
Keycloak

Reference Guide

SSO for Web Apps and REST Services

1.1.0.Final

iii

Preface .. vii

1. License .. 1

2. Overview .. 3

2.1. Key Concepts in Keycloak ... 4

2.2. How Does Security Work in Keycloak? .. 4

2.2.1. Permission Scopes .. 5

3. Installation and Configuration of Keycloak Server .. 7

3.1. Appliance Install ... 7

3.2. WAR Distribution Installation ... 7

3.3. Configuring the Server .. 8

3.3.1. Relational Database Configuration .. 8

3.3.2. MongoDB based model .. 11

3.3.3. EAP6.x Logging ... 12

3.3.4. SSL/HTTPS Requirement/Modes .. 13

3.3.5. SSL/HTTPS Setup ... 13

4. Providers and SPIs .. 19

4.1. Implementing a SPI .. 19

4.2. Registering provider implementations ... 20

4.3. Available SPIs .. 21

5. Running Keycloak Server on OpenShift .. 25

5.1. Create Keycloak instance with the web tool .. 25

5.2. Create Keycloak instance with the command-line tool .. 25

5.3. Next steps .. 26

6. Master Admin Access Control ... 27

6.1. Global Roles ... 27

6.2. Realm Specific Roles .. 27

7. Per Realm Admin Access Control ... 29

7.1. Realm Roles ... 29

8. Adapters .. 31

8.1. General Adapter Config ... 31

8.2. JBoss/Wildfly Adapter ... 35

8.2.1. Adapter Installation ... 35

8.2.2. Required Per WAR Configuration .. 37

8.2.3. Securing WARs via Keycloak Subsystem ... 39

8.3. Tomcat 6, 7 and 8 Adapters .. 40

8.3.1. Adapter Installation ... 40

8.3.2. Required Per WAR Configuration .. 40

8.4. Jetty 9.x Adapters ... 42

8.4.1. Adapter Installation ... 42

8.4.2. Required Per WAR Configuration .. 42

8.5. Jetty 8.1.x Adapter .. 45

8.5.1. Adapter Installation ... 45

8.5.2. Required Per WAR Configuration .. 46

8.6. JBoss Fuse and Apache Karaf Adapter .. 46

Keycloak Reference Guide

iv

8.7. Javascript Adapter .. 46

8.7.1. Session status iframe ... 49

8.7.2. Older browsers .. 49

8.7.3. JavaScript Adapter reference .. 50

8.8. Installed Applications ... 53

8.8.1. http://localhost .. 53

8.8.2. urn:ietf:wg:oauth:2.0:oob ... 53

8.9. Logout .. 53

8.10. Multi Tenancy ... 53

8.11. JAAS plugin .. 54

9. Social ... 57

9.1. Social Login Config ... 57

9.1.1. Enable social login ... 57

9.1.2. Social-only login ... 57

9.1.3. Social Callback URL ... 57

9.2. Facebook ... 57

9.3. GitHub .. 58

9.4. Google ... 58

9.5. Twitter .. 59

9.6. Social Provider SPI ... 59

10. Themes .. 61

10.1. Theme types ... 61

10.2. Configure theme ... 61

10.3. Default themes .. 61

10.4. Creating a theme .. 62

10.4.1. Stylesheets .. 62

10.4.2. Scripts ... 63

10.4.3. Images .. 63

10.4.4. Messages .. 63

10.4.5. Modifying HTML ... 64

10.5. SPIs ... 64

10.5.1. Theme SPI .. 64

10.5.2. Account SPI ... 64

10.5.3. Login SPI ... 64

11. Email .. 67

11.1. Email Server Config .. 67

11.1.1. Enable SSL or TLS .. 67

11.1.2. Authentication .. 68

12. Application and Client Access Types .. 69

13. Roles .. 71

13.1. Composite Roles ... 71

14. Direct Access Grants ... 73

15. CORS ... 77

16. Cookie settings, Session Timeouts, and Token Lifespans 79

v

16.1. Remember Me .. 79

16.2. Session Timeouts .. 79

16.3. Token Timeouts .. 79

17. Admin REST API .. 81

18. Events .. 83

18.1. Event types .. 83

18.2. Event Listener ... 83

18.3. Event Store .. 84

18.4. Configure Events Settings for Realm .. 84

19. User Federation SPI and LDAP/AD Integration .. 87

19.1. LDAP and Active Directory Plugin .. 87

19.1.1. Edit Mode .. 87

19.1.2. Other config options ... 88

19.2. Sync of LDAP users to Keycloak ... 88

19.3. Writing your own User Federation Provider ... 89

20. Export and Import .. 91

21. Server Cache ... 95

21.1. Disabling Caches .. 95

21.2. Clear Caches .. 96

21.3. Cache Config .. 96

22. SAML SSO ... 97

22.1. SAML Entity Descriptor ... 98

23. Security Vulnerabilities .. 99

23.1. SSL/HTTPS Requirement .. 99

23.2. CSRF Attacks ... 99

23.3. Clickjacking ... 100

23.4. Compromised Access Codes ... 100

23.5. Compromised access and refresh tokens .. 100

23.6. Open redirectors ... 100

23.7. Password guess: brute force attacks .. 101

23.8. Password database compromised .. 101

23.9. SQL Injection attacks .. 101

23.10. Limiting Scope .. 101

24. Clustering ... 103

24.1. Configure a shared database ... 103

24.2. Configure Infinispan ... 103

24.3. Enable realm and user cache invalidation ... 104

24.4. Enable distributed user sessions .. 104

24.5. Start in HA mode .. 105

24.6. Enabling cluster security .. 105

24.7. Troubleshooting ... 107

25. Application Clustering ... 109

25.1. Stateless token store ... 109

25.2. Relative URI optimization ... 110

Keycloak Reference Guide

vi

25.3. Admin URL configuration ... 110

25.4. Registration of application nodes to Keycloak .. 111

25.5. Refresh token in each request ... 112

26. Keycloak Security Proxy .. 113

26.1. Proxy Install and Run .. 113

26.2. Proxy Configuration ... 113

26.2.1. Basic Config ... 114

26.2.2. Application Config ... 115

26.3. Keycloak Identity Headers ... 116

27. Migration from older versions .. 119

27.1. Migrate database .. 119

27.2. Migrate keycloak-server.json .. 119

27.3. Migrate providers .. 120

27.4. Migrate themes ... 120

27.5. Migrate application .. 120

27.6. Version specific migration .. 120

27.6.1. Migrating from 1.1.0.Beta2 to 1.1.0.Final .. 120

27.6.2. Migrating from 1.1.0.Beta1 to 1.1.0.Beta2 ... 120

27.6.3. Migrating from 1.0.x.Final to 1.1.0.Beta1 .. 121

27.6.4. Migrating from 1.0 RC-1 to RC-2 ... 121

27.6.5. Migrating from 1.0 Beta 4 to RC-1 ... 121

27.6.6. Migrating from 1.0 Beta 1 to Beta 4 ... 121

27.6.7. Migrating from 1.0 Alpha 4 to Beta 1 ... 122

27.6.8. Migrating from 1.0 Alpha 2 to Alpha 3 .. 122

27.6.9. Migrating from 1.0 Alpha 1 to Alpha 2 .. 122

vii

Preface

In some of the example listings, what is meant to be displayed on one line does not fit inside the

available page width. These lines have been broken up. A '\' at the end of a line means that a

break has been introduced to fit in the page, with the following lines indented. So:

Let's pretend to have an extremely \

long line that \

does not fit

This one is short

Is really:

Let's pretend to have an extremely long line that does not fit

This one is short

viii

Chapter 1.

1

Chapter 1. License
Keycloak codebase is distributed under the ASL 2.0 license. It does not distribute any thirdparty

libraries that are GPL. It does ship thirdparty libraries licensed under Apache ASL 2.0 and LGPL.

2

Chapter 2.

3

Chapter 2. Overview
Keycloak is an SSO solution for web apps, mobile and RESTful web services. It is an

authentication server where users can centrally login, logout, register, and manage their user

accounts. The Keycloak admin UI can manage roles and role mappings for any application

secured by Keycloak. The Keycloak Server can also be used to perform social logins via the user's

favorite social media site i.e. Google, Facebook, Twitter etc.

Features:

• SSO and Single Log Out for browser applications

• Social Login. Enable Google, GitHub, Facebook, Twitter social login with no code required.

• LDAP and Active Directory support.

• Optional User Registration

• Password and TOTP support (via Google Authenticator). Client cert auth coming soon.

• Forgot password support. User can have an email sent to them

• Reset password/totp. Admin can force a password reset, or set up a temporary password.

• Not-before revocation policies per realm, application, or user.

• User session management. Admin can view user sessions and what applications/clients have

an access token. Sessions can be invalidated per realm or per user.

• Pluggable theme and style support for user facing screens. Login, grant pages, account mgmt,

and admin console all can be styled, branded, and tailored to your application and organizational

needs.

• Integrated Browser App to REST Service token propagation

• OAuth Bearer token auth for REST Services

• OAuth 2.0 Grant requests

• OpenID Connect Support.

• SAML Support.

• CORS Support

• CORS Web Origin management and validation

• Completely centrally managed user and role mapping metadata. Minimal configuration at the

application side

Chapter 2. Overview

4

• Admin Console for managing users, roles, role mappings, applications, user sessions, allowed

CORS web origins, and OAuth clients.

• Account Management console that allows users to manage their own account, view their open

sessions, reset passwords, etc.

• Deployable as a WAR, appliance, or on Openshift. Completely clusterable.

• Multitenancy support. You can host and manage multiple realms for multiple organizations. In

the same auth server and even within the same deployed application.

• Supports JBoss AS7, EAP 6.x, Wildfly, Tomcat 7, Tomcat 8, Jetty 9.1.x, Jetty 9.2.x, Jetty 8.1.x,

and Pure JavaScript applications. Plans to support Node.js, RAILS, GRAILS, and other non-

Java deployments

2.1. Key Concepts in Keycloak

The core concept in Keycloak is a Realm. A realm secures and manages security metadata for

a set of users, applications, and registered oauth clients. Users can be created within a specific

realm within the Administration console. Roles (permission types) can be defined at the realm

level and you can also set up user role mappings to assign these permissions to specific users.

An application is a service that is secured by a realm. When a user browses an application's web

site, the application can redirect the user agent to the Keycloak Server and request a login. Once

a user is logged in, they can visit any other application managed by the realm and not have to re-

enter credentials. This also hold true for logging out. Roles can also be defined at the application

level and assigned to specific users. Depending on the application type, you may also be able to

view and manage user sessions from the administration console.

An oauth client is similar to an application in that it can request something like a login when a user

visits the site of the oauth client. The difference is that oauth clients are not immediately granted

all permissions of the user. In addition to requesting the login credentials of the user, the Keycloak

Server will also display a grant page asking the user if it is ok to grant allowed permissions to

the oauth client.

2.2. How Does Security Work in Keycloak?

Keycloak uses access tokens to secure web invocations. Access tokens contains security

metadata specifying the identity of the user as well as the role mappings for that user. The format of

these tokens is a Keycloak extension to the JSON Web Token [http://tools.ietf.org/html/draft-ietf-

oauth-json-web-token-14] specification. Each realm has a private and public key pair which it uses

to digitally sign the access token using the JSON Web Signature [http://tools.ietf.org/html/draft-

ietf-jose-json-web-signature-19] specification. Applications can verify the integrity of the digitally

signed access token using the public key of the realm. The protocols used to obtain this token is

defined by the OAuth 2.0 [http://tools.ietf.org/html/rfc6749] specification.

The interesting thing about using these smart access tokens is that applications themselves are

completely stateless as far as security metadata goes. All the information they need about the

http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-14
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-14
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-14
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-19
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-19
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-19
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

Permission Scopes

5

user is contained in the token and there's no need for them to store any security metadata locally

other than the public key of the realm.

Signed access tokens can also be propagated by REST client requests within an Authorization

header. This is great for distributed integration as applications can request a login from a client

to obtain an access token, then invoke any aggregated REST invocations to other services using

that access token. So, you have a distributed security model that is centrally managed, yet does

not require a Keycloak Server hit per request, only for the initial login.

2.2.1. Permission Scopes

Each application and oauth client are configured with a set of permission scopes. These are a

set of roles that an application or oauth client is allowed to ask permission for. Access tokens are

always granted at the request of a specific application or oauth client. This also holds true for SSO.

As you visit different sites, the application will redirect back to the Keycloak Server via the OAuth

2.0 protocol to obtain an access token specific to that application. The role mappings contained

within the token are the intersection between the set of user role mappings and the permission

scope of the application/oauth client. So, access tokens are tailor made for each application/oauth

client and contain only the information required for by them.

6

Chapter 3.

7

Chapter 3. Installation and

Configuration of Keycloak Server
The Keycloak Server has two downloadable distributions.

• keycloak-appliance-dist-all-1.1.0.Final.zip

• keycloak-war-dist-all-1.1.0.Final.zip

3.1. Appliance Install

The keycloak-appliance-dist-all-1.1.0.Final.zip is quite large, but contains a complete

server (backed by Wildfly) that runs out of the box. The only thing you'll have to enable and

configure is SSL. Unzipping it, the directory layout looks something like this:

keycloak-appliance-dist-all-1.1.0.Final/

 keycloak/

 bin/

 standalone.sh

 standalone.bat

 standalone/deployments/

 auth-server.war/

 standalone/configuration/

 keycloak-server.json

 themes/

 examples/

 docs/

The standalone.sh or standalone.bat script is used to start the server. After executing that, log

into the admin console at http://localhost:8080/auth/admin/index.html [http://localhost:8080/auth/

admin/index.html]. Username: admin Password: admin. Keycloak will then prompt you to enter

in a new password.

3.2. WAR Distribution Installation

The keycloak-war-dist-all-1.1.0.Final.zip contains just the bits you need to install

keycloak on your favorite web container. We currently only support installing it on top of an existing

Wildfly 8 or JBoss EAP 6.x distribution. We may in the future provide directions on how to install it

on another web container like Tomcat or Jetty. If anybody in the community is interested in pulling

this together, please contact us. Its mostly Maven pom work.

The directory structure of this distro looks like this:

http://localhost:8080/auth/admin/index.html
http://localhost:8080/auth/admin/index.html
http://localhost:8080/auth/admin/index.html

Chapter 3. Installation and C...

8

keycloak-war-dist-all-1.1.0.Final/

 deployments/

 auth-server.war/

 keycloak-ds.xml

 configuration/

 keycloak-server.json

 themes/

 examples/

 docs/

After unzipping this file, copy everything in deployments directory into the standalone/

deployments of your JBoss or Wildfly distro. Also, copy everything in configuration directory

into the standalone/configuration directory.

 $ cd keycloak-war-dist-all-1.1.0.Final

 $ cp -r deployments $JBOSS_HOME/standalone

 $ cp -r configuration $JBOSS_HOME/standalone

After these steps you MUST then download and install the client adapter as this may contain

modules the server needs (like Bouncycastle). You will also need to install the adapter to run the

examples on the same server.

After booting up the JBoss or Wildfly distro, you can then make sure it is installed

properly by logging into the admin console at http://localhost:8080/auth/admin/index.html [http://

localhost:8080/auth/admin/index.html]. Username: admin Password: admin. Keycloak will then

prompt you to enter in a new password.

You can no longer run Keycloak on JBoss AS 7.1.1. You must run on EAP 6.x or Wildfly.

3.3. Configuring the Server

Although the Keycloak Server is designed to run out of the box, there's some things you'll need

to configure before you go into production. Specifically:

• Configuring Keycloak to use a production database.

• Setting up SSL/HTTPS

• Enforcing HTTPS connections

3.3.1. Relational Database Configuration

By default, Keycloak uses a relational database to store Keycloak data. This datasource

is the standalone/deployments/keycloak-ds.xml file of your Keycloak Server installation

http://localhost:8080/auth/admin/index.html
http://localhost:8080/auth/admin/index.html
http://localhost:8080/auth/admin/index.html

Relational Database Configuration

9

if you used Section 3.2, “WAR Distribution Installation” or in standalone/configuration/

standalone.xml if you used Section 3.1, “Appliance Install”. File keycloak-ds.xml is used in

WAR distribution, so that you have datasource available out of the box and you don't need to edit

standalone.xml file. However a good thing is to always delete the file keycloak-ds.xml and

move its configuration text into the centrally managed standalone.xml file. This will allow you

to manage the database connection pool from the Wildfly/JBoss administration console. Here's

what standalone/configuration/standalone.xml should look like after you've done this:

<subsystem xmlns="urn:jboss:domain:datasources:2.0">

 <datasources>

 <datasource jndi-name="java:jboss/datasources/ExampleDS"

 pool-name="ExampleDS" enabled="true" use-java-context="true">

 <connection-

url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1;DB_CLOSE_ON_EXIT=FALSE</connection-url>

 <driver>h2</driver>

 <security>

 <user-name>sa</user-name>

 <password>sa</password>

 </security>

 </datasource>

 <datasource jndi-name="java:jboss/datasources/KeycloakDS"

 pool-name="KeycloakDS" enabled="true" use-java-context="true">

 <connection-url>jdbc:h2:${jboss.server.data.dir}/

keycloak;AUTO_SERVER=TRUE</connection-url>

 <driver>h2</driver>

 <security>

 <user-name>sa</user-name>

 <password>sa</password>

 </security>

 </datasource>

 <drivers>

 <driver name="h2" module="com.h2database.h2">

 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>

 </driver>

 </drivers>

 </datasources>

</subsystem>

Besides moving the database config into the central standalone.xml configuration file

you might want to use a better relational database for Keycloak like PostgreSQL or

MySQL. You might also want to tweak the configuration settings of the datasource. Please

see the Wildfly [https://docs.jboss.org/author/display/WFLY8/DataSource+configuration], JBoss

AS7 [https://docs.jboss.org/author/display/AS71/DataSource+configuration], or JBoss EAP 6.x

https://docs.jboss.org/author/display/WFLY8/DataSource+configuration
https://docs.jboss.org/author/display/WFLY8/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration
https://docs.jboss.org/author/display/AS71/DataSource+configuration

Chapter 3. Installation and C...

10

[https://docs.jboss.org/author/display/AS71/DataSource+configuration] documentation on how to

do this.

Keycloak also runs on a Hibernate/JPA backend which is configured in the standalone/

configuration/keycloak-server.json. By default the setting is like this:

"connectionsJpa": {

 "default": {

 "dataSource": "java:jboss/datasources/KeycloakDS",

 "databaseSchema": "update"

 }

},

Possible configuration options are:

dataSource

JNDI name of the dataSource

jta

boolean property to specify if datasource is JTA capable

driverDialect

Value of Hibernate dialect. In most cases you don't need to specify this property as dialect

will be autodetected by Hibernate.

databaseSchema

Value of database schema (Hibernate property "hibernate.hbm2ddl.auto").

showSql

Specify whether Hibernate should show all SQL commands in the console (false by default)

formatSql

Specify whether Hibernate should format SQL commands (true by default)

unitName

Allow you to specify name of persistence unit if you want to provide your own persistence.xml

file for JPA configuration. If this option is used, then all other configuration options are ignored

as you are expected to configure all JPA/DB properties in your own persistence.xml file. Hence

you can remove properties "dataSource" and "databaseSchema" in this case.

For more info about Hibernate properties, see Hibernate and JPA documentation [http://

hibernate.org/orm/documentation/] .

3.3.1.1. Tested databases

Here is list of RDBMS databases and corresponding JDBC drivers, which were tested with

Keycloak. Note that Hibernate dialect is usually set automatically according to your database,

but in some cases, you must manually set the proper dialect, as the default dialect may not

https://docs.jboss.org/author/display/AS71/DataSource+configuration
http://hibernate.org/orm/documentation/
http://hibernate.org/orm/documentation/
http://hibernate.org/orm/documentation/

MongoDB based model

11

work correctly. You can setup dialect by adding property driverDialect to the keycloak-

server.json into connectionsJpa section (see above).

Table 3.1. Tested databases

Database JDBC driver Hibernate Dialect

H2 1.3.161 H2 1.3.161 auto

MySQL 5.5 MySQL Connector/J 5.1.25 auto

PostgreSQL 9.2 JDBC4 Postgresql Driver,

Version 9.3-1100

auto

Oracle 11g R1 Oracle JDBC Driver v11.1.0.7 auto

Microsoft SQL Server 2012 Microsoft SQL Server JDBC

Driver 4.0.2206.100

org.hibernate.dialect.SQLServer2008Dialect

Sybase ASE 15.7 JDBC(TM)/7.07 ESD #5

(Build 26792)/P/EBF20686

auto

3.3.2. MongoDB based model

Keycloak provides MongoDB [http://www.mongodb.com] based model implementation, which

means that your identity data will be saved in MongoDB instead of traditional RDBMS. To

configure Keycloak to use Mongo open standalone/configuration/keycloak-server.json in

your favourite editor, then change:

"eventsStore": {

 "provider": "jpa",

 "jpa": {

 "exclude-events": ["REFRESH_TOKEN"]

 }

},

"realm": {

 "provider": "jpa"

},

"user": {

 "provider": "${keycloak.user.provider:jpa}"

},

to:

"eventsStore": {

 "provider": "mongo",

http://www.mongodb.com
http://www.mongodb.com

Chapter 3. Installation and C...

12

 "mongo": {

 "exclude-events": ["REFRESH_TOKEN"]

 }

},

"realm": {

 "provider": "mongo"

},

"user": {

 "provider": "mongo"

},

And at the end of the file add the snippet like this where you can configure details about your

Mongo database:

"connectionsMongo": {

 "default": {

 "host": "127.0.0.1",

 "port": "27017",

 "db": "keycloak",

 "connectionsPerHost": 100

 }

}

All configuration options are optional. Default values for host and port are localhost and 27017.

Default name of database is keycloak . You can also specify properties user and password if

you want authenticate against your MongoDB. If user and password are not specified, Keycloak

will connect unauthenticated to your MongoDB.

Finally there is set of optional configuration options, which can be used to

specify connection-pooling capabilities of Mongo client. Supported int options are:

connectionsPerHost, threadsAllowedToBlockForConnectionMultiplier, maxWaitTime,

connectTimeout socketTimeout. Supported boolean options are: socketKeepAlive,

autoConnectRetry. Supported long option is maxAutoConnectRetryTime. See Mongo

documentation [http://api.mongodb.org/java/2.11.4/com/mongodb/MongoClientOptions.html] for

details about those options and their default values.

3.3.3. EAP6.x Logging

Accessing the admin console will get these annoying log messages:

 WARN [org.jboss.resteasy.core.ResourceLocator] (http-/127.0.0.1:8080-3)

http://api.mongodb.org/java/2.11.4/com/mongodb/MongoClientOptions.html
http://api.mongodb.org/java/2.11.4/com/mongodb/MongoClientOptions.html
http://api.mongodb.org/java/2.11.4/com/mongodb/MongoClientOptions.html

SSL/HTTPS Requirement/Modes

13

 Field providers of subresource xxx will not be injected

 according to spec

These can be ignored by editing standalone.xml of your jboss installation:

 <logger category="org.jboss.resteasy.core.ResourceLocator">

 <level name="ERROR"/>

 </logger>

3.3.4. SSL/HTTPS Requirement/Modes

Warning

Keycloak is not set up by default to handle SSL/HTTPS in either the war distribution

or appliance. It is highly recommended that you either enable SSL on the Keycloak

server itself or on a reverse proxy in front of the Keycloak server.

Keycloak can run out of the box without SSL so long as you stick to private IP addresses like

localhost, 127.0.0.1, 10.0.x.x, 192.168.x.x, and 172..16.x.x. If you try to access Keycloak from a

non-IP adress you will get an error.

Keycloak has 3 SSL/HTTPS modes which you can set up in the admin console under the Settings-

>Login page and the Require SSL select box. Each adapter config should mirror this server-side

setting. See adapter config section for more details.

external

Keycloak can run out of the box without SSL so long as you stick to private IP addresses like

localhost, 127.0.0.1, 10.0.x.x, 192.168.x.x, and 172..16.x.x. If you try to access Keycloak from

a non-IP adress you will get an error.

none

Keycloak does not require SSL.

all

Keycloak requires SSL for all IP addresses.

3.3.5. SSL/HTTPS Setup

First enable SSL on Keycloak or on a reverse proxy in front of Keycloak. Then configure the

Keycloak Server to enforce HTTPS connections.

Chapter 3. Installation and C...

14

3.3.5.1. Enable SSL on Keycloak

The following things need to be done

• Generate a self signed or third-party signed certificate and import it into a Java keystore using

keytool.

• Enable JBoss or Wildfly to use this certificate and turn on SSL/HTTPS.

3.3.5.1.1. Creating the Certificate and Java Keystore

In order to allow HTTPS connections, you need to obtain a self signed or third-party signed

certificate and import it into a Java keystore before you can enable HTTPS in the web container

you are deploying the Keycloak Server to.

3.3.5.1.1.1. Self Signed Certificate

In development, you will probably not have a third party signed certificate available to test a

Keycloak deployment so you'll need to generate a self-signed on. Generate one is very easy to

do with the keytool utility that comes with the Java jdk.

 $ keytool -genkey -alias localhost -keyalg RSA -keystore keycloak.jks -

validity 10950

 Enter keystore password: secret

 Re-enter new password: secret

 What is your first and last name?

 [Unknown]: localhost

 What is the name of your organizational unit?

 [Unknown]: Keycloak

 What is the name of your organization?

 [Unknown]: Red Hat

 What is the name of your City or Locality?

 [Unknown]: Westford

 What is the name of your State or Province?

 [Unknown]: MA

 What is the two-letter country code for this unit?

 [Unknown]: US

 Is CN=localhost, OU=Keycloak, O=Test, L=Westford, ST=MA, C=US correct?

 [no]: yes

You should answer the What is your first and last name? question with the DNS name

of the machine you're installing the server on. For testing purposes, localhost should be used.

After executing this command, the keycloak.jks file will be generated in the same directory as

you executed the keytool command in.

SSL/HTTPS Setup

15

If you want a third-party signed certificate, but don't have one, you can obtain one for free at

cacert.org [http://cacert.org]. You'll have to do a little set up first before doing this though.

The first thing to do is generate a Certificate Request:

 $ keytool -certreq -alias yourdomain -keystore keycloak.jks > keycloak.careq

Where yourdomain is a DNS name for which this certificate is generated for. Keytool generates

the request:

 -----BEGIN NEW CERTIFICATE REQUEST-----

 MIIC2jCCAcICAQAwZTELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAk1BMREwDwYDVQQHEwhXZXN0Zm9y

 ZDEQMA4GA1UEChMHUmVkIEhhdDEQMA4GA1UECxMHUmVkIEhhdDESMBAGA1UEAxMJbG9jYWxob3N0

 MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr7kck2TaavlEOGbcpi9c0rncY4HhdzmY

 Ax2nZfq1eZEaIPqI5aTxwQZzzLDK9qbeAd8Ji79HzSqnRDxNYaZu7mAYhFKHgixsolE3o5Yfzbw1

 29Rvy+eUVe+WZxv5oo9wolVVpdSINIMEL2LaFhtX/c1dqiqYVpfnvFshZQaIg2nL8juzZcBjj4as

 H98gIS7khql/dkZKsw9NLvyxgJvp7PaXurX29fNf3ihG+oFrL22oFyV54BWWxXCKU/GPn61EGZGw

 Ft2qSIGLdctpMD1aJR2bcnlhEjZKDksjQZoQ5YMXaAGkcYkG6QkgrocDE2YXDbi7GIdf9MegVJ35

 2DQMpwIDAQABoDAwLgYJKoZIhvcNAQkOMSEwHzAdBgNVHQ4EFgQUQwlZJBA+fjiDdiVzaO9vrE/i

 n2swDQYJKoZIhvcNAQELBQADggEBAC5FRvMkhal3q86tHPBYWBuTtmcSjs4qUm6V6f63frhveWHf

 PzRrI1xH272XUIeBk0gtzWo0nNZnf0mMCtUBbHhhDcG82xolikfqibZijoQZCiGiedVjHJFtniDQ

 9bMDUOXEMQ7gHZg5q6mJfNG9MbMpQaUVEEFvfGEQQxbiFK7hRWU8S23/d80e8nExgQxdJWJ6vd0X

 MzzFK6j4Dj55bJVuM7GFmfdNC52pNOD5vYe47Aqh8oajHX9XTycVtPXl45rrWAH33ftbrS8SrZ2S

 vqIFQeuLL3BaHwpl3t7j2lMWcK1p80laAxEASib/fAwrRHpLHBXRcq6uALUOZl4Alt8=

 -----END NEW CERTIFICATE REQUEST-----

Send this ca request to your CA. The CA will issue you a signed certificate and send it to you.

Before you import your new cert, you must obtain and import the root certificate of the CA. You

can download the cert from CA (ie.: root.crt) and import as follows:

 $ keytool -import -keystore keycloak.jks -file root.crt -alias root

Last step is import your new CA generated certificate to your keystore:

 $ keytool -import -alias yourdomain -keystore keycloak.jks -file your-

certificate.cer

http://cacert.org
http://cacert.org

Chapter 3. Installation and C...

16

3.3.5.1.2. Installing the keystore to WildFly

Now that you have a Java keystore with the appropriate certificates, you need to configure your

Wildfly installation to use it. First step is to move the keystore file to a directory you can reference in

configuration. I like to put it in standalone/configuration. Then you need to edit standalone/

configuration/standalone.xml to enable SSL/HTTPS.

To the security-realms element add:

<security-realm name="UndertowRealm">

 <server-identities>

 <ssl>

 <keystore path="keycloak.jks" relative-to="jboss.server.config.dir"

 keystore-password="secret" />

 </ssl>

 </server-identities>

 </security-realm>

Find the element <server name="default-server"> (it's a child element of <subsystem

xmlns="urn:jboss:domain:undertow:1.0">) and add:

<https-listener name="https" socket-binding="https" security-

realm="UndertowRealm"/>

Check the Wildfly Undertow [https://docs.jboss.org/author/display/WFLY8/Undertow

+(web)+subsystem+configuration] documentation for more information on fine tuning the socket

connections.

3.3.5.1.3. Installing the keystore to JBoss EAP6

Now that you have a Java keystore with the appropriate certificates, you need to configure your

JBoss EAP6 installation to use it. First step is to move the keystore file to a directory you can

reference in configuration. I like to put it in standalone/configuration. Then you need to edit

standalone/configuration/standalone.xml to enable SSL/HTTPS.

<subsystem xmlns="urn:jboss:domain:web:1.1" default-virtual-server="default-

host" native="false">

 <connector name="http" protocol="HTTP/1.1" scheme="http" socket-binding="http"

 redirect-port="443" />

 <connector name="https" scheme="https" protocol="HTTP/1.1" socket-

binding="https"

https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration
https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration
https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration

SSL/HTTPS Setup

17

 enable-lookups="false" secure="true">

 <ssl name="localhost-ssl" password="secret" protocol="TLSv1"

 key-alias="localhost" certificate-key-file="${jboss.server.config.dir}/

keycloak.jks" />

 </connector>

 ...

</subsystem>

Check the JBoss [https://docs.jboss.org/author/display/AS71/SSL+setup+guide] documentation

for more information on fine tuning the socket connections.

3.3.5.2. Enable SSL on a Reverse Proxy

Follow the documentation for your web server to enable SSL and configure reverse proxy for

Keycloak. It is important that you make sure the web server sets the X-Forwarded-For and X-

Forwarded-Proto headers on the requests made to Keycloak. Next you need to enable proxy-

address-forwarding on the Keycloak http connector. Assuming that your reverse proxy doesn't

use port 8443 for SSL you also need to configure what port http traffic is redirected to.

3.3.5.2.1. WildFly

Open standalone/configuration/standalone.xml in your favorite editor.

First add proxy-address-forwarding and redirect-socket to the http-listener element:

<subsystem xmlns="urn:jboss:domain:undertow:1.1">

 ...

 <http-listener name="default" socket-binding="http"

 proxy-address-forwarding="true" redirect-socket="proxy-https"/>

 ...

</subsystem>

Then add a new socket-binding element to the socket-binding-group element:

<socket-binding-group name="standard-sockets" default-interface="public"

 port-offset="${jboss.socket.binding.port-offset:0}">

 ...

 <socket-binding name="proxy-https" port="443"/>

 ...

</socket-binding-group>

Check the WildFly [https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem

+configuration] documentation for more information.

https://docs.jboss.org/author/display/AS71/SSL+setup+guide
https://docs.jboss.org/author/display/AS71/SSL+setup+guide
https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration
https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration
https://docs.jboss.org/author/display/WFLY8/Undertow+(web)+subsystem+configuration

Chapter 3. Installation and C...

18

3.3.5.2.2. EAP

Open standalone/configuration/standalone.xml in your favorite editor.

You need to add redirect-port to http connector element and add the RemoteIpValve valve:

<subsystem xmlns="urn:jboss:domain:web:1.5"

 default-virtual-server="default-host" native="false">

 <connector name="http" protocol="HTTP/1.1" scheme="http"

 socket-binding="http"

 redirect-port="443"/>

 <virtual-server name="default-host" enable-welcome-root="true">

 <alias name="localhost"/>

 <alias name="example.com"/>

 </virtual-server>

 <valve name="remoteipvalve" module="org.jboss.as.web"

 class-name="org.apache.catalina.valves.RemoteIpValve">

 <param param-name="protocolHeader" param-value="x-forwarded-proto"/>

 </valve>

</subsystem>

Chapter 4.

19

Chapter 4. Providers and SPIs
Keycloak is designed to cover most use-cases without requiring custom code, but we also want

it to be customizable. To achive this Keycloak has a number of SPIs which you can implement

your own providers for.

4.1. Implementing a SPI

To implement an SPI you need to implement it's ProviderFactory and Provider interfaces. You also

need to create a provider-configuration file. For example to implement the Event Listener SPI you

need to implement EventListenerProviderFactory and EventListenerProvider and also provide the

file META-INF/services/org.keycloak.events.EventListenerProviderFactory

For example to implement the Event Listener SPI you start by implementing

EventListenerProviderFactory:

{

package org.acme.provider;

import ...

public class MyEventListenerProviderFactory implements

 EventListenerProviderFactory {

 private List<Event> events;

 public String getId() {

 return "my-event-listener";

 }

 public void init(Config.Scope config) {

 int max = config.getInt("max");

 events = new MaxList(max);

 }

 public EventListenerProvider create(KeycloakSession session) {

 return new MyEventListenerProvider(events);

 }

 public void close() {

 events = null;

 }

}

}

Chapter 4. Providers and SPIs

20

The example uses a MaxList which has a maximum size and is concurrency safe. When the

maximum size is reached and new entries are added the oldest entry is removed. Keycloak

creates a single instance of EventListenerProviderFactory which makes it possible to store state

for multiple requests. EventListenerProvider instances are created by calling create on the factory

for each requests so these should be light-weight.

Next you would implement EventListenerProvider:

{

package org.acme.provider;

import ...

public class MyEventListenerProvider implements EventListenerProvider {

 private List<Event> events;

 public MyEventListenerProvider(List<Event> events) {

 this.events = events;

 }

 @Override

 public void onEvent(Event event) {

 events.add(event);

 }

 @Override

 public void close() {

 }

}

}

The file META-INF/services/org.keycloak.events.EventListenerProviderFactory should

contain the full name of your ProviderFactory implementation:

{

org.acme.provider.MyEventListenerProviderFactory

}

4.2. Registering provider implementations

Keycloak loads provider implementations from the file-system. By default all JARs inside

standalone/configuration/providers are loaded. This is simple, but requires all providers to

Available SPIs

21

share the same library. All provides also inherit all classes from the Keycloak class-loader. In

the future we'll add support to load providers from modules, which allows better control of class

isolation.

To register your provider simply copy the JAR including the ProviderFactory and Provider classes

and the provider configuration file to standalone/configuration/providers.

You can also define multiple provider class-path if you want to create isolated class-loaders. To do

this edit keycloak-server.json and add more classpath entries to the providers array. For example:

{

 "providers": [

 "classpath:provider1.jar;lib-v1.jar",

 "classpath:provider2.jar;lib-v2.jar"

]

}

The above example will create two separate class-loaders for providers. The classpath entries

follow the same syntax as Java classpath, with ';' separating multiple-entries. Wildcard is also

supported allowing loading all jars (files with .jar or .JAR extension) in a folder, for example:

{

 "providers": [

 "classpath:/home/user/providers/*"

]

}

4.3. Available SPIs

Here's a list of the available SPIs and a brief description. For more details on each SPI refer to

individual sections.

Account

Provides the account manage console pages. The default implementation uses FreeMarker

templates.

Connections Infinispan

Loads and configures Infinispan connections. The default implementation can load

connections from the Infinispan subsystem, or alternatively can be manually configured in

keycloak-server.json.

Connections Jpa

Loads and configures Infinispan connections. The default implementation can load

datasources from WildFly/EAP, or alternatively can be manually configured in keycloak-

server.json.

Chapter 4. Providers and SPIs

22

Connections Jpa Updater

Updates database schema. The default implementation uses Liquibase.

Connections Mongo

Loads and configures MongoDB connections. The default implementation is configured in

keycloak-server.json.

Email

Formats and sends email. The default implementation uses FreeMarker templates and

JavaMail.

Events Listener

Listen to user related events for example user login success and failures. Keycloak provides

two implementations out of box. One that logs events to the server log and another that can

send email notifications to users on certain events.

Events Store

Store user related events so they can be viewed through the admin console and account

management console. Keycloak provides implementations for Relational Databases and

MongoDB.

Export

Exports the Keycloak database. Keycloak provides implementations that export to JSON files

either as a single file, multiple file in a directory or a encrypted ZIP archive.

Import

Imports and exported Keycloak database. Keycloak provides implementations that import

from JSON files either as a single file, multiple file in a directory or a encrypted ZIP archive.

Login

Provides the login pages. The default implementation uses FreeMarker templates.

Login Protocol

Provides protocols. Keycloak provides implementations of OpenID Connect and SAML 2.0.

Realm

Provides realm and application meta-data. Keycloak provides implementations for Relational

Databases and MongoDB.

Realm Cache

Caches realm and application meta-data to improve performance. Keycloak provides a basic

in-memory cache and a Infinispan cache.

Theme

Allows creating themes to customize look and feel. Keycloak provides implementations that

can load themes from the file-system or classpath.

Timer

Executes scheduled tasks. Keycloak provides a basic implementation based on

java.util.Timer.

Available SPIs

23

User

Provides users and role-mappings. Keycloak provides implementations for Relational

Databases and MongoDB.

User Cache

Caches users and role-mappings to improve performance. Keycloak provides a basic in-

memory cache and a Infinispan cache.

User Federation

Support syncing users from an external source. Keycloak provides implementations for LDAP

and Active Directory.

User Sessions

Provides users session information. Keycloak provides implementations for basic in-memory,

Infinispan, Relational Databases and MongoDB

24

Chapter 5.

25

Chapter 5. Running Keycloak

Server on OpenShift
Keycloak provides a OpenShift cartridge to make it easy to get it running on OpenShift. If you don't

already have an account or don't know how to create applications go to https://www.openshift.com/

first. You can create the Keycloak instance either with the web tool or the command line tool, both

approaches are described below.

Warning

It's important that immediately after creating a Keycloak instance you open the

Administration Console and login to reset the password. If this is not done

anyone can easily gain admin rights to your Keycloak instance.

5.1. Create Keycloak instance with the web tool

Open https://openshift.redhat.com/app/console/applications and click on Add Application.

Scroll down to the bottom of the page to find the Code

Anything section. Insert http://cartreflect-claytondev.rhcloud.com/github/keycloak/

openshift-keycloak-cartridge into the URL to a cartridge definition field and click on

Next. Fill in the following form and click on Create Application.

Click on Continue to the application overview page. Under the list of applications you

should find your Keycloak instance and the status should be Started. Click on it to open the

Keycloak servers homepage.

5.2. Create Keycloak instance with the command-line

tool

Run the following command from a terminal:

rhc app create <APPLICATION NAME> http://cartreflect-claytondev.rhcloud.com/

github/keycloak/openshift-keycloak-cartridge

Replace <APPLICATION NAME> with the name you want (for example keycloak).

Once the instance is created the rhc tool outputs details about it. Open the returned URL in a

browser to open the Keycloak servers homepage.

https://www.openshift.com/
https://openshift.redhat.com/app/console/applications

Chapter 5. Running Keycloak S...

26

5.3. Next steps

The Keycloak servers homepage shows the Keycloak logo and Welcome to Keycloak. There

is also a link to the Administration Console. Open that and log in using username admin and

password admin. On the first login you are required to change the password.

Tip

On OpenShift Keycloak has been configured to only accept requests over https. If

you try to use http you will be redirected to https.

Chapter 6.

27

Chapter 6. Master Admin Access

Control
You can create and manage multiple realms by logging into the master Keycloak admin console

at /{keycloak-root}/admin/index.html

Users in the Keycloak master realm can be granted permission to manage zero or more realms

that are deployed on the Keycloak server. When a realm is created, Keycloak automatically

creates various roles that grant fine-grain permissions to access that new realm. Access to The

Admin Console and REST endpoints can be controlled by mapping these roles to users in the

master realm. It's possible to create multiple super users as well as users that have only access

to certain operations in specific realms.

6.1. Global Roles

There are two realm roles in the master realm. These are:

• admin - This is the super-user role and grants permissions to all operations on all realms

• create-realm - This grants the user permission to create new realms. A user that creates a

realm is granted all permissions to the newly created realm.

To add these roles to a user select the master realm, then click on Users. Find the user you want

to grant permissions to, open the user and click on Role Mappings. Under Realm Roles assign

any of the above roles to the user by selecting it and clicking on the right-arrow.

6.2. Realm Specific Roles

Each realm in Keycloak is represented by an application in the master realm. The name of the

application is <realm name>-realm. This allows assigning access to users for individual realms.

The roles available are:

• view-realm - View the realm configuration

• view-users - View users (including details for specific user) in the realm

• view-applications - View applications in the realm

• view-clients - View clients in the realm

• view-events - View events in the realm

• manage-realm - Modify the realm configuration (and delete the realm)

• manage-users - Create, modify and delete users in the realm

Chapter 6. Master Admin Acces...

28

• manage-applications - Create, modify and delete applications in the realm

• manage-clients - Create, modify and delete clients in the realm

• manage-events - Enable/disable events, clear logged events and manage event listeners

Manage roles includes permissions to view (for example a user with manage-realm role can also

view the realm configuration).

To add these roles to a user select the master realm, then click on Users. Find the user you want

to grant permissions to, open the user and click on Role Mappings. Under Application Roles

select the application that represents the realm you're adding permissions to (<realm name>-

realm), then assign any of the above roles to the user by selecting it and clicking on the right-arrow.

Chapter 7.

29

Chapter 7. Per Realm Admin

Access Control
Administering your realm through the master realm as discussed in Chapter 6, Master Admin

Access Control may not always be ideal or feasible. For example, maybe you have more than one

admin application that manages various admin aspects of your organization and you want to unify

all these different "admin consoles" under one realm so you can do SSO between them. Keycloak

allows you to grant realm admin privileges to users within that realm. These realm admins can

participate in SSO for that realm and visit a keycloak admin console instance that is dedicated

solely for that realm by going to the url: /{keycloak-root}/admin/{realm}/console

7.1. Realm Roles

Each realm has a built-in application called realm-management. This application defines roles that

define permissions that can be granted to manage the realm.

• realm-admin - This is a composite role that grants all admin privileges for managing security

for that realm.

These are more fine-grain roles you can assign to the user.

• view-realm - View the realm configuration

• view-users - View users (including details for specific user) in the realm

• view-applications - View applications in the realm

• view-clients - View clients in the realm

• view-events - View events in the realm

• manage-realm - Modify the realm configuration (and delete the realm)

• manage-users - Create, modify and delete users in the realm

• manage-applications - Create, modify and delete applications in the realm

• manage-clients - Create, modify and delete clients in the realm

• manage-events - Enable/disable events, clear logged events and manage event listeners

Manage roles includes permissions to view (for example a user with manage-realm role can also

view the realm configuration).

To add these roles to a user select the realm you want. Then click on Users. Find the user you

want to grant permissions to, open the user and click on Role Mappings. Under Application

Chapter 7. Per Realm Admin Ac...

30

Roles select realm-management, then assign any of the above roles to the user by selecting it

and clicking on the right-arrow.

Chapter 8.

31

Chapter 8. Adapters
Keycloak can secure a wide variety of application types. This section defines which application

types are supported and how to configure and install them so that you can use Keycloak to secure

your applications.

8.1. General Adapter Config

Each adapter supported by Keycloak can be configured by a simple JSON text file. This is what

one might look like:

{

 "realm" : "demo",

 "resource" : "customer-portal",

 "realm-public-key" : "MIGfMA0GCSqGSIb3D...31LwIDAQAB",

 "auth-server-url" : "https://localhost:8443/auth",

 "ssl-required" : "external",

 "use-resource-role-mappings" : false,

 "enable-cors" : true,

 "cors-max-age" : 1000,

 "cors-allowed-methods" : ["POST", "PUT", "DELETE", "GET"],

 "bearer-only" : false,

 "enable-basic-auth" : false,

 "expose-token" : true,

 "credentials" : {

 "secret" : "234234-234234-234234"

 },

 "connection-pool-size" : 20,

 "disable-trust-manager": false,

 "allow-any-hostname" : false,

 "truststore" : "path/to/truststore.jks",

 "truststore-password" : "geheim",

 "client-keystore" : "path/to/client-keystore.jks",

 "client-keystore-password" : "geheim",

 "client-key-password" : "geheim"

}

Some of these configuration switches may be adapter specific and some are common across all

adapters. For Java adapters you can use ${...} enclosure as System property replacement.

For example ${jboss.server.config.dir}. Also, you can obtain a template for this config file

from the admin console. Go to the realm and application you want a template for. Go to the

Installation tab and this will provide you with a template that includes the public key of the

realm.

Chapter 8. Adapters

32

Here is a description of each item:

realm

Name of the realm representing the users of your distributed applications and services. This

is REQUIRED.

resource

Username of the application. Each application has a username that is used when the

application connects with the Keycloak server to turn an access code into an access token

(part of the OAuth 2.0 protocol). This is REQUIRED.

realm-public-key

PEM format of public key. You can obtain this from the administration console. This is

REQUIRED.

auth-server-url

The base URL of the Keycloak Server. All other Keycloak pages and REST services are

derived from this. It is usually of the form https://host:port/auth This is REQUIRED.

ssl-required

Ensures that all communication to and from the Keycloak server from the adapter is over

HTTPS. This is OPTIONAL. The default value is external meaning that HTTPS is required by

default for external requests. Valid values are 'all', 'external' and 'none'.

use-resource-role-mappings

If set to true, the adapter will look inside the token for application level role mappings for the

user. If false, it will look at the realm level for user role mappings. This is OPTIONAL. The

default value is false.

public-client

If set to true, the adapter will not send credentials for the client to Keycloak. The default value

is false.

enable-cors

This enables CORS support. It will handle CORS preflight requests. It will also look into the

access token to determine valid origins. This is OPTIONAL. The default value is false.

cors-max-age

If CORS is enabled, this sets the value of the Access-Control-Max-Age header. This is

OPTIONAL. If not set, this header is not returned in CORS responses.

cors-allowed-methods

If CORS is enabled, this sets the value of the Access-Control-Allow-Methods header. This

should be a comma-separated string. This is OPTIONAL. If not set, this header is not returned

in CORS responses.

General Adapter Config

33

cors-allowed-headers

If CORS is enabled, this sets the value of the Access-Control-Allow-Headers header. This

should be a comma-separated string. This is OPTIONAL. If not set, this header is not returned

in CORS responses.

bearer-only

This tells the adapter to only do bearer token authentication. That is, it will not do OAuth

2.0 redirects, but only accept bearer tokens through the Authorization header. This is

OPTIONAL. The default value is false.

enable-basic-auth

This tells the adapter to also support basic authentication. If this option is enabled, then secret

must also be provided. This is OPTIONAL. The default value is false.

expose-token

If true, an authenticated browser client (via a Javascript HTTP invocation) can obtain the

signed access token via the URL root/k_query_bearer_token. This is OPTIONAL. The

default value is false.

credentials

Specify the credentials of the application. This is an object notation where the key is the

credential type and the value is the value of the credential type. Currently only password is

supported. This is REQUIRED.

connection-pool-size

Adapters will make separate HTTP invocations to the Keycloak Server to turn an access code

into an access token. This config option defines how many connections to the Keycloak Server

should be pooled. This is OPTIONAL. The default value is 20.

disable-trust-manager

If the Keycloak Server requires HTTPS and this config option is set to true you do not have

to specify a truststore. While convenient, this setting is not recommended as you will not be

verifying the host name of the Keycloak Server. This is OPTIONAL. The default value is false.

allow-any-hostname

If the Keycloak Server requires HTTPS and this config option is set to true the Keycloak

Server's certificate is validated via the truststore, but host name validation is not done. This

is not a recommended. This seting may be useful in test environments This is OPTIONAL.

The default value is false.

truststore

This setting is for Java adapters. The value is the file path to a Java keystore file. If you

prefix the path with classpath:, then the truststore will be obtained from the deployment's

classpath instead. Used for outgoing HTTPS communications to the Keycloak server. Client

making HTTPS requests need a way to verify the host of the server they are talking to. This

is what the trustore does. The keystore contains one or more trusted host certificates or

certificate authorities. You can create this truststore by extracting the public certificate of the

Chapter 8. Adapters

34

Keycloak server's SSL keystore. This is OPTIONAL if ssl-required is none or disable-

trust-manager is true.

truststore-password

Password for the truststore keystore. This is REQUIRED if truststore is set.

client-keystore

Not supported yet, but we will support in future versions. This setting is for Java adapters.

This is the file path to a Java keystore file. This keystore contains client certificate for two-way

SSL when the adapter makes HTTPS requests to the Keycloak server. This is OPTIONAL.

client-keystore-password

Not supported yet, but we will support in future versions. Password for the client keystore.

This is REQUIRED if client-keystore is set.

client-key-password

Not supported yet, but we will support in future versions. Password for the client's key. This

is REQUIRED if client-keystore is set.

auth-server-url-for-backend-requests

Alternative location of auth-server-url used just for backend requests. It must be absolute URI.

Useful especially in cluster (see Relative URI Optimization) or if you would like to use https

for browser requests but stick with http for backend requests etc.

always-refresh-token

If true, Keycloak will refresh token in every request. More info in Refresh token in each request

.

register-node-at-startup

If true, then adapter will send registration request to Keycloak. It's false by default as useful

just in cluster (See Registration of application nodes to Keycloak)

register-node-period

Period for re-registration adapter to Keycloak. Useful in cluster. See Registration of application

nodes to Keycloak for details.

token-store

Possible values are session and cookie. Default is session, which means that adapter stores

account info in HTTP Session. Alternative cookie means storage of info in cookie. See

Stateless token store for details.

principal-attribute

OpenID Connection ID Token attribute to populate the UserPrincipal name with. If token

attribute is null, defaults to sub. Possible values are sub, preferred_username, email, name,

nickname, given_name, family_name.

JBoss/Wildfly Adapter

35

8.2. JBoss/Wildfly Adapter

To be able to secure WAR apps deployed on JBoss AS 7.1.1, JBoss EAP 6.x, or Wildfly, you

must install and configure the Keycloak Subsystem. You then have two options to secure your

WARs. You can provide a keycloak config file in your WAR and change the auth-method to

KEYCLOAK within web.xml. Alternatively, you don't have to crack open your WARs at all and can

apply Keycloak via the Keycloak Subsystem configuration in standalone.xml. Both methods are

described in this section.

8.2.1. Adapter Installation

Adapters are no longer included with the appliance or war distribution.Each adapter is a separate

download on the Keycloak download site. They are also available as a maven artifact.

Install on Wildfly:

$ cd $WILDFLY_HOME

$ unzip keycloak-wildfly-adapter-dist.zip

Install on JBoss EAP 6.x:

$ cd $JBOSS_HOME

$ unzip keycloak-eap6-adapter-dist.zip

Install on JBoss AS 7.1.1:

$ cd $JBOSS_HOME

$ unzip keycloak-as7-adapter-dist.zip

This zip file creates new JBoss Modules specific to the Wildfly Keycloak Adapter within your Wildfly

distro.

After adding the Keycloak modules, you must then enable the Keycloak Subsystem within your

app server's server configuration: domain.xml or standalone.xml.

<server xmlns="urn:jboss:domain:1.4">

 <extensions>

Chapter 8. Adapters

36

 <extension module="org.keycloak.keycloak-subsystem"/>

 ...

 </extensions>

 <profile>

 <subsystem xmlns="urn:jboss:domain:keycloak:1.0"/>

 ...

 </profile>

Note
For AS7, the extension module is org.keycloak.keycloak-as7-sybsystem.

Finally, you must specify a shared keycloak security domain. This security domain should be used

with EJBs and other components when you need the security context created in the secured

web tier to be propagated to the EJBs (other EE component) you are invoking. Otherwise this

configuration is optional.

<server xmlns="urn:jboss:domain:1.4">

 <subsystem xmlns="urn:jboss:domain:security:1.2">

 <security-domains>

...

 <security-domain name="keycloak">

 <authentication>

 <login-module code="org.keycloak.adapters.jboss.KeycloakLoginModule"

 flag="required"/>

 </authentication>

 </security-domain>

 </security-domains>

For example, if you have a JAX-RS service that is an EJB within your WEB-INF/classes directory,

you'll want to annotate it with the @SecurityDomain annotation as follows:

import org.jboss.ejb3.annotation.SecurityDomain;

import org.jboss.resteasy.annotations.cache.NoCache;

import javax.annotation.security.RolesAllowed;

import javax.ejb.EJB;

import javax.ejb.Stateless;

import javax.ws.rs.GET;

Required Per WAR Configuration

37

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import java.util.ArrayList;

import java.util.List;

@Path("customers")

@Stateless

@SecurityDomain("keycloak")

public class CustomerService {

 @EJB

 CustomerDB db;

 @GET

 @Produces("application/json")

 @NoCache

 @RolesAllowed("db_user")

 public List<String> getCustomers() {

 return db.getCustomers();

 }

}

We hope to improve our integration in the future so that you don't have to specify the

@SecurityDomain annotation when you want to propagate a keycloak security context to the EJB

tier.

8.2.2. Required Per WAR Configuration

This section describes how to secure a WAR directly by adding config and editing files within your

WAR package.

The first thing you must do is create a keycloak.json adapter config file within the WEB-INF

directory of your WAR. The format of this config file is describe in the general adapter configuration

section.

Next you must set the auth-method to KEYCLOAK in web.xml. You also have to use standard

servlet security to specify role-base constraints on your URLs. Here's an example pulled from one

of the examples that comes distributed with Keycloak.

<web-app xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/

xml/ns/javaee/web-app_3_0.xsd"

 version="3.0">

Chapter 8. Adapters

38

 <module-name>customer-portal</module-name>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Admins</web-resource-name>

 <url-pattern>/admin/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>admin</role-name>

 </auth-constraint>

 </security-constraint>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Customers</web-resource-name>

 <url-pattern>/customers/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>user</role-name>

 </auth-constraint>

 </security-constraint>

 <security-constraint>

 <web-resource-collection>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

 <login-config>

 <auth-method>KEYCLOAK</auth-method>

 <realm-name>this is ignored currently/realm-name>

 </login-config>

 <security-role>

 <role-name>admin</role-name>

 </security-role>

 <security-role>

 <role-name>user</role-name>

 </security-role>

</web-app>

Securing WARs via Keycloak Subsystem

39

8.2.3. Securing WARs via Keycloak Subsystem

You do not have to crack open a WAR to secure it with Keycloak. Alternatively, you can externally

secure it via the Keycloak Subsystem. While you don't have to specify KEYCLOAK as an auth-

method, you still have to define the security-constraints in web.xml. You do not, however,

have to create a WEB-INF/keycloak.json file. This metadata is instead defined within XML in

your server's domain.xml or standalone.xml subsystem configuration section.

<server xmlns="urn:jboss:domain:1.4">

 <profile>

 <subsystem xmlns="urn:jboss:domain:keycloak:1.0">

 <secure-deployment name="WAR MODULE NAME.war">

 <realm>demo</realm>

 <realm-public-key>MIGfMA0GCSqGSIb3DQEBAQUAA</realm-public-key>

 <auth-server-url>http://localhost:8081/auth</auth-server-url>

 <ssl-required>external</ssl-required>

 <resource>customer-portal</resource>

 <credential name="secret">password</credential>

 </secure-deployment>

 </subsystem>

 </profile>

The security-deployment name attribute identifies the WAR you want to secure. Its value is the

module-name defined in web.xml with .war appended. The rest of the configuration corresponds

pretty much one to one with the keycloak.json configuration options defined in general adapter

configuration. The exception is the credential element.

To make it easier for you, you can go to the Keycloak Adminstration Console and go to the

Application/Installation tab of the application this WAR is aligned with. It provides an example XML

file you can cut and paste.

There is an additional convenience format for this XML if you have multiple WARs you are

deployment that are secured by the same domain. This format allows you to define common

configuration items in one place under the realm element.

<subsystem xmlns="urn:jboss:domain:keycloak:1.0">

 <realm name="demo">

 <realm-public-key>MIGfMA0GCSqGSIb3DQEBA</realm-public-key>

 <auth-server-url>http://localhost:8080/auth</auth-server-url>

 <ssl-required>external</ssl-required>

 </realm>

 <secure-deployment name="customer-portal.war">

Chapter 8. Adapters

40

 <realm>demo</realm>

 <resource>customer-portal</resource>

 <credential name="secret">password</credential>

 </secure-deployment>

 <secure-deployment name="product-portal.war">

 <realm>demo</realm>

 <resource>product-portal</resource>

 <credential name="secret">password</credential>

 </secure-deployment>

 <secure-deployment name="database.war">

 <realm>demo</realm>

 <resource>database-service</resource>

 <bearer-only>true</bearer-only>

 </secure-deployment>

</subsystem>

8.3. Tomcat 6, 7 and 8 Adapters

To be able to secure WAR apps deployed on Tomcat 6, 7 and 8 you must install the Keycloak

Tomcat 6, 7 or 8 adapter into your Tomcat installation. You then have to provide some extra

configuration in each WAR you deploy to Tomcat. Let's go over these steps.

8.3.1. Adapter Installation

Adapters are no longer included with the appliance or war distribution. Each adapter is a separate

download on the Keycloak download site. They are also available as a maven artifact.

You must unzip the adapter distro into Tomcat's lib/ directory. Including adapter's jars within

your WEB-INF/lib directory will not work! The Keycloak adapter is implemented as a Valve and

valve code must reside in Tomcat's main lib/ directory.

$ cd $TOMCAT_HOME/lib

$ unzip keycloak-tomcat6-adapter-dist.zip

 or

$ unzip keycloak-tomcat7-adapter-dist.zip

 or

$ unzip keycloak-tomcat8-adapter-dist.zip

8.3.2. Required Per WAR Configuration

This section describes how to secure a WAR directly by adding config and editing files within your

WAR package.

Required Per WAR Configuration

41

The first thing you must do is create a META-INF/context.xml file in your WAR package. This is

a Tomcat specific config file and you must define a Keycloak specific Valve.

<Context path="/your-context-path">

 <Valve className="org.keycloak.adapters.tomcat.KeycloakAuthenticatorValve"/>

</Context>

Next you must create a keycloak.json adapter config file within the WEB-INF directory of your

WAR. The format of this config file is describe in the general adapter configuration section.

Finally you must specify both a login-config and use standard servlet security to specify role-

base constraints on your URLs. Here's an example:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/

xml/ns/javaee/web-app_3_0.xsd"

 version="3.0">

 <module-name>customer-portal</module-name>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Customers</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>user</role-name>

 </auth-constraint>

 </security-constraint>

 <security-constraint>

 <web-resource-collection>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

 <login-config>

Chapter 8. Adapters

42

 <auth-method>BASIC</auth-method>

 <realm-name>this is ignored currently/realm-name>

 </login-config>

 <security-role>

 <role-name>admin</role-name>

 </security-role>

 <security-role>

 <role-name>user</role-name>

 </security-role>

</web-app>

8.4. Jetty 9.x Adapters

Keycloak has a separate adapter for Jetty 9.1.x and Jetty 9.2.x that you will have to install into

your Jetty installation. You then have to provide some extra configuration in each WAR you deploy

to Jetty. Let's go over these steps.

8.4.1. Adapter Installation

Adapters are no longer included with the appliance or war distribution.Each adapter is a separate

download on the Keycloak download site. They are also available as a maven artifact.

You must unzip the Jetty 9.x distro into Jetty 9.x's root directory. Including adapter's jars within

your WEB-INF/lib directory will not work!

$ cd $JETTY_HOME

$ unzip keycloak-jetty92-adapter-dist.zip

Next, you will have to enable the keycloak module for your jetty.base.

$ cd your-base

$ java -jar $JETTY_HOME/start.jar --add-to-startd=keycloak

8.4.2. Required Per WAR Configuration

This section describes how to secure a WAR directly by adding config and editing files within your

WAR package.

The first thing you must do is create a WEB-INF/jetty-web.xml file in your WAR package. This

is a Jetty specific config file and you must define a Keycloak specific authenticator within it.

Required Per WAR Configuration

43

<?xml version="1.0"?>

<!DOCTYPE Configure PUBLIC "-//Mort Bay Consulting//DTD Configure//EN" "http://

www.eclipse.org/jetty/configure_9_0.dtd">

<Configure class="org.eclipse.jetty.webapp.WebAppContext">

 <Get name="securityHandler">

 <Set name="authenticator">

 <New class="org.keycloak.adapters.jetty.KeycloakJettyAuthenticator">

 </New>

 </Set>

 </Get>

</Configure>

Next you must create a keycloak.json adapter config file within the WEB-INF directory of your

WAR. The format of this config file is describe in the general adapter configuration section.

Warning

The Jetty 9.1.x adapter will not be able to find the keycloak.json file. You will have

to define all adapter settings within the jetty-web.xml file as described below.

Instead of using keycloak.json, you can define everything within the jetty-

web.xml. You'll just have to figure out how the json settings match to the

org.keycloak.representations.adapters.config.AdapterConfig class.

<?xml version="1.0"?>

<!DOCTYPE Configure PUBLIC "-//Mort Bay Consulting//DTD Configure//EN" "http://

www.eclipse.org/jetty/configure_9_0.dtd">

<Configure class="org.eclipse.jetty.webapp.WebAppContext">

 <Get name="securityHandler">

 <Set name="authenticator">

 <New class="org.keycloak.adapters.jetty.KeycloakJettyAuthenticator">

 <Set name="adapterConfig">

 <New

 class="org.keycloak.representations.adapters.config.AdapterConfig">

 <Set name="realm">tomcat</Set>

 <Set name="resource">customer-portal</Set>

 <Set name="authServerUrl">http://localhost:8081/auth</Set>

 <Set name="sslRequired">external</Set>

 <Set name="credentials">

 <Map>

Chapter 8. Adapters

44

 <Entry>

 <Item>secret</Item>

 <Item>password</Item>

 </Entry>

 </Map>

 </Set>

 <Set name="realmKey">MIGfMA0GCSqGSIb3DQEBAQUAA4</Set>

 </New>

 </Set>

 </New>

 </Set>

 </Get>

</Configure>

You do not have to crack open your WAR to secure it with keycloak. Instead create the jetty-

web.xml file in your webapps directory with the name of yourwar.xml. Jetty should pick it up. In

this mode, you'll have to declare keycloak.json configuration directly within the xml file.

Finally you must specify both a login-config and use standard servlet security to specify role-

base constraints on your URLs. Here's an example:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/

xml/ns/javaee/web-app_3_0.xsd"

 version="3.0">

 <module-name>customer-portal</module-name>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Customers</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>user</role-name>

 </auth-constraint>

 </security-constraint>

 <security-constraint>

 <web-resource-collection>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <user-data-constraint>

Jetty 8.1.x Adapter

45

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>this is ignored currently</realm-name>

 </login-config>

 <security-role>

 <role-name>admin</role-name>

 </security-role>

 <security-role>

 <role-name>user</role-name>

 </security-role>

</web-app>

8.5. Jetty 8.1.x Adapter

Keycloak has a separate adapter for Jetty 8.1.x that you will have to install into your Jetty

installation. You then have to provide some extra configuration in each WAR you deploy to Jetty.

Let's go over these steps.

8.5.1. Adapter Installation

Adapters are no longer included with the appliance or war distribution.Each adapter is a separate

download on the Keycloak download site. They are also available as a maven artifact.

You must unzip the Jetty 8.1.x distro into Jetty 8.1.x's root directory. Including adapter's jars within

your WEB-INF/lib directory will not work!

$ cd $JETTY_HOME

$ unzip keycloak-jetty81-adapter-dist.zip

Next, you will have to enable the keycloak option. Edit start.ini and add keycloak to the options

#===

Start classpath OPTIONS.

These control what classes are on the classpath

for a full listing do

java -jar start.jar --list-options

Chapter 8. Adapters

46

#---

OPTIONS=Server,jsp,jmx,resources,websocket,ext,plus,annotations,keycloak

8.5.2. Required Per WAR Configuration

Enabling Keycloak for your WARs is the same as the Jetty 9.x adapter. Our 8.1.x adapter

supports both keycloak.json and the jboss-web.xml advanced configuration. See Required Per

WAR Configuration

8.6. JBoss Fuse and Apache Karaf Adapter

Currently Keycloak supports securing your web applications running inside JBoss Fuse [http://

www.jboss.org/products/fuse/overview/] or Apache Karaf [http://karaf.apache.org/] . It leverages

Jetty 8 adapter as both JBoss Fuse 6.1 and Apache Karaf 3 are bundled with Jetty 8.1 server

[http://eclipse.org/jetty/] under the covers and Jetty is used for running various kinds of web

applications.

What is supported for Fuse/Karaf is:

• Security for classic WAR applications deployed on Fuse/Karaf with Pax Web War Extender

[https://ops4j1.jira.com/wiki/display/ops4j/Pax+Web+Extender+-+War].

• Security for servlets deployed on Fuse/Karaf as OSGI services with Pax Web Whiteboard

Extender [https://ops4j1.jira.com/wiki/display/ops4j/Pax+Web+Extender+-+Whiteboard].

• Security for Apache Camel [http://camel.apache.org/] Jetty endpoints running with Camel Jetty

[http://camel.apache.org/jetty.html] component.

• Security for Apache CXF [http://cxf.apache.org/] endpoints running on their own separate Jetty

engine [http://cxf.apache.org/docs/jetty-configuration.html].

• Security for Apache CXF [http://cxf.apache.org/] endpoints running on default engine provided

by CXF servlet.

• Security for SSH and JMX admin access.

• Security for Hawt.io admin console [http://hawt.io/] .

The best place to start is look at Fuse demo bundled as part of Keycloak examples in directory

examples/fuse .

8.7. Javascript Adapter

The Keycloak Server comes with a Javascript library you can use to secure HTML/Javascript

applications. This library is referencable directly from the keycloak server. You can also download

the adapter from Keycloak's download site if you want a static copy of this library. It works in the

http://www.jboss.org/products/fuse/overview/
http://www.jboss.org/products/fuse/overview/
http://www.jboss.org/products/fuse/overview/
http://karaf.apache.org/
http://karaf.apache.org/
http://eclipse.org/jetty/
http://eclipse.org/jetty/
https://ops4j1.jira.com/wiki/display/ops4j/Pax+Web+Extender+-+War
https://ops4j1.jira.com/wiki/display/ops4j/Pax+Web+Extender+-+War
https://ops4j1.jira.com/wiki/display/ops4j/Pax+Web+Extender+-+Whiteboard
https://ops4j1.jira.com/wiki/display/ops4j/Pax+Web+Extender+-+Whiteboard
https://ops4j1.jira.com/wiki/display/ops4j/Pax+Web+Extender+-+Whiteboard
http://camel.apache.org/
http://camel.apache.org/
http://camel.apache.org/jetty.html
http://camel.apache.org/jetty.html
http://cxf.apache.org/
http://cxf.apache.org/
http://cxf.apache.org/docs/jetty-configuration.html
http://cxf.apache.org/docs/jetty-configuration.html
http://cxf.apache.org/docs/jetty-configuration.html
http://cxf.apache.org/
http://cxf.apache.org/
http://hawt.io/
http://hawt.io/

Javascript Adapter

47

same way as other application adapters except that your browser is driving the OAuth redirect

protocol rather than the server.

The disadvantage of using this approach is that you have a non-confidential, public client. This

makes it more important that you register valid redirect URLs and make sure your domain name

is secured.

To use this adapter, you must first configure an application (or client) through the Keycloak

Admin Console. You should select public for the Client Type field. As public clients can't

be verified with a client secret you are required to configure one or more valid redirect uris as

well. Once you've configured the application click on the Installation tab and download the

keycloak.json file. This file should be hosted in your web-server at the same root as your HTML

pages. Alternatively you can either specify the URL for this file, or manually configure the adapter.

Next you have to initialize the adapter in your application. An example on how to do this is shown

below.

<head>

 <script src="http://<keycloak server>/auth/js/keycloak.js"></script>

 <script>

 var keycloak = Keycloak();

 keycloak.init().success(function(authenticated) {

 alert(authenticated ? 'authenticated' : 'not authenticated');

 }).error(function() {

 alert('failed to initialize');

 });

 </script>

</head>

To specify the location of the keycloak.json file:

var keycloak = Keycloak('http://localhost:8080/myapp/keycloak.json'));

Or finally to manually configure the adapter:

var keycloak = Keycloak({

 url: 'http://keycloak-server/auth',

 realm: 'myrealm',

 clientId: 'myapp'

});

Chapter 8. Adapters

48

You can also pass login-required or check-sso to the init function. Login required will redirect

to the login form on the server, while check-sso will redirect to the auth server to check if the user

is already logged in to the realm. For example:

keycloak.init({ onLoad: 'login-required' })

After you login, your application will be able to make REST calls using bearer token authentication.

Here's an example pulled from the customer-portal-js example that comes with the distribution.

<script>

 var loadData = function () {

 document.getElementById('username').innerText = keycloak.username;

 var url = 'http://localhost:8080/database/customers';

 var req = new XMLHttpRequest();

 req.open('GET', url, true);

 req.setRequestHeader('Accept', 'application/json');

 req.setRequestHeader('Authorization', 'Bearer ' + keycloak.token);

 req.onreadystatechange = function () {

 if (req.readyState == 4) {

 if (req.status == 200) {

 var users = JSON.parse(req.responseText);

 var html = '';

 for (var i = 0; i < users.length; i++) {

 html += '<p>' + users[i] + '</p>';

 }

 document.getElementById('customers').innerHTML = html;

 console.log('finished loading data');

 }

 }

 }

 req.send();

 };

 var loadFailure = function () {

 document.getElementById('customers').innerHTML = 'Failed to load

 data. Check console log';

 };

 var reloadData = function () {

Session status iframe

49

 keycloak.updateToken().success(loadData).error(loadFailure);

 }

</script>

<button onclick="loadData()">Submit</button>

The loadData() method builds an HTTP request setting the Authorization header to a bearer

token. The keycloak.token points to the access token the browser obtained when it logged

you in. The loadFailure() method is invoked on a failure. The reloadData() function calls

keycloak.onValidAccessToken() passing in the loadData() and loadFailure() callbacks.

The keycloak.onValidAcessToken() method checks to see if the access token hasn't expired. If

it hasn't, and your oauth login returned a refresh token, this method will refresh the access token.

Finally, if successful, it will invoke the success callback, which in this case is the loadData()

method.

To refresh the token if it's expired call the updateToken method. This method returns a promise

object which can be used to invoke a function on success or failure. This method can be used to

wrap functions that should only be called with a valid token. For example the following method

will refresh the token if it expires within 30 seconds, and then invoke the specified function. If the

token is valid for more than 30 seconds it will just call the specified function.

keycloak.updateToken(30).success(function() {

 // send request with valid token

}).error(function() {

 alert('failed to refresh token');

);

8.7.1. Session status iframe

By default the JavaScript adapter creates a non-visible iframe that is used to detect if a single-sign

out has occured. This does not require any network traffic, instead the status is retrieved from a

special status cookie. This feature can be disabled by setting checkLoginIframe: false in the

options passed to the init method.

8.7.2. Older browsers

The JavaScript adapter depends on Base64 (window.btoa and window.atob) and HTML5 History

API. If you need to support browsers that don't provide those (for example IE9) you'll need to add

polyfillers. Example polyfill libraries:

• Base64 - https://github.com/davidchambers/Base64.js

• HTML5 History - https://github.com/devote/HTML5-History-API

https://github.com/davidchambers/Base64.js
https://github.com/devote/HTML5-History-API

Chapter 8. Adapters

50

8.7.3. JavaScript Adapter reference

8.7.3.1. Constructor

new Keycloak();

new Keycloak('http://localhost/keycloak.json');

new Keycloak({ url: 'http://localhost/auth', realm: 'myrealm', clientId:

 'myApp' });

8.7.3.2. Properties

• authenticated - true if the user is authenticated

• token - the base64 encoded token that can be sent in the Authorization header in requests

to services

• tokenParsed - the parsed token

• subject - the user id

• idToken - the id token if claims is enabled for the application, null otherwise

• idTokenParsed - the parsed id token

• realmAccess - the realm roles associated with the token

• resourceAccess - the resource roles assocaited with the token

• refreshToken - the base64 encoded token that can be used to retrieve a new token

• refreshTokenParsed - the parsed refresh token

8.7.3.3. Methods

init(options)

Called to initialize the adapter.

Options is an Object, where:

• onLoad - specifies an action to do on load, can be either 'login-required' or 'check-sso'

• token - set an initial value for the token

• refreshToken - set an initial value for the refresh token

• checkLoginIframe - set to enable/disable monitoring login state (default is true)

JavaScript Adapter reference

51

• checkLoginIframeInterval - set the interval to check login state (default is 5 seconds)

Returns promise to set functions to be invoked on success or error.

login(options)

Redirects to login form on (options is an optional object with redirectUri and/or prompt fields)

Options is an Object, where:

• redirectUri - specifies the uri to redirect to after login

• prompt - can be set to 'none' to check if the user is logged in already (if not logged in a login

form is not displayed)

• loginHint - used to pre-fill the username/email field on the login form

createLoginUrl(options)

Returns the url to login form on (options is an optional object with redirectUri and/or prompt fields)

Options is an Object, where:

• redirectUri - specifies the uri to redirect to after login

• prompt - can be set to 'none' to check if the user is logged in already (if not logged in a login

form is not displayed)

logout(options)

Redirects to logout

Options is an Object, where:

• redirectUri - specifies the uri to redirect to after logout

createLogoutUrl(options)

Returns logout out

Options is an Object, where:

• redirectUri - specifies the uri to redirect to after logout

accountManagement()

Redirects to account management

Chapter 8. Adapters

52

createAccountUrl()

Returns the url to account management

hasRealmRole(role)

Returns true if the token has the given realm role

hasResourceRole(role, resource)

Returns true if the token has the given role for the resource (resource is optional, if not specified

clientId is used)

loadUserProfile()

Loads the users profile

Returns promise to set functions to be invoked on success or error.

isTokenExpired(minValidity)

Returns true if the token has less than minValidity seconds left before it expires (minValidity is

optional, if not specified 0 is used)

updateToken(minValidity)

If the token expires within minValidity seconds (minValidity is optional, if not specified 0 is used)

the token is refreshed. If the session status iframe is enabled, the session status is also checked.

Returns promise to set functions that can be invoked if the token is still valid, or if the token is

no longer valid. For example:

keycloak.updateToken(5).success(function(refreshed) {

 if (refreshed) {

 alert('token was successfully refreshed');

 } else {

 alert('token is still valid');

 }

 }).error(function() {

 alert('failed to refresh the token, or the session has expired');

 });

8.7.3.4. Callback Events

The adapter supports setting callback listeners for certain events. For example:

Installed Applications

53

keycloak.onAuthSuccess = function() { alert('authenticated'); }

• onReady(authenticated) - called when the adapter is initialized

• onAuthSuccess - called when a user is successfully authenticated

• onAuthError - called if there was an error during authentication

• onAuthRefreshSuccess - called when the token is refreshed

• onAuthRefreshError - called if there was an error while trying to refresh the token

• onAuthLogout - called if the user is logged out (will only be called if the session status iframe

is enabled, or in Cordova mode)

8.8. Installed Applications

Keycloak provides two special redirect uris for installed applications.

8.8.1. http://localhost

This returns the code to a web server on the client as a query parameter. Any port number is

allowed. This makes it possible to start a web server for the installed application on any free port

number without requiring changes in the Admin Console.

8.8.2. urn:ietf:wg:oauth:2.0:oob

If its not possible to start a web server in the client (or a browser is not available) it is possible to

use the special urn:ietf:wg:oauth:2.0:oob redirect uri. When this redirect uri is used Keycloak

displays a page with the code in the title and in a box on the page. The application can either

detect that the browser title has changed, or the user can copy/paste the code manually to the

application. With this redirect uri it is also possible for a user to use a different device to obtain

a code to paste back to the application.

8.9. Logout

There are multiple ways you can logout from a web application. For Java EE servlet containers,

you can call HttpServletRequest.logout(). For any other browser application, you can point

the browser at the url http://auth-server/auth/realms/{realm-name}/tokens/logout?

redirect_uri=encodedRedirectUri. This will log you out if you have an SSO session with your

browser.

8.10. Multi Tenancy

Multi Tenancy, in our context, means that one single target application (WAR) can be secured by a

single (or clustered) Keycloak server, authenticating its users against different realms. In practice,

Chapter 8. Adapters

54

this means that one application needs to use different keycloak.json files. For this case, there

are two possible solutions:

• The same WAR file deployed under two different names, each with its own Keycloak

configuration (probably via the Keycloak Subsystem). This scenario is suitable when the number

of realms is known in advance or when there's a dynamic provision of application instances.

One example would be a service provider that dinamically creates servers/deployments for their

clients, like a PaaS.

• A WAR file deployed once (possibly in a cluster), that decides which realm to authenticate

against based on the request parameters. This scenario is suitable when there are an undefined

number of realms. One example would be a SaaS provider that have only one deployment

(perhaps in a cluster) serving several companies, differentiating between clients based on the

hostname (client1.acme.com, client2.acme.com) or path (/app/client1/, /app/client2/

) or even via a special HTTP Header.

This chapter of the reference guide focus on this second scenario.

Keycloak provides an extension point for applications that need to evaluate the realm on

a request basis. During the authentication and authorization phase of the incoming request,

Keycloak queries the application via this extension point and expects the application to return a

complete representation of the realm. With this, Keycloak then proceeds the authentication and

authorization process, accepting or refusing the request based on the incoming credentials and

on the returned realm. For this scenario, an application needs to:

• Add a context parameter to the web.xml, named keycloak.config.resolver. The

value of this property should be the fully qualified name of the a class extending

org.keycloak.adapters.KeycloakConfigResolver.

• A concrete implementation of org.keycloak.adapters.KeycloakConfigResolver. Keycloak

will call the resolve(org.keycloak.adapters.HttpFacade.Request) method and expects a

complete org.keycloak.adapters.KeycloakDeployment in response. Note that Keycloak will

call this for every request, so, take the usual performance precautions.

An implementation of this feature can be found on the examples.

8.11. JAAS plugin

It's generally not needed to use JAAS for most of the applications, especially if they are HTTP

based, but directly choose one of our adapters. However some applications and systems may still

rely on pure legacy JAAS solution. Keycloak provides couple of login modules to help with such

use cases. Some login modules provided by Keycloak are:

org.keycloak.adapters.jaas.DirectAccessGrantsLoginModule

This login module allows to authenticate with username/password from Keycloak database.

It's using Direct Access Grants Keycloak endpoint to validate on Keycloak side if provided

JAAS plugin

55

username/password is valid. It's useful especially for non-web based systems, which need

to rely on JAAS and want to use Keycloak credentials, but can't use classic browser based

authentication flow due to their non-web nature. Example of such application could be

messaging application or SSH system.

org.keycloak.adapters.jaas.BearerTokenLoginModule

This login module allows to authenticate with Keycloak access token passed to it through

CallbackHandler as password. It may be useful for example in case, when you have Keycloak

access token from classic web based authentication flow and your web application then needs

to talk to external non-web based system, which rely on JAAS. For example to JMS/messaging

system.

Both login modules have configuration property keycloak-config-file where you need to

provide location of keycloak.json configuration file. It could be either provided from filesystem

or from classpath (in that case you may need value like classpath:/folder-on-classpath/

keycloak.json).

Second property role-principal-class allows to specify alternative class for

Role principals attached to JAAS Subject. Default value for Role principal is

org.keycloak.adapters.jaas.RolePrincipal . Note that class should have constructor with

single String argument.

56

Chapter 9.

57

Chapter 9. Social
Keycloak makes it easy to let users log in to your application using an existing account with a social

network. Currently Facebook, Google and Twitter is supported with more planned for the future.

There's also a Social Provider SPI that makes it relatively simple to add additional social networks.

9.1. Social Login Config

To enable log in with a social network you need to enable social login for your realm and configure

one or more social providers.

9.1.1. Enable social login

To configure social login, open the Keycloak Admin Console, select your realm from the drop-

down box in the top left corner. In the Login Options section click on Social login to set it to

ON. Click save settings, then click on Social in the menu at the top.

To enable a social provider select the provider you want from the drop-down and click on Add

Provider. Then continue to the section below that provides specific instructions for the provider

you are adding.

9.1.2. Social-only login

It's possible to configure a realm to only allow social login. To do this open the Keycloak Admin

Console, select your realm from the drop-down box in the top left corner. Click the Credentials

tab, and click on the x next to password in the Required User Credentials. This will disable

login with username and password.

9.1.3. Social Callback URL

There is a single callback url used by all realms and social providers. This makes it possible to

share the configuration for a social network between multiple realms. An example callback url is

http://localhost:8080/auth/rest/social/callback. To get the callback url for your server

replace http://localhost:8080 with the base address of your server. You can also find the

callback url in the Keycloak Admin Console under social settings.

9.2. Facebook

To enable login with Facebook you first have to create an app in the Facebook Developer

Console [https://developers.facebook.com/]. Then you need to copy the client id and secret into

the Keycloak Admin Console.

1. Log in to the Facebook Developer Console [https://developers.facebook.com/]. Click Apps in

the menu and select Create a New App. Use any value for Display Name and Category

you want, then click the Create App button. Wait for the project to be created (this may take

https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/

Chapter 9. Social

58

a while). If after creating the app you are not redirected to the app settings, click on Apps in

the menu and select the app you created.

2. Once the app has been created click on Settings in sidebar on the left. You must specify a

contact email. Save your changes. Then click on Advanced. Under Security make sure Client

OAuth Login is enabled. In Valid OAuth redirect URIs insert the social callback url. Scroll

down and click on the Save Changes button.

3. Click Status & Review and select YES for Do you want to make this app and all its

live features available to the general public?. You will not be able to set this until

you have provided a contact email in the general settings of this application.

4. Click Basic. Copy App ID and App Secret (click show) from the Facebook Developer Console

[https://developers.facebook.com/] into the settings page in the Keycloak Admin Console as the

Key and Secret. Then click Save in the Keycloak Admin Console to enable login with Facebook.

9.3. GitHub

To enable login with GitHub you first have to create an application in GitHub Settings [https://

github.com/settings/applications]. Then you need to copy the client id and secret into the Keycloak

Admin Console.

1. Log in to GitHub Settings [https://github.com/settings/applications]. Click the Register new

application button. Use any value for Application name, Homepage URL and Application

Description you want. In Authorization callback URL enter the social callback url for your

realm. Click the Register application button.

2. Copy Client ID and Client secret from the GitHub Settings [https://github.com/settings/

applications] into the settings page in the Keycloak Admin Console as the Key and Secret.

Then click Save in the Keycloak Admin Console to enable login with GitHub.

9.4. Google

To enable login with Google you first have to create a project and a client in the Google Developer

Console [https://cloud.google.com/console/project]. Then you need to copy the client id and secret

into the Keycloak Admin Console.

1. Log in to the Google Developer Console [https://cloud.google.com/console/project]. Click the

Create Project button. Use any value for Project name and Project ID you want, then

click the Create button. Wait for the project to be created (this may take a while).

2. Once the project has been created click on APIs & auth in sidebar on the left. To retrieve user

profiles the Google+ API has to be enabled. Scroll down to find it in the list. If its status is OFF,

click on OFF to enable it (it should move to the top of the list and the status should be ON).

3. Now click on the Consent screen link on the sidebar menu on the left. You must specify a

project name and choose an email for the consent screen. Otherwise users will get a login

https://developers.facebook.com/
https://developers.facebook.com/
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://github.com/settings/applications
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project

Twitter

59

error. There's other things you can configure here like what the consent screen looks like. Feel

free to play around with this.

4. Now click Credentials in the sidebar on the left. Then click Create New Client ID. Select Web

application as Application type. Empty the Authorized Javascript origins textarea.

In Authorized redirect URI enter the social callback url for your realm. Click the Create

Client ID button.

5. Copy Client ID and Client secret from the Google Developer Console [https://

cloud.google.com/console/project] into the settings page in the Keycloak Admin Console as the

Key and Secret. Then click Save in the Keycloak Admin Console to enable login with Google.

9.5. Twitter

To enable login with Twtter you first have to create an application in the Twitter Developer

Console [https://dev.twitter.com/apps]. Then you need to copy the consumer key and secret into

the Keycloak Admin Console.

1. Log in to the Twitter Developer Console [https://dev.twitter.com/apps]. Click the Create a new

application button. Use any value for Name, Description and Website you want. Insert the

social callback url in Callback URL. Then click Create your Twitter application.

2. Now click on Settings and tick the box Allow this application to be used to Sign in

with Twitter, then click on Update this Twitter application's settings.

3. Now click API Keys tab. Copy API key and API secret from the Twitter Developer Console

[https://dev.twitter.com/apps] into the settings page in the Keycloak Admin Console as the Key

and Secret. Then click Save in the Keycloak Admin Console to enable login with Twitter.

Tip

Twitter doesn't allow localhost in the redirect URI. To test on a local server

replace localhost with 127.0.0.1.

9.6. Social Provider SPI

Keycloak provides an SPI to make it easy to add additional social providers. This is done by

implementing org.keycloak.social.SocialProvider in social/core and adding a provider

configuration file (META-INF/services/org.keycloak.social.SocialProvider).

A good reference for implementing a Social Provider is the Google provider which you can find in

social/google on GitHub or in the source download.

https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://cloud.google.com/console/project
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://dev.twitter.com/apps

60

Chapter 10.

61

Chapter 10. Themes
Keycloak provides theme support for login forms and account management. This allows

customizing the look and feel of end-user facing pages so they can be integrated with your brand

and applications.

10.1. Theme types

There are several types of themes in Keycloak:

• Account - Account management

• Admin - Admin console

• Common - Shared resources for themes

• Email - Emails

• Login - Login forms

• Welcome - Welcome pages

10.2. Configure theme

All theme types, except welcome, is configured through Keycloak Admin Console. To change

the theme used for a realm open the Keycloak Admin Console, select your realm from the drop-

down box in the top left corner. Under Settings click on Theme.

To change the welcome theme you need to edit standalone/configuration/keycloak-

server.json and add welcomeTheme to the theme element, for example:

"theme": {

 ...

 "welcomeTheme": "custom-theme"

}

10.3. Default themes

Keycloak comes bundled with default themes in standalone/configuration/themes. It is not

recommended to edit these themes directly. Instead you should create a new theme to extend a

default theme. A good reference is to copy the keycloak themes as these extend the base theme

to add styling.

Chapter 10. Themes

62

10.4. Creating a theme

A theme consists of:

• FreeMarker [http://freemarker.org] templates

• Stylesheets

• Scripts

• Images

• Message bundles

• Theme properties

A theme can extend another theme. When extending a theme you can override individual files

(templates, stylesheets, etc.). The recommended way to create a theme is to extend the base

theme. The base theme provides templates and a default message bundle. It should be possible

to achieve the customization required by styling these templates.

To create a new theme, create a folder in .../standalone/configuration/themes/<theme

type>. The name of the folder is the name of the theme. Then create a file theme.properties

inside the theme folder. The contents of the file should be:

parent=base

You have now created your theme. Check that it works by configuring it for a realm. It should

look the same as the base theme as you've not added anything to it yet. The next sections will

describe how to modify the theme.

10.4.1. Stylesheets

A theme can have one or more stylesheets, to add a stylesheet create a file inside resources/

css (for example resources/css/styles.css) inside your theme folder. Then registering it in

theme.properties by adding:

styles=css/styles.css

The styles property supports a space separated list so you can add as many as you want. For

example:

styles=css/styles.css css/more-styles.css

http://freemarker.org
http://freemarker.org

Scripts

63

10.4.2. Scripts

A theme can have one or more scripts, to add a script create a file inside resources/

js (for example resources/js/script.js) inside your theme folder. Then registering it in

theme.properties by adding:

scripts=js/script.js

The scripts property supports a space separated list so you can add as many as you want. For

example:

scripts=js/script.js js/more-script.js

10.4.3. Images

To make images available to the theme add them to resources/img. They can then be used

through stylesheets. For example:

body {

 background-image: url('../img/image.jpg');

}

Or in templates, for example:

10.4.4. Messages

Text in the templates are loaded from message bundles. Currently internationalization isn't

supported, but that will be added in a later release. A theme that extends another theme will

inherit all messages from the parents message bundle, but can override individual messages. For

example to replace Username on the login form with Your Username create the file messages/

messages.properties inside your theme folder and add the following content:

username=Your Username

Chapter 10. Themes

64

10.4.5. Modifying HTML

Keycloak uses Freemarker Templates [http://freemarker.org] in order to generate HTML. These

templates are defined in .ftl files and can be overriden from the base theme. Check out the

Freemarker website on how to form a template file.

10.5. SPIs

For full control of login forms and account management Keycloak provides a number of SPIs.

10.5.1. Theme SPI

The Theme SPI allows creating different mechanisms to load themes for the default

FreeMarker based implementations of login forms and account management. To create a theme

provider you will need to implement org.keycloak.freemarker.ThemeProviderFactory and

org.keycloak.freemarker.ThemeProvider.

Keycloak comes with two theme providers, one that loads themes from the classpath (used by

default themes) and another that loads themes from a folder (used by custom themes). Looking

at these would be a good place to start to create your own theme provider. You can find them

inside forms/common-themes on GitHub or the source download.

10.5.2. Account SPI

The Account SPI allows implementing the account management pages using

whatever web framework or templating engine you want. To create an

Account provider implement org.keycloak.account.AccountProviderFactory and

org.keycloak.account.AccountProvider.

Once you have deployed your account provider to Keycloak you need to configure keycloak-

server.json to specify which provider should be used:

"account": {

 "provider": "custom-provider"

}

10.5.3. Login SPI

The Login SPI allows implementing the login forms using whatever

web framework or templating engine you want. To create a Login

forms provider implement org.keycloak.login.LoginFormsProviderFactory and

org.keycloak.login.LoginFormsProvider in forms/login-api.

Once you have deployed your account provider to Keycloak you need to configure keycloak-

server.json to specify which provider should be used:

http://freemarker.org
http://freemarker.org

Login SPI

65

"login": {

 "provider": "custom-provider"

}

66

Chapter 11.

67

Chapter 11. Email
Keycloak sends emails to users to verify their email address. Emails are also used to allow users

to safely restore their username and passwords.

11.1. Email Server Config

To enable Keycloak to send emails you need to provide Keycloak with your SMTP server settings.

If you don't have a SMTP server you can use one of many hosted solutions (such as Sendgrid

or smtp2go).

To configure your SMTP server, open the Keycloak Admin Console, select your realm from the

drop-down box in the top left corner. Then click on Email in the menu at the top.

You are required to fill in the Host and Port for your SMTP server (the default port for SMTP is

25). You also have to specify the sender email address (From). The other options are optional.

The screenshot below shows a simple example where the SMTP server doesn't use SSL or TLS

and doesn't require authentication.

11.1.1. Enable SSL or TLS

As emails are used for recovering usernames and passwords it's recommended to use SSL or

TLS, especially if the SMTP server is on an external network. To enable SSL click on Enable SSL

Chapter 11. Email

68

or to enable TLS click on Enable TLS. You will most likely also need to change the Port (the

default port for SSL/TLS is 465).

11.1.2. Authentication

If your SMTP server requires authentication click on Enable Authentication and insert the

Username and Password.

Chapter 12.

69

Chapter 12. Application and Client

Access Types
When you create an Application or OAuth Client you may be wondering what the "Access Types"

are.

confidential

Confidential access type is for clients that need to perform a browser login and that you want

to require a client secret when they turn an access code into an access token, (see Access

Token Request [http://tools.ietf.org/html/rfc6749#section-4.1.3] in the OAuth 2.0 spec for more

details). The advantages of this is that it is a little extra security. Since Keycloak requires you

to register valid redirect-uris, I'm not exactly sure what this little extra security is though. :)

The disadvantages of this access type is that confidential access type is pointless for pure

Javascript clients as anybody could easily figure out your client's secret!

public

Public access type is for clients that need to perform a browser login and that you feel that

the added extra security of confidential access type is not needed. FYI, Pure javascript clients

are by nature public.

bearer-only

Bearer-only access type means that the application only allows bearer token requests. If this

is turned on, this application cannot participate in browser logins.

direct access only

For OAuth clients, you would also see a "Direct Access Only" switch when creating the OAuth

Client. This switch is for oauth clients that only use the Direct Access Grant protocol to obtain

access tokens.

http://tools.ietf.org/html/rfc6749#section-4.1.3
http://tools.ietf.org/html/rfc6749#section-4.1.3
http://tools.ietf.org/html/rfc6749#section-4.1.3

70

Chapter 13.

71

Chapter 13. Roles
In Keycloak, roles (or permissions) can be defined globally at the realm level, or individually per

application. Each role has a name which must be unique at the level it is defined in, i.e. you can

have only one "admin" role at the realm level. You may have that a role named "admin" within an

Application too, but "admin" must be unique for that application.

The description of a role is displayed in the OAuth Grant page when Keycloak is processing

a browser OAuth Grant request. Look for more features being added here in the future like

internationalization and other fine grain options.

13.1. Composite Roles

Any realm or application level role can be turned into a Composite Role. A Composite Role is

a role that has one or more additional roles associated with it. I guess another term for it could

be Role Group. When a composite role is mapped to the user, the user gains the permission of

that role, plus any other role the composite is associated with. This association is dynamic. So,

if you add or remove an associated role from the composite, then all users that are mapped to

the composite role will automatically have those permissions added or removed. Composites can

also be used to define Application or OAuth Client scopes.

Composite roles can be associated with any type of role Realm or Application. In the admin

console simple flip the composite switch in the Role detail, and you will get a screen that will allow

you to associate roles with the composite.

72

Chapter 14.

73

Chapter 14. Direct Access Grants
Keycloak allows you to make direct REST invocations to obtain an access token. (See Resource

Owner Password Credentials Grant [http://tools.ietf.org/html/rfc6749#section-4.3] from OAuth 2.0

spec). To use it, Direct Access Grants must be allowed by your realm. This is a configuration

switch in the admin console under Settings->General, specifically the "Direct Grant API" switch.

You must also have registered a valid OAuth Client or Application to use as the "client_id" for

this grant request.

Warning

It is highly recommended that you do not use Direct Access Grants to write your

own login pages for your application. You will lose a lot of features that Keycloak

has if you do this. Specifically all the account management, remember me, lost

password, account reset features of Keycloak. Instead, if you want to tailor the look

and feel of Keycloak login pages, you should create your own theme.

It is even highly recommended that you use the browser to log in for native mobile

applications! Android and iPhone applications allow you to redirect to and from the

browser. You can use this to redirect the user from your native mobile app to the

web browser to perform login, then the browser will redirect back to your native

application.

The REST URL to invoke on is /{keycloak-root}/realms/{realm-name}/tokens/grants/

access. Invoking on this URL is a POST request and requires you to post the username and

credentials of the user you want an access token for. You must also pass along the "client_id" of the

application or oauth client you are creating an access token for. This "client_id" is the application

or oauth client name (not it's id!). Depending on whether your application/oauth client is "public"

or "confidential", you may also have to pass along it's client secret as well.

For public applications or oauth client's, the POST invocation requires form parameters that

contain the username, credentials, and client_id of your application. For example:

 POST /auth/realms/demo/tokens/grants/access

 Content-Type: application/x-www-form-urlencoded

 username=bburke&password=geheim&client_id=customer-portal

The response would be this standard JSON document [http://tools.ietf.org/html/

rfc6749#section-4.3.3] from the OAuth 2.0 specification.

http://tools.ietf.org/html/rfc6749#section-4.3
http://tools.ietf.org/html/rfc6749#section-4.3
http://tools.ietf.org/html/rfc6749#section-4.3
http://tools.ietf.org/html/rfc6749#section-4.3.3
http://tools.ietf.org/html/rfc6749#section-4.3.3
http://tools.ietf.org/html/rfc6749#section-4.3.3

Chapter 14. Direct Access Grants

74

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"bearer",

 "expires_in":3600,

 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",

 "id_token":"tGzv3JOkF0XG5Qx2TlKWIA",

 "session-state":"234234-234234-234234"

}

For confidential applications or oauth client's, you must create a Basic Auth Authorization

header that contains the client_id and client secret. And pass in the form parameters for username

and for each user credential. For example:

 POST /auth/realms/demo/tokens/grants/access

 Authorization: Basic atasdf023l2312023

 Content-Type: application/x-www-form-urlencoded

 username=bburke&password=geheim

Here's a Java example using Apache HTTP Client and some Keycloak utility classes.:

HttpClient client = new HttpClientBuilder()

 .disableTrustManager().build();

try {

 HttpPost post = new HttpPost(

 KeycloakUriBuilder.fromUri("http://localhost:8080/auth")

 .path(ServiceUrlConstants.TOKEN_SERVICE_DIRECT_GRANT_PATH).build("demo"));

 List <NameValuePair> formparams = new ArrayList <NameValuePair>();

 formparams.add(new BasicNameValuePair("username", "bburke"));

 formparams.add(new BasicNameValuePair("password", "password"));

 if (isPublic()) { // if client is public access type

 formparams.add(new BasicNameValuePair(OAuth2Constants.CLIENT_ID,

 "customer-portal"));

75

 } else {

 String authorization = BasicAuthHelper.createHeader("customer-portal",

 "secret-secret-secret");

 post.setHeader("Authorization", authorization);

 }

 UrlEncodedFormEntity form = new UrlEncodedFormEntity(formparams, "UTF-8");

 post.setEntity(form);

 HttpResponse response = client.execute(post);

 int status = response.getStatusLine().getStatusCode();

 HttpEntity entity = response.getEntity();

 if (status != 200) {

 throw new IOException("Bad status: " + status);

 }

 if (entity == null) {

 throw new IOException("No Entity");

 }

 InputStream is = entity.getContent();

 try {

 AccessTokenResponse tokenResponse = JsonSerialization.readValue(is,

 AccessTokenResponse.class);

 } finally {

 try {

 is.close();

 } catch (IOException ignored) { }

 }

} finally {

 client.getConnectionManager().shutdown();

}

Once you have the access token string, you can use it in REST HTTP bearer token authorized

requests, i.e

GET /my/rest/api

Authorization: Bearer 2YotnFZFEjr1zCsicMWpAA

To logout you must use the refresh token contained in the AccessTokenResponse object.

List<NameValuePair> formparams = new ArrayList<NameValuePair>();

if (isPublic()) { // if client is public access type

Chapter 14. Direct Access Grants

76

 formparams.add(new BasicNameValuePair(OAuth2Constants.CLIENT_ID, "customer-

portal"));

} else {

 String authorization = BasicAuthHelper.createHeader("customer-portal",

 "secret-secret-secret");

 post.setHeader("Authorization", authorization);

}

formparams.add(new BasicNameValuePair(OAuth2Constants.REFRESH_TOKEN,

 tokenResponse.getRefreshToken()));

HttpResponse response = null;

URI logoutUri = KeycloakUriBuilder.fromUri(getBaseUrl(request) + "/auth")

 .path(ServiceUrlConstants.TOKEN_SERVICE_LOGOUT_PATH)

 .build("demo");

HttpPost post = new HttpPost(logoutUri);

UrlEncodedFormEntity form = new UrlEncodedFormEntity(formparams, "UTF-8");

post.setEntity(form);

response = client.execute(post);

int status = response.getStatusLine().getStatusCode();

HttpEntity entity = response.getEntity();

if (status != 204) {

 error(status, entity);

}

if (entity == null) {

 return;

}

InputStream is = entity.getContent();

if (is != null) is.close();

Chapter 15.

77

Chapter 15. CORS
CORS stands for Cross-Origin Resource Sharing. If executing browser Javascript tries to make

an AJAX HTTP request to a server's whose domain is different than the one the Javascript code

came from, then the request uses the CORS protocol [http://www.w3.org/TR/cors/]. The server

must handle CORS requests in a special way, otherwise the browser will not display or allow the

request to be processed. This protocol exists to protect against XSS and other Javascript-based

attacks. Keycloak has support for validated CORS requests.

Keycloak's CORS support is configured per application and oauth client. You specify the allowed

origins in the application's or oauth client's configuration page in the admin console. You can add

as many you want. The value must be what the browser would send as a value in the Origin

header. For example http://example.com is what you must specify to allow CORS requests from

example.com. When an access token is created for the application or OAuth client, these allowed

origins are embedded within the token. On authenticated CORS requests, your application's

Keycloak adapter will handle the CORS protocol and validate the Origin header against the

allowed origins embedded in the token. If there is no match, then the request is denied.

To enable CORS processing in your application's server, you must set the enable-cors setting

to true in your adapter's configuration file. When this setting is enabled, the Keycloak adapter

will handle all CORS preflight requests. It will validate authenticated requests (protected resource

requests), but will let unauthenticated requests (unprotected resource requests) pass through.

http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/

78

Chapter 16.

79

Chapter 16. Cookie settings,

Session Timeouts, and Token

Lifespans
Keycloak has a bunch of fine-grain settings to manage browser cookies, user login sessions, and

token lifespans. Sessions can be viewed and managed within the admin console for all users,

and individually in the user's account management pages. This chapter goes over configuration

options for cookies, sessions, and tokens.

16.1. Remember Me

If you go to the admin console page of Settings->General, you should see a Remember Me on/off

switch. Your realm sets a SSO cookie so that you only have to enter in your login credentials once.

This Remember Me admin config option, when turned on, will show a "Remember Me" checkbox

on the user's login page. If the user clicks this, the realm's SSO. cookie will be persistent. This

means that if the user closes their browser they will still be logged in the next time they start up

their browser.

16.2. Session Timeouts

If you go to the Sesions and Tokens->Timeout Settings page of the Keycloak adminstration

console there is a bunch of fine tuning you can do as far as login session timeouts go.

The SSO Session Idle Timeout is the idle time of a user session. If there is no activity in

the user's session for this amount of time, the user session will be destroyed, and the user will

become logged out. The idle time is refreshed with every action against the keycloak server for

that session, i.e.: a user login, SSO, a refresh token grant, etc.

The SSO Session Max Lifespan setting is the maximum time a user session is allowed to be

alive. This max lifespan countdown starts from when the user first logs in and is never refreshed.

This works great with Remember Me in that it allow you to force a relogin after a set timeframe.

16.3. Token Timeouts

The Access Token Lifespan is how long an access token is valid for. An access token contains

everything an application needs to authorize a client. It contains roles allowed as well as other

user information. When an access token expires, your application will attempt to refresh it using

a refresh token that it obtained in the initial login. The value of this configuration option should be

however long you feel comfortable with the application not knowing if the user's permissions have

changed. This value is usually in minutes.

Chapter 16. Cookie settings, ...

80

The Client login timeout is how long an access code is valid for. An access code is obtained

on the 1st leg of the OAuth 2.0 redirection protocol. This should be a short time limit. Usually

seconds.

The Login user action lifespan is how long a user is allowed to attempt a login. When a

user tries to login, they may have to change their password, set up TOTP, or perform some other

action before they are redirected back to your application as an authentnicated user. This value

is relatively short and is usually measured in minutes.

Chapter 17.

81

Chapter 17. Admin REST API
The Keycloak Admin Console is implemented entirely with a fully functional REST admin API. You

can invoke this REST API from your Java applications by obtaining an access token. You must

have the appropriate permissions set up as describe in Chapter 6, Master Admin Access Control

and Chapter 7, Per Realm Admin Access Control

The documentation for this REST API is auto-generated and is contained in the distribution of

keycloak under the docs/rest-api/overview-index.html directory, or directly from the docs page at

the keycloak website.

There are a number of examples that come with the keycloak distribution that show you how to

invoke on this REST API. examples/preconfigured-demo/admin-access-app shows you how

to access this api from java. examples/cors/angular-product-app shows you how to invoke

on it from Javascript.

82

Chapter 18.

83

Chapter 18. Events
Keycloak provides an Events SPI that makes it possible to register listeners for user related events,

for example user logins. There are two interfaces that can be implemented, the first is a pure

listener, the second is a events store which listens for events, but is also required to store events.

An events store provides a way for the admin and account management consoles to view events.

18.1. Event types

Login events:

• Login - A user has logged in

• Register - A user has registered

• Logout - A user has logged out

• Code to Token - An application/client has exchanged a code for a token

• Refresh Token - An application/client has refreshed a token

Account events:

• Social Link - An account has been linked to a social provider

• Remove Social Link - A social provider has been removed from an account

• Update Email - The email address for an account has changed

• Update Profile - The profile for an account has changed

• Send Password Reset - A password reset email has been sent

• Update Password - The password for an account has changed

• Update TOTP - The TOTP settings for an account has changed

• Remove TOTP - TOTP has been removed from an account

• Send Verify Email - A email verification email has been sent

• Verify Email - The email address for an account has been verified

For all events there is a corresponding error event.

18.2. Event Listener

Keycloak comes with an Email Event Listener and a JBogg Logging Event Listener. The Email

Event Listener sends an email to the users account when an event occurs. The JBoss Logging

Event Listener writes to a log file when an events occurs.

Chapter 18. Events

84

The Email Event Listener only supports the following events at the moment:

• Login Error

• Update Password

• Update TOTP

• Remove TOTP

You can exclude one or more events by editing standalone/configuration/keycloak-

server.json and adding for example:

"eventListener": {

 "email": {

 "exclude-events": ["UPDATE_TOTP", "REMOVE_TOTP"]

 }

}

18.3. Event Store

Event Store listen for events and is expected to persist the events to make it possible to query for

them later. This is used by the admin console and account management to view events. Keycloak

includes providers to persist events to JPA and Mongo.

You can specify events to include or exclude by editing standalone/configuration/keycloak-

server.json, and adding for example:

"eventsStore": {

 "jpa": {

 "exclude-events": ["LOGIN", "REFRESH_TOKEN", "CODE_TO_TOKEN"]

 }

}

18.4. Configure Events Settings for Realm

To enable persisting of events for a realm you first need to make sure you have a event store

provider registered for Keycloak. By default the JPA event store provider is registered. Once

you've done that open the admin console, select the realm you're configuring, select Events. Then

click on Config. You can enable storing events for your realm by toggling Save Events to ON.

You can also set an expiration on events. This will periodically delete events from the database

that are older than the specified time.

Configure Events Settings for Realm

85

To configure listeners for a realm on the same page as above add one or more event listeners

to the Listeners select box. This will allow you to enable any registered event listeners with the

realm.

86

Chapter 19.

87

Chapter 19. User Federation SPI

and LDAP/AD Integration
Keycloak can federate external user databases. Out of the box we have support for LDAP and

Active Directory. Before you dive into this, you should understand how Keycloak does federation.

Keycloak performs federation a bit differently than other products/projects. The vision of Keycloak

is that it is an out of the box solution that should provide a core set of feature irregardless of the

backend user storage you want to use. Because of this requirement/vision, Keycloak has a set

data model that all of its services use. Most of the time when you want to federate an external user

store, much of the metadata that would be needed to provide this complete feature set does not

exist in that external store. For example your LDAP server may only provide password validation,

but not support TOTP or user role mappings. The Keycloak User Federation SPI was written to

support these completely variable configurations.

The way user federation works is that Keycloak will import your federated users on demand to its

local storage. How much metadata that is imported depends on the underlying federation plugin

and how that plugin is configured. Some federation plugins may only import the username into

Keycloak storage, others might import everything from name, address, and phone number, to

user role mappings. Some plugins might want to import credentials directly into Keycloak storage

and let Keycloak handle credential validation. Others might want to handle credential validation

themselves. The goal of the Federation SPI is to support all of these scenarios.

19.1. LDAP and Active Directory Plugin

Keycloak comes with a built-in LDAP/AD plugin. Currently it is set up only to import username,

email, first and last name. It supports password validation via LDAP/AD protocols and different

user metadata synchronization modes. To configure a federated LDAP store go to the admin

console. Click on the Users menu option to get you to the user management page. Then click on

the Federation submenu option. When you get to this page there is an "Add Provider" select box.

You should see "ldap" within this list. Selecting "ldap" will bring you to the ldap configuration page.

19.1.1. Edit Mode

Edit mode defines various synchronization options with your LDAP store depending on what

privileges you have.

READONLY

Username, email, first and last name will be unchangable. Keycloak will show an error anytime

anybody tries to update these fields. Also, password updates will not be supported.

WRITABLE

Username, email, first and last name, and passwords can all be updated and will be

synchronized automatically with your LDAP store.

Chapter 19. User Federation S...

88

UNSYNCED

Any changes to username, email, first and last name, and passwords will be stored in Keycloak

local storage. It is up to you to figure out how to synchronize back to LDAP.

19.1.2. Other config options

Display Name

Name used when this provider is referenced in the admin console

Priority

The priority of this provider when looking up users or for adding registrations.

Sync Registrations

If a new user is added through a registration page or admin console, should the user be eligible

to be synchronized to this provider.

Other options

The rest of the configuration options should be self explanatory. You can use tooltips in admin

console to see some more details about them.

19.2. Sync of LDAP users to Keycloak

LDAP Federation Provider will automatically take care of synchronization (import) of needed LDAP

users into Keycloak database. For example once you first authenticate LDAP user john from

Keycloak UI, LDAP Federation provider will first import this LDAP user into Keycloak database

and then authenticate against LDAP password.

Federation Provider imports just requested users by default, so if you click to View all users in

Keycloak admin console, you will see just those LDAP users, which were already authenticated/

requested by Keycloak.

If you want to sync all LDAP users into Keycloak database, you may configure and enable Sync,

which is in admin console on same page like the configuration of Federation provider itself. There

are 2 types of sync:

Full sync

This will synchronize all LDAP users into Keycloak DB. Those LDAP users, which already

exist in Keycloak and were changed in LDAP directly will be updated in Keycloak DB (For

example if user Mary Kelly was changed in LDAP to Mary Doe).

Changed users sync

This will check LDAP and it will sync into Keycloak just those users, which were created or

updated in LDAP from the time of last sync.

In usual cases you may want to trigger full sync at the beginning, so you will import all LDAP

users to Keycloak just once. Then you may setup periodic sync of changed users, so Keycloak will

Writing your own User Federation Provider

89

periodically ask LDAP server for newly created or updated users and backport them to Keycloak

DB. Also you may want to trigger full sync again after some longer time or setup periodic full sync

as well.

In admin console, you can trigger sync directly or you can enable periodic changed or full sync.

19.3. Writing your own User Federation Provider

The keycloak examples directory contains an example of a simple User Federation Provider

backed by a simple properties file. See examples/providers/federation-provider. Most

of how to create a federation provider is explain directly within the example code, but some

information is here too.

Writing a User Federation Provider starts by implementing the UserFederationProvider

and UserFederationProviderFactory interfaces. Please see the Javadoc and example for

complete details on how to do this. Some important methods of note: getUserByUsername() and

getUserByEmail() require that you query your federated storage and if the user exists create and

import the user into Keycloak storage. How much metadata you import is fully up to you. This

import is done by invoking methods on the object returned KeycloakSession.userStorage()

to add and import user information. The proxy() method will be called whenever Keycloak has

found an imported UserModel. This allows the federation provider to proxy the UserModel which

is useful if you want to support external storage updates on demand.

After your code is written you must package up all your classes within a JAR file. This jar

file must contain a file called org.keycloak.models.UserFederationProviderFactory within

the META-INF/services directory of the JAR. This file is a list of fully qualified classnames of

all implementations of UserFederationProviderFactory. For more details on writing provider

implementations and how to deploy to Keycloak refer to the providers section.

90

Chapter 20.

91

Chapter 20. Export and Import
Export/import is useful especially if you want to migrate your whole Keycloak database from one

environment to another or migrate to different database (For example from MySQL to Oracle). You

can trigger export/import at startup of Keycloak server and it's configurable with System properties

right now. The fact it's done at server startup means that no-one can access Keycloak UI or REST

endpoints and edit Keycloak database on the fly when export or import is in progress. Otherwise

it could lead to inconsistent results.

You can export/import your database either to:

• Encrypted ZIP file on local filesystem

• Directory on local filesystem

• Single JSON file on your filesystem

When importing using the "dir" or "zip" strategies, note that the files need to follow the naming

convention specified below. If you are importing files which were previously exported, the files

already follow this convention.

• {REALM_NAME}-realm.json, such as "acme-roadrunner-affairs-realm.json" for the realm

named "acme-roadrunner-affairs"

• {REALM_NAME}-users-{INDEX}.json, such as "acme-roadrunner-affairs-users-0.json" for the

first users file of the realm named "acme-roadrunner-affairs"

Encrypted ZIP is recommended as export contains many sensitive informations like passwords of

your users (even if they are hashed), but also their email addresses, and especially private keys of

the realms. Directory and Single JSON file are useful especially for testing as data in the files are

not protected. On the other hand, it's useful if you want to look at all your data in JSON files directly.

If you import to ZIP or Directory, you can specify also the number of users to be stored in each

JSON file. So if you have very large amount of users in your database, you likely don't want to

import them into single file as the file might be very big. Processing of each file is done in separate

transaction as exporting/importing all users at once could also lead to memory issues.

So to export the content of your Keycloak database into encrypted ZIP, you can execute Keycloak

server with the System properties like:

bin/standalone.sh -Dkeycloak.migration.action=export

-Dkeycloak.migration.provider=zip -Dkeycloak.migration.zipFile=<FILE TO EXPORT

 TO>

-Dkeycloak.migration.zipPassword=<PASSWORD TO DECRYPT EXPORT>

Chapter 20. Export and Import

92

Then you can move or copy the encrypted ZIP file into second environment and you

can trigger import from it into Keycloak server with the same command but use -

Dkeycloak.migration.action=import instead of export .

To export into unencrypted directory you can use:

bin/standalone.sh -Dkeycloak.migration.action=export

-Dkeycloak.migration.provider=dir -Dkeycloak.migration.dir=<DIR TO EXPORT TO>

And similarly for import just use -Dkeycloak.migration.action=import instead of export .

To export into single JSON file you can use:

bin/standalone.sh -Dkeycloak.migration.action=export

-Dkeycloak.migration.provider=singleFile -Dkeycloak.migration.file=<FILE TO

 EXPORT TO>

Here's an example of importing:

bin/standalone.sh -Dkeycloak.migration.action=import

-Dkeycloak.migration.provider=singleFile -Dkeycloak.migration.file=<FILE TO

 IMPORT>

-Dkeycloak.migration.strategy=OVERWRITE_EXISTING

Other available options are:

-Dkeycloak.migration.realmName

can be used if you want to export just one specified realm instead of all. If not specified, then

all realms will be exported.

-Dkeycloak.migration.usersExportStrategy

can be used to specify for ZIP or Directory providers to specify where to import users. Possible

values are:

• DIFFERENT_FILES - Users will be exported into more different files according to maximum

number of users per file. This is default value

• SKIP - exporting of users will be skipped completely

• REALM_FILE - All users will be exported to same file with realm (So file like "foo-realm.json"

with both realm data and users)

93

• SAME_FILE - All users will be exported to same file but different than realm (So file like

"foo-realm.json" with realm data and "foo-users.json" with users)

-Dkeycloak.migration.usersPerFile

can be used to specify number of users per file (and also per DB transaction). It's 5000 by

default. It's used only if usersExportStrategy is DIFFERENT_FILES

-Dkeycloak.migration.strategy

is used during import. It can be used to specify how to proceed if realm with same name

already exists in the database where you are going to import data. Possible values are:

• IGNORE_EXISTING - Ignore importing if realm of this name already exists

• OVERWRITE_EXISTING - Remove existing realm and import it again with new data from

JSON file. If you want to fully migrate one environment to another and ensure that the new

environment will contain same data like the old one, you can specify this.

When importing realm files that weren't exported before, the option keycloak.import can be

used. If more than one realm file needs to be imported, a comma separated list of file names can

be specified. This is more appropriate than the cases before, as this will happen only after the

master realm has been initialized. Examples:

• -Dkeycloak.import=/tmp/realm1.json

• -Dkeycloak.import=/tmp/realm1.json,/tmp/realm2.json

94

Chapter 21.

95

Chapter 21. Server Cache
By default, Keycloak caches realm metadata and users. There are two separate caches, one for

realm metadata (realm, application, client, roles, etc...) and one for users. These caches greatly

improves the performance of the server.

21.1. Disabling Caches

The realm and user caches can be disabled through configuration or through the management

console. To manally disable the realm or user cache, you must edit the keycloak-server.json

file in your distribution. Here's what the config looks like initially.

 "realmCache": {

 "provider": "${keycloak.realm.cache.provider:mem}"

 },

 "userCache": {

 "provider": "${keycloak.user.cache.provider:mem}",

 "mem": {

 "maxSize": 20000

 }

 },

You must then change it to:

 "realmCache": {

 "provider": "${keycloak.realm.cache.provider:none}"

 },

 "userCache": {

 "provider": "${keycloak.user.cache.provider:none}"

 },

You can also disable either of the caches at runtime through the Keycloak admin console Realm

Settings page. This will not permanently disable the cache. If you reboot the server, the cache will

be re-enabled unless you manualy disable the cache in the keycloak-server.json file.

Chapter 21. Server Cache

96

21.2. Clear Caches

To clear the realm or user cache, go to the Keycloak admin console Realm Settings->Cache

Config page. Disable the cache you want. Save the settings. Then re-enable the cache. This will

cause the cache to be cleared.

21.3. Cache Config

Cache configuration is done within keycloak-server.json. Changes to this file will not be seen

by the server until you reboot. Currently you can only configure the max size of the user cache.

 "userCache": {

 "provider": "${keycloak.user.cache.provider:mem}",

 "mem": {

 "maxSize": 20000

 }

 },

Chapter 22.

97

Chapter 22. SAML SSO
Keycloak supports SAML 2.0 for registered applications. Both POST and Redirect bindings are

supported. You can choose to require client signature validation and can have the server sign

and/or encrypt responses as well. We do not yet support logout via redirects. All logouts happen

via a background POST binding request to the application that will be logged out. We do not

support SAML 1.1 either. If you want support for either of those, please log a JIRA request and

we'll schedule it.

When you create an application in the admin console, you can choose which protocol the

application will log in with. In the application create screen, choose saml from the protocol list.

After that there are a bunch of configuration options. Here is a description of each item:

Include AuthnStatement

SAML login responses may specify the authentication method used (password, etc.) as well

as a timestamp of the login. Setting this to on will include that statement in the response

document.

Multi-valued Roles

If this switch is off, any user role mappings will have a corresponding attribute created for it.

If this switch is turn on, only one role attribute will be created, but it will have multiple values

within in.

Sign Documents

When turned on, Keycloak will sign the document using the realm's private key.

Sign Assertions

With the Sign Documents switch signs the whole document. With this setting you just assign

the assertions of the document.

Signature Algorithm

Choose between a variety of algorithms for signing SAML documents.

Encrypt Assertions

Encrypt assertions in SAML documents with the realm's private key. The AES algorithm is

used with a key size of 128 bits.

Client Signature Required

Expect that documents coming from a client are signed. Keycloak will validate this signature

using the client keys set up in the Application Keys submenu item.

Force POST Binding

By default, Keycloak will respond using the initial SAML binding of the original request. By

turning on this switch, you will force Keycloak to always respond using the SAML POST

Binding even if the original request was the Redirect binding.

Chapter 22. SAML SSO

98

You have to specify an admin URL if you want logout to work. This should be a URL that will

except single logout requests from the Keycloak server. You should also specify a default redirect

url. Keycloak will redirect to this url after single logout is complete.

One thing to note is that roles are not treated as a hierarchy. So, any role mappings will just be

added to the role attributes in the SAML document using their basic name. So, if you have multiple

application roles you might have name collisions. You can use the Scope Mapping menu item to

control which role mappings are set in the response.

22.1. SAML Entity Descriptor

If you go into the admin console in the application list menu page you will see an Import

button. If you click on that you can import SAML Service Provider definitions using the

Entity Descriptor [http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf] format

described in SAML 2.0. You should review all the information there to make sure everything is

set up correctly.

Each realm has a URL where you can view the XML entity descriptor for the IDP. root/realms/

{realm}/protocol/saml/descriptor

http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf

Chapter 23.

99

Chapter 23. Security Vulnerabilities
This chapter discusses possible security vulnerabilities Keycloak could have, how Keycloak

mitigates those vulnerabilities, and what steps you need to do to configure Keycloak to mitigate

some vulnerabilities. A good list of potential vulnerabilities and what security implementations

should do to mitigate them can be found in the OAuth 2.0 Threat Model [http://tools.ietf.org/html/

rfc6819] document put out by the IETF. Many of those vulnerabilities are discussed here.

23.1. SSL/HTTPS Requirement

If you do not use SSL/HTTPS for all communication between the Keycloak auth server and the

clients it secures you will be very vulnerable to man in the middle attacks. OAuth 2.0/OpenID

Connect uses access tokens for security. Without SSL/HTTPS, attackers can sniff your network

and obtain an access token. Once they have an access token they can do any operation that the

token has been given permission for.

Keycloak has three modes for SSL/HTTPS. SSL can be hard to set up, so out of the box, Keycloak

allows non-HTTPS communication over private IP addresses like localhost, 192.168.x.x, and other

private IP addresses. In production, you should make sure SSL is enabled and required across

the board.

On the adapter/client side, Keycloak allows you to turn off the SSL trust manager. The trust

manager ensures identity the client is talking to. It checks the DNS domain name against the

server's certificate. In production you should make sure that each of your client adapters is

configured to use a truststore. Otherwise you are vulnerable to DNS man in the middle attacks.

23.2. CSRF Attacks

Cross-site request forgery (CSRF) is a web-based attack whereby HTTP requests are transmitted

from a user that the web site trusts or has authenticated (e.g., via HTTP redirects or HTML forms).

Any site that uses cookie based authentication is vulnerable for these types of attacks. These

attacks are mitigated by matching a state cookie against a posted form or query parameter.

OAuth 2.0 login specification requires that a state cookie be used and matched against a

transmitted state parameter. Keycloak fully implements this part of the specification so all logins

are protected.

The Keycloak adminstration console is a pure Javascript/HTML5 application that makes REST

calls to the backend Keycloak admin API. These calls all require bearer token authentication and

are made via Javascript Ajax calls. CSRF does not apply here. The admin REST API can also be

configured to validate CORS origins as well.

The only part of Keycloak that really falls into CSRF is the user account management pages. To

mitigate this Keycloak sets a state cookie and also embeds the value of this state cookie within

hidden form fields or query parameters in action links. This query or form parameter is checked

against the state cookie to verify that the call was made by the user.

http://tools.ietf.org/html/rfc6819
http://tools.ietf.org/html/rfc6819
http://tools.ietf.org/html/rfc6819

Chapter 23. Security Vulnerab...

100

23.3. Clickjacking

With clickjacking, a malicious site loads the target site in a transparent iFrame overlaid on top

of a set of dummy buttons that are carefully constructed to be placed directly under important

buttons on the target site. When a user clicks a visible button, they are actually clicking a button

(such as an "Authorize" button) on the hidden page. An attacker can steal a user's authentication

credentials and access their resources.

By default, every response by Keycloak sets some specific browser headers that can prevent this

from happening specifically X-FRAME_OPTIONS [http://tools.ietf.org/html/rfc7034] and Content-

Security-Policy [http://www.w3.org/TR/CSP/]. You should take a look at both of these headers. In

the admin console you can specify the values these headers will have. By default, Keycloak only

sets up a same-origin policy for iframes.

23.4. Compromised Access Codes

It would be very hard for an attacker to compromise Keycloak access codes. Keycloak generates

a cryptographically strong random value for its access codes so it would be very hard to guess

an access token. An access code can only be turned into an access token once so it can't be

replayed. In the admin console you can specify how long an access token is valid for. This value

should be really short. Like a seconds. Just long enough for the client to make the request to turn

the code into an token.

23.5. Compromised access and refresh tokens

There's a few things you can do to mitigate access tokens and refresh tokens from being stolen.

Most importantly is to enforce SSL/HTTPS communication between Keycloak and its clients and

applications. Short lifespans (minutes) for access tokens allows Keycloak to check the validity

of a refresh token. Making sure refresh tokens always stay private to the client and are never

transmitted ever is very important as well.

If an access token or refresh token is compromised, the first thing you should do is go to the

admin console and push a not-before revocation policy to all applications. This will enforce that

any tokens issued prior to that date are now invalid. You can also disable specific applications,

clients, and users if you feel that any one of those entities is completely compromised.

23.6. Open redirectors

An attacker could use the end-user authorization endpoint and the redirect URI parameter to

abuse the authorization server as an open redirector. An open redirector is an endpoint using a

parameter to automatically redirect a user agent to the location specified by the parameter value

without any validation. An attacker could utilize a user's trust in an authorization server to launch

a phishing attack.

Keycloak requires that all registered applications and clients register at least one redirection uri

pattern. Any time a client asks Keycloak to perform a redirect (on login or logout for example),

http://tools.ietf.org/html/rfc7034
http://tools.ietf.org/html/rfc7034
http://www.w3.org/TR/CSP/
http://www.w3.org/TR/CSP/
http://www.w3.org/TR/CSP/

Password guess: brute force attacks

101

Keycloak will check the redirect uri vs. the list of valid registered uri patterns. It is important that

clients and applications register as specific a URI pattern as possible to mitigate open redirector

attacks.

23.7. Password guess: brute force attacks

A brute force attack happens when an attacker is trying to guess a user's password. Keycloak

has some limited brute force detection capabilities. If turned on, a user account will be temporarily

disabled if a threshold of login failures is reached. The downside of this is that this makes Keycloak

vulnerable to denial of service attacks. Eventually we will expand this functionality to take client

IP address into account when deciding whether to block a user.

Another thing you can do to prevent password guessing is to point a tool like Fail2Ban [http://

fail2ban.org] to the Keycloak server's log file. Keycloak logs every login failure and client IP

address that had the failure.

In the admin console, per realm, you can set up a password policy to enforce that users pick hard

to guess passwords.

Finally, the best way to mitigate against brute force attacks is to require user to set up a one-

time-password (OTP).

23.8. Password database compromised

Keycloak does not store passwords in raw text. It stores a hash of them. Because of performance

reasons, Keycloak only hashes passwords once. While a human could probably never crack a

hashed password, it is very possible that a computer could. The security community suggests

around 20,000 (yes thousand!) hashing iterations to be done to each password. This number

grows every year due to increasing computing power (It was 1000 12 years ago). The problem with

this is that password hashing is a huge performance hit as each login would require the entered

password to be hashed that many times and compared to the stored hash. So, its up to the admin

to configure the password hash iterations. This can be done in the admin console password policy

configuration. Again, the default value is 1 as we thought it might be more important for Keycloak

to scale out of the box. There's a lot of other measures admins can do to protect their password

databases.

23.9. SQL Injection attacks

At this point in time, there is no knowledge of any SQL injection vulnerabilities in Keycloak

23.10. Limiting Scope

Using the Scope menu in the admin console for oauth clients or applications, you can control

exactly which role mappings will be included within the token sent back to the client or application.

This allows you to limit the scope of permissions given to the application or client which is great if

the client isn't very trusted and is known to not being very careful with its tokens.

http://fail2ban.org
http://fail2ban.org
http://fail2ban.org

102

Chapter 24.

103

Chapter 24. Clustering
To improve availability and scalability Keycloak can be deployed in a cluster.

It's fairly straightforward to configure a Keycloak cluster, the steps required are:

• Configure a shared database

• Configure Infinispan

• Enable realm and user cache invalidation

• Enable distributed user sessions

• Start in HA mode

24.1. Configure a shared database

Keycloak doesn't replicate realms and users, but instead relies on all nodes using the same

database. This can be a relational database or Mongo. To make sure your database doesn't

become a single point of failure you may also want to deploy your database to a cluster.

24.2. Configure Infinispan

Keycloak uses Infinispan [http://www.infinispan.org/] caches to share information between nodes.

For realm and users Keycloak uses a invalidation cache. An invalidation cache doesn't share any

data, but simply removes stale data from remote caches. This reduces network traffic, as well as

preventing sensitive data (such as realm keys and password hashes) from being sent between

the nodes.

User sessions and login failures supports either distributed caches or fully replicated caches. We

recommend using a distributed cache.

To configure the required Infinspan caches open standalone/configuration/standalone-

ha.xml and add:

<subsystem xmlns="urn:jboss:domain:infinispan:2.0">

 <cache-container name="keycloak" jndi-name="infinispan/Keycloak"

 start="EAGER">

 <transport lock-timeout="60000"/>

 <invalidation-cache name="realms" mode="SYNC"/>

 <invalidation-cache name="users" mode="SYNC"/>

 <distributed-cache name="sessions" mode="SYNC" owners="1" />

 <distributed-cache name="loginFailures" mode="SYNC" owners="1" />

 </cache-container>

http://www.infinispan.org/
http://www.infinispan.org/

Chapter 24. Clustering

104

 ...

</subsystem>

For more advanced options refer to the Infinispan Subsystem [http://docs.jboss.org/author/

display/WFLY8/Infinispan+Subsystem] and Infinispan [http://www.infinispan.org/docs/6.0.x/

user_guide/user_guide.html] documentation.

Next open standalone/configuration/keycloak-server.json and add:

"connectionsInfinispan": {

 "default" : {

 "cacheContainer" : "java:jboss/infinispan/Keycloak"

 }

}

24.3. Enable realm and user cache invalidation

To reduce number of requests to the database Keycloak caches realm and user data. In cluster

mode Keycloak uses an Infinispan invalidation cache to make sure all nodes re-load data from the

database when it is changed. Using an invalidation cache instead of a replicated cache reduces

the network traffic generated by the cluster, but more importantly prevents sensitive data from

being sent.

To enable realm and user cache invalidation open keycloak-server.json and change the

realmCache and userCache providers to infinispan:

"realmCache": {

 "provider": "infinispan"

},

"userCache": {

 "provider": "infinispan"

}

24.4. Enable distributed user sessions

To help distribute the load of user sessions Keycloak uses an Infinispan distributed cache. A

distributed cache splits user sessions into segments where each node holds one or more segment.

It is possible to replicate each segment to multiple nodes, but this is not strictly necessary since

the failure of a node will only result in users having to log in again. If you need to prevent node

http://docs.jboss.org/author/display/WFLY8/Infinispan+Subsystem
http://docs.jboss.org/author/display/WFLY8/Infinispan+Subsystem
http://docs.jboss.org/author/display/WFLY8/Infinispan+Subsystem
http://www.infinispan.org/docs/6.0.x/user_guide/user_guide.html
http://www.infinispan.org/docs/6.0.x/user_guide/user_guide.html
http://www.infinispan.org/docs/6.0.x/user_guide/user_guide.html

Start in HA mode

105

failures from requiring users to log in again, set the owners attribute to 2 or more for the sessions

cache (see Configure Infinispan).

To enable the Infinispan user sessions provider open keycloak-server.json and change the

userSessions provider to infinispan:

"userSessions": {

 "provider": "infinispan"

}

24.5. Start in HA mode

To start the server in HA mode, start it with:

bin/standalone --server-config=standalone-ha.xml

Alternatively you can copy standalone/config/standalone-ha.xml to standalone/config/

standalone.xml to make it the default server config.

24.6. Enabling cluster security

By default there's nothing to prevent unauthorized nodes from joining the cluster and sending

potentially malicious messages to the cluster. However, as there's no sensitive data sent there's

not much that can be achieved. For realms and users all that can be done is to send invalidation

messages to make nodes load data from the database more frequently. For user sessions it would

be possible to modify existing user sessions, but creating new sessions would have no affect

as they would not be linked to any access tokens. There's not too much that can be achieved

by modifying user sessions. For example it would be possible to prevent sessions from expiring,

by changing the creation time. However, it would for example have no effect adding additional

permissions to the sessions as these are rechecked against the user and application when the

token is created or refreshed.

In either case your cluster nodes should be in a private network, with a firewall protecting them from

outside attacks. Ideally isolated from workstations and laptops. You can also enable encryption

of cluster messages, this could for example be useful if you can't isolate cluster nodes from

workstations and laptops on your private network. However, encryption will obviously come at a

cost of reduced performance.

To enable encryption of cluster messages you first have to create a shared keystore (change the

key and store passwords!):

Chapter 24. Clustering

106

keytool -genseckey -alias keycloak -keypass <PASSWORD> -storepass <PASSWORD> \

 -keyalg Blowfish -keysize 56 -keystore defaultStore.keystore -storetype JCEKS

Copy this keystore to all nodes (for example to standalone/configuration). Then configure JGroups

to encrypt all messages by adding the ENCRYPT protocol to the JGroups sub-system (this should

be added after the pbcast.GMS protocol):

<subsystem xmlns="urn:jboss:domain:jgroups:2.0" default-stack="udp">

 <stack name="udp">

 ...

 <protocol type="pbcast.GMS"/>

 <protocol type="ENCRYPT">

 <property name="key_store_name">

 ${jboss.server.config.dir}/defaultStore.keystore

 </property>

 <property name="key_password">PASSWORD</property>

 <property name="store_password">PASSWORD</property>

 <property name="alias">keycloak</property>

 </protocol>

 ...

 </stack>

 <stack name="tcp">

 ...

 <protocol type="pbcast.GMS"/>

 <protocol type="ENCRYPT">

 <property name="key_store_name">

 ${jboss.server.config.dir}/defaultStore.keystore

 </property>

 <property name="key_password">PASSWORD</property>

 <property name="store_password">PASSWORD</property>

 <property name="alias">keycloak</property>

 </protocol>

 ...

 </stack>

 ...

</subsystem>

See the JGroups manual [http://www.jgroups.org/manual/index.html#ENCRYPT] for more details.

http://www.jgroups.org/manual/index.html#ENCRYPT
http://www.jgroups.org/manual/index.html#ENCRYPT

Troubleshooting

107

24.7. Troubleshooting

Note that when you run cluster, you should see message similar to this in the log of both cluster

nodes:

INFO [org.infinispan.remoting.transport.jgroups.JGroupsTransport]

 (Incoming-10,shared=udp)

ISPN000094: Received new cluster view: [node1/keycloak|1] (2) [node1/keycloak,

 node2/keycloak]

If you see just one node mentioned, it's possible that your cluster hosts are not joined together.

Usually it's best practice to have your cluster nodes on private network without firewall for

communication among them. Firewall could be enabled just on public access point to your network

instead. If for some reason you still need to have firewall enabled on cluster nodes, you will need

to open some ports. Default values are UDP port 55200 and multicast port 45688 with multicast

address 230.0.0.4. Note that you may need more ports opened if you want to enable additional

features like diagnostics for your JGroups stack. Keycloak delegates most of the clustering work

to Infinispan/JGroups, so consult EAP or JGroups documentation for more info.

108

Chapter 25.

109

Chapter 25. Application Clustering
This chapter is focused on clustering support for your own AS7, EAP6 or Wildfly applications,

which are secured by Keycloak. We support various deployment scenarios according if your

application is:

• stateless or stateful

• distributable (replicated http session) or non-distributable and just relying on sticky sessions

provided by loadbalancer

• deployed on same or different cluster hosts where keycloak servers are deployed

The situation is a bit tricky as application communicates with Keycloak directly within user's

browser (for example redirecting to login screen), but there is also backend (out-of-bound)

communication between keycloak and application, which is hidden from end-user and his browser

and hence can't rely on sticky sessions.

25.1. Stateless token store

By default, the servlet web application secured by Keycloak uses HTTP session to store

information about authenticated user account. This means that this info could be replicated across

cluster and your application will safely survive failover of some cluster node.

However if you don't need or don't want to use HTTP Session, you may alternatively save all info

about authenticated account into cookie. This is useful especially if your application is:

• stateless application without need of HTTP Session, but with requirement to be safe to failover

of some cluster node

• stateful application, but you don't want sensitive token data to be saved in HTTP session

• stateless application relying on loadbalancer, which is not aware of sticky sessions (in this case

cookie is your only way)

To configure this, you can add this line to configuration of your adapter in WEB-INF/

keycloak.json of your application:

"token-store": "cookie"

Default value of token-store is session, hence saving data in HTTP session. One

disadvantage of cookie store is, that whole info about account is passed in cookie

Chapter 25. Application Clust...

110

KEYCLOAK_ADAPTER_STATE in each HTTP request. Hence it's not the best for network

performance.

25.2. Relative URI optimization

In many deployment scenarios will be Keycloak and secured applications deployed on same

cluster hosts. For this case Keycloak already provides option to use relative URI as value of option

auth-server-url in WEB-INF/keycloak.json . In this case, the URI of Keycloak server is resolved

from the URI of current request.

For example if your loadbalancer is on https://loadbalancer.com/myapp and auth-server-url is /

auth, then relative URI of Keycloak is resolved to be https://loadbalancer.com/auth .

For cluster setup, it may be even better to use option auth-server-url-for-backend-request . This

allows to configure that backend requests between Keycloak and your application will be sent

directly to same cluster host without additional round-trip through loadbalancer. So for this, it's

good to configure values in WEB-INF/keycloak.json like this:

"auth-server-url": "/auth",

"auth-server-url-for-backend-requests": "http://${jboss.host.name}:8080/auth"

This would mean that browser requests (like redirecting to Keycloak login screen) will be still

resolved relatively to current request URI like https://loadbalancer.com/myapp, but backend (out-

of-bound) requests between keycloak and your app are sent always to same cluster host with

application .

Note that additionally to network optimization, you may not need "https" in this case as application

and keycloak are communicating directly within same cluster host.

25.3. Admin URL configuration

Admin URL for particular application can be configured in Keycloak admin console. It's used by

Keycloak server to send backend requests to application for various tasks, like logout users or

push revocation policies.

For example logout of user from Keycloak works like this:

1. User sends logout request from one of applications where he is logged.

2. Then application will send logout request to Keycloak

3. Keycloak server logout user in itself, and then it re-sends logout request by backend channel

to all applications where user is logged. Keycloak is using admin URL for this. So logout is

propagated to all apps.

Registration of application nodes to Keycloak

111

You may again use relative values for admin URL, but in cluster it may not be the best similarly

like in previous section .

Some examples of possible values of admin URL are:

http://${jboss.host.name}:8080/myapp

This is best choice if "myapp" is deployed on same cluster hosts like Keycloak and

is distributable. In this case Keycloak server sends logout request to itself, hence no

communication with loadbalancer or other cluster nodes and no additional network traffic.

Note that since the application is distributable, the backend request sent by Keycloak could

be served on any application cluster node as invalidation of HTTP Session on node1 will

propagate the invalidation to other cluster nodes due to replicated HTTP sessions.

http://${application.session.host}:8080/myapp

Keycloak will track hosts where is particular HTTP Session served and it will send session

invalidation message to proper cluster node.

For example application is deployed on http://node1:8080/myapp and http://node2:8080/

myapp . Now HTTP Session session1 is sticky-session served on cluster node node2 . When

keycloak invalidates this session, it will send request directly to http://node2:8080/myapp .

This is ideal configuration for distributable applications deployed on different host than

keycloak or for non-distributable applications deployed either on same or different nodes than

keycloak. Good thing is that it doesn't send requests through load-balancer and hence helps

to reduce network traffic.

25.4. Registration of application nodes to Keycloak

Previous section describes how can Keycloak send logout request to proper application node.

However in some cases admin may want to propagate admin tasks to all registered cluster nodes,

not just one of them. For example push new notBefore for realm or application, or logout all users

from all applications on all cluster nodes.

In this case Keycloak should be aware of all application cluster nodes, so it could send event to

all of them. To achieve this, we support auto-discovery mechanism:

1. Once new application node joins cluster, it sends registration request to Keycloak server

2. The request may be re-sent to Keycloak in configured periodic intervals

3. If Keycloak won't receive re-registration request within specified timeout (should be greater

than period from point 2) then it automatically unregister particular node

4. Node is also unregistered in Keycloak when it sends unregistration request, which is usually

during node shutdown or application undeployment. This may not work properly for forced

shutdown when undeployment listeners are not invoked, so here you need to rely on automatic

unregistration from point 3 .

Chapter 25. Application Clust...

112

Sending startup registrations and periodic re-registration is disabled by default, as it's main

usecase is just cluster deployment. In WEB-INF/keycloak.json of your application, you can

specify:

"register-node-at-startup": true,

"register-node-period": 600,

which means that registration is sent at startup (accurately when 1st request is served by the

application node) and then it's resent each 10 minutes.

In Keycloak admin console you can specify the maximum node re-registration timeout (makes

sense to have it bigger than register-node-period from adapter configuration for particular

application). Also you can manually add and remove cluster nodes in admin console, which is

useful if you don't want to rely on adapter's automatic registration or if you want to remove stale

application nodes, which weren't unregistered (for example due to forced shutdown).

25.5. Refresh token in each request

By default, application adapter tries to refresh access token when it's expired (period can be

specified as Access Token Lifespan) . However if you don't want to rely on the fact, that Keycloak

is able to successfully propagate admin events like logout to your application nodes, then you

have possibility to configure adapter to refresh access token in each HTTP request.

In WEB-INF/keycloak.json you can configure:

"always-refresh-token": true

Note that this has big performance impact. It's useful just if performance is not priority, but

security is critical and you can't rely on logout and push notBefore propagation from Keycloak to

applications.

Chapter 26.

113

Chapter 26. Keycloak Security

Proxy
Keycloak has an HTTP(S) proxy that you can put in front of web applications and services where

it is not possible to install the keycloak adapter. You can set up URL filters so that certain URLs

are secured either by browser login and/or bearer token authentication. You can also define role

constraints for URL patterns within your applications.

26.1. Proxy Install and Run

Download the keycloak proxy distribution from the Keycloak download pages and unzip it.

$ unzip keycloak-proxy-dist.zip

To run it you must have a proxy config file (which we'll discuss in a moment).

$ java -jar bin/launcher.jar [your-config.json]

If you do not specify a path to the proxy config file, the launcher will look in the current working

directory for the file named proxy.json

26.2. Proxy Configuration

Here's an example configuration file.

{

 "target-url": "http://localhost:8082",

 "send-access-token": true,

 "bind-address": "localhost",

 "http-port": "8080",

 "https-port": "8443",

 "keystore": "classpath:ssl.jks",

 "keystore-password": "password",

 "key-password": "password",

 "applications": [

 {

 "base-path": "/customer-portal",

 "error-page": "/error.html",

Chapter 26. Keycloak Security...

114

 "adapter-config": {

 "realm": "demo",

 "resource": "customer-portal",

 "realm-public-key": "MIGfMA0GCSqGSIb",

 "auth-server-url": "http://localhost:8081/auth",

 "ssl-required" : "external",

 "principal-attribute": "name",

 "credentials": {

 "secret": "password"

 }

 }

 ,

 "constraints": [

 {

 "pattern": "/users/*",

 "roles-allowed": [

 "user"

]

 },

 {

 "pattern": "/admins/*",

 "roles-allowed": [

 "admin"

]

 },

 {

 "pattern": "/users/permit",

 "permit": true

 },

 {

 "pattern": "/users/deny",

 "deny": true

 }

]

 }

]

}

26.2.1. Basic Config

The basic configuration options for the server are as follows:

target-url

The URL this server is proxying REQUIRED..

send-access-token

Boolean flag. If true, this will send the access token via the KEYCLOAK_ACCESS_TOKEN

header to the proxied server. OPTIONAL.. Default is false.

Application Config

115

bind-address

DNS name or IP address to bind the proxy server's sockets to. OPTIONAL.. The default value

is localhost

http-port

Port to listen for HTTP requests. If you do not specify this value, then the proxy will not listen

for regular HTTP requests. OPTIONAL..

https-port

Port to listen for HTTPS requests. If you do not specify this value, then the proxy will not listen

for HTTPS requests. OPTIONAL..

keystore

Path to a Java keystore file that contains private key and certificate for the server to be able

to handle HTTPS requests. Can be a file path, or, if you prefix it with classpath: it will look

for this file in the classpath. OPTIONAL.. If you have enabled HTTPS, but have not defined a

keystore, the proxy will auto-generate a self-signed certificate and use that.

buffer-size

HTTP server socket buffer size. Usually the default is good enough. OPTIONAL..

buffers-per-region

HTTP server socket buffers per region. Usually the default is good enough. OPTIONAL..

io-threads

Number of threads to handle IO. Usually default is good enough. OPTIONAL.. The default is

the number of available processors * 2.

worker-threads

Number of threads to handle requests. Usually the default is good enough. OPTIONAL.. The

default is the number of available processors * 16.

26.2.2. Application Config

Next under the applications array attribute, you can define one or more applications per host

you are proxying.

base-path

The base context root for the application. Must start with '/' REQUIRED..

error-page

If the proxy has an error, it will display the target application's error page relative URL

OPTIONAL.. This is a relative path to the base-path. In the example above it would be /

customer-portal/error.html.

adapter-config

REQUIRED.. Same configuration as any other keycloak adapter. See Adapter Config

Chapter 26. Keycloak Security...

116

26.2.2.1. Constraint Config

Next under each application you can define one or more constraints in the constraints array

attribute. A constraint defines a URL pattern relative to the base-path. You can deny, permit, or

require authentication for a specific URL pattern. You can specify roles allowed for that path as

well. More specific constraints will take precedence over more general ones.

pattern

URL pattern to match relative to the base-path of the application. Must start with '/'

REQUIRED.. You may only have one wildcard and it must come at the end of the pattern.

Valid /foo/bar/* and /foo/*.txt Not valid: /*/foo/*.

roles-allowed

Array of strings of roles allowed to access this url pattern. OPTIONAL..

methods

Array of strings of HTTP methods that will exclusively match this pattern and HTTP request.

OPTIONAL..

excluded-methods

Array of strings of HTTP methods that will be ignored when match this pattern. OPTIONAL..

deny

Deny all access to this URL pattern. OPTIONAL..

permit

Permit all access without requiring authentication or a role mapping. OPTIONAL..

authenticate

Require authentication for this pattern, but no role mapping. OPTIONAL..

26.3. Keycloak Identity Headers

When forwarding requests to the proxied server, Keycloak Proxy will set some additional headers

with values from the OIDC identity token it received for authentication.

KEYCLOAK_SUBJECT

User id. Corresponds to JWT sub and will be the user id Keycloak uses to store this user.

KEYCLOAK_USERNAME

Username. Corresponds to JWT preferred_username

KEYCLOAK_EMAIL

Email address of user if set.

KEYCLOAK_NAME

Full name of user if set.

Keycloak Identity Headers

117

KEYCLOAK_ACCESS_TOKEN

Send the access token in this header if the proxy was configured to send it. This token can

be used to make bearer token requests.

118

Chapter 27.

119

Chapter 27. Migration from older

versions
To upgrade to a new version of Keycloak first download and install the new version of Keycloak.

You then have to migrate the database, keycloak-server.json, providers, themes and applications

from the old version.

27.1. Migrate database

Keycloak provides automatic migration of the database. It's highly recommended that you backup

your database prior to upgrading Keycloak.

To enable automatic upgrading of the database if you're using a relational database make sure

databaseSchema is set to update for connectionsJpa:

"connectionsJpa": {

 "default": {

 ...

 "databaseSchema": "update"

 }

}

For MongoDB do the same, but for connectionsMongo:

"connectionsMongo": {

 "default": {

 ...

 "databaseSchema": "update"

 }

}

When you start the server with this setting your database will automatically be migrated if the

database schema has changed in the new version.

27.2. Migrate keycloak-server.json

You should copy standalone/configuration/keycloak-server.json from the old version to

make sure any configuration changes you've done are added to the new installation. The version

specific section below will list any changes done to this file that you have to do when upgrading

from one version to another.

Chapter 27. Migration from ol...

120

27.3. Migrate providers

If you have implemented any SPI providers you need to copy them to the new server. The version

specific section below will mention if any of the SPI's have changed. If they have you may have

to update your code accordingly.

27.4. Migrate themes

If you have created a custom theme you need to copy them to the new server. The version specific

section below will mention if changes have been made to themes. If there is you may have to

update your themes accordingly.

27.5. Migrate application

If you deploy applications directly to the Keycloak server you should copy them to the new server.

For any applications including those not deployed directly to the Keycloak server you should

upgrade the adapter. The version specific section below will mention if any changes are required

to applications.

27.6. Version specific migration

27.6.1. Migrating from 1.1.0.Beta2 to 1.1.0.Final

• Providers are no longer loaded from WEB-INF/lib, they are now loaded from standalone/

configuration/providers. See the providers section for more details.

27.6.2. Migrating from 1.1.0.Beta1 to 1.1.0.Beta2

• Adapters are now a separate download. They are not included in appliance and war distribution.

We have too many now and the distro is getting bloated.

• The tomcat adapter valve has moved to a different

package. From org.keycloak.adapters.tomcat7.KeycloakAuthenticatorValve to

org.keycloak.adapters.tomcat.KeycloakAuthenticatorValve From the 'tomcat7'

package to just 'tomcat'.

• JavaScript adapter now has idToken and idTokenParsed properties. If you use idToken to

retrieve first name, email, etc. you need to change this to idTokenParsed.

• The as7-eap-subsystem and keycloak-wildfly-subsystem have been merged into one keycloak-

subsystem. If you have an existing standalone.xml or domain.xml, you will need edit near the

top of the file and change the extension module name to org.keycloak.keycloak-subsystem. For

AS7 only, the extension module name is org.keycloak.keycloak-as7-subsystem.

• Server installation is no longer supported on AS7. You can still use AS7 as an application client.

Migrating from 1.0.x.Final to 1.1.0.Beta1

121

27.6.3. Migrating from 1.0.x.Final to 1.1.0.Beta1

• RealmModel JPA and Mongo storage schema has changed

• UserSessionModel JPA and Mongo storage schema has changed as these interfaces have

been refactored

• Upgrade your adapters, old adapters are not compatible with Keycloak 1.1. We interpreted

JSON Web Token and OIDC ID Token specification incorrectly. 'aud' claim must be the client

id, we were storing the realm name in there and validating it.

27.6.4. Migrating from 1.0 RC-1 to RC-2

• A lot of info level logging has been changed to debug. Also, a realm no longer has the jboss-

logging audit listener by default. If you want log output when users login, logout, change

passwords, etc. enable the jboss-logging audit listener through the admin console.

27.6.5. Migrating from 1.0 Beta 4 to RC-1

• logout REST API has been refactored. The GET request on the logout URI does not take a

session_state parameter anymore. You must be logged in in order to log out the session. You

can also POST to the logout REST URI. This action requires a valid refresh token to perform

the logout. The signature is the same as refresh token minus the grant type form parameter.

See documentation for details.

27.6.6. Migrating from 1.0 Beta 1 to Beta 4

• LDAP/AD configuration is changed. It is no longer under the "Settings" page. It is now under

Users->Federation. Add Provider will show you an "ldap" option.

• Authentication SPI has been removed and rewritten. The new SPI is UserFederationProvider

and is more flexible.

• ssl-not-required property in adapter config has been removed. Replaced with ssl-

required, valid values are all (require SSL for all requests), external (require SSL only for

external request) and none (SSL not required).

• DB Schema has changed again.

• Created applications now have a full scope by default. This means that you don't have to

configure the scope of an application if you don't want to.

• Format of JSON file for importing realm data was changed. Now role mappings is available

under the JSON record of particular user.

Chapter 27. Migration from ol...

122

27.6.7. Migrating from 1.0 Alpha 4 to Beta 1

• DB Schema has changed. We have added export of the database to Beta 1, but not the ability

to import the database from older versions. This will be supported in future releases.

• For all clients except bearer-only applications, you must specify at least one redirect uri.

Keycloak will not allow you to log in unless you have specified a valid redirect uri for that

application.

• Resource Owner Password Credentials flow is now disabled by default. It can be enabled by

setting the toggle for Direct Grant API ON under realm config in the admin console.

• Configuration is now done through standalone/configuration/keycloak-server.json.

This should mainly affect those that use MongoDB.

• JavaScript adapter has been refactored. See the JavaScript adapter section for more details.

• The "Central Login Lifespan" setting no longer exists. Please see the Session Timeout section

for me details.

27.6.8. Migrating from 1.0 Alpha 2 to Alpha 3

• SkeletonKeyToken, SkeletonKeyScope, SkeletonKeyPrincipal, and SkeletonKeySession

have been renamed to: AccessToken, AccessScope, KeycloakPrincipal, and

KeycloakAuthenticatedSession respectively.

• ServleOAuthClient.getBearerToken() method signature has changed. It now returns an

AccessTokenResponse so that you can obtain a refresh token too.

• Adapters now check the access token expiration with every request. If the token is expired, they

will attempt to invoke a refresh on the auth server using a saved refresh token.

• Subject in AccessToken has been changed to the User ID.

27.6.9. Migrating from 1.0 Alpha 1 to Alpha 2

• DB Schema has changed. We don't have any data migration utilities yet as of Alpha 2.

• JBoss and Wildfly adapters are now installed via a JBoss/Wildfly subsystem. Please review the

adapter installation documentation. Edits to standalone.xml are now required.

• There is a new credential type "secret". Unlike other credential types, it is stored in plain text in

the database and can be viewed in the admin console.

• There is no longer required Application or OAuth Client credentials. These client types are now

hard coded to use the "secret" credential type.

Migrating from 1.0 Alpha 1 to Alpha 2

123

• Because of the "secret" credential change to Application and OAuth Client, you'll have to update

your keycloak.json configuration files and regenarate a secret within the Application or OAuth

Client credentials tab in the administration console.

124

	Keycloak Reference Guide
	Table of Contents
	Preface
	Chapter 1. License
	Chapter 2. Overview
	2.1. Key Concepts in Keycloak
	2.2. How Does Security Work in Keycloak?
	2.2.1. Permission Scopes

	Chapter 3. Installation and Configuration of Keycloak Server
	3.1. Appliance Install
	3.2. WAR Distribution Installation
	3.3. Configuring the Server
	3.3.1. Relational Database Configuration
	3.3.1.1. Tested databases

	3.3.2. MongoDB based model
	3.3.3. EAP6.x Logging
	3.3.4. SSL/HTTPS Requirement/Modes
	3.3.5. SSL/HTTPS Setup
	3.3.5.1. Enable SSL on Keycloak
	3.3.5.1.1. Creating the Certificate and Java Keystore
	3.3.5.1.1.1. Self Signed Certificate

	3.3.5.1.2. Installing the keystore to WildFly
	3.3.5.1.3. Installing the keystore to JBoss EAP6

	3.3.5.2. Enable SSL on a Reverse Proxy
	3.3.5.2.1. WildFly
	3.3.5.2.2. EAP

	Chapter 4. Providers and SPIs
	4.1. Implementing a SPI
	4.2. Registering provider implementations
	4.3. Available SPIs

	Chapter 5. Running Keycloak Server on OpenShift
	5.1. Create Keycloak instance with the web tool
	5.2. Create Keycloak instance with the command-line tool
	5.3. Next steps

	Chapter 6. Master Admin Access Control
	6.1. Global Roles
	6.2. Realm Specific Roles

	Chapter 7. Per Realm Admin Access Control
	7.1. Realm Roles

	Chapter 8. Adapters
	8.1. General Adapter Config
	8.2. JBoss/Wildfly Adapter
	8.2.1. Adapter Installation
	8.2.2. Required Per WAR Configuration
	8.2.3. Securing WARs via Keycloak Subsystem

	8.3. Tomcat 6, 7 and 8 Adapters
	8.3.1. Adapter Installation
	8.3.2. Required Per WAR Configuration

	8.4. Jetty 9.x Adapters
	8.4.1. Adapter Installation
	8.4.2. Required Per WAR Configuration

	8.5. Jetty 8.1.x Adapter
	8.5.1. Adapter Installation
	8.5.2. Required Per WAR Configuration

	8.6. JBoss Fuse and Apache Karaf Adapter
	8.7. Javascript Adapter
	8.7.1. Session status iframe
	8.7.2. Older browsers
	8.7.3. JavaScript Adapter reference
	8.7.3.1. Constructor
	8.7.3.2. Properties
	8.7.3.3. Methods
	8.7.3.4. Callback Events

	8.8. Installed Applications
	8.8.1. http://localhost
	8.8.2. urn:ietf:wg:oauth:2.0:oob

	8.9. Logout
	8.10. Multi Tenancy
	8.11. JAAS plugin

	Chapter 9. Social
	9.1. Social Login Config
	9.1.1. Enable social login
	9.1.2. Social-only login
	9.1.3. Social Callback URL

	9.2. Facebook
	9.3. GitHub
	9.4. Google
	9.5. Twitter
	9.6. Social Provider SPI

	Chapter 10. Themes
	10.1. Theme types
	10.2. Configure theme
	10.3. Default themes
	10.4. Creating a theme
	10.4.1. Stylesheets
	10.4.2. Scripts
	10.4.3. Images
	10.4.4. Messages
	10.4.5. Modifying HTML

	10.5. SPIs
	10.5.1. Theme SPI
	10.5.2. Account SPI
	10.5.3. Login SPI

	Chapter 11. Email
	11.1. Email Server Config
	11.1.1. Enable SSL or TLS
	11.1.2. Authentication

	Chapter 12. Application and Client Access Types
	Chapter 13. Roles
	13.1. Composite Roles

	Chapter 14. Direct Access Grants
	Chapter 15. CORS
	Chapter 16. Cookie settings, Session Timeouts, and Token Lifespans
	16.1. Remember Me
	16.2. Session Timeouts
	16.3. Token Timeouts

	Chapter 17. Admin REST API
	Chapter 18. Events
	18.1. Event types
	18.2. Event Listener
	18.3. Event Store
	18.4. Configure Events Settings for Realm

	Chapter 19. User Federation SPI and LDAP/AD Integration
	19.1. LDAP and Active Directory Plugin
	19.1.1. Edit Mode
	19.1.2. Other config options

	19.2. Sync of LDAP users to Keycloak
	19.3. Writing your own User Federation Provider

	Chapter 20. Export and Import
	Chapter 21. Server Cache
	21.1. Disabling Caches
	21.2. Clear Caches
	21.3. Cache Config

	Chapter 22. SAML SSO
	22.1. SAML Entity Descriptor

	Chapter 23. Security Vulnerabilities
	23.1. SSL/HTTPS Requirement
	23.2. CSRF Attacks
	23.3. Clickjacking
	23.4. Compromised Access Codes
	23.5. Compromised access and refresh tokens
	23.6. Open redirectors
	23.7. Password guess: brute force attacks
	23.8. Password database compromised
	23.9. SQL Injection attacks
	23.10. Limiting Scope

	Chapter 24. Clustering
	24.1. Configure a shared database
	24.2. Configure Infinispan
	24.3. Enable realm and user cache invalidation
	24.4. Enable distributed user sessions
	24.5. Start in HA mode
	24.6. Enabling cluster security
	24.7. Troubleshooting

	Chapter 25. Application Clustering
	25.1. Stateless token store
	25.2. Relative URI optimization
	25.3. Admin URL configuration
	25.4. Registration of application nodes to Keycloak
	25.5. Refresh token in each request

	Chapter 26. Keycloak Security Proxy
	26.1. Proxy Install and Run
	26.2. Proxy Configuration
	26.2.1. Basic Config
	26.2.2. Application Config
	26.2.2.1. Constraint Config

	26.3. Keycloak Identity Headers

	Chapter 27. Migration from older versions
	27.1. Migrate database
	27.2. Migrate keycloak-server.json
	27.3. Migrate providers
	27.4. Migrate themes
	27.5. Migrate application
	27.6. Version specific migration
	27.6.1. Migrating from 1.1.0.Beta2 to 1.1.0.Final
	27.6.2. Migrating from 1.1.0.Beta1 to 1.1.0.Beta2
	27.6.3. Migrating from 1.0.x.Final to 1.1.0.Beta1
	27.6.4. Migrating from 1.0 RC-1 to RC-2
	27.6.5. Migrating from 1.0 Beta 4 to RC-1
	27.6.6. Migrating from 1.0 Beta 1 to Beta 4
	27.6.7. Migrating from 1.0 Alpha 4 to Beta 1
	27.6.8. Migrating from 1.0 Alpha 2 to Alpha 3
	27.6.9. Migrating from 1.0 Alpha 1 to Alpha 2

