
Mobicents JAIN SLEE JDBC

Resource Adaptor User Guide

by Eduardo Martins

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions .. vii

1.3. Notes and Warnings .. vii

2. Provide feedback to the authors! .. viii

1. Introduction to Mobicents JAIN SLEE JDBC Resource Adaptor 1

2. Resource Adaptor Type ... 3

2.1. Activities ... 3

2.2. Events .. 6

2.3. Activity Context Interface Factory ... 8

2.4. Resource Adaptor Interface ... 9

2.5. Restrictions ... 10

2.6. Sbb Code Examples ... 10

2.6.1. Retrieving the RA Interface and ACI Factory .. 10

2.6.2. Create and Attach to RA Activities .. 11

2.6.3. Execute a Statement .. 11

2.6.4. Handling Events and Ending an Activity ... 12

3. Resource Adaptor Implementation .. 15

3.1. Configuration .. 15

3.2. Default Resource Adaptor Entities ... 15

3.3. Traces and Alarms .. 16

3.3.1. Tracers .. 16

3.3.2. Alarms ... 16

4. Setup ... 17

4.1. Pre-Install Requirements and Prerequisites .. 17

4.1.1. Hardware Requirements ... 17

4.1.2. Software Prerequisites .. 17

4.2. Mobicents JAIN SLEE JDBC Resource Adaptor Source Code 17

4.2.1. Release Source Code Building .. 17

4.2.2. Development Trunk Source Building .. 18

4.3. Installing Mobicents JAIN SLEE JDBC Resource Adaptor 18

4.4. Uninstalling Mobicents JAIN SLEE JDBC Resource Adaptor 18

5. Clustering .. 21

A. Revision History .. 23

Index ... 25

iv

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System > Preferences > Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >

Accessories > Character Map from the main menu bar. Next, choose Search

> Find from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu

of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above username, domain.name, file-system, package, version and

release. Each word is a placeholder, either for text you enter when issuing a command or for text

displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

Pull-quote Conventions

vii

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Preface

viii

Note

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make this manual

better, we would love to hear from you! Please submit a report in the the Issue Tracker [http://

code.google.com/p/mobicents/issues/list], against the product Mobicents JAIN SLEE JDBC

Resource Adaptor, or contact the authors.

When submitting a bug report, be sure to mention the manual's identifier:

JAIN_SLEE_JDBC_RA_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list
http://code.google.com/p/mobicents/issues/list

Chapter 1.

1

Introduction to Mobicents JAIN

SLEE JDBC Resource Adaptor
The JDBC Resource Adaptor adapts JDBC Datasources to JAIN SLEE domain, providing means

to execute JDBC statements in asynchronous fashion. JDCB statements are executed in the RA

runtime resources, freeing the JAIN SLEE Event Router from the burden of having its executors

(threads) resources blocked by interactions with JDBC Datasources, and results are provided to

applications through JAIN SLEE events. The JAIN SLEE application is also completely free from

having to manage connection closings.

2

Chapter 2.

3

Resource Adaptor Type
The Resource Adaptor Type is the interface which defines the contract between the RA

implementations, the SLEE container, and the Applications running in it.

The name of the RA Type is JDBCResourceAdaptorType, its vendor is org.mobicents and its

version is 1.0.

2.1. Activities

The single activity object for JDBC Resource Adaptor is the

org.mobicents.slee.resource.jdbc.JdbcActivity interface. Through the activity an SBB

can execute multiple JDBC statements, and receive the related responses asynchronously

through events on it. Due to the nature of SLEE activities, this RA activity acts like a queue of

requests, allowing the processing of their responses - the events- in a serialized way

An activity starts on demand by an SBB, through the RA SBB Interface, and it ends when an SBB

invokes its endActivity() method.

The activity interface is defined as follows:

package org.mobicents.slee.resource.jdbc;

import java.sql.PreparedStatement;

import java.sql.Statement;

public interface JdbcActivity {

 void execute(Statement statement, String sql);

 void execute(Statement statement, String sql, int autoGeneratedKeys);

 void execute(Statement statement, String sql, int columnIndexes[]);

 void execute(Statement statement, String sql, String columnNames[]);

 void executeQuery(Statement statement, String sql);

 void executeUpdate(Statement statement, String sql);

 void executeUpdate(Statement statement, String sql, int autoGeneratedKeys);

Chapter 2. Resource Adaptor Type

4

 void executeUpdate(Statement statement, String sql, int columnIndexes[]);

 void executeUpdate(Statement statement, String sql, String columnNames[]);

 void execute(PreparedStatement preparedStatement);

 void executeQuery(PreparedStatement preparedStatement);

 void executeUpdate(PreparedStatement preparedStatement);

 public void endActivity();

}

The execute(Statement, String) method:

Asynchronous execution of statement with unknown result type, which is provided in an

event, fired in the activity. Details about parameters can be seen in the javadoc for

java.sql.Statement method with same signature. This method should only be used when

the application has no idea of what is the SQL to be executed. If the execution throws an

exception, it will be provided as an event too.

The execute(Statement, String, int) method:

Asynchronous execution of statement with unknown result type, which is provided in an

event, fired in the activity. Details about parameters can be seen in the javadoc for

java.sql.Statement method with same signature. This method should only be used when

the application has no idea of what is the SQL to be executed. If the execution throws an

exception, it will be provided as an event too.

The execute(Statement, String, int[]) method:

Asynchronous execution of statement with unknown result type, which is provided in an

event, fired in the activity. Details about parameters can be seen in the javadoc for

java.sql.Statement method with same signature. This method should only be used when

the application has no idea of what is the SQL to be executed. If the execution throws an

exception, it will be provided as an event too.

The execute(Statement, String, String[]) method:

Asynchronous execution of statement with unknown result type, which is provided in an

event, fired in the activity. Details about parameters can be seen in the javadoc for

java.sql.Statement method with same signature. This method should only be used when

the application has no idea of what is the SQL to be executed. If the execution throws an

exception, it will be provided as an event too.

The executeQuery(Statement, String) method:

Asynchronous execution of statement with result set result type, which is provided in

an event, fired in the activity. Details about parameters can be seen in the javadoc for

Activities

5

java.sql.Statement method with same signature. This method should be used when the

application knows that the SQL to execute is a read query. If the execution throws an

exception, it will be provided as an event too.

The executeUpdate(Statement, String) method:

Asynchronous execution of statement with update count result type, which is provided

in an event, fired in the activity. Details about parameters can be seen in the javadoc for

java.sql.Statement method with same signature. This method should be used when the

application knows that the SQL to execute is a write query. If the execution throws an

exception, it will be provided as an event too.

The executeUpdate(Statement, String, int) method:

Asynchronous execution of statement with update count result type, which is provided

in an event, fired in the activity. Details about parameters can be seen in the javadoc for

java.sql.Statement method with same signature. This method should be used when the

application knows that the SQL to execute is a write query. If the execution throws an

exception, it will be provided as an event too.

The executeUpdate(Statement, String, int[]) method:

Asynchronous execution of statement with update count result type, which is provided

in an event, fired in the activity. Details about parameters can be seen in the javadoc for

java.sql.Statement method with same signature. This method should be used when the

application knows that the SQL to execute is a write query. If the execution throws an

exception, it will be provided as an event too.

The executeUpdate(Statement, String, String[]) method:

Asynchronous execution of statement with update count result type, which is provided

in an event, fired in the activity. Details about parameters can be seen in the javadoc for

java.sql.Statement method with same signature. This method should be used when the

application knows that the SQL to execute is a write query. If the execution throws an

exception, it will be provided as an event too.

The execute(PreparedStatement) method:

Asynchronous execution of a prepared statement with unknown result type, which is provided

in an event, fired in the activity. PreparedStatements are an effective way to improve

performance, since the JDBC driver may cache and pool the SQL. Details about parameters

can be seen in the javadoc for java.sql.PreparedStatement method with same signature.

This method should only be used when the application has no idea of what is the SQL to be

executed. If the execution throws an exception, it will be provided as an event too.

The executeQuery(PreparedStatement) method:

Asynchronous execution of a prepared statement with result set result type, which is

provided in an event, fired in the activity. PreparedStatements are an effective way to improve

performance, since the JDBC driver may cache and pool the SQL. This method should be

used when the application knows that the SQL to execute is a read query. Details about

parameters can be seen in the javadoc for java.sql.PreparedStatement method with same

signature. If the execution throws an exception, it will be provided as an event too.

Chapter 2. Resource Adaptor Type

6

The executeUpdate(PreparedStatement) method:

Asynchronous execution of a prepared statement with update count result type, which is

provided in an event, fired in the activity. PreparedStatements are an effective way to improve

performance, since the JDBC driver may cache and pool the SQL. This method should be

used when the application knows that the SQL to execute is a write query. If the execution

throws an exception, it will be provided as an event too.

The endActivity() method:

Ends the activity and its related Activity Context.

2.2. Events

There are eight event types fired by JDBC Resource Adaptor, which provides applications the

result of each kind of interaction with the Datasource - result set, update count, unknown result

and exception - from executing a Statement or PreparedStatement.

Table 2.1. Events which provide results of Statement execution

Name Vendor Version Event Class Description

Statement

ResultSet Event

org.mobicents 1.0 org.mobicents.

slee.resource.

jdbc.event.

Statement

ResultSet Event

Provides the result

set from a successful

execution of a statement,

requested through

the activity method

executeQuery(Statement

statement, String

sql).

Statement

UpdateCount

Event

org.mobicents 1.0 org.mobicents.

slee.resource.

jdbc.event.

Statement

UpdateCount

Event

Provides the update

count from a successful

execution of a statement,

requested through

the activity methods

executeUpdate(Statement

statement, ...).

Statement

UnknownResult

Event

org.mobicents 1.0 org.mobicents.

slee.resource.

jdbc.event.

Statement

UnknownResult

Event

Provides the unknown

type result from a

successful execution

of a statement,

requested through

the activity methods

execute(Statement

statement, ...).

Statement

SQLException

Event

org.mobicents 1.0 org.mobicents.

slee.resource.

jdbc.event.

Provides the exception

thrown from a

Events

7

Name Vendor Version Event Class Description

Statement

SQLException

Event

unsuccessful execution of

a statement.

Important

Spaces where introduced in the Name and Event Class column values, to correctly

render the table. Please remove them when using copy/paste.

Table 2.2. Events which provide results of PreparedStatement execution

Name Vendor Version Event Class Description

PreparedStatement

ResultSet Event

org.mobicents 1.0 org.mobicents.

slee.resource.

jdbc.event.

Prepared

Statement

ResultSet Event

Provides the result

set from a successful

execution of a

prepared statement,

requested through

the activity method

executeQuery(Prepared

Statement

preparedStatement).

PreparedStatement

UpdateCount

Event

org.mobicents 1.0 org.mobicents.

slee.resource.

jdbc.event.

Prepared

Statement

UpdateCount

Event

Provides the update

count from a successful

execution of a

prepared statement,

requested through

the activity method

executeUpdate(Prepared

Statement

preparedStatement).

PreparedStatement

UnknownResult

Event

org.mobicents 1.0 org.mobicents.

slee.resource.

jdbc.event.

Prepared

Statement

UnknownResult

Event

Provides the unknown

type result from a

successful execution of

a prepared statement,

requested through

the activity method

execute(Prepared

Statement

preparedStatement).

Chapter 2. Resource Adaptor Type

8

Name Vendor Version Event Class Description

PreparedStatement

SQLException

Event

org.mobicents 1.0 org.mobicents.

slee.resource.

jdbc.event.

Prepared

Statement

SQLException

Event

Provides the exception

thrown from a

unsuccessful execution of

a prepared statement.

Important

Spaces where introduced in the Name and Event Class column values, to correctly

render the table. Please remove them when using copy/paste.

2.3. Activity Context Interface Factory

The Resource Adaptor's Activity Context Interface Factory is of type

org.mobicents.slee.resource.jdbc.JdbcActivityContextInterfaceFactory, it allows the

SBB to retrieve the ActivityContextInterface related with a specific JdbcActivity instance.

The interface is defined as follows:

package org.mobicents.slee.resource.jdbc;

import javax.slee.ActivityContextInterface;

import javax.slee.FactoryException;

import javax.slee.UnrecognizedActivityException;

import javax.slee.resource.ResourceAdaptorTypeID;

public interface JdbcActivityContextInterfaceFactory {

 public static final ResourceAdaptorTypeID RATYPE_ID;

 public ActivityContextInterface getActivityContextInterface(

 JdbcActivity activity) throws UnrecognizedActivityException,

 FactoryException;

}

Resource Adaptor Interface

9

The Resource Adaptor's Activity Context Interface Factory exposes a static RATYPE_ID field,

containing the ResourceAdaptorTypeID of the Resource Adaptor Type it belongs, which may be

used to retrieve the factory instance using the SbbContextExt JAIN SLEE 1.1 extension.

2.4. Resource Adaptor Interface

The JDBC Resource Adaptor interface, of type

org.mobicents.slee.resource.jdbc.JdbcResourceAdaptorSbbInterface, may be used by

applications to create RA activities, and retrieve JDBC Connections, its interface is defined as

follows:

package org.mobicents.slee.resource.jdbc;

import java.sql.Connection;

import java.sql.SQLException;

import javax.slee.resource.ResourceAdaptorTypeID;

public interface JdbcResourceAdaptorSbbInterface {

 public static final ResourceAdaptorTypeID RATYPE_ID;

 public JdbcActivity createActivity();

 Connection getConnection() throws SQLException;

 Connection getConnection(String username, String password)

 throws SQLException;

}

The createActivity() method:

Creates a new JdbcActivity instance.

The getConnection() method:

Retrieves a JDBC Connection, which may then be used to create statements (prepared or

not). Note that the connection is closed automatically after each statement execution done

through a JDBC activity, thus applications must not do it (unless the connection is retrieved

but not used).

Chapter 2. Resource Adaptor Type

10

The getConnection(String, String) method:

Retrieves a JDBC Connection using username and password authentication, which may

then be used to create statements (prepared or not). Note that the connection is closed

automatically after each statement execution done through a JDBC activity, thus applications

must not do it (unless the connection is retrieved but not used).

The JDBC Resource Adaptor interface also exposes a static RATYPE_ID field, containing the

ResourceAdaptorTypeID of the Resource Adaptor Type it belongs, which may be used to retrieve

the factory instance using the SbbContextExt JAIN SLEE 1.1 extension.

2.5. Restrictions

The JDBC Resource Adaptor Type does not defines any restriction when using object instances

provided, which means an application may use the provided JDBC connection, and the statements

it creates, for any its functionalities (including the synchronous execution of statements through

its interface).

2.6. Sbb Code Examples

The following code examples shows how to use the Resource Adaptor Type for common

functionalities

2.6.1. Retrieving the RA Interface and ACI Factory

The following code examples the retrieval of the RA's SBB Interface and ACI Factory, usually

done in the Sbb's setSbbContext(SbbContext):

 /**

 * the SBB object context

 */

 private SbbContextExt contextExt;

 /**

 * the JDBC RA SBB Interface

 */

 private JdbcResourceAdaptorSbbInterface jdbcRA;

 /**

 * the JDBC RA {@link ActivityContextInterface} factory

 */

 private JdbcActivityContextInterfaceFactory jdbcACIF;

Create and Attach to RA Activities

11

 @Override

 public void setSbbContext(SbbContext context) {

 this.contextExt = (SbbContextExt) context;

 this.jdbcRA = (JdbcResourceAdaptorSbbInterface) contextExt

 .getResourceAdaptorInterface(

 JdbcResourceAdaptorSbbInterface.RATYPE_ID, raEntityLinkName);

 this.jdbcACIF = (JdbcActivityContextInterfaceFactory) contextExt

 .getActivityContextInterfaceFactory(JdbcActivityContextInterfaceFactory.RATYPE_ID);

 }

The raEntityLinkName is the link name of the RA entity to use. The link to the default RA entity,

use the link name JDBCRA..

2.6.2. Create and Attach to RA Activities

The following code examples the creation of JdbcActivity, and the attachment to its

ActivityContextInterface:

 // create activity using the RA sbb interface

 JdbcActivity jdbcActivity = jdbcRA.createActivity();

 // get its aci from the RA ACI factory

 ActivityContextInterface jdbcACI = jdbcACIF

 .getActivityContextInterface(jdbcActivity);

 // attach the sbb entity

 jdbcACI.attach(contextExt.getSbbLocalObject());

2.6.3. Execute a Statement

The following code examples the creation of a Statement and the execution of SQL on a

JdbcActivity:

 // get connection and create statement

 Statement statement = jdbcRA.getConnection().createStatement();

 // execute SQL in the jdbc activity

 jdbcActivity.executeQuery(statement,

 "CREATE TABLE TestTable (Name VARCHAR(30));");

Chapter 2. Resource Adaptor Type

12

2.6.4. Handling Events and Ending an Activity

The following code examples the handling of events, for both PreparedStatement and Statement

execution, following the service logic execution. It also shows the explicit ending of the activity:

 /**

 * Event handler for {@link StatementResultSetEvent}.

 *

 * @param event

 * @param aci

 */

 public void onStatementResultSetEvent(StatementResultSetEvent event,

 ActivityContextInterface aci) {

 tracer.info("Received a StatementResultSetEvent, as result of executed SQL "

 + event.getSQL());

 tracer.info("Result: " + event.getResultSet());

 try {

 PreparedStatement preparedStatement = jdbcRA.getConnection()

 .prepareStatement("INSERT INTO TestTable VALUES(?)");

 preparedStatement.setString(1, "Mobicents");

 tracer.info("Created prepared statement, executing...");

 ((JdbcActivity) aci.getActivity()).executeUpdate(preparedStatement);

 } catch (Throwable e) {

 tracer.severe("failed to create statement", e);

 }

 }

 /**

 * Event handler for {@link PreparedStatementUpdateCountEvent}.

 *

 * @param event

 * @param aci

 */

 public void onPreparedStatementUpdateCountEvent(

 PreparedStatementUpdateCountEvent event,

 ActivityContextInterface aci) {

 tracer.info("Received a PreparedStatementUpdateCountEvent.");

 tracer.info("Update Count: " + event.getUpdateCount());

 try {

Handling Events and Ending an Activity

13

 Statement anotherStatement = jdbcRA.getConnection()

 .createStatement();

 tracer.info("Created statement, executing query...");

 ((JdbcActivity) aci.getActivity()).executeUpdate(anotherStatement,

 "DROP TABLE TestTable;");

 } catch (Throwable e) {

 tracer.severe("failed to create statement", e);

 }

 }

 /**

 * Event handler for {@link StatementUpdateCountEvent}.

 *

 * @param event

 * @param aci

 */

 public void onStatementUpdateCountEvent(StatementUpdateCountEvent event,

 ActivityContextInterface aci) {

 tracer.info("Received a StatementUpdateCountEvent, as result of executed SQL "

 + event.getSQL());

 tracer.info("Update Count: " + event.getUpdateCount());

 tracer.info("Ending JDBC Activity...");

 ((JdbcActivity) aci.getActivity()).endActivity();

 }

The SBB XML descriptor code to declare the handling of such events:

 <event event-direction="Receive" initial-event="False">

 <event-name>StatementResultSetEvent</event-name>

 <event-type-ref>

 <event-type-name>StatementResultSetEvent</event-type-name>

 <event-type-vendor>org.mobicents</event-type-vendor>

 <event-type-version>1.0</event-type-version>

 </event-type-ref>

 </event>

 <event event-direction="Receive" initial-event="False">

 <event-name>PreparedStatementUpdateCountEvent</event-name>

 <event-type-ref>

 <event-type-name>PreparedStatementUpdateCountEvent</event-type-name>

 <event-type-vendor>org.mobicents</event-type-vendor>

Chapter 2. Resource Adaptor Type

14

 <event-type-version>1.0</event-type-version>

 </event-type-ref>

 </event>

 <event event-direction="Receive" initial-event="False">

 <event-name>StatementUpdateCountEvent</event-name>

 <event-type-ref>

 <event-type-name>StatementUpdateCountEvent</event-type-name>

 <event-type-vendor>org.mobicents</event-type-vendor>

 <event-type-version>1.0</event-type-version>

 </event-type-ref>

 </event>

Chapter 3.

15

Resource Adaptor Implementation
This chapter documents the JDBC Resource Adaptor Implementation details, such as the

configuration properties, the default Resource Adaptor entities, and the JAIN SLEE 1.1 Tracers

and Alarms used.

The name of the RA is JDBCResourceAdaptor, its vendor is org.mobicents and its version is 1.0.

3.1. Configuration

The Resource Adaptor supports configuration only at Resource Adaptor Entity creation time. The

following table enumerates the configuration properties:

Table 3.1. Resource Adaptor's Configuration Properties

Property Name Description Property Type Default Value

DATASOURCE_

JNDI _NAME

the JNDI name

used to retrieve the

Datasource

java.lang.String java:DefaultDS

EXECUTOR_

SERVICE

_THREADS

the number of threads

executing statements

java.lang.Integer 4

Important

Spaces where introduced in the Property Name column values, to correctly render

the table. Please remove them when using copy/paste.

3.2. Default Resource Adaptor Entities

There is a single Resource Adaptor Entity created when deploying the Resource Adaptor, named

JDBCRA.

The JDBCRA entity is also bound to Resource Adaptor Link Name JDBCRA, to use it in an Sbb add

the following XML to its descriptor:

 <resource-adaptor-type-binding>

 <resource-adaptor-type-ref>

 <resource-adaptor-type-name>

 JDBCResourceAdaptorType

 </resource-adaptor-type-name>

Chapter 3. Resource Adaptor I...

16

 <resource-adaptor-type-vendor>

 org.mobicents

 </resource-adaptor-type-vendor>

 <resource-adaptor-type-version>

 1.0

 </resource-adaptor-type-version>

 </resource-adaptor-type-ref>

 <activity-context-interface-factory-name>

 slee/ra/jdbc/1.0/acifactory

 </activity-context-interface-factory-name>

 <resource-adaptor-entity-binding>

 <resource-adaptor-object-name>

 slee/ra/jdbc/1.0/sbbinterface

 </resource-adaptor-object-name>

 <resource-adaptor-entity-link>

 JDBCRA

 </resource-adaptor-entity-link>

 </resource-adaptor-entity-binding>

 </resource-adaptor-type-binding>

3.3. Traces and Alarms

3.3.1. Tracers

Each Resource Adaptor Entity uses a single JAIN SLEE 1.1 Tracer, named

JdbcResourceAdaptor. The related Log4j Logger category, which can be used to change the

Tracer level from Log4j configuration, is javax.slee.RAEntityNotification[entity=JDBCRA]

3.3.2. Alarms

No alarms are set by this Resource Adaptor.

Chapter 4.

17

Setup

4.1. Pre-Install Requirements and Prerequisites

Ensure that the following requirements have been met before continuing with the install.

4.1.1. Hardware Requirements

The RA hardware requirements don't differ from the underlying Mobicents JAIN SLEE

requirements, refer to its documentation for further information.

4.1.2. Software Prerequisites

The RA requires Mobicents JAIN SLEE properly set.

4.2. Mobicents JAIN SLEE JDBC Resource Adaptor

Source Code

4.2.1. Release Source Code Building

1. Downloading the source code

Important

Subversion is used to manage its source code. Instructions for using

Subversion, including install, can be found at http://svnbook.red-bean.com

Use SVN to checkout a specific release source, the base URL is http://

mobicents.googlecode.com/svn/tags/servers/jain-slee/2.x.y/resources/jdbc, then add the

specific release version, lets consider 1.0.0.BETA2.

[usr]$ svn co http://mobicents.googlecode.com/svn/tags/servers/jain-slee/2.x.y/resources/

jdbc/1.0.0.BETA2 slee-ra-jdbc-1.0.0.BETA2

2. Building the source code

Important

Maven 2.2.1 (or higher) is used to build the release. Instructions for using

Maven2, including install, can be found at http://maven.apache.org

http://svnbook.red-bean.com
http://maven.apache.org

Chapter 4. Setup

18

Use Maven to build the deployable unit binary.

 [usr]$ cd slee-ra-jdbc-1.0.0.BETA2

 [usr]$ mvn install

Once the process finishes you should have the deployable-unit jar file in the target

directory, if Mobicents JAIN SLEE is installed and environment variable JBOSS_HOME is

pointing to its underlying JBoss Application Server directory, then the deployable unit jar will

also be deployed in the container.

4.2.2. Development Trunk Source Building

Similar process as for Section 4.2.1, “Release Source Code Building”, the only change is the

SVN source code URL, which is http://mobicents.googlecode.com/svn/trunk/servers/jain-slee/

resources/jdbc.

4.3. Installing Mobicents JAIN SLEE JDBC Resource

Adaptor

To install the Resource Adaptor simply execute provided ant script build.xml default target:

 [usr]$ ant

The script will copy the RA deployable unit jar to the default Mobicents JAIN SLEE server profile

deploy directory, to deploy to another server profile use the argument -Dnode=.

4.4. Uninstalling Mobicents JAIN SLEE JDBC Resource

Adaptor

To uninstall the Resource Adaptor simply execute provided ant script build.xml undeploy target:

 [usr]$ ant undeploy

Uninstalling Mobicents JAIN SLEE JDBC Resource Adaptor

19

The script will delete the RA deployable unit jar from the default Mobicents JAIN SLEE server

profile deploy directory, to undeploy from another server profile use the argument -Dnode=.

20

Chapter 5.

21

Clustering
The JDBC Resource Adaptor is cluster aware, it supports Activity replication, which means that

any application instance may retrieve and interact with any JDBC Activity, in any node in a

Mobicents SLEE cluster. The RA defines no failover mechanisms.

22

23

Appendix A. Revision History
Revision History

Revision 1.0 Wed Apr 20 2011 EduardoMartins

Creation of the Mobicents JAIN SLEE JDBC RA User Guide.

24

25

Index
F
feedback, viii

26

	Mobicents JAIN SLEE JDBC Resource Adaptor User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Provide feedback to the authors!

	Chapter 1. Introduction to Mobicents JAIN SLEE JDBC Resource Adaptor
	Chapter 2. Resource Adaptor Type
	2.1. Activities
	2.2. Events
	2.3. Activity Context Interface Factory
	2.4. Resource Adaptor Interface
	2.5. Restrictions
	2.6. Sbb Code Examples
	2.6.1. Retrieving the RA Interface and ACI Factory
	2.6.2. Create and Attach to RA Activities
	2.6.3. Execute a Statement
	2.6.4. Handling Events and Ending an Activity

	Chapter 3. Resource Adaptor Implementation
	3.1. Configuration
	3.2. Default Resource Adaptor Entities
	3.3. Traces and Alarms
	3.3.1. Tracers
	3.3.2. Alarms

	Chapter 4. Setup
	4.1. Pre-Install Requirements and Prerequisites
	4.1.1. Hardware Requirements
	4.1.2. Software Prerequisites

	4.2. Mobicents JAIN SLEE JDBC Resource Adaptor Source Code
	4.2.1. Release Source Code Building
	4.2.2. Development Trunk Source Building

	4.3. Installing Mobicents JAIN SLEE JDBC Resource Adaptor
	4.4. Uninstalling Mobicents JAIN SLEE JDBC Resource Adaptor

	Chapter 5. Clustering
	Appendix A. Revision History
	Index

