Keycloak
Reference Guide

SSO for Web Apps and REST Services

1.1.0.Beta?

g (=] = o1 <Y Vii

R I o =T 1] PPN 1
B O AV QTP 3
2.1. Key Concepts in KEYCIOAKcc.uoiiiiiiiii e 4

2.2. How Does Security WOrk in KeycCloaK?oooiiuiiiiiiiiiiieiiii e 4
2.2.1. PErmMISSION SCOPES ..civvuiiiiieiiiieiiiee e et e e e e e e e e e et e e et e e et e e eeenaas 5

3. Installation and Configuration of Keycloak Server ..o, 7
3.1 ApplianCe INSAllceeii e 7

3.2. WAR Distribution Installationoooeiiiiiii e 7

3.3. ConfiguriNg thE SEIVERioi i e 8
3.3.1. Relational Database Configurationcccuuiieiiiiinieiiii e 8

3.3.2. MongoDB based MOdelccouuiiiiiiiii 11

3.3.3. EAPG.X LOGUING -1 ttiiiiiiiiiie ettt 12

3.3.4. SSL/HTTPS Requirement/MOAEScc.ueevuiiiiiiiieiiieeii e e et ee e 13

3.3.5. SSLIHTTPS SEIUP ..eieetiiieiiii et e e e e e e e e e e 13

3.4. Configuring Servers from the SUbSYStemMccciiiiiiiiii e 18
3.4.1. Manually Creating A SEIVETccouuiiiiiiiiieeeii et e 18

3.4.2. Using CLI and CLI GUI with the Keycloak Subsystemc..cccoeeeinnnis 19

3.4.3. Adding a Keycloak server in Domain Modecccoovveiiiiiniiiiiiinneeci, 25

4. Running Keycloak Server on OpenShiftcoooiiiiiiiii e, 27
4.1. Create Keycloak instance with the web toolccooiiiiiiii 27

4.2. Create Keycloak instance with the command-line toolccooooiiiiiinnnnnnn, 27

4.3, NEXE STEPS .ertiiiiie ettt ettt et 28

5. Master Admin ACCESS CONLIOI ooiuuiiiiiiii e 29
LT €11 o T= L o] =P 29

5.2. Realm SPECIfiC ROIESuuiiiiiiii e e 29

6. Per Realm Admin AcCCESS CONIOL ..oouuiiiiiiii e 31
6.1. REAIM ROIES ..ouiiiiiiii e 31

A Xe F=T o1 1=] £ PP PUPPPTRRPPPIN 33
7.1. General Adapter CONIQ ..o 33

7.2. IBOSS/WIldfly AAPLET ... 36
7.2.1. Adapter INStallationcooouiiiiiiiiiii e 36

7.2.2. Required Per WAR Configurationovieiiiiiniiiiiinecc e 39

7.2.3. Securing WARs via Keycloak SUbSYStemMcccoeeiiiiiiiiiiiiiiccieecieeeen, 40

7.3. Tomcat 6, 7 and 8 ACAPLEIScvvuiiiii et 42
7.3.1. Adapter INStallationccoouiiiiiiii e 42

7.3.2. Required Per WAR Configurationoviiiiuiinieiiiiecc e 42

A =Y IO Ao F- o1 (= S 44
7.4.1. Adapter INStallationc.uuiiiiiiii e 44

7.4.2. Required Per WAR Configurationccooeiiiiiiiiiieiiiiccieeee e 44

7.5, JEtty 8.1.X AUAPIET ..ovuniiiiiii ettt 47
7.5.1. Adapter INStallationcccooiiiiiiiiii e 47

7.5.2. Required Per WAR Configurationcoviiiiuiiniiiiiiiecc e a7

7.6. Pure Client Javascript AQapLercociuiiiiieii e e e e e e aen 48

Keycloak Reference Guide

7.6.1. SesSIoN StatusS iframeoouiiiiie e 50

7.6.2. JavaScript Adapter referenCeccovviviiiiiii e 51

7.7. Installed APPLICALIONSiiiiiiie e 54
T7.7.1. htEP:/I0CAINOSTcvicii e 54

7.7.2. urnzietf:wg:0auth:2.0:00D ... 54

8 S T o To [0 LU | PP 54

7.9, MUIE TENANCY ..eniiiiii ettt ettt e et e e e e et e e e eebe e eaeees 54

ST Yo o - | PRSP 57
8.1. Social LOGIN CONFIG ivrtnieiiiii e 57
8.1.1. Enable social 10ginooiiiiiiiii e 57

8.1.2. SOCIal-0ONIY TOGIN ..coiiiiieie e 57

8.1.3. Social Callback URLuiiiiiiiiiiiiiiii e 57

8.2, FACEDOOK ..eeiiiie e 57

8.3, GIEHUD et 58

B4, GOOGIE ..o 58

ST MY (T USRS 59

8.6. Social Provider SPI ... 59

LS T I 1T o 4= PSP 61
9.1, TREIME Y PES ittt ettt et 61

Lo I O] 01T 81 (=0 1 aT=] o = N 61

9.3, Default themES ...cve e 61

9.4, Creating @ theME ... e e 62
9.4.1. SEYIESNEELS ..ot 62

LS I Yol]) P 63

0.4.3. IMAGES ..etniitieet ettt ettt 63

0.4.4, IMIBSSATES .vuivtititieteit ittt ettt et et 63

9.4.5. Modifying HTIML ...ooiiiiiiiiii e e e 64

0.5, SIS i e 64
9.5.1. ThEME SPI ooeiii e 64

9.5.2. ACCOUNL SPI ...t eans 64

9.5.3. LOGIN SPI oeeiiiii i 64

O TR 1o 1 - T PSP 67
10.1. EMail Server CONfigccouuuiiiiiiiieiiii e 67
10.1.1. ENable SSL OF TLS .iuiiiiiiiiieiiei et e eeaeens 67

O U 11 1= o o o 68

11. Application and CHENt ACCESS TYPES ivuuiiiiiiiiiiieiiie ettt e e e e e e s 69
2 L] 1= 71
12.1. COMPOSIEE ROIES ..ot e e r e e e 71

RS B 1 = Tor A N o of 1o E I] = 1 | =P 73
O O @ 2 S TSP 77
15. Cookie settings, Session Timeouts, and Token Lifespanscccooevvvviiiieiiiinnnnenns 79
TN I = (=T o 0 1= 4] o 1= T Y = PP 79
15.2. SESSION TIMEOULS ...uuiiitiiiiee ettt e e e e e e e e et e e et e e ean s e e et e e enneeeenaes 79
15.3. TOKEN TIMEOULS ...eiiiiiieeeiiiie ettt et e et e et e e e et e e e e et e e e eaen s 79

16. AdMIN REST APl Lot e e e e e e 81
R VT | S PP UPTP 83
L7 L BV Y PBS ottt 83
17.2. EVENE LISTENET .ottt ettt e e e et s e e e et e e e e eaa e eeeees 83
G T =T o] (] PP 84
17.4. Configure Events Settings for Realmccooooiiiiiii i 84

18. User Federation SPl and LDAP/AD INtegrationccoooeeuiiiiiiiiineeiiieeece e 87
18.1. LDAP and Active DireCtory PIUQINcccuiiiiiiiiiiii e 87
200 O T o 11 G Y o o 87

18.1.2. Other config OPLIONScovviiiii e e 88

18.2. Sync of LDAP users to KeYCloaKcccouuiiiiiiiiiiiiiiiiiieei e 88
18.3. Writing your own User Federation Providerc.cccoveiiiiiiiieiiin e, 89

19. EXPOIt @and IMPOIT oottt et e et e et e e e e 91
20. SEIVEI CACNE ittt e e et a e aea 95
20.1. Disabling CaAChEScciiiiiiieiii e 95
20.2. Clear CACRESiiiiii e et e 96
20.3. CAChE CONFIG ..ttt e e e 96

21, SAML SSO ottt 97
21.1. SAML ENtity DESCIIPIO ..uueiiiiti ettt et e e e e e e e e eees 98

22. Security VUINErabilitiesiiiiiiiii e 99
22.1. SSLIHTTPS REQUIFEMENT ..ceeuiiiiiiiii ettt ettt e e e eeaens 99
22.2. CSREF AACKS ...iiiitiieitiiii ettt ettt e e e et e et e e et a e e e et e eeneen 99
22.3. CHCKJACKING ..t eeeitie ettt et e ettt e e e e et e e e et eeees 100
22.4. Compromised ACCESS COUEBSciuuiiiiiiiiii e e eaas 100
22.5. Compromised access and refresh toKENSoovviiiiiiiiiiiii i 100
A T @ T 1= g T = To [T (= Tod (o) £t 100
22.7. Password guess: brute force attackscooveiiiiiiiiiiiiiiiii 101
22.8. Password database COMPromiSEdcccouuieiiiiiiiiiieiii e e eanes 101
22.9. SQL INJECHON AEACKSeiiiitiieeiiiii ettt e eees 101
b (O T IR 1) 1 T TS o] o 1P 101

P T O 11 (=T 4T o o OO PT PRSPPI 103
23.1. Configure a shared databaseccoeviiiiiiiiiiiin e 103
23.2. Configure INfINISPANuiiiiii e 103
23.3. Enable realm and user cache invalidationccccooiiiiiiiiiiiiiin e, 104
23.4. Enable distributed USEr SESSIONScccvuiiiiiiiiiee e 104
23.5. Start in HA MOAE ...t e e e e 105
23.6. ENAbIiNg CIUSLEr SECUILYoieiitiieiiii e 105

b/ AN oY o] 1Yotz L Lo Y o @4 1V F=] =1 T Vo P 107
24.1. StateleSS tOKEN STOME ..iuuuiiii i e et e e e eeens 107
24.2. Relative URI OptiMIZationcoiiiiiiiiii e e e e e e e e e 108
24.3. Admin URL configurationcoouuiiiiiiiiiis e 108
24.4. Registration of application nodes to Keycloakccoooiviiiiiiiiiiiniinceeen, 109
24.5. Refresh token in @ach reqUEeSEoooiiiiiiiiiii 110

25. KEYCI0AK SECUIITY PrOXY .oiiviiiiiiiiiiiieiii e e et e e e e e e e e e e e e e e e e et e e eaneeaanees 111

Keycloak Reference Guide

25.1. Proxy Install @and RUNiiiiii e 111
25.2. Proxy Configurationcc.oeeiiiiiiiiicie e e e e e e e e e 111
25.2.1. BASIC CONIQG ..uuiiiiiiiieiiii et 112
25.2.2. Application CONfigccouniiiiiiiii i 113
25.3. Keycloak ldentity HEAAEISuiiiiiiiieii e 114
26. Migration from Older VEISIONSiiiiiii i e e e e e 117
26.1. Migrate dat@baseoooeuuiiiiiiii e 117
26.2. Migrate KeycCloak-SErVEr.JSOMNcccuiiiiiiieiii e 117
26.3. MiIQrate PrOVIAEISceieii ittt ettt e e et e e ettt e e e et e e e eebe e eeenes 118
26.4. MiIgrate thEIMESccuuiiiii e e e e e e e e e e aen 118
26.5. Migrate appliCALIONuiiiiiiiiie e 118
26.6. Version Specific MIGrationcoeeiuiiiiiiiiiie e e e e 118
26.6.1. Migrating from 1.1.Betal to 1.1.Beta2ccccooeeiiiiiiiiiiiniiiiieeii 118
26.6.2. Migrating from 1.0.x.Final to 1.1.Betalccccceviieiiiiiiiiieiiinieieeeieens 118
26.6.3. Migrating from 1.0 RC-1 t0 RC-2oiiiiiiiiiiiiiiee e 119
26.6.4. Migrating from 1.0 Beta 4 t0 RC-1ccooviiiiiiiiiii e 119
26.6.5. Migrating from 1.0 Beta 1 to Beta 4oveviviiiiiiiiiicc e 119
26.6.6. Migrating from 1.0 Alpha 4toBeta 1cooovvviiiiiiiiiiicie e 119
26.6.7. Migrating from 1.0 Alpha 2 to Alpha 3 ..., 120
26.6.8. Migrating from 1.0 Alpha 1 to Alpha 2ccooovviiiiiiiii e 120

Vi

Preface

In some of the example listings, what is meant to be displayed on one line does not fit inside the
available page width. These lines have been broken up. A '\' at the end of a line means that a
break has been introduced to fit in the page, with the following lines indented. So:

Let's pretend to have an extrenely \
long line that \

does not fit

This one is short

Is really:

Let's pretend to have an extrenmely long |line that does not fit
This one is short

Vii

viii

Chapter 1.

Chapter 1. License

Keycloak codebase is distributed under the ASL 2.0 license. It does not distribute any thirdparty
libraries that are GPL. It does ship thirdparty libraries licensed under Apache ASL 2.0 and LGPL.

Chapter 2.

Chapter 2. Overview

Keycloak is an SSO solution for web apps, mobile and RESTful web services. It is an
authentication server where users can centrally login, logout, register, and manage their user
accounts. The Keycloak admin Ul can manage roles and role mappings for any application
secured by Keycloak. The Keycloak Server can also be used to perform social logins via the user's
favorite social media site i.e. Google, Facebook, Twitter etc.

Features:

SSO and Single Log Out for browser applications

Social Login. Enable Google, GitHub, Facebook, Twitter social login with no code required.
LDAP and Active Directory support.

Optional User Registration

Password and TOTP support (via Google Authenticator). Client cert auth coming soon.
Forgot password support. User can have an email sent to them

Reset password/totp. Admin can force a password reset, or set up a temporary password.
Not-before revocation policies per realm, application, or user.

User session management. Admin can view user sessions and what applications/clients have
an access token. Sessions can be invalidated per realm or per user.

Pluggable theme and style support for user facing screens. Login, grant pages, account mgmt,
and admin console all can be styled, branded, and tailored to your application and organizational
needs.

Integrated Browser App to REST Service token propagation
OAuth Bearer token auth for REST Services

OAuth 2.0 Grant requests

OpenID Connect Support.

SAML Support.

CORS Support

CORS Web Origin management and validation

Completely centrally managed user and role mapping metadata. Minimal configuration at the
application side

Chapter 2. Overview

< Admin Console for managing users, roles, role mappings, applications, user sessions, allowed
CORS web origins, and OAuth clients.

« Account Management console that allows users to manage their own account, view their open
sessions, reset passwords, etc.

» Deployable as a WAR, appliance, or on Openshift. Completely clusterable.

« Multitenancy support. You can host and manage multiple realms for multiple organizations. In
the same auth server and even within the same deployed application.

» Supports JBoss AS7, EAP 6.x, Wildfly, Tomcat 7, Tomcat 8, Jetty 9.1.x, Jetty 9.2.x, Jetty 8.1.x,
and Pure JavaScript applications. Plans to support Node.js, RAILS, GRAILS, and other non-
Java deployments

2.1. Key Concepts in Keycloak

The core concept in Keycloak is a Realm. A realm secures and manages security metadata for
a set of users, applications, and registered oauth clients. Users can be created within a specific
realm within the Administration console. Roles (permission types) can be defined at the realm
level and you can also set up user role mappings to assign these permissions to specific users.

An application is a service that is secured by a realm. When a user browses an application's web
site, the application can redirect the user agent to the Keycloak Server and request a login. Once
a user is logged in, they can visit any other application managed by the realm and not have to re-
enter credentials. This also hold true for logging out. Roles can also be defined at the application
level and assigned to specific users. Depending on the application type, you may also be able to
view and manage user sessions from the administration console.

An oauth client is similar to an application in that it can request something like a login when a user
visits the site of the oauth client. The difference is that oauth clients are not immediately granted
all permissions of the user. In addition to requesting the login credentials of the user, the Keycloak
Server will also display a grant page asking the user if it is ok to grant allowed permissions to
the oauth client.

2.2. How Does Security Work in Keycloak?

Keycloak uses access tokens to secure web invocations. Access tokens contains security
metadata specifying the identity of the user as well as the role mappings for that user. The format of
these tokens is a Keycloak extension to the JSON Web Token [http://tools.ietf.org/html/draft-ietf-
oauth-json-web-token-14] specification. Each realm has a private and public key pair which it uses
to digitally sign the access token using the JSON Web Signature [http://tools.ietf.org/html/draft-
ietf-jose-json-web-signature-19] specification. Applications can verify the integrity of the digitally
signed access token using the public key of the realm. The protocols used to obtain this token is
defined by the OAuth 2.0 [http://tools.ietf.org/html/rfc6749] specification.

The interesting thing about using these smart access tokens is that applications themselves are
completely stateless as far as security metadata goes. All the information they need about the

http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-14
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-14
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-14
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-19
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-19
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-19
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

Permission Scopes

user is contained in the token and there's no need for them to store any security metadata locally
other than the public key of the realm.

Signed access tokens can also be propagated by REST client requests within an Aut hori zat i on
header. This is great for distributed integration as applications can request a login from a client
to obtain an access token, then invoke any aggregated REST invocations to other services using
that access token. So, you have a distributed security model that is centrally managed, yet does
not require a Keycloak Server hit per request, only for the initial login.

2.2.1. Permission Scopes

Each application and oauth client are configured with a set of permission scopes. These are a
set of roles that an application or oauth client is allowed to ask permission for. Access tokens are
always granted at the request of a specific application or oauth client. This also holds true for SSO.
As you visit different sites, the application will redirect back to the Keycloak Server via the OAuth
2.0 protocol to obtain an access token specific to that application. The role mappings contained
within the token are the intersection between the set of user role mappings and the permission
scope of the application/oauth client. So, access tokens are tailor made for each application/oauth
client and contain only the information required for by them.

Chapter 3.

Chapter 3. Installation and
Configuration of Keycloak Server

The Keycloak Server has two downloadable distributions.

» keycloak-appliance-dist-all-1.1.0.Beta2.zip

» keycloak-war-dist-all-1.1.0.Beta2.zip

3.1. Appliance Install

The keycl oak-appl i ance-dist-all-1.1.0.Beta2.zip is quite large, but contains a complete
server (backed by Wildfly) that runs out of the box. The only thing you'll have to enable and
configure is SSL. Unzipping it, the directory layout looks something like this:

keycl oak- appl i ance-dist-all-1.1.0.Beta2/
keycl oak/
bi n/
st andal one. sh
st andal one. bat
st andal one/ depl oynent s/
aut h- server. war/
st andal one/ confi gurati on/
keycl oak- server.json
t henes/
exampl es/
docs/

The st andal one. sh or st andal one. bat scriptis used to start the server. After executing that, log
into the admin console at http://localhost:8080/auth/admin/index.html [http://localhost:8080/auth/
admin/index.html]. Username: admin Password: admin. Keycloak will then prompt you to enter
in a new password.

3.2. WAR Distribution Installation

The keycl oak-war-dist-all-1.1.0.Beta2.zip contains just the bits you need to install
keycloak on your favorite web container. We currently only support installing it on top of an existing
Wildfly 8, JBoss EAP 6.x or JBoss AS 7.1.1 distribution. We may in the future provide directions
on how to install it on another web container like Tomcat or Jetty. If anybody in the community is
interested in pulling this together, please contact us. Its mostly Maven pom work.

The directory structure of this distro looks like this:

http://localhost:8080/auth/admin/index.html
http://localhost:8080/auth/admin/index.html
http://localhost:8080/auth/admin/index.html

Chapter 3. Installation and C...

keycl oak-war-dist-all-1.1.0.Beta2/
depl oynent s/
aut h-server. war/
keycl oak- ds. xm
configuration/
keycl oak-server.json
t henes/
exampl es/
docs/

After unzipping this file, copy everything in depl oyments directory into the standal one/
depl oyment s of your JBoss or Wildfly distro. Also, copy everything in confi gur ati on directory
into the st andal one/ confi gur at i on directory.

$ cd keycl oak-war-dist-all-1.1.0.Beta2
$ cp -r deploynents $JBOSS_HOVWE/ st andal one
$ cp -r configurati on $JBOSS_HOVE/ st andal one

After these steps you MUST then download and install the client adapter as this may contain
modules the server needs (like Bouncycastle). You will also need to install the adapter to run the
examples on the same server.

After booting up the JBoss or Wildfly distro, you can then make sure it is installed
properly by logging into the admin console at http://localhost:8080/auth/admin/index.html [http://
localhost:8080/auth/admin/index.html]. Username: admin Password: admin. Keycloak will then
prompt you to enter in a new password.

You can no longer run Keycloak on JBoss AS 7.1.1. You must run on EAP 6.x or Wildfly.

3.3. Configuring the Server

Although the Keycloak Server is designed to run out of the box, there's some things you'll need
to configure before you go into production. Specifically:

» Configuring Keycloak to use a production database.
e Setting up SSL/HTTPS
« Enforcing HTTPS connections

3.3.1. Relational Database Configuration

By default, Keycloak uses a relational database to store Keycloak data. This datasource
is the st andal one/ depl oynent s/ keycl oak-ds. xnml file of your Keycloak Server installation

http://localhost:8080/auth/admin/index.html
http://localhost:8080/auth/admin/index.html
http://localhost:8080/auth/admin/index.html

Relational Database Configuration

if you used Section 3.2, “WAR Distribution Installation” or in st andal one/ confi gur ati on/
st andal one. xn if you used Section 3.1, “Appliance Install”. File keycl oak-ds. xm is used in
WAR distribution, so that you have datasource available out of the box and you don't need to edit
st andal one. xnl file. However a good thing is to always delete the file keycl oak-ds. xm and
move its configuration text into the centrally managed st andal one. xn file. This will allow you
to manage the database connection pool from the Wildfly/JBoss administration console. Here's
what st andal one/ confi gur ati on/ st andal one. xm should look like after you've done this:

<subsyst em xm ns="ur n: j boss: donmai n: dat asour ces: 2. 0" >
<dat asour ces>
<dat asource j ndi - nane="j ava: j boss/ dat asour ces/ Exanpl eDS"
pool - name="Exanpl eDS" enabl ed="true" use-java-context="true">
<connecti on-
url >j dbc: h2: mem t est ; DB_CLOSE_DELAY=- 1; DB_CLOSE_ON_EXI T=FALSE</ connecti on-ur| >
<driver>h2</driver>
<security>
<user - nane>sa</ user - nane>
<passwor d>sa</ passwor d>
</ security>
</ dat asour ce>
<dat asource j ndi - nane="j ava: j boss/ dat asour ces/ Keycl oakDS"
pool - name="Keycl oakDS" enabl ed="true" use-java-context="true">
<connection-url >j dbc: h2: ${j boss. server.data. dir}/
keycl oak; AUTO_SERVER=TRUE</ connect i on- ur| >
<driver>h2</dri ver>
<security>
<user - nanme>sa</ user - nane>
<passwor d>sa</ passwor d>
</security>
</ dat asour ce>
<drivers>
<driver nanme="h2" nodul e="com h2dat abase. h2" >
<xa- dat asour ce- cl ass>or g. h2. j dbcx. JdbcDat aSour ce</ xa- dat asour ce- cl ass>
</driver>
</drivers>
</ dat asour ces>
</ subsyst enr

Besides moving the database config into the central standal one. xnml configuration file
you might want to use a better relational database for Keycloak like PostgreSQL or
MySQL. You might also want to tweak the configuration settings of the datasource. Please
see the Wildfly [https://docs.jboss.org/author/display/WFLY 8/DataSource+configuration], JBoss
AS7 [https://docs.jboss.org/author/display/AS71/DataSource+configuration], or JBoss EAP 6.x

https://docs.jboss.org/author/display/WFLY8/DataSource+configuration
https://docs.jboss.org/author/display/WFLY8/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration

Chapter 3. Installation and C...

[https://docs.jboss.org/author/display/AS71/DataSource+configuration] documentation on how to
do this.

Keycloak also runs on a Hibernate/JPA backend which is configured in the standal one/
confi gurati on/ keycl oak- server. j son. By default the setting is like this:

"connectionsJpa": {

"default": {
"dat aSource": "java:jboss/ dat asources/ Keycl oakDS",
"dat abaseSchema": "update”

Possible configuration options are:

dataSource

JNDI name of the dataSource
jta

boolean property to specify if datasource is JTA capable
driverDialect

Value of Hibernate dialect. In most cases you don't need to specify this property as dialect
will be autodetected by Hibernate.

databaseSchema
Value of database schema (Hibernate property "hibernate.hbm2ddl.auto").

showSq|l
Specify whether Hibernate should show all SQL commands in the console (false by default)

formatSq|
Specify whether Hibernate should format SQL commands (true by default)

unitName
Allow you to specify name of persistence unit if you want to provide your own persistence.xml
file for JPA configuration. If this option is used, then all other configuration options are ignored
as you are expected to configure all JPA/DB properties in your own persistence.xml file. Hence
you can remove properties "dataSource" and "databaseSchema" in this case.

For more info about Hibernate properties, see Hibernate and JPA documentation [http://

hibernate.org/orm/documentation/] .

3.3.1.1. Tested databases

Here is list of RDBMS databases and corresponding JDBC drivers, which were tested with
Keycloak. Note that Hibernate dialect is usually set automatically according to your database,
but in some cases, you must manually set the proper dialect, as the default dialect may not

10

https://docs.jboss.org/author/display/AS71/DataSource+configuration
http://hibernate.org/orm/documentation/
http://hibernate.org/orm/documentation/
http://hibernate.org/orm/documentation/

MongoDB based model

work correctly. You can setup dialect by adding property dri ver Di al ect to the keycl oak-
server.j son into connect i onsJpa section (see above).

Table 3.1. Tested databases

Database JDBC driver Hibernate Dialect
H2 1.3.161 H2 1.3.161 auto
MySQL 5.5 MySQL Connector/J 5.1.25 auto
PostgreSQL 9.2 JDBC4 Postgresq| Driver, auto

Version 9.3-1100

Oracle 11g R1 Oracle JDBC Driver v11.1.0.7 auto

Microsoft SQL Server 2012 Microsoft SQL Server JDBC org.hibernate.dialect. SQLServer2008Dialect
Driver 4.0.2206.100

Sybase ASE 15.7 JDBC(TM)/7.07 ESD #5 auto
(Build 26792)/P/EBF20686

3.3.2. MongoDB based model

Keycloak provides MongoDB [http://www.mongodb.com] based model implementation, which
means that your identity data will be saved in MongoDB instead of traditional RDBMS. To
configure Keycloak to use Mongo open st andal one/ confi gurati on/ keycl oak-server.jsonin
your favourite editor, then change:

"eventsStore": {

"provider": "jpa",
Ilj pall: {
"excl ude-events": ["REFRESH TOKEN']
}
be
"real n': {
"provider": "jpa"
be
"user": {
"provider": "${keycl oak. user.provider:jpa}"
be
to:

"eventsStore": {
“provider": "nongo",

11

http://www.mongodb.com
http://www.mongodb.com

Chapter 3. Installation and C...

"mongo": {
"excl ude-events": ["REFRESH TOKEN']
}
I
"real n': {
"provider": "nobngo"
I
"user": {
"provider": "nongo"
I

And at the end of the file add the snippet like this where you can configure details about your
Mongo database:

"connecti onshMbngo": {
"default": {
"host": "127.0.0.1",
“port": "27017",
"db": "keycl oak",
"connecti onsPerHost": 100

All configuration options are optional. Default values for host and port are localhost and 27017.
Default name of database is keycl oak . You can also specify properties user and password if
you want authenticate against your MongoDB. If user and password are not specified, Keycloak
will connect unauthenticated to your MongoDB.

Finally there is set of optional configuration options, which can be used to
specify connection-pooling capabilities of Mongo client. Supported int options are:
connecti onsPer Host, threadsAl | owedToBl ockFor ConnectionMultiplier, maxWitTine,
connect Ti meout socket Ti meout. Supported boolean options are: socket KeepAlive
aut oConnect Retry. Supported long option is naxAut oConnect RetryTi me. See Mongo
documentation [http://api.mongodb.org/java/2.11.4/com/mongodb/MongoClientOptions.html] for
details about those options and their default values.

3.3.3. EAP6.x Logging

Accessing the admin console will get these annoying log messages:

WARN [org.]jboss. resteasy.core. ResourceLocator] (http-/127.0.0.1:8080-3)

12

http://api.mongodb.org/java/2.11.4/com/mongodb/MongoClientOptions.html
http://api.mongodb.org/java/2.11.4/com/mongodb/MongoClientOptions.html
http://api.mongodb.org/java/2.11.4/com/mongodb/MongoClientOptions.html

SSL/HTTPS Requirement/Modes

Field providers of subresource xxx will not be injected
according to spec

These can be ignored by editing standalone.xml of your jboss installation:

<l ogger category="org.]jboss.resteasy. core. ResourcelLocat or" >
<l evel nane="ERROR'/>
</ | ogger >

3.3.4. SSL/HTTPS Requirement/Modes

Warning

Keycloak is not set up by default to handle SSL/HTTPS in either the war distribution
or appliance. Itis highly recommended that you either enable SSL on the Keycloak
server itself or on a reverse proxy in front of the Keycloak server.

Keycloak can run out of the box without SSL so long as you stick to private IP addresses like
localhost, 127.0.0.1, 10.0.x.x, 192.168.x.x, and 172..16.x.x. If you try to access Keycloak from a
non-IP adress you will get an error.

Keycloak has 3 SSL/HTTPS modes which you can set up in the admin console under the Settings-
> ogin page and the Requi re SSL select box. Each adapter config should mirror this server-side
setting. See adapter config section for more details.

external
Keycloak can run out of the box without SSL so long as you stick to private IP addresses like
localhost, 127.0.0.1, 10.0.x.x, 192.168.x.x, and 172..16.x.x. If you try to access Keycloak from
a non-IP adress you will get an error.

none
Keycloak does not require SSL.

all
Keycloak requires SSL for all IP addresses.

3.3.5. SSL/HTTPS Setup

First enable SSL on Keycloak or on a reverse proxy in front of Keycloak. Then configure the
Keycloak Server to enforce HTTPS connections.

13

Chapter 3. Installation and C...

3.3.5.1. Enable SSL on Keycloak

The following things need to be done

« Generate a self signed or third-party signed certificate and import it into a Java keystore using
keyt ool .

« Enable JBoss or Wildfly to use this certificate and turn on SSL/HTTPS.
3.3.5.1.1. Creating the Certificate and Java Keystore

In order to allow HTTPS connections, you need to obtain a self signed or third-party signed
certificate and import it into a Java keystore before you can enable HTTPS in the web container
you are deploying the Keycloak Server to.

3.3.5.1.1.1. Self Signed Certificate

In development, you will probably not have a third party signed certificate available to test a
Keycloak deployment so you'll need to generate a self-signed on. Generate one is very easy to
do with the keyt ool utility that comes with the Java jdk.

$ keytool -genkey -alias |ocal host -keyalg RSA -keystore keycloak.jks -
validity 10950
Enter keystore password: secret
Re-ent er new password: secret
What is your first and | ast nane?

[Unknown] : | ocal host
What is the name of your organizational unit?
[Unknown] : Keycl oak

What is the name of your organization?

[Unknown] : Red Hat

What is the name of your Gty or Locality?

[Unknown] : Westford

What is the name of your State or Province?

[Unknown]: MA

What is the two-letter country code for this unit?

[Unknown]: US

I s CN=l ocal host, OU=Keycl oak, O=Test, L=Westford, ST=MA, C=US correct?
[no]: yes

You should answer the What is your first and |ast nanme? question with the DNS name
of the machine you're installing the server on. For testing purposes, | ocal host should be used.
After executing this command, the keycl oak. j ks file will be generated in the same directory as
you executed the keyt ool command in.

14

SSL/HTTPS Setup

If you want a third-party signed certificate, but don't have one, you can obtain one for free at
cacert.org [http://cacert.org]. You'll have to do a little set up first before doing this though.

The first thing to do is generate a Certificate Request:

$ keytool -certreq -alias yourdomain -keystore keycl oak.j ks > keycl oak. careq

Where your domai n is a DNS name for which this certificate is generated for. Keytool generates
the request:

----- BEG N NEW CERTI FI CATE REQUEST- - - - -
M | C2j CCAcl CAQAWZTEL MAk GA1UEBhMCVVIVK Cz AJ BgNVBAg TAK 1 BVREWDWY DVQOHEWh XZXNOZnBy
ZDEQVA4 GALUEChMHUnVVK | Ehhd DEQVAA GALUECX MHUNVK | Ehhd DESMBAGAL UEAX MIb&9j YWkob3NO
M | Bl j ANBgkghki GOWOBAQEFAACCA@AM | BCgKCAQEAr 7kck2Taavl EOGhcpi 9¢0r ncY4HhdzmY
Ax2nZzZf qleZEal Pql 5aTxwQZzzLDK9gbeAd8Ji 79Hz SqnRDxNYaZu7mAYhFKHgi xsol E305Yf zbwl
29Rvy+eUVe+WZxv5009wol VWpdSI NI MEL2LaFht X/ c1dqi qYVpf nvFshZQal g2nL8j uzZcBj j 4as
HI98gl S7khql / dkZKswONLvyxgJvp7PaXur X29f Nf 3i hG+oFr L220oFyV54BWWXCKU GPn61EGZGw
Ft 2qSI GLdct pMDlaJR2bcenl hEj ZKDksj QZoQ6YMXaAGkc YkG6Qkgr oc DE2YXDbi 7d df 9MegVJ 35
2DQVpw DAQABoDAWLgYJKoZI hvc NAQk OMSEWHz AdBgNVHQAEFgQUQM ZJBA+ j i Ddi VzaOvr E/ i
n2swDQYJKoZI hvec NAQELBQADggEBACSFRv Mkhal 3q86t HPBYWBUTt nt Sj s4qUnB6V6f 63f r hveWHf
PzRr | 1xH272XUl eBk0gt zZWOnNznf OnmMCt UBbHhhDc G32xol i kf qi bZi j 0QZCi G edVj HIFt ni DQ
9b MDUOXEMY7 gHZg5q6mJ f NGO Mo MpQaUVEEFRVT GEQQxbi FK7hRWIJ8S23/ d80e8nExgQxdJW 6vd0X
MzzFK6j 4Dj 55bJVuMr G-nf dNC52pNOD5v Ye47Aqh8oaj HX9XTycVt PXI 45r r WAH33f t br S8Sr Z2S

vql FQeuLL3BaHwpl 3t 7j 21 MMEK1p80Il aAXEASI b/ f Amr RHpLHBXRcq6uALUCZI 4Al t 8=

----- END NEW CERTI FI CATE REQUEST- - - - -

Send this ca request to your CA. The CA will issue you a signed certificate and send it to you.
Before you import your new cert, you must obtain and import the root certificate of the CA. You
can download the cert from CA (ie.: root.crt) and import as follows:

$ keytool -inport -keystore keycloak.jks -file root.crt -alias root

Last step is import your new CA generated certificate to your keystore:

$ keytool -inmport -alias yourdomain -keystore keycloak.jks -file your-
certificate. cer

15

http://cacert.org
http://cacert.org

Chapter 3. Installation and C...

3.3.5.1.2. Installing the keystore to WildFly

Now that you have a Java keystore with the appropriate certificates, you need to configure your
Wildfly installation to use it. First step is to move the keystore file to a directory you can reference in
configuration. | like to put it in st andal one/ confi gur ati on. Then you need to edit st andal one/
confi guration/ st andal one. xml to enable SSL/HTTPS.

To the securi ty-real ms element add:

<security-real m nane="Undert owReal ni >

<server-identities>
<ssl >
<keyst ore pat h="keycl oak. j ks" rel ative-to="jboss. server.config.dir"

keyst or e- passwor d="secret" />

</ ssl >

</server-identities>

</security-real n>

Find the element <server nane="default-server"> (it's a child element of <subsystem
xm ns="urn: j boss: domai n: undert ow 1. 0">) and add:

<https-1istener nane="htt ps" socket - bi ndi ng="htt ps" security-
real m=" Under t owReal ni'/ >

Check the Wildfly Undertow [https://docs.jboss.org/author/display/WFLY8/Undertow
+(web)+subsystem+configuration] documentation for more information on fine tuning the socket
connections.

3.3.5.1.3. Installing the keystore to JBoss EAP6

Now that you have a Java keystore with the appropriate certificates, you need to configure your
JBoss EAPG installation to use it. First step is to move the keystore file to a directory you can
reference in configuration. | like to put it in st andal one/ confi gur ati on. Then you need to edit
st andal one/ confi gur ati on/ st andal one. xm to enable SSL/HTTPS.

<subsystem xm ns="urn:jboss: domain: web: 1. 1" default-virtual -server="default-
host" native="fal se">
<connect or nane="http" protocol ="HTTP/ 1. 1" schene="http" socket - bi ndi ng="htt p"
redirect-port="443" />
<connector name="https" scheme="https" protocol ="HTTP/1.1" socket-
bi ndi ng="htt ps"

16

https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration
https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration
https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration

SSL/HTTPS Setup

enabl e- | ookups="fal se" secure="true">
<ssl name="local host-ssl" password="secret" protocol ="TLSv1"
key-al i as="1ocal host" certificate-key-file="${jboss.server.config.dir}/
keycl oak. j ks" />
</ connect or >
</ subsyst enp

Check the JBoss [https://docs.jboss.org/author/display/AS71/SSL+setup+guide] documentation
for more information on fine tuning the socket connections.

3.3.5.2. Enable SSL on a Reverse Proxy

Follow the documentation for your web server to enable SSL and configure reverse proxy for
Keycloak. It is important that you make sure the web server sets the X- For war ded- For and X-
For war ded- Pr ot o headers on the requests made to Keycloak. Next you need to enable pr oxy-
addr ess- f or war di ng on the Keycloak http connector. Assuming that your reverse proxy doesn't
use port 8443 for SSL you also need to configure what port http traffic is redirected to.

3.3.5.2.1. WildFly

Open st andal one/ confi gur ati on/ st andal one. xm in your favorite editor.

First add pr oxy- addr ess- f or war di ng and r edi r ect - socket tothe http-1i stener element:

<subsyst em xm ns="ur n: j boss: donmai n: undertow 1. 1" >

<http-listener name="defaul t" socket-bi ndi ng="http"
pr oxy- addr ess-forwardi ng="true" redirect-socket="proxy-https"/>

</ subsyst en®

Then add a new socket - bi ndi ng element to the socket - bi ndi ng- gr oup element:

<socket - bi ndi ng- group nane="st andar d- socket s" defaul t-interface="public"
port - of fset =" ${j boss. socket . bi ndi ng. port-of fset: 0}">

<socket - bi ndi ng name="proxy-https" port="443"/>
</ socket - bi ndi ng- gr oup>

Check the WildFly [https://docs.jboss.org/author/display/WFLY 8/Undertow+(web)+subsystem
+configuration] documentation for more information.

17

https://docs.jboss.org/author/display/AS71/SSL+setup+guide
https://docs.jboss.org/author/display/AS71/SSL+setup+guide
https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration
https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration
https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration

Chapter 3. Installation and C...

3.3.5.2.2. EAP

Open st andal one/ confi gur ati on/ st andal one. xm in your favorite editor.

You need to add r edi rect - port to http connect or element and add the Renot el pVal ve valve:

<subsyst em xnm ns="ur n: j boss: donai n: web: 1. 5"
defaul t-virtual -server="defaul t-host" native="fal se">
<connect or nanme="http" protocol ="HTTP/ 1. 1" scheme="htt p"
socket - bi ndi ng="ht t p"
redirect-port="443"/>
<virtual -server nanme="default-host" enabl e-wel cone-root="true">
<al i as nane="I| ocal host"/>
<al i as nane="exanpl e. coni'/ >
</virtual -server>
<val ve nane="r enot ei pval ve" nodul e="org. j boss. as. web"
cl ass- name="or g. apache. cat al i na. val ves. Renot el pVal ve" >
<par am par am name="pr ot ocol Header" param val ue="x-f orwar ded- prot 0"/ >
</val ve>
</ subsyst enp

3.4. Configuring Servers from the Subsystem

If you are using WildFly or EAP,he Keycloak server is deployed and configured from the Keycloak
subsystem. This makes provisioning simpler in a domain environment. It also allows you to create
more than one Keycloak server instance inside a single WildFly instance. And, you can upload
providers, themes, and server configurations without disturbing Keycloak's auth-server.war.

3.4.1. Manually Creating A Server

A Keycloak server can be declared by editing standalone.xml or domain.xml.

<server xm ns="urn:jboss:donain:1.4">

<profil e>
<subsyst em xm ns="ur n: j boss: donai n: keycl oak: 1. 0" >
<aut h-server nanme="keycl oak-1">
<enabl ed>t r ue</ enabl ed>
<web- cont ext >aut h</ web- cont ext >
</ aut h-server>
<aut h-server nanme="keycl aok-2">
<enabl ed>f al se</ enabl ed>
<web- cont ext >aut h2</ web- cont ext >
</ aut h-server>

18

Using CLI and CLI GUI with the Keycloak Subsystem

</ subsyst en®
</profile>

Warning

If you create more than one Keycloak server, you will need to use CLI to fully
configure each instance. At the least, you will need to run the update-server-config
operation.

3.4.2. Using CLI and CLI GUI with the Keycloak Subsystem

Servers can also be added/removed or enabled/disabled at runtime using the CLI
[https://developer.jboss.org/wiki/CommandLinelnterface] or CLI GUI [https://developer.jboss.org/
wiki/AGUIForTheCommandLinelnterface] tool. These are tools that ship with WildFly/
EAP and also with the Keycloak Appliance installation. See CLI [https:/
developer.jboss.org/wiki/CommandLinelnterface] or CLI GUI [https://developer.jboss.org/wiki/
AGUIForTheCommandLinelnterface] documentation to learn more about how to start the tools,
issue commands, and create CLI scripts.

To start CLI with the Keycloak Appliance install:

cd <APPL| ANCE_| NSTALL_DI R>/ keycl oak/ bi n
./jboss-cli.sh --gui

or

./jboss.cli.bat --gui

Note
Your server must be running to start in --gui mode.

3.4.2.1. Basic CLI Commands

Command to add a server in CLI:

/ subsyst enrkeycl oak/ aut h- server =ny- aut h- server/ : add(web- cont ext =ny- aut h,
enabl ed=t rue)

19

https://developer.jboss.org/wiki/CommandLineInterface
https://developer.jboss.org/wiki/CommandLineInterface
https://developer.jboss.org/wiki/AGUIForTheCommandLineInterface
https://developer.jboss.org/wiki/AGUIForTheCommandLineInterface
https://developer.jboss.org/wiki/AGUIForTheCommandLineInterface
https://developer.jboss.org/wiki/CommandLineInterface
https://developer.jboss.org/wiki/CommandLineInterface
https://developer.jboss.org/wiki/CommandLineInterface
https://developer.jboss.org/wiki/AGUIForTheCommandLineInterface
https://developer.jboss.org/wiki/AGUIForTheCommandLineInterface
https://developer.jboss.org/wiki/AGUIForTheCommandLineInterface

Chapter 3. Installation and C...

Because "enabled=true", a new Keycloak server will be immediately deployed. By default
"enabled" is set to false.

Command to remove a server in CLI:

/ subsyst enrkeycl oak/ aut h- server =ny- aut h-server/: renove

The Keycloak server will be immediately deleted and undeployed.

Command to enable or disable a server in CLI:

/ subsyst em=keycl oak/ aut h- server=foo/: write-attribute(name=enabl ed, val ue=true)

The Keycloak server will be immediately deployed or undeployed, but not deleted.

3.4.2.2. Uploading extra configuration using CLI

The Keycloak subsystem allows you to upload keycloak-server.json, provider jars, and theme jars
to a Keycloak server instance. The CLI operations for this are "update-server-config" and "add-
provider". You may use CLI, CLI GUI, or CLI scripts for these operations. The following examples
are shown using CLI GUI [https://developer.jboss.org/wiki/AGUIForTheCommandLinelnterface]
for clarity.

To use a new keycloak-server.json file for your server, find your server under the Keycloak
subsystem. Then right-click the server, select "update-server-config", and upload your file.

20

https://developer.jboss.org/wiki/AGUIForTheCommandLineInterface
https://developer.jboss.org/wiki/AGUIForTheCommandLineInterface

Using CLI and CLI GUI with the Keycloak Subsystem

g5 cuGul

[o R S)

Deployments Tabs Scripts Look & Feel Help

cmd> |/ subsystem=keycloak/auth-server=my-auth-server/

| Submit

Command Builder| subsystem=keycloak x |S-erver Logsl Output|

[] verbose

Right-click @ node to choose an operation. Close/Open a folder to refresh. Hover for help.

. [subsystem=keycloak/
. auth-server==

enabled == fals
web-context =>
- realm=*

-1 secure-deployment

Explore auth-server=my-auth-server

add-provider

list-overlays
read-attribute
read-children-names
read-children-resources
read-children-types
read-operation-description
read-operation-names
read-resource
read-resource-description
remove

remove-overlay
undefine-attribute
update-server-config

whoami

|Up|oad a new keycloak-server.json configuration file for the Keycloak auth server.

—

Filter: write-attribute [clear

21

Chapter 3. Installation and C...

Command Builder| subsystem=keycloak | Server Logsl Dutput|

8 cucul l= @] %
Deployments Tabs Scripts Look & Feel Help
-Submit
cmd> |/ subsystem=keycloak/auth-server=my-auth-server/ | |:|V-b
erbose

Right-click a node to choose an operation. Close/Open a folder to refresh. Hower for help.

.. [subsystem=keycloak/

[+ |, auth-server="

auth-server=my-auth-serv: g8 e

- # enabled => false . .
. @ web-context => auth Upload a new keycloak-server.json configuration file for the
| realm="* Keycloak auth server.

. secure-deployment="

bytes-to-upload: * | C:\kctemp\my-keycloak-server fson

[redeploy

["] overwrite

* = Required Field

Browse ...

Filter: Clear

Warning

If you wuse the update-server-config operation,

you should delete

or rename <WILDFLY_ HOME>/standalone/configuration/keycloak-server.json.
Otherwise, all Keycloak server instances will use this file instead of your uploaded
file.

To upload a new provider jar or theme jar to your server, find your server under the Keycloak
subsystem. Then right-click the server, select "add-provider”, and upload your file.

22

-

Using CLI and CLI GUI with the Keycloak Subsystem

55 CuGUI

D e

Deployments Tabs Scripts Look & Feel Help

cmd> |/ subsystem=keycloak/auth-server=my-auth-server/

| Submit

Command Builder| subsystem=keycloak % | Server Logsl Ou’(pu'(|

Verbose

Right-click @ node to choose an operation. Close/Open a folder to refresh. Hover for help.

A

&

. secure-deployments

/subsystem=keycloak/

. auth-server==

-# enabled == fals¢
- # web-context =>
, realm="*

Filter:

—

Explore auth-server=my-auth-server

add-provider

list-overlays

Add a provider service jar to the Keycloak auth server.

read-attribute
read-children-names
read-children-resources
read-children-types
read-operation-description
read-operation-names
read-resource
read-resource-description
remove

remove-overlay
undefine-attribute
update-server-config
whoami

write-attribute

Clear

23

Chapter 3. Installation and C...

T

|
i cuGur =B8] X
Deployments Tabs Scripts Look & Feel Help
-Submit
cmd> |/5u.bsystem=keycloak/ auth-server=my-auth-server/ | |:|V-b
erbose
Command Builder| subsystem=keycloak % | Server Logsl Dutput|
Right-click a node to choose an operation. Close/Open a folder to refresh. Howver for help.
. [subsystem=keycloak/ » ™
[+ . auth-server=* or] add-provider ﬁ
auth-server=my-auth-se|
- # enabled => false Add a provider service jar to the Keycloak auth server.
- # web-context => auth
realm=>
[[l secure-deployment=" bytes-to-upload: * C:\kctemp\federation-properties-example.jar
uploaded-file-name: * | federation-properties-example.jar
[] redeploy
|:| overwrite
* = Required Field
L
Filter: Clear

3.4.2.3. Working with overlays

When you upload a provider jar, theme jar, or keycloak-server.json file, you are creating an overlay.
That is, the file is "overlayed" onto the Keycloak server at deploy time. There are two additional

operations that help you manage these overlays. They are "list-overlays" and "remove-overlay".
Here are CLI examples of these operations.

/ subsyst enmrkeycl oak/ aut h- server =ny- aut h-server/:list-overl ays
{

"out come" => "success",

"result" => [

"/ VEB- | NF/ cl asses/ META- | NF/ keycl oak- server.json",

"/WEB- I NF/|i b/ federation-properti es-exanple.jar"
Il c

/ subsyst enrkeycl oak/ aut h- ser ver =ny- aut h- server/: renove- overl ay(overl ay-fil e-

pat h=/ WEB- | NF/ | i b/ f eder ati on- properties-exanpl e.jar, redepl oy=true)
{

24

Adding a Keycloak server in Domain Mode

"out cone" => "success",

3.4.3. Adding a Keycloak server in Domain Mode

In domain mode, you start the server with the "domain" command instead of the "standalone"
command. In this case, the Keycloak subsystem is defined in domain/configuration/domain.xml
instead of standalone/configuration.standalone.xml. Inside domain.xml, you will see more than
one profile. A Keycloak subsystem can be defined in zero or more of those profiles.

In the example below, a Keycloak server named "foo" is defined in the "full* profile. The "full"
profile is assigned to the "main-server-group"”. Every WildFly instance that belongs to "main-
server-group” will get an identically configured deployment of the "foo" Keycloak server.

All operations discussed earlier are valid for a Keycloak server in a domain. You can enable/
disable, upload new keyclaok-server.json, and add provider jars. In the following example, any
changes that are made to the "foo" server will be automatically propogated to every instance in
"main-server-group".

25

Chapter 3. Installation and C...

Deployments Tabs Scripts Look & Feel Help

Submit

cmd> |."5erver—qroupqnain—server—qroup/] verb
erbose

Command Builder | Server Logsl{}utputl
Right-click a node to choose an operation. Close/Open a folder to refresh. Hover for help.

o P TOGTC

[| profile=ha
=+ o profile=full
~ # name == full
. subsystem=logging
. subsystem=batch
| subsystem=datasources
| subsystem=ee
| subsystem=ejb3
| subsystem=io
. subsystem=infinispan
. subsystem=jacorb
| subsystem=jaxrs
. subsystem=jca
. subsystem=jdr
| subsystem=jmx
| subsystem=jpa
| subsystem=jsf
| subsystem=jsr77
. subsystem=mail
| subsystem=messaging
| subsystem=naming
| subsystem=pojo
| subsystem=remoting
. subsystem=resource-adapters
| subsystem=sar
| subsystem=security
| subsystem=transactions
. subsystem=undertow
| subsystem=webservices
. subsystem=weld
.. subsystem=keycloak
“ . auth-server==
. auth-server=foo
. realm="=
| secure-deployment="
<. profile=full-ha
| server-group="=
-/ Server-group=main-server-group

management-subsystem-endpoint == false

socket-binding-group => full-sockets
socket-binding-port-offset == 0

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
E..

26

Chapter 4.

Chapter 4. Running Keycloak
Server on OpenShift

Keycloak provides a OpenShift cartridge to make it easy to get it running on OpenShift. If you don't
already have an account or don't know how to create applications go to https://www.openshift.com/
first. You can create the Keycloak instance either with the web tool or the command line tool, both
approaches are described below.

Warning

It's important that immediately after creating a Keycloak instance you open the
Adni ni strati on Consol e and login to reset the password. If this is not done
anyone can easily gain admin rights to your Keycloak instance.

4.1. Create Keycloak instance with the web tool

Open https://openshift.redhat.com/app/console/applications and click on Add Application.
Scroll down to the bottom of the page to find the Code
Anyt hi ng section. Insert http://cartreflect-claytondev. rhcl oud. con gi t hub/ keycl oak/
openshi ft-keycl oak-cartridgeintothe URL to a cartridge definition field and click on
Next . Fill in the following form and click on Creat e Applicati on.

Click on Continue to the application overview page. Under the list of applications you
should find your Keycloak instance and the status should be St arted. Click on it to open the
Keycloak servers homepage.

4.2. Create Keycloak instance with the command-line
tool

Run the following command from a terminal:

rhc app create <APPLICATION NAME> http://cartreflect-claytondev.rhcloud. com
gi t hub/ keycl oak/ openshi ft - keycl oak-cartridge
Replace <APPLI CATI ON NAME> with the name you want (for example keycloak).

Once the instance is created the rhc tool outputs details about it. Open the returned URL in a
browser to open the Keycloak servers homepage.

27

https://www.openshift.com/
https://openshift.redhat.com/app/console/applications

Chapter 4. Running Keycloak S...

4.3. Next steps

The Keycloak servers homepage shows the Keycloak logo and Wl come to Keycl oak. There
is also a link to the Admi ni strati on Consol e. Open that and log in using username adni n and
password adni n. On the first login you are required to change the password.

Tip

On OpenShift Keycloak has been configured to only accept requests over https. If
you try to use http you will be redirected to https.

28

Chapter 5.

Chapter 5. Master Admin Access
Control

You can create and manage multiple realms by logging into the nmast er Keycloak admin console
at/ {keycl oak-root}/adm n/i ndex. ht m

Users in the Keycloak nast er realm can be granted permission to manage zero or more realms
that are deployed on the Keycloak server. When a realm is created, Keycloak automatically
creates various roles that grant fine-grain permissions to access that new realm. Access to The
Admin Console and REST endpoints can be controlled by mapping these roles to users in the
mast er realm. It's possible to create multiple super users as well as users that have only access
to certain operations in specific realms.

5.1. Globhal Roles

There are two realm roles in the mast er realm. These are:

e adni n - This is the super-user role and grants permissions to all operations on all realms

* create-real m- This grants the user permission to create new realms. A user that creates a
realm is granted all permissions to the newly created realm.

To add these roles to a user select the mast er realm, then click on User s. Find the user you want
to grant permissions to, open the user and click on Rol e Mappi ngs. Under Real m Rol es assign
any of the above roles to the user by selecting it and clicking on the right-arrow.

5.2. Realm Specific Roles

Each realm in Keycloak is represented by an application in the mast er realm. The name of the
application is <r eal m nane>-r eal m This allows assigning access to users for individual realms.
The roles available are:

* vi ew r eal m- View the realm configuration

» vi ew users - View users (including details for specific user) in the realm

e vi ew appl i cati ons - View applications in the realm

e viewclients - View clients in the realm

* vi ewevents - View events in the realm

* manage- r eal m- Modify the realm configuration (and delete the realm)

e manage- users - Create, modify and delete users in the realm

29

Chapter 5. Master Admin Acces...

e manage- appl i cati ons - Create, modify and delete applications in the realm
* manage- cl i ent s - Create, modify and delete clients in the realm

e manage- event s - Enable/disable events, clear logged events and manage event listeners
Manage roles includes permissions to view (for example a user with manage-realm role can also
view the realm configuration).

To add these roles to a user select the mast er realm, then click on User s. Find the user you want
to grant permissions to, open the user and click on Rol e Mappi ngs. Under Appl i cati on Rol es
select the application that represents the realm you're adding permissions to (<r eal m name>-
r eal m), then assign any of the above roles to the user by selecting it and clicking on the right-arrow.

30

Chapter 6.

Chapter 6. Per Realm Admin
Access Control

Administering your realm through the nmast er realm as discussed in Chapter 5, Master Admin
Access Control may not always be ideal or feasible. For example, maybe you have more than one
admin application that manages various admin aspects of your organization and you want to unify
all these different "admin consoles" under one realm so you can do SSO between them. Keycloak
allows you to grant realm admin privleges to users within that realm. These realm admins can
participate in SSO for that realm and visit a keycloak admin console instance that is dedicated
solely for that realm by going to the url: / { keycl oak-r oot }/ admni n/{real n}/ consol e

6.1. Realm Roles

Each realm has a built-in application called r eal m managenent . This application defines roles that
define permissions that can be granted to manage the realm.

* real madni n - This is a composite role that grants all admin privileges for managing security
for that realm.
These are more fine-grain roles you can assign to the user.

« vi ew r eal m- View the realm configuration

« vi ew users - View users (including details for specific user) in the realm

e vi ew appl i cati ons - View applications in the realm

* viewclients - View clients in the realm

e vi ew event s - View events in the realm

* manage- r eal m- Modify the realm configuration (and delete the realm)

e manage- user s - Create, modify and delete users in the realm

e manage- appl i cati ons - Create, modify and delete applications in the realm
* manage-cl i ent s - Create, modify and delete clients in the realm

e manage- event s - Enable/disable events, clear logged events and manage event listeners
Manage roles includes permissions to view (for example a user with manage-realm role can also
view the realm configuration).

To add these roles to a user select the realm you want. Then click on User s. Find the user you
want to grant permissions to, open the user and click on Rol e Mappi ngs. Under Appl i cati on

31

Chapter 6. Per Realm Admin Ac...

Rol es select r eal m managenent, then assign any of the above roles to the user by selecting it
and clicking on the right-arrow.

32

Chapter 7.

Chapter 7. Adapters

Keycloak can secure a wide variety of application types. This section defines which application
types are supported and how to configure and install them so that you can use Keycloak to secure
your applications.

7.1. General Adapter Config

Each adapter supported by Keycloak can be configured by a simple JSON text file. This is what
one might look like:

{
"realni' : "denp",
"resource" : "custoner-portal",
"real mpublic-key" : "M G MAOGCSgGSI b3D. . . 31Lwi DAQAB",
"aut h-server-url" : "https://|ocal host: 8443/ aut h",
"ssl-required" : "external",
"use-resource-rol e-nmappi ngs" : fal se,
"enabl e-cors" : true,
"cors- max-age" : 1000,
"cors-al |l owed- nmet hods" : ["POST", "PUT", "DELETE', "GET"],
"bearer-only" : fal se,
"enabl e- basi c-aut h" : fal se,
"expose-token" : true,
"credential s" : {
"secret" : "234234-234234-234234"
b
"connecti on- pool -si ze" : 20,
"di sabl e-trust-manager": fal se,
"al | ow any- host name" : fal se,
"truststore" : "path/to/truststore.jks",
"truststore-password" : "geheint,
"client-keystore" : "path/to/client-keystore.jks",
"client-keystore-password" : "geheint,
"client-key-password" : "geheint
}

Some of these configuration switches may be adapter specific and some are common across all
adapters. For Java adapters you can use ${...} enclosure as System property replacement.
For example ${j boss. server. confi g. di r}. Also, you can obtain a template for this config file
from the admin console. Go to the realm and application you want a template for. Go to the
Instal | ation tab and this will provide you with a template that includes the public key of the
realm.

33

Chapter 7. Adapters

Here is a description of each item:

realm
Name of the realm representing the users of your distributed applications and services. This
is REQUIRED.

resource
Username of the application. Each application has a username that is used when the
application connects with the Keycloak server to turn an access code into an access token
(part of the OAuth 2.0 protocol). This is REQUIRED.

realm-public-key
PEM format of public key. You can obtain this from the administration console. This is
REQUIRED.

auth-server-url
The base URL of the Keycloak Server. All other Keycloak pages and REST services are
derived from this. It is usually of the form ht t ps: // host : port/ aut h This is REQUIRED.

ssl-required
Ensures that all communication to and from the Keycloak server from the adapter is over
HTTPS. This is OPTIONAL. The default value is external meaning that HTTPS is required by
default for external requests. Valid values are ‘all', 'external' and 'none’.

use-resource-role-mappings
If set to true, the adapter will look inside the token for application level role mappings for the
user. If false, it will look at the realm level for user role mappings. This is OPTIONAL. The
default value is false.

enable-cors
This enables CORS support. It will handle CORS preflight requests. It will also look into the
access token to determine valid origins. This is OPTIONAL. The default value is false.

cors-max-age
If CORS is enabled, this sets the value of the Access- Control - Max- Age header. This is
OPTIONAL. If not set, this header is not returned in CORS responses.

cors-allowed-methods
If CORS is enabled, this sets the value of the Access- Control - Al | ow Met hods header. This
should be a JSON list of strings. This is OPTIONAL. If not set, this header is not returned in
CORS responses.

bearer-only
This tells the adapter to only do bearer token authentication. That is, it will not do OAuth
2.0 redirects, but only accept bearer tokens through the Aut hori zati on header. This is
OPTIONAL. The default value is false.

34

General Adapter Config

enable-basic-auth
This tells the adapter to also support basic authentication. If this option is enabled, then secret
must also be provided. This is OPTIONAL. The default value is false.

expose-token
If t rue, an authenticated browser client (via a Javascript HTTP invocation) can obtain the
signed access token via the URL r oot/ k_query_bearer _t oken. This is OPTIONAL. The
default value is false.

credentials
Specify the credentials of the application. This is an object notation where the key is the
credential type and the value if the value of the credential type. Currently only passwor d is
supported. This is REQUIRED.

connection-pool-size
Adapters will make separate HTTP invocations to the Keycloak Server to turn an access code
into an access token. This config option defines how many connections to the Keycloak Server
should be pooled. This is OPTIONAL. The default value is 20.

disable-trust-manager
If the Keycloak Server requires HTTPS and this config option is set to t r ue you do not have
to specify a truststore. While convenient, this setting is not recommended as you will not be
verifying the host name of the Keycloak Server. Thisis OPTIONAL. The default value is f al se.

allow-any-hostname
If the Keycloak Server requires HTTPS and this config option is set to t rue the Keycloak
Server's certificate is validated via the truststore, but host name validation is not done. This
is not a recommended. This seting may be useful in test environments This is OPTIONAL.
The default value is f al se.

truststore

This setting is for Java adapters. The value is the file path to a Java keystore file. If you
prefix the path with cl asspat h: , then the truststore will be obtained from the deployment's
classpath instead. Used for outgoing HTTPS communications to the Keycloak server. Client
making HTTPS requests need a way to verify the host of the server they are talking to. This
is what the trustore does. The keystore contains one or more trusted host certificates or
certificate authorities. You can create this truststore by extracting the public certificate of the
Keycloak server's SSL keystore. This is OPTIONAL if ssl -required is none or di sabl e-
t rust - manager istrue.

truststore-password
Password for the truststore keystore. This is REQUIRED if t r ust st or e is set.

client-keystore
Not supported yet, but we will support in future versions. This setting is for Java adapters.
This is the file path to a Java keystore file. This keystore contains client certificate for two-way
SSL when the adapter makes HTTPS requests to the Keycloak server. This is OPTIONAL.

35

Chapter 7. Adapters

client-keystore-password
Not supported yet, but we will support in future versions. Password for the client keystore.
This is REQUIRED if cl i ent - keyst or e is set.

client-key-password
Not supported yet, but we will support in future versions. Password for the client's key. This
is REQUIRED if cl i ent - keyst or e is set.

auth-server-url-for-backend-requests
Alternative location of auth-server-url used just for backend requests. It must be absolute URI.
Useful especially in cluster (see Relative URI Optimization) or if you would like to use https
for browser requests but stick with http for backend requests etc.

always-refresh-token
If true, Keycloak will refresh token in every request. More info in Refresh token in each request

register-node-at-startup
If true, then adapter will send registration request to Keycloak. It's false by default as useful
just in cluster (See Registration of application nodes to Keycloak)

register-node-period
Period for re-registration adapter to Keycloak. Useful in cluster. See Registration of application
nodes to Keycloak for details.

token-store
Possible values are session and cookie. Default is session, which means that adapter stores
account info in HTTP Session. Alternative cookie means storage of info in cookie. See
Stateless token store for details.

principal-attribute
OpenlID Connection ID Token attribute to populate the UserPrincipal name with. If token
attribute is null, defaults to sub Possible values are sub, pr ef erred_user name, emai | , nane,
ni cknane, gi ven_name, fani | y_nane.

7.2. JBoss/Wildfly Adapter

To be able to secure WAR apps deployed on JBoss AS 7.1.1, JBoss EAP 6.x, or Wildfly, you
must install and configure the Keycloak Subsystem. You then have two options to secure your
WARSs. You can provide a keycloak config file in your WAR and change the auth-method to
KEYCLOAK within web.xml. Alternatively, you don't have to crack open your WARSs at all and can
apply Keycloak via the Keycloak Subsystem configuration in standalone.xml. Both methods are
described in this section.

7.2.1. Adapter Installation

Adapters are no longer included with the appliance or war distribution.Each adapter is a separate
download on the Keycloak download site. They are also available as a maven artifact.

36

Adapter Installation

Install on Wildfly:

$ cd $W LDFLY_HOVE
$ unzip keycl oak-w | df | y-adapter-dist.zip

Install on JBoss EAP 6.x:

$ cd $JBOSS_HOME
$ unzi p keycl oak- eap6- adapter-dist.zip

Install on JBoss AS 7.1.1:

$ cd $JBOSS_HOVE
$ unzi p keycl oak-as7-adapter-dist.zip

This zip file creates new JBoss Modules specific to the Wildfly Keycloak Adapter within your Wildfly
distro.

After adding the Keycloak modules, you must then enable the Keycloak Subsystem within your
app server's server configuration: domai n. xml or st andal one. xni .

<server xm ns="urn:jboss: domain: 1.4">

<ext ensi ons>
<ext ensi on nodul e="or g. keycl oak. keycl oak- subsyst enf/ >

</ ext ensi ons>

<profil e>
<subsystem xm ns="urn: j boss: domai n: keycl oak: 1. 0"/ >

</profile>

37

Chapter 7. Adapters

Note
For AS7, the extension module is org.keycloak.keycloak-as7-sybsystem.

Finally, you must specify a shared keycloak security domain. This security domain should be used
with EJBs and other components when you need the security context created in the secured
web tier to be propagated to the EJBs (other EE component) you are invoking. Otherwise this
configuration is optional.

<server xm ns="urn:jboss: domain: 1.4">
<subsyst em xm ns="urn: j boss: domai n: security:1.2">
<security-domai ns>

<security-donmai n nane="keycl oak">
<aut henti cati on>
<l ogi n- nodul e code="or g. keycl oak. adapt ers. j boss. Keycl oakLogi nModul e"
flag="required"/>
</ aut henti cati on>
</ security-domai n>
</ security-domai ns>

For example, if you have a JAX-RS service that is an EJB within your WEB-INF/classes directory,
you'll want to annotate it with the @ SecurityDomain annotation as follows:

i mport org.jboss. ej b3. annot ati on. Securi t yDonai n;
i mport org.jboss.resteasy. annot ati ons. cache. NoCache;

i mport javax.annotation.security. Rol esAl | owed;
i mport javax.ejb. EJB;

i mport javax.ejb.Statel ess

i mport javax.ws.rs.GET;

i mport javax.ws.rs. Path;

i mport javax.ws.rs. Produces;

i mport java.util.Arraylist;

i mport java.util.List;

@rat h("cust oners")

@t at el ess

@ecuritybDomai n("keycl oak")
public class CustonerService {

38

Required Per WAR Configuration

@JB
Cust orrer DB db;

@EET

@°r oduces("application/json")

@loCache

@rol esAl | owed("db_user™)

public List<String> getCustoners() {
return db. get Custoners();

We hope to improve our integration in the future so that you don't have to specify the
@SecurityDomain annotation when you want to propagate a keycloak security context to the EJB
tier.

7.2.2. Required Per WAR Configuration

This section describes how to secure a WAR directly by adding config and editing files within your
WAR package.

The first thing you must do is create a keycl oak. j son adapter config file within the WEB- | NF
directory of your WAR. The format of this config file is describe in the general adapter configuration
section.

Next you must set the aut h- met hod to KEYCLOAK in web. xm . You also have to use standard
servlet security to specify role-base constraints on your URLs. Here's an example pulled from one
of the examples that comes distributed with Keycloak.

<web-app xm ns="http://java. sun.coni xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://java. sun. coni xm / ns/javaee http://java. sun. con
xm / ns/j avaee/ web- app_3_0. xsd"
versi on="3. 0" >

<nmodul e- nane>cust oner - port al </ nodul e- name>

<security-constraint>
<web-resource-col | ecti on>
<web- r esour ce- nane>Adni ns</ web- r esour ce- nane>
<url -pattern>/adm n/*</url -pattern>
</ web-resource-col | ecti on>
<aut h- constrai nt >
<r ol e- nanme>adni n</ r ol e- nanme>

39

Chapter 7. Adapters

</ aut h-constrai nt>
</ security-constraint>
<security-constraint>
<web-resource-col | ecti on>
<web- r esour ce- nane>Cust oner s</ web- r esour ce- nane>
<url -pattern>/custoners/*</url-pattern>
</ web-resource-col | ecti on>
<aut h- constrai nt >
<r ol e- nane>user </ r ol e- name>
</ aut h-constrai nt >
</ security-constraint>

<security-constraint>
<web-r esour ce-col | ecti on>
<url-pattern>/*</url-pattern>
</ web-resource-col | ecti on>
<user - dat a- constrai nt >
<transport - guar ant ee>CONFI DENTI AL</t r ansport - guar ant ee>
</ user -dat a- constrai nt >
</ security-constraint>

<l ogi n-confi g>

<aut h- met hod>KEYCLOAK</ aut h- net hod>

<real mname>this is ignored currently/real mname>
</l ogi n- confi g>

<security-rol e>
<r ol e- name>adni n</r ol e- name>
</security-rol e>
<security-rol e>
<r ol e- nane>user </ r ol e- name>
</security-rol e>
</ web- app>

7.2.3. Securing WARs via Keycloak Subsystem

You do not have to crack open a WAR to secure it with Keycloak. Alternatively, you can externally
secure it via the Keycloak Subsystem. While you don't have to specify KEYCLOAK as an aut h-
met hod, you still have to define the security-constraints in web. xm . You do not, however,
have to create a VEB- | NF/ keycl oak. j son file. This metadata is instead defined within XML in
your server's donai n. xn or st andal one. xm subsystem configuration section.

<server xm ns="urn:jboss: domain: 1.4">

<profil e>

40

Securing WARSs via Keycloak Subsystem

<subsyst em xm ns="ur n: j boss: donai n: keycl oak: 1. 0" >
<secur e- depl oyment nane="WAR MODULE NAME. war " >
<r eal mrdeno</real m»
<real m publ i c- key>M G MAOGCSqGSI b3DQEBAQUAA</ r eal m publ i c- key>
<aut h-server-url >http://l ocal host: 8081/ aut h</ aut h-server-url >
<ssl -requi r ed>ext er nal </ ssl -requi red>
<r esour ce>cust oner - portal </ resource>
<credential name="secret">password</credential >
</ secur e- depl oynent >
</ subsyst en>
</profile>

The securi ty-depl oynent nane attribute identifies the WAR you want to secure. Its value is the
modul e- nane defined in web. xm with . war appended. The rest of the configuration corresponds
pretty much one to one with the keycl oak. j son configuration options defined in general adapter
configuration. The exception is the credenti al element.

To make it easier for you, you can go to the Keycloak Adminstration Console and go to the
Application/Installation tab of the application this WAR is aligned with. It provides an example XML
file you can cut and paste.

There is an additional convenience format for this XML if you have multiple WARs you are
deployment that are secured by the same domain. This format allows you to define common
configuration items in one place under the r eal melement.

<subsyst em xm ns="ur n: j boss: donmai n: keycl oak: 1. 0" >

<r eal m nane="denmo" >
<real m publ i c- key>M G MAOGCSqGSI b3DQEBA</ r eal m publ i c- key>
<aut h-server-url >http://l ocal host: 8080/ aut h</ aut h-server-url >
<ssl -requi r ed>ext er nal </ ssl -requi red>

</real n»

<secur e- depl oyment name="cust oner-portal .war">
<r eal nrdeno</r eal np
<r esour ce>cust oner - port al </ resource>
<credential name="secret">password</credential >

</ secur e- depl oyment >

<secur e- depl oynent nane="product-portal .war">
<r eal nrdeno</r eal n»
<r esour ce>pr oduct - port al </ resour ce>
<credential name="secret">password</credential >

</ secur e- depl oynent >

<secur e- depl oynent nane="dat abase. war" >
<r eal mrdeno</real m»
<r esour ce>dat abase- servi ce</resource>
<bear er - onl y>true</ bearer-onl y>

41

Chapter 7. Adapters

</ secur e- depl oynment >
</ subsyst en>

7.3. Tomcat 6, 7 and 8 Adapters

To be able to secure WAR apps deployed on Tomcat 6, 7 and 8 you must install the Keycloak
Tomcat 6, 7 or 8 adapter into your Tomcat installation. You then have to provide some extra
configuration in each WAR you deploy to Tomcat. Let's go over these steps.

7.3.1. Adapter Installation

Adapters are no longer included with the appliance or war distribution. Each adapter is a separate
download on the Keycloak download site. They are also available as a maven artifact.

You must unzip the adapter distro into Tomcat's |i b/ directory. Including adapter's jars within
your WEB-INF/lib directory will not work! The Keycloak adapter is implemented as a Valve and
valve code must reside in Tomcat's main lib/ directory.

$ cd $TOMCAT_HOWE/ | i b

$ unzi p keycl oak-tontat 6-adapter-dist.zip
or

$ unzi p keycl oak-tontat7-adapter-dist.zip
or

$ unzi p keycl oak-tontat 8-adapter-dist.zip

7.3.2. Required Per WAR Configuration

This section describes how to secure a WAR directly by adding config and editing files within your
WAR package.

The first thing you must do is create a META- | NF/ cont ext . xni file in your WAR package. This is
a Tomcat specific config file and you must define a Keycloak specific Valve.

<Cont ext pat h="/your-cont ext - pat h" >
<Val ve cl assNane="or g. keycl oak. adapt ers. t ontat . Keycl oakAut hent i cat or Val ve"/ >
</ Cont ext >

42

Required Per WAR Configuration

Next you must create a keycl oak. j son adapter config file within the WEB- | NF directory of your
WAR. The format of this config file is describe in the general adapter configuration section.

Finally you must specify both a | ogi n- confi g and use standard servlet security to specify role-
base constraints on your URLSs. Here's an example:

<web-app xm ns="http://java.sun.coni xm /ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
Xsi : schemaLocati on="http://java. sun. coni xm / ns/j avaee http://java. sun. conf
xm / ns/j avaee/ web- app_3_0. xsd"
version="3.0">

<nodul e- name>cust oner - por t al </ nodul e- name>

<security-constraint>
<web-resour ce-col | ecti on>
<web- r esour ce- nane>Cust oner s</ web- r esour ce- nane>
<url-pattern>/*</url-pattern>
</ web-resource-col | ecti on>
<aut h- constrai nt >
<rol e- nane>user </ rol e- nane>
</ aut h-constrai nt >
</ security-constraint>

<security-constraint>
<web-r esour ce-col | ecti on>
<url-pattern>/*</url-pattern>
</ web-resource-col | ecti on>
<user - dat a- constrai nt >
<transport - guar ant ee>CONFI DENTI AL</t r ansport - guar ant ee>
</ user - dat a- constrai nt >
</ security-constraint>

<l ogi n-confi g>

<aut h- met hod>BASI C</ aut h- met hod>

<real mnane>this is ignored currently/real mname>
</l ogi n-confi g>

<security-rol e>
<r ol e- nane>adni n</ r ol e- nane>
</security-rol e>
<security-rol e>
<rol e- nane>user </ r ol e- name>
</security-rol e>
</ web- app>

43

Chapter 7. Adapters

7.4. Jetty 9.x Adapters

Keycloak has a separate adapter for Jetty 9.1.x and Jetty 9.2.x that you will have to install into
your Jetty installation. You then have to provide some extra configuration in each WAR you deploy
to Jetty. Let's go over these steps.

7.4.1. Adapter Installation

Adapters are no longer included with the appliance or war distribution.Each adapter is a separate
download on the Keycloak download site. They are also available as a maven artifact.

You must unzip the Jetty 9.x distro into Jetty 9.x's root directory. Including adapter's jars within
your WEB-INF/lib directory will not work!

$ cd $JETTY_HOVE
$ unzip keycl oak-jetty92-adapter-dist.zip

Next, you will have to enable the keycloak module for your jetty.base.

$ cd your-base
$ java -jar $JETTY_HOVE/ start.jar --add-to-startd=keycl oak

7.4.2. Required Per WAR Configuration

This section describes how to secure a WAR directly by adding config and editing files within your
WAR package.

The first thing you must do is create a WEB- | NF/ j et t y-web. xmi file in your WAR package. This
is a Jetty specific config file and you must define a Keycloak specific authenticator within it.

<?xm version="1.0"?>
<! DOCTYPE Configure PUBLIC "-//Mrt Bay Consulting//DID Configure//EN' "http://
www. ecl i pse.org/jetty/configure_9 0.dtd">
<Configure class="org.eclipse.jetty.webapp. WebAppCont ext" >
<CGet name="securityHandl er">
<Set name="aut henti cator">
<New cl ass="org. keycl oak. adapters.jetty. Keycl oakJettyAut henti cator">

44

Required Per WAR Configuration

</ New>
</ Set >
</ Get >
</ Confi gur e>

Next you must create a keycl oak. j son adapter config file within the WEB- | NF directory of your
WAR. The format of this config file is describe in the general adapter configuration section.

A Warning

The Jetty 9.1.x adapter will not be able to find the keycl oak. j son file. You will have
to define all adapter settings within the j et t y- web. xnl file as described below.

Instead of wusing keycloak.json, you can define everything within the jetty-
web. xm . You'll just have to figure out how the json settings match to the
org. keycl oak. represent ati ons. adapt ers. confi g. Adapt er Confi g class.

<?xm version="1.0"?>
<! DOCTYPE Configure PUBLIC "-//Mrt Bay Consulting//DTD Configure//EN" "http://
www, ecl i pse.org/jetty/configure_9 0.dtd">
<Configure class="org.eclipse.jetty.webapp. WebAppCont ext ">
<Get name="securityHandl er">
<Set name="aut henti cator">
<New cl ass="org. keycl oak. adapters.jetty. Keycl oakJettyAut henti cator">
<Set name="adapt er Confi g">
<New
cl ass="org. keycl oak. represent ati ons. adapt ers. confi g. Adapt er Confi g" >
<Set nane="real nf >t ontat </ Set >
<Set name="resource">cust oner - portal </ Set >
<Set name="aut hServer Url">http://| ocal host: 8081/ aut h</ Set >
<Set nane="ssl Requi r ed" >ext er nal </ Set >
<Set name="credential s">

<Map>
<Entry>
<lItenpsecret</Itenpr
<l t enppasswor d</ | t en>
</Entry>
</ Map>
</ Set >
<Set nane="r eal nKey" >M G MAOGCSqGSI h3DQEBAQUAA4</ Set >
</ New>
</ Set >

</ New>

45

Chapter 7. Adapters

</ Set >

</ Get >

</ Confi gur e>

You do not have to crack open your WAR to secure it with keycloak. Instead create the jetty-
web.xml file in your webapps directory with the name of yourwar.xml. Jetty should pick it up. In
this mode, you'll have to declare keycloak.json configuration directly within the xml file.

Finally you must specify both a | ogi n- confi g and use standard servlet security to specify role-
base constraints on your URLs. Here's an example:

<web-app xm ns="http://java.sun.coni xm /ns/javaee"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
Xxsi : schemaLocati on="http://java. sun. coni xm / ns/j avaee http://java. sun. comf

xm / ns/j avaee/ web- app_3_0. xsd"

version="3.0">

<nmodul e- name>cust orer - por t al </ nodul e- name>

<security-constraint>
<web-resour ce-col | ecti on>
<web- r esour ce- nane>Cust oner s</ web- r esour ce- nane>
<url-pattern>/*</url-pattern>
</ web-resource-col |l ecti on>
<aut h- constrai nt >
<rol e- nane>user </ r ol e- nane>
</ aut h-constrai nt >
</ security-constraint>

<security-constraint>
<web-r esour ce-col | ecti on>
<url-pattern>/*</url-pattern>
</ web-resource-col | ecti on>
<user - dat a- constrai nt >
<transport - guar ant ee>CONFI DENTI AL</t r ansport - guar ant ee>
</ user - dat a- constrai nt >
</ security-constraint>

<l ogi n-confi g>

<aut h- met hod>BASI C</ aut h- met hod>

<real mnanme>this is ignored currently/real mnanme>
</l ogi n-confi g>

<security-rol e>

46

Jetty 8.1.x Adapter

<r ol e- nane>adni n</r ol e- nane>
</security-rol e>
<security-rol e>
<rol e- nane>user </ rol e- nane>
</security-rol e>
</ web- app>

7.5. Jetty 8.1.x Adapter

Keycloak has a separate adapter for Jetty 8.1.x that you will have to install into your Jetty
installation. You then have to provide some extra configuration in each WAR you deploy to Jetty.
Let's go over these steps.

7.5.1. Adapter Installation

Adapters are no longer included with the appliance or war distribution.Each adapter is a separate
download on the Keycloak download site. They are also available as a maven artifact.

You must unzip the Jetty 8.1.x distro into Jetty 8.1.x's root directory. Including adapter's jars within
your WEB-INF/lib directory will not work!

$ cd $JETTY_HOVE
$ unzip keycl oak-jetty81-adapter-dist.zip

Next, you will have to enable the keycloak option. Edit start.ini and add keycloak to the options

Start classpath OPTI ONS.
These control what classes are on the classpath

for a full listing do
java -jar start.jar --list-options
He o o o o o o o o o e e e e e e e e mmemm e e oo

OPTI ONS=Ser ver, j sp, j nx, resour ces, websocket , ext, pl us, annot ati ons, keycl oak

7.5.2. Required Per WAR Configuration

Enabling Keycloak for your WARs is the same as the Jetty 9.x adapter. Our 8.1.x adapter
supports both keycloak.json and the jboss-web.xml advanced configuration. See Required Per
WAR Configuration

47

Chapter 7. Adapters

7.6. Pure Client Javascript Adapter

The Keycloak Server comes with a Javascript library you can use to secure pure HTML/Javascript
applications. This library is referencable directly from the keycloak server. You can also download
the adapter from Keycloak's download site if you want a static copy of this library. It works in the
same way as other application adapters except that your browser is driving the OAuth redirect
protocol rather than the server.

The disadvantage of using this approach is that you end up having a non-confidential, public client.
This can be mitigated by registering valid redirect URLs. You are still vulnerable if somebody
hijacks the IP/DNS name of your pure HTML/Javascript application though.

To use this adapter, you must first configure an application (or client) through the Keycl oak
Adni n Consol e. You should select public for the ient Type field. As public clients can't
be verified with a client secret you are required to configure one or more valid redirect uris as
well. Once you've configured the application click on the I nstal | ati on tab and download the
keycl oak. j son file. This file should be hosted in your web-server at the same root as your HTML
pages. Alternatively you can either specify the URL for this file, or manually configure the adapter.

Next you have to initialize the adapter in your application. An example on how to do this is shown
below.

<head>
<script src="http://<keycl oak server>/auth/js/keycl oak.js"></script>
<scri pt>
var keycl oak = Keycl oak();
keycl oak.init().success(function(authenticated) {
alert(authenticated ? 'authenticated' : 'not authenticated');
}).error(function() {
alert('failed to initialize');
1))
</script>
</ head>

To specify the location of the keycloak.json file:

var keycl oak = Keycl oak(' http://1 ocal host: 8080/ nyapp/ keycl oak. json'));

Or finally to manually configure the adapter:

var keycl oak = Keycl oak({

48

Pure Client Javascript Adapter

url:

"http://keycl oak-server/auth',

realm 'nmyrealn,
clientld: 'myapp'

1),

You can also pass | ogi n-requi red or check- sso to the init function. Login required will redirect
to the login form on the server, while check-sso will redirect to the auth server to check if the user
is already logged in to the realm. For example:

keycl oak.init({ onLoad: 'login-required })

After you login, your application will be able to make REST calls using bearer token authentication.
Here's an example pulled from the cust oner - por t al - j s example that comes with the distribution.

<script>

var

b

var

| oadData = function () {
docurnent . get El ement Byl d(' usernane'). i nner Text = keycl oak. user nane;

var url = "http://|ocal host: 8080/ dat abase/ cust oners' ;

var req = new XM.Ht t pRequest () ;

req.open(' GET', url, true);

req. set Request Header (' Accept', 'application/json');

req. set Request Header (' Aut hori zation', 'Bearer ' + keycl oak.token);

req. onr eadyst at echange = function () {
if (req.readyState == 4) {
if (req.status == 200) {
var users = JSON. parse(req.responseText);
var htm "
for (var i = 0; i < users.length; i++) {
htm += '<p>'" + users[i] + '</p>";

}
docunent . get El ement Byl d(' custoners').innerHTM. = htnl;
consol e.l og(' finished | oading data');

req. send();

| oadFai lure = function () {

49

Chapter 7. Adapters

docurent . get El ement Byl d(' custoners').innerHTM. = 'Failed to |oad
data. Check consol e | og';

be

var reloadbData = function () {
keycl oak. updat eToken() . success(| oadDat a) . error (| oadFai |l ure);

}

</scri pt>

<button onclick="| oadDat a()">Subm t </ button>

The | oadDat a() method builds an HTTP request setting the Aut hori zat i on header to a bearer
token. The keycl oak. t oken points to the access token the browser obtained when it logged
you in. The | oadFai | ure() method is invoked on a failure. The rel oadDat a() function calls
keycl oak. onVal i dAccessToken() passing in the | oadDat a() and | oadFai | ure() callbacks.
The keycl oak. onVval i dAcessToken() method checks to see if the access token hasn't expired. If
it hasn't, and your oauth login returned a refresh token, this method will refresh the access token.
Finally, if successful, it will invoke the success callback, which in this case is the | oadDat a()
method.

To refresh the token if it's expired call the updat eToken method. This method returns a promise
object which can be used to invoke a function on success or failure. This method can be used to
wrap functions that should only be called with a valid token. For example the following method
will refresh the token if it expires within 30 seconds, and then invoke the specified function. If the
token is valid for more than 30 seconds it will just call the specified function.

keycl oak. updat eToken(30) . success(function() {
/1 send request with valid token
}).error(function() {
alert('failed to refresh token');

DE

7.6.1. Session status iframe

By default the JavaScript adapter creates a non-visible iframe that is used to detect if a single-sign
out has occured. This does not require any network traffic, instead the status is retrieved from a
special status cookie. This feature can be disabled by setting checkLogi nl frane: fal se in the
options passed to the i ni t method.

50

JavaScript Adapter reference

7.6.2. JavaScript Adapter reference

7.6.2.1. Constructor

new Keycl oak();
new Keycl oak(' http://Iocal host/keycl oak.json');
new Keycloak({ wurl: ‘'http://localhost/auth', realm ‘'nyrealm, clientld:

nyApp' 1)

7.6.2.2. Properties

authenticated - true if the user is authenticated

token - the base64 encoded token that can be sent in the Aut hori zat i on header in requests
to services

tokenParsed - the parsed token

subject - the user id

idToken - the id token if claims is enabled for the application, null otherwise
idTokenParsed - the parsed id token

realmAccess - the realm roles associated with the token

resourceAccess - the resource roles assocaited with the token

refreshToken - the base64 encoded token that can be used to retrieve a new token

refreshTokenParsed - the parsed refresh token

7.6.2.3. Methods

init(options)

Called to initialize the adapter.

Options is an Object, where:

onLoad - specifies an action to do on load, can be either 'login-required' or 'check-sso'
token - set an initial value for the token
refreshToken - set an initial value for the refresh token

checkLoginlframe - set to enable/disable monitoring login state (default is true)

51

Chapter 7. Adapters

» checkLoginlframelnterval - set the interval to check login state (default is 5 seconds)
Returns promise to set functions to be invoked on success or error.

login(options)

Redirects to login form on (options is an optional object with redirectUri and/or prompt fields)

Options is an Object, where:

« redirectUri - specifies the uri to redirect to after login

e prompt - can be set to 'none' to check if the user is logged in already (if not logged in a login
form is not displayed)

« loginHint - used to pre-fill the username/email field on the login form
createLoginUrl(options)
Returns the url to login form on (options is an optional object with redirectUri and/or prompt fields)

Options is an Object, where:

* redirectUri - specifies the uri to redirect to after login

e prompt - can be set to 'none’ to check if the user is logged in already (if not logged in a login
form is not displayed)

logout(options)
Redirects to logout

Options is an Object, where:

* redirectUri - specifies the uri to redirect to after logout
createLogoutUrl(options)
Returns logout out

Options is an Object, where:

« redirectUri - specifies the uri to redirect to after logout
accountManagement()

Redirects to account management

52

JavaScript Adapter reference

createAccountUrl()

Returns the url to account management
hasRealmRole(role)

Returns true if the token has the given realm role
hasResourceRole(role, resource)

Returns true if the token has the given role for the resource (resource is optional, if not specified
clientld is used)

loadUserProfile()

Loads the users profile

Returns promise to set functions to be invoked on success or error.
iIsTokenExpired(minValidity)

Returns true if the token has less than minValidity seconds left before it expires (minValidity is
optional, if not specified 0 is used)

updateToken(minValidity)

If the token expires within minValidity seconds (minValidity is optional, if not specified 0 is used)
the token is refreshed. If the session status iframe is enabled, the session status is also checked.

Returns promise to set functions that can be invoked if the token is still valid, or if the token is
no longer valid. For example:

keycl oak. updat eToken(5) . success(function(refreshed) {
if (refreshed) {
alert('token was successfully refreshed');
} else {
alert('token is still valid);
}
}).error(function() {
alert('failed to refresh the token, or the session has expired');

1),

7.6.2.4. Callback Events

The adapter supports setting callback listeners for certain events. For example:

53

Chapter 7. Adapters

keycl oak. onAut hSuccess = function() { alert('authenticated'); }

» onReady(authenticated) - called when the adapter is initialized

» onAuthSuccess - called when a user is successfully authenticated

< onAuthError - called if there was an error during authentication

» onAuthRefreshSuccess - called when the token is refreshed

« onAuthRefreshError - called if there was an error while trying to refresh the token

« onAuthLogout - called if the user is logged out (will only be called if the session status iframe
is enabled, or in Cordova mode)

7.7. Installed Applications
Keycloak provides two special redirect uris for installed applications.

7.7.1. http://localhost

This returns the code to a web server on the client as a query parameter. Any port number is
allowed. This makes it possible to start a web server for the installed application on any free port
number without requiring changes in the Admi n Consol e.

7.7.2. urn:ietf:wg:oauth:2.0:.00b

If its not possible to start a web server in the client (or a browser is not available) it is possible to
use the special ur n: i et f : wg: oaut h: 2. 0: oob redirect uri. When this redirect uri is used Keycloak
displays a page with the code in the title and in a box on the page. The application can either
detect that the browser title has changed, or the user can copy/paste the code manually to the
application. With this redirect uri it is also possible for a user to use a different device to obtain
a code to paste back to the application.

7.8. Logout

There are multiple ways you can logout from a web application. For Java EE servlet containers,
you can call HttpServletRequest.logout(). For any other browser application, you can point
the browser at the url http://auth-server/auth/real ms/{real m nane}/t okens/ | ogout ?
redi rect _uri=encodedRedi rect Uri . This will log you out if you have an SSO session with your
browser.

7.9. Multi Tenancy

Multi Tenancy, in our context, means that one single target application (WAR) can be secured by a
single (or clustered) Keycloak server, authenticating its users against different realms. In practice,

54

Multi Tenancy

this means that one application needs to use different keycl oak. j son files. For this case, there
are two possible solutions:

e« The same WAR file deployed under two different names, each with its own Keycloak
configuration (probably via the Keycloak Subsystem). This scenario is suitable when the number
of realms is known in advance or when there's a dynamic provision of application instances.
One example would be a service provider that dinamically creates servers/deployments for their
clients, like a PaasS.

« A WAR file deployed once (possibly in a cluster), that decides which realm to authenticate
against based on the request parameters. This scenario is suitable when there are an undefined
number of realms. One example would be a SaaS provider that have only one deployment
(perhaps in a cluster) serving several companies, differentiating between clients based on the
hostname (cl i ent 1. acme. com cl i ent 2. acnme. com) or path (/ app/ client1/,/app/client2/
) or even via a special HTTP Header.

This chapter of the reference guide focus on this second scenario.

Keycloak provides an extension point for applications that need to evaluate the realm on
a request basis. During the authentication and authorization phase of the incoming request,
Keycloak queries the application via this extension point and expects the application to return a
complete representation of the realm. With this, Keycloak then proceeds the authentication and
authorization process, accepting or refusing the request based on the incoming credentials and
on the returned realm. For this scenario, an application needs to:

e Add a context parameter to the web.xml, named keycl oak.config.resolver. The
value of this property should be the fully qualified name of the a class extending
org. keycl oak. adapt er s. Keycl oakConf i gResol ver.

« A concrete implementation of or g. keycl oak. adapt er s. Keycl oakConf i gResol ver . Keycloak
will call the r esol ve(or g. keycl oak. adapt er s. Ht t pFacade. Request) method and expects a
complete or g. keycl oak. adapt er s. Keycl oakDepl oynent in response. Note that Keycloak will
call this for every request, so, take the usual performance precautions.

An implementation of this feature can be found on the examples.

55

56

Chapter 8.

Chapter 8. Social

Keycloak makes it easy to let users log in to your application using an existing account with a social
network. Currently Facebook, Google and Twitter is supported with more planned for the future.
There's also a Social Provider SPI that makes it relatively simple to add additional social networks.

8.1. Social Login Config

To enable log in with a social network you need to enable social login for your realm and configure
one or more social providers.

8.1.1. Enable social login

To configure social login, open the Keycl oak Admi n Consol e, select your realm from the drop-
down box in the top left corner. In the Logi n Opti ons section click on Soci al | ogi n to set it to
ON. Click save settings, then click on Soci al in the menu at the top.

To enable a social provider select the provider you want from the drop-down and click on Add
Provi der . Then continue to the section below that provides specific instructions for the provider
you are adding.

8.1.2. Social-only login

It's possible to configure a realm to only allow social login. To do this open the Keycl oak Admi n
Consol e, select your realm from the drop-down box in the top left corner. Click the Credenti al s
tab, and click on the x next to password in the Requi red User Credenti als. This will disable
login with username and password.

8.1.3. Social Callback URL

There is a single callback url used by all realms and social providers. This makes it possible to
share the configuration for a social network between multiple realms. An example callback url is
http://1 ocal host: 8080/ aut h/ rest/soci al / cal | back. To get the callback url for your server
replace http://1 ocal host: 8080 with the base address of your server. You can also find the
callback url in the Keycloak Admin Console under social settings.

8.2. Facebook

To enable login with Facebook you first have to create an app in the Facebook Developer
Console [https://developers.facebook.com/]. Then you need to copy the client id and secret into
the Keycloak Admin Console.

1. Log in to the Facebook Developer Console [https://developers.facebook.com/]. Click Apps in
the menu and select Create a New App. Use any value for Di spl ay Name and Cat egory
you want, then click the Creat e App button. Wait for the project to be created (this may take

57

https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/

Chapter 8. Social

a while). If after creating the app you are not redirected to the app settings, click on Apps in
the menu and select the app you created.

2. Once the app has been created click on Set ti ngs in sidebar on the left. You must specify a
contact email. Save your changes. Then click on Advanced. Under Securi t y make sure d i ent
QAut h Logi nis enabled. Invalid QAuth redirect URIs insertthe social callback url. Scroll
down and click on the Save Changes button.

3. Click St atus & Revi ewand select YES for Do you want to nmake this app and all its
live features available to the general public?.You will not be able to set this until
you have provided a contact email in the general settings of this application.

4. Click Basi c. Copy App | Dand App Secr et (click show) from the Facebook Developer Console
[https://developers.facebook.com/] into the settings page in the Keycloak Admin Console as the
Key and Secr et . Then click Save in the Keycloak Admin Console to enable login with Facebook.

8.3. GitHub

To enable login with GitHub you first have to create an application in GitHub Settings [https://
github.com/settings/applications]. Then you need to copy the client id and secret into the Keycloak
Admin Console.

1. Log in to GitHub Settings [https://github.com/settings/applications]. Click the Regi ster new
appl i cati on button. Use any value for Appl i cati on nane, Honepage URL and Appl i cati on
Descri pti onyouwant. In Aut hori zati on cal | back URL enter the social callback url for your
realm. Click the Regi st er appl i cati on button.

2.Copy dient IDand dient secret from the GitHub Settings [https://github.com/settings/
applications] into the settings page in the Keycloak Admin Console as the Key and Secret .
Then click Save in the Keycloak Admin Console to enable login with Google.

8.4. Google

To enable login with Google you first have to create a project and a client in the Google Developer
Console [https://cloud.google.com/console/project]. Then you need to copy the client id and secret
into the Keycloak Admin Console.

1. Log in to the Google Developer Console [https://cloud.google.com/console/project]. Click the
Create Project button. Use any value for Proj ect name and Proj ect |D you want, then
click the Cr eat e button. Wait for the project to be created (this may take a while).

2. Once the project has been created click on APl s & aut h in sidebar on the left. To retrieve user
profiles the Googl e+ API has to be enabled. Scroll down to find it in the list. If its status is OFF,
click on OFF to enable it (it should move to the top of the list and the status should be ON).

3. Now click on the Consent screen link on the sidebar menu on the left. You must specify a
project name and choose an email for the consent screen. Otherwise users will get a login

58

https://developers.facebook.com/
https://developers.facebook.com/
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project

Twitter

error. There's other things you can configure here like what the consent screen looks like. Feel
free to play around with this.

4. Now click Cr edent i al s in the sidebar on the left. Then click Cr eat e New Cl i ent | D. Select Web
appl i cation as Application type. Empty the Aut hori zed Javascri pt ori gi ns textarea.
In Aut hori zed redirect URI enter the social callback url for your realm. Click the Creat e
Cient |Dbutton.

5.Copy dient ID and dient secret from the Google Developer Console [https:/
cloud.google.com/console/project] into the settings page in the Keycloak Admin Console as the
Key and Secr et . Then click Save in the Keycloak Admin Console to enable login with Google.

8.5. Twitter

To enable login with Twtter you first have to create an application in the Twitter Developer
Console [https://dev.twitter.com/apps]. Then you need to copy the consumer key and secret into
the Keycloak Admin Console.

1. Log in to the Twitter Developer Console [https://dev.twitter.com/apps]. Click the Create a new
appl i cat i on button. Use any value for Nane, Descri pti on and Wbsi t e you want. Insert the
social callback url in Cal | back URL. Then click Create your Twitter application.

2. Now click on Set ti ngs and tick the box Al l ow this application to be used to Sign in
with Twitter,thenclick onUpdate this Twitter application's settings.

3. Now click APl Keys tab. Copy APl key and APl secret from the Twitter Developer Console
[https://dev.twitter.com/apps] into the settings page in the Keycloak Admin Console as the Key
and Secr et . Then click Save in the Keycloak Admin Console to enable login with Twitter.

Tip
\/

Twitter doesn't allow | ocal host in the redirect URI. To test on a local server
replace | ocal host with 127. 0. 0. 1.

8.6. Social Provider SPI

Keycloak provides an SPI to make it easy to add additional social providers. This is done by
implementing or g. keycl oak. soci al . Soci al Provi der in soci al / core and adding a provider
configuration file (VETA- | NF/ ser vi ces/ or g. keycl oak. soci al . Soci al Provi der).

A good reference for implementing a Social Provider is the Google provider which you can find in
soci al / googl e on GitHub or in the source download.

59

https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps

60

Chapter 9.

Chapter 9. Themes

Keycloak provides theme support for login forms and account management. This allows
customizing the look and feel of end-user facing pages so they can be integrated with your brand
and applications.

9.1. Theme types

There are several types of themes in Keycloak:

* Account - Account management

Admin - Admin console

» Common - Shared resources for themes
e Email - Emails

* Login - Login forms

» Welcome - Welcome pages

9.2. Configure theme

All theme types, except welcome, is configured through Keycl oak Adni n Consol e. To change
the theme used for a realm open the open the Keycl oak Admi n Consol e, select your realm from
the drop-down box in the top left corner. Under Set t i ngs click on Thene.

To change the welcome theme you need to edit st andal one/ confi gurati on/ keycl oak-
server.j son and add wel coneThene to the theme element, for example:

"therme": {

"wel coneThene": "customthene"

9.3. Default themes

Keycloak comes bundled with default themes in st andal one/ confi gurati on/t henes. It is not
recommended to edit these themes directly. Instead you should create a new theme to extend a
default theme. A good reference is to copy the keycloak themes as these extend the base theme
to add styling.

61

Chapter 9. Themes

9.4. Creating a theme

A theme consists of:

FreeMarker [http://freemarker.org] templates

Stylesheets
 Scripts

* Images

* Message bundles
* Theme properties

A theme can extend another theme. When extending a theme you can override individual files
(templates, stylesheets, etc.). The recommended way to create a theme is to extend the base
theme. The base theme provides templates and a default message bundle. It should be possible
to achieve the customization required by styling these templates.

To create a new theme, create a folder in .../ standal one/ confi gurati on/thenes/ <t hene
t ype>. The name of the folder is the name of the theme. Then create a file t hene. properties
inside the theme folder. The contents of the file should be:

par ent =base

You have now created your theme. Check that it works by configuring it for a realm. It should
look the same as the base theme as you've not added anything to it yet. The next sections will
describe how to modify the theme.

9.4.1. Stylesheets

A theme can have one or more stylesheets, to add a stylesheet create a file inside r esour ces/
css (for example resour ces/ css/ styl es. css) inside your theme folder. Then registering it in
t hene. properti es by adding:

styl es=css/ styl es. css

The st yl es property supports a space separated list so you can add as many as you want. For
example:

styl es=css/styl es. css css/ nore-styl es. css

62

http://freemarker.org
http://freemarker.org

Scripts

9.4.2. Scripts

A theme can have one or more scripts, to add a script create a file inside resources/
i s (for example resources/js/script.js) inside your theme folder. Then registering it in
t heme. properti es by adding:

scripts=js/script.js

The scri pt's property supports a space separated list so you can add as many as you want. For
example:

scripts=sjs/script.js js/more-script.js

9.4.3. Images

To make images available to the theme add them to resour ces/ i ng. They can then be used
through stylesheets. For example:

body {
background-image: url ('../ing/inmge.jpg');

Or in templates, for example:

<ing src="3${url.resourcesPat h}/ing/image.jpg">

9.4.4. Messages

Text in the templates are loaded from message bundles. Currently internationalization isn't
supported, but that will be added in a later release. A theme that extends another theme will
inherit all messages from the parents message bundle, but can override individual messages. For
example to replace User narme on the login form with Your User nane create the file messages/
messages. properti es inside your theme folder and add the following content:

user name=Your User nanme

63

Chapter 9. Themes

9.4.5. Modifying HTML

Keycloak uses Freemarker Templates [http://freemarker.org] in order to generate HTML. These
templates are defined in . ft1 files and can be overriden from the base theme. Check out the
Freemarker website on how to form a template file.

9.5. SPIs

For full control of login forms and account management Keycloak provides a number of SPIs.

9.5.1. Theme SPI

The Theme SPI allows creating different mechanisms to load themes for the default
FreeMarker based implementations of login forms and account management. To create a theme
provider you will need to implement or g. keycl oak. f r eemar ker . ThemePr ovi der Fact ory and
org. keycl oak. freemar ker. ThenePr ovi der .

Keycloak comes with two theme providers, one that loads themes from the classpath (used by
default themes) and another that loads themes from a folder (used by custom themes). Looking
at these would be a good place to start to create your own theme provider. You can find them
inside f or ms/ conmon- t henes on GitHub or the source download.

9.5.2. Account SPI

The Account SPI allows implementing the account management pages using
whatever web framework or templating engine you want. To create an
Account provider implement org. keycl oak. account . Account Provi der Factory and
org. keycl oak. account . Account Provi der.

Once you have deployed your account provider to Keycloak you need to configure keycl oak-
server . j sonto specify which provider should be used:

"account": {
"provider": "customprovider"

9.5.3. Login SPI

The Login SPI allows implementing the login forms using whatever
web framework or templating engine you want. To create a Login
forms provider implement org. keycl oak. | ogi n. Logi nFor nsPr ovi der Factory and
or g. keycl oak. | ogi n. Logi nFor msPr ovi der in f orns/ | ogi n- api .

Once you have deployed your account provider to Keycloak you need to configure keycl oak-
server . j sonto specify which provider should be used:

64

http://freemarker.org
http://freemarker.org

Login SPI

"login": {
"provider":

"cust om provi der"

65

66

Chapter 10.

Chapter 10. Emall

Keycloak sends emails to users to verify their email address. Emails are also used to allow users
to safely restore their username and passwords.

10.1. Email Server Config

To enable Keycloak to send emails you need to provide Keycloak with your SMTP server settings.
If you don't have a SMTP server you can use one of many hosted solutions (such as Sendgrid
or smtp2go).

To configure your SMTP server, open the Keycl oak Adnmi n Consol e, select your realm from the
drop-down box in the top left corner. Then click on Emai | in the menu at the top.

You are required to fill in the Host and Port for your SMTP server (the default port for SMTP is
25). You also have to specify the sender email address (Fr om). The other options are optional.

The screenshot below shows a simple example where the SMTP server doesn't use SSL or TLS
and doesn't require authentication.

Email Server Settings

= Required Settings

Host * sMtp.acme-inc.org

Port * 25 :
From * support@acme-inc.org

Enable 55L OFF

Enable 5tartTL5 OFF

10.1.1. Enable SSL or TLS

As emails are used for recovering usernames and passwords it's recommended to use SSL or
TLS, especially if the SMTP server is on an external network. To enable SSL click on Enabl e SSL

67

Chapter 10. Email

or to enable TLS click on Enabl e TLS. You will most likely also need to change the Port (the
default port for SSL/TLS is 465).

10.1.2. Authentication

If your SMTP server requires authentication click on Enabl e Aut henti cati on and insert the
User name and Passwor d.

68

Chapter 11.

Chapter 11. Application and Client
Access Types

When you create an Application or OAuth Client you may be wondering what the "Access Types"
are.

confidential

Confidential access type is for clients that need to perform a browser login and that you want
to require a client secret when they turn an access code into an access token, (see Access
Token Request [http://tools.ietf.org/html/rfc6749#section-4.1.3] in the OAuth 2.0 spec for more
details). The advantages of this is that it is a little extra security. Since Keycloak requires you
to register valid redirect-uris, I'm not exactly sure what this little extra security is though. :)
The disadvantages of this access type is that confidential access type is pointless for pure
Javascript clients as anybody could easily figure out your client's secret!

public
Public access type is for clients that need to perform a browser login and that you feel that
the added extra security of confidential access type is not needed. FYI, Pure javascript clients
are by nature public.

bearer-only
Bearer-only access type means that the application only allows bearer token requests. If this
is turned on, this application cannot participate in browser logins.

direct access only
For OAuth clients, you would also see a "Direct Access Only" switch when creating the OAuth
Client. This switch is for oauth clients that only use the Direct Access Grant protocol to obtain
access tokens.

69

http://tools.ietf.org/html/rfc6749#section-4.1.3
http://tools.ietf.org/html/rfc6749#section-4.1.3
http://tools.ietf.org/html/rfc6749#section-4.1.3

70

Chapter 12.

Chapter 12. Roles

In Keycloak, roles (or permissions) can be defined globally at the realm level, or individually per
application. Each role has a name which must be unique at the level it is defined in, i.e. you can
have only one "admin" role at the realm level. You may have that a role named "admin” within an
Application too, but "admin" must be unique for that application.

The description of a role is displayed in the OAuth Grant page when Keycloak is processing
a browser OAuth Grant request. Look for more features being added here in the future like
internationalization and other fine grain options.

12.1. Composite Roles

Any realm or application level role can be turned into a Composite Role. A Composite Role is
a role that has one or more additional roles associated with it. | guess another term for it could
be Role Group. When a composite role is mapped to the user, the user gains the permission of
that role, plus any other role the composite is associated with. This association is dynamic. So,
if you add or remove an associated role from the composite, then all users that are mapped to
the composite role will automatically have those permissions added or removed. Composites can
also be used to define Application or OAuth Client scopes.

Composite roles can be associated with any type of role Realm or Application. In the admin
console simple flip the composite switch in the Role detail, and you will get a screen that will allow
you to associate roles with the composite.

71

72

Chapter 13.

Chapter 13. Direct Access Grants

Keycloak allows you to make direct REST invocations to obtain an access token. (See Resource
Owner Password Credentials Grant [http://tools.ietf.org/html/rfc6749#section-4.3] from OAuth 2.0
spec). To use it, Direct Access Grants must be allowed by your realm. This is a configuration
switch in the admin console under Settings->General, specifically the "Direct Grant API" switch.
You must also have registered a valid OAuth Client or Application to use as the "client_id" for
this grant request.

Warning

It is highly recommended that you do not use Direct Access Grants to write your
own login pages for your application. You will lose a lot of features that Keycloak
has if you do this. Specifically all the account management, remember me, lost
password, account reset features of Keycloak. Instead, if you want to tailor the look
and feel of Keycloak login pages, you should create your own theme.

It is even highly recommended that you use the browser to log in for native mobile
applications! Android and iPhone applications allow you to redirect to and from the
browser. You can use this to redirect the user from your native mobile app to the
web browser to perform login, then the browser will redirect back to your native
application.

The REST URL to invoke on is / { keycl oak-root}/real ms/{real m nane}/t okens/ grants/
access. Invoking on this URL is a POST request and requires you to post the username and
credentials of the user you want an access token for. You must also pass along the "client_id" of the
application or oauth client you are creating an access token for. This "client_id" is the application
or oauth client name (not it's id!). Depending on whether your application/oauth client is "public"
or "confidential”, you may also have to pass along it's client secret as well.

For public applications or oauth client's, the POST invocation requires form parameters that
contain the username, credentials, and client_id of your application. For example:

PCOST / aut h/ real ns/ deno/ t okens/ gr ant s/ access
Cont ent - Type: applicati on/ x-ww« f or m url encoded

user nane=bbur ke&passwor d=gehei m&cl i ent _i d=cust oner - port al

The response would be this standard JSON document [http://tools.ietf.org/html/
rfc67494#section-4.3.3] from the OAuth 2.0 specification.

73

http://tools.ietf.org/html/rfc6749#section-4.3
http://tools.ietf.org/html/rfc6749#section-4.3
http://tools.ietf.org/html/rfc6749#section-4.3
http://tools.ietf.org/html/rfc6749#section-4.3.3
http://tools.ietf.org/html/rfc6749#section-4.3.3
http://tools.ietf.org/html/rfc6749#section-4.3.3

Chapter 13. Direct Access Grants

HTTP/ 1.1 200 K

Cont ent - Type: application/json;charset=UTF-8
Cache-Control: no-store

Pragma: no-cache

"access_t oken": "2Yot nFZFEj r 1zCsi cM\pAA",
"token_type": "bearer",

"expires_in":3600,

"refresh_token":"t Gzv3JOKFOXGEQx2TI KW A",
"id_token":"t Gzv3JOKFOXGBQx2TI KW A",
"session-state":"234234-234234-234234"

For confidential applications or oauth client's, you must create a Basic Auth Aut hori zati on
header that contains the client_id and client secret. And pass in the form parameters for username
and for each user credential. For example:

PQOST / aut h/ real nms/ deno/ t okens/ gr ant s/ access
Aut hori zation: Basic atasdf023| 2312023
Cont ent - Type: application/ x-ww« f orm url encoded

user nane=bbur ke&passwor d=gehei m

Here's a Java example using Apache HTTP Client and some Keycloak utility classes.:

Htpdient client = new HtpdientBuilder()
. di sabl eTrust Manager (). bui I d();

try {
Ht t pPost post = new Htt pPost (
Keycl oakUri Bui | der.fromJri ("http://1 ocal host: 8080/ aut h")

. pat h(Servi ceUr| Const ants. TOKEN_SERVI CE_DI RECT_GRANT_PATH) . bui | d(" denp")) ;
Li st <NameVal uePair> fornparans = new ArrayLi st <NameVal uePair>();
f or npar ans. add(new Basi cNanmeVal uePai r (" user nane", "bburke"));
f or npar ans. add(new Basi cNaneVal uePai r (" password", "password"));

if (isPublic()) { // if client is public access type
f or npar ans. add(new Basi cNaneVal uePai r (QAut h2Const ant s. CLI ENT_I D,
"customer-portal "));

74

} else {

String authorization = Basi cAut hHel per. cr eat eHeader (" cust oner -portal ",

"secret-secret-secret");
post . set Header (" Aut hori zati on", authorization);

}

Ur | EncodedFornEntity form = new Url EncodedFor nEnti ty(fornparans, "UTF-8");

post.setEntity(form;

Ht t pResponse response = client. execute(post);

int status = response. get St at usLi ne(). get St at usCode();
HtpEntity entity = response.getEntity();

if (status !'= 200) {

throw new | OException("Bad status: " + status);
}
if (entity == null) {
t hrow new | OException("No Entity");
}
InputStreamis = entity.getContent();
try {
AccessTokenResponse tokenResponse = JsonSerialization.readVal ue(is,
AccessTokenResponse. cl ass) ;
} finally {
try {
is.close();
} catch (1 CException ignored) { }
}
} finally {

client. get Connecti onManager () . shut down() ;

Once you have the access token string, you can use it in REST HTTP bearer token authorized

requests, i.e

GET /ny/rest/api
Aut hori zation: Bearer 2Yot nFZFEjr 1zCsi cM\pAA

To logout you must use the refresh token contained in the AccessTokenResponse object.

Li st <NanmeVal uePai r> fornparans = new ArrayLi st <NaneVal uePai r>();
if (isPublic()) { // if client is public access type

75

Chapter 13. Direct Access Grants

f or npar ans. add(new Basi cNaneVal uePai r (QAut h2Const ants. CLI ENT_I D, "cust omer -
portal"));
} else {

String authorization = BasicAuthHel per.createHeader("custoner-portal",
"secret-secret-secret");

post . set Header (" Aut hori zati on", authorization);
}
f or mpar ans. add(new Basi cNanmeVal uePai r (QAut h2Const ant s. REFRESH_TOKEN,

t okenResponse. get Ref reshToken()));
Ht t pResponse response = nul|;
URI | ogoutUri = Keycl oakUriBuilder.fronJi (getBaseUrl (request) + "/auth")
. pat h(Servi celUr| Const ant s. TOKEN_SERVI CE_LOGOUT_PATH)
. buil d("dem");
Ht t pPost post = new Htt pPost (I ogout Uri);
Ur | EncodedFornEntity form = new Url EncodedFor nEntity(fornparams, "UTF-8");
post.setEntity(form;
response = client.execute(post);
int status = response. get St at usLi ne(). get St at usCode() ;
HttpEntity entity = response.getEntity();
if (status !'= 204) {
error(status, entity);

}
if (entity == null) {
return;
}
InputStreamis = entity.getContent();
if (is!=null) is.close();

76

Chapter 14.

Chapter 14. CORS

CORS stands for Cross-Origin Resource Sharing. If executing browser Javascript tries to make
an AJAX HTTP request to a server's whose domain is different than the one the Javascript code
came from, then the request uses the CORS protocol [http://www.w3.org/TR/cors/]. The server
must handle CORS requests in a special way, otherwise the browser will not display or allow the
request to be processed. This protocol exists to protect against XSS and other Javascript-based
attacks. Keycloak has support for validated CORS requests.

Keycloak's CORS support is configured per application and oauth client. You specify the allowed
origins in the application's or oauth client's configuration page in the admin console. You can add
as many you want. The value must be what the browser would send as a value in the Ori gi n
header. For example htt p: / / exanpl e. comis what you must specify to allow CORS requests from
exanpl e. com When an access token is created for the application or OAuth client, these allowed
origins are embedded within the token. On authenticated CORS requests, your application's
Keycloak adapter will handle the CORS protocol and validate the Ori gi n header against the
allowed origins embedded in the token. If there is no match, then the request is denied.

To enable CORS processing in your application's server, you must set the enabl e- cor s setting
to t rue in your adapter's configuration file. When this setting is enabled, the Keycloak adapter
will handle all CORS preflight requests. It will validate authenticated requests (protected resource
requests), but will let unauthenticated requests (unprotected resource requests) pass through.

77

http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/

78

Chapter 15.

Chapter 15. Cookie settings,
Session Timeouts, and Token
Lifespans

Keycloak has a bunch of fine-grain settings to manage browser cookies, user login sessions, and
token lifespans. Sessions can be viewed and managed within the admin console for all users,
and individually in the user's account management pages. This chapter goes over configuration
options for cookies, sessions, and tokens.

15.1. Remember Me

If you go to the admin console page of Settings->General, you should see a Renenber Me on/off
switch. Your realm sets a SSO cookie so that you only have to enter in your login credentials once.
This Renenber Me admin config option, when turned on, will show a "Remember Me" checkbox
on the user's login page. If the user clicks this, the realm's SSO. cookie will be persistent. This
means that if the user closes their browser they will still be logged in the next time they start up
their browser.

15.2. Session Timeouts

If you go to the Sesions and Tokens->Timeout Settings page of the Keycloak adminstration
console there is a bunch of fine tuning you can do as far as login session timeouts go.

The SSO Session Idle Tineout is the idle time of a user session. If there is no activity in
the user's session for this amount of time, the user session will be destroyed, and the user will
become logged out. The idle time is refreshed with every action against the keycloak server for
that session, i.e.: a user login, SSO, a refresh token grant, etc.

The SSO Session Max Lifespan setting is the maximum time a user session is allowed to be
alive. This max lifespan countdown starts from when the user first logs in and is never refreshed.
This works great with Remenber Me in that it allow you to force a relogin after a set timeframe.

15.3. Token Timeouts

The Access Token Li f espan is how long an access token is valid for. An access token contains
everything an application needs to authorize a client. It contains roles allowed as well as other
user information. When an access token expires, your application will attempt to refresh it using
a refresh token that it obtained in the initial login. The value of this configuration option should be
however long you feel comfortable with the application not knowing if the user's permissions have
changed. This value is usually in minutes.

79

Chapter 15. Cookie settings, ...

The dient |ogin tinmeout ishow long an access code is valid for. An access code is obtained
on the 1st leg of the OAuth 2.0 redirection protocol. This should be a short time limit. Usually
seconds.

The Login user action I|ifespan is how long a user is allowed to attempt a login. When a
user tries to login, they may have to change their password, set up TOTP, or perform some other
action before they are redirected back to your application as an authentnicated user. This value
is relatively short and is usually measured in minutes.

80

Chapter 16.

Chapter 16. Admin REST API

The Keycloak Admin Console is implemented entirely with a fully functional REST admin API. You
can invoke this REST API from your Java applications by obtaining an access token. You must
have the appropriate permissions set up as describe in Chapter 5, Master Admin Access Control
and Chapter 6, Per Realm Admin Access Control

The documentation for this REST API is auto-generated and is contained in the distribution of
keycloak under the docs/rest-api/overview-index.html directory, or directly from the docs page at
the keycloak website.

There are a number of examples that come with the keycloak distribution that show you how to
invoke on this REST API. exanpl es/ pr econf i gur ed- deno/ adni n- access- app shows you how
to access this api from java. exanpl es/ cor s/ angul ar - pr oduct - app shows you how to invoke
on it from Javascript.

81

82

Chapter 17.

Chapter 17. Events

Keycloak provides an Events SPI that makes it possible to register listeners for user related events,
for example user logins. There are two interfaces that can be implemented, the first is a pure
listener, the second is a events store which listens for events, but is also required to store events.
An events store provides a way for the admin and account management consoles to view events.

17.1. Event types

Login events:

* Login - A user has logged in

Register - A user has registered

» Logout - A user has logged out

Code to Token - An application/client has exchanged a code for a token

Refresh Token - An application/client has refreshed a token

Account events:

« Social Link - An account has been linked to a social provider

* Remove Social Link - A social provider has been removed from an account
« Update Email - The email address for an account has changed

« Update Profile - The profile for an account has changed

* Send Password Reset - A password reset email has been sent

» Update Password - The password for an account has changed

* Update TOTP - The TOTP settings for an account has changed

* Remove TOTP - TOTP has been removed from an account

« Send Verify Email - A email verification email has been sent

» Verify Email - The email address for an account has been verified

For all events there is a corresponding error event.

17.2. Event Listener

Keycloak comes with an Email Event Listener and a JBogg Logging Event Listener. The Email
Event Listener sends an email to the users account when an event occurs. The JBoss Logging
Event Listener writes to a log file when an events occurs.

83

Chapter 17. Events

The Email Event Listener only supports the following events at the moment:

 Login Error

Update Password

Update TOTP

* Remove TOTP
You can exclude one or more events by editing standal one/ confi gurati on/ keycl oak-
server . j son and adding for example:

"event Li stener": {
"email " {
"excl ude-events": ["UPDATE_TOTP', "REMOVE _TOTP"]

17.3. Event Store

Event Store listen for events and is expected to persist the events to make it possible to query for
them later. This is used by the admin console and account management to view events. Keycloak
includes providers to persist events to JPA and Mongo.

You can specify events to include or exclude by editing st andal one/ confi gur ati on/ keycl oak-
server. j son, and adding for example:

"eventsStore": {
"jpa’: {
"excl ude-events": ["LOG N', "REFRESH TOKEN', "CODE_TO TOKEN']

17.4. Configure Events Settings for Realm

To enable persisting of events for a realm you first need to make sure you have a event store
provider registered for Keycloak. By default the JPA event store provider is registered. Once
you've done that open the admin console, select the realm you're configuring, select Event s. Then
click on Confi g. You can enable storing events for your realm by toggling Save Events to ON.
You can also set an expiration on events. This will periodically delete events from the database
that are older than the specified time.

84

Configure Events Settings for Realm

To configure listeners for a realm on the same page as above add one or more event listeners
to the Li st ener s select box. This will allow you to enable any registered event listeners with the
realm.

85

86

Chapter 18.

Chapter 18. User Federation SPI
and LDAP/AD Integration

Keycloak can federate external user databases. Out of the box we have support for LDAP and
Active Directory. Before you dive into this, you should understand how Keycloak does federation.

Keycloak performs federation a bit differently than other products/projects. The vision of Keycloak
is that it is an out of the box solution that should provide a core set of feature irregardless of the
backend user storage you want to use. Because of this requirement/vision, Keycloak has a set
data model that all of its services use. Most of the time when you want to federate an external user
store, much of the metadata that would be needed to provide this complete feature set does not
exist in that external store. For example your LDAP server may only provide password validation,
but not support TOTP or user role mappings. The Keycloak User Federation SPI was written to
support these completely variable configurations.

The way user federation works is that Keycloak will import your federated users on demand to its
local storage. How much metadata that is imported depends on the underlying federation plugin
and how that plugin is configured. Some federation plugins may only import the username into
Keycloak storage, others might import everything from name, address, and phone number, to
user role mappings. Some plugins might want to import credentials directly into Keycloak storage
and let Keycloak handle credential validation. Others might want to handle credential validation
themselves. Thegoal of the Federation SPI is to support all of these scenarios.

18.1. LDAP and Active Directory Plugin

Keycloak comes with a built-in LDAP/AD plugin. Currently it is set up only to import username,
email, first and last name. It supports password validation via LDAP/AD protocols and different
user metadata synchronization modes. To configure a federated LDAP store go to the admin
console. Click on the User s menu option to get you to the user management page. Then click on
the Feder at i on submenu option. When you get to this page there is an "Add Provider" select box.
You should see "ldap" within this list. Selecting "Idap" will bring you to the Idap configuration page.

18.1.1. Edit Mode

Edit mode defines various synchronization options with your LDAP store depending on what
privileges you have.

READONLY
Username, emalil, first and last name will be unchangable. Keycloak will show an error anytime
anybody tries to update these fields. Also, password updates will not be supported.

WRITABLE
Username, emalil, first and last name, and passwords can all be updated and will be
synchronized automatically with your LDAP store.

87

Chapter 18. User Federation S...

UNSYNCED
Any changes to username, email, first and last name, and passwords will be stored in Keycloak
local storage. It is up to you to figure out how to synchronize back to LDAP.

18.1.2. Other config options

Display Name
Name used when this provider is referenced in the admin consle

Priority
The priority of this provider when looking up users or for adding registrations.

Sync Registrations
If a new user is added through a registration page or admin console, should the user be eligible
to be synchronized to this provider.

Other options
The rest of the configuration options should be self explanatory. You can use tooltips in admin
console to see some more details about them.

18.2. Sync of LDAP users to Keycloak

LDAP Federation Provider will automatically take care of synchronization (import) of needed LDAP
users into Keycloak database. For example once you first authenticate LDAP user j ohn from
Keycloak Ul, LDAP Federation provider will first import this LDAP user into Keycloak database
and then authenticate against LDAP password.

Thing is that Federation Provider import just requested users by default, so if you click to Vi ew
al | users in Keycloak admin console, you will see just those LDAP users, which were already
authenticated/requested by Keycloak.

If you want to sync all LDAP users into Keycloak database, you may configure and enable Sync,
which is in admin console on same page like the configuration of Federation provider itself. There
are 2 types of sync:

Full sync
This will synchronize all LDAP users into Keycloak DB. Those LDAP users, which already
exist in Keycloak and were changed in LDAP directly will be updated in Keycloak DB (For
example if user Mary Kel | y was changed in LDAP to Mary Doe).

Changed users sync
This will check LDAP and it will sync into Keycloak just those users, which were created or
updated in LDAP from the time of last sync.

In usual cases you may want to trigger full sync at the beginning, so you will import all LDAP
users to Keycloak just once. Then you may setup periodic sync of changed users, so Keycloak will

88

Writing your own User Federation Provider

periodically ask LDAP server for newly created or updated users and backport them to Keycloak
DB. Also you may want to trigger full sync again after some longer time or setup periodic full sync
as well.

In admin console, you can trigger sync directly or you can enable periodic changed or full sync.

18.3. Writing your own User Federation Provider

The keycloak examples directory contains an example of a simple User Federation Provider
backed by a simple properties file. See exanpl es/ provi der s/ f eder ati on- provi der. Most
of how to create a federation provider is explain directly within the example code, but some
information is here too.

Writing a User Federation Provider starts by implementing the User Feder at i onPr ovi der and
User Feder at i onProvi der Fact ory interfaces. Please see the Javadoc and example for complete
details on on how to do this. Some important methods of note: getUserByUsername() and
getUserByEmail() require that you query your federated storage and if the user exists create and
import the user into Keycloak storage. How much metadata you import is fully up to you. This
import is done by invoking methods on the object returned Keycl oakSessi on. user St or age()
to add and import user information. The proxy() method will be called whenever Keycloak has
found an imported UserModel. This allows the federation provider to proxy the UserModel which
is useful if you want to support external storage updates on demand.

After your code is written you must package up all your classes within a JAR file. This jar file
must contain a file called or g. keycl oak. nodel s. User Feder at i onPr ovi der Fact ory within the
META- | NF/ servi ces directory of the JAR. This file is a list of fully qualified classnames of all
implementations of User Feder ati onProvi der Fact ory. This is how Keycloak discovers which
providers have been deployment. Place the JAR in the keycloak WAR deployment in the WEB-
I NF/ | i b directory.

89

90

Chapter 19.

Chapter 19. Export and Import

Export/import is useful especially if you want to migrate your whole Keycloak database from one
environment to another or migrate to different database (For example from MySQL to Oracle). You
can trigger export/import at startup of Keycloak server and it's configurable with System properties
right now. The fact it's done at server startup means that no-one can access Keycloak Ul or REST
endpoints and edit Keycloak database on the fly when export or import is in progress. Otherwise
it could lead to inconsistent results.

You can export/import your database either to:

» Encrypted ZIP file on local filesystem
 Directory on local filesystem

» Single JSON file on your filesystem

When importing using the "dir" or "zip" strategies, note that the files need to follow the naming
convention specified below. If you are importing files which were previously exported, the files
already follow this convention.

* {REALM_NAME}-realm.json, such as "acme-roadrunner-affairs-realm.json" for the realm
named "acme-roadrunner-affairs"”

* {REALM_NAME}-users-{INDEX}.json, such as "acme-roadrunner-affairs-users-0.json" for the
first users file of the realm named "acme-roadrunner-affairs"

Encrypted ZIP is recommended as export contains many sensitive informations like passwords of
your users (even if they are hashed), but also their email addresses, and especially private keys of
the realms. Directory and Single JSON file are useful especially for testing as data in the files are
not protected. On the other hand, it's useful if you want to look at all your data in JSON files directly.

If you import to ZIP or Directory, you can specify also the number of users to be stored in each
JSON file. So if you have very large amount of users in your database, you likely don't want to
import them into single file as the file might be very big. Processing of each file is done in separate
transaction as exporting/importing all users at once could also lead to memory issues.

So to export the content of your Keycloak database into encrypted ZIP, you can execute Keycloak
server with the System properties like:

bi n/ st andal one. sh - Dkeycl oak. m grati on. acti on=export

- Dkeycl oak. mi grati on. provi der=zi p -Dkeycl oak. m gration. zi pFi | e=<FI LE TO EXPORT
TO>

- Dkeycl oak. mi grati on. zi pPasswor d=<PASSWORD TO DECRYPT EXPORT>

91

Chapter 19. Export and Import

Then you can move or copy the encrypted ZIP file into second environment and you
can trigger import from it into Keycloak server with the same command but use -
Dkeycl oak. mi gration. acti on=i nport instead of export .

To export into unencrypted directory you can use:

bi n/ st andal one. sh - Dkeycl oak. nmi grati on. acti on=export
- Dkeycl oak. mi grati on. provi der=dir -Dkeycl oak. m gration. dir=<DI R TO EXPORT TO>

And similarly for import just use - Dkeycl oak. mi grati on. acti on=i nport instead of export .

To export into single JSON file you can use:

bi n/ st andal one. sh - Dkeycl oak. m grati on. acti on=export
- Dkeycl oak. mi gration. provi der=singleFile -Dkeycloak.nmgration.file=<FILE TO
EXPORT TO>

Here's an example of importing:

bi n/ st andal one. sh - Dkeycl oak. m grati on. acti on=i nport

- Dkeycl oak. mi gration. provider=singleFile -Dkeycloak.migration.file=<FILE TO
| MPORT>

- Dkeycl oak. mi grati on. strat egy=OVERWRI TE_EXI STI NG

Other available options are:

-Dkeycloak.migration.realmName
can be used if you want to export just one specified realm instead of all. If not specified, then
all realms will be exported.

-Dkeycloak.migration.usersExportStrategy
can be used to specify for ZIP or Directory providers to specify where to import users. Possible
values are:

* DIFFERENT_FILES - Users will be exported into more different files according to maximum
number of users per file. This is default value

» SKIP - exporting of users will be skipped completely

 REALM_FILE - All users will be exported to same file with realm (So file like "foo-realm.json"
with both realm data and users)

92

* SAME_FILE - All users will be exported to same file but different than realm (So file like
"foo-realm.json" with realm data and "foo-users.json" with users)

-Dkeycloak.migration.usersPerFile
can be used to specify number of users per file (and also per DB transaction). It's 5000 by
default. It's used only if usersExportStrategy is DIFFERENT_FILES

-Dkeycloak.migration.strategy
is used during import. It can be used to specify how to proceed if realm with same name
already exists in the database where you are going to import data. Possible values are:

* IGNORE_EXISTING - Ignore importing if realm of this name already exists

* OVERWRITE_EXISTING - Remove existing realm and import it again with new data from
JSON file. If you want to fully migrate one environment to another and ensure that the new
environment will contain same data like the old one, you can specify this.

When importing realm files that weren't exported before, the option keycl oak. i nport can be
used. If more than one realm file needs to be imported, a comma separated list of file names can
be specified. This is more appropriate than the cases before, as this will happen only after the
master realm has been initialized. Examples:

» -Dkeycloak.import=/tmp/realml.json

» -Dkeycloak.import=/tmp/realml.json,/tmp/realm2.json

93

94

Chapter 20.

Chapter 20. Server Cache

By default, Keycloak caches realm metadata and users. There are two separate caches, one for
realm metadata (realm, application, client, roles, etc...) and one for users. These caches greatly
improves the performance of the server.

20.1. Disabling Caches

The realm and user caches can be disabled through configuration or through the management
console. To manally disable the realm or user cache, you must edit the keycl oak- server.j son
file in your distribution. Here's what the config looks like initially.

"real nCache": {

"provider": "${keycl oak.real mcache. provi der: men}"
Je
"user Cache": {
"provider": "${keycl oak. user. cache. provi der: nen}"
"mem': {

"maxSi ze": 20000

You must then change it to:

"real nCache": {
"provider": "${keycl oak.real mcache. provi der: none}"

}

"user Cache": {
"provider": "${keycl oak. user.cache. provi der: none}"

}

You can also disable either of the caches at runtime through the Keycloak admin console Realm
Settings page. This will not permanently disable the cache. If you reboot the server, the cache will
be re-enabled unless you manualy disable the cache in the keycl oak- server. j son file.

95

Chapter 20. Server Cache

20.2. Clear Caches

To clear the realm or user cache, go to the Keycloak admin console Realm Settings->Cache
Config page. Disable the cache you want. Save the settings. Then re-enable the cache. This will
cause the cache to be cleared.

20.3. Cache Config

Cache configuration is done within keycl oak- ser ver . j son. Changes to this file will not be seen
by the server until you reboot. Currently you can only configure the max size of the user cache.

"user Cache": {
"provider": "${keycl oak. user.cache. provider: nmen}",
"mem': {
"maxSi ze": 20000

96

Chapter 21.

Chapter 21. SAML SSO

Keycloak supports SAML 2.0 for registered applications. Both POST and Redirect bindings are
supported. You can choose to require client signature validation and can have the server sign
and/or encrypt responses as well. We do not yet support logout via redirects. All logouts happen
via a background POST binding request to the application that will be logged out. We do not
support SAML 1.1 either. If you want support for either of those, please log a JIRA request and
we'll schedule it.

When you create an application in the admin console, you can choose which protocol the
application will log in with. In the application create screen, choose sani from the protocol list.
After that there are a bunch of configuration options. Here is a description of each item:

Include AuthnStatement
SAML login responses may specify the authenticaiton method used (password, etc.) as well
as a timestamp of the login. Setting this to on will include that statement in the response
document.

Multi-valued Roles
If this switch is off, any user role mapings will have a corresponding attribute created for it.
If this switch is turn on, only one role attribute will be created, but it will have multiple values
within in.

Sign Documents
When turned on, Keycloak will sign the document using the realm's private key.

Sign Assertions
With the Si gn Document s switch signs the whole document. With this setting you just assign
the assertions of the document.

Signature Algorithm
Choose between a variety of algorithms for signing SAML documents.

Encrypt Assertions
Encrypt assertions in SAML documents with the realm's private key. The AES algorithm is
used with a key size of 128 bits.

Client Signature Required
Expect that documents coming from a client are signed. Keycloak will validate this signature
using the client keys set up in the Appl i cati on Keys submenu item.

Force POST Binding
By default, Keycloak will respond using the initial SAML binding of the original request. By
turning on this switch, you will force Keycloak to always respond using the SAML POST
Binding even if the original request was a the Redirect binding.

97

Chapter 21. SAML SSO

You have to specify an admin URL if you want logout to work. This should be a URL that will
except single logout requests from the Keycloak server. You should also specify a default redirect
url. Keycloak will redirect to this url after single logout is complete.

One thing to note is that roles are not treated as a hierarchy. So, any role mappings will just be
added to the role attributes in the SAML document using their basic name. So, if you have multiple
application roles you might have name collisions. You can use the Scope Mapping menu item to
control which role mappings are set in the response.

21.1. SAML Entity Descriptor

If you go into the admin console in the application list menu page you will see an | nport
button. If you click on that you can import SAML Service Provider definitions using the
Entity Descriptor [http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-o0s.pdf] format
described in SAML 2.0. You should review all the information there to make sure everything is
set up correctly.

Each realm has a URL where you can view the XML entity descriptor for the IDP. r oot / r eal s/
{real nmt/protocol /sam /descri ptor

98

http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf

Chapter 22.

Chapter 22. Security Vulnerabilities

This chapter discusses possible security vulnerabilities Keycloak could have, how Keycloak
mitigates those vulnerabilities, and what steps you need to do to configure Keycloak to mitigate
some vulnerabilities. A good list of potential vulnerabilities and what security implementations
should do to mitigate them can be found in the OAuth 2.0 Thread Model [http://tools.ietf.org/html/
rfc6819] document put out by the IETF. Many of those vulnerabilities are discussed here.

22.1. SSL/HTTPS Requirement

If you do not use SSL/HTTPS for all communication between the Keycloak auth server and the
clients it secures you will be very vulnerable to man in the middle attacks. OAuth 2.0/OpenID
Connect uses access tokens for security. Without SSL/HTTPS, attackers can sniff your network
and obtain an access token. Once they have an access token they can do any operation that the
token has been given permission for.

Keycloak has three modes for SSL/HTTPS. SSL can be hard to set up, so out of the box, Keycloak
allows non-HTTPS communication over private IP addresses like localhost, 192.168.x.x, and other
private IP addresses. In production, you should make sure SSL is enabled and required across
the board.

On the adapter/client side, Keycloak allows you to turn off the SSL trust manager. The trust
manager ensures identity the client is talking to. It checks the DNS domain name against the
server's certificate. In production you should make sure that each of your client adapters is
configured to use a truststore. Otherwise you are vulnerable to DNS man in the middle attacks.

22.2. CSRF Attacks

Cross-site request forgery (CSRF) is a web-based attack whereby HTTP requests are transmitted
from a user that the web site trusts or has authenticated (e.g., via HTTP redirects or HTML forms).
Any site that uses cookie based authentication is vulnerable for these types of attacks. These
attacks are mitigated by matching a state cookie against a posted form or query parameter.

OAuth 2.0 login specification requires that a state cookie be used and matched against a
transmitted state parameter. Keycloak fully implements this part of the specification so all logins
are protected.

The Keycloak adminstration console is a pure Javascript/HTML5 application that makes REST
calls to the backend Keycloak admin API. These calls all require bearer token authentication and
are made via Javascript Ajax calls. CSRF does not apply here. The admin REST API can also be
configured to validate CORS origins as well.

The only part of Keycloak that really falls into CSRF is the user account management pages. To
mitigate this Keycloak sets a state cookie and also embeds the value of this state cookie within
hidden form fields or query parameters in action links. This query or form parameter is checked
against the state cookie to verify that the call was made by the user.

99

http://tools.ietf.org/html/rfc6819
http://tools.ietf.org/html/rfc6819
http://tools.ietf.org/html/rfc6819

Chapter 22. Security Vulnerab...

22.3. Clickjacking

With clickjacking, a malicious site loads the target site in a transparent iFrame overlaid on top
of a set of dummy buttons that are carefully constructed to be placed directly under important
buttons on the target site. When a user clicks a visible button, they are actually clicking a button
(such as an "Authorize" button) on the hidden page. An attacker can steal a user's authentication
credentials and access their resources.

By default, every response by Keycloak sets some specific browser headers that can prevent this
from happening specifically X-FRAME_OPTIONS [http://tools.ietf.org/html/rfc7034] and Content-
Security-Policy [http://www.w3.0rg/TR/CSP/]. You should take a look at both of these headers. In
the admin console you can specify the values these headers will have. By default, Keycloak only
sets up a same-origin policy for iframes.

22.4. Compromised Access Codes

It would be very hard for an attacker to compromise Keycloak access codes. Keycloak generates
a cryptographically strong random value for its access codes so it would be very hard to guess
an access token. An access code can only be turned into an access token once so it can't be
replayed. In the admin console you can specify how long an access token is valid for. This value
should be really short. Like a seconds. Just long enough for the client to make the request to turn
the code into an token.

22.5. Compromised access and refresh tokens

There's a few things you can do to mitigate access tokens and refresh tokens from being stolen.
Most importantly is to enforce SSL/HTTPS communication between Keycloak and its clients and
applications. Short lifespans (minutes) for access tokens allows Keycloak to check the validity
of a refresh token. Making sure refresh tokens always stay private to the client and are never
transmitted ever is very important as well.

If an access token or refresh token is compromised, the first thing you should do is go to the
admin console and push a not-before revocation policy to all applications. This will enforce that
any tokens issued prior to that date are now invalid. You can also disable specific applications,
clients, and users if you feel that any one of those entities is completely compromised.

22.6. Open redirectors

An attacker could use the end-user authorization endpoint and the redirect URI parameter to
abuse the authorization server as an open redirector. An open redirector is an endpoint using a
parameter to automatically redirect a user agent to the location specified by the parameter value
without any validation. An attacker could utilize a user's trust in an authorization server to launch
a phishing attack.

Keycloak requires that all registered applications and clients register at least one redirection uri
pattern. Any time a client asks Keycloak to perform a redirect (on login or logout for example),

100

http://tools.ietf.org/html/rfc7034
http://tools.ietf.org/html/rfc7034
http://www.w3.org/TR/CSP/
http://www.w3.org/TR/CSP/
http://www.w3.org/TR/CSP/

Password guess: brute force attacks

Keycloak will check the redirect uri vs. the list of valid registered uri patterns. It is important that
clients and applications register as specific a URI pattern as possible to mitigate open redirector
attacks.

22.7. Password guess: brute force attacks

A brute force attack happens when an attacker is trying to guess a user's password. Keycloak
has some limited brute force detection capabilities. If turned on, a user account will be temporarily
disabled if a threshold of login failures is reached. The downside of this is that this makes Keycloak
vulnerable to denial of service attacks. Eventually we will expand this functionality to take client
IP address into account when deciding whether to block a user.

Another thing you can do to prevent password guessing is to point a tool like Fail2Ban [http://
fail2ban.org] to the Keycloak server's log file. Keycloak logs every login failure and client IP
address that had the failure.

In the admin console, per realm, you can set up a password policy to enforce that users pick hard
to guess passwords.

Finally, the best way to mitigate against brute force attacks is to require user to set up a one-
time-password (OTP).

22.8. Password database compromised

Keycloak does not store passwords in raw text. It stores a hash of them. Because of performance
reasons, Keycloak only hashes passwords once. While a human could probably never crack a
hashed password, it is very possible that a computer could. The security community suggests
around 20,000 (yes thousand!) hashing iterations to be done to each password. This number
grows every year due to increasing computing power (It was 1000 12 years ago). The problem with
this is that password hashing is a huge performance hit as each login would require the entered
password to be hashed that many times and compared to the stored hash. So, its up to the admin
to configure the password hash iterations. This can be done in the admin console password policy
configuration. Again, the default value is 1 as we thought it might be more important for Keycloak
to scale out of the box. There's a lot of other measures admins can do to protect their password
databases.

22.9. SQL Injection attacks

At this point in time, there is no knowledge of any SQL injection vulnerabilities in Keycloak

22.10. Limiting Scope

Using the Scope menu in the admin console for oauth clients or applications, you can control
exactly which role mappings will be included within the token sent back to the client or application.
This allows you to limit the scope of permissions given to the application or client which is great if
the client isn't very trusted and is known to not being very careful with its tokens.

101

http://fail2ban.org
http://fail2ban.org
http://fail2ban.org

102

Chapter 23.

Chapter 23. Clustering

To improve availability and scalability Keycloak can be deployed in a cluster.

It's fairly straightforward to configure a Keycloak cluster, the steps required are:

» Configure a shared database

» Configure Infinispan

» Enable realm and user cache invalidation
» Enable distributed user sessions

e Start in HA mode

23.1. Configure a shared database

Keycloak doesn't replicate realms and users, but instead relies on all nodes using the same
database. This can be a relational database or Mongo. To make sure your database doesn't
become a single point of failure you may also want to deploy your database to a cluster.

23.2. Configure Infinispan

Keycloak uses Infinispan [http://www.infinispan.org/] caches to share information between nodes.

For realm and users Keycloak uses a invalidation cache. An invalidation cache doesn't share any
data, but simply removes stale data from remote caches. This reduces network traffic, as well as
preventing sensitive data (such as realm keys and password hashes) from being sent between
the nodes.

User sessions and login failures supports either distributed caches or fully replicated caches. We
recommend using a distributed cache.

To configure the required Infinspan caches open st andal one/ confi gur ati on/ st andal one-
ha. xm and add:

<subsyst em xm ns="urn: j boss: domai n: i nfi ni span: 2. 0" >
<cache- cont ai ner name="keycl oak" j ndi - name="i nfi ni span/ Keycl oak"
start ="EACER' >
<i nval i dati on-cache name="real ns" node="SYNC'/ >
<i nval i dati on-cache name="users" nopde="SYNC'/>
<di stri but ed- cache name="sessi ons" node="SYNC' owners="1" />
<di stri but ed- cache name="1ogi nFai | ures" node="SYNC' owners="1" />
</ cache- cont ai ner >

103

http://www.infinispan.org/
http://www.infinispan.org/

Chapter 23. Clustering

</ subsyst en>

For more advanced options refer to the Infinispan Subsystem [http://docs.jboss.org/author/
display/WFLY8/Infinispan+Subsystem] and Infinispan [http://www.infinispan.org/docs/6.0.x/
user_guide/user_guide.html] documentation.

Next open st andal one/ confi gur ati on/ keycl oak- server.j son and add:

"connectionsl nfinispan": {
"default" : {
"cacheContai ner" : "java:jboss/infinispan/Keycl oak"

23.3. Enable realm and user cache invalidation

To reduce number of requests to the database Keycloak caches realm and user data. In cluster
mode Keycloak uses an Infinispan invalidation cache to make sure all nodes re-load data from the
database when it is changed. Using an invalidation cache instead of a replicated cache reduces
the network traffic generated by the cluster, but more importantly prevents sensitive data from
being sent.

To enable realm and user cache invalidation open keycl oak-server.json and change the
r eal nCache and user Cache providers to i nfi ni span:

"real nCache": {
"provider": "infinispan"

H

"user Cache": {
"provider": "infinispan"

23.4. Enable distributed user sessions

To help distribute the load of user sessions Keycloak uses an Infinispan distributed cache. A
distributed cache splits user sessions into segments where each node holds one or more segment.
It is possible to replicate each segment to multiple nodes, but this is not strictly necessary since
the failure of a node will only result in users having to log in again. If you need to prevent node

104

http://docs.jboss.org/author/display/WFLY8/Infinispan+Subsystem
http://docs.jboss.org/author/display/WFLY8/Infinispan+Subsystem
http://docs.jboss.org/author/display/WFLY8/Infinispan+Subsystem
http://www.infinispan.org/docs/6.0.x/user_guide/user_guide.html
http://www.infinispan.org/docs/6.0.x/user_guide/user_guide.html
http://www.infinispan.org/docs/6.0.x/user_guide/user_guide.html

Start in HA mode

failures from requiring users to log in again, set the owner s attribute to 2 or more for the sessi ons
cache (see Configure Infinispan).

To enable the Infinispan user sessions provider open keycl oak- server. j son and change the
userSessions provider to i nfi ni span:

"user Sessi ons": {
"provider": "infinispan"

23.5. Start in HA mode

To start the server in HA mode, start it with:
bi n/ st andal one --server-config=standal one-ha. xm

Alternatively you can copy st andal one/ confi g/ st andal one- ha. xm to st andal one/ confi g/
st andal one. xnl to make it the default server config.

23.6. Enabling cluster security

By default there's nothing to prevent unauthorized nodes from joining the cluster and sending
potentially malicious messages to the cluster. However, as there's no sensitive data sent there's
not much that can be achieved. For realms and users all that can be done is to send invalidation
messages to make nodes load data from the database more frequently. For user sessions it would
be possible to modify existing user sessions, but creating new sessions would have no affect
as they would not be linked to any access tokens. There's not to much that can be achieved by
modifying user sessions. For example it would be possible to prevent sessions from expiring,
by changing the creation time. However, it would for example have no effect adding additional
permissions to the sessions as these are rechecked against the user and application when the
token is created or refreshed.

In either case your cluster nodes should be in a private network, with a firewall protecting them from
outside attacks. Ideally isolated from workstations and laptops. You can also enable encryption
of cluster messages, this could for example be useful if you can't isolate cluster nodes from
workstations and laptops on your private network. However, encryption will obviously come at a
cost of reduced performance.

To enable encryption of cluster messages you first have to create a shared keystore (change the
key and store passwords!):

105

Chapter 23. Clustering

keyt ool -genseckey -alias keycl oak -keypass <PASSWORD> - st or epass <PASSWORD> \
-keyal g Bl owfi sh -keysize 56 -keystore defaultStore. keystore -storetype JCEKS

Copy this keystore to all nodes (for example to standalone/configuration). Then configure JGroups
to encrypt all messages by adding the ENCRYPT protocol to the JGroups sub-system (this should
be added after the pbcast . GVB protocol):

<subsyst em xnl ns="urn: j boss: donai n: j groups: 2. 0" defaul t-stack="udp">
<stack name="udp">

<prot ocol type="pbcast.GW"/>
<prot ocol type="ENCRYPT">
<property nane="key_store_nane">
${j boss. server.config.dir}/defaul tStore. keystore
</ property>
<property nane="key_passwor d" >PASSWORD</ pr operty>
<property nane="store_passwor d">PASSWORD</ pr operty>
<property nane="al i as" >keycl oak</ pr operty>
</ pr ot ocol >
</ stack>
<stack name="tcp">
<prot ocol type="pbcast.GWw"/>
<pr ot ocol type="ENCRYPT">
<property nane="key_store_name">
${j boss. server.config.dir}/defaultStore. keystore
</ property>
<property nane="key_ passwor d" >PASSWORD</ pr operty>
<property nane="store_passwor d">PASSWORD</ pr operty>
<property nane="al i as">keycl oak</ property>
</ pr ot ocol >

</ st ack>

</ subsyst en®

See the JGroups manual [http://www.jgroups.org/manual/index.htmI#ENCRYPT] for more details.

106

http://www.jgroups.org/manual/index.html#ENCRYPT
http://www.jgroups.org/manual/index.html#ENCRYPT

Chapter 24.

Chapter 24. Application Clustering

This chapter is focused on clustering support for your own AS7, EAP6 or Wildfly applications,
which are secured by Keycloak. We support various deployment scenarios according if your
application is:

» stateless or stateful

- distributable (replicated http session) or non-distributable and just relying on sticky sessions
provided by loadbalancer

 deployed on same or different cluster hosts where keycloak servers are deployed

The situation is a bit tricky as application communicates with Keycloak directly within user's
browser (for example redirecting to login screen), but there is also backend (out-of-bound)
communication between keycloak and application, which is hidden from end-user and his browser
and hence can't rely on sticky sessions.

24.1. Stateless token store

By default, the serviet web application secured by Keycloak uses HTTP session to store
information about authenticated user account. This means that this info could be replicated across
cluster and your application will safely survive failover of some cluster node.

However if you don't need or don't want to use HTTP Session, you may alternatively save all info
about authenticated account into cookie. This is useful especially if your application is:

« stateless application without need of HTTP Session, but with requirement to be safe to failover
of some cluster node

« stateful application, but you don't want sensitive token data to be saved in HTTP session

- stateless application relying on loadbalancer, which is not aware of sticky sessions (in this case
cookie is your only way)

To configure this, you can add this line to configuration of your adapter in WEB- I NF/
keycl oak. j son of your application:

"t oken-store": "cookie"

Default value of token-store is session, hence saving data in HTTP session. One
disadvantage of cookie store is, that whole info about account is passed in cookie

107

Chapter 24. Application Clust...

KEYCLOAK_ADAPTER_STATE in each HTTP request. Hence it's not the best for network
performance.

24.2. Relative URI optimization

In many deployment scenarios will be Keycloak and secured applications deployed on same
cluster hosts. For this case Keycloak already provides option to use relative URI as value of option
auth-server-url in VEB- | NF/ keycl oak. j son . In this case, the URI of Keycloak server is resolved
from the URI of current request.

For example if your loadbalancer is on https://loadbalancer.com/myapp and auth-server-url is /
auth, then relative URI of Keycloak is resolved to be https://loadbalancer.com/myapp .

For cluster setup, it may be even better to use option auth-server-url-for-backend-request . This
allows to configure that backend requests between Keycloak and your application will be sent
directly to same cluster host without additional round-trip through loadbalancer. So for this, it's
good to configure values in VEB- | NF/ keycl oak. j son like this:

"aut h-server-url": "/auth",
"aut h-server-url -for-backend-requests": "http://${jboss. host. nane}: 8080/ aut h"

This would mean that browser requests (like redirecting to Keycloak login screen) will be still
resolved relatively to current request URI like https://loadbalancer.com/myapp, but backend (out-
of-bound) requests between keycloak and your app are send always to same cluster host with
application .

Note that additionally to network optimization, you may not need "https" in this case as application
and keycloak are communicating directly within same cluster host.

24.3. Admin URL configuration

Admin URL for particular application can be configured in Keycloak admin console. It's used by
Keycloak server to send backend requests to application for various tasks, like logout users or
push revocation policies.

For example logout of user from Keycloak works like this:

1. User sends logout request from one of applications where he is logged.
2. Then application will send logout request to Keycloak

3. Keycloak server logout user in itself, and then it re-sends logout request by backend channel
to all applications where user is logged. Keycloak is using admin URL for this. So logout is
propagated to all apps.

108

Registration of application nodes to Keycloak

You may again use relative values for admin URL, but in cluster it may not be the best similarly
like in previous section .

Some examples of possible values of admin URL are:

http://${jboss.host.name}:8080/myapp
This is best choice if "myapp" is deployed on same cluster hosts like Keycloak and
is distributable. In this case Keycloak server sends logout request to itself, hence no
communication with loadbalancer or other cluster nodes and no additional network traffic.

Note that since the application is distributable, the backend request sent by Keycloak could
be served on any application cluster node as invalidation of HTTP Session on nodel will
propagate the invalidation to other cluster nodes due to replicated HTTP sessions.

http://${application.session.host}:8080/myapp
Keycloak will track hosts where is particular HTTP Session served and it will send session
invalidation message to proper cluster node.

For example application is deployed on http://node1:8080/myapp and http://node2:8080/
myapp . Now HTTP Session sessionl is sticky-session served on cluster node node2 . When
keycloak invalidates this session, it will send request directly to http://node2:8080/myapp .

This is ideal configuration for distributable applications deployed on different host than
keycloak or for non-distributable applications deployed either on same or different nodes than
keycloak. Good thing is that it doesn't send requests through load-balancer and hence helps
to reduce network traffic.

24.4. Registration of application nodes to Keycloak

Previous section describes how can Keycloak send logout request to proper application node.
However in some cases admin may want to propagate admin tasks to all registered cluster nodes,
not just one of them. For example push new notBefore for realm or application, or logout all users
from all applications on all cluster nodes.

In this case Keycloak should be aware of all application cluster nodes, so it could send event to
all of them. To achieve this, we support auto-discovery mechanism:

1. Once new application node joins cluster, it sends registration request to Keycloak server
2. The request may be re-sent to Keycloak in configured periodic intervals

3. If Keycloak won't receive re-registration request within specified timeout (should be greater
than period from point 2) then it automatically unregister particular node

4. Node is also unregistered in Keycloak when it sends unregistration request, which is usually
during node shutdown or application undeployment. This may not work properly for forced
shutdown when undeployment listeners are not invoked, so here you need to rely on automatic
unregistration from point 3 .

109

Chapter 24. Application Clust...

Sending startup registrations and periodic re-registration is disabled by default, as it's main
usecase is just cluster deployment. In VEB- | NF/ keycl oak. j son of your application, you can
specify:

"regi ster-node-at-startup”: true
"regi ster-node-period": 600,

which means that registration is sent at startup (accurately when 1st request is served by the
application node) and then it's resent each 10 minutes.

In Keycloak admin console you can specify the maximum node re-registration timeout (makes
sense to have it bigger than register-node-period from adapter configuration for particular
application). Also you can manually add and remove cluster nodes in admin console, which is
useful if you don't want to rely on adapter's automatic registration or if you want to remove stale
application nodes, which weren't unregistered (for example due to forced shutdown).

24.5. Refresh token in each request

By default, application adapter tries to refresh access token when it's expired (period can be
specified as Access Token Lifespan) . However if you don't want to rely on the fact, that Keycloak
is able to successfully propagate admin events like logout to your application nodes, then you
have possibility to configure adapter to refresh access token in each HTTP request.

In VEB- | NF/ keycl oak. j son you can configure:

"al ways-refresh-token": true

Note that this has big performance impact. It's useful just if performance is not priority, but
security is critical and you can't rely on logout and push notBefore propagation from Keycloak to
applications.

110

Chapter 25.

Chapter 25. Keycloak Security
Proxy

Keycloak has an HTTP(S) proxy that you can put in front of web applications and services where
it is not possible to install the keycloak adapter. You can set up URL filters so that certain URLS
are secured either by browser login and/or bearer token authentication. You can also define role
constraints for URL patterns within your applications.

25.1. Proxy Install and Run

Download the keycloak proxy distribution from the Keycloak download pages and unzip it.

$ unzi p keycl oak-proxy-dist.zip

To run it you must have a proxy config file (which we'll discuss in a moment).

$ java -jar bin/launcher.jar [your-config.]json]

If you do not specify a path to the proxy config file, the launcher will look in the current working
directory for the file named pr oxy. j son

25.2. Proxy Configuration

Here's an example configuration file.

"target-url": "http://|ocal host:8082",
"send- access-token": true,
"bi nd- address": "l ocal host",
"http-port": "8080",
"https-port": "8443",
"keystore": "classpath:ssl.jks",
"keyst ore-password": "password",
"key- password": "password",
"applications": [
{
"base-path": "/custoner-portal",
“error-page": "/error.htm",

111

Chapter 25. Keycloak Security...

"adapter-config": {
"real n': "denp",

"resource": "custoner-portal",
"real mpublic-key": "M G MAOGCSqGSI b",
"auth-server-url": "http://local host: 8081/ aut h",
"ssl-required" : "external",
"principal-attribute": "nane",
"credential s": {
"secret": "password"
}
}
"constraints": [
{
"pattern": "/users/*",
"rol es-al l owed": [
"user"
]
b
{
"pattern": "/adm ns/*",
"rol es-al l owed": [
"adm n"
]
H
{
"pattern”: "/users/permt",
"permt": true
H
{
"pattern”: "/users/deny",
"deny": true
}

25.2.1. Basic Config

The basic configuration options for the server are as follows:

target-url
The URL this server is proxying REQUIRED..

send-access-token
Boolean flag. If true, this will send the access token via the KEYCLOAK_ACCESS TOKEN
header to the proxied server. OPTIONAL.. Default is false.

112

Application Config

bind-address
DNS name or IP address to bind the proxy server's sockets to. OPTIONAL.. The default value
is localhost

http-port
Port to listen for HTTP requests. If you do not specify this value, then the proxy will not listen
for regular HTTP requests. OPTIONAL..

https-port
Port to listen for HTTPS requests. If you do not specify this value, then the proxy will not listen
for HTTPS requests. OPTIONAL..

keystore
Path to a Java keystore file that contains private key and certificate for the server to be able
to handle HTTPS requests. Can be a file path, or, if you prefix it with cl asspat h: it will look
for this file in the classpath. OPTIONAL.. If you have enabled HTTPS, but have not defined a
keystore, the proxy will auto-generate a self-signed certificate and use that.

buffer-size
HTTP server socket buffer size. Usually the default is good enough. OPTIONAL..

buffers-per-region
HTTP server socket buffers per region. Usually the default is good enough. OPTIONAL..

io-threads
Number of threads to handle 10. Usually default is good enough. OPTIONAL.. The default is
the number of available processors * 2.

worker-threads
Number of threads to handle requests. Usually the default is good enough. OPTIONAL.. The
default is the number of available processors * 16.

25.2.2. Application Config

Next under the appl i cati ons array attribute, you can define one or more applications per host
you are proxying.

base-path
The base context root for the application. Must start with '/* REQUIRED..

error-page
If the proxy has an error, it will display the target application's error page relative URL
OPTIONAL.. This is a relative path to the base-path. In the example above it would be /
custoner-portal/error.htm.

adapter-config
REQUIRED.. Same configuration as any other keycloak adapter. See Adapter Config

113

Chapter 25. Keycloak Security...

25.2.2.1. Constraint Config

Next under each application you can define one or more constraints in the constrai nts array
attribute. A constraint defines a URL pattern relative to the base-path. You can deny, permit, or
require authentication for a specific URL pattern. You can specify roles allowed for that path as
well. More specific constraints will take precedence over more general ones.

pattern
URL pattern to match relative to the base-path of the application. Must start with /'
REQUIRED.. You may only have one wildcard and it must come at the end of the pattern.
Valid / f oo/ bar/* and / f oo/ *. t xt Not valid: /*/f oo/ *.

roles-allowed
Array of strings of roles allowed to access this url pattern. OPTIONAL..

methods
Array of strings of HTTP methods that will exclusively match this pattern and HTTP request.
OPTIONAL..

excluded-methods
Array of strings of HTTP methods that will be ignored when match this pattern. OPTIONAL..

deny
Deny all access to this URL pattern. OPTIONAL..

permit
Permit all access without requiring authentication or a role mapping. OPTIONAL..

authenticate
Require authentication for this pattern, but no role mapping. OPTIONAL..

25.3. Keycloak Identity Headers

When forwarding requests to the proxied server, Keycloak Proxy will set some additional headers
with values from the OIDC identity token it received for authentication.

KEYCLOAK_SUBJECT
User id. Corresponds to JWT sub and will be the user id Keycloak uses to store this user.

KEYCLOAK_USERNAME
Username. Corresponds to JWT pref erred_user nane

KEYCLOAK_EMAIL
Email address of user if set.

KEYCLOAK_NAME
Full name of user if set.

114

Keycloak Identity Headers

KEYCLOAK_ACCESS_TOKEN
Send the access token in this header if the proxy was configured to send it. This token can
be used to make bearer token requests.

115

116

Chapter 26.

Chapter 26. Migration from older
versions

To upgrade to a new version of Keycloak first download and install the new version of Keycloak.
You then have to migrate the database, keycloak-server.json, providers, themes and applications
from the old version.

26.1. Migrate database

Keycloak provides automatic migration of the database. It's highly recommended that you backup
your database prior to upgrading Keycloak.

To enable automatic upgrading of the database if you're using a relational database make sure
dat abaseSchens is set to updat e for connect i onsJpa:

"connectionsJpa": {
"default": {

"dat abaseSchema": "update"

For MongoDB do the same, but for connect i onsMongo:

"connecti onshMongo": {
"default": {

"dat abaseSchema": "update”

When you start the server with this setting your database will automatically be migrated if the
database schema has changed in the new version.

26.2. Migrate keycloak-server.json

You should copy st andal one/ confi gur ati on/ keycl oak-server. j son from the old version to
make sure any configuration changes you've done are added to the new installation. The version
specific section below will list any changes done to this file that you have to do when upgrading
from one version to another.

117

Chapter 26. Migration from ol...

26.3. Migrate providers

If you have implemented any SPI providers you need to copy them to the new server. The version
specific section below will mention if any of the SPI's have changed. If they have you may have
to update your code accordingly.

26.4. Migrate themes

If you have created a custom theme you need to copy them to the new server. The version specific
section below will mention if changes have been made to themes. If there is you may have to
update your themes accordingly.

26.5. Migrate application

If you deploy applications directly to the Keycloak server you should copy them to the new server.
For any applications including those not deployed directly to the Keycloak server you should
upgrade the adapter. The version specific section below will mention if any changes are required
to applications.

26.6. Version specific migration

26.6.1. Migrating from 1.1.Betal to 1.1.Beta2

» Adapters are now a separate download. They are not included in appliance and war distribution.
We have too many now and the distro is getting bloated.

e The tomcat adapter valve has moved to a different
package. From org. keycl oak. adapt ers. t ontat 7. Keycl oakAut henti cat orVal ve to
org. keycl oak. adapt ers. t ontat . Keycl oakAut henti catorValve From the ‘'tomcat?'
package to just ‘tomcat'.

« JavaScript adapter now has idToken and idTokenParsed properties. If you use idToken to
retrieve first name, email, etc. you need to change this to idTokenParsed.

» The as7-eap-subsystem and keycloak-wildfly-subsystem have been merged into one keycloak-
subsystem. If you have an existing standalone.xml or domain.xml, you will need edit near the
top of the file and change the extension module name to org.keycloak.keycloak-subsystem. For
AS7 only, the extension module name is org.keycloak.keycloak-as7-subsystem.

« Server installation is no longer supported on AS7. You can still use AS7 as an application client.

26.6.2. Migrating from 1.0.x.Final to 1.1.Betal

* RealmModel JPA and Mongo storage schema has changed

118

Migrating from 1.0 RC-1 to RC-2

» UserSessionModel JPA and Mongo storage schema has changed as these interfaces have
been refactored

« Upgrade your adapters, old adapters are not compatible with Keycloak 1.1. We interpreted
JSON Web Token and OIDC ID Token specification incorrectly. ‘aud’ claim must be the client
id, we were storing the realm name in there and validating it.

26.6.3. Migrating from 1.0 RC-1 to RC-2

« A lot of info level logging has been changed to debug. Also, a realm no longer has the jboss-
logging audit listener by default. If you want log output when users login, logout, change
passwords, etc. enable the jboss-logging audit listener through the admin console.

26.6.4. Migrating from 1.0 Beta 4 to RC-1

logout REST API has been refactored. The GET request on the logout URI does not take a
session_state parameter anymore. You must be logged in in order to log out the session. You
can also POST to the logout REST URI. This action requires a valid refresh token to perform
the logout. The signature is the same as refresh token minus the grant type form parameter.
See documentation for details.

26.6.5. Migrating from 1.0 Beta 1 to Beta 4

LDAP/AD configuration is changed. It is no longer under the "Settings" page. It is now under
Users->Federation. Add Provider will show you an "ldap" option.

Authentication SPI has been removed and rewritten. The new SPI is UserFederationProvider
and is more flexible.

ssl-not-required property in adapter config has been removed. Replaced with ssl -
requi r ed, valid values are al | (require SSL for all requests), ext er nal (require SSL only for
external request) and none (SSL not required).

DB Schema has changed again.

Created applications now have a full scope by default. This means that you don't have to
configure the scope of an application if you don't want to.

Format of JSON file for importing realm data was changed. Now role mappings is available
under the JSON record of particular user.

26.6.6. Migrating from 1.0 Alpha 4 to Beta 1

- DB Schema has changed. We have added export of the database to Beta 1, but not the ability
to import the database from older versions. This will be supported in future releases.

119

Chapter 26. Migration from ol...

« For all clients except bearer-only applications, you must specify at least one redirect uri.
Keycloak will not allow you to log in unless you have specified a valid redirect uri for that
application.

» Resource Owner Password Credentials flow is now disabled by default. It can be enabled by
setting the toggle for Di rect Grant API ONunder realm config in the admin console.

» Configuration is now done through st andal one/ confi gur ati on/ keycl oak-server.j son.
This should mainly affect those that use MongoDB.

« JavaScript adapter has been refactored. See the JavaScript adapter section for more details.

» The "Central Login Lifespan" setting no longer exists. Please see the Session Timeout section
for me details.

26.6.7. Migrating from 1.0 Alpha 2 to Alpha 3

» SkeletonKeyToken, SkeletonKeyScope, SkeletonKeyPrincipal, and SkeletonKeySession
have been renamed to: AccessToken, AccessScope, KeycloakPrincipal, and
KeycloakAuthenticatedSession respectively.

« ServleOAuthClient.getBearerToken() method signature has changed. It now returns an
AccessTokenResponse so that you can obtain a refresh token too.

» Adapters now check the access token expiration with every request. If the token is expired, they
will attempt to invoke a refresh on the auth server using a saved refresh token.

* Subject in AccessToken has been changed to the User ID.

26.6.8. Migrating from 1.0 Alpha 1 to Alpha 2

« DB Schema has changed. We don't have any data migration utilities yet as of Alpha 2.

» JBoss and Wildfly adapters are now installed via a JBoss/Wildfly subsystem. Please review the
adapter installation documentation. Edits to standalone.xml are now required.

« There is a new credential type "secret". Unlike other credential types, it is stored in plain text in
the database and can be viewed in the admin console.

» There is no longer required Application or OAuth Client credentials. These client types are now
hard coded to use the "secret" credential type.

» Because of the "secret" credential change to Application and OAuth Client, you'll have to update
your keycloak.json configuration files and regenarate a secret within the Application or OAuth
Client credentials tab in the administration console.

120

	Keycloak Reference Guide
	Table of Contents
	Preface
	Chapter 1. License
	Chapter 2. Overview
	2.1. Key Concepts in Keycloak
	2.2. How Does Security Work in Keycloak?
	2.2.1. Permission Scopes

	Chapter 3. Installation and Configuration of Keycloak Server
	3.1. Appliance Install
	3.2. WAR Distribution Installation
	3.3. Configuring the Server
	3.3.1. Relational Database Configuration
	3.3.1.1. Tested databases

	3.3.2. MongoDB based model
	3.3.3. EAP6.x Logging
	3.3.4. SSL/HTTPS Requirement/Modes
	3.3.5. SSL/HTTPS Setup
	3.3.5.1. Enable SSL on Keycloak
	3.3.5.1.1. Creating the Certificate and Java Keystore
	3.3.5.1.1.1. Self Signed Certificate

	3.3.5.1.2. Installing the keystore to WildFly
	3.3.5.1.3. Installing the keystore to JBoss EAP6

	3.3.5.2. Enable SSL on a Reverse Proxy
	3.3.5.2.1. WildFly
	3.3.5.2.2. EAP

	3.4. Configuring Servers from the Subsystem
	3.4.1. Manually Creating A Server
	3.4.2. Using CLI and CLI GUI with the Keycloak Subsystem
	3.4.2.1. Basic CLI Commands
	3.4.2.2. Uploading extra configuration using CLI
	3.4.2.3. Working with overlays

	3.4.3. Adding a Keycloak server in Domain Mode

	Chapter 4. Running Keycloak Server on OpenShift
	4.1. Create Keycloak instance with the web tool
	4.2. Create Keycloak instance with the command-line tool
	4.3. Next steps

	Chapter 5. Master Admin Access Control
	5.1. Global Roles
	5.2. Realm Specific Roles

	Chapter 6. Per Realm Admin Access Control
	6.1. Realm Roles

	Chapter 7. Adapters
	7.1. General Adapter Config
	7.2. JBoss/Wildfly Adapter
	7.2.1. Adapter Installation
	7.2.2. Required Per WAR Configuration
	7.2.3. Securing WARs via Keycloak Subsystem

	7.3. Tomcat 6, 7 and 8 Adapters
	7.3.1. Adapter Installation
	7.3.2. Required Per WAR Configuration

	7.4. Jetty 9.x Adapters
	7.4.1. Adapter Installation
	7.4.2. Required Per WAR Configuration

	7.5. Jetty 8.1.x Adapter
	7.5.1. Adapter Installation
	7.5.2. Required Per WAR Configuration

	7.6. Pure Client Javascript Adapter
	7.6.1. Session status iframe
	7.6.2. JavaScript Adapter reference
	7.6.2.1. Constructor
	7.6.2.2. Properties
	7.6.2.3. Methods
	7.6.2.4. Callback Events

	7.7. Installed Applications
	7.7.1. http://localhost
	7.7.2. urn:ietf:wg:oauth:2.0:oob

	7.8. Logout
	7.9. Multi Tenancy

	Chapter 8. Social
	8.1. Social Login Config
	8.1.1. Enable social login
	8.1.2. Social-only login
	8.1.3. Social Callback URL

	8.2. Facebook
	8.3. GitHub
	8.4. Google
	8.5. Twitter
	8.6. Social Provider SPI

	Chapter 9. Themes
	9.1. Theme types
	9.2. Configure theme
	9.3. Default themes
	9.4. Creating a theme
	9.4.1. Stylesheets
	9.4.2. Scripts
	9.4.3. Images
	9.4.4. Messages
	9.4.5. Modifying HTML

	9.5. SPIs
	9.5.1. Theme SPI
	9.5.2. Account SPI
	9.5.3. Login SPI

	Chapter 10. Email
	10.1. Email Server Config
	10.1.1. Enable SSL or TLS
	10.1.2. Authentication

	Chapter 11. Application and Client Access Types
	Chapter 12. Roles
	12.1. Composite Roles

	Chapter 13. Direct Access Grants
	Chapter 14. CORS
	Chapter 15. Cookie settings, Session Timeouts, and Token Lifespans
	15.1. Remember Me
	15.2. Session Timeouts
	15.3. Token Timeouts

	Chapter 16. Admin REST API
	Chapter 17. Events
	17.1. Event types
	17.2. Event Listener
	17.3. Event Store
	17.4. Configure Events Settings for Realm

	Chapter 18. User Federation SPI and LDAP/AD Integration
	18.1. LDAP and Active Directory Plugin
	18.1.1. Edit Mode
	18.1.2. Other config options

	18.2. Sync of LDAP users to Keycloak
	18.3. Writing your own User Federation Provider

	Chapter 19. Export and Import
	Chapter 20. Server Cache
	20.1. Disabling Caches
	20.2. Clear Caches
	20.3. Cache Config

	Chapter 21. SAML SSO
	21.1. SAML Entity Descriptor

	Chapter 22. Security Vulnerabilities
	22.1. SSL/HTTPS Requirement
	22.2. CSRF Attacks
	22.3. Clickjacking
	22.4. Compromised Access Codes
	22.5. Compromised access and refresh tokens
	22.6. Open redirectors
	22.7. Password guess: brute force attacks
	22.8. Password database compromised
	22.9. SQL Injection attacks
	22.10. Limiting Scope

	Chapter 23. Clustering
	23.1. Configure a shared database
	23.2. Configure Infinispan
	23.3. Enable realm and user cache invalidation
	23.4. Enable distributed user sessions
	23.5. Start in HA mode
	23.6. Enabling cluster security

	Chapter 24. Application Clustering
	24.1. Stateless token store
	24.2. Relative URI optimization
	24.3. Admin URL configuration
	24.4. Registration of application nodes to Keycloak
	24.5. Refresh token in each request

	Chapter 25. Keycloak Security Proxy
	25.1. Proxy Install and Run
	25.2. Proxy Configuration
	25.2.1. Basic Config
	25.2.2. Application Config
	25.2.2.1. Constraint Config

	25.3. Keycloak Identity Headers

	Chapter 26. Migration from older versions
	26.1. Migrate database
	26.2. Migrate keycloak-server.json
	26.3. Migrate providers
	26.4. Migrate themes
	26.5. Migrate application
	26.6. Version specific migration
	26.6.1. Migrating from 1.1.Beta1 to 1.1.Beta2
	26.6.2. Migrating from 1.0.x.Final to 1.1.Beta1
	26.6.3. Migrating from 1.0 RC-1 to RC-2
	26.6.4. Migrating from 1.0 Beta 4 to RC-1
	26.6.5. Migrating from 1.0 Beta 1 to Beta 4
	26.6.6. Migrating from 1.0 Alpha 4 to Beta 1
	26.6.7. Migrating from 1.0 Alpha 2 to Alpha 3
	26.6.8. Migrating from 1.0 Alpha 1 to Alpha 2

