. Alternatively you can either specify the URL for this file, or manually configure the adapter.

Next you have to initialize the adapter in your application. An example on how to do this is shown
below.

<head>
<script src="http://<keycl oak server>/auth/js/keycl oak.js"></script>
<scri pt >
var keycl oak = Keycl oak();
keycl oak.init().success(function(authenticated) {
alert(authenticated ? 'authenticated' : 'not authenticated');
}).error(function() {
alert('failed to initialize');
1)
</script>
</ head>

To specify the location of the keycloak.json file:

var keycl oak = Keycl oak(' http://1 ocal host: 8080/ nyapp/ keycl oak. json'));

Or finally to manually configure the adapter:

var keycl oak = Keycl oak({
url: '"http://keycl oak-server/auth',
realm 'myrealm
clientld: 'myapp'

1

You can also pass | ogi n-requi r ed or check- sso to the init function. Login required will redirect
to the login form on the server, while check-sso will redirect to the auth server to check if the user
is already logged in to the realm. For example:

keycl oak.init({ onLoad: 'login-required })

34

Pure Client Javascript Adapter

After you login, your application will be able to make REST calls using bearer token authentication.
Here's an example pulled from the cust omer - por t al - j s example that comes with the distribution.

<scri pt >

var

| oadData = function () {
docunent . get El ement Byl d(' usernane'). i nner Text = keycl oak. user nane;

var url "http://1ocal host: 8080/ dat abase/ cust oners' ;

var req = new XM.Ht t pRequest () ;

req.open(' GET', url, true);

req. set Request Header (' Accept', 'application/json');

req. set Request Header (' Aut hori zation', 'Bearer ' + keycl oak.token);

req. onr eadyst at echange = function () {
if (req.readyState == 4) {
if (req.status == 200) {
var users = JSON. parse(req.responseText);
var htm e
for (var i = 0; i < users.length; i++) {
html += '<p>'" + users[i] + '</p>";

}
docunent . get El ement Byl d(' custoners').innerHTM. = htnl ;
consol e.l og(' finished | oading data');

}
}

}

req. send();
ik
var | oadFailure = function () {

docurnent . get El ement Byl d(' custoners').innerHTM. = 'Failed to |oad
data. Check consol e | og';

Ji5
var reloadbData = function () {

keycl oak. updat eToken() . success(| oadDat a) . error (| oadFai |l ure);
}

</scri pt>

<button onclick="| oadDat a()">Subm t </ butt on>

The | oadDat a() method builds an HTTP request setting the Aut hori zat i on header to a bearer
token. The keycl oak. t oken points to the access token the browser obtained when it logged

35

Chapter 7. Adapters

you in. The | oadFai | ure() method is invoked on a failure. The rel oadDat a() function calls
keycl oak. onVal i dAccessToken() passing in the | oadDat a() and | oadFai | ure() callbacks.
The keycl oak. onVal i dAcessToken() method checks to see if the access token hasn't expired. If
it hasn't, and your oauth login returned a refresh token, this method will refresh the access token.
Finally, if successful, it will invoke the success callback, which in this case is the | oadDat a()
method.

To refresh the token if it's expired call the updat eToken method. This method returns a promise
object which can be used to invoke a function on success or failure. This method can be used to
wrap functions that should only be called with a valid token. For example the following method
will refresh the token if it expires within 30 seconds, and then invoke the specified function. If the
token is valid for more than 30 seconds it will just call the specified function.

keycl oak. updat eToken(30) . success(function() {
/'l send request with valid token
}).error(function() {
alert('failed to refresh token');

7.3.1. Session status iframe

By default the JavaScript adapter creates a non-visible iframe that is used to detect if a single-sign
out has occured. This does not require any network traffic, instead the status is retrieved from a
special status cookie. This feature can be disabled by setting checkLogi nl frane: fal se inthe
options passed to the i ni t method.

7.3.2. JavaScript Adapter reference

7.3.2.1. Constructor

new Keycl oak();
new Keycl oak(' http://I ocal host/keycl oak.json');
new Keycloak({ url: ‘'http://localhost/auth', realm ‘'nyrealm, clientld:

‘nyApp' });
7.3.2.2. Properties
» authenticated - true if the user is authenticated

« token - the base64 encoded token that can be sent in the Aut hori zat i on header in requests
to services

36

JavaScript Adapter reference

 tokenParsed - the parsed token

* subject - the user id

 idToken - the id token if claims is enabled for the application, null otherwise

» realmAccess - the realm roles associated with the token

* resourceAccess - the resource roles assocaited with the token

« refreshToken - the base64 encoded token that can be used to retrieve a new token

 refreshTokenParsed - the parsed refresh token
7.3.2.3. Methods

init(options)

Called to initialize the adapter.

Options is an Object, where:

» onLoad - specifies an action to do on load, can be either 'login-required' or 'check-sso'
« token - set an initial value for the token
« refreshToken - set an initial value for the refresh token

» checkLoginlframe - set to enable/disable monitoring login state (default is true)

checkLoginlframelnterval - set the interval to check login state (default is 5 seconds)
Returns promise to set functions to be invoked on success or error.

login(options)

Redirects to login form on (options is an optional object with redirectUri and/or prompt fields)

Options is an Object, where:

« redirectUri - specifies the uri to redirect to after login

e prompt - can be set to 'none' to check if the user is logged in already (if not logged in a login
form is not displayed)

createLoginUrl(options)

Returns the url to login form on (options is an optional object with redirectUri and/or prompt fields)

37

Chapter 7. Adapters

Options is an Object, where:

* redirectUri - specifies the uri to redirect to after login

e prompt - can be set to 'none' to check if the user is logged in already (if not logged in a login
form is not displayed)

logout(options)
Redirects to logout

Options is an Object, where:

* redirectUri - specifies the uri to redirect to after logout
createLogoutUrl(options)
Returns logout out

Options is an Object, where:

« redirectUri - specifies the uri to redirect to after logout
accountManagement()

Redirects to account management
createAccountUrl()

Returns the url to account management
hasRealmRole(role)

Returns true if the token has the given realm role
hasResourceRole(role, resource)

Returns true if the token has the given role for the resource (resource is optional, if not specified
clientld is used)

loadUserProfile()

Loads the users profile

Returns promise to set functions to be invoked on success or error.

38

Installed Applications

iIsTokenExpired(minValidity)

Returns true if the token has less than minValidity seconds left before it expires (minValidity is
optional, if not specified 0 is used)

updateToken(minValidity)

If the token expires within minValidity seconds (minValidity is optional, if not specified 0 is used)
the token is refreshed. If the session status iframe is enabled, the session status is also checked.

Returns promise to set functions that can be invoked if the token is still valid, or if the token is
no longer valid. For example:

keycl oak. updat eToken(5) . success(function(refreshed) {
if (refreshed) {
alert('token was successfully refreshed');
} else {
alert('token is still valid');

}

}).error(function() {
alert('failed to refresh the token, or the session has expired');

1),

7.3.2.4. Callback Events

The adapter supports setting callback listeners for certain events. For example:

keycl oak. onAut hSuccess = function() { alert('authenticated); }

« onReady(authenticated) - called when the adapter is initialized

« onAuthSuccess - called when a user is successfully authenticated

» onAuthError - called if there was an error during authentication

» onAuthRefreshSuccess - called when the token is refreshed

« onAuthRefreshError - called if there was an error while trying to refresh the token

« onAuthLogout - called if the user is logged out (will only be called if the session status iframe
is enabled, or in Cordova mode)

7.4. Installed Applications

Keycloak provides two special redirect uris for installed applications.

39

Chapter 7. Adapters

7.4.1. http://localhost

This returns the code to a web server on the client as a query parameter. Any port number is
allowed. This makes it possible to start a web server for the installed application on any free port
number without requiring changes in the Admi n Consol e.

7.4.2. urn:ietf:wg:oauth:2.0:00b

If its not possible to start a web server in the client (or a browser is not available) it is possible to
use the special ur n: i et f : wg: oaut h: 2. 0: oob redirect uri. When this redirect uri is used Keycloak
displays a page with the code in the title and in a box on the page. The application can either
detect that the browser title has changed, or the user can copy/paste the code manually to the
application. With this redirect uri it is also possible for a user to use a different device to obtain
a code to paste back to the application.

40

Chapter 8.

Chapter 8. Social

Keycloak makes it easy to let users log in to your application using an existing account with a social
network. Currently Facebook, Google and Twitter is supported with more planned for the future.
There's also a Social Provider SPI that makes it relatively simple to add additional social networks.

8.1. Social Login Config

To enable log in with a social network you need to enable social login for your realm and configure
one or more social providers.

8.1.1. Enable social login

To configure social login, open the Keycl oak Admi n Consol e, select your realm from the drop-
down box in the top left corner. In the Logi n Opt i ons section click on Soci al | ogi n to set it to
ON. Click save settings, then click on Soci al in the menu at the top.

To enable a social provider select the provider you want from the drop-down and click on Add
Provi der . Then continue to the section below that provides specific instructions for the provider
you are adding.

8.1.2. Social-only login

It's possible to configure a realm to only allow social login. To do this open the Keycl oak Admi n
Consol e, select your realm from the drop-down box in the top left corner. Click the Credenti al s
tab, and click on the x next to password in the Requi red User Credenti als. This will disable
login with username and password.

8.1.3. Social Callback URL

There is a single callback url used by all realms and social providers. This makes it possible to
share the configuration for a social network between multiple realms. An example callback url is
http://1ocal host: 8080/ aut h/ rest/soci al / cal | back. To get the callback url for your server
replace http://1 ocal host: 8080 with the base address of your server. You can also find the
callback url in the Keycloak Admin Console under social settings.

8.2. Facebook

To enable login with Facebook you first have to create an app in the Facebook Developer
Console [https://developers.facebook.com/]. Then you need to copy the client id and secret into
the Keycloak Admin Console.

1. Log in to the Facebook Developer Console [https://developers.facebook.com/]. Click Apps in
the menu and select Create a New App. Use any value for Di spl ay Name and Cat egory

41

https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/

Chapter 8. Social

you want, then click the Creat e App button. Wait for the project to be created (this may take
a while). If after creating the app you are not redirected to the app settings, click on Apps in
the menu and select the app you created.

2. Oncethe app has been created click on Set t i ngs in sidebar on the left. Then click on Advanced.
Under Security make sure Cl i ent QAuth Logi nisenabled.InVvalid QAuth redirect URI's
insert the social callback url. Scroll down and click on the Save Changes button.

3. Click St atus & Revi ewand select YES for Do you want to nake this app and all its
live features available to the general public?.

4. Click Basi c. Copy App | Dand App Secr et (click show) from the Facebook Developer Console
[https://developers.facebook.com/] into the settings page in the Keycloak Admin Console as the
Key and Secr et . Then click Save in the Keycloak Admin Console to enable login with Facebook.

8.3. GitHub

To enable login with Google you first have to create an application in GitHub Settings [https://
github.com/settings/applications]. Then you need to copy the client id and secret into the Keycloak
Admin Console.

1. Log in to GitHub Settings [https://github.com/settings/applications]. Click the Regi ster new
appl i cati on button. Use any value for Appl i cati on nane, Homepage URL and Appl i cation
Descri pti onyouwant. In Aut hori zati on cal | back URL enter the social callback url for your
realm. Click the Regi st er appl i cati on button.

2.Copydient IDand dient secret from the GitHub Settings [https://github.com/settings/
applications] into the settings page in the Keycloak Admin Console as the Key and Secr et .
Then click Save in the Keycloak Admin Console to enable login with Google.

8.4. Google

To enable login with Google you first have to create a project and a client in the Google Developer
Console [https://cloud.google.com/console/project]. Then you need to copy the client id and secret
into the Keycloak Admin Console.

1. Log in to the Google Developer Console [https://cloud.google.com/console/project]. Click the
Create Project button. Use any value for Proj ect name and Proj ect |D you want, then
click the Cr eat e button. Wait for the project to be created (this may take a while).

2. Once the project has been created click on APl s & aut h in sidebar on the left. To retrieve user
profiles the Googl e+ API has to be enabled. Scroll down to find it in the list. If its status is OFF,
click on OFF to enable it (it should move to the top of the list and the status should be ON).

3. Now click Cr edent i al s in the sidebar on the left. Then click Cr eat e New d i ent | D. Select Wb
appl i cation as Application type. Empty the Aut hori zed Javascri pt ori gi ns textarea.

42

https://developers.facebook.com/
https://developers.facebook.com/
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project

Twitter

In Aut hori zed redirect URH enter the social callback url for your realm. Click the Creat e
dient |Dbutton.

4. Copy Cient ID and dient secret from the Google Developer Console [https://
cloud.google.com/console/project] into the settings page in the Keycloak Admin Console as the
Key and Secr et . Then click Save in the Keycloak Admin Console to enable login with Google.

You may also want to configure how the Google Consent Screen looks when users log in to your
application via Google. To do this go to Google Developer Console [https://cloud.google.com/
console/project] and click on Consent Scr een in the sidebar to the left.

8.5. Twitter

To enable login with Twtter you first have to create an application in the Twitter Developer
Console [https://dev.twitter.com/apps]. Then you need to copy the consumer key and secret into
the Keycloak Admin Console.

1. Log in to the Twitter Developer Console [https://dev.twitter.com/apps]. Click the Create a new
appl i cati on button. Use any value for Nane, Descri pti on and Websi t e you want. Insert the
social callback urlin Cal | back URL. Then click Create your Twitter application.

2. Now click on Set ti ngs and tick the box Al l ow this application to be used to Sign in
with Twitter,thenclickonUpdate this Twitter application's settings.

3. Now click Det ai | s. Copy Consuner key and Consuner secret from the Twitter Developer
Console [https://dev.twitter.com/apps] into the settings page in the Keycloak Admin Console
as the Key and Secr et . Then click Save in the Keycloak Admin Console to enable login with
Twitter.

Tip
\/

Twitter doesn't allow | ocal host in the redirect URI. To test on a local server
replace | ocal host with 127. 0. 0. 1.

8.6. Social Provider SPI

Keycloak provides an SPI to make it easy to add additional social providers. This is done by
implementing or g. keycl oak. soci al . Soci al Provi der in soci al / core and adding a provider
configuration file (VETA- | NF/ ser vi ces/ or g. keycl oak. soci al . Soci al Provi der).

A good reference for implementing a Social Provider is the Google provider which you can find in
soci al / googl e on GitHub or in the source download.

43

https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps

44

Chapter 9.

Chapter 9. Themes

Keycloak provides theme support for login forms and account management. This allows
customizing the look and feel of end-user facing pages so they can be integrated with your brand
and applications.

9.1. Configure theme

To configure the theme used by a realm open the Keycl oak Adnmi n Consol e, select your realm
from the drop-down box in the top left corner. In the Optional Settings use the drop-down
boxes for Logi n Theme and Account Thene to select the theme used by login forms and account
management pages.

9.2. Default themes

Keycloak comes bundled with default themes in st andal one/ confi gur ati on/t henes. It is not
recommended to edit these themes directly. Instead you should create a new theme to extend a
default theme. A good reference is to copy the keycloak themes as these extend the base theme
to add styling.

9.3. Creating a theme

There are several types of themes in Keycloak:

* Account - Account management

Admin - Admin console

» Common - Shared resources for themes
* Email - Emails

e Login - Login forms

A theme consists of:

» FreeMarker [http://freemarker.org] templates
» Stylesheets

 Scripts

* Images

* Message bundles

» Theme properties

45

http://freemarker.org
http://freemarker.org

Chapter 9. Themes

A theme can extend another theme. When extending a theme you can override individual files
(templates, stylesheets, etc.). The recommended way to create a theme is to extend the base
theme. The base theme provides templates and a default message bundle. It should be possible
to achieve the customization required by styling these templates.

To create a new theme, create a folder in . ../ st andal one/ confi gurati on/themes/ < thene
t ype>. The name of the folder is the name of the theme. Then create a file t hene. properties
inside the theme folder. The contents of the file should be:

par ent =base

You have now created your theme. Check that it works by configuring it for a realm. It should
look the same as the base theme as you've not added anything to it yet. The next sections will
describe how to modify the theme.

9.3.1. Stylesheets

A theme can have one or more stylesheets, to add a stylesheet create a file inside r esour ces/
css (for example resour ces/ css/ styl es. css) inside your theme folder. Then registering it in
t hene. properti es by adding:

styl es=css/ styl es. css

The st yl es property supports a space separated list so you can add as many as you want. For
example:

styl es=css/styl es. css css/ nore-styl es. css

A theme can have one or more scripts, to add a script create a file inside resources/
js (for example resources/js/script.js) inside your theme folder. Then registering it in
t hene. properti es by adding:

scripts=js/script.js

The scri pt s property supports a space separated list so you can add as many as you want. For
example:

scripts=js/script.js js/nore-script.js

46

Images

9.3.3. Images

To make images available to the theme add them to r esour ces/i ng. They can then be used
through stylesheets. For example:

body {
background-image: url ('../ing/inmage.jpg’);

Or in templates, for example:

9.3.4. Messages

Text in the templates are loaded from message bundles. Currently internationalization isn't
supported, but that will be added in a later release. A theme that extends another theme will
inherit all messages from the parents message bundle, but can override individual messages. For
example to replace User nanme on the login form with Your User nanme create the file nessages/
messages. properti es inside your theme folder and add the following content:

user name=Your User name

9.3.5. Modifying HTML

Keycloak uses Freemarker Templates [http://freemarker.org] in order to generate HTML. These
templates are defined in . ft1 files and can be overriden from the base theme. Check out the
Freemarker website on how to form a template file.

9.4. SPIs

For full control of login forms and account management Keycloak provides a number of SPIs.

9.4.1. Theme SPI

The Theme SPI allows creating different mechanisms to providing themes for the default
FreeMarker based implementations of login forms and account management. To create a
theme provider you will need to implement or g. keycl oak. f r eenar ker . ThemePr ovi der and
or g. keycl oak. freemar ker . Thene in f or ns/ conmon- f r eemar ker

Keycloak comes with two theme providers, one that loads themes from the classpath (used by
default themes) and another that loads themes from a folder (used by custom themes). Looking

47

http://freemarker.org
http://freemarker.org

Chapter 9. Themes

at these would be a good place to start to create your own theme provider. You can find them
inside f or ms/ conmon- t hemes on GitHub or the source download.

9.4.2. Account SPI

The Account SPI allows implementing the account management pages using
whatever web framework or templating engine you want. To create an
Account provider implement org. keycl oak. account. Account Provi der Factory and
or g. keycl oak. account . Account Provi der in f or ms/ account - api .

Keycloaks default account management provider is built on the FreeMarker template
engine (forms/account-freemarker). To make sure your provider is loaded you
will either need to delete standal one/depl oynments/auth-server.war/WEB-1NF/Iib/
keycl oak- account - freemarker-1.0-beta-3.jar or disable it with the system property
or g. keycl oak. account . f reenar ker . Fr eeMar ker Account Pr ovi der Fact ory.

9.4.3. Login SPI

The Login SPI allows implementing the login forms using whatever
web framework or templating engine you want. To create a Login
forms provider implement org. keycl oak. | ogi n. Logi nFor nsPr ovi der Factory and
or g. keycl oak. | ogi n. Logi nFor msPr ovi der in forns/ | ogi n- api .

Keycloaks default login forms provider is built on the FreeMarker template
engine (fornms/login-freemarker). To make sure your provider is loaded you
will either need to delete standal one/depl oynments/auth-server.war/WEB-1NF/Iib/
keycl oak- 1 ogi n-freemarker-1.0-beta-3.jar or disable it with the system property
org. keycl oak. | ogi n. freemnar ker . Fr eeMar ker Logi nFor nsPr ovi der Fact ory.

48

Chapter 10.

Chapter 10. Emall

Keycloak sends emails to users to verify their email address. Emails are also used to allow users
to safely restore their username and passwords.

10.1. Email Server Config

To enable Keycloak to send emails you need to provide Keycloak with your SMTP server settings.
If you don't have a SMTP server you can use one of many hosted solutions (such as Sendgrid
or smtp2go).

To configure your SMTP server, open the Keycl oak Adnmi n Consol e, select your realm from the
drop-down box in the top left corner. Then click on Emai | in the menu at the top.

You are required to fill in the Host and Port for your SMTP server (the default port for SMTP is
25). You also have to specify the sender email address (Fr om). The other options are optional.

The screenshot below shows a simple example where the SMTP server doesn't use SSL or TLS
and doesn't require authentication.

Email Server Settings

= Required Settings

Host * sMtp.acme-inc.org

Port * 25 :
From * support@acme-inc.org

Enable 55L OFF

Enable 5tartTL5 OFF

10.1.1. Enable SSL or TLS

As emails are used for recovering usernames and passwords it's recommended to use SSL or
TLS, especially if the SMTP server is on an external network. To enable SSL click on Enabl e SSL

49

Chapter 10. Email

or to enable TLS click on Enabl e TLS. You will most likely also need to change the Port (the
default port for SSL/TLS is 465).

10.1.2. Authentication

If your SMTP server requires authentication click on Enabl e Aut henti cati on and insert the
User name and Passwor d.

50

Chapter 11.

Chapter 11. Application and Client
Access Types

When you create an Application or OAuth Client you may be wondering what the "Access Types"
are.

confidential

Confidential access type is for clients that need to perform a browser login and that you want
to require a client secret when they turn an access code into an access token, (see Access
Token Request [http://tools.ietf.org/html/rfc6749#section-4.1.3] in the OAuth 2.0 spec for more
details). The advantages of this is that it is a little extra security. Since Keycloak requires you
to register valid redirect-uris, I'm not exactly sure what this little extra security is though. :)
The disadvantages of this access type is that confidential access type is pointless for pure
Javascript clients as anybody could easily figure out your client's secret!

public
Public access type is for clients that need to perform a browser login and that you feel that
the added extra security of confidential access type is not needed. FYI, Pure javascript clients
are by nature public.

bearer-only
Bearer-only access type means that the application only allows bearer token requests. If this
is turned on, this application cannot participate in browser logins.

direct access only
For OAuth clients, you would also see a "Direct Access Only" switch when creating the OAuth
Client. This switch is for oauth clients that only use the Direct Access Grant protocol to obtain
access tokens.

51

http://tools.ietf.org/html/rfc6749#section-4.1.3
http://tools.ietf.org/html/rfc6749#section-4.1.3
http://tools.ietf.org/html/rfc6749#section-4.1.3

52

Chapter 12.

Chapter 12. Roles

In Keycloak, roles (or permissions) can be defined globally at the realm level, or individually per
application. Each role has a name which must be unique at the level it is defined in, i.e. you can
have only one "admin" role at the realm level. You may have that a role named "admin” within an
Application too, but "admin" must be unique for that application.

The description of a role is displayed in the OAuth Grant page when Keycloak is processing
a browser OAuth Grant request. Look for more features being added here in the future like
internationalization and other fine grain options.

12.1. Composite Roles

Any realm or application level role can be turned into a Composite Role. A Composite Role is
a role that has one or more additional roles associated with it. | guess another term for it could
be Role Group. When a composite role is mapped to the user, the user gains the permission of
that role, plus any other role the composite is associated with. This association is dynamic. So,
if you add or remove an associated role from the composite, then all users that are mapped to
the composite role will automatically have those permissions added or removed. Composites can
also be used to define Application or OAuth Client scopes.

Composite roles can be associated with any type of role Realm or Application. In the admin
console simple flip the composite switch in the Role detail, and you will get a screen that will allow
you to associate roles with the composite.

53

54

Chapter 13.

Chapter 13. Direct Access Grants

Keycloak allows you to make direct REST invocations to obtain an access token. (See Resource
Owner Password Credentials Grant [http://tools.ietf.org/html/rfc6749#section-4.3] from OAuth 2.0
spec). To use it, Direct Access Grants must be allowed by your realm. This is a configuration
switch in the admin console under Settings->General, specifically the "Direct Grant API" switch.
You must also have registered a valid OAuth Client or Application to use as the "client_id" for
this grant request.

Warning

It is highly recommended that you do not use Direct Access Grants to write your
own login pages for your application. You will lose a lot of features that Keycloak
has if you do this. Specifically all the account management, remember me, lost
password, account reset features of Keycloak. Instead, if you want to tailor the look
and feel of Keycloak login pages, you should create your own theme.

It is even highly recommended that you use the browser to log in for native mobile
applications! Android and iPhone applications allow you to redirect to and from the
browser. You can use this to redirect the user from your native mobile app to the
web browser to perform login, then the browser will redirect back to your native
application.

The REST URL to invoke on is / { keycl oak-root}/real ms/{real m nane}/t okens/ grants/
access. Invoking on this URL is a POST request and requires you to post the username and
credentials of the user you want an access token for. You must also pass along the "client_id" of the
application or oauth client you are creating an access token for. This "client_id" is the application
or oauth client name (not it's id!). Depending on whether your application/oauth client is "public"
or "confidential”, you may also have to pass along it's client secret as well.

For public applications or oauth client's, the POST invocation requires form parameters that
contain the username, credentials, and client_id of your application. For example:

PCOST / aut h/ real ns/ deno/ t okens/ gr ant s/ access
Cont ent - Type: applicati on/ x-ww« f or m url encoded

user nane=bbur ke&passwor d=gehei m&cl i ent _i d=cust oner - port al

The response would be this standard JSON document [http://tools.ietf.org/html/
rfc67494#section-4.3.3] from the OAuth 2.0 specification.

55

http://tools.ietf.org/html/rfc6749#section-4.3
http://tools.ietf.org/html/rfc6749#section-4.3
http://tools.ietf.org/html/rfc6749#section-4.3
http://tools.ietf.org/html/rfc6749#section-4.3.3
http://tools.ietf.org/html/rfc6749#section-4.3.3
http://tools.ietf.org/html/rfc6749#section-4.3.3

Chapter 13. Direct Access Grants

HTTP/ 1.1 200 K

Cont ent - Type: application/json;charset=UTF-8
Cache-Control: no-store

Pragma: no-cache

"access_t oken": "2Yot nFZFEj r 1zCsi cM\pAA",
"token_type": "bearer",

"expires_in":3600,

"refresh_token":"t Gzv3JOKFOXGEQx2TI KW A",
"id_token":"t Gzv3JOKFOXGBQx2TI KW A",
"session-state":"234234-234234-234234"

For confidential applications or oauth client's, you must create a Basic Auth Aut hori zati on
header that contains the client_id and client secret. And pass in the form parameters for username
and for each user credential. For example:

PQOST / aut h/ real nms/ deno/ t okens/ gr ant s/ access
Aut hori zation: Basic atasdf023| 2312023
Cont ent - Type: application/ x-ww« f orm url encoded

user nane=bbur ke&passwor d=gehei m

Here's a Java example using Apache HTTP Client and some Keycloak utility classes.:

Htpdient client = new HtpdientBuilder()
. di sabl eTrust Manager (). bui I d();

try {
Ht t pPost post = new Htt pPost (
Keycl oakUri Bui | der.fromJri ("http://1 ocal host: 8080/ aut h")

. pat h(Servi ceUr| Const ants. TOKEN_SERVI CE_DI RECT_GRANT_PATH) . bui | d(" denp")) ;
Li st <NameVal uePair> fornparans = new ArrayLi st <NameVal uePair>();
f or npar ans. add(new Basi cNanmeVal uePai r (" user nane", "bburke"));
f or npar ans. add(new Basi cNaneVal uePai r (" password", "password"));

if (isPublic()) { // if client is public access type
f or npar ans. add(new Basi cNaneVal uePai r (QAut h2Const ant s. CLI ENT_I D,
"customer-portal "));

56

} else {
String authorization = Basi cAut hHel per. cr eat eHeader (" cust oner -portal ",
"secret-secret-secret);
post . set Header (" Aut hori zati on", authorization);
}
Ur | EncodedFornEntity form = new Url EncodedFor nEnti ty(fornparans, "UTF-8");
post.setEntity(form;

Ht t pResponse response = client. execute(post);

int status = response. get St at usLi ne(). get St at usCode();
HtpEntity entity = response.getEntity();

if (status !'= 200) {

throw new | OException("Bad status: " + status);
}
if (entity == null) {
t hrow new | OException("No Entity");
}
InputStreamis = entity.getContent();
try {
AccessTokenResponse tokenResponse = JsonSerialization.readVal ue(is,
AccessTokenResponse. cl ass) ;
} finally {
try {
is.close();
} catch (1 CException ignored) { }
}
} finally {

client. get Connecti onManager () . shut down() ;

Once you have the access token string, you can use it in REST HTTP bearer token authorized
requests, i.e

GET /ny/rest/api
Aut hori zation: Bearer 2Yot nFZFEjr 1zCsi cM\pAA

57

58

Chapter 14.

Chapter 14. CORS

CORS stands for Cross-Origin Resource Sharing. If executing browser Javascript tries to make
an AJAX HTTP request to a server's whose domain is different than the one the Javascript code
came from, then the request uses the CORS protocol [http://www.w3.org/TR/cors/]. The server
must handle CORS requests in a special way, otherwise the browser will not display or allow the
request to be processed. This protocol exists to protect against XSS and other Javascript-based
attacks. Keycloak has support for validated CORS requests.

Keycloak's CORS support is configured per application and oauth client. You specify the allowed
origins in the application's or oauth client's configuration page in the admin console. You can add
as many you want. The value must be what the browser would send as a value in the Ori gi n
header. For example htt p: / / exanpl e. comis what you must specify to allow CORS requests from
exanpl e. com When an access token is created for the application or OAuth client, these allowed
origins are embedded within the token. On authenticated CORS requests, your application's
Keycloak adapter will handle the CORS protocol and validate the Ori gi n header against the
allowed origins embedded in the token. If there is no match, then the request is denied.

To enable CORS processing in your application's server, you must set the enabl e- cor s setting
to t rue in your adapter's configuration file. When this setting is enabled, the Keycloak adapter
will handle all CORS preflight requests. It will validate authenticated requests (protected resource
requests), but will let unauthenticated requests (unprotected resource requests) pass through.

59

http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/

60

Chapter 15.

Chapter 15. Cookie settings,
Session Timeouts, and Token
Lifespans

Keycloak has a bunch of fine-grain settings to manage browser cookies, user login sessions, and
token lifespans. Sessions can be viewed and managed within the admin console for all users,
and individually in the user's account management pages. This chapter goes over configuration
options for cookies, sessions, and tokens.

15.1. Remember Me

If you go to the admin console page of Settings->General, you should see a Renenber Me on/off
switch. Your realm sets a SSO cookie so that you only have to enter in your login credentials once.
This Renenber Me admin config option, when turned on, will show a "Remember Me" checkbox
on the user's login page. If the user clicks this, the realm's SSO. cookie will be persistent. This
means that if the user closes their browser they will still be logged in the next time they start up
their browser.

15.2. Session Timeouts

If you go to the Sesions and Tokens->Token Settings page of the Keycloak adminstration console
there is a bunch of fine tuning you can do as far as login session timeouts go.

The SSO Session Idle Tineout is the idle time of a user session. If there is no activity in
the user's session for this amount of time, the user session will be destroyed, and the user will
become logged out. The idle time is refreshed with every action against the keycloak server for
that session, i.e.: a user login, SSO, a refresh token grant, etc.

The SSO Session Max Lifespan setting is the maximum time a user session is allowed to be
alive. This max lifespan countdown starts from when the user first logs in and is never refreshed.
This works great with Remenber Me in that it allow you to force a relogin after a set timeframe.

15.3. Token Timeouts

The Access Token Li f espan is how long an access token is valid for. An access token contains
everything an application needs to authorize a client. It contains roles allowed as well as other
user information. When an access token expires, your application will attempt to refresh it using
a refresh token that it obtained in the initial login. The value of this configuration option should be
however long you feel comfortable with the application not knowing if the user's permissions have
changed. This value is usually in minutes.

61

Chapter 15. Cookie settings, ...

The Access Code Li f espan is how long an access code is valid for. An access code is obtained
on the 1st leg of the OAuth 2.0 redirection protocol. This should be a short time limit. Usually
seconds.

The Access Code Action Lifespan is how long a user is allowed to attempt a login. When a
user tries to login, they may have to change their password, set up TOTP, or perform some other
action before they are redirected back to your application as an authentnicated user. This value
is relatively short and is usually measured in minutes.

62

Chapter 16.

Chapter 16. Admin REST API

The Keycloak Admin Console is implemented entirely with a fully functional REST admin API. You
can invoke this REST API from your Java applications by obtaining an access token. You must
have the appropriate permissions set up as describe in Chapter 5, Master Admin Access Control
and Chapter 6, Per Realm Admin Access Control

The documentation for this REST API is auto-generated and is contained in the distribution of
keycloak under the docs/rest-api/overview-index.html directory, or directly from the docs page at
the keycloak website.

There are a number of examples that come with the keycloak distribution that show you how to
invoke on this REST API. exanpl es/ pr econf i gur ed- deno/ adni n- access- app shows you how
to access this api from java. exanpl es/ cor s/ angul ar - pr oduct - app shows you how to invoke
on it from Javascript.

63

64

Chapter 17.

Chapter 17. Audit

Keycloak provides an Audit SPI that makes it possible to register listeners for events in the system.
There are two interfaces that can be implemented, the first is a pure listener, the second is a
provider which listens for events as well as providing a query over persisted events. If a realm has
a audit provider registered it's possible to view events for the realm through the admin console
and account management.

17.1. Events

Login events:

« Login - A user has logged in
* Register - A user has registered
* Logout - A user has logged out

» Code to Token - An application/client has exchanged a code for a token

Refresh Token - An application/client has refreshed a token

Account events

« Social Link - An account has been linked to a social provider

* Remove Social Link - A social provider has been removed from an account
» Update Email - The email address for an account has changed

» Update Profile - The profile for an account has changed

« Send Password Reset - A password reset email has been sent

» Update Password - The password for an account has changed

e Update TOTP - The TOTP settings for an account has changed

* Remove TOTP - TOTP has been removed from an account

« Send Verify Email - A email verification email has been sent

» Verify Email - The email address for an account has been verified

For all events there is a corresponding error event.

17.2. Audit Listener

Keycloak comes with an Email Audit Listener and a JBogg Logging Audit Listener. The Email
Audit Listener sends an email to the users account when an event occurs. The JBoss Logging
Audit Listener writes to a log file when an events occurs.

65

Chapter 17. Audit

The Email Audit Listener only supports the following events at the moment:

* Login Error
* Update Password
e Update TOTP

* Remove TOTP
You can exclude one or more events by editing st andal one/ confi gurati on/ keycl oak-
server . j son and adding for example:

"audit-listener": {
"emai | ": {
"excl ude-events": ["UPDATE_TOTP", "REMOVE _TOTP"]

17.3. Audit Provider

Audit Providers listen for events and is expected to persist the events to make it possible to
query for them later. This is used by the admin console and account management to view events.
Keycloak includes providers to persist audit events to JPA and Mongo. For production you will
most likely want to use a separate database for audit events. You may even want to use a RDBMS
for your model, and Mongo for your audit.

You can specify events to include or exclude by editing st andal one/ confi gur ati on/ keycl oak-
server. j son, and adding for example:

"audit": {
llj pall: {
"excl ude-events": ["LOA N', "REFRESH TOKEN', "CODE_TO TCKEN']

17.4. Configure Audit Settings for Realm

To enable audit for a realm you firstly need to make sure you have a audit provider registered for
Keycloak. By default the JPA audit provider is registered. Once you've done that open the admin
console, select the realm you're configuring, select Audi t . Then click on Confi g. You can enable
audit for your realm by toggling Enabl ed to ON. You can also set an expiration on audit events.
This will deleted events from the database that are older than the specified time.

66

Configure Audit Settings for Realm

To configure listeners for a realm on the same page as above add one or more audit listeners to
the Audit Listeners select box. This will allow you to enable any registered Audit Listeners
with the realm.

67

68

Chapter 18.

Chapter 18. Authentication SPI

Keycloak provides Authentication SPI, which allows to choose the Aut henti cati onProvi der
for authenticating users. AuthenticationProvider is the interface, which states how will
be your usernames/passwords validated. You can choose from the set of available
AuthenticationProviders or you can even implement and plug your own AuthenticationProvider,
which will allow to provide your own way how will Keycloak validates users and their passwords.

18.1. Available Authentication Providers

* Model - This provider validates users and their passwords based on the Keycloak model. So it
just delegates to model implementation provided either by RDBMS or Mongo at this moment.
This is default AuthenticationProvider, which is configured for keycl oak- adni n realm by default
and it's also automatically configured for newly created realms.

e External - nodel - This provider also uses Keycloak model, but it uses different realm to validate
your users against. For example if you want to create new realm "foo" and you want all users of
already existing realm "bar" that they are automatically able to login into realm "foo" with their
usernames and passwords, you can choose this provider.

e Pi cketlink - This provider delegates Authentication to Picketlink IDM [http://docs.jboss.org/
picketlink/2/latest/reference/html-single/#chap-Identity Management_- Overview] framework.
Right now, Picketlink IDM in Keycloak is configured to always use LDAP based ldentity
store, which means that picketlink provider allows you to authenticate your users against
LDAP server. Note that you will first need to configure LDAP server as described here .
Pi cket | i nkAut henti cati onProvi der configured for the realm will automatically use LDAP
configuration for this realm.

18.2. Features and configuration

e You can configure AuthenticationProviders separately for each realm. So for example
you can choose that just realm "foo" will use PicketlinkAuthenticationProvider
and authenticate users against LDAP but realm "keycloak-admin" will still use default
Mbdel Aut henti cati onProvi der.

« There is also possibility to choose more authentication providers for the realm, which actually
means that Keycloak will use first available AuthenticationProvider and just in case that user
doesn't exist here, it will fallback to second AuthenticationProvider in chain. So this may allow
for example scenario, in which you authenticate user against Keycloak database (model) and
just if he doesn't exist in database, it will fallback to LDAP (picketlink).

* You can configure for each AuthenticationProvider if you want to update passwords - option
passwor dUpdat eSupport ed. This means that when user update password or his profile
through Keycloak Ul, this change will be propagated into AuthenticationProvider. So for

69

http://docs.jboss.org/picketlink/2/latest/reference/html-single/#chap-Identity_Management_-_Overview
http://docs.jboss.org/picketlink/2/latest/reference/html-single/#chap-Identity_Management_-_Overview
http://docs.jboss.org/picketlink/2/latest/reference/html-single/#chap-Identity_Management_-_Overview

Chapter 18. Authentication SPI

example password in LDAP will be updated if it's true, but for read-only LDAP, you will
likely switch it to fal se. It also means that newly registered users will be propagated to
particular AuthenticationProvider too, but note that each user is always bind just to one
AuthenticationProvider.

* You can add/editremove AuthenticationProviders in the Authentication tab in admin
console, which is under URL http://localhost:8080/auth/admin/keycloak-admin/console/#/
realms/YOUR_REALM/auth-settings

18.3. Creating your own Authentication Provider

You need to implement interface AuthenticationProvider and add the
name of your AuthenticationProviderFactory class into META-I NF/ services/
or g. keycl oak. aut henti cati on. Aut henti cati onProvi der Fact ory file inside your JAR with
AuthenticationProvider. You also need to copy this JAR into st andal one/ depl oynent s/ aut h-
server.war/WEB- I NF/ | i b . The bestis to look at example [https://github.com/keycloak/keycloak/
tree/master/examples/providers/authentication-properties] and try it out.

70

http://localhost:8080/auth/admin/keycloak-admin/console/#/realms/YOUR_REALM/auth-settings
http://localhost:8080/auth/admin/keycloak-admin/console/#/realms/YOUR_REALM/auth-settings
https://github.com/keycloak/keycloak/tree/master/examples/providers/authentication-properties
https://github.com/keycloak/keycloak/tree/master/examples/providers/authentication-properties
https://github.com/keycloak/keycloak/tree/master/examples/providers/authentication-properties

Chapter 19.

Chapter 19. LDAP Integration

Right now, LDAP server is configured separately for each Realm. Configuration is in admin
console in tab Ldap under realm settings. It's under URL like http://localhost:8080/auth/admin/
keycloak-admin/console/index.html#/realms/YOUR_REALM/Idap-settings . There is nothing like
"shared" LDAP server for more realms in Keycloak, but it's planned for the future.

LDAP is currently used just for authentication of wusers done through
Pi cket | i nkAut henti cati onProvi der as described here . In the future, we have plan to have
full Sync SPI, which will allow one-way or two-way synchronization between LDAP server and
Keycloak database including users and roles.

71

http://localhost:8080/auth/admin/keycloak-admin/console/index.html#/realms/YOUR_REALM/ldap-settings
http://localhost:8080/auth/admin/keycloak-admin/console/index.html#/realms/YOUR_REALM/ldap-settings

72

Chapter 20.

Chapter 20. Export and Import

Export/import is useful especially if you want to migrate your whole Keycloak database from one
environment to another or migrate to different database (For example from MySQL to Oracle). You
can trigger export/import at startup of Keycloak server and it's configurable with System properties
right now. The fact it's done at server startup means that no-one can access Keycloak Ul or REST
endpoints and edit Keycloak database on the fly when export or import is in progress. Otherwise
it could lead to inconsistent results.

You can export/import your database either to directory on local filesystem (useful just for testing
purposes or if your filesystem is properly protected) or to encrypted ZIP file on local filesystem.
Encrypted ZIP is recommended as export contains many sensitive informations like passwords
of your users (even if they are hashed), but also their email addresses, and especially private
keys of the realms.

So to export the content of your Keycloak database into encrypted ZIP, you can execute Keycloak
server with the System properties like:

bi n/ st andal one. sh - Dkeycl oak. nmi grati on. acti on=export

- Dkeycl oak. mi grati on. provi der=zi p -Dkeycl oak. m gration. zi pFi | e=<FI LE TO EXPORT
TO>

- Dkeycl oak. mi grati on. zi pPasswor d=<PASSWORD TO DECRYPT EXPORT>

Then you can move or copy the encrypted ZIP file into second environment and you
can trigger import from it into Keycloak server with the same command but use -
Dkeycl oak. mi grati on. acti on=i nport instead of export .

To export into unencrypted directory you can use:

bi n/ st andal one. sh - Dkeycl oak. nmi grati on. acti on=export
- Dkeycl oak. mi grati on. provi der=dir -Dkeycl oak. m gration.dir=<DI R TO EXPORT TO>

And similarly for import just use - Dkeycl oak. mi grati on. acti on=i nport instead of export .

73

74

Chapter 21.

Chapter 21. Migration from older
versions
21.1. Migrating from 1.0 Alpha 4 to Beta 1

« DB Schema has changed. We have added export of the database to Beta 1, but not the ability
to import the database from older versions. This will be supported in future releases.

« For all clients except bearer-only applications, you must specify at least one redirect uri.
Keycloak will not allow you to log in unless you have specified a valid redirect uri for that
application.

» Resource Owner Password Credentials flow is now disabled by default. It can be enabled by
setting the toggle for Direct Grant API ONunder realm config in the admin console.

« Configuration is now done through st andal one/ confi gur ati on/ keycl oak-server.j son.
This should mainly affect those that use MongoDB.

« JavaScript adapter has been refactored. See the JavaScript adapter section for more details.

« The "Central Login Lifespan" setting no longer exists. Please see the Session Timeout section
for me details.

21.2. Migrating from 1.0 Alpha 2 to Alpha 3

» SkeletonKeyToken, SkeletonKeyScope, SkeletonKeyPrincipal, and SkeletonKeySession
have been renamed to: AccessToken, AccessScope, KeycloakPrincipal, and
KeycloakAuthenticatedSession respectively.

« ServleOAuthClient.getBearerToken() method signature has changed. It now returns an
AccessTokenResponse so that you can obtain a refresh token too.

» Adapters now check the access token expiration with every request. If the token is expired, they
will attempt to invoke a refresh on the auth server using a saved refresh token.

» Subject in AccessToken has been changed to the User ID.

21.3. Migrating from 1.0 Alpha 1 to Alpha 2

« DB Schema has changed. We don't have any data migration utilities yet as of Alpha 2.

» JBoss and Wildfly adapters are now installed via a JBoss/Wildfly subsystem. Please review the
adapter installation documentation. Edits to standalone.xml are now required.

75

Chapter 21. Migration from ol...

« There is a new credential type "secret". Unlike other credential types, it is stored in plain text in
the database and can be viewed in the admin console.

» There is no longer required Application or OAuth Client credentials. These client types are now
hard coded to use the "secret" credential type.

» Because of the "secret" credential change to Application and OAuth Client, you'll have to update
your keycloak.json configuration files and regenarate a secret within the Application or OAuth
Client credentials tab in the administration console.

76

	Keycloak Reference Guide
	Table of Contents
	Preface
	Chapter 1. License
	Chapter 2. Overview
	2.1. Key Concepts in Keycloak
	2.2. How Does Security Work in Keycloak?
	2.2.1. Permission Scopes

	Chapter 3. Installation and Configuration of Keycloak Server
	3.1. Appliance Install
	3.2. WAR Distribution Installation
	3.3. Configuring the Server
	3.3.1. Database Configuration
	3.3.1.1. Tested databases

	3.3.2. MongoDB based model
	3.3.3. AS7/EAP6.x Logging
	3.3.4. SSL/HTTPS Setup
	3.3.4.1. Enable SSL on Keycloak
	3.3.4.1.1. Creating the Certificate and Java Keystore
	3.3.4.1.1.1. Self Signed Certificate

	3.3.4.1.2. Installing the keystore to WildFly
	3.3.4.1.3. Installing the keystore to JBoss EAP6/AS7

	3.3.4.2. Enable SSL on a Reverse Proxy
	3.3.4.3. Enforce HTTPS For Server Connections
	3.3.4.4. Enforce HTTPS at Realm Level

	Chapter 4. Running Keycloak Server on OpenShift
	4.1. Create Keycloak instance with the web tool
	4.2. Create Keycloak instance with the command-line tool
	4.3. Next steps

	Chapter 5. Master Admin Access Control
	5.1. Global Roles
	5.2. Realm Specific Roles

	Chapter 6. Per Realm Admin Access Control
	6.1. Realm Roles

	Chapter 7. Adapters
	7.1. General Adapter Config
	7.2. JBoss/Wildfly Adapter
	7.2.1. Adapter Installation
	7.2.2. Per WAR Configuration
	7.2.3. Securing WARs via Keycloak Subsystem

	7.3. Pure Client Javascript Adapter
	7.3.1. Session status iframe
	7.3.2. JavaScript Adapter reference
	7.3.2.1. Constructor
	7.3.2.2. Properties
	7.3.2.3. Methods
	7.3.2.4. Callback Events

	7.4. Installed Applications
	7.4.1. http://localhost
	7.4.2. urn:ietf:wg:oauth:2.0:oob

	Chapter 8. Social
	8.1. Social Login Config
	8.1.1. Enable social login
	8.1.2. Social-only login
	8.1.3. Social Callback URL

	8.2. Facebook
	8.3. GitHub
	8.4. Google
	8.5. Twitter
	8.6. Social Provider SPI

	Chapter 9. Themes
	9.1. Configure theme
	9.2. Default themes
	9.3. Creating a theme
	9.3.1. Stylesheets
	9.3.2.
	9.3.3. Images
	9.3.4. Messages
	9.3.5. Modifying HTML

	9.4. SPIs
	9.4.1. Theme SPI
	9.4.2. Account SPI
	9.4.3. Login SPI

	Chapter 10. Email
	10.1. Email Server Config
	10.1.1. Enable SSL or TLS
	10.1.2. Authentication

	Chapter 11. Application and Client Access Types
	Chapter 12. Roles
	12.1. Composite Roles

	Chapter 13. Direct Access Grants
	Chapter 14. CORS
	Chapter 15. Cookie settings, Session Timeouts, and Token Lifespans
	15.1. Remember Me
	15.2. Session Timeouts
	15.3. Token Timeouts

	Chapter 16. Admin REST API
	Chapter 17. Audit
	17.1. Events
	17.2. Audit Listener
	17.3. Audit Provider
	17.4. Configure Audit Settings for Realm

	Chapter 18. Authentication SPI
	18.1. Available Authentication Providers
	18.2. Features and configuration
	18.3. Creating your own Authentication Provider

	Chapter 19. LDAP Integration
	Chapter 20. Export and Import
	Chapter 21. Migration from older versions
	21.1. Migrating from 1.0 Alpha 4 to Beta 1
	21.2. Migrating from 1.0 Alpha 2 to Alpha 3
	21.3. Migrating from 1.0 Alpha 1 to Alpha 2

