
Mobicents JAIN SLEE SIP

UAS Example User Guide

by Eduardo Martins and Bartosz Baranowski

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions .. vii

1.3. Notes and Warnings .. vii

2. Provide feedback to the authors! .. viii

1. Introduction to Mobicents JAIN SLEE SIP UAS Example .. 1

2. Setup ... 3

2.1. Pre-Install Requirements and Prerequisites .. 3

2.1.1. Hardware Requirements ... 3

2.1.2. Software Prerequisites .. 3

2.2. Mobicents JAIN SLEE SIP UAS Example Source Code .. 3

2.2.1. Release Source Code Building ... 3

2.2.2. Development Trunk Source Building .. 4

2.3. Installing Mobicents JAIN SLEE SIP UAS Example ... 4

2.4. Uninstalling Mobicents JAIN SLEE SIP UAS Example ... 5

3. Design Overview ... 7

4. Source Code Overview .. 9

4.1. Service Descriptor .. 9

4.2. The Root SBB .. 9

4.2.1. The Root SBB Abstract Class ... 10

4.2.2. Root SBB XML Descriptor .. 12

5. Running the Example .. 15

6. Traces and Alarms .. 17

6.1. Tracers ... 17

6.2. Alarms .. 17

A. Revision History .. 19

Index ... 21

iv

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System > Preferences > Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >

Accessories > Character Map from the main menu bar. Next, choose Search

> Find from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu

of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above username, domain.name, file-system, package, version and

release. Each word is a placeholder, either for text you enter when issuing a command or for text

displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

Pull-quote Conventions

vii

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Preface

viii

Note

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make this manual

better, we would love to hear from you! Please submit a report in the the Issue Tracker [http://

code.google.com/p/mobicents/issues/list], against the product Mobicents JAIN SLEE SIP UAS

Example, or contact the authors.

When submitting a bug report, be sure to mention the manual's identifier:

JAIN_SLEE_SipUAS_EXAMPLE_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list

Chapter 1.

1

Introduction to Mobicents JAIN

SLEE SIP UAS Example
This example application plays the User Agent Server (UAS) role in a SIP session setup, using

the JAIN SIP Resource Adaptor specified in the JAIN SLEE 1.1 specification.

The application receives and sets up new sessions. After setup is complete, a specific timer

expiration will signal the application to terminate the session.

2

Chapter 2.

3

Setup

2.1. Pre-Install Requirements and Prerequisites

Ensure that the following requirements have been met before continuing with the install.

2.1.1. Hardware Requirements

The Example doesn't change the Mobicents JAIN SLEE Hardware Requirements, refer to

Mobicents JAIN SLEE documentation for more information.

2.1.2. Software Prerequisites

The Example requires Mobicents JAIN SLEE properly set, with SIP11 Resource Adaptor

deployed.

2.2. Mobicents JAIN SLEE SIP UAS Example Source

Code

This section provides instructions on how to obtain and build the SIP UAS Example from source

code.

2.2.1. Release Source Code Building

1. Downloading the source code

Important

Subversion is used to manage its source code. Instructions for using

Subversion, including install, can be found at http://svnbook.red-bean.com

Use SVN to checkout a specific release source, the base URL is http://

mobicents.googlecode.com/svn/tags/servers/jain-slee/2.x.y/examples/sip-uas, then add the

specific release version, lets consider 2.3.0.FINAL.

[usr]$ svn co http://mobicents.googlecode.com/svn/tags/servers/jain-slee/2.x.y/examples/

sip-uas/2.3.0.FINAL slee-example-sip-uas-2.3.0.FINAL

http://svnbook.red-bean.com

Chapter 2. Setup

4

2. Building the source code

Important

Maven 2.0.9 (or higher) is used to build the release. Instructions for using

Maven2, including install, can be found at http://maven.apache.org

Use Maven to build the deployable unit binary.

 [usr]$ cd slee-example-sip-uas-2.3.0.FINAL

 [usr]$ mvn install

Once the process finishes you should have the deployable-unit jar file in the target

directory, if Mobicents JAIN SLEE is installed and environment variable JBOSS_HOME is

pointing to its underlying JBoss Application Server directory, then the deployable unit jar will

also be deployed in the container.

Important

This procedure does not install the Example's dependencies

2.2.2. Development Trunk Source Building

Similar process as for Section 2.2.1, “Release Source Code Building”, the only change is the

SVN source code URL, which is http://mobicents.googlecode.com/svn/trunk/servers/jain-slee/

examples/sip-uas.

2.3. Installing Mobicents JAIN SLEE SIP UAS Example

To install the Example simply execute provided ant script build.xml default target:

 [usr]$ ant

The script will copy the Example's deployable unit jar to the default Mobicents JAIN SLEE server

profile deploy directory, to deploy to another server profile use the argument -Dnode=.

http://maven.apache.org

Uninstalling Mobicents JAIN SLEE SIP UAS Example

5

Important

This procedure also installs the Example's dependencies.

2.4. Uninstalling Mobicents JAIN SLEE SIP UAS

Example

To uninstall the Example simply execute provided ant script build.xml undeploy target:

 [usr]$ ant undeploy-all

The script will delete the Example's deployable unit jar from the default Mobicents JAIN SLEE

server profile deploy directory, to undeploy from another server profile use the argument -Dnode=.

Important

This procedure also uninstalls the Example's dependencies.

6

Chapter 3.

7

Design Overview
The SIP UAS Example is JAIN SLEE 1.1 Application which participates in SIP sessions, as an

UAS. The SIP messages exchange is depicted in the image below.

SIP UAS Example Functionality

8

Chapter 4.

9

Source Code Overview
The example application is defined by a service descriptor, which refers the Root SBB. The Root

SBB does not defines child relations, which means the application is a single SBB.

Important

To obtain the example's complete source code please refer to Section 2.2,

“Mobicents JAIN SLEE SIP UAS Example Source Code”.

4.1. Service Descriptor

The service descriptor is plain simple, it just defines the service ID, the ID of the root SBB and

its default priority. The complete XML is:

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE service-xml PUBLIC

 "-//Sun Microsystems, Inc.//DTD JAIN SLEE Service 1.1//EN"

 "http://java.sun.com/dtd/slee-service-xml_1_1.dtd">

<service-xml>

 <service>

 <service-name>SIP UAS</service-name>

 <service-vendor>org.mobicents</service-vendor>

 <service-version>1.0</service-version>

 <root-sbb>

 <sbb-name>SIP UAS</sbb-name>

 <sbb-vendor>org.mobicents</sbb-vendor>

 <sbb-version>1.0</sbb-version>

 </root-sbb>

 <default-priority>0</default-priority>

 </service>

</service-xml>

4.2. The Root SBB

The SIP UAS Example's Root SBB is composed by the abstract class and the XML descriptor.

Chapter 4. Source Code Overview

10

4.2.1. The Root SBB Abstract Class

The class org.mobicents.slee.example.sip.SipUASExampleSbb includes all the service logic

for the example.

4.2.1.1. The setSbbContext(SbbContext) method

The javax.slee.SbbObject's setSbbContext(SbbContext) is used by SBBs to store the SBB's

context into a class field. The SBB should take the opportunity to also store objects, such as SLEE

facilities, which are reused by all service logic entities, a.k.a. SbbEntities, and are stored in the

JNDI environment.

The class fields and setSbbContext(SbbContext) method's and related code:

 public void setSbbContext(SbbContext context) {

 sbbContext = (SbbContextExt) context;

 sipActivityContextInterfaceFactory = (SipActivityContextInterfaceFactory) sbbContext

 .getActivityContextInterfaceFactory(sipRATypeID);

 sleeSipProvider = (SleeSipProvider) sbbContext

 .getResourceAdaptorInterface(sipRATypeID, sipRALink);

 addressFactory = sleeSipProvider.getAddressFactory();

 headerFactory = sleeSipProvider.getHeaderFactory();

 messageFactory = sleeSipProvider.getMessageFactory();

 timerFacility = sbbContext.getTimerFacility();

 }

4.2.1.2. The SIP INVITE Event Handler Method

The SIP INVITE is the starting point of each instance of the service logic, its responsibility is:

• Create the SIP Dialog activity, which represents the session, and attach the SbbEntity, to receive

further SIP messages.

• Set the session timer.

• Send RINGING response back to the UAC.

• Send OK response back to the UAC, to continue the session setup.

The event handler code:

The Root SBB Abstract Class

11

 // Initial request

public void onInviteEvent(RequestEvent event, ActivityContextInterface aci) {

 final SbbLocalObject sbbLocalObject = this.sbbContext

 .getSbbLocalObject();

 aci.detach(sbbLocalObject);

 final ServerTransaction serverTransaction = requestEvent

 .getServerTransaction();

 try {

 // create dialog and attach this entity to it's aci

 final DialogActivity dialog = (DialogActivity) sleeSipProvider

 .getNewDialog(serverTransaction);

 final ActivityContextInterfaceExt dialogAci =

 (ActivityContextInterfaceExt) sipActivityContextInterfaceFactory

 .getActivityContextInterface(dialog);

 dialogAci.attach(sbbLocalObject);

 // set timer of 60 secs on the dialog aci

 timerFacility.setTimer(dialogAci, null,

 System.currentTimeMillis() + 60000L, getTimerOptions());

 // send 180

 Response response = messageFactory.createResponse(Response.RINGING,

 requestEvent.getRequest());

 response.addHeader(getContactHeader());

 serverTransaction.sendResponse(response);

 // send 200 ok

 response = messageFactory.createResponse(Response.OK, requestEvent

 .getRequest());

 response.addHeader(getContactHeader());

 serverTransaction.sendResponse(response);

 } catch (Exception ex) {

 ex.printStackTrace();

 }

}

4.2.1.3. The Timer Event Handler Method

The Timer Event is received when the session timer expires, the application then sends a BYE

request to the other party, requesting the session termination.

The event handler method's code:

 public void onTimerEvent(TimerEvent event, ActivityContextInterface aci) {

Chapter 4. Source Code Overview

12

 aci.detach(sbbContext.getSbbLocalObject());

 final DialogActivity dialog = (DialogActivity) aci.getActivity();

 try {

 dialog.sendRequest(dialog.createRequest(Request.BYE));

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

4.2.2. Root SBB XML Descriptor

The Root SBB XML Descriptor has to be provided and match the abstract class code.

First relevant part is the declaration of the sbb-classes element, where the sbb class abstract

name must be specified:

 <sbb-classes>

 <sbb-abstract-class reentrant="True">

 <sbb-abstract-class-name>org.mobicents.slee.example.sip.SipUASExampleSbb</sbb-

abstract-class-name>

 </sbb-abstract-class>

 </sbb-classes>

Then the events handled by the SBB must be specified too:

 <event event-direction="Receive" initial-event="True">

 <event-name>ServiceStartedEvent</event-name>

 <event-type-ref>

 <event-type-name>

 javax.slee.serviceactivity.ServiceStartedEvent

 </event-type-name>

 <event-type-vendor>javax.slee</event-type-vendor>

 <event-type-version>1.1</event-type-version>

 </event-type-ref>

 <initial-event-select variable="ActivityContext" />

 </event>

Root SBB XML Descriptor

13

 <event event-direction="Receive" initial-event="True">

 <event-name>InviteEvent</event-name>

 <event-type-ref>

 <event-type-name>javax.sip.message.Request.INVITE</event-type-name>

 <event-type-vendor>net.java.slee</event-type-vendor>

 <event-type-version>1.2</event-type-version>

 </event-type-ref>

 <initial-event-select variable="ActivityContext"/>

 </event>

 <event event-direction="Receive" initial-event="False">

 <event-name>TimerEvent</event-name>

 <event-type-ref>

 <event-type-name>javax.slee.facilities.TimerEvent</event-type-name>

 <event-type-vendor>javax.slee</event-type-vendor>

 <event-type-version>1.0</event-type-version>

 </event-type-ref>

 </event>

Note that there is a single event defined as initial, which triggers the sbb logic, remaining events

all happen in activities that the service instance is already attached, abstracting the application

from calculating which session it handles.

Finally, the SIP11 Resource Adaptor must be specified also, otherwise SLEE won't put its SBB

Interface in the SBB's JNDI Context:

 <resource-adaptor-type-binding>

 <resource-adaptor-type-ref>

 <resource-adaptor-type-name>

 JAIN SIP

 </resource-adaptor-type-name>

 <resource-adaptor-type-vendor>

 javax.sip

 </resource-adaptor-type-vendor>

 <resource-adaptor-type-version>

 1.2

 </resource-adaptor-type-version>

 </resource-adaptor-type-ref>

 <activity-context-interface-factory-name>

Chapter 4. Source Code Overview

14

 slee/resources/jainsip/1.2/acifactory

 </activity-context-interface-factory-name>

 <resource-adaptor-entity-binding>

 <resource-adaptor-object-name>

 slee/resources/jainsip/1.2/provider

 </resource-adaptor-object-name>

 <resource-adaptor-entity-link>

 SipRA

 </resource-adaptor-entity-link>

 </resource-adaptor-entity-binding>

 </resource-adaptor-type-binding>

Chapter 5.

15

Running the Example
To run the example application, first start the JAIN SLEE container, wait for the message Service

activated, now execute SIPP script. to be displayed in the console, then execute the SIPP

script, run.sh or run.bat depending on which Operating System being used, in sipp directory.

The script is UAC party, responsible to create the sessions. All the traffic should be printed in the

application server console. The usage of SIPP scripts requires SIPP to be in $PATH environment

variable.

16

Chapter 6.

17

Traces and Alarms

6.1. Tracers

Important

Spaces where introduced in log4j category name to properly render page. Please

remove them when using copy/paste.

The example Application uses a single JAIN SLEE 1.1 Tracer, named SipUASExampleSbb.

The related log4j category is javax.slee.SbbNotification[service=ServiceID[name= SIP

UAS,vendor=org.mobicents,version=1.0], sbb=SbbID[name=SIP

UAS,vendor=org.mobicents,version=1.0]].

6.2. Alarms

The example Application does not sets JAIN SLEE Alarms.

18

19

Appendix A. Revision History
Revision History

Revision 1.0 Thu Jan 06 2011 EduardoMartins

Creation of the Mobicents JAIN SLEE SIP UAS Example User Guide.

20

21

Index
F
feedback, viii

22

	Mobicents JAIN SLEE SIP UAS Example User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Provide feedback to the authors!

	Chapter 1. Introduction to Mobicents JAIN SLEE SIP UAS Example
	Chapter 2. Setup
	2.1. Pre-Install Requirements and Prerequisites
	2.1.1. Hardware Requirements
	2.1.2. Software Prerequisites

	2.2. Mobicents JAIN SLEE SIP UAS Example Source Code
	2.2.1. Release Source Code Building
	2.2.2. Development Trunk Source Building

	2.3. Installing Mobicents JAIN SLEE SIP UAS Example
	2.4. Uninstalling Mobicents JAIN SLEE SIP UAS Example

	Chapter 3. Design Overview
	Chapter 4. Source Code Overview
	4.1. Service Descriptor
	4.2. The Root SBB
	4.2.1. The Root SBB Abstract Class
	4.2.1.1. The setSbbContext(SbbContext) method
	4.2.1.2. The SIP INVITE Event Handler Method
	4.2.1.3. The Timer Event Handler Method

	4.2.2. Root SBB XML Descriptor

	Chapter 5. Running the Example
	Chapter 6. Traces and Alarms
	6.1. Tracers
	6.2. Alarms

	Appendix A. Revision History
	Index

