
ModeShape

Getting Started Guide
2.8.1.Final

by Randall M. Hauch, John Verhaeg, Stefano Maestri, and Serge Emmanuel Pagop

iii

What this book covers ... v

1. Introduction ... 1

1.1. ModeShape .. 2

1.2. What's next .. 3

2. ModeShape Use Cases .. 5

2.1. Service repository ... 5

2.2. Manage data sources and services .. 6

2.3. Configuration repository .. 6

2.4. What's next .. 7

3. Using ModeShape ... 9

3.1. JCR's RepositoryFactory ... 9

3.1.1. ModeShape's RepositoryFactory Properties ... 11

3.2. ModeShape Configuration Files ... 12

3.2.1. Example configuration file ... 13

3.3. Using ModeShape in Web Applications .. 15

3.3.1. Deploying ModeShape to JBoss AS .. 15

3.3.2. Deploying ModeShape to Tomcat .. 19

3.4. Setting the Classpath .. 21

3.4.1. Building against ModeShape via Maven ... 21

3.4.2. Add dependencies for logging ... 25

3.4.3. Building against ModeShape via JARs ... 26

3.5. What's next .. 26

4. Building the example applications .. 29

4.1. Downloading and compiling ... 29

4.2. What's next .. 32

5. The Sequencer Example .. 33

5.1. Running the sequencing example .. 33

5.2. Reviewing the example application .. 38

5.3. What's next .. 44

6. The Repository Example ... 45

6.1. Running the repository example ... 45

6.2. ModeShape connectors ... 48

6.3. Reviewing the example repository application ... 51

6.4. What's next .. 58

7. Wrapping Up .. 59

7.1. Future directions ... 59

7.2. Getting involved .. 59

iv

v

What this book covers

The goal of this book is to help you learn about ModeShape and how you can use it in your own

applications to get the most out of your JCR repositories.

The first part of the book starts out with an introduction to content repositories and an overview of

the JCR API, both of which are important aspects of ModeShape. This is followed by an overview

of the ModeShape project, its architecture, and a basic roadmap for what's coming next.

The next part of the book covers how to download and build the examples, how to use ModeShape

with existing repositories, and how to build and use custom sequencers.

If you have any questions or comments, please feel free to contact ModeShape's

user mailing list [mailto:modeshape-users@lists.jboss.org], use the user forums [http://

community.jboss.org/community/modeshape], or chat with the developers in the

IRC chat room [http://www.jboss.org/modeshape/chat.html] . If you'd like to get

involved on the project, join the mailing lists [http://www.jboss.org/modeshape/

mailinglists.html] , download the code [http://www.jboss.org/modeshape/sourcecode.html]

and get it building, and visit our JIRA issue management system [http://jira.jboss.org/

browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel] . If there's

something in particular you're interested in, talk with the community - there may be others

interested in the same thing.

mailto:modeshape-users@lists.jboss.org
mailto:modeshape-users@lists.jboss.org
http://community.jboss.org/community/modeshape
http://community.jboss.org/community/modeshape
http://community.jboss.org/community/modeshape
http://www.jboss.org/modeshape/chat.html
http://www.jboss.org/modeshape/chat.html
http://www.jboss.org/modeshape/mailinglists.html
http://www.jboss.org/modeshape/mailinglists.html
http://www.jboss.org/modeshape/mailinglists.html
http://www.jboss.org/modeshape/sourcecode.html
http://www.jboss.org/modeshape/sourcecode.html
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel

vi

Chapter 1.

1

Introduction
There are a lot of ways for applications to store information persistently so that it can be accessed

at a later time and by other processes. The challenge developers face is how to use an approach

that most closely matches the needs of their application. This choice becomes more important

as developers choose to focus their efforts on application-specific logic, delegating much of the

responsibilities for persistence to libraries and frameworks.

Perhaps one of the easiest techniques is to simply store information in files . The Java language

makes working with files relatively easy, but Java really doesn't provide many bells and whistles.

So using files is an easy choice when the information is either not complicated (for example

property files), or when users may need to read or change the information outside of the application

(for example log files or configuration files). But using files to persist information becomes more

difficult as the information becomes more complex, as the volume of it increases, or if it needs to be

accessed by multiple processes. For these situations, other techniques often have more benefits.

Another technique built into the Java language is Java serialization , which is capable of persisting

the state of an object graph so that it can be read back in at a later time. However, Java serialization

can quickly become tricky if the classes are changed, and so it's beneficial usually when the

information is persisted for a very short period of time. For example, serialization is sometimes

used to send an object graph from one process to another. Using serialization for longer-term

storage of information is far less useful.

One of the more popular and widely-used persistence technologies is the relational database.

Relational database management systems have been around for decades and are very capable.

The Java Database Connectivity (JDBC) API provides a standard interface for connecting to and

interacting with relational databases. However, it is a low-level API that requires a lot of code to use

correctly, and it still doesn't abstract away the DBMS-specific SQL grammar. Also, working with

relational data in an object-oriented language can feel somewhat unnatural, so many developers

map this data to classes that fit much more cleanly into their application. The problem is that

manually creating this mapping layer requires a lot of repetitive and non-trivial JDBC code.

Object-relational mapping libraries automate the creation of this mapping layer and result in

far less code that is much more maintainable with performance that is often as good as (if

not better than) handwritten JDBC code. The Java Persistence API (JPA) [http://java.sun.com/

developer/technicalArticles/J2EE/jpa/] provide a standard mechanism for defining the mappings

(through annotations) and working with these entity objects. Several commercial and open-

source libraries implement JPA, and some even offer additional capabilities and features that go

beyond JPA. For example, Hibernate [http://www.hibernate.org] is one of the most feature-rich

JPA implementations and offers object caching, statement caching, extra association mappings,

and other features that help to improve performance and usefulness. Plus, Hibernate is open-

source (with support offered by JBoss [http://www.jboss.com]).

While relational databases and JPA are solutions that work well for many applications, they are

more limited in cases when the information structure is highly flexible, the structure is not known a

http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://www.hibernate.org
http://www.hibernate.org
http://www.jboss.com
http://www.jboss.com

Chapter 1. Introduction

2

priori, or that structure is subject to frequent change and customization. In these situations, content

repositories may offer a better choice for persistence. Content repositories offer the storage

capabilities of relational databases with the flexibility offered by other systems, such as using

files. Content repositories also typically provide other capabilities as well, including hierarchical

organization, versioning, indexing, search, access control, transactions, and observation. Content

repositories are often used by content management systems (CMS), document management

systems (DMS), and other applications that manage electronic files (e.g., documents, images,

multi-media, web content, etc.) and metadata associated with them (e.g., author, date, status,

security information, etc.). The Content Repository for Java technology API [http://www.jcp.org/en/

jsr/detail?id=170] provides a standard Java API for working with content repositories. Abbreviated

"JCR", this API was developed as part of the Java Community Process under JSR-170 [http://

www.jcp.org/en/jsr/detail?id=170] and has been revised under JSR-283 [http://www.jcp.org/en/

jsr/detail?id=283].

The JCR API provides a number of information services that are needed by many applications,

including: read and write access to information; the ability to structure information in a hierarchical

and flexible manner that can adapt and evolve over time; ability to work with unstructured content;

ability to (transparently) handle large strings; notifications of changes in the information; search

and query; versioning of information; access control; integrity constraints; participation within

distributed transactions; explicit locking of content; and of course persistence.

Figure 1.1. JCR API features

1.1. ModeShape

What makes JCR interesting, however, is that a JCR implementation provides all these features

and capabilities without exposing where or how that information is stored. While other JCR

implementations embed their own persistence technology, JCR becomes really interesting when

it is used on top of existing information. This is in fact the main purpose of ModeShape: provide

a JCR implementation that provides access to content stored in many different kinds of systems,

http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283

What's next

3

including the federation of multiple systems. A ModeShape repository isn't yet another silo of

information, but rather it's a JCR view of the information you already have in your environment: files

systems, databases, other repositories, services, applications, etc. ModeShape can help you

understand the systems and information you already have, through a standard Java API.

Of course when you start providing a unified view of all this information, you start recognizing

the need to store more information, including metadata about and relationships between the

existing content. ModeShape lets you do this, too. And ModeShape even tries to help you

discover more about the information you already have, especially the information wrapped up

in the kinds of files often found in enterprise systems: service definitions, policy files, images,

media, documents, presentations, application components, reusable libraries, configuration files,

application installations, databases schemas, management scripts, and so on. As files are loaded

into the repository, ModeShape can sequence these files to extract from their content meaningful

information that can be stored in the repository, where your applications can find it by using the

standard JCR API to search, access, and use the information.

So, ModeShape is a JCR 2.0 implementation that can be used as a traditional self-contained

repository. But ModeShape can do so much more. It can automatically sequence files loaded into

the repository, making it easier to reuse that information. It also lets your applications use the

JCR API to access the content in other systems, and can unify the content from multiple external

systems and multiple storage systems to provide a single, federated repository.

1.2. What's next

As we'll see in the next chapter, the ability of ModeShape to federate, integrate, and sequence

information make ModeShape a powerful asset and tool. Then Chapter 3 will show that

once a ModeShape repository is set up, applications see ModeShape just as another JCR

javax.jcr.Repository instance and use the standard JCR API to obtain a javax.jcr.Session

and work with the content.

Chapter 4 walks you through downloading and building the ModeShape examples, while Chapter

5 and Chapter 6 will run these very simple examples and walk through their code. Chapter 7 wraps

things up with a discussion about the future of ModeShape and what you can do next to start

using ModeShape in your own applications.

4

Chapter 2.

5

ModeShape Use Cases
There are lots of ways to use ModeShape in your own applications, but this chapter attempts to

show some representative scenarios that take advantage of ModeShape's support for the JCR

API as well as the federation, integration, and sequencing capabilities.

2.1. Service repository

In a SOA environment, one important component is a service registry that provides versioned

storage of all the artifacts that describe the services, their capabilities/restrictions, and the

policies that surround them. Service repositories contain information that define the services

and their message models, ownership, availability, security requirements/abilities, auditing,

funding, monitoring, provisioning, provenance, usage, discovery mechanism, configuration,

documentation, relationships to other services, classification taxonomies, ontologies, and many

other important aspects.

A JCR repository provides an excellent starting point for a service repository. The ability to store

a wide range of content, ranging from structured information to documents, means that a JCR

repository can offer the flexibility to manage and organize the information while maintaining the

ability to adapt the structure and schema as needs evolve over time.

A service repository will contain lots of information represented in different forms, and it's important

that the repository make it easy for users to quickly find what they need. Organization of the

information (probably in multiple hierarchies and with tags) is important, but more important is the

ability for users to use simple searching (or more advanced queries) to return ranked results that

match the criteria. For search to be effective, it is important that the repository understand the

different kinds of artifacts that are uploaded and the information they contain.

JCR repositories are naturally searchable and queryable, but also can be used to integrate a

taxonomy (or folksonomic tags) with the content, allowing the same content to be presented in

different hierarchical classifications. But ModeShape capabilities also offer a great advantage,

since any file that is uploaded can be automatically sequenced and processed to extract

information that's meaningful and useful but often locked up within the file. For example, when

a WSDL file is uploaded, the appropriate sequencer(s) process the file and extract and store in

the repository the structured information describing the types, message structures, operations,

port types, bindings, and services found within the WSDL file. When an XML Schema Document

is uploaded, ModeShape can do the same for the schema's complex and simple types, element

and attribute declarations, model groups, namespaces, imports, includes, annotations, etc. And

ModeShape can do the same for the various policy files, resource declarations, documentation,

presentations, ontologies, etc.

Integration with a management system can be done in a similar manner. A ModeShape connector

could access the management system to discover the servers and enable auto-discovery of the

services, and "tag" the services' deployments with the lifecycle phase (dev, test, production,

etc.). Plus, ModeShape sequencers can automatically process the uploaded artifacts to extract

Chapter 2. ModeShape Use Cases

6

a useful structured representation of their content, and can then store that additional information

in the repository. So not only are the original artifacts stored in the repository, but a structured

representation of their content is also stored. And all of it can be accessed, navigated, searched,

and even updated.

By using ModeShape, a service repository could manage the wide range of artifacts required in a

SOA or web-oriented architecture, yet be able to present a unified view of all service information.

2.2. Manage data sources and services

Many enterprise environments include numerous databases and data services, yet there is often

no single place where all these different assets are described or related. A data source/service

repository could provide information about the many databases running within the enterprise as

well as their documentation, schema history, availability, usage policies, current users of the data

(including applications, ETL processes, reporting), geographic deployments and synchronization,

and the provenance of the data.

Some of this information may actually be defined or controlled within the data sources themselves

or within other systems. For example, the DDL scripts used to migrate the database schemas are

(hopefully) stored in a version control system, and the databases themselves have the ability to

describe their current schemas.

Using ModeShape, the repository could use a connector to the version control system to expose

the scripts, as well as connectors to the databases to expose (and cache) the current schema

of the databases as structured content. ModeShape sequencers can automatically process the

uploaded assets and artifacts to extract a useful structured representation of their content, and can

then store that additional information in the repository. Applications can access, search, navigate,

and update all of this metadata about the databases and data services, all through a single JCR

repository using a standard JCR API and without having to touch the underlying systems.

However, the power of a data repository is really the ability to capture the relationships that

otherwise were only captured in people's heads or trapped in documents spread throughout the

network. A data repository can capture the policies that dictate how each data source should be

used (which are for development purposes, or QA/testing purposes, or which are production, and

how are they all related), and it can integrate with management systems to provide information

about availability and deployment. As web services are created to provide service-based access

to the data in databases, the repository can be used to maintain the relationships between these

data services and the underlying sources. Similarly, the repository can track how the databases

are used by applications, ETL processes, and reports. All of this information is just content that

can be stored within the same JCR repository.

2.3. Configuration repository

Many applications and libraries have configuration files that allow the users (or developers) to

dictate the setup and behavior. Often this involves multiple files in a specific structure on the file

system. Invalid or inopportune changes to these files sometimes corrupt the environment, but

creating a more robust configuration management system is often way beyond the desired effort.

What's next

7

An embedded ModeShape repository can provide a more formal and flexible configuration system

with little effort. JCR's event system allows the system to be notified when the configuration

changes, and versioning can help guarantee the ability to revert back to a previous (valid)

configuration. ModeShape connectors can be used to integrate the files on the file system into the

configuration system, keeping it natural for those wanting to view and change the configuration

via the files. ModeShape sequencers can even process the configuration files to extract a more

structured view of the system. And because ModeShape can used with a minimal footprint, it

provides the ability to manage and version the configuration with little overhead.

ModeShape can even be used to centralize the configuration definition for a clustered or

distributed system. In this mode, the configuration is managed in a central repository that is

remotely accessible by the application. When a process is started, it examines the repository

and reads the content containing its configuration. The application can monitor the configuration

for changes so that it can modify itself and its components. For larger deployments, a central

"enterprise configuration" repository can house the configuration of different kinds of systems, and

can even be managed and manipulated through JCR.

As we'll see in the next chapter, this is actually the way in which ModeShape manages its own

configuration. In the embedded case, the configuration repository is simply a local (in-memory)

repository that is populated by the configuration file (or programmatic API). In a clustered mode,

the repository can be centralized. But either way, to ModeShape the configuration is always

defined in a repository.

2.4. What's next

The scenarios described in this chapter are representative of some of the ways in which

ModeShape can be used, and hopefully give you ideas about how you can leverage ModeShape

in your application or library.

In the next chapter, we'll show how you can set up ModeShape and use it via the standard JCR

API.

8

Chapter 3.

9

Using ModeShape
Using ModeShape within your application is actually quite straightforward. Simply configure

ModeShape with one or more repositories and the sources where the content for those repositories

should be accessed and stored. Then, your application just uses the JCR 2.0 API [http://

www.jcp.org/en/jsr/detail?id=283] to connect to and use those repositories.

Before we dive into how to configure ModeShape, let's start by looking at how your application

will find and use the JCR repositories.

3.1. JCR's RepositoryFactory

The latest version of the JCR 2.0 API specification (JSR-283 [http://www.jcp.org/en/jsr/detail?

id=283]) defines a RepositoryFactory [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/RepositoryFactory.html] interface that when coupled with the Java Standard Edition

Service Loader mechanism [http://java.sun.com/javase/6/docs/api/java/util/ServiceLoader.html]

lets your application find JCR Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Repository.html] instances using only the JCR API and Java interfaces, without using

any implementation-specific interfaces.

ModeShape supports and recommends using this approach, which looks like this:

Properties parameters = new Properties();

parameters.load(...) // typically loaded from property file or set programmatically

Repository repository;

for (RepositoryFactory factory : ServiceLoader.load(RepositoryFactory.class)) {

 repository = factory.getRepository(parameters);

 if (repository != null) break;

}

This code looks for all RepositoryFactory [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/RepositoryFactory.html] implementations on the classpath (assuming those

implementations properly defined the service provider within their JARs), and will ask each

to create a repository given the supplied parameters. The first factory that understands these

parameters will return a Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/

jcr/Repository.html] instance, while other factories will return null. The key, then, for defining which

JCR Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html]

implementation your application uses are the parameters passed to the getRepository(Map)

method. Simply load these from a properties file, and your application is set.

http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.jcp.org/en/jsr/detail?id=283
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://java.sun.com/javase/6/docs/api/java/util/ServiceLoader.html
http://java.sun.com/javase/6/docs/api/java/util/ServiceLoader.html
http://java.sun.com/javase/6/docs/api/java/util/ServiceLoader.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html

Chapter 3. Using ModeShape

10

Note

This RepositoryFactory [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/RepositoryFactory.html] approach is new to JCR 2.0. With JCR

1.0, your application likely used specific classes from the implementation

to instantiate a Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Repository.html] implementation.

Once you've gotten hold of a Repository [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/

javax/jcr/Repository.html] instance, you can use it to create Session [http://www.day.com/maven/

javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]s. JCR sessions are lightweight, so creating them

is very fast. But they are not thread safe, so they shouldn't be used concurrently by multiple

threads. Therefore, the JCR specification recommends applications create sessions to read, query

or change repository content, and then quickly close the sessions:

Repository repository = // found earlier

Credentials credentials = ...; // JCR credentials

String workspaceName = ...; // The name of the workspace in the JCR repository

Session session = null;

try {

 // Obtain a JCR Session using simple authentication (or anonymous if configured)

 session = repo.login(credentials,workspaceName);

 // Use the JCR Session to read, query, or change repository content

 // Save any changes that were made ...

 session.save();

} catch (RepositoryException ex) {

 // Handle the error

} finally {

 if (session != null) session.logout();

}

JCR sessions are stateful, meaning they cache any information that is accessed to provide a single

consistent view of the content, including any transient changes that haven't yet been saved. Thus,

in applications with many concurrent sessions changing content, the cached data of a longer-

lived session can become inconsistent with the stored content, and must be manually refreshed

using the Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]'s

refresh() method. It is for this reason that the JCR specification recommends using short-lived

sessions.

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html

ModeShape's RepositoryFactory Properties

11

Observing the repository for changes, however, will require registering listeners with a session,

and will only receive events while that session is alive. Therefore, observation requires a longer-

lived session. But the recommendation is that these longer-lived sessions are used only to register

your application's listeners, and not used to read or update content.

These are the basics of writing an application that uses JCR. Next, we'll start looking at

the specifics of ModeShape, starting with those RepositoryFactory [http://www.day.com/maven/

javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html] properties.

3.1.1. ModeShape's RepositoryFactory Properties

ModeShape's RepositoryFactory [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/

jcr/RepositoryFactory.html] implementation looks for a single property named

"org.modeshape.jcr.URL". The value of this property is most often a URL pointing to a

ModeShape configuration file, which is on the local file system at an absolute path:

 file://path/to/configFile.xml?repositoryName=MyRepository

or a path relative to the running application:

 file:configFile.xml?repositoryName=MyRepository

The configuration file can even be accessed from a web service (e.g., a web server, WebDAV, or

version control system) using any resolvable URL, such as:

 http://www.example.com/path/to/configFile.xml?repositoryName=MyRepository

This works great for self-contained applications, because ModeShape will create a new repository

engine that runs embedded in the application. However, applications running in platforms (such as

servlet containers or Java application servers) will likely prefer that ModeShape runs as a central

service in the platform that can be shared by multiple applications. In these cases, the ModeShape

engine will already be running and registered in JNDI, so the application will use a URL that points

to this JNDI location:

 jndi:name/in/jndi?repositoryName=MyRepository

Here's an example of a property file containing the single ModeShape

property for RepositoryFactory [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

RepositoryFactory.html]:

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html

Chapter 3. Using ModeShape

12

This URL use the repository named 'MyRepository' defined in the 'modeshape-configuration.xml'

 file

located in the current directory. Use a different URL as needed.

#

org.modeshape.jcr.URL = file:modeshape-configuration.xml?repositoryName=MyRepository

In the next section, we'll take an introductory look at what these configuration files look.

3.2. ModeShape Configuration Files

The previous section showed how easy it was to obtain a Repository [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] and Session [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html] using the standard JCR API. This section

provides an introduction to ModeShape configuration files, although you will likely want to

look at the Reference Guide [http://docs.jboss.org/modeshape/2.8.1.Final/manuals/reference/

html/index.html] for more detail.

Each configuration file defines the components that are used to create the repository:

• Repository sources are the POJO objects that each describe a

particular location where content is stored. Each repository source object

is an instance of a ModeShape connector, and is configured with the

properties that particular source. ModeShape's RepositorySource [http://docs.jboss.org/

modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html] classes

are analogous to JDBC's DataSource [http://java.sun.com/javase/6/docs/api/javax/sql/

DataSource.html] classes - they are implemented by specific connectors (aka,

"drivers") for specific kinds of repository sources (aka, "databases"). Similarly,

a RepositorySource [http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/

connector/RepositorySource.html] instance is analogous to a DataSource [http://java.sun.com/

javase/6/docs/api/javax/sql/DataSource.html] instance, with bean properties for each

configurable parameter. Therefore, each repository source definition must supply the name of

the RepositorySource [http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/

connector/RepositorySource.html] class, any bean properties, and, optionally, the classpath

that should be used to load the class.

• Repositories define the JCR repositories that are available. Each repository has a unique

name that is used to obtain the Repository [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/Repository.html] instance, but each repository definition also can include the

predefined namespaces (other than those automatically defined by ModeShape), various

options, and the node types that are to be available in the repository without explicit registration

through the JCR API.

• Sequencers define the particular sequencers that are available for use. Each sequencer

definition provides the path expressions governing which nodes in the repository should be

sequenced when those nodes change, and where the resulting output generated by the

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://docs.jboss.org/modeshape/2.8.1.Final/manuals/reference/html/index.html
http://docs.jboss.org/modeshape/2.8.1.Final/manuals/reference/html/index.html
http://docs.jboss.org/modeshape/2.8.1.Final/manuals/reference/html/index.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://java.sun.com/javase/6/docs/api/javax/sql/DataSource.html
http://java.sun.com/javase/6/docs/api/javax/sql/DataSource.html
http://java.sun.com/javase/6/docs/api/javax/sql/DataSource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://java.sun.com/javase/6/docs/api/javax/sql/DataSource.html
http://java.sun.com/javase/6/docs/api/javax/sql/DataSource.html
http://java.sun.com/javase/6/docs/api/javax/sql/DataSource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html

Example configuration file

13

sequencer should be placed. The definition also must state the name of the sequencer class,

any bean properties and, optionally, the classpath that should be used to load the class.

• MIME type detectors define the particular MIME type detector(s) that should be made

available. A MIME type detector does exactly what the name implies: it attempts to determine

the MIME type given a "filename" and contents. ModeShape automatically uses a detector that

uses the file extension to identify the MIME type, but also provides an implementation that uses

an external library to identify the MIME type based upon the contents. The definition must state

the name of the detector class, any bean properties and, optionally, the classpath that should

be used to load the class.

3.2.1. Example configuration file

Here is the configuration file that is used in the repository example, though it has been simplified

a bit and most comments have been removed for clarity):

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:mode="http://www.modeshape.org/1.0" xmlns:jcr="http://www.jcp.org/

jcr/1.0">

 <!--

 Define the JCR repositories

 -->

 <mode:repositories>

 <!--

 Define a JCR repository that accesses the 'Cars' source directly.

 -->

 <mode:repository jcr:name="car repository" mode:source="Cars">

 <mode:options jcr:primaryType="mode:options">

 <systemSourceName jcr:primaryType="mode:option" mode:value="system@Cars"/>

 <jaasLoginConfigName jcr:primaryType="mode:option" mode:value="modeshape-

jcr"/>

 <!--

 As a convenience, ModeShape defaults to granting guest users full access.

 In a production system, you would want to limit this access by uncommenting one of the

 options below:

 for no access:

 <anonymousUserRoles jcr:PrimaryType="mode:option" mode:value="" />

 for read-only acces:

 <anonymousUserRoles jcr:PrimaryType="mode:option" mode:value="readonly" />

 -->

 </mode:options>

 </mode:repository>

 </mode:repositories>

Chapter 3. Using ModeShape

14

 <!--

 Define the sources for the content. These sources are directly accessible using the ModeShape-

specific

 Graph API.

 -->

 <mode:sources jcr:primaryType="nt:unstructured">

 <mode:source jcr:name="Cars"

 mode:classname="org.modeshape.graph.connector.inmemory.InMemoryRepositorySource"

 mode:retryLimit="3" mode:defaultWorkspaceName="workspace1">

 <predefinedWorkspaceNames>system</predefinedWorkspaceNames>

 </mode:source>

 </mode:sources>

 <!--

 Define the clustering configuration. This is an optional section; leave it out when

 running in a non-clustered (single-process) mode.

 -->

 <mode:clustering clusterName="modeshape-cluster" configuration="jgroups-

modeshape.xml" />

 <!--

 Define the sequencers. This is an optional section.

 -->

 <mode:sequencers>

 <mode:sequencer jcr:name="Image Sequencer"

 mode:classname="org.modeshape.sequencer.image.ImageMetadataSequencer">

 <mode:description>Image metadata sequencer</mode:description>

 <mode:pathExpression>/foo/source => /foo/target</mode:pathExpression>

 <mode:pathExpression>/bar/source => /bar/target</mode:pathExpression>

 </mode:sequencer>

 </mode:sequencers>

 <!--

 Define how ModeShape will determine the MIME type of files. This is an optional section;

 if you do not specify a MIME type detector, ModeShape will use a built-in one that is based

 filename extensions for most commonly-used files.

 -->

 <mode:mimeTypeDetectors>

 <mode:mimeTypeDetector jcr:name="Detector"

 mode:description="Standard extension-based MIME type detector"/>

 </mode:mimeTypeDetectors>

</configuration>

Using ModeShape in Web Applications

15

3.3. Using ModeShape in Web Applications

Sometimes your applications can simply define a configuration file and

use the RepositoryFactory [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/

RepositoryFactory.html] to access its repositories. This is very straightforward, and this is useful

for many simple applications because the application will then own the ModeShape instance(s).

Web applications are a different story. Often, you would rather your web application not contain

the code that initializes the JCR repository, but instead configure ModeShape as a central, shared

service that all of your web applications can simply reference and use.

Unfortunately, there's no common way to deploy ModeShape into the various web or application

servers, since they all have slightly different deployment and configuration techniques. The

remainder of this section will talk about how to deploy ModeShape to two popular open source

servers, the JBoss Application Server and Apache Tomcat.

3.3.1. Deploying ModeShape to JBoss AS

The JBoss Application Server [http://jboss.org/jbossas] (or JBoss AS) is a very popular open

source Java application server, with an extremely healthy and active community. ModeShape

offers a way to deploy ModeShape into JBoss AS as as a central, shared service that can be

monitored and administered using the embedded console.

ModeShape provides a downloadable ZIP file that can be unzipped into any JBoss AS profile.

When you do this, that profile will contain all the files necessary for ModeShape to run when the

server is started. The default configuration is for a single, in-memory repository with two users.

However, other than basic playing, you will want to edit the configuration files to define a more

robust, persistent and secure configuration.

This JBoss AS distribution ZIP file contains several components:

• JAR files for the JCR 2.0 API and ModeShape's small extensions to the JCR API on the global

classpath (that is, in the "lib/" directory). These APIs are available to all deployed applications,

services and components. The JCR API contains the "javax.jcr" packages and has no other

dependencies. ModeShape's extensions define interfaces in the "org.modeshape.jcr.api"

packages; these extend a few of the standard JCR API interfaces and add several methods to

make them more useful.

• The ModeShape Service, represented as an exploded JAR file in the "deploy" directory. This

is where the JcrEngine [http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/

JcrEngine.html] is running, though any application (or other JBoss service) can access its

JCR Repository instances using the standard RepositoryFactory [http://www.day.com/maven/

javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html] approach described earlier by using

a URL such as:

 jndi:jcr/local?repositoryName=repository

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://jboss.org/jbossas
http://jboss.org/jbossas
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html

Chapter 3. Using ModeShape

16

By default, there is a single in-memory repository named "repository", but this can be changed

by simply editing the "deploy/modeshape-services.jar/managedConfigRepository.xml"

configuration file. All of ModeShape's standard sequencers and connectors (and JARs for their

dependencies) are included, meaning they can be configured for use without worrying about

adding JARs to the classpath. Feel free to remove any of the JARs are not needed for your

custom configuration.

• A pair of JAAS properties files, located in the "conf/props/" directory, that come out of the

box with an "admin" user (with password "admin") that has full read, write, and administration

privileges, and a "guest" user (with password "guest") that has only read and write privileges.

Simply edit these files to change users, passwords, and roles, or to configure JAAS differently.

• The ModeShape RESTful API, represented as an exploded WAR file in the "deploy" directory.

This allows remote applications to interact with ModeShape to access and manipulate repository

content using a RESTful API that uses JSON in the requests and responses. All ModeShape

repositories can be accessed, and authentication is done using the ModeShape JAAS

configuration.

• The ModeShape WebDAV API, represented as an exploded WAR file in the "deploy"

directory. This web application allows external clients to access and manipulate the content

in the ModeShape repositories using the standard WebDAV protocol. For example, you can

mount a repository (or parts of it) as a network drive on most operating systems, and then

upload or download files and folders using standard OS operations and graphical tools. All

ModeShape repositories can be accessed, and authentication is done using the ModeShape

JAAS configuration.

• A plugin for the embedded JBoss AS console, represented as a WAR file in the "deploy"

directory. This plugin also works with RHQ [http://support.rhq-project.org/display/RHQ/Home]

administration, monitoring, alerting, operational control and configuration system. This feature

is currently incomplete, but is undergoing active development.

• A JDBC driver for querying the repositories through JDBC. This driver is on the global classpath

so it can be used in any deployed component. A single JDBC DataSource is also configured

in the "deploy/modeshape-services.jar/modeshape-jdbc-ds.xml" file to use the single

default in-memory repository available out of the box. Simply edit this file to add or change the

DataSource definitions.

Here are the contents of this file:

conf/

conf/props/

conf/props/modeshape-roles.properties

conf/props/modeshape-users.properties

lib/

lib/jcr-2.0.jar

http://support.rhq-project.org/display/RHQ/Home
http://support.rhq-project.org/display/RHQ/Home

Deploying ModeShape to JBoss AS

17

lib/modeshape-jcr-api-2.8.1.Final.jar

lib/modeshape-jdbc-2.8.1.Final.jar

deploy/

deploy/modeshape-jboss-beans.xml

deploy/modeshape-services.jar/

deploy/modeshape-services.jar/META-INF/

deploy/modeshape-services.jar/aperture-1.1.0.Beta1.jar

deploy/modeshape-services.jar/joda-time-1.6.jar

deploy/modeshape-services.jar/lucene-analyzers-3.0.2.jar

deploy/modeshape-services.jar/lucene-core-3.0.2.jar

deploy/modeshape-services.jar/lucene-regex-3.0.2.jar

deploy/modeshape-services.jar/lucene-snowball-3.0.2.jar

deploy/modeshape-services.jar/lucene-misc-3.0.2.jar

deploy/modeshape-services.jar/poi-3.6.jar

deploy/modeshape-services.jar/poi-scratchpad-3.6.jar

deploy/modeshape-services.jar/managedConfigRepository.xml

deploy/modeshape-services.jar/rdf2go.api-4.6.2.jar

deploy/modeshape-services.jar/META-INF/jboss-beans.xml

deploy/modeshape-services.jar/modeshape-cnd-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-common-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-connector-filesystem-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-connector-infinispan-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-connector-jbosscache-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-connector-jcr-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-connector-jdbc-metadata-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-connector-store-jpa-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-connector-svn-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-graph-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-jbossas-service-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-jcr-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-jdbc-ds.xml

deploy/modeshape-services.jar/modeshape-mimetype-detector-aperture-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-repository-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-search-lucene-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-sequencer-classfile-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-sequencer-cnd-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-sequencer-ddl-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-sequencer-java-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-sequencer-jbpm-jpdl-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-sequencer-msoffice-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-sequencer-teiid-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-sequencer-text-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-sequencer-xml-2.8.1.Final.jar

deploy/modeshape-services.jar/modeshape-sequencer-zip-2.8.1.Final.jar

Chapter 3. Using ModeShape

18

deploy/modeshape-rest.war/

deploy/modeshape-rest.war/META-INF/

deploy/modeshape-rest.war/WEB-INF/

deploy/modeshape-rest.war/WEB-INF/lib/

deploy/modeshape-rest.war/META-INF/MANIFEST.MF

deploy/modeshape-rest.war/WEB-INF/jboss-web.xml

deploy/modeshape-rest.war/WEB-INF/lib/jaxrs-api-1.2.1.GA.jar

deploy/modeshape-rest.war/WEB-INF/lib/jettison-1.1.jar

deploy/modeshape-rest.war/WEB-INF/lib/modeshape-jcr-2.8.1.Final.jar

deploy/modeshape-rest.war/WEB-INF/lib/modeshape-web-jcr-2.8.1.Final.jar

deploy/modeshape-rest.war/WEB-INF/lib/modeshape-web-jcr-rest-2.8.1.Final.jar

deploy/modeshape-rest.war/WEB-INF/lib/resteasy-jaxb-provider-1.2.1.GA.jar

deploy/modeshape-rest.war/WEB-INF/lib/resteasy-jaxrs-1.2.1.GA.jar

deploy/modeshape-rest.war/WEB-INF/lib/resteasy-jettison-provider-1.2.1.GA.jar

deploy/modeshape-rest.war/WEB-INF/lib/scannotation-1.0.2.jar

deploy/modeshape-rest.war/WEB-INF/web.xml

deploy/modeshape-webdav.war/

deploy/modeshape-webdav.war/WEB-INF/

deploy/modeshape-webdav.war/WEB-INF/lib/

deploy/modeshape-webdav.war/WEB-INF/jboss-web.xml

deploy/modeshape-webdav.war/WEB-INF/lib/aperture-1.1.0.Beta1.jar

deploy/modeshape-webdav.war/WEB-INF/lib/modeshape-jcr-2.8.1.Final.jar

deploy/modeshape-webdav.war/WEB-INF/lib/modeshape-mimetype-detector-

aperture-2.8.1.Final.jar

deploy/modeshape-webdav.war/WEB-INF/lib/modeshape-web-jcr-2.8.1.Final.jar

deploy/modeshape-webdav.war/WEB-INF/lib/modeshape-web-jcr-webdav-2.8.1.Final.jar

deploy/modeshape-webdav.war/WEB-INF/lib/webdav-servlet-2.0.1.jar

deploy/modeshape-webdav.war/WEB-INF/web.xml

deploy/admin-console.war/

deploy/admin-console.war/plugins/

deploy/admin-console.war/plugins/modeshape-jbossas-console-2.8.1.Final.jar

Your web application or JBoss service can use one of the JCR Repository [http://www.day.com/

maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] instances running inside the

ModeShape service by simply using the RepositoryFactory [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html] technique described earlier, with a URL such

as:

 jndi:jcr/local?repositoryName=repository

Be sure to use the correct repository name.

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html

Deploying ModeShape to Tomcat

19

Since the JCR API JAR is on the global classpath, your web application can use the JCR API

without having to include the JAR file in your application's WAR file. In fact, your application will

likely get ClassCastExceptions if it does include the JCR API in its WAR file. Plus, if needed,

your application can use ModeShape's "org.modeshape.jcr.api" extensions to the JCR API

(again, on the global classpath), and should not need or use any of the classes or interfaces in

the ModeShape implementation.

3.3.2. Deploying ModeShape to Tomcat

Each kind of web server or application server is different, but all servlet containers do

provide a way of configuring objects and placing them into JNDI. ModeShape provides

a JndiRepositoryFactory [http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/

JcrRepository.html] class that implements and that can be used in the server's configuration.

The JndiRepositoryFactory [http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/

jcr/JcrRepository.html] requires two properties:

• configFile is the path to the configuration file resource, which must be available on the

classpath

• repositoryName is the name of a JCR repository that exists in the JCR configuration and that

will be made available by this JNDI entry

Here's an example of a fragment of the conf/context.xml for Tomcat:

<Resource name="jcr/local"

 auth="Container"

 type="javax.jcr.Repository"

 factory="org.modeshape.jcr.JndiRepositoryFactory"

 configFile="/resource/path/to/configuration.xml"

 repositoryName="Test Repository Source" />

Note that it is possible to have multiple Resource entries. The JndiRepositoryFactory

[http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/JcrRepository.html] ensures

that only one JcrEngine [http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/

JcrEngine.html] is instantiated, but that a Repository [http://www.day.com/maven/javax.jcr/

javadocs/jcr-2.0/javax/jcr/Repository.html] instance is registered for each entry.

Before the server can start, however, all of the ModeShape jars need to be placed on the classpath

for the server. JAAS also needs to be configured, and this can be done using the application

server's configuration or in your web application if you're using a simple servlet container. For

more details, see the Reference Guide [http://docs.jboss.org/modeshape/2.8.1.Final/manuals/

reference/html/index.html].

http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/JcrRepository.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/JcrEngine.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/jcr/JcrEngine.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://docs.jboss.org/modeshape/2.8.1.Final/manuals/reference/html/index.html
http://docs.jboss.org/modeshape/2.8.1.Final/manuals/reference/html/index.html
http://docs.jboss.org/modeshape/2.8.1.Final/manuals/reference/html/index.html

Chapter 3. Using ModeShape

20

Note

The ModeShape community has solicited input on how we can make it easier to

consume and use ModeShape in applications that do not use Maven. Check out

the discussion thread [http://community.jboss.org/thread/146589], and please add

any suggestions or opinions!

Then, your web application needs to reference the Resource and state its requirements in its

web.xml:

<resource-env-ref>

 <description>Repository</description>

 <resource-env-ref-name>jcr/local</resource-env-ref-name>

 <resource-env-ref-type>javax.jcr.Repository</resource-env-ref-type>

</resource-env-ref>

Note that the value of resource-env-ref-name matches the value of the name attribute on the

<Resource> tag in the context.xml described above. This is a must.

At this point, your web application can perform the lookup of the Repository [http://

www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html] object by using JNDI

directly (or the more standard RepositoryFactory [http://www.day.com/maven/javax.jcr/javadocs/

jcr-2.0/javax/jcr/RepositoryFactory.html] technique shown earlier), create and use a Session

[http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html], and then close the

Session [http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html]. Here's an

example of a JSP page that does this:

<%@ page import="javax.naming.*, javax.jcr.*,

 org.jboss.security.config.IDTrustConfiguration" %>

<%!

static {

 // Initialize IDTrust

 IDTrustConfiguration idtrustConfig = new IDTrustConfiguration();

 try {

 idtrustConfig.config("security/jaas.conf.xml");

 } catch (Exception ex) {

 throw new IllegalStateException(ex);

 }

}

%>

http://community.jboss.org/thread/146589
http://community.jboss.org/thread/146589
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Repository.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/RepositoryFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Session.html

Setting the Classpath

21

<%

Session sess = null;

try {

 InitialContext initCtx = new InitialContext();

 Context envCtx = (Context) initCtx.lookup("java:comp/env");

 Repository repo = (Repository) envCtx.lookup("jcr/local");

 sess = repo.login(new SimpleCredentials("readwrite", "readwrite".toCharArray()));

 // Do something interesting with the Session ...

 out.println(sess.getRootNode().getPrimaryNodeType().getName());

} catch (Exception ex) {

 ex.printStackTrace();

} finally {

 if (sess != null) sess.logout();

}

%>

Since this uses a servlet container, there is no JAAS implementation configured, so note the

loading of IDTrust to create the JAAS realm. (To make this work in Tomcat, the security folder that

contains the jaas.conf.xml, users.properties, and roles.properties needs to be moved

into the %CATALINA_HOME% directory.)

Note

If you deploy your application to JBoss AS or EAP and deploy ModeShape as

a service, your application doesn't have to do anything with JAAS, since that's

provided by the platform.

3.4. Setting the Classpath

Deploying ModeShape as a service in JBoss AS is all set up with the correct classpaths and

configurations. In other deployments, you'll have to ensure that all of the ModeShape JARs are

available on the appropriate classpath. This section describes two different scenarios for doing

this: Maven-based, and using JARs with the traditional classpath.

3.4.1. Building against ModeShape via Maven

By far the easiest way to use ModeShape is to use Maven, because with just a few lines of code,

Maven will automatically pull all the JARs and source for all of the ModeShape libraries as well

as everything those libraries need. All of ModeShape's artifacts for each release are published in

the new JBoss Maven repository [https://repository.jboss.org/nexus/] under the "org.modeshape

[https://repository.jboss.org/nexus/content/repositories/public/org/modeshape/]" group ID.

https://repository.jboss.org/nexus/
https://repository.jboss.org/nexus/
https://repository.jboss.org/nexus/content/repositories/public/org/modeshape/
https://repository.jboss.org/nexus/content/repositories/public/org/modeshape/

Chapter 3. Using ModeShape

22

3.4.1.1. Using the JBoss Maven repository

The JBoss Maven repository not only contains all of the artifacts for ModeShape and other

open source projects hosted at JBoss.org [http://www.jboss.org], but it also proxies quite a

few other repositories [http://community.jboss.org/wiki/MavenRepository] that contain many other

third-party libraries.

So if you're using Maven (or Ivy), first make sure your project knows about this new JBoss Maven

repository. One way to do this is to add the following to your project POM (you'll still likely want

to use other Maven repositories for third-party artifacts):

<repositories>

 <repository>

 <id>jboss</id>

 <url>http://repository.jboss.org/nexus/content/groups/public/</url>

 </repository>

</repositories>

Or, you can add this information to your ~/.m2/settings.xml file. For more information, see the

JBoss wiki page [http://community.jboss.org/wiki/MavenGettingStarted-Developers].

3.4.1.2. Add dependency to ModeShape

Then, simply modify your project's POM by adding dependencies on the ModeShape JCR library:

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-jcr</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

This adds only the minimal libraries required to use ModeShape. If your application is going to

use clustering, you'll need to also depend upon the clustering module:

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-clustering</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

You also need to add dependencies for each of the connectors and sequencers you want to use.

Here is the list of available sequencers:

http://www.jboss.org
http://www.jboss.org
http://community.jboss.org/wiki/MavenRepository
http://community.jboss.org/wiki/MavenRepository
http://community.jboss.org/wiki/MavenRepository
http://community.jboss.org/wiki/MavenGettingStarted-Developers
http://community.jboss.org/wiki/MavenGettingStarted-Developers

Building against ModeShape via Maven

23

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-cnd</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-ddl</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshapce</groupId>

 <artifactId>modeshape-sequencer-images</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-classfile</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-java</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-mp3</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-msoffice</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-xml</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-xsd</artifactId>

Chapter 3. Using ModeShape

24

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-wsdl</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-sramp</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-teiid</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-text</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-sequencer-zip</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

Here is the list of available connectors:

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-connector-filesystem</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-connector-infinispan</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-connector-jcr</artifactId>

Add dependencies for logging

25

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-connector-jbosscache</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-connector-jdbc-metadata</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-connector-store-jpa</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

<dependency>

 <groupId>org.modeshape</groupId>

 <artifactId>modeshape-connector-svn</artifactId>

 <version>2.9-SNAPSHOT</version>

</dependency>

The sequencer and connector libraries you choose, plus every third-party library they need, will

be pulled in automatically by Maven into your project.

3.4.2. Add dependencies for logging

ModeShape is designed to use the same logging framework as your application, and it uses SLF4J

to accomplish this. In other words, ModeShape depends upon the SLF4J API library, but requires

you to provide provide a logging implementation as well as the appropriate SLF4J binding JAR.

For example, if your application is using Log4J [http://logging.apache.org/log4j/], your application

will already have a dependency for it, and so ModeShape log messages will be sent to the same

logging system used in your application, you need to add a dependency to the SLF4J-to-Log4J

binding JAR:

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.6.1</version>

</dependency>

<dependency>

 <groupId>log4j</groupId>

http://logging.apache.org/log4j/
http://logging.apache.org/log4j/

Chapter 3. Using ModeShape

26

 <artifactId>log4j</artifactId>

 <version>1.2.16</version>

</dependency>

Of course, SLF4J works with other logging frameworks, too. Some logging implementations (such

as LogBack [http://logback.qos.ch/]) implement the SLF4J API natively, meaning they require no

binding JAR. For details on the options and how to configure them, see the SLF4J manual [http://

www.slf4j.org/manual.html].

3.4.3. Building against ModeShape via JARs

If your application doesn't use Maven, you'll need to obtain the ModeShape

JARs and place them onto your application's classpath. ModeShape provides a

single download [http://downloads.jboss.org/modeshape/2.8.1.Final/modeshape-2.8.1.Final-all-

with-dependencies.jar] with all of the JARs for all ModeShape components and all dependencies.

This file contains the following:

• modeshape-jcr-2.8.1.Final-jar-with-dependencies.jar contains all of the classes

(except those under javax.jcr) necessary to run the core ModeShape JCR repository engine

using the in-memory connector and the federating connector;

• one modeshape-connector-<type>-2.8.1.Final-jar-with-dependencies.jar for each

type of connector, each containing all of the classes necessary for that connector,

designed to be added to the classpath after the modeshape-jcr-2.8.1.Final-jar-with-

dependencies.jar file;

• one modeshape-sequencer-<type>-2.8.1.Final-jar-with-dependencies.jar for each

type of connector, each containing all of the classes necessary for that sequencer,

designed to be added to the classpath after the modeshape-jcr-2.8.1.Final-jar-with-

dependencies.jar file;

• modeshape-mimetype-detector-aperture-2.8.1.Final-jar-with-dependencies.jar

containing all of the classes necessary for detecting the MIME type of files based upon

their name and/or content, designed to be added to the classpath after the modeshape-

jcr-2.8.1.Final-jar-with-dependencies.jar file;

• modeshape-jpa-ddl-gen-2.8.1.Final-jar-with-dependencies.jar contains all of the

classes required to run the DDL generation utility as a standalone application.

Note that the core engine is required in all configurations. The jcr-2.0.jar file is not included and

must be provided by you. And, as mentioned in the previous section, ModeShape uses SLF4J for

logging and you must provide a logging implementation as well as the appropriate SLF4J binding

JAR.

3.5. What's next

This chapter outline how you configure ModeShape, how you then access a

javax.jcr.Repository instance, and use the standard JCR API to interact with the repository.

http://logback.qos.ch/
http://logback.qos.ch/
http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html
http://downloads.jboss.org/modeshape/2.8.1.Final/modeshape-2.8.1.Final-all-with-dependencies.jar
http://downloads.jboss.org/modeshape/2.8.1.Final/modeshape-2.8.1.Final-all-with-dependencies.jar
http://downloads.jboss.org/modeshape/2.8.1.Final/modeshape-2.8.1.Final-all-with-dependencies.jar

What's next

27

The next chapter walks you through downloading and building the ModeShape examples, while

Chapter 5 and Chapter 6 shows how to run the examples.

28

Chapter 4.

29

Building the example applications
This chapter provides instructions for downloading and compiling two sample applications that

demonstrates how ModeShape works with a JCR repository to automatically sequence changing

content to extract useful information. So read on to get the simple application running.

ModeShape uses Maven 2 for its build system, as do these examples. Using Maven 2 has

several advantages, including the ability to manage dependencies. If a library is needed, Maven

automatically finds and downloads that library, plus everything that library needs. This means

that it's very easy to build the examples - or even create a maven project that depends on the

ModeShape JARs.

To use Maven with ModeShape, you'll need to have JDK 6 [http://java.sun.com/javase/downloads/

index_jdk5.jsp] and Maven 2.0.9 (or higher).

Note

Maven can be downloaded from http://maven.apache.org/, and is installed by

unzipping the maven-2.0.9-bin.zip file to a convenient location on your local

disk. Simply add $MAVEN_HOME/bin to your path.

The examples are already configured to use the new JBoss.org Maven repository

[https://repository.jboss.org/nexus], which provides a central location for the

artifacts produced by the JBoss.org projects (well, at least those that use Maven)

as well as proxying other repositories and caching artifacts for third party libraries.

This simplifies the builds, helps ensure that developers have easy access to these

artifacts (including sources) so that the project (and dependencies) can always be

rebuilt when needed.

For more information about the JBoss Maven repository,

see the announcement [http://community.jboss.org/en/build/blog/2010/04/20/

announcement--new-maven-repository-infrastructure] and documentation [http://

community.jboss.org/wiki/MavenRepository].

Previous versions of ModeShape made use of the older JBoss.org Maven

repository, and required modifying your local ~/.m2/settings.xml file. This is no

longer required.

4.1. Downloading and compiling

The next step is to download [http://downloads.jboss.org/modeshape/2.8.1.Final/

modeshape-2.8.1.Final-gettingstarted-examples.zip] the example for this Getting Started guide,

and extract the contents to a convenient location on your local disk. You'll find the example

contains the following files, which are organized according to the standard Maven directory

structure:

http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://maven.apache.org/
https://repository.jboss.org/nexus
https://repository.jboss.org/nexus
http://community.jboss.org/en/build/blog/2010/04/20/announcement--new-maven-repository-infrastructure
http://community.jboss.org/en/build/blog/2010/04/20/announcement--new-maven-repository-infrastructure
http://community.jboss.org/en/build/blog/2010/04/20/announcement--new-maven-repository-infrastructure
http://community.jboss.org/wiki/MavenRepository
http://community.jboss.org/wiki/MavenRepository
http://community.jboss.org/wiki/MavenRepository
http://downloads.jboss.org/modeshape/2.8.1.Final/modeshape-2.8.1.Final-gettingstarted-examples.zip
http://downloads.jboss.org/modeshape/2.8.1.Final/modeshape-2.8.1.Final-gettingstarted-examples.zip
http://downloads.jboss.org/modeshape/2.8.1.Final/modeshape-2.8.1.Final-gettingstarted-examples.zip

Chapter 4. Building the examp...

30

examples/pom.xml

 sequencers/pom.xml

 /src/main/assembly

 /config

 /java

 /resources

 /test/java

 /resources

 repository/pom.xml

 /src/main/assembly

 /config

 /java

 /resources

 /test/java

 /resources

There are essentially three Maven projects: a sequencers project, a repository project, and

a parent project. All of the source for the sequencing example is located in the sequencers

subdirectory, while all of the source for the repository example is located in the repository

subdirectory.

And you may have noticed that none of the ModeShape libraries are there. This is where Maven

comes in. The two pom.xml files tell Maven everything it needs to know about what libraries are

required and how to build the example.

In a terminal, go to the examples directory and run:

$ mvn install

This command downloads all of the JARs necessary to compile and build the example, including

the ModeShape libraries, the libraries they depend on, and any missing Maven components.

(These are downloaded from the JBoss repositories only once and saved on your machine. This

means that the next time you run Maven, all the libraries will already be available locally, and the

build will run much faster.) The command then continues by compiling the example's source code

(and unit tests) and running the unit tests. The build is successful if you see the following:

$ mvn install

...

[INFO] --

[INFO] Reactor Summary:

Downloading and compiling

31

[INFO] --

[INFO] Getting Started examples SUCCESS [2.106s]

[INFO] Sequencer Examples SUCCESS [9.768s]

[INFO] --

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 12 seconds

[INFO] Finished at: Wed May 07 12:00:06 CDT 2008

[INFO] Final Memory: 14M/28M

[INFO] --

$

If there are errors, check whether you have the correct version of Maven installed and that you've

correctly updated your Maven settings as described above.

If you've successfully built the examples, there will be a new examples/sequencers/target/

directory that contains all of the generated output for the sequencers example, including a

modeshape-example-sequencers-basic.dir/ subdirectory that contains the following:

• run.sh is the *nix shell script that will run the sequencer example application.

• log4j.properties is the Log4J configuration file.

• sample1.mp3 is a sample MP3 audio file you'll use later to upload into the repository.

• caution.gif, caution.png, caution.jpg, and caution.pict are images that you'll use later

and upload into the repository.

• sequencing.cnd is a Compact Node Definition (CND) file that defines the node types used in

the output from the sequencers.

• security subdirectory containing several files related to the JAAS implementation used for

authentication.

• project1 subdirectory contains some Java source that can be loaded into the repository.

• lib subdirectory contains the JARs for all of the ModeShape artifacts as well as those for other

libraries required by ModeShape and the sequencer example.

Similarly, the examples/repository/target/ directory contains all of the generated output for

the repository example, including a modeshape-example-repository-basic.dir/ subdirectory

that contains the following:

• run.sh is the *nix shell script that will run the repository example application.

• run.cmd is the Windows command file that will run the repository example application.

Chapter 4. Building the examp...

32

• log4j.properties is the Log4J configuration file.

• configRepository.xml is an XML file containing the information that the example application

loads as its configuration and which defines the sources, repositories, sequencers (if used), and

other components that make up the ModeShape JCR engine.

• aircraft.xml is an XML file containing the information that the example application imports

into its "Aircraft" repository.

• cars.xml is an XML file containing the information that the example application imports into

its "Cars" repository.

• ufoSource subdirectory containing several folders and files used by the file system connector

for the "UFOs" repository.

• aircraft.cnd, cars.cnd, and vehicles.cnd are the CND files used for the three different

JCR Repositories set up in the example. The vehicles.cnd is just a combination of the other

two (with duplicates removed). The UFO source doesn't need a CND file, since the file system

connector uses the "nt:file" and "nt:folder" node types built into the JCR standard.

• security subdirectory containing several files related to the JAAS implementation used for

authentication and authorization.

• lib subdirectory contains the JARs for all of the ModeShape artifacts as well as those for other

libraries required by ModeShape and the repository example. There are a lot of libraries here,

but almost all of them are from the JPA connector (which depends upon Hibernate), HSQLDB,

Lucene, and the JAAS implementation.

4.2. What's next

In this chapter you downloaded, installed, and built the two example applications. In the next two

chapters we'll run these examples and walk through the code.

Chapter 5.

33

The Sequencer Example
The previous chapter walked through the process of downloading and building the examples. This

chapter will focus on the sequencer example, showing how to run the example and then walking

through the code to describe what it's doing.

5.1. Running the sequencing example

The sequencing example consists of a client application that sets up an in-memory JCR repository

and that allows a user to upload files into that repository. The client also sets up the ModeShape

services with seven sequencers:

• an image metadata sequencer that processes PNG, JPEG, GIF, BMP or other image filetypes

to extract the image's metadata (e.g., image format, physical size, pixel density, etc.)

• an MP3 sequencer that extracts the ID3 metadata (e.g., the author, title, album, year and

comment)

• a Java source code sequencer that extracts the structure of Java classes by parsing the source

code

• a Java class file sequencer that extracts the structure of Java classes by analyzing the class files

• a text file sequencer that extracts the comma-separated structured information contained in

CSV files

• a text file sequencer that extracts the structured information contained in fixed-width files

• a ZIP archive sequencer that extracts the files and directory structure contained in ZIP and JAR

files

These sequencers automatically extract content from the files and store that content in the

repository.

Note

ModeShape includes several other sequencers, including sequencers for DDL

files, Microsoft Office files, JCR Compact Node Definition (CND) files, and XML

files. Feel free to experiment with the example and add these or even sequencers

you write.

To run the client application, go to the examples/sequencers/target/modeshape-example-

sequencers-basic.dir/ directory and type ./run.sh. You should see the command-line client

and its menus in your terminal:

Chapter 5. The Sequencer Example

34

Figure 5.1. Example client

From this menu, you can upload a file into the repository, search for media in the repository, print

sequencing statistics, or quit the application.

The first step is to upload one of the example images. If you type 'u' and press return, you'll

be prompted to supply the path to the file you want to upload. Since the application is running

from within the examples/sequencers/target/modeshape-example-sequencers-basic.dir/

directory, you can specify any of the files in that directory without specifying the path:

Figure 5.2. Uploading an image using the example client

You can specify any fully-qualified or relative path. The application will notify you if it cannot find

the file you specified. The example client configures ModeShape to sequence MP3 audio files,

Java source files, Java class files, ZIP files, text files (.txt), CSV files (.csv), or image files with

one of the following extensions (technically, nodes that have names ending in the following): jpg,

jpeg, gif, bmp, pcx, png, iff, ras, pbm, pgm, ppm, and psd. Files with other extensions in the

repository path will be ignored. For your convenience, the example provides several files that will

be sequenced (caution.png, caution.jpg, caution.gif, and sample1.mp3) and one image

that will not be sequenced (caution.pict). Feel free to try other files.

After you have specified the file you want to upload, the example application asks you where in the

repository you'd like to place the file. (If you want to use the suggested location, just press return.)

Running the sequencing example

35

The client application uses the JCR API to upload the file to that location in the repository, creating

any nodes (of type nt:folder) for any directories that don't exist, and creating a node (of type

nt:file) for the file. And, per the JCR specification, the application creates a jcr:content node

(of type nt:resource) under the file node. The file contents are placed on this jcr:content node

in the jcr:data property. For example, if you specify /a/b/caution.png, the following structure

will be created in the repository:

/a (nt:folder)

 /b (nt:folder)

 /caution.png (nt:file)

 /jcr:content (nt:resource)

 @jcr:data = {contents of the file}

 @jcr:mimeType = {mime type of the file}

 @jcr:lastModified = {now}

Other kinds of files are treated in a similar way.

When the client uploads the file using the JCR API, ModeShape gets notified of the changes,

consults the sequencers to see whether any of them are interested in the new or updated content,

and if so runs those sequencers. The image sequencer processes image files for metadata, and

any metadata found is stored under the /images branch of the repository. The MP3 sequencer

processes MP3 audio files for metadata, and any metadata found is stored under the /mp3s

branch of the repository. And metadata about Java classes are stored under the /java area of

the repository. All of this happens asynchronously, so any ModeShape activity doesn't impede or

slow down the client activities.

So, after the file is uploaded, you can search the repository for the image metadata using the "s"

menu option:

Chapter 5. The Sequencer Example

36

Figure 5.3. Searching for media using the example client

Here are the search results after the sample1.mp3 audio file has been uploaded (to the /a/b/

sample1.mp3 location):

Running the sequencing example

37

Figure 5.4. Searching for media using the example client

You can also display the sequencing statistics using the "d" menu option:

Figure 5.5. Sequencing statistics using the example client

These stats show how many nodes were sequenced, and how many nodes were skipped because

they didn't apply to the sequencer's criteria.

Chapter 5. The Sequencer Example

38

Note

There will probably be more nodes skipped than sequenced, since there are more

nt:folder and nt:resource nodes than there are nt:file nodes with acceptable

names.

You can repeat this process with other files. Any file that isn't an image or MP3 files (as recognized

by the sequencing configurations that we'll describe later) will not be sequenced.

5.2. Reviewing the example application

Recall that the example application consists of a client application that sets up an in-memory

JCR repository and that allows a user to upload files into that repository. The client also sets up

the ModeShape services with an image sequencer so that if any of the uploaded files are PNG,

JPEG, GIF, BMP or other images, ModeShape will automatically extract the image's metadata

(e.g., image format, physical size, pixel density, etc.) and store that in the repository. Or, if the

client uploads MP3 audio files, the title, author, album, year, and comment are extracted from the

audio file and stored in the repository.

The example is comprised of 5 classes and 1 interface, located in the src/main/java directory:

 org/modeshape/example/sequencers/ConsoleInput.java

 /ContentInfo.java

 /JavaInfo.java

 /MediaInfo.java

 /SequencingClient.java

 /UserInterface.java

SequencingClient is the class that contains the main application. ContentInfo is a simple

class that encapsulate metadata generated by the sequencers and accessed by this example

application, and there are two subclasses: MediaInfo encapsulates metadata about media

(image and MP3) files, while JavaInfo is a subclass encapsulating information about a Java

class. The client accesses the content from the repository and represents the information using

instances of ContentInfo (and its subclasses) and then passes them to the UserInterface.

UserInterface is an interface with methods that will be called at runtime to request data from the

user. ConsoleInput is an implementation of this that creates a text user interface, allowing the

user to operate the client from the command-line. We can easily create a graphical implementation

of UserInterface at a later date. We can also create a mock implementation for testing purposes

that simulates a user entering data. This allows us to check the behavior of the client automatically

using conventional JUnit test cases, as demonstrated by the code in the src/test/java directory:

Reviewing the example application

39

 org/modeshape/example/sequencers/SequencingClientTest.java

 /MockUserInterface.java

If we look at the SequencingClient code, there are a handful of methods that encapsulate the

various activities.

Note

Some of the code samples included in this book have had some of the error

handling and comments removed so that the code is more readable and concise.

The main(String[] argv) method is of course the method that is executed when the application

is run. This code creates the ModeShape configuration using the programmatic style.

// Create the configuration.

String repositoryId = "content";

String workspaceName = "default";

JcrConfiguration config = new JcrConfiguration();

// Set up the in-memory source where we'll upload the content and where the sequenced output

 will

// be stored ...

config.repositorySource("store")

 .usingClass(InMemoryRepositorySource.class)

 .setDescription("The repository for our content")

 .setProperty("defaultWorkspaceName", workspaceName);

// Set up the JCR repository to use the source ...

config.repository(repositoryId)

 .addNodeTypes("sequencing.cnd")

 .setSource("store");

// Set up the image sequencer ...

config.sequencer("Image Sequencer")

 .usingClass("org.modeshape.sequencer.image.ImageMetadataSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences image files to extract the characteristics of the image")

 .sequencingFrom(

 "//(*.(jpg|jpeg|gif|bmp|pcx|png|iff|ras|pbm|pgm|ppm|psd)[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/images/$1");

// Set up the MP3 sequencer ...

config.sequencer("MP3 Sequencer")

Chapter 5. The Sequencer Example

40

 .usingClass("org.modeshape.sequencer.mp3.Mp3MetadataSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences mp3 files to extract the id3 tags of the audio file")

 .sequencingFrom("//(*.mp3[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/mp3s/$1");

// Set up the Java class file sequencer ...

config.sequencer("Java Class Sequencer")

 .usingClass(ClassFileSequencer.class)

 .setDescription("Sequences Java class files to extract the structure of the classes")

 .sequencingFrom("//*.class[*]/jcr:content[@jcr:data]")

 .andOutputtingTo("/classes");

// Set up the Java source file sequencer ...

config.sequencer("Java Sequencer")

 .usingClass("org.modeshape.sequencer.java.JavaMetadataSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences Java files to extract the AST structure of the Java source code")

 .sequencingFrom("//(*.java[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/java/$1");

// Set up the CSV file sequencer ...

config.sequencer("CSV Sequencer")

 .usingClass("org.modeshape.sequencer.text.DelimitedTextSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences CSV files to extract the contents")

 .sequencingFrom("//(*.csv[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/csv/$1");

// Set up the fixed width file sequencer ...

config.sequencer("Fixed Width Sequencer")

 .usingClass("org.modeshape.sequencer.text.FixedWidthTextSequencer")

 .loadedFromClasspath()

 .setDescription("Sequences fixed width files to extract the contents")

 .setProperty("commentMarker", "#")

 .setProperty("columnStartPositions", new int[] { 10, 20, 30, 40})

 .sequencingFrom("//(*.txt[*])/jcr:content[@jcr:data]")

 .andOutputtingTo("/txt/$1");

// Now start the client and tell it which repository and workspace to use ...

SequencingClient client = new SequencingClient(config, repositoryId, workspaceName);

client.setUserInterface(new ConsoleInput(client));

The first block of code configures the JcrConfiguration and sets up the "store" source, the

"content" repository, and three sequencers. Again, this is done via the programmatic style. An

alternative would be to load the entire configuration from a configuration file or from an existing

Reviewing the example application

41

configuration repository. (The repository example shown in the next chapter shows how to load

the configuration from a file.)

The second block simply instantiates the SequencingClient class, passing the configuration and

the name of the repository and workspace, and finally sets the user interface (which then executes

its behavior, which we'll see below).

The startRepository() method builds the JcrEngine component from the configuration, starts

the engine, and obtains the JCR javax.jcr.Repository instance that the client will use. Note

that the client has not yet obtained a javax.jcr.Session instance, since this will be done each

time the client needs to access content from the repository. (This is actually a common practice

according to the JCR specification, since Sessions are intended to be very lightweight.)

public void startRepository() throws Exception {

 if (this.repository == null) {

 try {

 // Start the ModeShape engine ...

 this.engine = this.configuration.build();

 this.engine.start();

 // Now get the JCR repository instance ...

 this.repository = this.engine.getRepository(repositoryName);

 } catch (Exception e) {

 this.repository = null;

 throw e;

 }

 }

}

The shutdownRepository() method requests the JcrEngine instance shuts down and, since

that may take a few moments (if there are any ongoing operations or enqueued activities) awaits

for it to complete the shutdown.

public void shutdownRepository() throws Exception {

 if (this.repository != null) {

 try {

 this.engine.shutdown();

 this.engine.awaitTermination(4, TimeUnit.SECONDS);

 } finally {

 this.repository = null;

Chapter 5. The Sequencer Example

42

 }

 }

}

None of the other methods really do anything with ModeShape per se. Instead, they merely work

with the repository using the JCR API.

If we look at the ConsoleInput constructor, it starts the repository and a thread for the user

interface. At this point, the constructor returns, but the main application continues under the user

interface thread. When the user requests to quit, the user interface thread also shuts down the

JCR repository.

public ConsoleInput(SequencerClient client) {

 try {

 client.startRepository();

 System.out.println(getMenu());

 Thread eventThread = new Thread(new Runnable() {

 private boolean quit = false;

 public void run() {

 try {

 while (!quit) {

 // Display the prompt and process the requested operation ...

 }

 } finally {

 try {

 // Terminate ...

 client.shutdownRepository();

 } catch (Exception err) {

 System.out.println("Error shutting down sequencing service and repository: "

 + err.getLocalizedMessage());

 err.printStackTrace(System.err);

 }

 }

 }

 });

 eventThread.start();

 } catch (Exception err) {

 System.out.println("Error: " + err.getLocalizedMessage());

 err.printStackTrace(System.err);

 }

Reviewing the example application

43

}

There is one more aspect of this example that is worth discussing. While the repository

example in the next chapter does show how to use JAAS, this example intentionally

shows how you might integrate a different security system into ModeShape. In the

createSession() method, the RepositoryClient creates a SecurityContextCredentials

wrapper around a custom SecurityContext implementation, then passes that credentials into

the login(Credentials,String) method:

protected Session createSession() throws RepositoryException {

 SecurityContext securityContext = new MyCustomSecurityContext();

 SecurityContextCredentials credentials = new SecurityContextCredentials(securityContext);

 return this.repository.login(credentials, workspaceName);

}

where the custom SecurityContext implementation is as follows:

protected class MyCustomSecurityContext implements SecurityContext {

 /**

 * @see org.modeshape.graph.SecurityContext#getUserName()

 */

 public String getUserName() {

 return "Fred";

 }

 /**

 * @see org.modeshape.graph.SecurityContext#hasRole(java.lang.String)

 */

 public boolean hasRole(String roleName) {

 return true;

 }

 /**

 * @see org.modeshape.graph.SecurityContext#logout()

 */

 public void logout() {

 // do something

 }

Chapter 5. The Sequencer Example

44

}

Obviously you would want to implement this correctly. If you're using ModeShape in

a web application, your SecurityContext implementation would likely delegate to the

HttpServletRequest.

But if you're using JAAS, then you could just pass in a javax.jcr.SimpleCredentials with the

username and password, as long as your JcrConfiguration's repository definitions are set up

to use the correct JAAS login context name (see the repository example in the next chapter). Or,

you could use the approach listed above and supply an instance of the JaasSecurityContext

to the SecurityContextCredentials.

At this point, we've reviewed all of the interesting code in the example application related to

ModeShape. However, feel free to play with the application, trying different things.

5.3. What's next

This chapter walked through running the sequencer example and looked at the example code.

With the sequencer client, you could upload files into a JCR repository, while ModeShape

automatically sequenced the source files you uploaded, extracted the metadata from the files, and

stored that metadata inside the repository.

In the next chapter we'll do the same for the repository example.

Chapter 6.

45

The Repository Example
Chapter 4 walked through the process of downloading and building the examples, while the

previous chapter showed how to run the sequencer example and walked through the code. In

this chapter, we'll run the repository example and walk through that example code to see what

it's doing.

6.1. Running the repository example

The repository example consists of a client application that sets up three ModeShape repositories

(named "Cars", "Airplanes", and "UFOs") and a federated repository ("Vehicles") that dynamically

federates the information from the other three repositories. The client application allows you to

interactively navigate each of these repositories just as you would navigate the directory structure

on a file system.

This collection of repositories is shown in the following figure:

Figure 6.1. Repositories used in the example client

The "Cars" repository is an in-memory repository (using the In-Memory repository connector),

the "Aircraft" repository is a JPA repository (using an in-memory HSQL database using the JPA

repository connector), and the "UFOs" repository is a file system repository (using the File System

repository connector). The federated "Vehicles" repository content is federated from the other

repositories and cached into the "Cache" repository. This is shown in the following figure:

Figure 6.2. Vehicles repository content is federated from the Cars,

Airplanes, UFOs, and Configuration repositories

To run the client application, go to the examples/repository/target/modeshape-example-

repositories-basic.dir/ directory and type ./run.sh. You should see the command-line

client and its menus in your terminal:

Chapter 6. The Repository Example

46

Figure 6.3. Example Client

From this menu, you can see the list of repositories, select one, and navigate through that

repository in a manner similar to a *nix command-line shell (although the client itself uses the JCR

API to interact with the repositories). Here are some of the commands you can use:

Table 6.1. Repository client commands to navigate a repository

Command Description

pwd Print the path of the current node (e.g., the

"working directory")

ls [path] List the children and properties of the node at

the supplied path, where "path" can be any

relative path or absolute path. If "path" is not

supplied, the current working node's path is

used.

cd path Change to the specified node, where "path"

can be any relative path or absolute path. For

example, "cd alpha" changes the current

node to be a child named "alpha"; "cd .."

changes the current node to the parent node;

"cd /a/b" changes the current node to be the

"/a/b" node.

exit Exit this repository and return the list of

repositories.

Note

The first time you access any repository, the application is automatically logging

you in to ModeShape's JAAS-based security system. To make the application

easier to use, it always logs in with the "jsmith" as the username and "secret"

as the password. This matches what is configured in the "jaas.conf.xml" and

Running the repository example

47

"users.properties" files. If you want to confirm that the security feature is

working, change the password in target/modeshape-example-repositories-

basic.dir/users.properties to something else and re-run the application.

After you select a repository and try to view a directory with 'ls', you will get a

LoginException!

If you were to select the "Cars" repository and use some of the commands, you should see

something similar to:

Figure 6.4. Navigating the Cars repository

You can also choose to navigate the "Vehicles" repository, which projects the "Cars"

repository content under the /Vehicles/Cars node, the "Airplanes" content under the /

Vehicles/Airplanes branch, the "UFOs" content under the /Vehicles/UFOs branch, and the

"Configuration" content under /modeshape:system.

Chapter 6. The Repository Example

48

Try using the client to walk the different repositories. And while this is a contrived application, it

does demonstrate the use of ModeShape to federate repositories and provide access through

JCR.

6.2. ModeShape connectors

As mentioned in the Introduction, one of the capabilities of ModeShape is to provide access

through JCR [http://www.jcp.org/en/jsr/detail?id=170] to different kinds of repositories and storage

systems. Your applications work with the JCR API, but through ModeShape you're able to

accesses the content from where the information exists - not just a single purpose-built repository.

This is fundamentally what makes ModeShape different.

How does ModeShape do this? At the heart of ModeShape and it's JCR implementation is a simple

connector system that is designed around creating and accessing graphs. The ModeShape JCR

implementation actually just sits on top of a single repository source, which it uses to access of

the repositories content.

Figure 6.5. ModeShape's JCR implementation delegates to a repository

connector

That single repository connector could access:

• a transient, in-memory repository

• an Infinispan data grid that acts as an extremely scalable, highly-available store for repository

content

• a JBoss Cache instance that acts as a clustered and replicated store for repository content

• a JDBC database used as a store for repository content

• a repository that accesses existing JDBC databases to project the schema structure as read-

only repository content

• a repository that accesses a file systems to present the files and directory structure as

(updatable) repository content

• a repository that accesses an SVN repository to present the files and directory structure as

(updatable) repository content

• a federated repository that presents a unified, updatable view of the content in multiple other

systems (which are accessed via connectors)

http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170

ModeShape connectors

49

Figure 6.6. ModeShape can put JCR on top of multiple kinds of systems

And the ModeShape project has plans to create other connectors, too. For instance, we're going

to build a connector to other JCR repositories. And another to access existing databases so that

some or all of the existing data (in whatever structure) can be accessed through JCR. Of course,

if we don't have a connector to suit your needs, you can write your own.

Figure 6.7. Future ModeShape connectors

Note

You might be thinking that these connectors are interesting, but what do they

really provide? Is it really useful to use JCR to access a relational database rather

than JDBC? Or, why access the files on a file system when there are already

mechanisms to do that?

Maybe putting JCR on top of a single system (like a JDBC database) isn't that

interesting. What is interesting, though, is accessing the information in multiple

systems as if all that information were in a single JCR repository. That's what the

federated repository source is all about. The ModeShape connector system just

makes it possible to interact with all these systems in the same way.

Think of it this way: with ModeShape, you can use JCR to get to the schemas of

multiple relational databases and the schemas defined by DDL files in your SVN

repository and the schemas defined by logical models stored on your file system.

Before we go further, let's define some terminology regarding connectors.

• A connector is the runnable code packaged in one or more JAR files that contains

implementations of several interfaces (described below). A Java developer writes a connector

to a type of source, such as a particular database management system, LDAP directory, source

Chapter 6. The Repository Example

50

code management system, etc. It is then packaged into one or more JAR files (including

dependent JARs) and deployed for use in applications that use ModeShape repositories.

• The description of a particular source system (e.g., the "Customer" database, or

the company LDAP system) is called a repository source. ModeShape defines

a RepositorySource [http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/

connector/RepositorySource.html] interface that defines methods describing the behavior

and supported features and a method for establishing connections. A connector will have

a class that implements this interface and that has JavaBean properties for all of the

connector-specific properties required to fully describe an instance of the system. Use of

JavaBean properties is not required, but it is highly recommended, as it enables reflective

configuration and administration. Applications that use ModeShape create an instance

of the connector's RepositorySource [http://docs.jboss.org/modeshape/2.8.1.Final/api/org/

modeshape/graph/connector/RepositorySource.html] implementation and set the properties for

the external source that the application wants to access with that connector.

• A repository source instance is then used to establish connections

to that source. A connector provides an implementation of

the RepositoryConnection [http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html] interface, which defines methods for

interacting with the external system. In particular, the execute(...)

method takes an ExecutionContext [http://docs.jboss.org/modeshape/2.8.1.Final/api/org/

modeshape/graph/ExecutionContext.html] instance and a Request [http://docs.jboss.org/

modeshape/2.8.1.Final/api/org/modeshape/graph/request/Request.html] object. The object

defines the environment in which the processing is occurring, including

information about the JAAS Subject [http://java.sun.com/javase/6/docs/api/javax/security/

auth/Subject.html] and LoginContext [http://java.sun.com/javase/6/docs/api/javax/security/

auth/login/LoginContext.html]. The Request [http://docs.jboss.org/modeshape/2.8.1.Final/api/

org/modeshape/graph/request/Request.html] object describes the requested operations

on the content, with different concrete subclasses representing each type of activity.

Examples of commands include (but not limited to) getting a node, moving a

node, creating a node, changing a node, and deleting a node. And, if the

repository source is able to participate in JTA/JTS distributed transactions, then

the RepositoryConnection [http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/

graph/connector/RepositoryConnection.html] must implement the getXaResource() method

by returning a valid javax.transaction.xa.XAResource object that can be used by the

transaction monitor.

As an example, consider that we want ModeShape to give us access through JCR to

the schema information contained in a relational database. We first have to develop

a connector that allows us to interact with relational databases using JDBC. That

connector would contain a JdbcMetadataSource [http://docs.jboss.org/modeshape/2.8.1.Final/

api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html] Java class that

implements RepositorySource [http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/

graph/connector/RepositorySource.html], and that has all of the various JavaBean properties for

setting the name of the driver class, URL, username, password, and other properties. If we add

http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/ExecutionContext.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/request/Request.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/Subject.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/Subject.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/Subject.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/LoginContext.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/request/Request.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositoryConnection.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/connector/meta/jdbc/JdbcMetadataSource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html
http://docs.jboss.org/modeshape/2.8.1.Final/api/org/modeshape/graph/connector/RepositorySource.html

Reviewing the example repository application

51

a JavaBean property defining the JNDI name, our connector could look in JNDI to find a JDBC

DataSource instance, perhaps already configured to use connection pools.

Note

Of course, before you develop a connector, you should probably check the

list of connectors [http://docs.jboss.org/modeshape/latest/manuals/reference/html/

provied-connectors-part.html] ModeShape already provides out of the box. With

this latest release, ModeShape already includes this JDBC metadata connector!

And we're always interested in new connectors and new contributors, so please

consider developing your custom connector as part of ModeShape.

So with this very high-level summary, let's dive a little deeper and look at the repository example.

6.3. Reviewing the example repository application

Recall that the example repository application consists of a client application that sets up a

repository service and the repositories defined in a configuration repository, allowing the user to

pick a repository and interactively navigate the selected repository. Several repositories are set up,

including several standalone repositories and one federated repository that dynamically federates

the content from the other repositories.

The example is comprised of 2 classes and 1 interface, located in the src/main/java directory:

 org/modeshape/example/repositories/ConsoleInput.java

 /RepositoryClient.java

 /UserInterface.java

RepositoryClient is the class that contains the main application. It uses an instance of the

UserInterface interface to methods that will be called at runtime to obtain information about

the files that are imported into the standalone repositories and the JAAS CallbackHandler

implementation that will be used by JAAS to collect the authentication information. Finally, the

ConsoleInput is an implementation of this that creates a text user interface, allowing the user

to operate the client from the command-line. We can easily create a graphical implementation of

UserInterface at a later date, or we can also create a mock implementation for testing purposes

that simulates a user entering data. This allows us to check the behavior of the client automatically

using conventional JUnit test cases, as demonstrated by the code in the src/test/java directory:

 org/modeshape/example/sequencers/RepositoryClientTest.java

http://docs.jboss.org/modeshape/latest/manuals/reference/html/provied-connectors-part.html
http://docs.jboss.org/modeshape/latest/manuals/reference/html/provied-connectors-part.html
http://docs.jboss.org/modeshape/latest/manuals/reference/html/provied-connectors-part.html

Chapter 6. The Repository Example

52

 /RepositoryClientUsingJcrTest.java

If we look at the RepositoryClient code, there are a handful of methods that encapsulate the

various activities.

Note

Some of the code samples included in this book have had some of the error

handling and comments removed so that the code is more readable and concise.

The main(String[] argv) method is of course the method that is executed when the application

is run. This code creates the ModeShape configuration by loading it from a file.

// Set up the JAAS provider (IDTrust) and a policy file (which defines the "modeshape-jcr" login

 config name)

IDTrustConfiguration idtrustConfig = new IDTrustConfiguration();

try {

 idtrustConfig.config("security/jaas.conf.xml");

} catch (Exception ex) {

 throw new IllegalStateException(ex);

}

// Now configure the repository client component ...

RepositoryClient client = new RepositoryClient();

for (String arg : args) {

 arg = arg.trim();

 if (arg.equals("--api=jcr")) client.setApi(Api.JCR);

 if (arg.equals("--api=modeshape")) client.setApi(Api.ModeShape);

 if (arg.equals("--jaas")) client.setJaasContextName(JAAS_LOGIN_CONTEXT_NAME);

 if (arg.startsWith("--

jaas=") && arg.length() > 7) client.setJaasContextName(arg.substring(7).trim());

}

// And have it use a ConsoleInput user interface ...

client.setUserInterface(new ConsoleInput(client, args));

The first block sets up the JAAS provider to be the IDTrust library and a policy file that defines

the "modeshape-jcr" JAAS configuration.

Reviewing the example repository application

53

The second block of code instantiates the RepositoryClient and passes in some options

determined from the command-line. It then sets the user interface (which then executes its

behavior, which we'll see below).

The startRepositories() method builds the JcrEngine component from the configuration,

starts the engine, and obtains the JCR javax.jcr.Repository instance that the client will use.

Note that the client has not yet obtained a javax.jcr.Session instance, since this will be done

each time the client needs to access content from the repository. (This is actually a common

practice according to the JCR specification, since Sessions are lightweight.)

public void startRepositories() throws IOException, SAXException {

 if (engine != null) return; // already started

 // Load the configuration from a file, as provided by the user interface ...

 JcrConfiguration configuration = new JcrConfiguration();

 configuration.loadFrom(userInterface.getRepositoryConfiguration());

 // Now create the JCR engine ...

 engine = configuration.build();

 engine.start();

 ...

 // For this example, we're using a couple of in-memory repositories (including one for the

 // configuration repository). Normally, these would exist already and would simply be accessed.

 // But in this example, we're going to populate these repositories here by importing from files.

 // First do the configuration repository ...

 String location = this.userInterface.getLocationOfRepositoryFiles();

 // Now import the content for the two in-memory repositories ...

 Graph cars = engine.getGraph("Cars");

 cars.importXmlFrom(location + "/cars.xml").into("/");

 Graph aircraft = engine.getGraph("Aircraft");

 aircraft.importXmlFrom(location + "/aircraft.xml").into("/");

}

This method does a number of different things. First, it checks to make sure the repositories are not

already running; if so the method just returns. Then, it creates a ModeShape JcrConfiguration

instance and loads the configuration from a file provided by the user interface. It then creates the

JcrEngine from the configuration and starts it. Finally, it obtains the location of the content files

Chapter 6. The Repository Example

54

from the user interface, and imports them into the "Cars" and "Aircraft" repositories. Again, this

is done to keep the example simple.

The shutdown() method of the example then logs out and requests that the JcrEngine instance

shut down and, since that may take a few moments (if there are any ongoing operations or

enqueued activities) awaits for it to complete the shutdown.

public void shutdown() throws InterruptedException, LoginException {

 logout();

 if (engine == null) return;

 try {

 // Tell the engine to shut down, and then wait up to 5 seconds for it to complete...

 engine.shutdown();

 engine.awaitTermination(5, TimeUnit.SECONDS);

 } finally {

 engine = null;

 }

}

A few of the other methods in the RepositoryClient class deal with the JAAS LoginContext.

When needed, the client will authenticate the user (by asking the user interface for a callback

handler that will be called when the authentication information is needed). The resulting

authenticated LoginContext is wrapped by a custom javax.jcr.Credentials implementation.

As long as the Credentials implementation has a getLoginContext() method that returns a

LoginContext object, ModeShape's repository implementation will use that context to create the

javax.jcr.Session. (Of course, the javax.jcr.SimpleCredentials can also be used to create

a Session, and ModeShape will then attempt to use JAAS to authenticate the user given by the

credentials.)

The getNodeInfo(...) method of the example is what is called when the properties and children

of a particular node are requested by the user interface. (In the console user interface, this

happens when the user navigates the graph structure.) There are really two different behaviors

to this method, depending upon whether the JCR API is to be used or whether the ModeShape

Graph API is to be used. The portion that uses JCR is shown below:

JcrRepository jcrRepository = engine.getRepository(sourceName);

Session session = null;

if (loginContext != null) {

 // Could also use SimpleCredentials(username,password) too

 Credentials credentials = new JaasCredentials(loginContext);

Reviewing the example repository application

55

 session = jcrRepository.login(credentials);

} else {

 session = jcrRepository.login();

}

try {

 // Make the path relative to the root by removing the leading slash(es) ...

 pathToNode = pathToNode.replaceAll("^/+", "");

 // Get the node by path ...

 Node root = session.getRootNode();

 Node node = root;

 if (pathToNode.length() != 0) {

 if (!pathToNode.endsWith("]")) pathToNode = pathToNode + "[1]";

 node = pathToNode.equals("") ? root : root.getNode(pathToNode);

 }

 // Now populate the properties and children ...

 if (properties != null) {

 for (PropertyIterator iter = node.getProperties(); iter.hasNext();) {

 javax.jcr.Property property = iter.nextProperty();

 Object[] values = null;

 // Must call either 'getValue()' or 'getValues()' depending upon # of values

 if (property.getDefinition().isMultiple()) {

 Value[] jcrValues = property.getValues();

 values = new String[jcrValues.length];

 for (int i = 0; i < jcrValues.length; i++) {

 values[i] = jcrValues[i].getString();

 }

 } else {

 values = new Object[] {property.getValue().getString()};

 }

 properties.put(property.getName(), values);

 }

 }

 if (children != null) {

 // Figure out which children need same-name sibling indexes ...

 Set<String> sameNameSiblings = new HashSet<String>();

 for (NodeIterator iter = node.getNodes(); iter.hasNext();) {

 javax.jcr.Node child = iter.nextNode();

 if (child.getIndex() > 1) sameNameSiblings.add(child.getName());

 }

 for (NodeIterator iter = node.getNodes(); iter.hasNext();) {

 javax.jcr.Node child = iter.nextNode();

 String name = child.getName();

 if (sameNameSiblings.contains(name)) name = name + "[" + child.getIndex() + "]";

Chapter 6. The Repository Example

56

 children.add(name);

 }

 }

} catch (javax.jcr.ItemNotFoundException e) {

 return false;

} catch (javax.jcr.PathNotFoundException e) {

 return false;

} finally {

 if (session != null) session.logout();

}

This code is literally just using the standard JCR API. First, it obtains a javax.jcr.Session

instance (using the available LoginContext), finds the desired javax.jcr.Node, copies the

properties and names of the children into collections supplied by the caller via method parameters,

and finally logs out of the session.

The ModeShape Graph API is actually an internal API used within the different components of

ModeShape (including the connector and sequencer frameworks), and provides low-level access

to the exact same content. Though we do not recommend using this API in your client applications,

if you need to write a connector or sequencer, you may need to know how to use the Graph API.

Here is the portion of the getNodeInfo(...) method that does the exact same operation as the

JCR code shown above:

// Use the ModeShape Graph API to read the properties and children of the node ...

ExecutionContext context = loginContext != null ? this.context.create(loginContext) : this.context;

Graph graph = engine.getGraph(context, sourceName);

graph.useWorkspace("default");

org.modeshape.graph.Node node = graph.getNodeAt(pathToNode);

if (properties != null) {

 // Now copy the properties into the map provided as a method parameter ...

 for (Property property : node.getProperties()) {

 String name = property.getName().getString(context.getNamespaceRegistry());

 properties.put(name, property.getValuesAsArray());

 }

}

if (children != null) {

 // And copy the names of the children into the list provided as a method parameter ...

 for (Location child : node.getChildren()) {

 String name = child.getPath().getLastSegment().getString(context.getNamespaceRegistry());

 children.add(name);

Reviewing the example repository application

57

 }

}

Note that this code is significantly shorter than the equivalent code based upon the JCR API. This

is in part because the Graph API doesn't have the notion of a stateful session. But some of it also

is simply because the Graph API design requires less code to do the same kinds of operations.

None of the other methods in the RepositoryClient really do anything with ModeShape or JCR

per se. Instead, they really facilitate interaction with the user interface.

If we look at the ConsoleInput constructor, it starts the repository and a thread for the user

interface. At this point, the constructor returns, but the main application continues under the user

interface thread. When the user requests to quit, the user interface thread also shuts down the

JCR repository.

public ConsoleInput(SequencerClient client) {

 try {

 client.startRepositories();

 System.out.println(getMenu());

 Thread eventThread = new Thread(new Runnable() {

 private boolean quit = false;

 public void run() {

 try {

 while (!quit) {

 // Display the prompt and process the requested operation ...

 }

 } finally {

 try {

 // Terminate ...

 client.shutdown();

 } catch (Exception err) {

 System.out.println("Error shutting down repository: "

 + err.getLocalizedMessage());

 err.printStackTrace(System.err);

 }

 }

 }

 });

 eventThread.start();

 } catch (Exception err) {

 System.out.println("Error: " + err.getLocalizedMessage());

Chapter 6. The Repository Example

58

 err.printStackTrace(System.err);

 }

}

At this point, we've reviewed all of the interesting code in the example application related to

ModeShape. However, feel free to play with the application, trying different things.

6.4. What's next

This chapter walked through running the repository example and looked at the example code.

This example allowed you to walk through multiple repositories, including one whose content was

federated from multiple other repositories. This was a very simplistic example that only took a few

minutes to run.

In the next chapter we'll wrap up by summarizing what we've learned about ModeShape and

provide information about where you can find out more about ModeShape.

Chapter 7.

59

Wrapping Up
This document provides a very high-level overview of ModeShape, introducing you to some

basic concepts and showing what would be required to use ModeShape in your own

application. We saw two simple examples that showed two different aspects of ModeShape: the

sequencing system and the connector system. Each of these examples showed how to create

a ModeShape configuration, how to start up the ModeShape engine, and how to then access a

javax.jcr.Repository instance, and after that your application just uses the standard JCR API.

For a more in-depth description of ModeShape and the internal workings, see our Reference

Guide [http://docs.jboss.org/modeshape/2.8.1.Final/manuals/reference/html/index.html]. This

also describes how to write your own custom sequencers or connectors. If you have any questions

or comments, please feel free to contact ModeShape's user mailing list [mailto:modeshape-

users@lists.jboss.org], use our discussion forums [http://community.jboss.org/community/

modeshape], or chat with the developers in the IRC chat room [http://www.jboss.org/modeshape/

chat.html]. If you find a bug or have a suggestion, please let us know or (better yet)

create a new issue in the project's JIRA issue management system [http://jira.jboss.org/

browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel] . If there's

something in particular you're interested in, talk with the community - there may be others

interested in the same thing.

7.1. Future directions

Although ModeShape 2.8.1.Final includes several improvements and minor features, this release

is primarily a bug-fix release, with numerous fixes for issues reported against 2.1 and 2.2. For

details, see the release notes [http://docs.jboss.org/modeshape/2.8.1.Final/release.html].

ModeShape implements all of the required JCR 2.0 features: repository acquisition,

authentication, reading/navigating, query, export, node type discovery, and permissions

and capability checking. ModeShape also implements most of the optional JCR 2.0

features: writing, import, observation, workspace management, versioning, locking, node type

management, same-name siblings, orderable child nodes, and shareable nodes. The remaining

optional features (access control management, lifecycle management, retention and hold, and

transactions) may be introduced in future versions.

Over the next few releases, we'll be adding more sequencers, connectors, and making a variety of

improvements and bug fixes. Other items on our long-term roadmap include a web user interface,

Seam integration, and integration with even more kinds of information systems and repositories.

7.2. Getting involved

If you're interested in getting involved with the ModeShape project, take a look at our

community pages [http://www.jboss.org/modeshape/community.html], and consider picking

up one of the sequencers or connectors on our roadmap [http://jira.jboss.org/browse/

MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel]. Or, check out

http://docs.jboss.org/modeshape/2.8.1.Final/manuals/reference/html/index.html
http://docs.jboss.org/modeshape/2.8.1.Final/manuals/reference/html/index.html
http://docs.jboss.org/modeshape/2.8.1.Final/manuals/reference/html/index.html
mailto:modeshape-users@lists.jboss.org
mailto:modeshape-users@lists.jboss.org
mailto:modeshape-users@lists.jboss.org
http://community.jboss.org/community/modeshape
http://community.jboss.org/community/modeshape
http://community.jboss.org/community/modeshape
http://www.jboss.org/modeshape/chat.html
http://www.jboss.org/modeshape/chat.html
http://www.jboss.org/modeshape/chat.html
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://docs.jboss.org/modeshape/2.8.1.Final/release.html
http://docs.jboss.org/modeshape/2.8.1.Final/release.html
http://www.jboss.org/modeshape/community.html
http://www.jboss.org/modeshape/community.html
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:roadmap-panel

Chapter 7. Wrapping Up

60

JIRA [http://jira.jboss.org/browse/

MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel] for the list of

features we've thought of. If you think of one that's not there, please add it to JIRA!

http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel
http://jira.jboss.org/browse/MODE#selectedTab=com.atlassian.jira.plugin.system.project:summary-panel

	ModeShape
	Table of Contents
	What this book covers
	Chapter 1. Introduction
	1.1. ModeShape
	1.2. What's next

	Chapter 2. ModeShape Use Cases
	2.1. Service repository
	2.2. Manage data sources and services
	2.3. Configuration repository
	2.4. What's next

	Chapter 3. Using ModeShape
	3.1. JCR's RepositoryFactory
	3.1.1. ModeShape's RepositoryFactory Properties

	3.2. ModeShape Configuration Files
	3.2.1. Example configuration file

	3.3. Using ModeShape in Web Applications
	3.3.1. Deploying ModeShape to JBoss AS
	3.3.2. Deploying ModeShape to Tomcat

	3.4. Setting the Classpath
	3.4.1. Building against ModeShape via Maven
	3.4.1.1. Using the JBoss Maven repository
	3.4.1.2. Add dependency to ModeShape

	3.4.2. Add dependencies for logging
	3.4.3. Building against ModeShape via JARs

	3.5. What's next

	Chapter 4. Building the example applications
	4.1. Downloading and compiling
	4.2. What's next

	Chapter 5. The Sequencer Example
	5.1. Running the sequencing example
	5.2. Reviewing the example application
	5.3. What's next

	Chapter 6. The Repository Example
	6.1. Running the repository example
	6.2. ModeShape connectors
	6.3. Reviewing the example repository application
	6.4. What's next

	Chapter 7. Wrapping Up
	7.1. Future directions
	7.2. Getting involved

