JBoss Communications JAIN SLEE
SIP Wake Up Example User Guide

by Eduardo Martins

g (=Y 7= o < v

I o Tox 0 o T=T o | @ 0] 0 1V7=T o1 i o o =P \

1.1. Typographic CONVENLIONScivuuiiiiiieiiiee e e e e e e e e e e e e e e eanas %

1.2. PUll-QUOLE CONVENTIONSiiiiiieieiii ettt ettt vii

1.3. NOteS and WaArNINGSuoviviieiiii e e e e e e e e e e e anes Vi

2. Provide feedback to the authors! ... viii

1. Introduction to JBoss Communications JAIN SLEE SIP Wake Up Example................. 1
=] (U1 o PP PRSPPI 3
2.1. Pre-Install Requirements and PrereqUISitesooevuiiiiiiieiiiieiii i eee e e 3
2.1.1. Hardware ReqUINEIMENLSccouuuiiiiiitieiiii e ettt e et eeeaae e eeees 3

2.1.2. Software Prer@qUISITESiviuiiiiiiieiii e e e s 3

2.2. JBoss Communications JAIN SLEE SIP Wake Up Example Source Code................ 3
2.2.1. Release Source Code BUIldiNgcccouuiiiiiiiiiiiiiiii e 3

2.2.2. Development Trunk Source Buildingccccooviiiiiiiiiiiiii e 4

2.3. Installing JBoss Communications JAIN SLEE SIP Wake Up Example 4

2.4. Uninstalling JBoss Communications JAIN SLEE SIP Wake Up Example................. 5

3. DESIGN OVEIVIEBW ..otiiiiiieii e et e e e e e e e e e e et e et e e et e e et e e et e e at e eetneeeanaeeees 7
4. SOUICE COUE OVEIVIEW ..euiiiiieii e et e e e e et e et e e e e e et e e et e e e e e et e e eanaaeannns 9
O Y= Vot T B 1= Yo g o] (o 9

4.2, The ROOL SBBiiiiiiiiiii et e et e e e e a e eaaaaas 9
4.2.1. The Root SBB ADSIIact Classccouuiieiiiiiieiiiiiiieeee e 10

4.2.2. ROOt SBB XML DESCIIPLON ...cceeiiiieiiiiiiee et 16

5. RUNNING the EXAMPIE .ooiniii e e e s 19
LT I - Vo =T T [N =T 1 =P 21
L 20 I I =T o] T £ S PP 21

LS AN - 1 1 1 21

A, REVISION HISTOMY ...iiiiiiiii e e e e e e e e e e e e e e et e e et e e eanaeees 23
o 1= P 25

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention
to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://
fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if
the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:
Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono- spaced Bol d

Used to highlight system input, including shell commands, file names and paths. Also used to
highlight key caps and key-combinations. For example:

To see the contents of the file ny_next _bestsel |i ng_novel in your current
working directory, enter the cat ny_next _best sel | i ng_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced
Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a
key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to
return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of
three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in Mono- spaced Bol d. For example:

File-related classes include fi | esyst emfor file systems, fi | e for files, and di r
for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application nhames; dialogue
box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.
For example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

Choose System > Preferences > Mouse from the main menu bar to launch
Mouse Preferences. In the Buttons tab, click the Left-handed mouse check
box and click Close to switch the primary mouse button from the left to the right
(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >
Accessories > Character Map from the main menu bar. Next, choose Search
> Find from the Character Map menu bar, type the name of the character in the
Search field and click Next. The character you sought will be highlighted in the
Character Table. Double-click this highlighted character to place it in the Text
to copy field and then click the Copy button. Now switch back to your document
and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-
specific menu names; and buttons and text found within a GUI interface, all presented in
Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to
avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu
of the main menu bar' approach.

Mono- spaced Bold ItalicorProportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending
on circumstance. For example:

To connect to a remote machine using ssh, type ssh user nane@onai n. nanme
at a shell prompt. If the remote machine is exanpl e. comand your username on
that machine is john, type ssh j ohn@xanpl e. com

The mount -0 renount file-systemcommand remounts the named file
system. For example, to remount the / hone file system, the command is nount
-0 renount /hone.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package- ver si on-rel ease.

Note the words in bold italics above username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new
and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes
or threads to handle them. This group of child processes or threads is known as

vi

Pull-quote Conventions

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and
maintaining these server-pools has been abstracted to a group of modules called
Multi-Processing Modules (MPMs). Unlike other modules, only one module from
the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono- spaced Ronan and presented thus:

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as
follows:

package org.jboss.book.jca.ex1;
import javax.naming.InitialContext;

public class ExClient

{

public static void main(String args[])
throws Exception

InitialContext iniCtx = new InitialContext();
Object ref = iniCtx.lookup("EchoBean");
EchoHome home = (EchoHome) ref;
Echo echo = home.create();

System.out.printin("Created Echo");

System.out.printin("Echo.echo('Hello") =" + echo.echo("Hello"));

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be
overlooked.

Vii

Preface

E] Note
A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a
note should have no negative consequences, but you might miss out on a trick that
makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that
only apply to the current session, or services that need restarting before an update
will apply. Ignoring Important boxes won't cause data loss but may cause irritation
and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data
loss.

2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make this
manual better, we would love to hear from you! Please submit a report in the the Issue Tracker
[http://bugzilla.redhat.com/bugzilla/], against the product JBoss Communications JAIN SLEE
SIP Wake Up Example, or contact the authors.

When submitting a bug report, be sure to mention the manual's identifier:
JAIN_SLEE_SipWakeUp_EXAMPLE_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

viii

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

Chapter 1.

Introduction to JBossS
Communications JAIN SLEE SIP
Wake Up Example

This example is a JAIN SLEE application which processes SIP messages from registered SIP
UAs to act as an Wake Up system.

It is a simple example but provides usage of JAIN SLEE child relations, timers, null activities, sbb
activity context interfaces and JAIN SIP RA code, thus being very useful for beginners.

The sender uses a specific MESSAGE format, containing a timeout T and wake up message M
values, and then, when T seconds pass, the service will send a message containing M back to
the UA.

Chapter 2.

Setup

2.1. Pre-Install Requirements and Prerequisites

Ensure that the following requirements have been met before continuing with the install.

2.1.1. Hardware Requirements

The Example doesn't change the JBoss Communications JAIN SLEE Hardware Requirements,
refer to JBoss Communications JAIN SLEE documentation for more information.

2.1.2. Software Prerequisites

The Example requires JBoss Communications JAIN SLEE properly set, with SIP11 Resource
Adaptor and SIP Services Example deployed.

2.2. JBoss Communications JAIN SLEE SIP Wake Up
Example Source Code

This section provides instructions on how to obtain and build the SIP Wake Up Example from
source code.

2.2.1. Release Source Code Building

1. Downloading the source code

Important

Subversion is used to manage its source code. Instructions for using
Subversion, including install, can be found at http://svnbook.red-bean.com

Use SVN to checkout a specific release source, the base URL is ?, then add the specific
release version, lets consider 2.2.0.FINAL.

[usr]$ svn co ?/2.2.0.FINAL slee-example-sip-wake-up-2.2.0.FINAL

http://svnbook.red-bean.com

Chapter 2. Setup

2. Building the source code

Important

Maven 2.0.9 (or higher) is used to build the release. Instructions for using
Maven2, including install, can be found at http://maven.apache.org

Use Maven to build the deployable unit binary.

[usr]$ cd slee-example-sip-wake-up-2.2.0.FINAL
[usr]$ mvn install

Once the process finishes you should have the depl oyabl e-unit jar file in the t ar get
directory, if JBoss Communications JAIN SLEE is installed and environment variable
JBOSS_HOME is pointing to its underlying JBoss Enterprise Application Platform directory,
then the deployable unit jar will also be deployed in the container.

Important

This procedure does not install the Example's dependencies

2.2.2. Development Trunk Source Building

Similar process as for Section 2.2.1, “Release Source Code Building”, the only change is the SVN
source code URL, which is NOT AVAILABLE.

2.3. Installing JBoss Communications JAIN SLEE SIP
Wake Up Example

To install the Example simply execute provided ant script bui | d. xnml default target:

[usr]$ ant

The script will copy the Example's deployable unit jar to the def aul t JBoss Communications JAIN
SLEE server profile deploy directory, to deploy to another server profile use the argument - Dnode=.

http://maven.apache.org

Uninstalling JBoss Communications JAIN SLEE SIP Wake Up Example

Important

This procedure also installs the Example's dependencies.

2.4. Uninstalling JBoss Communications JAIN SLEE
SIP Wake Up Example

To uninstall the Example simply execute provided ant script bui | d. xm undepl oy target:

[usr]$ ant undeploy-all

The script will delete the Example's deployable unit jar from the def aul t JBoss Communications
JAIN SLEE server profile deploy directory, to undeploy from another server profile use the
argument - Dnode=.

Important

This procedure also uninstalls the Example's dependencies.

Chapter 3.

Design Ove

rview

The SIP Wake Up Example is JAIN SLEE 1.1 Application which handles SIP MESSAGE requests
containing a specific content format, to trigger a wake up message. The wake up message and
target user are extracted from the SIP MESSAGE request, as the duration of the timer to set.
Once the timer expires the application will get all SIP entities registered as the target user, from
SIP Services application, and a SIP MESSAGE request is sent for each of those entities. The
diagram below depicts this behavior.

The MESSAGE format to be used is:

[any text
to UA]![any text string].

1 | 1
REGISTER sip use rigmobicents.org SIP/2.0 } : }
Contart: <sipuser@102. 16501 | | |
200 0%] : }
| |
| | |
| | |
1 | 1
MESSAGE sip user@mobicents.org SIP/2.0] |
WAKE UP IN G05![MSG: BOOM! : [‘
| | |
200 de | |
| T |
| | |
‘ m Timerévent i

‘ maobicents.orgl :
I I }
: sip user®192.168.0.1 : }
| | |

|
MESSAGE sip us!r_«“]ﬂ‘Z.]ES 0.1 5j2.0 ! }

I
BOOM! | }
2nnq‘x i }
| = |
I I |
I I |
| i |
I I |
I I |
I I |
I I |
1 | ‘
|

SIP Wake Up Example Functionality
string] WAKE UP IN [tiner value in seconds]s! MSG [nmsg to send back

The parts out of are case sensitive tokens used by the service to parse the message. Also note
that the spaces between tokens and values are required. A message that does not complaints
with this format will produce error behavior in the service.

Chapter 4.

Source Code Overview

The example application is defined by a service descriptor, which refers the included root SBB.
The root SBB uses the Location Service SBB (from SIP Services Example) as a child, to retrieve
the SIP entities registered.

Important

To obtain the example's complete source code please refer to Section 2.2, “JBoss
Communications JAIN SLEE SIP Wake Up Example Source Code”.

4.1. Service Descriptor

The service descriptor is plain simple, it just defines the service ID, the ID of the root SBB and
its default priority. The complete XML is:

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE service-xml PUBLIC
"-//Sun Microsystems, Inc.//DTD JAIN SLEE Service 1.1//EN"
"http://java.sun.com/dtd/slee-service-xml_1 1.dtd">
<service-xml>
<service>
<service-name>Wake Up Service</service-name>
<service-vendor>NIST</service-vendor>
<service-version>1.0</service-version>
<root-shb>
<sbbh-name>Wake Up Sbb</sbb-name>
<sbb-vendor>NIST</sbb-vendor>
<sbb-version>1.0</sbb-version>
</root-sbb>
<default-priority>0</default-priority>
</service>
</service-xml>

4.2. The Root SBB

The SIP Wake Up Example's Root SBB is composed by the abstract class and the XML descriptor.

Chapter 4. Source Code Overview

4.2.1. The Root SBB Abstract Class

The class or g. nobi cent s. sl ee. exanpl es. wakeup. WakeupSbb includes all the service logic for
the example.

4.2.1.1. The setSbbContext(SbbContext) method

The j avax. sl ee. SbbQbj ect 's set ShbCont ext (SbbCont ext) is used by SBBs to store the SBB's
context into a class field. The SBB should take the opportunity to also store objects, such as SLEE
facilities, which are reused by all service logic entities, a.k.a. SbbEntities, and are stored in the
JNDI environment.

The class fields and set SbbCont ext (SbbCont ext) method's and related code:

[/l the Sbb's context
private SbbContext sbbContext;

/I the Sbb's single tracer
private Tracer tracer = null;

/I cached objects in Sbb's environment, lookups are expensive
private SleeSipProvider sipProvider;

private TimerFacility timerFacility;

private NullActivityContextinterfaceFactory nullACIFactory;
private NullActivityFactory nullActivityFactory;

/*
* (non-Javadoc)
*
* @see javax.slee.Sbb#setSbbContext(javax.slee.SbbContext)
*/
public void setSbbContext(SbbContext context) {
/I save the sbb context in a field
this.sbbContext = context;
/I get the tracer if needed
this.tracer = context.getTracer(WakeUpSbb.class.getSimpleName());
/I get jndi environment stuff
try {
final Context myEnv = (Context) new InitialContext();
/I slee facilities
this.timerFacility = (TimerFacility) myEnv
Jookup(TimerFacility.JNDI_NAME);
this.nullACIFactory = (NullActivityContextInterfaceFactory) myEnv
Jookup(NullActivityContextInterfaceFactory.JNDI_NAME);

10

The Root SBB Abstract Class

this.nullActivityFactory = (NullActivityFactory) myEnv
Jookup(NullActivityFactory.JNDI_NAME);
/I the sbb interface to interact with SIP resource adaptor
this.sipProvider = (SleeSipProvider) myEnv
Jlookup(“java:comp/env/slee/resources/jainsip/1.2/provider");
} catch (Exception e) {
tracer.severe("Failed to set sbb context", e);

4.2.1.2. CMP Fields Accessors

For each CMP field, which will hold the service logic instance data, the application defines two
abstract methods, the getter and the setter. SLEE is responsible for the implementation of those
methods.

The CMP field's accessors code:

public abstract void setSender(Address sender);
public abstract Address getSender();

public abstract void setCallld(CallldHeader callld);
public abstract CallldHeader getCallld();

public abstract void setBody(String body);
public abstract String getBody();

4.2.1.3. The SIP MESSAGE event handler

The SIP MESSAGE is the starting point of each instance of the service logic, its responsibility is:

» Extract the relevant message information and store in CMP fields, the correct place holders for
service logic instance data event handler is the entry point.

» Set the timer with the duration extract from the SIP MESSAGE request on a new Null
Activity, needed to keep the service logic instance alive. Recall that SLEE garbage collects all
SBBERtities which are not attached to a single ActivityContext, and at this point the entity is only
attached to the SIP ServerTransaction activity, that is goin to end once the application returns
a final response.

11

Chapter 4. Source Code Overview

» Reply the successful processing of the SIP request.

The event handler code:

/**

* Event handler for the SIP MESSAGE from the UA

*

* event
* aci
&/

public void onMessageEvent(javax.sip.RequestEvent event,
ActivityContextinterface aci) {

final Request request = event.getRequest();
try {
/l message body should be *FIRST_TOKEN<timer value in
/I seconds>MIDDLE_TOKEN<msg to send back to UASLAST TOKEN*
final String body = new String(request.getRawContent());
final int firstTokenStart = body.indexOf(FIRST_TOKEN);
final int timerDurationStart = firstTokenStart + FIRST_TOKEN_LENGTH;
final int middleTokenStart = body.indexOf(MIDDLE_TOKEN,
timerDurationStart);
final int bodyMessageStart = middleTokenStart + MIDDLE_TOKEN_LENGTH;
final int lastTokenStart = body.indexOf(LAST_TOKEN,
bodyMessageStart);
if (firstTokenStart > -1 && middleTokenStart > -1
&& lastTokenStart > -1) {
/I extract the timer duration
final int timerDuration = Integer.parselnt(body.substring(
timerDurationStart, middleTokenStart));
/I create a null AC and attach the sbb local object
final ActivityContextinterface timerACI = this.nullACIFactory
.getActivityContextinterface(this.nullActivityFactory
.createNullActivity());
timerACl.attach(sbbContext.getShbLocalObject());
Il set the timer on the null AC, because the one from this event
/I will end as soon as we send back the 200 ok
this.timerFacility.setTimer(timerAClI, null, System
.currentTimeMillis()
+ (timerDuration * 1000), new TimerOptions());
/I extract the body message
final String bodyMessage = body.substring(bodyMessageStart,
lastTokenStart);

12

The Root SBB Abstract Class

/[store it in a cmp field

setBody(bodyMessage);

/l do the same for the call id

setCallld((CallldHeader) request.getHeader(CallldHeader.NAME));

/I also store the sender's address, so we can send the wake up

/l message

final FromHeader fromHeader = (FromHeader) request

.getHeader(FromHeader.NAME);
if (tracer.isinfoEnabled()) {
tracer.info("Received a valid message from "

+ fromHeader.getAddress()
+ " requesting a reply containing
+ " after " + timerDuration + "s");

+ bodyMessage

}
setSender(fromHeader.getAddress());

/I finally reply to the SIP message request
sendResponse(event, Response.OK);
}else{
/I parsing failed
tracer.warning(“Invalid msg " + body + " received");
sendResponse(event, Response.BAD_REQUEST);
}
} catch (Throwable e) {
/I oh oh something wrong happened
tracer.severe("Exception while processing MESSAGE", e);
try {
sendResponse(event, Response.SERVER_INTERNAL_ERROR);
} catch (Exception f) {
tracer.severe("Exception while sending SERVER INTERNAL ERROR",

f);

4.2.1.4. Location Service SBB Child Relation

The SBB uses SIP Service's Location Service to retrieve the URIs of all entities registered with
the target address, the child relation method is an abstract class that SLEE implements.

The child relation's getter code:

13

Chapter 4. Source Code Overview

/**

* Child relation to the location service

*
*/
public abstract ChildRelation getLocationChildRelation();

4.2.1.5. The TimerEvent handler

The JAIN SLEE TimerEvent handler is invoked when the duration requested by the SIP Message
has passed, it is the final "piece" of the service instance logic, and its responsibility is:

* Retrieve all instance data from CMP fields.
» Create a Location Service child SBB and retrieve the target's registered URIs.
« Send the wake up message(s).

The event handler code:

/**

* Event handler from the timer event, which signals that a message must be
* sent back to the UA

*

* event
i aci
*/

public void onTimerEvent(TimerEvent event, ActivityContextinterface aci) {
/I detaching so the null AC is claimed after the event handling
aci.detach(sbbContext.getSbbLocalObject());
/I get data from cmp fields
String body = getBody();
CallldHeader callld = getCallld();
Address sender = getSender();
try {
/I create headers needed to create a out-of-dialog request
AddressFactory addressFactory = sipProvider.getAddressFactory();
Address fromNameAddress = addressFactory
.createAddress("sip:wakeup@mobicents.org");
fromNameAddress.setDisplayName("Wake Up Service");
HeaderFactory headerFactory = sipProvider.getHeaderFactory();
FromHeader fromHeader = headerFactory.createFromHeader(
fromNameAddress, null);

14

The Root SBB Abstract Class

List<ViaHeader> viaHeaders = new ArrayList<ViaHeader>(1);
ListeningPoint listeningPoint = sipProvider.getListeningPoints()[0];
ViaHeader viaHeader = sipProvider.getHeaderFactory()
.createViaHeader(listeningPoint.getIPAddress(),
listeningPoint.getPort(),
listeningPoint.getTransport(), null);
viaHeaders.add(viaHeader);
ContentTypeHeader contentTypeHeader = headerFactory
.createContentTypeHeader("text", "plain");
CSeqHeader cSeqHeader = headerFactory.createCSeqHeader(2L,
Request. MESSAGE);
MaxForwardsHeader maxForwardsHeader = headerFactory
.createMaxForwardsHeader(70);
/I create location service child sbb
final LocationSbbLocalObject locationChildSbb = (LocationSbbLocalObject)
getLocationChildRelation().create();
/I get sender bindings and send a message to each
MessageFactory messageFactory = sipProvider.getMessageFactory();
for (RegistrationBinding registration : locationChildSbb
.getBindings(sender.getURI().toString()).values()) {
try {
Il create request uri
URI requestURI = addressFactory.createURI(registration
.getContactAddress());
/Il create to header
ToHeader toHeader = headerFactory.createToHeader(sender,
null);
Il create request
Request request = messageFactory.createRequest(requestURI,
Request. MESSAGE, callld, cSeqHeader, fromHeader,
toHeader, viaHeaders, maxForwardsHeader,
contentTypeHeader, body);
/Il create client transaction and send request
ClientTransaction clientTransaction = sipProvider
.getNewClientTransaction(request);
clientTransaction.sendRequest();
} catch (Throwable f) {
tracer.severe("Failed to create and send message", f);

}
} catch (Throwable e) {

tracer.severe("Failed to create message headers", e);

15

Chapter 4. Source Code Overview

4.2.2. Root SBB XML Descriptor

The Root SBB XML Descriptor has to be provided and match the abstract class code.

First relevant part is the declaration of the sbb- cl asses element, where the sbb class abstract
name must be specified, along with the cmp fields and child relation.:

<sbb-classes>
<sbb-abstract-class>
<sbb-abstract-class-name>org.mobicents.slee.examples.wakeup.WakeUpSbb</sbb-
abstract-class-name>

<cmp-field>
<cmp-field-name>body</cmp-field-name>

</cmp-field>

<cmp-field>
<cmp-field-name>callld</cmp-field-name>

</cmp-field>

<cmp-field>
<cmp-field-name>sender</cmp-field-name>

</cmp-field>

<get-child-relation-method>
<shb-alias-ref>LocationSbb</sbb-alias-ref>
<get-child-relation-method-name>

getLocationChildRelation

</get-child-relation-method-name>
<default-priority>0</default-priority>

</get-child-relation-method>

</sbb-abstract-class>
</sbb-classes>

Then the events handled by the SBB must be specified too:

<event event-direction="Receive" initial-event="True">
<event-name>MessageEvent</event-name>
<event-type-ref>

16

Root SBB XML Descriptor

<event-type-name>javax.sip.message.Request. MESSAGE</event-type-name>
<event-type-vendor>net.java.slee</event-type-vendor>
<event-type-version>1.2</event-type-version>
</event-type-ref>
<initial-event-select variable="ActivityContext" />
</event>

<event event-direction="Receive" initial-event="False">
<event-name>TimerEvent</event-name>
<event-type-ref>
<event-type-name>javax.slee.facilities. TimerEvent</event-type-name>
<event-type-vendor>javax.slee</event-type-vendor>
<event-type-version>1.0</event-type-version>
</event-type-ref>
</event>

Finally, the SIP11 Resource Adaptor must be specified also, otherwise SLEE won't put its SBB
Interface in the SBB's JNDI Context:

<resource-adaptor-type-binding>
<resource-adaptor-type-ref>
<resource-adaptor-type-name>
JAIN SIP
</resource-adaptor-type-name>
<resource-adaptor-type-vendor>
javax.sip
</resource-adaptor-type-vendor>
<resource-adaptor-type-version>
1.2
</resource-adaptor-type-version>
</resource-adaptor-type-ref>
<activity-context-interface-factory-name>
slee/resources/jainsip/1.2/acifactory
</activity-context-interface-factory-name>
<resource-adaptor-entity-binding>
<resource-adaptor-object-name>
slee/resources/jainsip/1.2/provider
</resource-adaptor-object-name>
<resource-adaptor-entity-link>
SipRA

17

Chapter 4. Source Code Overview

</resource-adaptor-entity-link>
</resource-adaptor-entity-binding>
</resource-adaptor-type-binding>

18

Chapter 5.

Running the Example

To easiest way to try the example application is to start the JAIN SLEE container, then use SIPP
scripts, run. sh or run. bat depending on which Operating System being used, in si pp directory.
The scripts will send the SIP MESSAGE request and handle the remaining SIP messages
exchanged, all the traffic should be printed in the application server console. The usage of SIPP
scripts requires SIPP to be in $PATH environment variable.

To use a real SIP UA client, such as X-Lite, configure it with 127. 0. 0. 1 as the domain, and
then send a MESSAGE with correct format to si p: wakeup@mbi cent s. or g. Note that unless
si p: wakeup@mbi cent s. or gis added to the contact list, some SIP UA clients may ignore the
wake up messages.

19

20

Chapter 6.

Traces and Alarms

6.1. Tracers

The example Application uses a single JAIN SLEE 1.1 Tracer, named WakeUpSbb. The
related log4j category is j avax. sl ee. SbbNoti fi cati on[servi ce=Servi cel Of name=Wake Up
Servi ce, vendor =NI ST, ver si on=1. 0] , sbb=Sbbl D[nane=Wake Up
Sbb, vendor =NI ST, versi on=1.0]] .

6.2. Alarms

The example Application does not sets JAIN SLEE Alarms.

21

22

Appendix A. Revision History

Revision History

Revision 1.0 Tue Dec 30 2009 EduardoMartins
Creation of the JBoss Communications JAIN SLEE SIP Wake Up Example User Guide.

23

24

Index

F

feedback, viii

25

26

	JBoss Communications JAIN SLEE SIP Wake Up Example User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Provide feedback to the authors!

	Chapter 1. Introduction to JBoss Communications JAIN SLEE SIP Wake Up Example
	Chapter 2. Setup
	2.1. Pre-Install Requirements and Prerequisites
	2.1.1. Hardware Requirements
	2.1.2. Software Prerequisites

	2.2. JBoss Communications JAIN SLEE SIP Wake Up Example Source Code
	2.2.1. Release Source Code Building
	2.2.2. Development Trunk Source Building

	2.3. Installing JBoss Communications JAIN SLEE SIP Wake Up Example
	2.4. Uninstalling JBoss Communications JAIN SLEE SIP Wake Up Example

	Chapter 3. Design Overview
	Chapter 4. Source Code Overview
	4.1. Service Descriptor
	4.2. The Root SBB
	4.2.1. The Root SBB Abstract Class
	4.2.1.1. The setSbbContext(SbbContext) method
	4.2.1.2. CMP Fields Accessors
	4.2.1.3. The SIP MESSAGE event handler
	4.2.1.4. Location Service SBB Child Relation
	4.2.1.5. The TimerEvent handler

	4.2.2. Root SBB XML Descriptor

	Chapter 5. Running the Example
	Chapter 6. Traces and Alarms
	6.1. Tracers
	6.2. Alarms

	Appendix A. Revision History
	Index

