
JBoss Communications JAIN SLEE

MGCP Demo Example User Guide

by Amit Bhayani and Oleg Kulikoff

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions .. vii

1.3. Notes and Warnings .. vii

2. Provide feedback to the authors! .. viii

1. Introduction to JBoss Communications JAIN SLEE MGCP Demo Example 1

2. Setup ... 3

2.1. Pre-Install Requirements and Prerequisites .. 3

2.1.1. Hardware Requirements ... 3

2.1.2. Software Prerequisites .. 3

2.2. JBoss Communications JAIN SLEE MGCP Demo Example Source Code 3

2.2.1. Release Source Code Building ... 3

2.2.2. Development Trunk Source Building .. 4

2.3. Installing JBoss Communications JAIN SLEE MGCP Demo Example 4

2.4. Uninstalling JBoss Communications JAIN SLEE MGCP Demo Example 5

3. Design Overview ... 7

3.1. Design ... 7

4. Source Code Overview .. 9

5. Running the Example .. 21

6. Traces and Alarms .. 23

6.1. Tracers ... 23

6.2. Alarms .. 23

A. Revision History .. 25

Index ... 27

iv

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System > Preferences > Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >

Accessories > Character Map from the main menu bar. Next, choose Search

> Find from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu

of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above username, domain.name, file-system, package, version and

release. Each word is a placeholder, either for text you enter when issuing a command or for text

displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

Pull-quote Conventions

vii

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Preface

viii

Note

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make this manual

better, we would love to hear from you! Please submit a report in the the Issue Tracker [http://

bugzilla.redhat.com/bugzilla/], against the product JBoss Communications JAIN SLEE MGCP

Demo Example, or contact the authors.

When submitting a bug report, be sure to mention the manual's identifier:

JAIN_SLEE_MGCPDemo_EXAMPLE_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

Chapter 1.

1

Introduction to JBoss

Communications JAIN SLEE MGCP

Demo Example
MGCP assumes a call control architecture where the call control "intelligence" is outside the

gateways and handled by external call control elements known as Call Agents. The MGCP

assumes that these call control elements, or Call Agents, will synchronize with each other to

send coherent commands and responses to the gateways (mdia servers) under their control. If

this assumption is violated, inconsistent behavior should be expected. MGCP does not define a

mechanism for synchronizing Call Agents. MGCP is, in essence, a master/slave protocol, where

the gateways are expected to execute commands sent by the Call Agents.

This example demonstrates how MGCP RA can be used as Media Gateway Call Controller to

control the Media Gateway (Media Server)

Prior knowledge of MGCP is necessary to understand this example. To learn about MGCP, look

at RFC 3435 [http://www.faqs.org/rfcs/rfc3435.html]. Knowledge of MGCP RA is also desired.

http://www.faqs.org/rfcs/rfc3435.html
http://www.faqs.org/rfcs/rfc3435.html

2

Chapter 2.

3

Setup

2.1. Pre-Install Requirements and Prerequisites

Ensure that the following requirements have been met before continuing with the install.

2.1.1. Hardware Requirements

The Example doesn't change the JBoss Communications JAIN SLEE Hardware Requirements,

refer to JBoss Communications JAIN SLEE documentation for more information.

2.1.2. Software Prerequisites

The Example requires JBoss Communications JAIN SLEE properly set, with following list of

dependencies deployed/started.

MGCP RA

Its required that MGCP RA is deployed. The MGCP RA is responsible to fire the MGCP Events

corresponding to MGCP Request/Response received from Media Gateway

SIP11 RA

Its required that SIP11 RA is deployed. The SIP RA is responsible to fire the SIP Events like

INVITE, BYE etc received from SIP User Agents

Mobicents Media Server

The demo sends MGCP Signals to Media Gateway (Media Server) to play announcements,

text-to-speech, initiate conference etc and also requests DTMF events to be notified back

to Application. The media part is taken care by Mobicents Media Server; its required that

Mobicents Media Server is started before the User dials respective digits to test demo.

2.2. JBoss Communications JAIN SLEE MGCP Demo

Example Source Code

This section provides instructions on how to obtain and build the MGCP Demo Example from

source code.

2.2.1. Release Source Code Building

1. Downloading the source code

Important

Subversion is used to manage its source code. Instructions for using

Subversion, including install, can be found at http://svnbook.red-bean.com

http://svnbook.red-bean.com

Chapter 2. Setup

4

Use SVN to checkout a specific release source, the base URL is ?, then add the specific

release version, lets consider 2.1.2.FINAL.

 [usr]$ svn co

 ?/2.1.2.FINAL

 slee-example-mgcp-demo-2.1.2.FINAL

2. Building the source code

Important

Maven 2.0.9 (or higher) is used to build the release. Instructions for using

Maven2, including install, can be found at http://maven.apache.org

Use Maven to build the deployable unit binary.

 [usr]$ cd slee-example-mgcp-demo-2.1.2.FINAL

 [usr]$ mvn install

Once the process finishes you should have the deployable-unit jar file in the target

directory, if JBoss Communications JAIN SLEE is installed and environment variable

JBOSS_HOME is pointing to its underlying JBoss Enterprise Application Platform directory,

then the deployable unit jar will also be deployed in the container.

2.2.2. Development Trunk Source Building

Similar process as for Section 2.2.1, “Release Source Code Building” , the only change is the SVN

source code URL, which is NOT AVAILABLE.

2.3. Installing JBoss Communications JAIN SLEE

MGCP Demo Example

To install the Example simply execute provided ant script build.xml default target:

[usr]$ ant

http://maven.apache.org

 Uninstalling JBoss Communications JAIN SLEE MGCP Demo Example

5

The script will copy the Example's deployable unit jar to the default JBoss Communications

JAIN SLEE server profile deploy directory, to deploy to another server profile use the argument

-Dnode= .

2.4. Uninstalling JBoss Communications JAIN SLEE

MGCP Demo Example

To uninstall the Example simply execute provided ant script build.xml undeploy target:

[usr]$ ant undeploy

The script will delete the Example's deployable unit jar from the default JBoss Communications

JAIN SLEE server profile deploy directory, to undeploy from another server profile use the

argument -Dnode=.

6

Chapter 3.

7

Design Overview
The example is designed to demonstrate the usage of JAIN MGCP API including the MGCP RA.

At the same time it also demonstrates various features/capabilities of Mobicents Media Server.

MGCP messages are transmitted over UDP. Commands are sent to IP addresses defined in the

domain for the endpoint. The responses are sent back to the source address (i.e., IP address and

UDP port number) of the commands. The domain name specified for Endpoint can include port

number as colon separated value. For example 122.64.4.108:2427

When no port is specified for the endpoint, the commands by default is sent:

by the Call Agents, to the default MGCP port for gateways, 2427.

by the Gateways, to the default MGCP port for Call Agents, 2727.

The MGCP RA bounds the MGCP Stack to IP address and Port specified for

jain.mgcp.IP_ADDRESS, jain.mgcp.PORT properties in resource-adaptor-jar.xml for MGCP RA.

For further details looks at MGCP RA Documentation.

3.1. Design

The Example is composed of 3 Services.

First Service is composed of CallSbb as parent/root listening for SIP INVITE as

initial event. IVRSbb, RecorderSbb and TTSSbb are its children.

Second Service is composed of only ConferenceSbb acting as root. Its listening

for SIP INVITE too and has lower priority than above Service.

Third Service is composed of only ConfLegSbb acting as root. Its listening

for Custom Event fired by ConferenceSbb when the first participant joins the

Conference.

CallSbb listens for incoming SIP call and depending on To field of INVITE it creates respective

child; Child does further processing of SIP Message.

2010 : If user dialed 2010, IVRSbb child is created. As name suggest IVRSbb is

responsible for playing announcement to user and listening for DTMF inputs from

user. Depending on which DTMF is dialed by user, corresponding announcement

is played again.

2011 : If user dialed 2011, RecorderSbb child is created. As name suggest

RecorderSbb is responsible for recording user's voice and playing it back after

30 seconds.

2013 : If user dialed 2013, TTSSbb child is created. TTSSbb sends the text to

Mobicents Media Server (MMS) and MMS plays back the speech corresponding

to this text to user.

Chapter 3. Design Overview

8

ConferenceSbb is responsible for maintaining Conference. User gets connected to Conference

endpoint by dialing 2012 from SIP Phone. If this is the first User joining Conference,

ConferenceSbb fires Custom Event that is consumed by ConfLegSbb. Multiple users can dial

2012 and get connected to same Conference endpoint and participate in conference call.

ConfLegSbb is acting as one of the automated leg of Conference. As soon as conference is

initiated, this leg of conference will start a back ground music so even if there is only one participant

in conference he/she can listen to music that verifies Conference has started.

As explained earlier, the main purpose of this demo is to make developers understand how to

use the MGCP API and MGCP RA. Once there is clear understanding of MGCP API and RA,

the business logic can be written as required. Let us go to Section 4, where MGCP usage from

respective SBB is explained.

Chapter 4.

9

Source Code Overview
The bellow source code is from IVRSbb, it hides SIP related logic and highlights MGCP specific

code. In case if you want to look at complete source, please get the source code as explained

in Section 2.2.

package org.mobicents.mgcp.demo;

......

public abstract class IVRSbb implements Sbb {

 public final static String ENDPOINT_NAME = "/mobicents/media/IVR/$";

 public final static String JBOSS_BIND_ADDRESS = System.getProperty("jboss.bind.address",

 "127.0.0.1");

 public final static String WELCOME = "http://" + JBOSS_BIND_ADDRESS + ":8080/mgcpdemo/

audio/RQNT-ULAW.wav";

 private SbbContext sbbContext;

 // MGCP

 private JainMgcpProvider mgcpProvider;

 private MgcpActivityContextInterfaceFactory mgcpAcif;

 public static final int MGCP_PEER_PORT = 2427;

 public static final int MGCP_PORT = 2727;

 private Tracer logger;

 /** Creates a new instance of CallSbb */

 public IVRSbb() {

 }

 public void onCallCreated(RequestEvent evt, ActivityContextInterface aci) {

 //SIP Related handling

Chapter 4. Source Code Overview

10

 // respond(evt, Response.RINGING);

 CallIdentifier callID = mgcpProvider.getUniqueCallIdentifier();

 this.setCallIdentifier(callID.toString());

 EndpointIdentifier endpointID = new EndpointIdentifier(ENDPOINT_NAME,

 JBOSS_BIND_ADDRESS + ":" + MGCP_PEER_PORT);

 CreateConnection createConnection = new CreateConnection(this, callID, endpointID,

 ConnectionMode.SendRecv);

 try {

 String sdp = new String(evt.getRequest().getRawContent());

 createConnection.setRemoteConnectionDescriptor(new ConnectionDescriptor(sdp));

 } catch (ConflictingParameterException e) {

 // should never happen

 }

 int txID = mgcpProvider.getUniqueTransactionHandler();

 createConnection.setTransactionHandle(txID);

 MgcpConnectionActivity connectionActivity = null;

 try {

 connectionActivity = mgcpProvider.getConnectionActivity(txID, endpointID);

 ActivityContextInterface epnAci = mgcpAcif.getActivityContextInterface(connectionActivity);

 epnAci.attach(sbbContext.getSbbLocalObject());

 } catch (FactoryException ex) {

 ex.printStackTrace();

 } catch (NullPointerException ex) {

 ex.printStackTrace();

 } catch (UnrecognizedActivityException ex) {

 ex.printStackTrace();

 }

 mgcpProvider.sendMgcpEvents(new JainMgcpEvent[] { createConnection });

 }

 ...

 }

11

IVRSbb is listening for INVITE SIP RA Event. The Slee Container calls corresponding

onCallCreated event handler method.

New instance of CallIdentifier is created as this is new call. Through out the call,

CallIdentifier will remain the same.

New instance of EndpointIdentifier is created. The Endpoint local name is "/mobicents/

media/IVR/$". A term represented by a dollar sign ("$") is to be interpreted as, use

any available free endpoint. Endpoint domain name is JBOSS_BIND_ADDRESS + ":" +

MGCP_PEER_PORT. The MGCP Command will be delivered to MGCP Stack listening at

JBOSS_BIND_ADDRESS IP Address and MGCP_PEER_PORT port. Make sure that the

Mobicents Media Server is bound to same IP address as JBOSS_BIND_ADDRESS and

port in mgcp-conf.xml (MGCP Configuration file in Mobicents Media Server) is same as

MGCP_PEER_PORT.

New instance of CreateConnection object is created. This CreateConnection Request

when received by Media Gateway, will cause Media Gateway to select any one free IVR

Endpoint, create a connection on it and send back CreateConnectionResponse. If there is

any error while creating connection the returned CreateConnectionResponse will carry the

corresponding cause in ReturnCode

Setting the SDP of User Agent. This is not mandatory. If this is set the Connection created on

Endpoint on media gateway will start sending the media (depending on ConnectionMode) to

User Agent at IP:Port specified in SDP. If this is not set, the Connection can latter be modified

by sending ModifyConnection (not shown in this example)

Set a new transaction for this MGCP Request.

Create a new MgcpConnectionActivity for this MGCP Request, attach the SbbLocalObject

to this activity to receive CreateConnectionResponse event from MGCP RA.

Finally send this CreateConnection MGCP Command to Media Gateway.

Once the MGCP command reaches Media Gateway, it replies back and MGCP RA will fire

corresponding event.

 public void onCreateConnectionResponse(CreateConnectionResponse event,

 ActivityContextInterface aci) {

 logger.info("Receive CRCX response: " + event.getTransactionHandle());

 ReturnCode status = event.getReturnCode();

 switch (status.getValue()) {

 case ReturnCode.TRANSACTION_EXECUTED_NORMALLY:

Chapter 4. Source Code Overview

12

 this.setEndpointName(event.getSpecificEndpointIdentifier().getLocalEndpointName());

 ConnectionIdentifier connectionIdentifier = event.getConnectionIdentifier();

 this.setConnectionIdentifier(connectionIdentifier.toString());

 String sdp = event.getLocalConnectionDescriptor().toString();

 //Send OK to UA with SDP from media gateway

 //Play Announcement

 sendRQNT(WELCOME, false);

 break;

 default:

 //CRCX failed at Media Gateway. Take necessary action

 }

 }

MGCP RA will fire the CreateConnectionResponse event once CRCX Response received

from Media Gateway.

ReturnCode specifies if Media Gateway has successfully created the connection on Endpoint

or not.

Return codes are

100 and 199 indicate a provisional response

200 and 299 indicate a successful completion

400 and 499 indicate a transient error

500 and 599 indicate a permanent error

If connection created successfully, CreateConnectionResponse will carry the specific

EndpointIdentifier indicating the concrete Endpoint selected by media gateway. Next

all MGCP Request will be fired on same endpoint till DeleteConnection is requested which

represents end of call.

13

If connection created successfully, CreateConnectionResponse will carry the specific

ConnectionIdentifier identifying the connection created by media gateway on above

Endpoint. The request to apply Signal or detect Event will be for this ConnectionIdentifier.

If connection created successfully, CreateConnectionResponse will carry the

ConnectionDescriptor indicating the SDP of above created connection. This SDP can then

be sent to UA as OK Response to INVITE received and RTP flow begins between UA and

Media Gateway

Since the RTP connection is established between UA and Media Gateway,

NotificationRequest can be send to Media Gateway to play an announcement.

If creation of connection failed for some reason indicated by ReturnCode, necessary action

can be taken.

Let us see how NotificationRequest is used to request Media Gateway to play an

Announcement

 private void sendRQNT(String mediaPath, boolean createActivity) {

 EndpointIdentifier endpointID = new EndpointIdentifier(this.getEndpointName(),

 JBOSS_BIND_ADDRESS + ":"

 + MGCP_PEER_PORT);

 NotificationRequest notificationRequest = new NotificationRequest(this, endpointID,

 mgcpProvider

 .getUniqueRequestIdentifier());

 ConnectionIdentifier connectionIdentifier = new

 ConnectionIdentifier(this.getConnectionIdentifier());

 EventName[] signalRequests = { new EventName(PackageName.Announcement,

 MgcpEvent.ann.withParm(mediaPath), connectionIdentifier) };

 notificationRequest.setSignalRequests(signalRequests);

 RequestedAction[] actions = new RequestedAction[] { RequestedAction.NotifyImmediately };

 RequestedEvent[] requestedEvents = {

 new RequestedEvent(new EventName(PackageName.Announcement, MgcpEvent.oc,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Announcement, MgcpEvent.of,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf0,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf1,

 connectionIdentifier), actions),

Chapter 4. Source Code Overview

14

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf2,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf3,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf4,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf5,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf6,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf7,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf8,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmf9,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmfA,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmfB,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmfC,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmfD,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmfStar,

 connectionIdentifier), actions),

 new RequestedEvent(new EventName(PackageName.Dtmf, MgcpEvent.dtmfHash,

 connectionIdentifier), actions) };

 notificationRequest.setRequestedEvents(requestedEvents);

 notificationRequest.setTransactionHandle(mgcpProvider.getUniqueTransactionHandler());

 NotifiedEntity notifiedEntity = new NotifiedEntity(JBOSS_BIND_ADDRESS,

 JBOSS_BIND_ADDRESS, MGCP_PORT);

 notificationRequest.setNotifiedEntity(notifiedEntity);

 if (createActivity) {

 MgcpEndpointActivity endpointActivity = null;

 try {

 endpointActivity = mgcpProvider.getEndpointActivity(endpointID);

 ActivityContextInterface epnAci = mgcpAcif.getActivityContextInterface(endpointActivity);

 epnAci.attach(sbbContext.getSbbLocalObject());

 } catch (FactoryException ex) {

15

 ex.printStackTrace();

 } catch (NullPointerException ex) {

 ex.printStackTrace();

 } catch (UnrecognizedActivityException ex) {

 ex.printStackTrace();

 }

 } // if (createActivity)

 mgcpProvider.sendMgcpEvents(new JainMgcpEvent[] { notificationRequest });

 logger.info(" NotificationRequest sent");

 }

The NotificationRequest should be fired on same Endpoint where connection is created

Create a new NotificationRequest Object passing EndpointIdentifier created above and

use new RequestIdentifier

The NotificationRequest should be fired on same connection on Endpoint.

The NotificationRequest carries Signal to play an announcement on connection

represented by connectionIdentifier

The NotificationRequest carries request to detect DTMF Events and also detect events

if Announcement completed successfully or failed.

Since none of the Signals/Events are fired/detected on Endpoint, Endpoint Activity is not

created. The above Events when detected would be fired on Connection Activity.

Finally send the request to Media Gateway.

Once Media Gateway receives the NotificationRequest, it will process the Signals / Events

and send back NotificationRequestResponse which carries ReturnCode indicating if Signals

can be applied or not and Events can be detected or not.

 public void onNotificationRequestResponse(NotificationRequestResponse event,

 ActivityContextInterface aci) {

 logger.info("onNotificationRequestResponse");

 ReturnCode status = event.getReturnCode();

 switch (status.getValue()) {

 case ReturnCode.TRANSACTION_EXECUTED_NORMALLY:

 logger.info("The Announcement should have been started");

 break;

 default:

 ReturnCode rc = event.getReturnCode();

Chapter 4. Source Code Overview

16

 logger.severe("RQNT failed. Value = " + rc.getValue() + " Comment = " + rc.getComment());

 //Send DLCX to MMS. Send BYE to UA

 break;

 }

 }

The Media Gateway will fire the Notify command to Application when ever it detects any of the

above Events requested by NotificationRequest

 public void onNotifyRequest(Notify event, ActivityContextInterface aci) {

 logger.info("onNotifyRequest");

 NotifyResponse response = new NotifyResponse(event.getSource(),

 ReturnCode.Transaction_Executed_Normally);

 response.setTransactionHandle(event.getTransactionHandle());

 mgcpProvider.sendMgcpEvents(new JainMgcpEvent[] { response });

 EventName[] observedEvents = event.getObservedEvents();

 for (EventName observedEvent : observedEvents) {

 switch (observedEvent.getEventIdentifier().intValue()) {

 case MgcpEvent.REPORT_ON_COMPLETION:

 logger.info("Announcemnet Completed NTFY received");

 break;

 case MgcpEvent.REPORT_FAILURE:

 logger.info("Announcemnet Failed received");

 // TODO : Send DLCX and Send BYE to UA

 break;

 case MgcpEvent.DTMF_0:

 logger.info("You have pressed 0");

 sendRQNT(DTMF_0, false);

 break;

 case MgcpEvent.DTMF_1:

 logger.info("You have pressed 1");

 sendRQNT(DTMF_1, false);

 break;

 case MgcpEvent.DTMF_2:

 logger.info("You have pressed 2");

17

 sendRQNT(DTMF_2, false);

 break;

 case MgcpEvent.DTMF_3:

 logger.info("You have pressed 3");

 sendRQNT(DTMF_3, false);

 break;

 case MgcpEvent.DTMF_4:

 logger.info("You have pressed 4");

 sendRQNT(DTMF_4, false);

 break;

 case MgcpEvent.DTMF_5:

 logger.info("You have pressed 5");

 sendRQNT(DTMF_5, false);

 break;

 case MgcpEvent.DTMF_6:

 logger.info("You have pressed 6");

 sendRQNT(DTMF_6, false);

 break;

 case MgcpEvent.DTMF_7:

 logger.info("You have pressed 7");

 sendRQNT(DTMF_7, false);

 break;

 case MgcpEvent.DTMF_8:

 logger.info("You have pressed 8");

 sendRQNT(DTMF_8, false);

 break;

 case MgcpEvent.DTMF_9:

 logger.info("You have pressed 9");

 sendRQNT(DTMF_9, false);

 break;

 case MgcpEvent.DTMF_A:

 logger.info("You have pressed A");

 sendRQNT(A, false);

 break;

 case MgcpEvent.DTMF_B:

 logger.info("You have pressed B");

 sendRQNT(B, false);

 break;

 case MgcpEvent.DTMF_C:

 logger.info("You have pressed C");

 sendRQNT(C, false);

 break;

 case MgcpEvent.DTMF_D:

 logger.info("You have pressed D");

Chapter 4. Source Code Overview

18

 sendRQNT(D, false);

 break;

 case MgcpEvent.DTMF_STAR:

 logger.info("You have pressed *");

 sendRQNT(STAR, false);

 break;

 case MgcpEvent.DTMF_HASH:

 logger.info("You have pressed C");

 sendRQNT(POUND, false);

 break;

 }

 }

 }

Send the NotifyResponse immediately to avoid Media Gateway sending the Notify again

on expiration of response Timer.

The Notify command carries list of Events depending on which all occurred at Media

Gateway. Iterate through this list and act accordingly. In our example we are simply asking

Media Gateway to play corresponding audio file for DTMF pressed by user.

Finally when user hangs-up, we need to delete the connection on Endpoint and free the resources

 public void onCallTerminated(RequestEvent evt, ActivityContextInterface aci) {

 EndpointIdentifier endpointID = new EndpointIdentifier(this.getEndpointName(),

 JBOSS_BIND_ADDRESS + ":"

 + MGCP_PEER_PORT);

 DeleteConnection deleteConnection = new DeleteConnection(this, endpointID);

 deleteConnection.setTransactionHandle(mgcpProvider.getUniqueTransactionHandler());

 mgcpProvider.sendMgcpEvents(new JainMgcpEvent[] { deleteConnection });

 ServerTransaction tx = evt.getServerTransaction();

 Request request = evt.getRequest();

 try {

 Response response = messageFactory.createResponse(Response.OK, request);

 tx.sendResponse(response);

 } catch (Exception e) {

19

 logger.severe("Error while sending DLCX ", e);

 }

 }

The SIP11 RA fires BYE event, slee container calls onCallTerminated method on SBB

New DeleteConnection Object is created passing the same Endpoint on which original

connection was created. Once Media Gateway receives DeleteConnection command, it

closes the connection and frees Endpoint from all resources allocated.

20

Chapter 5.

21

Running the Example
The easiest way to try the example application is to start the JAIN SLEE container, deploy the

RA's as mentioned in 2.1.2. Software Prerequisites. Start the Mobicents Media Server.

Fire your favorite SIP Phone. Point the proxy of your SIP Phone to Mobicents JAIN SLEE Server

and dial

2010

To test IVR functionality

2011

To test Recording functionality

2012

To test Conference functionality

2013

To test TTS functionality

22

Chapter 6.

23

Traces and Alarms

6.1. Tracers

Each SBB has its own JAIN SLEE 1.1 Tracer

6.2. Alarms

The example Application does not sets JAIN SLEE Alarms.

24

25

Appendix A. Revision History
Revision History

Revision 1.0 Tue Dec 30 2009 AmitBhayani

Creation of the JBoss Communications JAIN SLEE MGCP Demo Example User Guide.

26

27

Index
F
feedback, viii

28

	JBoss Communications JAIN SLEE MGCP Demo Example User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Provide feedback to the authors!

	Chapter 1. Introduction to JBoss Communications JAIN SLEE MGCP Demo Example
	Chapter 2. Setup
	2.1. Pre-Install Requirements and Prerequisites
	2.1.1. Hardware Requirements
	2.1.2. Software Prerequisites

	2.2. JBoss Communications JAIN SLEE MGCP Demo Example Source Code
	2.2.1. Release Source Code Building
	2.2.2. Development Trunk Source Building

	2.3. Installing JBoss Communications JAIN SLEE MGCP Demo Example
	2.4. Uninstalling JBoss Communications JAIN SLEE MGCP Demo Example

	Chapter 3. Design Overview
	3.1. Design

	Chapter 4. Source Code Overview
	Chapter 5. Running the Example
	Chapter 6. Traces and Alarms
	6.1. Tracers
	6.2. Alarms

	Appendix A. Revision History
	Index

