PostgreSQL 8.4.1 Documentation

The PostgreSQL Global Development Group

PostgreSQL 8.4.1 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2009 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2009 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCI-
DENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HERE-
UNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

Preface xlviii
1. What 1S POStZIESQLT ...ccueiiiiiiiiiiieieneeteerte ettt st s xlviii
2. A Brief History of POStZreSQLu........oooiiiiiiiieiieie ittt ettt ettt saeesane s xlix

2.1. The Berkeley POSTGRES ProJeCtcccveeuieniierieiiieiieieeeieeieeieesiee e eie et sve e xlix
2.2, POSEEIESOS ..ottt ettt ettt et sttt e bt e st e et e e bt e atesabe e be e aaenaresatean 1
2.3, POSEEIESQLoi ittt ettt st st e st e et e et e e st b e sabe e be e aaesaaesatean 1
3. COMVEINTIONS ...ttt ettt ettt ettt st ettt st et s bt e st esaeeat e bt sbeesb e bt eeeeaesaeenaesbeemnenbesunennenne li
4. Further INfOrmation........cocoviiriirieiiiniiriec ettt sttt ettt sae e li
5. Bug Reporting GUIEIINES........oevieiieriirieeiieiteste ettt sttt ettt ettt st st e et e sbaesabesabeenes lii
5.1, TAentifying BUZSooueiiiiiiiiieeieeste ettt ettt ettt sttt st lii
5.2, WAL 10 TEPOT..cuveiiieiiieetieiiteeteette sttt ettt sb et s e bt e st e sat e e bt e bt e satesabe e bt esaeesabeenseenseens liii
5.3. WHETe 1O TEPOTE DUZSeeuviiiiieiiiiiesite ettt ettt ettt ettt e st et et e st esatesabeesbeesanesane Iv
I. Tutorial 1
1. GENG STATTEA ...cueeieeiieieeiieie ettt ettt et st ae e e sne s enesneae 1
1.1 INSEALIALION ..ttt ettt et e e e e sbe e et e e bt e sbaesbeebeenne 1
1.2. Architectural Fundamentals.............coceeiiiiiiiiiriiiiiiiieeeeecteeeeeete et 1
1.3. Creating @ Databasececveruieuierieeieeiesie ettt ettt et ese et et e eesae et ete e ens 2
1.4, AcCeSSING @ DAtaDASEccveeuieiietieiiiieiere ettt ettt ettt naeene 3
2. The SQL LaNZUAZEooueeuieiieeieie ettt ettt ettt et ettt et sttt esbe e st e e sb e et e steeatenbesseenbenbeans 6
2.1, INEEOAUCTION 1.utiiieitiiieteet ettt ettt b e et b et e bt eat e te e bt e e e s beene e beebeeneeneeeae 6
2.2 CONCEPLS ...eneeeeeieeteettete et ettt et et s bt et e bt e b et e e bt e st e sbeea e et e ebees e bt eaeenbesbeemtesbeestenbeebeeneeneeene 6
2.3. Creating @ NeW TabIecccoiiiiiiiiiiieieeeeeee ettt 6
2.4. Populating a Table With ROWScccoeriiiiiiiiiiieiectee e 7
2.5. QUErYING @ TaADIEooueiiiiiiiiiiiiiee ettt 8
2.6. J0Ins BetWeen Tables.cccoiiiiiriiriiiiiieieneeteestee ettt s 10
2.7. AgEregate FUNCHIONScoeeviiiiiiirieeiteteeteeteste ettt sttt sbe e eaees 12
2.8 UPAALES ...ttt sttt ettt ettt ettt et b ettt e b et bbb bbb et b enees 14
2.9, DIETIONS ...ttt sttt ettt ettt ettt st e e b e eb et ebeetesbe et e b e et b et sbeeneesaeenaen 14
3. AdVANCEA FRATUIES ...cuiiiiiiiiiiiiiiieiteteecee ettt ettt ettt s ettt st et sbe e sbeeneen 16
3.1 INEEOAUCTION 1.ttt ettt sttt ettt bbbt sbeeneesueenees 16
3.2 VIBWS ittt ettt ettt ettt st h ettt e be et bbbttt ebe et saeeneen 16
3.3, FOTEIZN KBYS....iiiiiiiieiieiieete ettt ettt ettt ettt sttt e sat e st e st e ebeesaeesaseensaensee e 16
34, TTANSACHIONS ..c.eevteniiiietieteete sttt ettt ettt et et st e e b e eet et eae e aesaeess e besbn et e sbeeneesaeennen 17
3.5. WIndOW FUNCHONSoouiriiiiniiiieniinieieeieetentcet ettt ettt et sae e e 19
3.6. INHETILANCE ..ottt ettt et sbe e s 22
3.7 CONCIUSION ...ttt sttt ettt ettt et ettt e b e et eae e saeess e b san et sbeeneesaeennen 24

I1. The SQL Language 25

4. SQL SYNEAX ..entiiieiieiieiee ettt ettt e sttt a e et st e n et ne et s re e neeane 27

4.1, LeXiCal SIUCTUTE.eiitieiiieieeieeite ettt ettt et ettt st e bt et st e nbeesaeesaee s 27
4.1.1. Identifiers and Key Words.........ccoceeviiriiniiiniiniinieieeeetceeeeesee e 27

A 1.2, CONSLANLS .euvteeieeuieeieeeite et et et te sttt et e bt e sat e et e bt esbe e s bt e bt esbeesabeebeenbeesaseeseenseenas 29
4.1.2.1. String CONSLANLScceiuiiiiiiiiriiiiiiieeee ettt e 29

4.1.2.2. String Constants with C-Style ESCapescccocevveveeirenenenenreneecnnenen 29

4.1.2.3. String Constants with Unicode Escapes..........cccceeeeieneneenenenieniennenne 30

4.1.2.4. Dollar-Quoted String CONSLANTSccerueerieriieieniieiieee e 31

iii

4.1.2.5. Bit-String CONSANESeevveeruieriieiienienieeieenieesteeteesieesiresateesaeesieesaees 32

4.1.2.6. NUMETIC CONSLANLSeeverurenriniieiintieieeienitetenieeenenteereenaeseeesne e saeensesaeenne 32

4.1.2.7. Constants of Other TYPEScccueevuerrrierieriiiiiienieeree ettt 33

1.3, OPCTALOTS ...ueeneieeiiieieeeite ettt ettt et e bt e s et e s bt e bt e sbtesabeebeesaeesabeeseesbeesaseeseenseenan 34

4. 1.4, SPECTial CharACLEIS....ccoueiruieeiieniieniieeitette ettt e rite sttt ettt e sttt sbeesbeesareebeesaee e 34
4.1.5. COMMENLScueniiiiriiieiieie ettt ettt ettt n e e e e st ne s b e nesaeenee 35
4.1.6. LeXical PreCEARICEcooviiiieiiiriiiiiteiteeite ettt ettt 35

4.2. Value EXPIEeSSIONS.coouiiiiiiiiiiiiiieiee ettt ettt s 37
4.2.1. Column REfEIENCEScouiiiiiiiiniiiiteitere ettt 37
4.2.2. Positional Parameters........c.cceeveeriiriiinieniiiieeteste ettt 38
4.2.3. SUDSCIIPES ..ttt e e e 38
4.2.4. Field SEIECLIONoeuieuiiiieiieiecteeete ettt ettt st e e ene s 39
4.2.5. Operator INVOCATIONScceecuiiiiiiiiiiieie et 39
4.2.6. FUNCHION CallS ..ottt st 39
4.2.77. Aggregate EXPreSSIONS.eeruiitirieriieiieienttete ettt sttt et te b eeee e see s 40
4.2.8. Window Function Calls...........cceeoieiiiiininieieneeieieseee e 40
4.2.9. TYPE CASS ...t e s 42
4.2.10. Scalar SUDQUETIEScoouerteriertirieieeitete ettt ettt see e 42
4.2.11. Array CONSLIUCLOTScevirutenietieiteteeitetesteente st st ete st eeate st sieesee bt etenbesssensesbeene 43
4.2.12. ROW CONSLIUCTOTScueenviitemienteeiteteeitete st este st sitetesteeatesteeseentesbeeaesbesssensesbeenes 44
4.2.13. Expression Evaluation RuUlesccccoocoviiiininiininiiiecceecceeee 46

5. Datad DEIINITION ...ccuveieiiieiertieteeieetee ettt sttt ettt et sttt st e e b e b et bt e e e sbeeneen 48
5.1 TabIE BASICS ...veeuieniiiiiiieiieieseetet ettt ettt ettt ettt s 48
5.2. Default VAlUESccueeuiiriiriiiiirieteieeteeet ettt ettt et sbe e s 49
5.3 COMSITAINES ..ttt sttt ettt ettt ettt et st et e b ebt et ebeebesaeesb e beebaentesbeeneesaeeneen 50
5.3.1. Check CONSLIAINESccveeueeiirieeiinieeiieieeitete ettt ettt ettt st sbeene 50
5.3.2. NOt-NUIL CONSIAINEScveeuriieeniinieeiieieeieteetcete sttt ettt este e eae b saeenesbeene 52
5.3.3. UnNiQUE CONSLIAINES. ..cuveerureriieiieniienieeitentee et eieesieesiteebeeteesstessbesnseesseesssesasesnses 53
5.3.4. Primary KEYS....ouioouieiieiieiiieitese ettt ettt st st 54
5.3.5. FOT@IN KEYS ..couiiiiiiiiiiiieiieetee ettt ettt st s e e 55

5.4, SyStEM COIUMMNSuvieiiiiieiiteeieeite sttt ettt ete et et e st e e bt e sbtesabesabeebeesaeesaseensaenseenas 57
5.5. MOAIfying TabIES......cccueeviiiriieiieiieite ettt ettt ettt st b et esabeenbeenaee e 59
5.5.1. Adding @ COlUMMN....cc.eoriiiiiiiieie ettt 59
5.5.2. Removing @ COIUMIccoiiiiiiiiiiiiinicieeceeceeeeee e 60
5.5.3. Adding @ CONSIIAINTcocuirmieiiiriirieieeiete ettt 60
5.5.4. Removing @ CONSIIAINEccueevuiriirieieeietieeeeiese et 60
5.5.5. Changing a Column’s Default Value...........cccccccooiiiiiiiniiiniiiiiceneeeee 61
5.5.6. Changing a Column’s Data TYPecc.coceeviiriiiiniiiiicceeeeeeee e 61
5.5.7. Renaming a ColUMNcccocoiiiiiiiiiiiiiiiiiieeeeeeeeee e 61
5.5.8. Renaming @ TabIecccoeiuirieiiiiiiieeeee e 61

5.6, PLIVIIEEZES ..ttt ettt b ettt et s ae et b e en et ene e eae s 62
5.7 SCREIMAS ...ttt ettt ettt st et b st e bt eat et s ae et e b et eneeneesae s 62
5.7.1. Creating @ SCREMAcc.iiiiiiiiiiiieeee et 63
5.7.2. The PUBIIC SChEMAc..oouiiiiiiiiiiieieeeee e 64
5.7.3. The Schema Search Path...........ccocoooiiiiiiiiiiieeeee e 64
5.7.4. Schemas and Privileges..........cooeririeniinieiiinieeseeeee e 66
5.7.5. The System Catalog SChemaccccoerieiiniininirieeeecee e 66
5.7.6. USAZE PALEINISc.veuiiniiiieiieieeiesieeiteteeit ettt ettt sttt 66

5.7 7. POTEADIIILY ..ottt ettt et st et 67

5.8 INNETILANCE ...t 67
581 CAVEALS ..t 70

5.9, PaTtitIONING ..ccuveevieiiiieieeiieeite ettt ettt et st e st e bt e st e sab e e bt e sbeesatesabeebeesaeesabeenbaenbee e 71
5.9 1. OVEIVIEW ..eiiiiiiii e 71
5.9.2. Implementing Partitioningccceeeeieruinienienierieneneereeeeeeseeeesre e 71
5.9.3. Managing Partitionscc.coceevueririenienieiiinieieseereese e 74
5.9.4. Partitioning and Constraint EXCIUSIONcccceceniriiiiiniiiiiniiiiieeceeee 75
5.9.5. Alternative Partitioning Methods............cccoeieiiniiiiiiiniiinceeecee 77
5.9.6. CAVEALS ...ttt ettt ettt sttt et ettt st b e sttt e b e et 77

5.10. Other Database ODJECLScccueiuiriiiiiiiiiie ettt et s 78
5.11. Dependency TracKingcooceerueiieieiieieeiese ettt sttt s 78
6. Data ManipULAtiOn.........eoueetieiieiieieie ettt ettt ettt et et b et e st estesaesseenae s bt esteteeneeneesneenean 80
6.1. INSErtiNg DALAcoiuiiiiiiieiiee ettt sttt b et e enaan 80
6.2. UPating Data......ccueeuiiiieeieieeieeieieete ettt ettt ettt et ee bt et e b e et eae et sae s 81
6.3, DEleting DIAta.......ccueeuieiieiieiieiieteeteee ettt b ettt sttt ebe et b eaean 82
T QUBTICS .. eeetieeete e ettt e ettt e et e e et e e e teeeeaeeeeaeeeeateeeetteeeeasaeeateseesaeeeateeeeabeseeateeeeataeeatteeenaaeeenreaaan 83
T 1 OVEIVIEW ..ttt ettt ettt b ettt e at et s bt et e b e ea e e bt ebeeste s bt e st e nbeebeenteeaeenee 83
7.2. TabIe EXPIESSIONScveeuieiieiiitieitenteeitete ettt ettt et ettt et sb e bttt sbe et b estenbesbeentesaeenee 83
7.2.1. The FROM CIAUSE.....c.ceeruiriiriiriiieiieiieiteiteteteteteit et sttt 84
7.2.1.1. JOINed Tablescc.ccueieiiiiiiiniiicieieceeeeee s 84

7.2.1.2. Table and Column ALASES........ccccueieiririinienieieeeeeere e 87

7.2.1.3. SUDQUETIES «..cveeniiieiiiiieieeie ettt sttt 89

7.2.1.4. Table FUNCHONSccoocueiiiiiiiiiniiicieiecec et 89

7.2.2. The WHERE ClaUSE.....ccoviviiiiiiiiiiiiiiiiiicic s 90
7.2.3. The GROUP BY and HAVING ClauSes........cccccueviririririiieiiieinisieieeeeeeeeenee 91
7.2.4. Window Function ProCESSINGcceeveeriieriieiieeniienieeieeieesiteete et sve e 93

7.3 SEIECE LSS ...t e 94
7.3.1. Select-List ILEMScc.ccoeiiiiiiniiiiiiiiiiieece e 94
7.3.2. Column Labelsccocoiiiiiiniiiiiiiiiiic 95

733 DISTINCT wooveieriniitinieteseetese ettt s ettt ettt ess e s a s a e a et sseaens 95

7.4, COMDINING QUETIESccuveeriiiriteeieentieeteeteenttesiteeteesbeesitesateebeesatesatesabeesbaessaesateenbeesseesnsean 96
T.5. SOTHING ROWS ..iiiiiiiiiteeciteeeet ettt et ettt sttt e st st e sbeesaeesaee s 96
7.6. LIMIT ANd OFFSET.cuiiiiiiiiiiiiiiiiiteieie ettt s 97
TT VALUES LSS 1ttt ettt et s s 98
T8 WITH QUETICS . .eveeeereeeiiieeereeetieeetteesteeeseseeessseeesseeassseeassseesssaessseeeassseessseesssseessssesssssennn 99
8. DALA TYPES .ttt et st ae e e 103
8.1 NUMETIC TYPES...iniiiiiiiiiieieeee ettt s s 104
8L 1. INtEZET TYPES ...t e 105
8.1.2. Arbitrary Precision NUMDETScocuiiieieiiiieiereee e 105

8.1.3. Floating-PoOInt TYPESeecveruirmieieitieieetiee ettt 106
814, SEITaAl TYPES . ..eueeiieuieiietieie sttt ettt ettt sttt ettt b ettt sbe bt et be e nes 108

8.2, MONELATY TYPES -.enntiiuiiiiieeiieeieeetteete ettt ettt st e b e st s e b e sbaesaeeeanees 108
8.3, Character TYPES ..c..eeueeueeieiieiiee ettt ettt ettt b et e bt s ae et bt nae b e e 109
8.4. BINAry Data TYPESeerueeuieiieiieieeieeteste ettt ettt ettt sttt ettt 111
8.5, DAte/TIME TYPES....eeueeeiriieiieiieteeitete sttt ettt ettt et b et bt et e bt bt e e bt sae b eaeenee 113
8.5.1. Date/Time INPUL ...c.coouiiiiiiiiiiieeee ettt 114
8.5 1. 1. DALES ..o e 115

8.5. 1.2 TIMES .. 115

8.5.1.3. TIME STAMPS ...eerurieniiiiieiieiieeitesite sttt ettt et st st e ebeesaeesaeeens 116

8.5.1.4. SPecial VAlUEScc.eevuieriiiiiiiieiierieeieeteste ettt sttt 117

8.5.2. Date/Time OULPULeeviiiiiiiiiiiieite sttt sttt ettt e st e be b e 118
8.5.3. TIME ZONES ...ttt 119
8.5.4. Interval INPUL.....c..coiiiiiiiiiie e 120
8.5.5. INterval OULPULcoueeiiiieiiiiiieteeeeetete et s 122
8.5.6. INtEINALS......ouiiiiiiiiiei e e 123

8.6. BOOLEAN TYPEC ... e 123
8.7. Enumerated TYPESco.cooueiiiiiiiieiet et e 124
8.7.1. Declaration of Enumerated TYpPes...........cccceiririininiiiiniicni e 124

8. 7.2 OTAETING ...ttt ettt ettt sttt sbe e st e be e 125
8.7.3. TYPE SALCLY .ottt ettt 125
8.7.4. Implementation Details...........ceoiiieiiiiiiiiii e 126

8.8, GEOMELIIC TYPES .. ueeueitieiietietiete ettt ettt ettt ettt et et s b ettt e et eaeeae s beentenbeeaeenee 126
881 POINLS ..ttt ettt sttt et 127
8.8.2. NG SEZMENLS.......eouieiiiieieriiitieieet ettt sttt et sbe e b e 127
BL8.3. BOXES. ..t s 127
884 PathS ..ot 128
8.8.5. POLYZOMNS. ..ottt 128
8.8.0. CAICIES ...ttt e 128

8.9. Network Address TYPES....c.eeveuereerieririenieniieiesieete sttt sttt ettt sbe e s nbe e 129
80 1. AN 1ottt ettt ettt 129
8.0, 2. LA ATttt ettt 129
8.0.3. AT V8. CAoAT tutiiiriieiirieetere ettt ettt bttt sttt et 130
8.0.4. MACAAAT wotiteitetieeete ettt et s 130

810, Bit STINEZ TYPES ceuvriintieriieetieiterteete ettt ettt st e st e bt e s tesabe e bt esabesabesnbeessnesasesaseas 131
.11, TeXt SEATCH TYPES ..eetieruiertiiiierieete ettt ettt ettt e te st e bt e satesabe e beesanesasesabees 131
Bl L. L. £ SVECEOT tottiiteriit ettt ettt ettt ettt et s e st et e st st e e bt e st e enbeebeeneee 132
Bl L. 2. ESUETY teiietreie e ettt eete e eee e e e et e e e eeatae e e e eetrat e e e eetrreeeeentrreeeeeans 133

12, TUID TYPE ettt ettt ett et s e st sbt e st e st e bt e s atesabeenbeesatesabesabeesasesasesaseas 134
BL13. XML TYPE vttt ettt s e st e be e st e st e bt e sab e st e be e s et e sabeeabeas 135
8.13.1. Creating XML ValUeSscccueeviiriiirieniieiieniteeie ettt sttt st 135
8.13.2. Encoding Handlingc.ccoceevieiieiiiniiniininicieececeneeeese e 136
8.13.3. Accessing XML ValUes.........cccevieiiniieieniinieienieeecieeeeeeee e 136

BLL4. ATITAYS ..ttt sttt sttt et st 137
8.14.1. Declaration Of Array TYPES.....ccccceeieriieieriinieieneeieeeeeeeree e e 137
8.14.2. Array Value INPUL..........ccoiiiiiiiiiiiiiic e 138
8.14.3. ACCESSING ATTAYS ...eviiiiiiiiiiiieieeieeeett ettt et 139
8.14.4. MOAIfYING ATTAYS...c.eieueeeereeenieieeteeieettette et te st et et e e seeestesbesaeeneesseeneenes 141
8.14.5. Searching in ATTAYS......cccereeierieeiieieetiet ettt ettt see et e b s ee b enee s 144
8.14.6. Array Input and OULPUL SYNLAXeeveriieeierieiieierieeitee ettt 144

8.15. COMPOSIEE TYPES ..ottt ettt ettt ettt ettt ettt et e e e b e seenbeeaee e 146
8.15.1. Declaration of COmMPOSIte TYPES....ceerviruierueririeriiniieieeieeee st 146
8.15.2. Composite Value INPUL........coceeriiriiiiiniiiiei et 147
8.15.3. Accessing CompPOSIte TYPES ...ccuevueereriirieriiriieienieeiteeeieeee et 148
8.15.4. Modifying COmpPOSIte TYPES...cuerueeieriireieriiriieienieniteteeteete et 148
8.15.5. Composite Type Input and Output SYNtax.......cceeveeveriereerienenrieneneereeneneenne 149

Vi

8.16. ODbject IAENUIET TYPES ..eevuveeiieriierieeiierteete ettt ettt te sttt e st e ste et e saaesaneeabees 150

817, PSEUAO-TYPES ..ottt ettt ettt ettt ettt e st st e be e st e s bt e bt e satesabesabeesabesaseenseas 151
9. FUNCHIONS aNd OPETALOLS ..uveeeieriiiiiieiieniieeieesitestte st et et e sitesabe e bt e sbtesatesabeesbtesabesasesbeessaesanesns 153
0.1. LOZICAL OPETALOTSeouveeurieiieeiieeitentieete sttt e site st ebeesaeesitesbe e bt esbeesaseebeebeesasesasesaseas 153
0.2, COMPATISON OPETALOTS ..c.uveereierirerieertierierteerteesttesiteebeesitesitesbeesseesbeesabeeseesbeesssesnsesnseas 153
9.3. Mathematical Functions and OPerators..........ccecueeverrieereeniernieesieeneeseeesieesieeseeseesvees 155
9.4. String Functions and OPEIatorscceecueruirierieriieieniieeere ettt eeesreeneenesreeanens 159
9.5. Binary String Functions and OPEratorsccccoeeueruieieniineenieneerenieeeeeeeeesneseenens 172
9.6. Bit String Functions and OPEratorsccccoceevueriieieniieienieieeieneeree et saeenens 174
9.7. Pattern MatChingcccoocoiiiiiiiiiiiie et 175
0. 7.1 LIKE ittt et s 175
9.7.2. SIMILAR TO Regular EXPressionsccccovceereeirenerenienieneenenreneneeeeeeneenes 176
9.7.3. POSIX Regular EXPressionsc.ccccciiiiiiiiiiiiinieienesieiesie e s 177
9.7.3.1. Regular Expression Detailsccoeveeeeieininiinenieneeeninencseeeeeenenne 180

9.7.3.2. Bracket EXPIeSSIONsccccveeruiririnieieieteenieeieeeeeiesie e 182

9.7.3.3. Regular Expression ESCapes..........coccoveeveieiriniinenienieeninenieseeneeenene 183

9.7.3.4. Regular Expression Metasyntax.........coeeveceruenrenrenienneeeenenuensenseneenene 186

9.7.3.5. Regular Expression Matching Rulesc.cccoevevienieiininininicniennnenn. 187

9.7.3.6. Limits and Compatibilityc.cccceeveririieninieninieieneeeeseeceree e 189

9.7.3.7. Basic Regular EXPressionscoeeovereeieninieneneeienieeeesesicenee e 189

9.8. Data Type Formatting FUNCHONScceeviiriiriinieniiiieniceieie ettt 190
9.9. Date/Time Functions and OPerators..........c.cceceeverieeienieeienieneenenieetenesteneeseeneesieennens 196
9.9.1. EXTRACT, QAT E_PATE utiiiiiiieiieeiitieeeeeiitereeeeesreeseeesaereeeeensereessensaseseesessereeeens 200
0.0, 2. AT e £ TUILC teeeeeee et e ettt e e e e e e e e e e e e e e e e e et raaaaaaaaaaaaaaaes 204
9.9.3. AT TIME ZONE..cisisieieiririirieieieteit ettt sttt resae st ese et sa e neenes 205
9.9.4. Current Date/TImecceecueriireeniirieienieeteteeeete ettt ettt st s ennens 206
9.9.5. Delaying EXECULION......ccuiiciteriiiriieiieeieeite ettt sttt siee st ebeesaaesaneens 207

9.10. Enum Support FUNCHIONScccueeiieriienieiiteieesitesie ettt sttt siee st esanesaseenbees 208
9.11. Geometric Functions and OPEratorS..........cceerueerverrieenienierrieenieeneeseeesseesieesvessesvees 209
9.12. Network Address Functions and OPerators...........cecveereeriersieenieeneesieenieenieeseesveennens 213
9.13. Text Search Functions and OPerators...........ccecuevverrieeneeniennieenieeneesieeieesieesieeseeevees 215
0.14. XML FUNCHONSeouviiiiiieiiriteienieeienteetete ettt ettt ae e nesaeene st eae et saeenesaeennens 219
9.14.1. Producing XML CONLENL........ccceeriirrieriiieniieeieeieenite ettt sieesieesaeeenbeesieesaeeens 219
9.14.1.1. XIMLCOMIMENT weerurieiieruieriieeieestte sttt esieesteesieesbeebeesbeesatesaseebeesabesasesaseas 219

.14, 1.2, XML CONCAL tteertrieeririeeiiieeetieeesiteeseteestteesteeesssaeesseeessseeesssasesssasenssenns 220

9.14.1.3. XMLELEMENT terureeeeiieeceiieeitieeeireeeereesrteesteeessaeesseeessseeesssasenssaeessseens 220

.14, 1.4, XINLEOTEST wtviriieeiiieeeieeeiieeesteeeereesteeesteeeesaeeesaeessseeenssaesnnsaeennseeas 222

0. 14 1.5, XIMLPL cutruiriirtiieieteieet ettt sttt ettt ettt et 222

LS T B ST < M I e) AU 223

L 0 B B MY o SRR 223

9.14.1.8. XML PrediCates.coeeverueeierieeiieieeieeeesie ettt 224

9.14.2. Processing XMLccocuviririnienieieiniinenenteeeeeese ettt ere e 224
9.14.3. Mapping Tables to XML........ccccceviririminenieieinenenesteeeeee et 224

9.15. Sequence Manipulation FUNCHONScc.ccveiruirinienieiiiiiineniteceeeeeese e 228
9.16. Conditional EXPreSSIONSccceviruirierierieieiniinienieneeeeiee ettt 230
0.16.1. CASE ettt sttt 230
9.16.2. CORLESCE .utrtiienienieneeiieienie sttt ettt sttt s st sa st ese bt ae e eeneenes 232

0. 103, NULLIF cuteutiuiititeterenteitete ettt et sttt e et sae st et ebe bt ae e e eneenes 232

Vii

9.16.4. GREATEST ANA LEAS T eeiiiiiiureeeeeiitreeeeeiirreeeeeeireeeeeeesssseeeessssseessessseeessmssseeeens 233

9.17. Array Functions and OPETatOrSccueevueerreerierieerieenieeniteeieesieesieesreesseesieesssesneesveas 233
0.18. AgEregate FUNCHOMNScoiiiiiiiiieiieeie ettt sttt et et ebees 235
9.19. WINdOW FUNCHONSc..eruieiiiieieniicieteeccete ettt sttt st e 239
9.20. SUDQUETY EXPIESSIONSeervieeiieriieiieniieiiteteesite sttt et e sttt et e sbeesateebeenbeesaaesaseeabees 241
9.20. 1. EXISTS ittt 241
9.20.2. TNttt ettt ettt ettt ettt et ettt b e bbb b 241
9.20.3. NOT INuutiuiiiieiieieeieetesie et ettt et st e et e et e ete e e sae et e ae st et e s b e e e eaeeaeennesaeennens 242
9.20.4. ANY/SOME ..ueieuieiiiieetenieeieete ettt sttt et sae et st s et eaeeae et enesaeeanens 243
9.20.5. AL ittt et s 243
9.20.6. ROW-WiS€ COMPATISON......cuiiuiiiiiiiiiiiieiieieeieeee sttt et 244

9.21. Row and Array COMPATISOMSc..cocueruieiiriiiiieieniieiete et ee e e 244
0. 211 IN ettt ettt bbbt ebes 244
9.21.2. NOT INuuiiiiiiiiieie ittt st st st e s 244
9.21.3. ANY/SOME (AITAY) .veevveerreerurerreenieeniteeteenteenseestesseessaesssesteesseesseesmeeenseesseesseeens 245
214, ALL (AITAY) cveevrernreereenieenteeteesitesiteete et esbtesutesabeesbeesatesate e beesbeesateebeesseenneeans 245
9.21.5. ROW-WiSE COMPALISOM.....cetiruieniiriienienteeiieteeteete st etestesttetesteeneenaesaeeaesaeennens 246

9.22. Set Returning FUNCHONScovuiitiiiiriieieienteesi ettt s 247
9.23. System Information FUNCHIONScceeiiniiiiniiiiiienieeiee et 249
9.24. System Administration FUNCHONScoiriiriiiiiiininieieeeeeeeetee e 259
0.25. Trig@er FUNCHIONSocuiiiiiiiiiiieiiiieeetee ettt sttt s s 265
10. TYPE COMVEISION. ..c..euiiniiiieiiitieienieeiterte sttt ettt ettt et bt es et est et sbeetesbeessenbeebtenbesbeeneesbeennens 266
LO. 1. OVEIVIBW ettt ettt ettt ettt sttt sb et b st et sbeeaesbeennens 266
10.2. OPETALOTS ...eeuvieneeeeiieeiiienieeste et esteesieeseteebeesteesstesabeenseesseessseenseeseesssaenseenseesssesssesnseenses 267
1030 FUNCHIONS .oviniiieitieiceitesteeit ettt sttt ettt et b et be st sb et e bt sbeeaesbeennens 270
1O.4. ValU@ STOTAZEceouieeieeiieriieeieeie et e steste et et e sttt ebeenteesstesabeesseebeessbessseenseesssesnsesnsees 273
10.5. UNION, CASE, and Related CONStIUCES.ccoiviiiiiiiiiiiiiiiieieeeeee e seeavaeveeeeeeee s 274
L1 TIACXES ettt ettt sttt ettt ettt s bbbt ettt sae e e sbe e b e bt esae bt sueenaesueennens 276
T1.1. INEEOAUCHION ..ottt sttt ae et st b e 276
T1.2. INAEX TYPES.utteutierieeiieeiteniteete sttt e stte st et e bt e site s bt e bt e sbtesabeenbeebeessbesaseenbaesanesasesaseas 277
11.3. Multicolumn INAEXESccccccuirieriiririiieniieretceeee ettt st 278
11.4. Indexes and ORDER BY ...cccuecuirieruererienienieerentieeetesieesessesenensesseessesseeneensesseensensessnenne 279
11.5. Combining Multiple INAEXESccceerieriiiriiiniiiiieeieeeesite ettt 280
11.6. UNIqUe INAEXESeoveeiiiieriieiiiieicit ettt ettt st s 281
11.7. Indexes on EXPIeSSIONScc.cevecieriirieniirieieniecieieeeete ettt 281
11.8. Partial INAEXESccouveruiiiiiiiiiiieitetee ettt sttt st et 282
11.9. Operator Classes and Operator Familiescccocoevieiininiininiiiiniccceceneeene 285
11.10. Examining Index USage........cc.covuiriiiiiriiiiiieiicieiieeete et 286
12, FUIl TEXE SEATCH ...cnviiiiiiiieiiei ettt ettt sttt bte st be e bt e saeeea 288
12,1, TNEOAUCHION ..eeiiiiiiee ettt ettt ettt sae et be e st e e s b et esbeeneenaesneeneans 288
12.1.1. What Is @ DOCUMENE?.....c.eeiiiiiiiiiiiiiiiieteteeeete ettt 289
12.1.2. Basic TeXt MatChingccccoueeueieiririinieieniceeteiene ettt 290
12.1.3. CONAAGUIALIONSceeuveviiiienienieieeteiteit ettt ettt sttt sr e b e enes 291

12.2. Tables and INAEXES........coueiieriiriieieieeiete ettt sttt 291
12.2.1. Searching @ Tablec.coouiiiiieiiiiiieeeeeee et 291
12.2.2. Creating INAEXESccveiueeieriiiieierieeterteniteeet ettt s 292

12.3. Controlling TeXt SEArCh.......c..cotiiiiririiiiiieeeteeee ettt e 293
12.3.1. Parsing DOCUMENLScceeriireeriiriiiienieniteiesicete ettt sttt seee e et 294

viii

12.3.2. Parsing QUETIEScecueevieruerieeiieniienteeteesieestesteesteesitesateeseesseesasesseesseessnesns 295

12.3.3. Ranking Search REeSUILSccceeriiriiiiiienierieeieetete sttt 296
12.3.4. Highlighting RESUILSccoviriiiiiiiiiieeieeeeeee ettt 298
12.4. Additional FEaturesccccoeviviiiiiiiiiiiiiiiiiccce e 300
12.4.1. Manipulating DOCUMENLS.......ccceerieriiriieniierieeieetteete sttt 300
12.4.2. Manipulating QUETIES........ccueeeeruerueerienieniereniieeenteeeere st enes e enesaeenesaeennens 301
12.4.2.1. Query REWITNGccueeiiriiiieiinieieieeecic et 302
12.4.3. Triggers for Automatic Updatescccecuevieiiinieienenieienieeeieeeeee s 303
12.4.4. Gathering Document StatiStiCSccoerieruerieiierieieieneerese e 305
12,5, PATSEIS .ttt ettt ettt sttt e b e sttt e b e st et b e naee 305
12.6. DICHONATIES. . ..eeveeieeriiieiteeite ettt ettt ettt sttt e bt st e bt e bt e st e e be e bt e sbeeeateereenaee 307
12.6.1. SEOP WOTAS ...contiiiiiiieiteeeeeetee ettt ettt 308
12.6.2. Simple DICtIONATYc.coiruiririiieieiiiieeeeteeetetee ettt 309
12.6.3. SYynonym DIiCHONATYcceeiuieieriiriieieieeiieeeteete et s 310
12.6.4. Thesaurus DICONATYccuieieriirieieneeiieieettete sttt 311
12.6.4.1. Thesaurus CONfigUIrationcoceererieienienienie e eeeenes 312
12.6.4.2. Thesaurus EXamplecooeieriiiiniininieieeccee e 312
12.6.5. ISPEll DICHONAIYcc.viitieiieiieiieiesieetesteeiteeet ettt s 313
12.6.6. SNOWDAIL DICHONATYveevieniiiieieriieieieeiteeeicete ettt s 314
12.7. Configuration EXamPLe........cc.coeeviiriirieniiiiiienieeteeeteete ettt sttt 315
12.8. Testing and Debugging Text Searchccocooerieiiniinininiinicencecceee e 317
12.8.1. Configuration TEStING........ccueeeeriiririenierieieneetente ettt st eaeens 317
12.8.2. ParSer TESHINE ..ccverveeuieiiriieiinieeiesteetese sttt sttt sttt ettt s ae e eanens 319
12.8.3. Dictionary TeStING.....cc.cecveruereerieriirieniinieeienieetenesit ettt et et eeeene 320
12.9. GiST and GIN INAEX TYPES ..eeuvirruierieriieieenieenieeieenitesitesteeieesieesiteeseesseeseeesseenseesens 321
12.10. PSL SUPPOTL.c.etieniieeiitiiieriieeie ettt site sttt et e sete e bt esteesttesbeebe e beessbessseenbeesasesnsesnseas 322
12,17, LIMITAtIONSeeoviiiiiieieieiieieic sttt sttt s 325
12.12. Migration from Pre-8.3 Text Search.......ccccoviiviiiiiiiiiniiiieeiieceeeeeee e 325
13. ConCUITENCY CONLIOL.....iiuiieiiiiiiiiieeiterite ettt ettt ettt et esatesateesbeesatesateenbeesanesaneens 327
13,1, INErOAUCEHION ..viiiiiiieicicicc e s 327
13.2. Transaction ISOLAtIONc.ccoeiviiiiiiiiiiiiiiiiic e 327
13.2.1. Read Committed Isolation Levelccccoociiviiiiininiiiniiiiiccice, 328
13.2.2. Serializable Isolation Level
13.2.2.1. Serializable Isolation versus True Serializabilitycccccevveruennen. 330
13.3. EXPHCIt LOCKING ..ottt s 331
13.3.1. Table-Level LOCKS.....ccctiiiiriiiiieniteeteeteeiteete ettt 331
13.3.2. ROW-LEVEl LOCKS ..c..coiiiiiiiiiiieeteteteteee ettt 334
13.3.3. DEAAIOCKS.citiiriiieiiiiteeiteee ettt sttt st et 334
13.3.4. AdVISOTY LOCKSc..ooiiiiiiiiiiiciceee e 335
13.4. Data Consistency Checks at the Application Level...........ccoccoviriiiinieiinineeeeee 336
13.5. Locking and INAEXES........eeeeriiruieiiniieierie ettt sttt s 337
14. Performance TIPS «....coceeueeveieiriniiteieeeteitetese ettt sttt et et se et st sae s eneneeneas 339
14.1. USING EXPLATIN .evirtiteieuieiteieeteetestetentestesteuessestessensestestesessessessensenseseesesuessessensenseneenens 339
14.2. Statistics Used by the Plannerccccooieriiiiieiinieineeeeeeieee e 344
14.3. Controlling the Planner with Explicit JOIN Clauses.........cccccevereerieneeieneneenieneeeens 345
14.4. Populating @ Databasecc.ceeeueriirieniiiiieiesieeteieeitete sttt ettt s 347
14.4.1. Disable AUtOCOMIMILc.coerueriereieiriiieieietetee ettt 347
T4.4.2. USE COPY .ttt 347

14.4.3. REMOVE INAEXESvvveieieiriie ettt eeetae e e e e e e eeaareeeeeans 348

14.4.4. Remove Foreign Key CONnStraintsccevverveeriiienieniieniienieeniesieesieenieesneens 348
14.4.5. Increase maint eNance WOTK MM ..ttt tiieiituuueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeeeeees 348
14.4.6. Increase checkpoint _SEgMENTS ciuuviiieeeeiireeeeeeiireeeeeeitreeeeeeerreeeeeerrreeeeeans 348
14.4.7. TUIN Off QT CRIVE MO tititieeeeeeee e e e e ee et eeeeeeeeeeeaeaaes 349
14.4.8. RUn ANALYZE AftErWardS......cccceeviereirriieniienienieeniteeite sttt saee s 349
14.4.9. Some Notes About Pg_dUMPcocecveriirieiiinieieniieeeeee e 349

II1. Server Administration 351
15. Installation from SOUTCE COEcccueeruiiriiriiiiiiiiieeieeee ettt ettt saee s 353
15.1. SROTE VETSION ..ottt ettt ettt st st et 353
15.2. REQUITEIMEGIIES ...ttt ettt e e eeeete st et et et et e sbe et e sbesseentesbeeneesseeneeseseeennans 353
15.3. Getting The SOUICE........oiiiiiiieiieiee ettt ettt ettt et 355
15.4, UPGLAQINZ ..ottt ettt ettt ettt st e bt bt e e sb e et e bt eseeteseeeneans 355
15.5. Installation ProCedure.............coeeiiririeniiiieesceteee ettt 356
15.6. Post-InStallation SELUPceouertieiiriieieit ettt sttt 366
15.6.1. Shared LiDrariescceeeeruirienierieeienieeiteiesicete sttt 366
15.6.2. Environment Variablesccccecererieneniiniinieienieeteresiteeseeiteee e 367

15.7. Supported PIatfOrmscoveiiriiiiiiiiieie ettt sttt 367
15.8. Platform-Specific NOLES.cceruieiiriirieie ettt ettt 368
I5.8. 1. ALX ettt ettt st et 368
I5.8.1.1. GCC ISSURS «..cenvenviiieniieieeieeiteiesitete ettt sttt ettt sve e sbeeanens 369

15.8.1.2. Unix-domain SOCkets BroKen...........cocceceevereenenennieneneeneneenieneenens 369

15.8.1.3. Internet address ISSUESeeueeruereeienierieniereenienieerenieeieeneeereeaesieennens 369

15.8.1.4. Memory mManagement..........cccceerveerverrueereenressueeneesssessueesseessessuesnses 370

References and reSOUICES.ovueririiriireeriineeienenreieneetenie e sieennens 371

15.8.2. CYZWIN ettt ettt sttt ettt et esae st saeennens 371
I5.8.3. HP-UX ..ottt ettt ettt s s 372
15,84 TRIX .ottt ettt a e s s 373
15.8.5. MINGW/Native WINAOWSc.cocuiririenierieiiniieienieetenieneeresieeeesneseeenesaeennens 374
15.8.6. SCO OpenServer and SCO UnixWare.........cccceevueereenieniienieenienieenieeneeneeens 374
15.8.6.1. SKUNKWATEc..evuiiiiiieiiiiieeieneeieeeeere ettt 374

15.8.6.2. GNU MaKEeouviuiriiiinieieieieeiinieneesteteteic sttt s 374

15.8.6.3. REAAINE.....ecueeieiieiiieiieee ettt 375

15.8.6.4. Using the UDK on OpenServer...........cccoceeveerereecienieieeniineeneneenens 375

15.8.6.5. Reading the PostgreSQL man pagescccccevueecueniieeeniieeeneneenens 375

15.8.6.6. C99 Issues with the 7.1.1b Feature Supplementcccccccenene. 375

15.8.6.7. ——enable-thread-safety and UnixWarecccceeevvercreeenrennne 376

15.8.7. SOLATIS ...ttt sttt ettt ettt ee bttt e st e et eneeaesneeneens 376
15.8.7.1. ReqUired tOOISccoueruerieiieiieie ettt 376

15.8.7.2. Problems with OpenSSLcccoociiiiiiriieniieiee e 376

15.8.7.3. configure complains about a failed test program.............c.cccceevueeueeee. 377

15.8.7.4. 64-bit build sometimes Crashescccceveeierinienenenreneeieseecenee. 377

15.8.7.5. Compiling for optimal performance...........cccceeeeeerererreenieneeneeneenne. 377

15.8.7.6. Using DTrace for tracing PostgreSQLcccccooeevininieninienencnene 377

16. Installation from Source Code on WINAOWSccceeierieriiirieniiniienineere et 379
16.1. Building with Visual CH+ 2005.....c..cociiiiiiiiinieiieeeeete ettt 379
16.1.1. REQUITEIMEIIES ..cuveveiiieiiniieiieieeienteetenie sttt st et ste et et sbeeste st este et saeeneesbeennens 379

16.1.2. BUIIAING ..ooviiiiiiiiiiiiicic s 380

16.1.3. Cleaning and inStallingccocveerieriiiiiiienienieeie ettt 381
16.1.4. RUNning the r€@reSSiON eSSeevieriirriieriierierieeieente st eieesieesieeesbeesaeesaeeens 382
16.1.5. Building the dOCUMENTAIONcotiriiriieiienieeieeteete ettt 382

16.2. Building libpq with Visual C++ or Borland CH+.......cccoociiiiiiiiiiniiiieneciceieeeeen 383
16.2.1. Generated fIlEscceoieiiiinieiiirieieeeeeeeeee et 383

17. Server Setup and OPETationNc.cceceevueriieieniieiientieterene ettt et e s ese st e s eneenesaeennens 385
17.1. The PostgreSQL USEr ACCOUNLc..coceeruiriieieiieieiieieeteste ettt eae e 385
17.2. Creating a Database CIUSLETc.cccoovieriiiiiiiiiicieiieece et 385
17.2.1. Network File SYSteMScc.ceviiviiriiiiiiiiiiiiieiee e 386

17.3. Starting the Database SEIVET..........ccccccoviiiiiiiiiiiiiceee e 386
17.3.1. Server Start-up Failuresccccooieriiiiiiiiiiiineeeeeeeeee e 388
17.3.2. Client Connection Problemsccocerieiinieiienieierieeieeseee e 389

17.4. Managing Kernel RESOUICES........cc.couerueiriiririniiieieietnteeseseeeeeeie et enens 389
17.4.1. Shared Memory and S€maphorescccccueeveirirerenienierieieinesreseeeeenenes 389
17.4.2. ReSOUICE LIMILSeeuiiiieiieiieiieie ettt 395
17.4.3. Linux Memory OVEIrCOMIMUILcc.erierieriieriintieienieeiteniesttee st eeee e seeenaesaeeneens 396

17.5. Shutting DOWN the SEIVET.......cceeiiiiiiiiiiiieiereeteeeeete ettt 397
17.6. Preventing Server SPOOTINGcccevirieriiiiiienieeiesieeieete sttt sttt et 398
17.7. ENCIYPON OPLIOMS. ..cueitiriieiitieitenieeitertesitete sttt entesteetesbesbtetesbeestenbesbeeaesbeennens 398
17.8. Secure TCP/IP Connections wWith SSLc.cccoouiviiiiiiiininiienccieiecse e 400
17.8.1. Using client CertifiCates........cocuevuirerrierierieiinieieneetenesieeesie et 400
17.8.2. SSL Server File USagecc.ceceeviiriiienieriiiiniieienieeteniesieeesieeitesee e 401
17.8.3. Creating a Self-Signed Certificateccoceveeviererierienenniincneeneneeieseeeeenne 401

17.9. Secure TCP/IP Connections with SSH Tunnelscccccocevvenenieneniniinnecncneenns 402
18. Server CONTIGUIATIONeevieiieiieeieesieerite ettt et e steete et e staesbeeabeesbaesabesateenseesssesnseenbeesanennsenns 404
18.1. Setting ParQmMELerScecveeruierieiiieniiente st eteenieesite et et esitesbeebeesbeessbeesbeenbeesasesnsesnseas 404
18.2. File LOCALIONS ...ttt s 405
18.3. Connections and AUthentiCation...........ccccceiviiiniiniiiiiiiiniiiicceecee e 406
18.3.1. CONNECION SELUNZS ..eeuveeureriieiiieriienieeieeriteste et esteesitesabeebeesieesateebeesseesaneens 406
18.3.2. Security and AUthentiCatiON........coverviriiienierienieeieerte ettt et 408

18.4. ReSOUICe CONSUMPLION...ccutiruiiriieriieriieriteeteenteesiteeteenteesttesteeseesbeesssesaseebeesssesasesnseas 409
L84, 1. IMIBIMOTY ..ottt ettt ettt ettt ettt st e b e st st e be e s bt e sateenbeenbeesaneeas 409
18.4.2. Kernel Resource USage..........cevuierieriiiiiieniienienieesitente sttt 411
18.4.3. Cost-Based Vacuum Delayc.ccccceoiriiiiininiiniiiiieneceeece e 412
18.4.4. Background WIIer.........cc.couieieiiiriiiieienieieeteeerie et 413
18.4.5. Asynchronous Behavior...........ccccocceoiiiiiiiiniiiiniiiceeceeeeee e 413

18.5. Write Ahead LOZ ...c..ooiiiiiiiie e e 414
I8.5. 1. SENGS.....eeeuiiiuieiiiiieeee ettt et st s s 414
18.5.2. ChECKPOINLS. ... cevetieiietieiieteeiteie sttt ettt ee sttt see st en e s te et eneeeneeeesaeeneens 416
18.5.3. ATCRIVINE «.niiieie ittt ettt sae e 417

18.6. QUETY PIANNING ..ottt sttt sb ettt e e s eneens 418
18.6.1. Planner Method Configuration..............ccceevueeienienenienenieeseeee e 418
18.6.2. Planner Cost CONSLANLSceeeruerierierieriieieeieeie st eieentestteie s eseeneeseeeneesreeneens 419
18.6.3. Genetic QUErY OPLiMIZETc.cevueruerierieriieieniieienieeitenee ettt seeeaesbeeneens 420
18.6.4. Other Planner OPLions..........ccccevereeierierienienieienieetenie sttt eite e seee e sieeneens 421

18.7. Error Reporting and LOZZINGcceeieriiiinieniiiieiieeeie ettt 422
18.7.1. WHEre TO LOZ .ueeiieiieiieiieiieiteeseete ettt s 422

Xi

18.7.2. WHen TO LLOZ oottt sttt st e 424

18.7.3. WHat TO LLOZ c..veeeieeieiiieeieee ettt st ettt s 426
18.7.4. Using CSV-Format Log OULPULcccveviiiriieriiniieiteriesieeeesee st 429

18.8. RUN-TIME StAtISHICSveovieureririieienierieienieeteet ettt ettt et s be e 431
18.8.1. Query and Index StatistiCS COIECLOTcceeveerriiiniienieriieieerterte e 431
18.8.2. Statistics MONIOIINGcc.eeovieieiirieeieieniteteeteeeente ettt ere s enesaeennens 432

18.9. Automatic VaCUUMINGccuiiiiiiiiiiiieieiteteieeteteee ettt st 432
18.10. Client Connection Defaultscccoouiiiiiiiiniiiiiiiii et 434
18.10.1. Statement BENaVIOTcecuiiiiiiriiriiiiieiieeieeeetete ettt 434
18.10.2. Locale and FOrmattingc..coccocueiiriiiiininiinieeeeneeeseeeeee e 436
18.10.3. Other Defaults.......c.cooiiiiiriiiiieiieeieeiee ettt 438
18.11. LoCk ManagemeNntco.eiiiiuiiiiiiiieii ettt e s 439
18.12. Version and Platform Compatibilitycccoeeriierieieniinieiereeieesicee e 440
18.12.1. Previous PostgreSQL VerSionscccceeeruerierieneeienenieeesieeeesieeecenee e 440
18.12.2. Platform and Client Compatibility..........cccoeeeveririienenieereeee e 441
18.13. PreSet OPLiONS. . c.eeeuieuieiteieieieeteeiteete et te ittt ete st et ettt et e st et esbesbe e tesbeeaeenbeeseenteseeeneans 442
18.14. CuStOMIZEd OPLIONS ...cuveeieniitieiiiiieiieie ettt ettt ettt et e sbt e et estesbesbeenaesbeeneens 443
18.15. DEVEIOPET OPHONS ..c..eeuveiieniitieiietieitetesteete sttt et e st e et sbeete b estesbesbeenbesbeennens 444
18.16. SHOIT OPLIONS ...cutitieiierteitteteet ettt ettt ettt et ettt et st et esbesbe et esbeeste bt sbeentesbeeneens 446
19. Client AUtRENTICALIONcuveuiiiiiiiriiieieieitetetesestee ettt st st eneas 448
19.1. The pg_hba . conf fIlE ..ot ettt 448
19.2. USEINAME MAPS ...vvenveemeeieriieientietenteeitentesieeste st eitenteeteestesaeestesaesbtesesbeesaensesseensesseensens 453
19.3. Authentication MEthOdS...........cocuiiiiiiiiiiiiiiiiiccce e 454
19.3.1. Trust authentiCation.........ccoereeieririeniineetene ettt 454
19.3.2. Password authentiCation..........c..coeeeeriineenieneenienenieiencetesee e 455
19.3.3. GSSAPI authentiCationcccueveeieriineenienieienientetenieetese e 455
19.3.4. SSPT authentiCationccccoceevierierieniinienieneeteneet ettt seeene 456
19.3.5. Kerberos authentiCationcc.coeeeuererienieneeienenieneneereneeereneeseeeneesieennens 456
19.3.6. Ident-based authentiCationceceverierieneenienerieneneereneeeeee e sieeanens 458
19.3.6.1. Ident Authentication over TCP/IP..........ccccocccoiniriininieninicncneenens 458

19.3.6.2. Ident Authentication over Local SOCKetsc.cceceveeceeniinveencnennns 459

19.3.7. LDAP authentiCation.........cc.eeceevuerienienienieieniieeenieeeentenieeresieeeeenneseeenesieennens 459
19.3.8. Certificate authentiCationc..coceevveruerierienieieneeeeeneerese et saeeanens 460
19.3.9. PAM authentiCation.c..ccueeeeriiruieienienierenieeenieeeete st et eaeeneseeenesaeennens 460

19.4. Authentication Problemscceeuiriieriiieiienieietieeete ettt 461
20. Database Roles and PriviIEZesc.coeeieiirieiiiniiieieiieieeeeeere et 462
20.1. Database ROIEScocueiiiiiiiieiiiiieiteeeeee ettt sttt st 462
20.2. ROIE ALITDULES . ..covteeiieeiieriteeieee ettt ettt sttt et sttt e st sateebees 463
20.3. PLIVIIEZES ..ottt e st s e 464
20.4. ROIE MEMDEISHIPoovieiieiiiieieeieeee ettt e s 465
20.5. Functions and TIIZZETSceterueruieiiniieierie ettt te st e e b te st et estesneeneeseeennens 466
21. Managing Databasescceeieriirieieriieiieieetee ettt ettt ettt et et bttt ettt et e e saeeneen 468
21,1, OVEIVIBW .ttt ettt ettt ettt ettt b e s bt et e et e e s e bt eaeeaesbeestenbeeseetesneenaesbeennans 468
21.2. Creating @ Databaseccueeierieriieieiieiee ettt sttt s s 468
21.3. Template Databasesccceeiereriieiiniieienie ettt et sttt s b 469
21.4. Database CONfIGUIAIONcooueruieiiriieienientete sttt sttt et saeenaesbeennens 470
21.5. DeStroying @ Databaseccouerueeieriiriiniinieiesieetesteete ettt 471
21.60. TabIESPACESccuvenveeutintieiiete ettt ettt sttt sb ettt ettt st sbe et e bt et e bt bt naesbeennens 471

Xii

22, LOCALIZATIONvviiieeiiriieeeeeiriee ettt eeetre e e et e e eesar e e e e eetaaeeeeeetaeeeeeetaseeeeeentaseeeeenarareeeeesreens 474

22.1. LOCALE SUPPOTL...ieiiiiiiiiieitieete ettt ettt e site sttt et e st e sbe e bt esbeesabeenbeebeesasesnsesnseas 474
22,11 OVEIVIBW ..t 474
22.1.2. BERAVIOToiiiiiiiiiii s 475
22.1.3. Problemsc.cciiiiiiiiiiiiii s 476

22.2. Character SEt SUPPOTIL......c..cocueruerieeiiniieieiineete st eresteeeereeaeenesaeenesreeseenesneennesaeennens 476
22.2.1. Supported Character SELS.........ccccrvierueririeiinieieneeieneneereste et eeesnesaeeanens 477
22.2.2. Setting the Character Set..........c.ccocievueriirieiiinieiere ettt eanens 479
22.2.3. Automatic Character Set Conversion Between Server and Client.................. 480
22.2.4. Further Readingc..cocoiiiiiiiiiiiiiiiccceee e 483

23. Routine Database Maintenance TasKs..........cccceviiiiiriiiniiniinieieenteeteeeeteetese e 484

23.1. ROUNE VACUUIMINGoouvieiiiiiiiiieiieeite ettt ettt ettt ettt et et et et e st e sateerees 484
23.1.1. Vacuuming BasiCscceeuiririeriiieieiieeteteet ettt 484
23.1.2. Recovering DiSK SPACEc.eeeeruiiiiieiieiieieet ettt s 485
23.1.3. Updating Planner StatiStiCsc.ereerueruerieriinieiesieeiesiesiceie sttt 486
23.1.4. Preventing Transaction ID Wraparound Failures..........c..ccccoeceeveniniencncnnnn. 487
23.1.5. The Autovacuum Daemoncoccevueriirieriiniieieneeieestee e e 489

23.2. ROUtINE REINAEKINGeeueeniiriieieiieiieieeitenie sttt ettt sttt 490

23.3. Log File MainNteNanCe......ccueeuteruetieiieiieiieiesitete sttt te st st e st b este st et et saeenaesveennens 491

24, Backup and RESIOTEc..coiiiiiiiiiiiiiieteeiteeeeee ettt ettt s 493

24.1. SQL DUMIP ..ottt sttt s e 493
24.1.1. Restoring the dumMpcccceiriiriiiiieneniceeteeeeestee et 493
24.1.2. Using pg_dumpall......c..cccevirieniniiiininieineeteseetenesitetesieeee e 494
24.1.3. Handling large databasesc..cocecvevirienineinieninicicneeeenc e 495

24.2. File System Level BaCKUP ...ccceivviiiiiiieiiietesece ettt st 496

24.3. Continuous Archiving and Point-In-Time Recovery (PITR)ccccccocevveenvenieniennen. 497
24.3.1. Setting up WAL archiVing.........ccccveevueriieeniienienieeieenieste et eve e 498
24.3.2. Making a Base BaCKUDcooveeriiiiiiiiiiienieeecteteeteee et 500
24.3.3. Recovering using a Continuous Archive Backupcccccevieviieniiiininniennnns 502

24.3.3.1. RECOVETY SEUNZS ...eervieruiieiienieeniieeiieeitesiteete et esteesre e ebeesiaeeaeeeaees 504
24.3.4. TIMEIHNES.......ooviiiiiiiiiiiiicce s 505
24.3.5. Tips and EXaMPIEScc.eeruerviiiniiiiiieieeiterteeeee ettt st 506

24.3.5.1. Standalone hot BaCKupPSscccceeriiiiiieriinieiieeeeeee e 506

24.3.5.2. archive_command SCIPLS ..ccceertirrerreenierieeieenieestesieesbeesireeareerees 507
24.3.0. CAVEALS ...t enteeieeeite ettt ettt ettt e st e et st e s bt e et e st e bt e satesat e e beesatesateeas 507

24.4. Warm Standby Servers for High Availabilitycccoceviiiinininiiiiiiicceens 508
24.4.1. PIANNING ..ottt ettt ettt s s 509
24.4.2. IMPIEMENTATION ..ottt ettt s s enens 510
2443, FALIOVET ..ottt ettt et ettt et 510
24.4.4. Record-based Log Shipping........cccceeuerueeieriirieiieneeierie et 511
24.4.5. Incrementally Updated Backupscocceeriiriieniiiiniinieniieieeneeniceieereeeeee 511

24.5. Migration Between Releasesccovieiiiiiiiiiiiieiesieeee e 512

25. High Availability, Load Balancing, and Replication............ccccceceririeneniiieniniencecee e 514
26. Monitoring Database ACHVILYc.ceouirierieriieieiteseetente ettt ettt sttt eate st seeeaesbeeneens 518

26.1. Standard UnixX TOOISccceriiiirieniieieiieee ettt 518

26.2. The StatiStiCS COLIECIOTcouteiiriieiiiieiieie ettt sttt 519
26.2.1. Statistics Collection CONfIZUIALIONc..eeuveieriieiererienienteiesieeeenie e 519
26.2.2. Viewing Collected StatiStiCSccceeruerierieriirieieneeieresiteiest et se e 519

Xiii

26.3. VIEWINE LLOCKS c..eeitieiiiiiieriteeteett ettt ettt sttt et st et be e sabesnaeenbees 527

26.4. DYNAMIC TTACINE ...vevveeiieriieeieiiienite ettt ettt e sttt et e st sbe e bt e sbeesateebeebeesasesnsesnbeas 528
26.4.1. Compiling for Dynamic Tracing.........ccccceveveeviersiienieniieniieenieeneesieeieesee e 528

26.4.2. BUilt-in Probesccceviviiiiiiiiiiiiiiiciicc e 528

26.4.3. USING PTODES ..ottt ettt ettt et 536

26.4.4. Defining New Probesc.ccoceviiiiiiiniiiiiiiiniiciencceeseeteiteeeee e e 537

27. Monitoring DiSK USAZEcc.eeuieiiriiiiiiiieiieieeient ettt sttt 539
27.1. Determining DisK USAZEccccoieiiriiiiiiiiiieieniecieteeecte et 539

27.2. DiSK FUll FAIIUTEcocueiiiiiiiiiieiieetee ettt 540

28. Reliability and the Write-Ahead Log.........ccccoiiviiriiiiiiiiiiiic e 541
28.1. REIHADIIILY ..ecvveuieiietiteieteietee ettt ettt sttt et 541

28.2. Write-Ahead Logging (WAL)coouiiriiiiiiite ettt 542

28.3. ASYNChroNnOUS COMIMUL.......couteiuertieiertieiierteeiteie et ete st etee st e e eesbeetesbeeseesteeseeneeseeennens 542

28.4. WAL CONFIZULALION ...uveuieniiiiieieitieiieste ettt ettt ettt ee st e eaesbeeseesbe et entesseeneesaeennens 544

28.5. WAL INEEINALS ...cuveeiiiiieiieieeiieieet ettt ettt ettt e e st bt e b et e st saeenaesbeennens 546

29. ReZIESSION TESEScouiruiiiriiiiieiieiteitet ettt sttt ettt s ettt sa st be s e eues 547
29.1. RUNNING the TESESeevieuieiiriieieitieiieeie ettt ettt et st b e st e e sbeennens 547

29.2. TeSt EVAIUALION ..c..eeuiiiiiiieiiiieiesieeieic ettt ettt et et st b 548
29.2.1. Error message differences.cooivieiererieniinieieneeeestees e 549

29.2.2. Locale differenCesccceviririirieieiiiiiieieicieeeeee ettt 549

29.2.3. Date and time differencesccecueviruinienienieieiinininccceceeee e 549

29.2.4. Floating-point differencesc.ccoceevuereriiriinieiiineeieneseeieseeeee e 549

29.2.5. Row ordering differences........cocooeeviererieniinieiiinenicnesteeeeeee e 550

29.2.6. Insufficient Stack depthc.cecuieiiirieiiiieieceee e 550

29.2.7. The “random’ teSt.........ccoeiruiriiriiiiiiiiiiieeetee et 550

29.3. Variant CompariSOn FIlESccoeviiriiiiiiiniienieeie ettt 551

29.4. Test Coverage EXaminationcccveeverriienieeniienieeieeneestesieesieesieesseesseesseesssesssesnses 552

IV. Client Interfaces 553
30. TIDPQ = C LADTATY .eouetiiniieiieiiit ettt ettt st ettt st e beesbt e st e bt e bt e satesbeenseesaneens 555
30.1. Database Connection Control FUNCHIONSc..ccccecueriieiiiniinieninieieneeieiceceie e 555

30.2. Connection Status FUNCHIONSc...ccueiieiiiriirieniinieieieece et 562

30.3. Command Execution FUNCHONScc.coceririeninieiiiieiciicccienecreeeeere e 566
30.3.1. Main FUNCHONSoovuiiiiiiiiiieeieeite ettt st 566

30.3.2. Retrieving Query Result Informationccccoeeeieiininiiniineninieeeene, 573

30.3.3. Retrieving Result Information for Other Commandsccccccceeeecenennnee. 577

30.3.4. Escaping Strings for Inclusion in SQL Commands..........c.c.ccoceeiniiiiininnene. 578

30.3.5. Escaping Binary Strings for Inclusion in SQL Commandscccccce.ee. 579

30.4. Asynchronous Command ProCesSingccecerueerieruieieneeienienieeieseeie e see e 581

30.5. Cancelling QUEries in Progresscccoeciiriiieriiieiesiieerie et 585

30.6. The Fast-Path INtrface.........ccooeiuieiirieiiieiee e 586

30.7. Asynchronous NOtHICAIONcccueiuieieriirieriteiete ittt sttt 587

30.8. Functions Associated with the COPY Commandccoceeveereneriieniniienincene s 588
30.8.1. Functions for Sending COPY Data........ccccooirierieninieniinieieneecencseee e 588

30.8.2. Functions for Receiving COPY Data........ccccoveeieninieniinieienceeencceescene 589

30.8.3. Obsolete Functions for COPYccucciiiiiniinienieieininenieseeeeeeesie e 590

30.9. Control FUNCLONSccueiieieiieiiiiitiieieietetettse ettt sttt s e 592
30.10. Miscellaneous FUNCHONSccoevuirieiieieiiiiniinieecieieene sttt 593

Xiv

30.11. NOUICE PrOCESSING ...uveeuiieiiieiiiiiieiteete ettt st ettt e st sbe et e st e sateebe e beesasesnseenbeas 595

30.12. EVENE SYSTEIM c.eeuiieiiieiieitieeieeieesitesite st esteestteseteebeesaeesstesabeeseesbeesasesseeseesssesnsesnsens 597
30.12.1. EVENE TYPES c.eteiiieiieiiesiteeteettette sttt ettt ettt sttt e st e b eaeesae 597
30.12.2. Event Callback Procedure...........cccceieieniirienieninieiineciencceecseeresieeeenne 599
30.12.3. Event SUpport FUNCLIONSc...coiierieriieiieritenteeieeitente et 600
30.12.4. Event EXamPIEcooiiiiiiiiiiieiieeieeieeteteeee ettt s 601

30.13. Environment Variablescocceeiiiriiriiiiiiiiienieeieeteste ettt 603

30.14. The PassWOrd FIleccoueeiiiiiiiiiiiieiieeetese ettt st 605

30.15. The Connection Service Fileoouiiiiiiiiiiiiniiiieniceeeet e 605

30.16. LDAP Lookup of Connection Parameters..............cocoeceeuiiienininiininiieniiceneneeens 606

30.17. SSL SUPPOTT....oiniiiiiiiiiiiit ettt et ne e 607
30.17.1. Certificate VerifiCation...........cceveeeiereieierieriieie ettt 607
30.17.2. Client CErtifICALESeoueeiereiriieieetieiesttet ettt ettt ettt et see s sbeenee e 607
30.17.3. Protection provided in different modes...........cccceeverenieneninnenenieeseene 608
30.17.4. SSL File USAZE ...ccuveeueeuieiieiieieetieiett ettt sttt sttt 610
30.17.5. SSL library initialiZation..........eceeiertieierenieienieeeteieeceee et 610

30.18. Behavior in Threaded Programs...........ccocoeeereiieieninienieeesiceeeeee e 611

30.19. Building libpq Programs..........c..cccuereeiininiineiieienieeese et 611

30.20. EXample Programs.ccoceeeereriieienieeienesteesicetesteei ettt s 613

31 Lar@E ODJECLS ..cuvineieutiiieiteie sttt ettt ettt sttt ettt be et s b e st e bt sbees e s bt e st e bt satebe s bt et e b e saeenee 623

311 TEFOAUCTION ...ttt ettt st st b ettt saee e sbeennens 623

31.2. Implementation FEaturescoeeveririiniiiineiiete ettt e 623

31.3. CHEnt INTEIACES. ...cc.veterieiiriteieieeteeetee ettt sttt s s 623
31.3.1. Creating a Large ODBJECtcouevueririeninieiiniceienieritceeeeeese et 623
31.3.2. Importing a Large ODJECT......cccueirierieeieeiiierieeteeieenteete et eree e saeebeeneee e 624
31.3.3. EXporting a Large ODJECT......cccveriierieriieiienieeieeieenieesiee e eieesieesveeveeneee e 624
31.3.4. Opening an Existing Large ObJeCt.........cccuevieriirriienienieniieieenee e eieeniee e 625
31.3.5. Writing Data to a Large ODJeCt......cccevcuieriierieriiiiienienie et 625
31.3.6. Reading Data from a Large ObjJectccceeveeriiiiieenienienieeeesie e 625
31.3.7. Seeking in @ Large ObJECt.......ccevierieriiieiiierienie ettt 626
31.3.8. Obtaining the Seek Position of a Large Object.......ccccevceeriirnieneeniennieeieene 626
31.3.9. Truncating a Large ODJECTcevuierieriiiiiiieniienie ettt ettt 626
31.3.10. Closing a Large Object DeSCIiptorccceveereeriieenienieiieeieenee e 626
31.3.11. Removing a Large ODJectccceecueriieieriinieienieicicnecece e 627

31.4. Server-Side FUNCHOMNS.ccuiviiiiiiiieieeit ettt ettt e 627

31.5. EXample Programccccocoiiiiiiiiiiniiiiiiececteeeeee et 628

32. ECPG - Embedded SQL in C...c.ooivieiiiiieiee ettt ettt 633

32.1. The CONCEPL......oiiieiiiiieiieie ettt sttt 633

32.2. Connecting to the Database Server............coccoiiiiiiiiiiiniiiiieceeecc s 633

32.3. CloSing @ CONNECTIONeeuiruieietieiieteeienteeitete it etesteeseeeeeseenaesaeeneesbeeseenseeneensesreennens 634

32.4. Running SQL Commands..........c.ceeeerieriiieniienieniieieeseenite et sieesiee st e sieeseeenees 635

32.5. ChoOSING @ CONNECHION.euteietieiieiieiienteeitete st ete st este et eaeetesbeestesbeeseentesneeneesbeennens 636

32.6. Using HOSt Variablescoceeriiuiiiiriieieie ettt s 636
32.0. 1. OVEIVIEW ..ttt ettt ettt ettt a ettt b e e et e bt et e et et e nbesbeentenbeeneenes 637
32.6.2. DEClare SECHIONS.c..evueeiertiriieieetieitet ettt st te sttt ettt see et e bt sbe et e b eaeenee 637
32.6.3. Different types of host variablesccccooereereninieiiniiineeeceeescene 638
32.6.4. SELECT INTO and FETCH INTO .eocrvirrirrirueierenieuenrenienseneeseesensessessesenneneenens 639
32.0.5. TNAICALOLS.euiiniiiieiieieetesteet ettt ettt ettt s 639

XV

32.7. Dynamic SQL.....couuiiiiiiieiieeie ettt ettt et et sttt st sateeabeas 640

32.8. PELYPES LIDTATY ..ottt ettt sttt et st et be e st e st eabees 641
32.8.1. ThE NUIMETIC LYPE .euveeuvieiieriieeiieiieeteeteentee st e sttt et e sitesabeebeesaeesaaeenbeeneeesaee 641
32.8.2. THE daLE LYPE...eeureereirieniieeieeieertte sttt ettt sit e et e st e st sttt esbeesateebeeseesaee 644
32.8.3. The tiMEStAMP LYPC..ccuveeruierieriieriierieeieentee st e ettt esitesite sttt esbeeseeebeenaeesaee 648
32.8.4. The INerVal LYPE ...cocveruieiiriiiieieniieiet ettt 652
32.8.5. The decimal tyPe.......cceevveriirieiiniieietieeete ettt 652
32.8.6. errno values of pEtypeslib ..ot 653
32.8.7. Special constants of pgtypeslib.........ccceceviriiiininiiiic e 653

32.9. Informix compatibility MOde.........ccccciriiiiiiiiiiiiiiiie e 654
32.9.1. Additional embedded SQL Statements............ccceeeeueeeeciirercieeeniieeerieeeeee e 654
32.9.2. Additional fUNCHONS.c..eiiiiiiieieeeecee et 655
32.9.3. Additional CONSTANTS.........ccueieeuiiieiiiieeetieeeeiee e et eeaee e et e e eaeeeeaeeeeaeeeeaeeeas 663

32.10. Using SQL DeSCriptor ATCaS..........ceueeueruirienieitieiesteeiienieeeceseesteetesteeseeseesseeseesreennens 665

32,11 Error HAnAINgc..ooueiieiiieeeeee ettt e s 666
32.11.1. Setting CallDACKScccueruirieiiniieieniieeiete sttt 667
32112, SQLCA .ttt sttt 668
32.11.3. SQLSTATE VS SQLCODE..c.utsuteterteeutentieutetesteetentesstetesseeseensesstessesseessensesseenee 669

32.12. PreproCessOr QIT@CIVEScc.eeruertieieniieienieniteienteeitente et tente st et sbeetesbe et e st saeenaesbeennens 672
32.12.1. INCIUAING fIl@S...c.eeeutiiiiiiiieiiietet ettt 672
32.12.2. The #define and #undef dir€Ctivesccceerveeiieerieenienie et 672
32.12.3. ifdef, ifndef, else, elif and endif AIrECtIVESoovvveieereeiiiieieeeeeeeeeeeeeeeeeiaas 673

32.13. Processing Embedded SQL Programs..........c..coccecuevieeieniniinenennienenienieneenie e 674

32.14. Library FUNCHOMNSeeiuieiieeieiiieriieeie ettt estesteete et e sitesbeebeesaaeseseenseenseessnesnsesnsens 675

R I BT 11155 4 11 OO U OUU USSR PRRPR 675

33. The Information SCHEMA........cc.eeriiriieiieierie ettt ettt et et eseteebeesaeesasesbeensaesaneens 678

33.1. The SCHEMIA ...ccuviiiiieiiiiieteee ettt ettt sttt e st e e be e beesabesabeenbees 678

33.2. DAtA TYPES .euveenvieriieeieeiie sttt ettt sit e sttt e st e st st e et e stbesabe e bt e nbeesabeebe e beesabeenbeenbeas 678

33.3. information_schema_cCatalog NAME ..uuieieeiiireeeeeiiirreeeeeeireeeeeeeinreeeeeeisereeeeenans 679

33.4. administrable role aULhOTrizZaltionS oo eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaeeees 679

R BTN o) R o) o1 =Y o Y K=Y T U TSROSO P USRS 679

I I T ol o o) o o = = F SRR 680

33.7. check_constraint_rOULINE_USAGTE wiciiirieeeeiiirreeeeeeirreeeeeeirreeeeeeetreeeeeeesnreeeeeans 683

33,8, CheCK _CONSETAINES wiiiiiiiiiiiiieieiiiie et ee e e e e e e e ee et e e e e e eeeeeeesessssassasarereeeeeeeas 683

33.9. COLUMN_AOMAIN_TUSATE tttrtrieiiiirrieeeerireeeeeeeireeeeeeeitreeeeeeetreeeeeessseeeeeeesssseseeeesssseeseenses 684

33.10. COLUMN_DPTiVIiLlEGES titreririreriieeiieeeitieeeiteeesteeesreeesseeessseeessseesssseesaseeessesesssseesssens 684

33,11, COLUMN UG S AT i iiitiieeeeeetreeeeeeireeeeeeeitteeeeeeebaeeeeeeeateeeeeeessaeeeeeeseseeesenstaseeeeanes 685

33,12, COLUIMINS ciiiieieeetittteeee ettt e e e e e e e e e ee e e eeeeeeeeeeeeeesesesaessssssaaseeeeeeeeeessesesassssssaesaneeeeeeens 686

33.13. constraint_COLUMN_USATE wrririeeriirereeeeiirreeeeeeirreeeeeeirreeeeeeesreeeeeeesssseeesaesssseessensns 690

33.14. consStraint_taD e USAGE iiiiiiiiiiiieeeeiiteeeeeeeittreeeeeiteeeeeeetaaeeeeeesareeeeeessaseeeeanns 691

RRT NG ER T o1 o TSR oY ok R T =Y 1 SRR 692

33.16. AOMAIN_CONSETAINES tottiiiiiiriieeeeiiieeeeeeiiteeeeeeeteeeeeeeeteeeessessteeeessessaseesssssaseessannes 693

33.17. AOMAIN UL S AT i iiitiieieeiitieeeeeiittteeeeeeitteeeeeeetteeeeeaesseseesaassseseeaasaseeeeaassaseeesanes 693

R N B e e} = o ¥ TSRO 694

33,19, ElEmMENt L YPES tietiriieeitieeeeeeeiteeeeesitte e e e esettee e e e eebaeeeeeattaaeeeeabtaaeeeeabaaaaeearbaraeeaannes 697

33,20, 1A L A, T 0L S tuteeee e e e e e e e e e et —————————————————— 699

33.2]1. foreign_data_WrappPer_OPtiONS e eeieeeereeeeeeeeetreeeeteeeeereeeereeeeseeeeereeas 700

33,22, fOreign_data_WIaPDETS cietieeeiieeeitreeeeteeeeiteeeareeesseseesseesssseessssesesssessesesssseesseeas 700

xvi

33,23, fOreign . SErVer 0P L ONS cttiiiiiieiirieeeeeeireeeeeeeitteeeeeeeteeeeeeertreeeeeeeitareeeeeerareeeeeans 701

R 7 S T o= Ne to M1 =% on 2 =5 of = DO USSP P UURRRRSTRRRRRRN 701
33,25, Ky CO UMM USATC e iiiitriieeeiiirreeeeeiireeeeeetireeeeeeeitreeseeeeseseeeeassseeeeeeestsseeessnsssseeeeenans 702
33,20, P AL AMEE L Suuuiiiieiirieeeeeeireeeeeeeiaeeeeeeeteeeeeeetbeeeeeeettaaeeeeeetteaeeeeaattreeeeeeatareeeeaerareeeeaans 703
33.27. referential CONSTIAINTS weeeeeeee ettt e e e e e eeeeeeeeeeeesaaeeeaaeseeseaaanees 705
33.28. £Ole_COLUMN_GIANES ttrttereeiiirreeeeeiirreeeeeiireeeeeeiirrreeeeaessseeseasssseesesssseseesssssseesennnns 706
33.29. role_ rOULINE _GTANT S ciiiiiiiiiieeeeeiiieeeeeeitreeeeeeeteeeeeeeetreeeeeeetteeeeeeerareeeeeesraeeeeeenes 707
33.30. £Ole L aDle_GIrants ciiiriiieieiiiieeeeeirieeeeeeireeeeeeetaeeeeeeeteeeeeeeesreeeeeeesaseeeeeessareeeeases 708
33.3]. £OlE_USAGE_GTANES witrercrieerrieerreeaiteeeaseeessseeesreessssessssseeassseesssseessseessssessssseeesssens 708
33,32, rOULINE_PTrivViLegEeS tiiriiieeriiieeiieeeitieeeiieesiteeesteeesreesssseeesseessseesseeessseeesssseessseens 709
33,33, L OUE AN S ceeiiieteecteee ettt eeet e e e et e e e e ettt e e e e ettt e e e e e eeabaaeeeeetbaaeeeeeraraaeeeerraraeeaannes 710
33,3, SR EMAT A ceeuriieieecitiee ettt e et e e et e e e e et e e e e bae e e e eeeataaaeeeattaaaeeaaraaeaeeaarraraeeaannes 716
33,3 SO OUEICE S cutiiieieciteee e e ettt e ettt e e e e et e e e e et e e e e et aa e e e e e ttaaaeeeartaaaeeeataaeaeeaarbaraeeaannes 716
33,30, SOl _fEATUTES witietiiietiie ettt e et e et eete e e et e e et e eeteeeeaaeeeetaeeeetaeeeeteeeeteeeeaeeeeareean 717
33.37. sql_implementation_INFO wiii e e e eiiieeeeeeree e e e eetrr e e e eerar e e e e erbareeeeennes 718
33,38, SOL_LANGUAGES teeurrreeeeiriieeeeiirreeeeeiirteeeeesiteeeesaasaseeeaasstsseeseassseseasaasssseeeessssseessnnses 719
33.30. SOl _PACKAGES teeieurireeeeitiieeeeeeiteeeeesiteeeeeesittaeeesasbaseeeeasstaseeeeatbaeeeeaarareeeeaarbareeeaannes 719
33140, SOl P AT E S tiurieieeiiiieeeeeiiteeeeeeeteeeeesetae e e e e e baeeeearbareeeeaabaaaeeaattaaeeeaabaraeeeanrbareeeaannes 720
33 4. SOl S E Z A NGt iitiiietie ettt e e e e e e et e e et e e et e e e etaeeeetaeeeteeeeteeenaeeeaareaan 720
3342, Sl _S1ZiNG PrOFIleS iiiiiiiiieiieeeiiieeeiteeeeiteeeeteeeeteeeeteeeetae e eeta e e e eteeeetaeeeaeeeaaraaan 721
3343, LA e COMSETAITIES teeteeeeeeeeeteee e e e e e e et e e e e e e e e e e eeeeeeeeee e eaeaaaeeaeeaaaeees 721
R I ¥ Y U RN o b ok R v T =Y 1= Y- FUUU TSRS PEURRRRRRRRRRRN 722
33, LA LS uiiiiiiee ittt ettt et e et e e ae e et e e e abee e abaeetaeeetaeeeteeeebaeeaareeenaraaas 723
R I (ST ook K o 1% of - S USROS PRUURRRRTRRRRRRN 724
R I AR E-T e 1N o b ok R v T =Y 1= Y- TUUUU TSRO PUUUURRRPRRRRRIN 725
33.48. USeT_MaPPIiNG OPTLOMIS wiiiiiirriieeeiireeeeeeeireeeeeeettreeeeeetereeeeesabeeeeeeestareeeeeebareeeeeaes 726
33,40, USE T _MAPPITIGS terreiiiieiitreieeeeeitteeeeeeeteeeeeeetteeeeeeeitareeeeeetereeeeessreeeeesestareeeeenbareeeeenaes 727
33.50. VieW_COLUMN_USEGE tirrrreereeiiirreeeeeiireeeeeeiireeeeeeiirereseessseseesesssresessssisseseessssseesennses 727
33,51, VieW T OUL IO USAGE ttriiiiiiirreeeeeeiteeeeeeeireeeeeeeitaeeeeeeeteeeeeeestareeeeeestareeeeeerereeeeenes 728
R B VRS RN o=t o B =Y Y= T= T 1= FORU U USROS PTPURURURORTRRRRRRN 729
3303, VA @IS tetrtteieeitte ettt ettt st ettt et et e s bbbt e bt e bt e sate e be e bt e sabeeabeeabeas 729
V. Server Programming 731
34, EXtending SQL.......coouoiiiiiieeeee et et e 733
34.1. How Extensibility WOTKS........ccccocioiiiiiiiiiiiececc et 733
34.2. The PostgreSQL Type SYSteIM.......ccceouiriiriiriiieiieientieeeee et 733
34.2.1. BASE TYPES ..ottt e e 733
34.2.2. COMPOSILE TYPES....ccueiiiiiiiiiiiieieniieiett ettt s 734
34.2.3. DOMAINS ..cuveevieeerieieeetiesiteeteeeteesteesaeeseesseesssessseesseesssesssessseessaessesssssenseesseensns 734
34.2.4. PSEUAO-TYPES -.cenvtienieiiiiiteeieetette sttt ettt st 734
34.2.5. POlyMOIPhiC TYPES ..eeoveeuieiiriieieeiieiett ettt sttt 734

34.3. User-Defined FUNCHONScccuiiiiieiieeiecciiesieeete ettt ve e steesveesbeeseessneesaeenseas 735
34.4. Query Language (SQL) FUNCHONScocuiiuiiiiiiiiieiesieeeee et 735
34.4.1. SQL Functions on Base TYPesccccevirieririrrieninieieneeenie e 736
34.4.2. SQL Functions on Composite TYPEScereruerrueruerienienieienienienienieeie e 738
34.4.3. SQL Functions with Output Parametersccoceecvevereenieneneencneeieneneenn 741
34.4.4. SQL Functions with Variable Numbers of Argumentscc.cceceveeruenenneene 742
34.4.5. SQL Functions with Default Values for Argumentsccocceceerereerienennne 743

xvii

34.4.6. SQL Functions as Table SOUICESc.ccevvieriiieeeiiiieeiie e ecreeeereeeeree e 743

34.4.7. SQL Functions RetUrning Setsccccceereerieriiirnieenieniesieenieenee st 744
34.4.8. SQL Functions RetUrning TABLEcecteriierierieriieniieneesieeieesieesieeeseenieenee 746
34.4.9. Polymorphic SQL FUNCLIONScc.eeriiriiiiiiiiienieiieetesee et 746

34.5. FUnction OVErlOadingceevueriiiriienieniieieeste sttt sttt ettt et e eaees 748
34.6. Function Volatility CateZOTIIiESscc.eeuieueruirierieriiereniieeeteeeenesieenesreeeessesneennesaeennens 749
34.7. Procedural Language FUnCHionsccccouirieniiniieieniieieiiecciene e 750
34.8. Internal FUNCHONS ...coueitiiiiiieieiieeit ettt ettt et sttt e st s ebees 750
34.9. C-Language FUNCHONS.cccciiiiiiiiieicie ettt s 751
34.9.1. Dynamic Loading..........ccccoiiieiiiniiiiiiiiiei e 751
34.9.2. Base Types in C-Language Functions............ccccccceevieiininiiniiicnciicicneeene 752
34.9.3. Version 0 Calling CONVENTIONScccecereruirrenueeeirinenenieeeeeenieseensesseeeneenens 755
34.9.4. Version 1 Calling CONVENTIONSccceceririirieriereeerinenieneeeeeeeniesressesseeeneenens 757
34.9.5. WIItING COUE.....coviiiienieiiitiriinteicietet ettt sttt st enens 760
34.9.6. Compiling and Linking Dynamically-Loaded Functionsc.ccecccveeveuenens 761
34.9.7. Extension Building Infrastructure...........cc.cooceeveninieninieninieencceescen 763
34.9.8. Composite-TYPe ATZUMENLScc.eeieriieeierieriieienieeitenieeteeee e ete e sbe e e eaeenee 765
34.9.9. Returning Rows (Composite TYPES)eeeerueruerrierinieieniieienieetene e 767
34.9.10. RELUIMING SELS.....eetiruieuieriiiiieientieitent ettt sttt st sete et et e sttt e st sbeeseesbeeaeenee 768
34.9.11. Polymorphic Arguments and Return TYpescoceveveeveeneniencnennencneenn 773
34.9.12. Shared Memory and LWLOCKScccoecieririinieniniiieneeeneeteeeeeseeeeene 775
34.10. User-Defined AZEIEZAEscoeeuiriiriiririeieniieienieeitente ettt etesieeite st sieeseesreesnens 776
34.11. User-Defined TYPES ...ccceevuerterieriieiinieeiteniesitetesteetest ettt st sttt s sae e esnens 778
34.12. User-Defined OPEIatorS.......c.cecueerverieriiienieeriesieeieeseesstessseesseesseesssesssessseessesssesssees 782
34.13. Operator Optimization Information...........ceevcvereierrieeriienieerieereeree e 783
34.13.1. COMMUTATOR c.veviieiiiitinieiest ettt 783
34132 NEGATOR .eveviiiiiiiiiiiteietest ettt 784
34133 RESTRICT oovivieiieiiiiiiietet ettt 784
341304, JOTIN .ottt 785
34.13.5. HASHES .cutititiiieiiiteicietc ettt 785
34.13.6. MERGES .cuciviuiiiitiiitiieicietest ettt 786
34.14. Interfacing Extensions To INAEXES........ceevvierieriiiiiiinienieeieeteite et 787
34.14.1. Index Methods and Operator CIaSSEseevvervieerienieriieenienee e 787
34.14.2. Index Method Strateiesccceveerieriieeiierienieeieeteete sttt st 788
34.14.3. Index Method Support ROUINEScccouirieiieniniiiiicccceeceeeeee 789
34.14.4. An EXAMDPIEoooiiiiiiiiiiiiceecete e 791
34.14.5. Operator Classes and Operator Families..........c..ccccoceeiiiininieninnicnnnn. 793
34.14.6. System Dependencies on Operator Classescceeeeveerieveencneecieneeeenn. 796
34.14.7. Special Features of Operator Classes............ccccoereecuinieiiiniieenciieieseeenns 797

35 TILZEETS .t sttt et s et a e st e bt et e e et st 799
35.1. Overview of Trigger Behavior..........ccccceoieiiiiinenieiiiiieneneceeeeeese e 799
35.2. Visibility of Data Changes.........cccecueruieiiririeie ettt 800
35.3. Writing Trigger FUNctions in Ccccoociiiiiiiiiiieieieee et 801
35.4. A Complete EXAMPIEccooiiiiiiiiiiiiieiee et 803
36. The RUIE SYSTEIMcouiiiiiiieieiiietest ettt sttt st sb et sttt e b b et e b eaeenee 808
36.1. The QUETY TIEE.....eeutitieieiieiteieet ettt ettt ettt et st e e sbe e 808
36.2. Views and the Rule SYStemcc.eeiiiiiiiiiniiiiieiiciee e 810
36.2.1. How SELECT Rules Workccocooiiiiiiiiii 810

XViii

36.2.2. View Rules in NON-SELECT StatemMentsceevvrvreeeeerireeeeeeeivreeeeeiirneeeeennnns 815

36.2.3. The Power of Views in PostgreSQLc.coovieeiiiiiiiniinieiiicieereeieeieeee e 816
36.2.4. UPAAtiNg @ VIBW...coueiiiiiiiiiiiieiienite sttt ettt et sttt st e esaee st ebeenaeeseee 816

36.3. Rules on INSERT, UPDATE, aNd DELETE ...cccceoueruteienteeeereeneenenieenenieseesesseensesmeennens 817
36.3.1. How Update Rules WOTKcccooiiriiiiiiiiiieiiceeeeeeeeee e 817
36.3.1.1. A First Rule Step by Step....cooeeriiiiiiiiniiiieeeeieeeeeeee e 818

36.3.2. Cooperation With VIEWS.........cceiiiiiiiiiniiiiiieieeeceeeece e 821

36.4. Rules and PrivileZescococieiiiiiiiiiiiiiiieiiieeeseeeeee et 828
36.5. Rules and Command STAtUS.........cooeerueriiiniierienie ettt ettt et eees 829
36.6. Rules Versus TIIZEETSccueoiiiiiiiiiiiiieiee ettt e 829
37. Procedural LangUagesc.ccccuiiuiiiiiiiiiiii et e 832
37.1. Installing Procedural Languagesccoceeveerieriiiieinienieeieeieesiec et 832
38. PL/pgSQL - SQL Procedural LanguUagec.c.coveeriiriirnieniiiieeeeneeete et 834
381 OVEIVIEW ..oeeuvieiieieiieieeitiestteeteeeteesteessteesseessaesseessseessaesseessseassaesseesssssssasseeseesssenssessens 834
38.1.1. Advantages of Using PL/PZSQLccoooiiiiiiiiiieeeee et 834
38.1.2. Supported Argument and Result Data Types........ccceeeveereeniniencnieienieeene 835

38.2. Structure of PL/PZSQLu....c.uiiiiiiieieieee ettt s 835
38.3. DECIATALIONS ...ttt ettt ettt sb ettt et bt e te s bt et e b e bt et sbeeaesbeenaens 837
38.3.1. Aliases for Function Parametersccocoveevenenieniinieniinceencceesiceeene 837
38.3.2. COPYING TYPES .ottt ettt sttt ettt e 840
38.3.3. ROW TYPES ettt sttt ettt sttt 840
38.3.4. RECOTA TYPES -.cnveeeeneiieinienieniteiestteit ettt sttt ettt sttt s 841
38.3.5. RENAME . ..cctiuiiuiriiiiteieteitette ettt ettt sttt et ae et ebe e s b e neeneas 841

384, EXPIESSIONS ...veeuvieereeteeiiesiteeteeteesttestesteenseesseessseanseenseesssessseesseenseessesssesnseesssesssesnses 842
38.5. BASIC StAEIMEIILS ...cuveviriieniiriteientieitenteeit ettt ettt et ettt ebeesaesbe et e be st e et saeenaesbeennens 842
38.5. 1. ASSIZNIMENL ..uveeivieiieiieriteeteeieerttesteete et e st e sateebeesaeesaeesabeebeesseessseenseenseenans 842
38.5.2. Executing a Command With No Result.........ccecevviienieniiiiiienienieiieeieeeee 843
38.5.3. Executing a Query with a Single-Row Resultcccccoeceeriiinieninniiiiieeenne, 844
38.5.4. Executing Dynamic COmMmMANASccceevvierieriirnieenieniesieenieenee e eieeneee s 845
38.5.5. Obtaining the Result Status........cceevvieriiieiiinienieiieeee et 848
38.5.6. Doing NOthing At Allcooiiiiiiiiiiieeieeeteee et 849

38.6. CONLIOLl STIUCLUTES.....c.veeueeniiriieieniieiieti ettt ettt ettt et be s et saeenesaeennens 849
38.6.1. Returning From a FUNCHONcccieviiiiiiiiiiiiiicceecee e 849
38.0.1. 1. RETURN .ottt et sttt sae et ene st esnesneeanesnesaeesnesaeennens 850

38.6.1.2. RETURN NEXT and RETURN QUERYeevuervuerrueenieerreneeenieeseeseesnees 850

38.6.2. CONAItIONALS ...eeuvrieiiiiiieite ettt ettt sttt e 851
38.0.2. 1. TF—THEN cttiiteeteeiteeite et etee st esit e et e bt e sbteste e bt e bt e satesateebeesaaesaseeabees 852

38.6.2.2. TF—THEN=ELSE ..tttterterteerieenieeniteesieesteenseesseeseesbeesmsesseeseesssesnsesnsens 852

38.6.2.3. IF—THEN-ELSTE scttttteruterieereenteeniteetesteestaessesseesseesnsesaseenseesseesseenns 853

38.6.2.4. SIMPIE CASE .uvieuieiiieieieeieeete ettt ettt st 854

38.6.2.5. SeArChed CASE....cciietieeiieiieitesiie st eie ettt e ve e vt esteesaaesebeebeesseesnsaens 854

38.6.3. SIMPIE LOOPS -ttt 855
38.0.3. 1. LOOP ..ttt ettt ettt ettt ettt st b e ae et et ae e een 855

38.0.3.2. EXIT tueeeeiteeienieettete ettt et te e sbt e ettt e bt st e nbe s bt et enbeese e beeseenaesaeeneens 855

38.0.3.3. CONTINUE .ccutetirttentinteententeestentesteentesteeutenaesstenaesbeensenbeeseenbesaeenaesueeneens 856

38.0.3.4 WHILE .eeutitieieieeteeieettete sttt sttt et et satenbesbeestenbeebe e beebeeaesaeeneens 856

38.6.3.5. FOR (INtEZET VATIANT)....c.eerueruieieniieieniieienieeitentesieete st ette e eiee e sie e 857

38.6.4. Looping Through Query Resultsccccoociriiieninieniniiieneceeeeeceen 858

Xix

38.6.5. Trapping EITOTScccueivuiiiiiiiiieiieite ettt ettt sttt st e 859

B8 7. CUISOTS. c.ueeuveitenteieeitenteeitete et et ste ettt et e st sate b e sbeeeb et eae et e eueesaesbeesnenbeeaeensesueensenueennens 861
38.7.1. Declaring Cursor Variablesceeverieerienieniieieenienee ettt 861
38.7.2. OPENING CUISOTS ..c.uveeurieiierieeieenitesteeteenteestesateeteesstesstesateesseesseesssessesnseesans 862

38.7.2.1. OPEN FOR QUEL Y eeuureeeeeeerreeeeeeirreeeeeiisreeeeeessreeeessissseeseesssesessesssessens 862
38.7.2.2. OPEN FOR EXECUTE .icioiiiiiiiiiiiiiiiiieieieic et 862
38.7.2.3. Opening a Bound CUISOTcocoecvieiiriiiniinieniieeienieeeere e 862
38.7.3. USING CUISOTS.....cueeuriiieiieieeiieteeit ettt sttt sttt 863
38731 FETCH ittt ettt et 863
38.7.3.2. MOVE .eteuetiteeiieteeteete et ete st e eeste et en e et e e sae e st essesneensesseeneaseeneenaesneeneens 864
38.7.3.3. UPDATE/DELETE WHERE CURRENT OF ...cccccesiiriieniirienienieeneneennenns 864
38.7.3.4. CLOSE t ittt ettt ettt ettt sttt ettt ettt ettt sbe st et e b enee s 864
38.7.3.5. Returning CUISOLScccueiuieuieriietieiesieeienteeiteie st eeesee e see e eee e s 865
38.7.4. Looping Through a Cursor’s Result.........c.cooeeviiiriiiiniiineeeceeee 866

38.8. EITOTS and MESSAZES ...couveeeiiriiiriieniieniie sttt ettt ettt ettt ettt s bt e saeesaeeenees 867

38.9. TrigEr PrOCEAUIESc..ecveuiiuiiiiiiiriinieicicteitet ettt e e 868

38.10. PL/pgSQL Under the HOOdcocuiiiiiiiiiiieieiieeeeee e 874
38.10.1. Variable SubSHIULIONc..coteriirieientieiete ettt 874
38.10.2. Plan CacChingccceveeiiniiieiiniieieeeitete ettt 876

38.11. Tips for Developing in PL/PZSQL.....cccccoiiiiriiiiiiiieieeeteenieeteeete e 878
38.11.1. Handling of Quotation Marksc..cecceririinininiininiiieneencceescen 879

38.12. Porting from Oracle PL/SQL.......ccccocoriiiiiiiiiiiiiiieeeceeseeeeeteee e 880
38.12.1. Porting EXamPIEscccevirieriiniieiiiiniteie ettt 881
38.12.2. Other Things to WatCh FOT...........coceeiiiiiiinieeiicieeee e 887

38.12.2.1. Implicit Rollback after EXCEPONS......cccuevvveeriienierienieeiieeieeieeaeen 887

38.12.2.2. EXECUTE suetiuieuieiieiietiiesee et sttt st 887

38.12.2.3. Optimizing PL/pgSQL FUNCIONS.......ccvvuirieeiieriienieeieeieesieeeeeen 887

38.12.3. APPENAIX...euiiiiriiiiiniieienertetert ettt ettt et s 888

39. PL/Tcl - Tcl Procedural LanguaZE.........ccccveeveriieniienieiieenieenee st esieesieesieeieesieesaeesveesaeesaneens 891

3.1, OVEIVIBW ..ottt sttt ettt ettt sttt et ettt eae e sae e b et e bt saeennesaeennens 891

39.2. PL/Tcl Functions and ATGUIMENEScecuterreerierieenieeneenteeieesieenieesreeseesieesenesnsesveas 891

39.3. Data Values in PL/TCL......cc.cociiiiiiiiiiinieceteteece et 893

39.4. Global Data in PLITCLcocoiiiiiiiiiiiieiiinteereceteeee et 893

39.5. Database Access from PL/TCL ...c...ccooiiiiiiiiiiiiiieieece et 893

39.6. Trigger Procedures in PL/TCL........ccccccooiiiiiiiiiiiiiiiiecccereceeeeete e 895

39.7. Modules and the unknown COMMANG.........cccerieriirrieirienienieeeenee et 897

39.8. TCl Procedure NAIMESceevueriieriiinieniieieeste sttt sttt ettt et sate s enees 897

40. PL/Perl - Perl Procedural Language............ccccocoeciiriiiiiniiiiiiiiicieiieeeee e 899

40.1. PL/Perl Functions and ATZUIMENLTS........c..cccoevuiriirieiiiieieieeienieee et e 899

40.2. Database Access from PL/Perlcccoiiiiiiiiiiieieee e 902

40.3. Data Values in PL/PErl.........ccooiiiiiiieiieeeeeee et 905

40.4. Global Values in PL/PEr]cccooiiiiiiiiiiiiieeeee ettt 905

40.5. Trusted and Untrusted PL/Per]ccccoiiiiiiiiiiiii e 906

40.6. PL/PEIT TTIZZEIS ..evivieeiieiieiieiieieteteeeeeeee sttt ettt et sttt s st n et ene e 907

40.7. Limitations and MisSing FEALUIESccccceveririirierieieiiinienieneieeeeeese e 909

41. PL/Python - Python Procedural Language............ccccecueririenenieiienienienieeceee e 910

41.1. PL/Python FUNCHONSc..eoiiiiiiieiiiiiieneseesi ettt s 910

41.2. Trig@er FUNCHIONSeoouiriiriiiiiniieiieiteteste ettt sttt ettt s s 914

XX

1.3, DAtaDASE ACCESS ..eeeeiuvreeeeeeirieeeeeeireeeeeeeireeeeeeitreeeeesiareeeeeestsreeseesisreeeeeessreeeeeesssseeeennans 914

42. Server Programming INEETTACEoecviriiiiiinieiiieieeece ettt st 916
42.1. Interface FUNCHONSccccuiiiiiiieeiiiceiiee sttt et e et eetb e e s e e e beeeessaeenens 916
SPI_CONMECEeviieiiieeiieeiee et e ettt e et e e et e e etb e e staeesabaeeessaeesssaeessseaenssasessaeanssenns 916
SPI_fINISR ..ottt ettt e e b e e e nnbaeenbaeenraens 918
SPLPUSH c.cai ettt e e 919
SPL_POP et et s 920

N & B o) 1 LTI 921

N & B ORI 924
SPI_execute_ With_args........ccccceiierieiiiiiieieeieeeeteeee ettt e 925
SPI_PIEPATE.......eouiiiiiiiiiieiietee ettt sttt e 927

S PIEPATE _CUISOTeeuiiieiieeiieiteeiieett ettt ettt ettt et st e e b e st e eee e e nae 929
SPI_gEtargCOUNLc..ccuiiiiiiiiiiiei e e e 930
SPI_gEtargtyPeid.....ccceeueruirieieieiieiieienientetetet ettt ettt ettt s 931
SPL_iS_CUISOT_PLAN ...ttt ettt 932
SPIL_EXECULE_PlAN....ciiiiiiiiiiiiiieiieeteeeee ettt st st e 933

N o IS (STC) o OO SOR O P U P TP P PP PRRPPPRPPRON 935
SPL_CUISOT_OPCIL ...ttt ettt ettt ettt sbe et sb et e b et e bt et esbesbe et e nbeeaeenee 936
SPI_cursor_open_wWith_argsc.cooiererieiieniniere ettt 938
SPL_CUISOT_fINA. ittt e et e e e e e e a e e e et eeeeeeesessesesssaanaes 940

SPL CUISOT_fEUCH ...ttt e et e et eeeeeeeeessesessaaanaes 941

SPL CUISOT _INOVE ...ttt ettt et e e e e e e e e s e s e e aaaaaaeeseeeessesessesessasanans 942
SPI_SCIOll_CUISOT_TEECH ...t e e e e e e e e e e e e s aaaaes 943
SPI_SCIOIl_CUISOT_INOVE ..vvvvviiiiiieieeeeeeeeeeeceee ettt e e e e e e e e e e s eeeaasaseeteeeeeessssessesssnananens 944

S CUISOT_CLOSE. ..ttt ettt e e e e e e e e s e s e aataa et eeeeeeeeesessesssnanasens 945
SPI_SAVEPIANtiiiieiieciie ettt ettt ettt st et e s ebeenbeeaeeseee 946

42.2. Interface SUPPOTt FUNCHIONSoovviiriiriieiieniieeieeieeiteste sttt et 947
SPIL NAME ...eeiiiiiiiiiieeeeeeeeeeeeeee ettt e e e e e e e e s ettt et e e e e e e e e e s e e s enaaaaaes 947

SPI_ UMD ...ttt e e et e e et e e e aee e ebaeesabeeesnsesenssaeeneveeas 948
SPI_ZELVALUEviiiiiiieeiie ettt ettt st 949
SPI_getbINValooiiiiiiiiiiiieeeeteee ettt st st e 950

S _ZELLYPC .ttt ettt sttt st e b e b saee 951
SPI_gELLYPEIA ... eeeiieiieiieeeeeete ettt ettt sttt 952
SPL_GEtreINamEe.......ccceeouieuieiiriieiereeieteetetet ettt et e 953
SPI_ZEtNSPNAIMIE.c.eiiiiieiiiiieiieiceteteet ettt ettt sttt et s r e 954

42.3. Memory Managementccccecueruieeeniinienienieeeetieneeseeseeenesaesueenesseeeesaesneensesueennens 955
SPI_PAILOC ...ttt ettt st st 955
SPITEPAIIOC ...ttt st et 957
SPI_PITEE. ..ttt st st 958
SPIL_COPYLUPILE ... e 959
SPIL_TEIUINTUPIE ...ttt ettt sttt s be e 960
SPIL_MOIFYLUPIE ...ttt st 961
SPL_ATEEIUPIC. ...ttt ettt ettt b 963
SPL_{TEETUPLADIE.eueitiiieieeie ettt st 964
SPL_AT@EPIAN. ...ttt ettt et st b et 965

42.4. Visibility of Data Changes.........cccceeeeieririirienieieneei ettt s 966
42.5. EXAMPIES ..ottt et et sttt sttt ettt st nae e 966

XXi

VI. Reference 970

L. SQL COMMANGS....cutiiiiiiiiiiieeiiie et et e ettt eetteestteesreeesebeeeseseeaeseesssaesssseeassseesssseessseeesssesesses 972
ABORT ...ttt ettt sttt et e b e st et e st e e e s e ene e seese et eeteenteseeneennens 973
ALTER AGGREGATE ...ttt ettt ettt st sse e ssesneensesneennens 975
ALTER CONVERSIONooitiiiiieieieetee sttt sttt ae e seessesneensesneennens 977
ALTER DATABASE ...ttt ettt ettt e sve e sae e sabeebeeaeesebeenaaenseesens 979
ALTER DOMALIN ...ttt ettt et ettt e et e eteestaesttessbeesssasssessbeebeesseessseenseenseesens 982
ALTER FOREIGN DATA WRAPPERcciiiiiiieieeeeee ettt 985
ALTER FUNCTIONutiitiiiiieieeitetteete et ettt teesteestaessaesnveesseasasassseeseenseessseensaenseesens 987
ALTER GROUPooiiiieeceeteett ettt ettt et et e s e s tae st eesbeesaaessseebaeseessseensaenseesens 991
ALTER INDEX ...ttt ettt ettt et et eeteestaessaessbaessaessaesssaenseeseessseenseenseenens 993
ALTER LANGUAGEccoiiitieteeteteee ettt ettt et steesaaeseveesbeesaeessbeenseenseesens 996
ALTER OPERATORoooiiiiiieieeitetteete ettt stteeteesteesaeessaessvaesseessaessseesaesseessseenseenseensns 997
ALTER OPERATOR CLASS ... oottt ettt tesve et saee e esbeesaeeseveeaaeseesens 999
ALTER OPERATOR FAMILYcooooiiitiiieiiciieieeteee ettt sttt sttt sve e sae e sbeesnare e 1000
ALTER ROLEcuiiiiitiiiieceeeeeet ettt ettt ettt e sae s ts e b et essesbeesaessesreensesbeessenreens 1004
ALTER SCHEMAoootiiiiieeeteeteeteete ettt ettt ae et svesteebesteesaasbeesaesesreessessesssansenns 1008
ALTER SEQUENCE.......ccocoiiiiiiiieiesitetete ettt sve ettt ese st esaesbeesaesesraessessesssensenns 1009
ALTER SERVER..........ooiiiiitiieticteteste ettt sttt et sae st esbe st ssesseeseessesraessesseessensenns 1012
ALTER TABLE ..ottt ettt ettt ve et b e st esb e be s e sbessaessessaessesbasssensenns 1014
ALTER TABLESPACEcoooiiiieiteteeeetete ettt ettt ste st esbesteessesseesaesaessaessassasssensenns 1023
ALTER TEXT SEARCH CONFIGURATIONccceciteiiiriiiieienrieeenreeeenieseeesesreesnessens 1025
ALTER TEXT SEARCH DICTIONARYcccoeotiiiiiieiieieieeieteere et sieseeese e essessesseeseenes 1027
ALTER TEXT SEARCH PARSERcccoeitiiiiiitieieee ettt se e sbe e ens 1029
ALTER TEXT SEARCH TEMPLATEc.cccveotiitieieiteienie ettt sae e sre s e 1030
ALTER TRIGGERccoioiiiiiieieeteiese ettt ettt esse st e essessessaesessaensessanssensenns 1031
ALTER TYPE......oi oottt ettt sttt et st e sae st et et e essessesseensessaensessanssensenns 1033
ALTER USER ..ottt sttt ettt ettt esse st esse st e essesesseensesseensessesssensenns 1035
ALTER USER MAPPINGcoooitieiieieriieienie et ette et sae st ete st ssaessesseessessaensessesssensenns 1036
ALTER VIEWooiiiiiiiieieeeeeee ettt sttt ae st e ssesstense st e essensesseensesseensensenssensenns 1038
ANALYZE ...ttt ettt ettt sttt et e st s see s s e sstense st e enseseeneensesseensensennsenseans 1040
BEGIN ...ttt ettt ettt e et e e aeent e se s et ente st enteseeneensesseensenseententeane 1042
CHECKPOINT ..ottt ettt ettt et et s st et e et e s e st eneessesseensesseensenseeneensennes 1044
CLOSE ..ottt ettt e e e b e e be e s aa e s et e ebe e beessbeeabaesseessaesabeenseenseesssennseanns 1045
CLUSTER ...ttt ettt e e ettt e st e s b e e aeesbeestbeesbaenseessessbeensaenseesssannseanns 1047
COMMENT ...ttt ettt s e et e e bt e s te e s b e e beesaeessbeeabaesseessessbeensaenseesssansseenes 1050
COMMIT ...ttt ettt e et e e e e be e s ate s et e abeesseessbessbeesseessessbeenseenseesssansseenns 1054
COMMIT PREPARED.........cctiitiitieieiteeteteeteete ettt ettt ettt et et eve e ae e 1056
COPY oottt ettt ettt et e e te et e teetb et e te e b e beeae e beete e beabeenteteeaeenteers 1057
CREATE AGGREGATEooooiitieeeteeeecteeteete ettt ettt ve v ve e ae e 1066
CREATE CAST ...ttt ettt ettt et b ettt te e e aeeve et e sbeessabeeaeenneeeas 1070
CREATE CONSTRAINT TRIGGERccccoveiiitiiiiiiceeeeeeeete ettt 1075
CREATE CONVERSIONoooitiitiiiiiiecteteeteete ettt ettt et et esaesvesveessesteesseseeaeenneens 1077
CREATE DATABASE ...ttt ettt ettt sae e ve b e beessebesaeenseees 1079
CREATE DOMAIN.......ccotiitiitieiieteete ettt et steete st s s b e e te e s e sseesaessesssessesseessassesseensesees 1082
CREATE FOREIGN DATA WRAPPER...........cooiotiiiiieieieeteeeee ettt 1085
CREATE FUNCTIONcoottiieiietteiecieeteteete et ete et sae st esse s e essessessaessesssessesseassassesseessesens 1087
CREATE GROUP.......ccuooiiiietieiecteetecte ettt ettt ettt et saeesaesbesraessesseessassesseensesns 1095

xxii

CREATE INDEX.......ccoiiiiiiiiiiiiiiiin ettt s 1096

CREATE LANGUAGEc.coiiiiiiiiiiiictece e 1102
CREATE OPERATORcoiiiiiiiiiiiiiiiicccce s 1105
CREATE OPERATOR CLASS ..o 1108
CREATE OPERATOR FAMILYcccooiiiiiiiiiiiiiiiiiicccicc s 1111
CREATE ROLE........occiiiiiiiiiiiiii s 1113
CREATE RULE ..ottt st et 1118
CREATE SCHEMA ..ottt e 1121
CREATE SEQUENCEooiiiiiiieeeeteete ettt st 1124
CREATE SERVER ..o 1128
CREATE TABLE ... e e e 1130
CREATE TABLE AS ...t 1143
CREATE TABLESPACE.........cooiiiiiiie e e 1147
CREATE TEXT SEARCH CONFIGURATION........cccoooiiiiiiiiiiiiiiciiececcee e 1149
CREATE TEXT SEARCH DICTIONARYccoiiiiiiiiiic e 1151
CREATE TEXT SEARCH PARSER ... 1153
CREATE TEXT SEARCH TEMPLATE..........cccooiiiiiii e 1155
CREATE TRIGGER.......ccocciiiiiiiiii e s 1157
CREATE TYPE ...ttt sttt s e 1160
CREATE USER ..ottt sttt sttt s s 1168
CREATE USER MAPPING.....c..coiiiiiiitiiicicteete ettt s 1169
CREATE VIEW ..ottt ettt sttt s s 1171
DEALLOCATEooiiiiiiiieiitneeeetete ettt st s e 1174
DECLARE ..ottt s 1175
DELETE ..ot e 1179
DISCARD ..ottt s 1182
DROP AGGREGATE.......c.occiiiiiiiiiiiiiiciieeccee et 1184
DROP CAST ..ot 1186
DROP CONVERSIONc.oooiiiiiiiiiiiiiicieceee st 1188
DROP DATABASE ..ottt 1190
DROP DOMAINoooiiiiiiiiiiiiicteeee e s 1191
DROP FOREIGN DATA WRAPPERcccciiiiiiiiiiiiiiiiiiiicccccc s 1193
DROP FUNCTION ..ottt 1195
DROP GROUP ..ottt 1197
DROP INDEX ..ottt ettt ettt st sn e et esae st ne b e neene 1198
DROP LANGUAGEccooiiiiteiet ettt sttt st 1200
DROP OPERATOR ..ottt st et s 1202
DROP OPERATOR CLASS ...ttt s 1204
DROP OPERATOR FAMILYoooiiiiiiiiiiiiiiiieiec ettt 1206
DROP OWNED ..ottt sttt s st e 1208
DROP ROLE ...ttt e st 1210
DROP RULE ..ottt s st 1212
DROP SCHEMA ... et s 1214
DROP SEQUENCE........cooiiiiiiiiie et s 1216
DROP SERVER ..o 1218
DROP TABLE ...ttt e s 1220
DROP TABLESPACEcoooiiiiiiiieieietetetseseeee ettt 1222
DROP TEXT SEARCH CONFIGURATIONcccoiiiiiniiniiiereieeeiienieeeeeeee e 1224

XXiil

DROP TEXT SEARCH DICTIONARYccciiiiiiiiiiiiiiiiiicicccceeeceeec s 1226

DROP TEXT SEARCH PARSERccooiiiiiiiiiiiiinceneereeneeeseeeeeteeere e 1228
DROP TEXT SEARCH TEMPLATEcccooiiiiniiiiiiiinieeeeeeeeeese et 1230
DROP TRIGGERcooiiiiiiiiiiieineereeeseeee ettt ettt 1232
DROP TYPE.....coiiiieeereee ettt 1234
DROP USER ..ottt sttt sttt ettt sttt s 1236
DROP USER MAPPINGooutriiriimiiiiieieiteitntentetetet ettt sttt aeae 1237
DROP VIEW .ottt ettt ettt sttt ettt sttt st enee 1239
EIND .ottt b bbbttt ettt se st bbb 1241
EXECUTE ...ttt ettt ettt sttt ettt st s sa e 1243
EXPLAIN ...ttt ettt etttk ettt ettt s b et eb et b et ettt et st se st ebestebens 1245
FETCH ...ttt ettt sttt b e sttt s st enee 1249
GRANT .ottt ettt b et b et bttt sttt b e st be st b et b e ee 1253
INSERT ...ttt ettt ettt sttt b et b et ettt sttt ebesteben 1260
LISTEN L.ttt ettt ettt sttt sttt b ettt ettt et st b nteben 1264
LOAD ...ttt ettt ettt be 1266
LOCK ettt ettt ettt sttt ettt ettt be 1267
IMOVE. ..ottt ettt ettt sttt b ettt ettt be s b 1270
INOTIFY ..ttt ettt ettt sttt sttt sttt ettt et saebentenen 1272
PREPARE ..ottt ettt sttt ettt sttt naene e 1274
PREPARE TRANSACTIONc.ooectmiinieiinieienieietetetetetsteie ettt sttt sttt saenesaenens 1277
REASSIGN OWNED......coiiiiiiiirieinieinieenteentetetetetstee sttt ettt sae e et saesesaenens 1279
REINDEX ...ttt ettt ettt st sttt ettt sa et sa et saenesaenen 1281
RELEASE SAVEPOINTccortiiiiineineineenteetetetstet ettt sttt sne st e saenens 1284
RESET ...ttt ettt ettt sttt sttt ettt sttt naenen 1286
REVOKE ...ttt ettt ettt sttt ettt 1288
ROLLBACK ..ottt ettt ettt st sttt sne st saenenaenens 1292
ROLLBACK PREPAREDc.ccoviiinieiniiinieienieicietetnretstee ettt ettt saene e 1294
ROLLBACK TO SAVEPOINTc.ooeitrieiinieieieicietetnteentee ettt et saesesaenens 1295
SAVEPOINT ..ottt sttt 1297
SELECT ...ttt sttt st s 1299
SELECT INTO ...c.cviiiiiiieireereeerete ettt ettt s 1316
SET et 1318
SET CONSTRAINTS ..ottt ettt sttt ettt ettt s eaee 1322
SET ROLE ...ttt ettt sttt sttt ettt eaee 1323
SET SESSION AUTHORIZATION........cottiiiteieiniinenienteteteiteieeieete sttt nene 1325
SET TRANSACTIONootiiiiriiiiieietnitnttst ettt sttt sttt sttt aeaee 1327
SHOW ettt sttt ettt sttt et e a e bbb et ae b nae e n e 1329
START TRANSACTION ...c..ooiiiiiiieintntieteteteeeiee ettt ettt sttt aenee 1332
TRUNCATE ..ottt ettt sttt ettt sttt ntebe 1333
UNLISTEN ...ttt ettt ettt sttt st st b et b ettt ettt st bt stebens 1336
UPDATE ..ottt ettt ettt sttt b et ettt sttt ebesaeben 1338
VACUUM ...ttt sttt ettt ettt st sttt eb et b ettt ettt st saebesaebens 1342
VALUES ...ttt ettt ettt ettt sttt b ettt ettt st ebesaeben 1345
I1. PostgreSQL Client APPIICALIONSco.eerieruirieniieiienie ettt ettt ettt sttt et eaee e e 1348
CIUSTETAD ...ttt st b ettt st nae bt et e s b eate e eae 1349
CIEALEAD ...ttt s et 1352
CIEALELANIZ ...ttt ettt ettt b et b bttt bt e bt sbt et e b e eb e e bt ebeebesbeenbenbeeanenteene 1355

XXV

ATOPAD .ttt et et ettt st be e ht e sa b e e be e beesateebeeaeens 1362
ATOPIANG ..ttt ettt et et e st st e bt e bt e s et e bt et e sateebeeaeens 1365
AIOPUSET ..ttt ettt ettt e bt e b et esab e e bt e s bt e satesabe e bt esbeesabeenbeenbaesatesnbeeseens 1368
P vveemreenueesuteete et e st e e et e bt e bt e e a bt et e bt e e a b e eat e e bt e bt e e h bt e bt e bt e e hteea bt e be e bt e sab e et e e bt e sateebeeaeens 1371
PE_CONIIG ittt ettt et e ittt e bt e s bt s bt e bt e bt e sab e e bt e bt e sabeebeeaeens 1373
PEAUIMID .ttt st st e n e et st ne e 1376
PEAUMPALL ..o e e et st 1385
PE_TESTOTE ...ttt sttt s et 1390
PO e et st a e et st ene 1398
L) 10T (53 Ca Lo TSRO 1426
VACUUINADeiiiiieeeiie ettt e e e ettt e et e e sateeesnteeeenseeeanseeesseeennseesnseeansseanns 1429
1. PostgreSQL Server APPIiCALIONSccevueeriertieierieeiteie et eteie ettt ee et sbe et eaeenee e 1433
11 11116 Lo TSRS 1434
PE_CONEIOLAALA ...ttt ettt et ettt et b et e st e s e naeseeenbesbeeneeteeae 1437
POt ettt b e s h et b e a et st e bt bt et e b enteteene 1438
PETESEERIOE ..ttt ettt b et b ettt et she e be b eate e eae 1443
POSEIES ..ttt ettt ste et ettt e e b et e st e e bt et e e bt es e e bt e st e bt e st e bt sbeem b e bt eate bt e bt ebesbe e benbeententeeae 1445
POSEIMASTET ...ttt ettt ettt ettt et sb et b e bt e bt e bt e bt sbeembenbeebee bt sbeenaesbeenbenbeennenteene 1452
VII. Internals 1453
43. Overview of PostgreSQL INternalsc.ccecereriiriiniiiiiniiiecnteeseeeeeeee e 1455
43.1. The Path Of @ QUETYcociieiiieiiiiieeieeie ettt ettt st e e esbeebeeaeens 1455
43.2. How Connections are Establishedccoocieriiiniiinieniiieiieceic e 1455
43.3. The Parser STAZEcecuveriieiieeiieitieeieeie ettt ettt sttt e st e seteebeebeesabeenseeseens 1456
G T B B 1 (1< O OO OO PSR UPUUPRURRUPRRPRN 1456
43.3.2. Transformation ProOCESS........ccveriirriieriieniieeieetesite ettt et 1457

43.4. The PostgreSQL Rule SYSEM ...c..eeriiriiiriiiniienieiieesiteete ettt 1457
43.5. Planner/OpPtmIZETcevverierieeniieeieeieesieesitesiteeteesatesitessbeesseesaeesateeseeseesesesseenseens 1458
43.5.1. Generating Possible Plans............cocceeviiiiiiiiiiiiiniiniececteeeee e 1458

43,6, EXECULOT ..c..eeitieiiiieiieeieesite ettt ettt ettt ettt et e bt e s it s abe e bt e sbeesab e ebeebeesateenbeeseens 1459
A4, SYSEM CALALOES .. veeeiiiiieiieeiie ettt ettt et ettt e s bt st e e bt e beesabeeabe e beesbbeeaneenne 1461
AA. T, OVETVIEW ..eeiniieiiieieeieesite ettt ettt ettt e st e s it st e s bt e satesabe e bt esbeesabeenbeebeesateebeenseens 1461
VYISO oY =Y fo fial=Yo PN uf =SSOSR 1462
Y T oY =Y 1RSSR 1463
VAV B oY HE=Y (1) < YU 1465
VA ViR 0¥ B 11V o Yiate Yo SRR USRS 1465
V2 ViR Y 0¥ BN ol vl ot L= PSR RUURRRS 1466
Vi Vi 0 R oY T=N ol o o o X o =SOSR OO U U USSP U RO P PP PSPPI 1466
A4 8. PG AUE NI it iiiiiiiii et e et e e et e e et e e e e et e e e e e enaataeeeeenraaaeeeanraaaens 1470
44.9. DG _AUL N MEMDE TS tetiiiieiieeeieeeriieeerteeetteeetteeetteesbeeesteeesseeeaaseeessseeesnseesanseesnsseanns 1471
4. 10, PG_CASE tttteiieiiiieeeeiitteeeeeitteeeeeertreeeeeeraeeeeeesbteeaeeaabaeeeeaantaaaaeeaaaaraeeeeatraaaeeaanrraaaans 1471
Q. 1. PG CLaASS ieiieiirieeeeiitieeeeeectte e e e eeetreeeeeetaeeeeeerbaeeeeseabaeaeeaanbaaaaeeanaaraaeeeartraaeeannrraaeans 1473
44,12, PG_CONSETAINT tiittiiiieeieiiiieeeeeiireeeeeitteeeeeestreeeeeearaeeeeesstaseeesasasreseeeassaesseesssaneens 1476
Vi3 S T 'eYe fifoTe) o A1A=Y ot e) o WUUUNN OO U U U PRRRRTI 1478
Q414 DG _AATADASE tiiiiieetieeeiee ettt eete e et e et e e et e e e e et e e e e ae e e e teeeeteeeetteeeeabeeeaaraaans 1479
VYIS e oYe Hl e 1= o 1=} oY FUNRUUUNN S R N T TR U U U ST U s USSP U RS UUUUUUUURUPUON 1481
44,16, PG _AeSCTiPt IO ciiiiiieiieeeiee et ee ettt eette e et e e et e et e e e te e e e ae e eeteeeetbeeeeabeeeeabeeearaaens 1482

XXV

¥ oY B =3 o N DTSRRI 1483

44.18. pg_foreign_data _WIAPPET crrreeeeeriirreeeeeiireeeeeeiirreeeeesirreeseesisreseeeesissesseesiseeees 1484
4419, PG FOTEIGN_SEIVEL tiiietiureeeeeeitreeeeeeireeeeeestaeeeeeesttaeeseesitrreeseesisreeeeeesrreeseenisreeeeas 1484
44,20, DG _ANIAEK teeiieitrrieeeeeirteeeeeeireeeeeettreeeeeeirreeeeeetaaeeeeeee—aeaeeea——aeeeenaraaeeeeerraaeeeaarraaeas 1485
Vi Yi 5508 R e Yo B 10U o U=0 ok K o= SO U USRS R RS RRRROPRT 1487
4422, DG LANIGUAGE wrreeeeeeitrreeeeeiitreeeeeeiirreeeeeeisteeeeestsseseeeeisseeseesissseeseesisresesesarseeseesaseeeens 1488
VYIS B oY BB e 1Yo) o =Y oiNUUN USSR 1489
i B oYe B I = o =Y o U= ol RS UUS 1490
4.5, DG _NAMESPACE uvrrerreeerreeesreeassreeassseesasseeassseeasseesssseesseeesssssasssssessseesssseesssseesssseenns 1490
Y T oTe B o) o Toh KL= =1 =T USRS 1490
VYIS R oTo B o) o T=% ar= N ol e X ol USSR 1491
44.28. PG_OPEAMI LY teectieeriieeeiieeeieeeiieeerteeeetee ettt esteeessteesnteeeanseeeanseeessseeensseesanseeansseenns 1492
44.29. PG DI EEMPLATE iteriieeeiieeeieeeiieeerteeeetteeetteeetteessteesteeeaseeeabeeeasseeeanseesanteeaanraeans 1493
Vi [R oTe N o o T OO RUPURUTSN 1494
T2 B B oo B =8 ok I ot =SOSR 1498
44.32. DG_SNACDPENA teutieeriiieeeiieeeiee ettt e et e stteeette e sttt e sbteeenbeeeebeeeeabeeeanteeenateesanbeeenaeeens 1499
ViV BRI T eYe J-Y oo (Y- ToR okl oY il Kol o FERUUUUUNNN OO SR U U U UPRPRRRPR 1500
Vi Vi SRV 'eYe JC R ol o =1 o I < BSOSO UPRPISPPU 1501
4.3, DG AL @ SPACE titiittieeetieeetteeeetteeeetteeeete e et e e et e e ete e e e te e e e ae e eetaeeetaeeetteseearaeenrraaans 1503
V¥ CT oW oYe Hl o ok e fo (=% NN USROS U U T TR SO U U U U UUU ST ST USSP RO TR UTUON 1503
Q4. 3T DG £ CONTE LG ttttieitieeeitieeeieeecteeeetteeeette e et e e etee e eteeeeteeeeaeseeteeestseeeessesenaseeenseaaans 1505
¥ R oI oYe MR R =T T e o B i e fh 11V) < YOUUU USROS 1505
¥R 1 o Ye B o =T & K<) USSR 1506
¥ I oY B o =T o 1= of =T = 5 USRS 1506
¥ oY B o =T = 11} B =X o = SO ROR PR RRRRRR 1507
¥ oY B o4 < = DT T U USRS R TSRO 1507
i ¥ R NG T oY BRUET=$ ol =1 o) o1 o Lo SN U U TR 1515
44,44, SYSTEM VIBWS ..eeiiuiiiiieriieeieeitenitestesteeteesttesateebeesttesstessbeesseesseesaseenseeseesssesnsesnseens 1515
¥ S T oY B o1 b biat=To b of =N U U RR SRR 1516
A 40, DG GrOUD eeeiieitrrieeeeiireeeeeesireeeeeetiarereeeeiseeeseestsseeeeeassaeeseesitrseeseesiareeeseessrreeeeeninreeeees 1517
V¥ o Yo B I o U L= 4= Y= TN U RO USROS PRT 1518
A A8, DG L OCKS eeeieeittreeeeeeiteeeeeeeiteeeeeeeaaeeeeeetaeeeeeeetaaeeeeeeeataeeeeeatrbeeeeeaaraeeeeerraaeeenaraaaeas 1518
4449, pg_prepared _StatemMeNE S . rieeeeeiireeeeeeirreeeeeeitreeeeeesiareeeeeeerreeeeesiareeeeas 1521
44.50. PG _PrePArea_KACES tiiiiiiireeeeeeiirrereeeeireeeeeeiireeeeeeiirreeseesirseeeeesiareeeeeearseeseesinreeeens 1522
Y B o Yo B oo N I =Y SRS 1523
Y o Te B o Y BRSPS 1524
V2 Vi eI B oTo BN=T=8 ol ol e Lo 1= T USRS 1525
Y B oTe B =Y o =Y L) USRS 1526
T s T oTe = o= o SRS 1527
Y T o Ye L =1 N = - DO NN O RSO UUU RO P TP UPRTRUPRU 1530
44,57, PG L iMEZONE_ADITEVS cittiieiieiitiieeeeeitieeeeeiiteeeeeectaeeeeeeataeeeeesareeeseeesraeeeeeasseaaens 1530
44.58. PG_LiMEZONE_NAMES tiiieirrieeeeeittreeeeeiitteeeeeeitreeeeeeitraeeeeessrseeesessresseeasssseaeeeassseeaens 1531
L B oTe B U =Y =S o U RSP SRRURPRUTS 1531
44,60, PG _US T MADD I NG S iiietiiietiieeitteeeetteeeetteeeetteeeeteeeeeteeeeeteeeeeteseestseeereeeeseseeaaeeeeseeeens 1532
.01, DO VA @IS tetetiieetieeetee ettt e et e et e e e et e e et e e eeaa e e e tteeeaeeeetaeeetaeeeteeeeateeeateaaans 1533
45. Frontend/Backend ProtOCOL...........couiiiiiiiiinieninieieeet ettt 1534
A5, 1. OVEIVIEW ..uvieiieieieeieeiieestteeteeteesteesstesteesseassaessseasseesseesssessseesseesseesssessseesseesssesssesnseens 1534
45.1.1. MesSSaZING OVEIVIBWccueeriiriiriietieiieieeitetesteeitente sttt eaeeste bt eaesbeeaneneeene 1534

XXVi

45.1.2. Extended QUETY OVEIVIEWccviiiieriiieniieeieeieeniiesieeieenteesteeteenieesaesanesnne 1535

45.1.3. Formats and Format Codesccccceviiiniiniiiiiniiiiiniiiciciciccccees 1535

45.2. MESSAZE FLOW ...ttt sttt st ettt e beeae e 1536
45.2.1. SArt-Up ..o e 1536
45.2.2. STMPLE QUETY ..eeniieiieiiieeieeite ettt ettt sttt et e e st st ebeesaaesareenne 1538
45.2.3. Extended QUETYcocceiriiiiieiiieiieeieeitenite ettt ettt et 1539
45.2.4. FUNCHON Call.....eoiiiiiiiiiiiieiiiesteeeetete ettt ettt et 1542
45.2.5. COPY OPEIAtIONScoouiruieriiieiietieieeii ettt e saeene s eaneneene 1543
45.2.6. Asynchronous OPErations............ccueeeeruiruierieriniesienieresieeeesae oo sieeneneene 1544
45.2.7. Cancelling Requests in Progress.........cc.coceveririeiiiniicienineneseeieseeeenene 1545
45.2.8. TeTMINAION c..eeuteiieeiie ittt ettt ettt et b e st e e e et esaaesaeeeane 1545
45.2.9. SSL Session ENCryption..........ccceveceeirenerenienieieenentieesieneeeeeee e saeeenne 1546

45.3. MeSSAZE DAta TYPES -.cuveeeeniieieiieiieieie ettt ettt sttt ettt et see et et beenee e ene 1546
45.4. MeSSAZE FOTINALSeoteiiiieiiieiieiteeteet ettt sttt et st st s ene e 1547
45.5. Error and Notice Message Fieldscoocoiiiiiiiiiiiieniiieeeee e 1563
45.6. Summary of Changes since Protocol 2.0.........cccooiriieniiiiiininierieee e 1564
46. PostgreSQL Coding CONVENLIONScccuerueeierueriienientietenteeteneesitestesteestestesseessesseesessesseenseene 1566
46.1. FOIMALTING ...cveeniiiiiiieieiieteet ettt ettt ettt st b e eat et s e st sbeebenbeeateteene 1566
46.2. Reporting Errors Within the Server..........c.coeeviriiiiniiiinieninieneececseeesieeeee 1566
46.3. Error Message Style GUIE.........coeeierieriiiiniieieneeeenie sttt 1569
46.3.1. What 205 WHETC.....cc.coruiriiiiiniiiiiiieitee ettt st 1569
46.3.2. FOIMALLINZ ..c.vevieuiitieiienieiieetesteet et ettt ettt ettt sb ettt ae b eane i ene 1569
46.3.3. QUOLAtION MATKS......ccviiiiiiieiiieeitie et ettt ettt et eeaeeesereeesereeeaneeeaneeens 1570
46.3.4. USE Of UOLES....uveeveereieiiiieiieeriiesiieeteettestteeteesteesteesaeebeesbeesasessseenseessnesssesnne 1570
46.3.5. Grammar and PUNCLUALION.ccueerueeriierireeieereertteeteesteesteesreesteebeessnessesnne 1570
46.3.6. UPPEr CaSe VS. IOWET CASE ...eeveeruieeiieiieiieeieeieenitesteeteesteesseseeebeessnesasesnne 1571
46.3.7. AVOId PASSIVE VOICE....eerurieieeiieriieeieeiieniteeteesteesteesteeseenbeesasessbeebeessnesasesnne 1571
46.3.8. Present VS PASt tBINISE...ccuuerrueerueeriieeieeteeritesreesteesitesseeteesbeesasesseeseessessesnne 1571
46.3.9. TYPE Of the ODJECT...ccuiiiuiieiiiiieiieeieeterte ettt ettt et sare e 1571
46.3.10. Brackets.........ccceviiiiiiiiiiiiiiiiicii s 1571
46.3.11. ASSEMDIING EITOT TNESSAZES. ..ccvverurerrierrreeieerieenttesteeteenteessesseesseesaessesnne 1572
46.3.12. Reasons for €ITOTSccovuiiiiiiiiiiiiiciciccce s 1572
46.3.13. FUNCHON NAMESooviimiiiiiiiiiieieice s 1572
46.3.14. Tricky Words t0 aVOIdccceerieriierriieniieeieeieerite ettt 1572
46.3.15. Proper SPEIlINGcoceeieiiirieieiieeeieeeeeeneeeeteeie ettt 1573
46.3.16. LOCAIZAION.eeuveeieeiiiieieeieesitee ettt ettt et b e st s e et esaaesaee e 1573

47. Native Language SUPPOIT.......cc.cocueriirieriirieienieeieteeeeee et ettt esae e ne s e neene 1574
47.1. FOT the TTanSIatorcooveeieriiiiiiieieeie ettt sttt 1574
47.1.1. REQUITEIMENLSooviiiiiiiiieiiiieeiete ettt s 1574
4712, CONCEPLS .ueeeneieeiteeieeiee ettt ettt ettt sb e et e e s bt e s ate st e bt e sabesateebeessaesaeenane 1574
47.1.3. Creating and maintaining message catalogsccoeeeveerierienereenieneeieniene 1575
47.1.4. Editing the PO fIlescccoivuiniiieieiiiiineneccteceeete et 1576

47.2. FOr the Programmer..........coceiiiiiiiiniiniieiienteetceieesit ettt st 1577
47.2.1. MECHANICS ..ottt ettt sttt ettt b ettt sae st aesbeeneeneeeae 1577
47.2.2. Message-writing gUIdElinesc.cceceeviriineninienienieieneecese e 1578

48. Writing A Procedural Language Handlercooviiviiiiiiiniiieninieececee e 1580
49. Genetic QUETY OPLIMIZET ...cc.veiueeuieiieiieieritetenteeitet ettt te sttt e e sbeeate st saeenaesbeesesbeeanenaeene 1582
49.1. Query Handling as a Complex Optimization Problem...........cccccecevveevireincnenienenne 1582

XXVii

49.2. GenetiC AIZOTITRINS ..c..eevuiieiiiiieiieeieeie ettt ettt sttt e e s teebeeaee s 1582

49.3. Genetic Query Optimization (GEQO) in PostgreSQLcccccovcviviiinieniieniieieeeene 1583
49.3.1. Generating Possible Plans with GEQO.........ccccccocteviiriiiniiniiniiiiienieeieee 1584

49.3.2. Future Implementation Tasks for PostgreSQL GEQOccccceevieniennnnne 1584

49.4. Further REAdINGccceevuiiiiiiiiiiieeteeie ettt ettt sttt st e 1585

50. Index Access Method Interface Definitionccocueevueeriieniiniieiiieenienieeeeeeste e 1586
50.1. Catalog Entries for INAEXESc..cocueviirieiiinieeieiieeeee e e 1586

50.2. Index Access Method FUNCHONS.......cccueriiiiiiniiniiiieeieentc et 1587

50.3. INAEX SCANNINEoouviiiiiiiiiiiieieeeete ettt 1591

50.4. Index Locking Considerations.............ceceecueriereerierienienieeenteeeesieseeneseeeeeeeneene e 1592

50.5. Index Uniqueness CheCKS..........cooiiiiiiiiiiniiiiienieieeeeee et 1593

50.6. Index Cost Estimation FUNCHONS.........ccceeririiiieiirieieeeiec e 1594

ST, GIST INACKES ...ttt ettt et a ettt e et ea e et e s bt et esbe e st enbesbeeneenteeneeneesaes 1597
51,1 TEEOAUCTION ...ttt ettt et ae et et bt e e sbeese et e eaeenaeeaes 1597

51.2. EXEENSIDIIIEY ..eovieiiiiiiiinienietciciet ettt e 1597

51.3. IMPIEMENTAtION.......eitiriiiiiiieiieieett ettt sttt ettt eae ettt et neae 1597

51,4, EXAMPLES ..ottt ettt st b ettt et e st bt e e bt est et saee e eaes 1604

51.5. Crash RECOVETY.....cc.uiiiiiieiiitieeteetee ettt sttt s 1604

52, GIN TIACKES -..veemeeniiriieieetieteet ettt ettt ettt et sa et bt e bt e b e sb e estesbe et e nbe s bt enbesbeeatenbeeseeaenaes 1606
52.1. TAEPOQUCTION ...ttt sttt ettt sttt st beebe et saee e saes 1606

52.2. EXIENSIDIIIEY ...eeuvetieiieiiitieie ettt ettt ettt sttt s 1606

52.3. TMPIEMENTALIONeoutiniiriieiiiteeierteeit ettt ettt ettt ettt sbesbe et sae e e seee 1607
52.3.1. GIN fast update teChnIQUEcoerierieririeniinieienceeeeeeeeeeece e 1608

52.3.2. Partial match algorithm...........coceviiiininiiiiiniiiicccc e 1608

52.4. GIN tips and trICKS. ..cvieitieiieeieciierie ettt ettt ebe et st eebe et e seneenae e 1608

52.5. LIMIEALIONS ..c.veeutetiriretiettete sttt et ete et saeeste st sete b st e it et saeesaesueessesbesanentesueennenues 1609

52.6. EXAMPIES ...eeuviiiieiiiieiieiieiie ettt et ste sttt e sitesatesbeesaeesatesabeesseesseesabeenseenbeesasesnneenne 1610

53. Database PhySical STOTAZEcccueeruirriirieiiieieerite sttt ettt sttt et st ebeesaaesanes 1611
53.1. Database File LayOULl.......ccceeciiiiiiiiiinieeiieitesie ettt st 1611

53.2. TOAST ..ottt sttt ettt sttt sb st ae st be et eaeeae e 1612

53.3. FIee SPACE MAP .nviiiiiiiiiiiieeeeeeteee ettt ettt sttt st ettt 1614

53.4. VISIDIILY IMAD ..ottt ettt ettt e 1615

53.5. Database Page LayOutcoceeiiiiieriiiiiiiietenieeeestest ettt 1615

54. BKI Backend INtErface..........cooocueriiieniiniiieiiecintcecctecstete e e 1619
54.1. BKI File FOIMALcoctieiieiiieieiecieeee ettt s ae e 1619

54.2. BKI COMMANGSeeeuviiiieiiinieiieesiteete ettt ettt sttt sbeesabeebe e b e sabesaneeane 1619

54.3. Structure of the Bootstrap BKI File.........cccoccociiiiiiiiiiiiiiieiceceeeee e 1620

54,4 EXAMPIE ..ottt e et 1621

55. How the Planner USEes StatiSTCS.....ccotertirrierriienierieeiteerieeniteete ettt e sttt ebeesaee e 1622
55.1. Row Estimation EXamples.........cccoeoveririeiinieereeeeeeee e 1622

VIII. Appendixes 1628
A. PoStZreSQL EITOr COAEScouviiuieiiiiieiieieeiteesieetee ettt sttt et sae st te b eaee e eae 1629
B. Date/Time SUPPOITeoueeniiiiiiieitieiieteeite ettt ettt ettt eate st st e e sbe s te bt saeenbesbeensenbeeneenaeene 1638
B.1. Date/Time Input INterpretationceoevieieriieieneetenie sttt 1638

B.2. Date/Time Key WOIdS.......ccceiiiiiiiiieieiieiesieetee ettt ettt st 1639

B.3. Date/Time Configuration FIlescccccooieiiiiiiiiiiiiiniiieienceccee e 1640

B.4. HiStOry Of UNIES ...ooueiuiiiiiiieieniieteseeteie sttt ettt ettt st st 1641

XXViil

C. SQL KEY WOTAS.....eeiuieiiiitieniieeiie ettt sttt sttt et sttt et e s abessbeebeesbtesabesabeenbeesatesatesnbaessnenanas 1643

D. SQL CONOIMANCEccuvviiiiiiieiiieeeiieeeiee et ee et e eteeeiteeeiaeesbaeesbeeessseeaessaeessseeesssesensseessseaans 1669
D.1. SUPPOTted FEATUIES ...cc.veeiiieiieiiieiieeiteeie ettt sttt st ettt e eaee s 1670
D.2. Unsupported FEAUIEScccueriiiriiiiieiiieiieniteete ettt ettt sttt e 1685

E. REIEASE INOESeeiiniieiieiiiiieieicctete ettt ettt e n e st ae st s b e neene 1701
E 1 REICASE 8.4 1 ..ottt sttt et st 1701

E.1.1. Migration to Version 8.4.1........cccccoiiiiiiiniiiiiniiniiiineceeseeeeeseeee e 1701
E 1.2 CRANEES ..ot 1701
E.2. REIEASE 8.4 ...ttt ettt sttt st et 1703
E.2 1. OVETVIBW ..ottt ettt sttt ettt et e e 1703
E.2.2. Migration to Version 8.4cccccoiiiiiiiiiiiiiiiieiee e 1704
E.2.2.1. GENEral.....coouiiiiiiiiiiieeiieeetet ettt 1704
E.2.2.2. Srver SEtNEScecverueeieriietieieeieeie ettt ettt eee e st ee e eaee e eae 1704
E.2.2.3. QUETIES ...uveeeeeieeeeee ettt e ettt e et e e eaaeeeeareeenns 1705
E.2.2.4. Functions and OPeratorscceceeeeeruerierienieerienieeceniesieeeesveeeeneeene 1705
E.2.2.4.1. Temporal Functions and Operatorsccocereeruerverruenuene 1706

E.2.3. CRANZES ..ottt sttt e 1706
E.2.3.1. Performancecooeruerienienieienieieniesteesieete it st 1707
EL.2.3.2. SEIVET ..ttt st 1708
E.2.3.2.1. SETNZS ..conveiieniiiieienieeitetcetee sttt s 1708

E.2.3.2.2. Authentication and SECUIILY..........ccceeeruerireenereerienenreniene 1708

E.2.3.2.3. PG _0a. CONT ttriiiiiiiiieeeeeeee ettt eeeee et eaaees 1708

E.2.3.2.4. Continuous Archivingcccocerveevenenieenenieeneneeeneneeniene 1709

E.2.3.2.5. MONItOTING.c..coveruieriniieiieniieiteie sttt ettt sbeeeneieene 1709

E.2.3.3. QUETICS ..uuveieeiieeiiie ettt ettt e et e e vt e e s veeeseresesaseeesabaaeereeennns 1710
E.2.3.3.1. TRUNCATE .c.ettiuiriiieieieiteiieieste sttt st 1711

E.2.3.3.2. EXPLATIN ciiiiiiiiititeteieteieenesie ettt 1711

E.2.3.3.3. LIMIT/OFFSET cuiruiitiieieiieiieienieneeeeiee st 1711

E.2.3.4. Object Manipulationcccceerierrieenienienieeieeniee e eieesieesieeeveeieen 1711
E.2.3.4.1 ALTER coiotiiiiiiniciteeeeeee st 1712

E.2.3.4.2. Database Manipulation............cceceevienieriiieneeneenieenieeseenne. 1712

E.2.3.5. Utility OPerationsccoveereeriernieerieenienieenieenieeseeesseesieesisessessneens 1713
E.2.3.5. 1. INA@XES...ccuviriieiiniieieiieieteeeeie sttt 1713

E.2.3.5.2. Full Text INAeXEScceecueruireeiirieienienieiieeeie e 1713

E.2.3.5.3. VACUUM .ciiitiiiiiirieeiciteectt ettt s 1714

E.2.3.6. Data TYPES ...ccveeiiriieiiiiieeieeieeeese ettt s 1714
E.2.3.6.1. Temporal Data TYPes.........ccccevuerierueniniieieeecneereseeeenene 1714

E.2.3.6.2. AITAYS .o e 1715

E.2.3.6.3. Wide-Value Storage (TOAST)coooeeviirvinniinieniieeeeeee. 1715

E.2.3.7. FUNCHOMNSeeiiiiiiiiiieniie ettt st sttt e 1716
E.2.3.7.1. Object Information FUNCtionscccceveeeeneneenenenienenne 1716

E.2.3.7.2. Function Creation..........cooeeeeruerierienieeienieecenieseeiesieeeeneeene 1717

E.2.3.7.3. PL/PgSQL Server-Side Language.........ccccceccevereerenenceennenne 1717

E.2.3.8. Client APPliCAtiONSceeerueeuieriinieienieeiieie ettt 1718
E.2.3.8. 1. PSAL ittt 1718

E.2.3.8.2. psql \d* commands.........cccceceevereerieniniieniinienie e 1719

E.2.3.8.3. pE_dUmpP..ccoiiiiiiiiiiiiieiecetee e 1719

E.2.3.9. Programming TOOIS.......c...ccueririiininiieniiniiienieeiei e 1720

XXIX

B.2.3.9. 1. IiDPQlceeeerrrereeeeeeeeseeeeeeeeeeseeeeseseeseeseeeeeeseesessssseeesseseeeeeenessseen 1720

E.2.3.9.2. libpq SSL (Secure Sockets Layer) supportc.ccceeveerueennee. 1720

EL.2.3.9.3. @CPE cvtetieieeieetteetee ettt 1721

E.2.3.9.4. Server Programming Interface (SPI).........ccccevvivviinnenncennee. 1721

E.2.3.10. BUild OPtionSccoteriiiiiieriienienieesieenite ettt 1721

E.2.3.11. S0UIce COde......oouieiiiiriieiiniieiinieieeeeereeeeete et 1722

E.2.3.12. CONLID .ottt ene 1723
E.3.REIEASE 8.3.8 ...ttt sttt st e 1724
E.3.1. Migration to Version 8.3.8.........ccccoiiiiiiiiiiiiieieieeceeeeeeee e 1724
E.3.20 Chan@Esoouviiiiieieeeee e 1725

B4 REIEASE 8.3.7 .ottt sttt sttt st 1726
E.4.1. Migration to Version 8.3.7......ccceciririeieiieieniteee e 1726
E.4.2. CRANZES ..ottt ettt st et sb e et be ettt ee s 1726
E.5.REIEASE 8.3.0 ..ottt sttt e 1728
E.5.1. Migration to Version 8.3.0......ccccceriiiiniiiiienieeiieie et 1728
E.5.2. CRANZES ..ottt et sttt et 1728

E.0. RElEase 8.3.5 ...ttt ettt et st b et 1730
E.6.1. Migration to Version 8.3.5.....cccooiiiiiiiiiiiiiiieee e 1730
E.0.2. CRANZES ..c..eetiiieieiieetetetee ettt ettt et e 1730
E.7.REICASE 8.3.4 ..ttt et ettt 1732
E.7.1. Migration to Version 8.3.4........cccccviriirinirieniinienieseeteneeeee et 1732
E.7.2. CRANZES ..covveniiieeieieeteteeeeeee ettt sttt 1732

E.8. REIEASE 8.3.3 ...ttt et ettt 1734
E.8.1. Migration to Version 8.3.3.......ccciiiiirriiiiienieeieeieesite ettt sre e sane e 1734
EL.8.2. CRANZES ..uveeiieiiieieetteite ettt sttt ettt ettt e st et e be e st e snte e e e nanesneas 1734

E.9. REIEASE 8.3.2 ...ttt sttt sttt 1735
E.9.1. Migration to VErsion 8.3.2....c..cccviirieriieiiiieniieeieeieesitesteeie et e seresete e esaeesaees 1735
ELO.2. CRANEES .uveeeieiieiieeitete ettt ettt et st ettt e beenaaesanes 1735

E.10. RelEASE 8.3.1 ..eniiiiiiieiiiieeetetet ettt sttt st st 1737
E.10.1. Migration to Version 8.3.1......ccccevvieriiiiiiiinieeieeieeniteeteeie ettt 1738
E.10.2. ChanGESs ...cccueevuiiiiieiieniie ettt sttt ettt ettt ettt et sate e b e saaesaees 1738

E.TT REICASE 8.3 ..ttt ettt ettt sr e st e ne e 1739
E. LT L OVEIVIEW ouiiiiiiiiieiieieeeeteeieet ettt ettt et e 1740
E.11.2. Migration to Version 8.3........ccccevieriiiiiienienienieesiteete ettt st 1741

B T1.2.1. GeNETAL...ccuuiiiiiiiiiiieeieeeetete ettt et st et 1741

E.11.2.2. Configuration Parameters.............cccccoereecienieiieniiniicncneeeneeieiene 1742

E.11.2.3. Character Encodingsccccccceeieiieninienienieiieiieeenie e 1743

E 1130 Changescoooueeiiiiieieiiceeee e e 1744
E.11.3.1. PerfOormancecccceeueeieeniinieiieecenee ettt 1744

Eil1.3.2. SEIVET .ottt ettt st e 1745

E.11.3.3. MONIEOTING ..ottt ettt ettt sae st eesbeeneeneeene 1746

E.11.3.4. AUthentiCation.......cc.eiuerierierieieeeeierie ettt 1747

E.11.3.5. Write-Ahead Log (WAL) and Continuous Archivingc.......... 1747

E.11.3.6. QUETIES «..eeoveieeeiie ettt ettt et e et e e eaaeeeetreeeans 1748

E.11.3.7. Object Manipulationcccceceveeeenenienieniieienieecene e 1749

E.11.3.8. Utility Commands...........cccceceeruerirrienienieienieeienie e sieeiesieeieeneeene 1749

E.11.3.9. Data TYPES .eveevirieeienieeiieieeitetesieete ettt et 1750

E.11.3.10. FUNCHONS.....cotiiiiiiiieiieieeitetesieetee sttt st 1750

XXX

E.12.

E.13.

E.14.

E.15.

E.16.

E.17.

E.18.

E.19.

E.20.

E.21.

E.22.

E.23.

E.11.3.11. PL/PgSQL Server-Side Languagecccceeveerverneeneenienieenene 1751

E.11.3.12. Other Server-Side Languagesccocvevvveerieeneerieenieeneenieeieeiens 1752

B L1313 PSSl st 1752

E. 11314, PEQUMD w.ooiiiiiiiiieeie ettt sttt st e 1753

E.11.3.15. Other Client APPliCAtiONSoovveeriiereerieriieniienieeieesiee e 1753

E.11.3.16. TIDPQ coveeiieieieieieeieesctctetece ettt 1753

B L3017, @CPZ oottt sttt st 1754

E.11.3.18. WIndows POTt.....cc.cooiiiiiiiiiiniiiiieiceic et 1754

E.11.3.19. Server Programming Interface (SPI)cccocoociniiiiinninnne 1754

E.11.3.20. Build OPtiONScoeverierieieieeniinienteieeeieeitnieseseeeeteeee s 1755

E.11.3.21. SOUTCE COAE....uveiniiiiiiiiiiieniiiiieeeeite ettt 1755

E.11.3.22. CONLLID .ottt 1756
REIEASE B.2.14 ...ttt et st 1756
E.12.1. Migration to Version 8.2. 14ccceociiiiiiirieniieieie et 1756
E.12.2. Chang@es ...cccueeeueiiieeiieiieieeeete ettt ettt ettt e 1757
REIEASE 8.2.13 ...ttt ettt ettt 1758
E.13.1. Migration to Version 8.2.13......ccccciriiririiieniieienie et 1758
E.13.2. ChANEZES ..ottt et ettt et 1758
ReElEASE 8.2.12 ..o 1759
E.14.1. Migration to Version 8.2.12.......cccceeviereririeninienenieetenieeeeesie e 1759
E.14.2. CHANEZES ..ottt sttt sttt 1759
ReElEase 8.2.11 ..ot 1760
E.15.1. Migration to Version 8.2.11.....c.ccoceovieririiiiininiiiineeienceeeseeece e 1761
E.15.2. CHANGES ...oevieiiieieeiieiie ettt sttt ettt et ettt e st e st e baesaaesnteenbaenanesnnes 1761
REIEASE B.2.10 .cuiiiiiiieeieieetetee ettt 1762
E.16.1. Migration to Version 8.2.10........ccccceeruerriieriiniiieiieenieeie ettt 1762
E.16.2. CHANZES ...eovieeiiiiieiieiie ettt sttt ettt ettt e st e st et e s abesate e beenanesanes 1762
REIEASE 8.2.9 ..ttt e 1764
E.17.1. Migration to Version 8.2.9.........cceceeiiiriiiiniinieiiieniteeeeeie ettt 1764
E.17.2. ChAN@ES ...eoviiiiieiieeiieite ettt ettt ettt ettt et e st st e b e saeesaees 1764
REIEASE 8.2.8 ..ottt et e e 1764
E.18.1. Migration to Version 8.2.8.........ccocueeiiiiiiienienienieeniteeteeie ettt 1764
E.18.2. ChanGES ...ceveeiuiiiiieiieiie ettt ettt ettt ettt st e e s 1764
REIEASE 8.2.7 ..ttt e e 1766
E.19.1. Migration to Version 8.2.7.......ccccccervereririeniinieiineeeenie e 1766
E.19.2. Changesc.ooeeiiiiieieieeeceeeee e e e 1766
REICASE 8.2.6 ..ttt st st 1767
E.20.1. Migration to Version 8.2.6.......cccccccovueviiriiieniinieiieeeeesieeeete e 1768
E.20.2. Chan@Es ...cccueeeuiiiiieiieiieiieeeeite sttt ettt st ettt 1768
REICASE 8.2.5 ..ttt st 1770
E.21.1. Migration to Version 8.2.5......ccccevirieiirieienieeieie ettt 1770
E.21.2. ChanEs ...cccveeeueiiiieiieiee ittt ettt ettt e 1770
REIEASE B.2.4 ..ttt bttt 1771
E.22.1. Migration to Version 8.2.4........cccoiriiriiiiieniieienie ettt 1771
E.22.2. CHANEZES ..ottt ettt sttt et 1771
REIEASE 8.2.3 ..ttt e 1772
E.23.1. Migration to Version 8.2.3.......ccccoiriiriiiiieniieienie ettt 1772
E.23.2. CHANEZES ..ottt st ettt et 1772

XXXI

E.24.

E.25.

E.26.

E.27.

E.28.

E.29.

E.30.

E.31.

E.32.

E.33.

Release 8.2.2 ..o e 1772
E.24.1. Migration to Version 8.2.2.........cceceerueriiienieeieeieeniieete et enieesitesteesieesaee e 1772
E.24.2. ChaN@ES ...coviiiiiiiieiieite ettt ettt et ettt et st e be e e i 1772
Release 8.2.1 ..o 1773
E.25.1. Migration to Version 8.2.1ccccevvueriieriiiinienienieesiteeteeie ettt 1773
E.25.2. ChanGESs ...cccueevuiiiiieiieiie ettt ettt ettt st ettt e 1774
REICASE 8.2 ..ttt st 1774
E.26.1. OVEIVIEW .cuviiiiiiiiiiiieite ettt ettt ettt ettt ettt e e 1774
E.26.2. Migration to Version 8.2.........cccccoirieririiieniinieiiee e 1775
E.26.3. Changesc..ooeeiiiiiiieiicieeeeee e e 1777
E.26.3.1. Performance Improvementsc..cocoeceniiiiiniiniiencieenenecieine 1777
E.26.3.2. Server Changesccccoveereerierieenieenie ettt 1778
E.26.3.3. QUEry Changes.........cccueevueerieniiriienieeniee ettt 1780
E.26.3.4. Object Manipulation Changescccceererueerieninieneseeieseeieniene 1781
E.26.3.5. Utility Command Changes...........ccccevereerieriieiienieneeneneeiesieeienieene 1782
E.26.3.6. Date/Time Changes.........cccceeeruerieienienieienieeienie e 1783
E.26.3.7. Other Data Type and Function Changesc.cceccevereenenenienene 1783
E.26.3.8. PL/PgSQL Server-Side Language Changes............ccocceveeverenuenienne 1784
E.26.3.9. PL/Perl Server-Side Language Changes..........ccccceceevereenieneneeniene 1784
E.26.3.10. PL/Python Server-Side Language Changescccccoceeveveruenienne 1785
E.26.3.11. pSQl Changescccucvuerieieniieiinieeieniesiteesieetete e e 1785
E.26.3.12. pg_dump Changes.........c..coceevuereeienenienienieeienieneenieseeiesiesnenieene 1785
E.26.3.13. libpq Changesccccecverierieiinirienienieienieetente et 1786
E.26.3.14. €cPZ Changescccoueeierieniriinieienieniteiesieetete et 1786
E.26.3.15. WIndows POrt.......c.cccooiiiiiiiiiiiiniiicicicicieecceeee e 1786
E.26.3.16. Source Code Changesccceevveereenieriiienieeniesieesieenieesnesveeneeens 1787
E.26.3.17. Contrib CRangescccceveerieriiierienienieeieenieesieenieesieesieeeseeaeens 1788
Release 8.1.18 ..o e 1789
E.27.1. Migration to Version 8. 1.18.......ccceeiiiriiiniiniiiiieniieeeeieeieeste e 1789
E.27.2. CHANZES ...eonviiiiiiieeieeite ettt ettt ettt ettt et e st e beesaee e 1789
Release 8.1.17 c..couiiiiiiiiiic s 1790
E.28.1. Migration to Version 8.1.17.......ccoceeviiiiiiniinienieeiieeeeeie et 1790
E.28.2. ChANZES ...eouviiiiiiiieiteite ettt ettt ettt ettt e saees 1790
REIEASE 8. 1. 16 ..ttt e 1791
E.29.1. Migration to Version 8.1.10........ccccoceviririiininieiinicencceceeeeeee e 1791
E.20.2. Changesc.coceeiiiiieieiieiecteeeee et 1792
REICASE 8. 1. 15 .ottt s et 1792
E.30.1. Migration to Version 8.1.15......c.ccccoiiiiiiiiiiiiiiiieceeeeeceeee e 1792
E.30.2. Changesc..ooeeiiiiiiieiieee et 1793
REICASE 8. 1. 14 .ttt ettt st s 1793
E.31.1. Migration to Version 8.1.14......cc.cccccvvirinineneniininenenerereeeeeeee e 1794
E.31.2. Changesc.oouiiiiiiiiiiiiie e e e 1794
REIEASE B.1.13 ..ttt ettt ettt sttt ettt nae s 1795
E.32.1. Migration to Version 8.1.13......cccccccvirinineniieiiinenenrceeeeeeeeee e 1795
E.32.2. CHANEZES ..ottt st et sttt et ee s 1795
REIEASE B.1.12 .ttt ettt 1796
E.33.1. Migration to Version 8.1.12.....c.ccccerviiriririininieieneeeneeeteeseee e 1796
E.33.2. CHANEES ..ottt sttt sttt ettt 1796

XXXIT

E.34.Release 8.1.11 ...ocoiiiiiiiiiiiicicice e 1797
E.34.1. Migration to Version 8. 1. 11 ...ccccoeveriiiiiiiniinieiieieeeeeie et 1798
E.34.2. ChanGEs ...cccueevuiiiiieiieiie ettt sttt ettt sttt e e s e i 1798

E.35.Release 8.1.10 ..o 1799
E.35.1. Migration to Version 8.1.10.......ccocueriiiiiiiriinieiiienieeieeieeeeste e 1799
E.35.2. Changescveeeeiiiiieieiieieteeiteeeet ettt et e 1800

E.36. Release 8.1.9 ..ottt et sttt st 1800
E.36.1. Migration to Version 8.1.9.......ccccocioviiiiiiiiiiiiiiiceeeeeeeee e 1800
E.36.2. Changesc..ooeeiiiiiiieiieeeteeeeee ettt s e 1800

E.37. Release 8. 1.8 ..ottt ettt sttt st e 1801
E.37.1. Migration to Version 8.1.8.......ccccocooiiiiiiiiiiiiiiiiii e 1801
E.37.2. ChHANZES ...eouveiiiiiieeiieite ettt ettt ettt et 1801

E.38. RELEASE 8. 1.7 ettt ettt st st 1801
E.38.1. Migration to Version 8.1.7.......cccovirieriiieieniieiese ettt 1801
E.38.2. Changes ...cccueeeuuiiiieiiiiieiieeeeteete ettt sttt st e 1802

E.39. RelCASE 8.1.0 ..cneiiiiieieeieee ettt sttt ettt bt 1802
E.39.1. Migration to Version 8.1.6........cccccueeiriniininenieniiieeneniestetereeeeeesie e 1802
E.39.2. ChaNEESoouiviiiieieieiieiiee ettt sttt sttt 1802

E.40. Release 8.1.5 ..ottt s 1803
E.40.1. Migration to Version 8.1.5......ccccoviiiiriniiieniinieeneeterie et 1803
E.40.2. CHANEZES ...eoviiienieiieeieieeiteeete ettt st sttt e 1803

E4T.Release 8.1.4oouiiiiiiiiiiiiecee ettt 1804
E.41.1. Migration to Version 8.1.4......ccccoeriiririiiininiiiineetenieeeeesieeteee e 1804
E.41.2. CHANZES ...eevieiiieiieiieiie ettt sttt ettt ettt e s e st e st ebaesstesnteenbeenanesnnes 1805

E.42.Release 8.1.3 ..o e 1806
E.42.1. Migration to Version 8.1.3......c.ccceciiriiirriienieeieeieenteere ettt 1806
E.42.2. CHANZES ...eevieiiieieeiieite ettt sttt ettt ettt e st e sttt esatesateenbaenaaesanes 1806

E.43.Release 8.1.2 ..ot e 1808
E.43.1. Migration to Version 8.1.2......c.cccecueeiieiiiieniinieeieeniteeteeie ettt 1808
E.43.2. CHANZES ...eovieiiiiieeiieiie ettt ettt ettt ettt e be e st e sate e b e saaesanes 1808

E.44. Release 8.1.1 ..o s 1809
E.44.1. Migration to Version 8. 1.1cccccoviiriiiiiiiniinieiieesiteeeeie et 1809
E 442, CRANZES ...eevieiiiiieeiieite ettt ettt ettt ettt et sat e e b e saee i 1809

E.45. ReICASE 8.1 ..eeioiiiiiiiiieeieeetee ettt st 1810
EL4S5.1. OVEIVIEW .euviiiiiiiiiiieite ettt ettt ettt ettt et e e 1810
E.45.2. Migration to Version 8.1.........cccccoiriiiiiniiiiniinieieecreseeeeeeeeeeee e 1811
E.45.3. Additional Changesccccoceevueririenieninieieeee e 1814

E.45.3.1. Performance Improvementsc..cocoeeerieiiiniinicncneeneneceeiene 1814
E.45.3.2. Server Changesc..cccccoueeiiiiiniiiienieiieieeeee e 1815
E.45.3.3. QUEry Changes.........cccueevueerieniiniienieeniee ettt 1816
E.45.3.4. Object Manipulation Changescceceeeerreerieneeieneneereseeieneene 1817
E.45.3.5. Utility Command Changes...........cccccvuereerierieerienienieneseeniesieeeeneeene 1817
E.45.3.6. Data Type and Function Changescccceceeeererieneneenienenieniene 1818
E.45.3.7. Encoding and Locale Changes............ceccevereeienieneeneneenieneeieniene 1820
E.45.3.8. General Server-Side Language Changes..........ccccceceevireenienenceenienne 1820
E.45.3.9. PL/PgSQL Server-Side Language Changes...........ccccceeeeverenenuennene 1821
E.45.3.10. PL/Perl Server-Side Language Changes............ccccevereerueneneenienne 1821
E.45.3.11. pSQl Changescocuevueruieiiniieienieeteniesiteeicetete ettt 1822

XXXIi1

E.45.3.12. pg_dump CRanges..........cceceeveernieeniienienieeieeniee e eieesieeseeeeveeeeens 1822

E.45.3.13. lIbPq CRANEES ...eovvveveiieiieiieniieeieeiteeite ettt sttt et 1823

E.45.3.14. Source Code Changescoceevueerieenierieenieeniesieeieeniee e eieeeeens 1823

E.45.3.15. Contrib Changescccceveerierieenienie ittt eve e 1824

E.46. Release 8.0.22c..cocuiiiiiiiiiieieit ettt sttt et st 1824
E.46.1. Migration to Version 8.0.22........c..cccceviririeninieninieieneeeeeneeeeee e 1825
E.46.2. ChanEESc..ooeeiiriieieiieeeteeieee ettt et e 1825

E.47. Release 8.0.21 ...coueiiiiiiiiiriieiecietee ettt ettt s e 1826
E.47.1. Migration to Version 8.0.21........c.ccocoiiiiiiiiiniiiieeceecee e 1826
E.47.2. Changesc..ooeiiiiiiiieiieeeeeee et 1826

E.48. Release 8.0.20 ...c..coueueiriiiriirieicietettetetesteeetet ettt sttt s 1826
E.48.1. Migration to Version 8.0.20........c.cceceierieienieieeee e 1827
E.48.2. ChANZES ...eeuveiiiiiiieiieite ettt ettt ettt e 1827

E.49. Release 8.0.19 ...ttt e sttt 1827
E.49.1. Migration to Version 8.0.19......cc.cccccuririninenieniiiiineniencceeeeeeeee e 1827
E.49.2. Changesccooouiiiiiiiiicii s 1827

E.50. Release 8.0.18 ..ottt sttt et st b et 1828
E.50.1. Migration to Version 8.0.18........ccccoceriiiiiininienineetenieeeeeseee e 1828
E.50.2. CRANZES ..ottt st sttt 1828
E.5T.Release 8.0.17 ..ottt s 1829
E.51.1. Migration to Version 8.0.17........ccccovieveririiniinieniineeienieeeeeseeteee e 1829
E.51.2. CHANEZES ..eenviieeieiieeieieeteeete ettt ettt 1830

E.52. Release 8.0.16couciiiiiiiiiiiiiiiiciciecce e 1830
E.52.1. Migration to Version 8.0.16........cccceevuirriieriinieeiiienieeieeieeiee e eie e 1830
E.52.2. CHANZES ...eevieieiiiiieiieite ettt ettt ettt et s e sttt e s st e snteenbaenaaesnnes 1830

E.53. Release 8.0.15 ..o e 1831
E.53.1. Migration to Version 8.0.15.......ccoceriiiriiiiniieieiieeieeeeic et 1832
E.53.2. CHANZES ...eevieeiiiiieiieiie ettt sttt ettt ettt ettt et e st e e b e naeesanes 1832

E.54. Release 8.0.14 ..o e 1833
E.54.1. Migration to Version 8.0.14........ccceevuiiiiiiniinieeieenieeteeieeieeste e 1833
E.54.2. ChanGESs ...cccueevuiiiiieiieite ettt sttt ettt ettt st ettt e esaeesanes 1833

E.55. Release 8.0.13 ..o 1834
E.55.1. Migration to Version 8.0.13.......ccooiiiiiiiiiiniiiieiiieteeeeieeee e 1834
E.55.2. Changescveeueeiiiiiiieieeieeteeieeeee ettt 1834

E.56. Release 8.0.12 ...c.ouiiiiiiiiriiieiceeet ettt sttt 1835
E.56.1. Migration to Version 8.0.12........c..cocoiiiiiiiininiininieeeneeeeeneeee e 1835
E.56.2. Changesc..ooeeiiiiiiieiieiecteeeeee et 1835

E.57. Release 8.0.11 c..cueiiiiiiiiiiriieicictetei ettt ettt s s 1835
E.57.1. Migration to Version 8.0.11........c..cccoiiiiiiiiiiiiceeceeee e 1835
E.57.2. ChHANZES ...eouviiiiiiieeieeite ettt ettt ettt et 1835

E.58. Release 8.0.10ccueiuiiiiiiieiieiieie ettt sttt et sttt 1836
E.58.1. Migration to Version 8.0.10........ccceecieiiririenieienieeeeee e 1836
E.58.2. CRANGZES ...eouvieiieieeieeieteet ettt sttt ettt et ee s 1836

E.59. Release 8.0.9 ..ottt ettt 1837
E.59.1. Migration to Version 8.0.9........ccccceviriiinininieiiininenesceeeeeeeee e 1837
E.59.2. ChanEESeoveiviiiieieieiieiieeriestetetet ettt st s 1837

E.60. Release 8.0.8c.coueiiiiiiiiiieiceeteeereee ettt e s 1837
E.60.1. Migration to Version 8.0.8.......ccccoiiiiririiieniinieineetesieteeseee e 1838

XXXIV

E.60.2. CHANZES ...eovieuiiiiieiieiie ettt sttt et ettt ettt e be e s st e sateebeesaaesanes 1838

E.601. Release 8.0.7ccoouiiiiiiiiiiiiicicce e 1839
E.61.1. Migration to Version 8.0.7.........ccecueeiueriiiinieniieiiieniieeieeie ettt 1839
E.61.2. CHANZES ...eouvieiiiiiieiieiie ettt ettt ettt sttt sat e e e e e i 1839

E.62. Release 8.0.0ccccoviiiiiiiiiiiiiiiicc s 1840
E.62.1. Migration to Version 8.0.6..........coccocueveririeniinieniineeieneeeerese e 1840
E.02.2. ChANEEScevioiieiiiriieieieeeeteete ettt 1840

E.63. Release 8.0.5 ..ccuuiiiiieiiieeteeeet ettt ettt sttt st 1841
E.63.1. Migration to Version 8.0.5.......ccccociiiiiiiiiiiniiiiineceeeeeeeeeee e 1841
E.03.2. Changesc..coceeoiiiiiiieiieeeee e e 1841

E.64. Release 8.0.4 ..ottt ettt st st et 1842
E.64.1. Migration to Version 8.0.4..........ccceeiiiiiieiieniieiee e 1842
E.04.2. CRANGZES ...covieiieieeiieieiteet ettt ettt ettt sbe et s be et e ee s eneeeaes 1842

E.05. Release 8.0.3 ...ttt ettt sttt et st be et 1844
E.65.1. Migration to Version 8.0.3........ccooiiiiiiiiiienieeiee et 1844
E.05.2. CRANEZES ...couviiieieitieieteei ettt ettt et sttt nee s 1844

E.06. RelEasE 8.0.2 ..ottt sttt et sttt 1845
E.66.1. Migration to Version 8.0.2.........ccoceriiriiiiieniinienieeieetenie et 1845
E.06.2. CHANZES ...couviiieniiiieeiieieeiteeete ettt st ettt sttt e 1846

E.07. Release 8.0.1coeriiiiiiiiiiiiiicieeeteeeee et s 1847
E.67.1. Migration to Version 8.0.1......cccccociiiiririiiininieniineetenieeeeeseeeeie e 1847
E.07.2. CHANEZES ..ottt ettt sttt ettt st 1848

E.08. Release 8.0ccoiiiiiiiiiiiiiiiciceeecee e e 1848
E.08.1. OVETVIEW ...eviiiiiiiiiciiciicciesteeet ettt s 1848
E.68.2. Migration to Version 8.0........cccceeevueriueiiiienieeieeiieenieeteeieenieesteseeeeieesanesnnes 1849
E.68.3. Deprecated FEatUIESceevvierierieeiieiieriie ettt ettt sete e e saee s 1851
E.08.4. CHANZES ...coviiieiiiiieiieiie ettt sttt ettt et e st st et e s atesateenbeesaeesanes 1851

E.68.4.1. Performance IMprovementscccceveerveenieeneenieenieenieenreseeeneens 1852
E.68.4.2. Server Changescccoveereenieriiieniieniesieeieeniee e eseesieesieesveenaeens 1853
E.68.4.3. QUErY Changes.........cccueerueeriienieniieiieniesieeieeniee st ereesiee e sreeiee s 1855
E.68.4.4. Object Manipulation Changesccccceevveeveeneerienneeneeniesieennens 1856
E.68.4.5. Utility Command Changes............cocceeveerueerieeneeniennieeneesieseeeneens 1857
E.68.4.6. Data Type and Function Changesc.ccceeeeveerieenienneeniensienniens 1858
E.68.4.7. Server-Side Language Changesc.ccccceeeecveniineeninieencneeceennene 1859
E.68.4.8. PSQL Changesccceouerieiinieiinieienieseereseeeete e e 1860
E.68.4.9. pg_dump Changes...........cccceceevuirieiieniiiieienieicie e 1861
E.68.4.10. libpq Changesc..cocecueeieiiinieiieneieeieneeieie e 1861
E.68.4.11. Source Code Changesccccoceeveeruiriecienieiieniieeenie e 1862
E.68.4.12. Contrib Changescccceeevuiriiieniiiieienieeie e 1863

E.09. REICASE 7.4.26 ...cveeenieiiiiiiiriieicctetei ettt sttt ettt s st 1863
E.69.1. Migration to Version 7.4.20.........ccccceverininenieneeieenenenresreeeeeeeresresaeseenne 1864
E.09.2. ChANEESooverviriiiieieiieiieentest ettt ettt sttt sttt be e s 1864

E.70. REICASE T.4.25 ..ottt ettt sttt nae st be et e e eae 1864
E.70.1. Migration to Version 7.4.25......cccccieiiriiiiienieeene ettt 1865
E.70.2. CRANZES ..ottt ettt ettt b ettt et 1865

E.T1.REICASE T.4.24 ..ottt sttt st sae st b et 1865
E.71.1. Migration to Version 7.4.24cccoceririieninieneeeeenieeeee e 1865
E.71.2. CRANZES ..ottt st sttt st 1866

XXXV

E.72.Release 7.4.23 ..o e 1866
E.72.1. Migration to Version 7.4.23........cccceeveriieniinieeieeniteeie et eniee et e e 1866
E.72.2. ChANZES ...eoviiiiiiieeieeite ettt ettt ettt et ettt et st e beesaee i 1866

E.73.Release 7.4.22 ..o s 1867
E.73.1. Migration to Version 7.4.22.......ccccceevueriienieniieniieniteeieeie ettt st e e 1867
E.73.2. ChanEescvieiieiiiiieieieeieeteeeet ettt et e 1867

E.74. REICASE 7421 oottt sttt sttt s s 1867
E.74.1. Migration to Version 7.4.21c.ccccoceviiiiiiniiiinieeeeceeeeeeee e 1868
E.74.2. ChanEesc.ooouieiiiiiiieieeeeeeeet e 1868

E.75. RElEASE 7.4.20 ettt sttt ettt s st 1868
E.75.1. Migration to Version 7.4.20........cccccoviriiiiininiininieiene e 1868
E.75.2. Chan@ES ...cccveeiuiiiieeiieite ettt ettt sttt st e 1868

E.76. REICASE T.4.19 ..ottt sttt ettt et st be et 1869
E.76.1. Migration to Version 7.4.19......cc.cccccvvirimineneniiiineninteieeeeeeeieee e 1869
E.76.2. CRANGZES ...eouviiienieeieeieteee ettt ettt et sbe ettt e e e 1870

E.77.REICASE T.4.18 ..ottt sttt st st s b et 1871
E.77.1. Migration to Version 7.4. 18ccccooiiriririeninienieeieeenee et 1871
E.77.2. CRANZES ..ottt sttt sttt 1871

E.78. REICASE 7.4 17 .ottt s s 1871
E.78.1. Migration to Version 7.4. 17cccoccevereririieninienienieeenieeeeesieee e 1871
E.78.2. CHANGES ..ottt ettt st sttt e 1872

E.79. RElEASE T.4.16 ..ottt s 1872
E.79.1. Migration to Version 7.4.10.......ccocevteveririeninieniineeienieeeeesieetesee e 1872
E.79.2. CHANZES ...eevieeiieiieieeiie ettt sttt ettt et ettt e st e ettt esaaessteenbeenanesnnes 1872

E.80. Release 7.4.15 ...ccuiiiiiiiiiiiiiceeceee et e 1873
E.80.1. Migration to Version 7.4.15....c.ccceviriiiiierieeieeieeseeete ettt 1873
E.80.2. CHANZES ...eovieuiiiiieiieiie ettt sttt ettt ettt e st e st et e satesateebaesaaesanes 1873

E.81.Release 7.4.14 ...cc.oviuiiiiiiiiiiicccee e 1873
E.81.1. Migration to Version 7.4.14.......ccoceevueriiinieeieeieeniteereeie ettt 1874
E.81.2. CHANZES ...eevieiiieieeieeite ettt ettt et et ettt ettt e esaee i 1874

E.82.Release 7.4.13 ...ccoiiiiiiiiiiicce e 1874
E.82.1. Migration to Version 7.4.13.......ccooiriiiiiiniieieeieeniteeeeeie ettt 1874
E.82.2. ChANZES ...eoveiiiiiiieiieite ettt ettt ettt sttt st e e e 1874

E.83. Release 7.4.12ouioiiiiieieeieeeeteee ettt et st 1875
E.83.1. Migration to Version 7.4.12ccccoceviririiininieineeeene e 1876
E.83.2. Changesc.oeeeiiriieieiieeeeeteee ettt e 1876

E.84. RelCASE 7 4. 11 .ottt ettt st s s 1876
E.84.1. Migration to Version 7.4.11......c.ccccooiiiiiiiiiiiiiiiiccececeeeeee e 1876
E.84.2. Changesc..coieiiiiiiiiiiiee e e 1876

E.85. RelCASE 7.4.10 c..cviniinieiiiiiiirietectetee ettt ettt s s 1877
E.85.1. Migration to Version 7.4.10.......cccceeoiiririeiieniieiene et 1877
E.85.2. ChanGes ...cccueevuuiiiiiiieiie ittt ettt et 1877

E.86. REICASE 7.4.9 ...ttt sttt et ettt 1878
E.86.1. Migration to Version 7.4.9........ccccceviririninenienieieenenesteteeeeee e 1878
E.860.2. CHANGZES ...eouviiienieiiieieiteet ettt st sttt e nae s 1878

E.87. REICASE T.4.8 ...ttt ettt st s 1879
E.87.1. Migration to Version 7.4.8cccviriereririenienieniesieetenie et 1879
E.87.2. CHANGZES ..ottt ettt sttt et st 1880

XXXVI

E.88. REICASE 7.4.7 ..ttt ettt sttt st et 1881
E.88.1. Migration to VErsion 7.4.7ccccevueeiuerriienieeieeieeniteete ettt st 1881
E.88.2. ChANZES ...eevieuiiiiieiieiie ettt ettt ettt ettt ettt e e e i 1882

E.89. REICASE 7.4.0 ..ottt ettt ettt st 1882
E.89.1. Migration to Version 7.4.6.......ccccevueeiueriiienienienieeniteeteeie ettt 1882
E.89.2. ChaNEEScuieueeiirieeieieeeetesieeeee ettt e e 1882

E.00. REICASE T.4.5 ..ottt ettt ettt et et st ettt et e ae e 1883
E.90.1. Migration to Version 7.4.5......cccccoireriniiienieieineeeese e 1883
E.90.2. Changesc..cocveiuiiiieieiiieeieeteeeee ettt 1883

E.OT. REICASE T4 ..ottt ettt sttt e ae e 1884
E.91.1. Migration to Version 7.4.4ccccccooiiiiiiiiniieieeeeeseeeeeeeeeeee e 1884
E.9L.2. Changesc..coceooiiiiiiiiiiieee et e 1884

ELO2. REICASE T.4.3 ..ttt ettt sttt st ettt et 1885
E.92.1. Migration to Version 7.4.3........ccccoeiririnineneeieeneseetereeeeee e 1885
E.92.2. Changescocooiuiiiiiiiiiiic e s 1885

EL93. REICASE 7.4.2 ..ttt ettt ettt et sbe et bttt 1885
E.93.1. Migration to Version 7.4.2.......cccoviriereririieniieienie et 1886
E.93.2. CRANEES ..ottt ettt et sttt st 1887

E.O4. REICASE 7.4 1 ..ottt sttt st st s b ettt 1888
E.94.1. Migration to Version 7.4.1......ccccooirvieniniiieniinieniesieete et 1888
E.94.2. CHANEZES ...oovirieenieiieeiieieeiteeste ettt sttt sttt et 1888

ELO5. REICASE 7.4 ..ottt sttt ettt st bbbttt 1889
ELO5. 1. OVEIVIEW ..ouviiiiniiiiiiiieieeiteteeieete ettt st st sttt e 1889
E.95.2. Migration t0 VErSION 7.4ccccovierieerieiiiieniieeieeieesieeeresieenieesesessaeeseenanesnnes 1891
E.05.3. ChANGES ...eeveeviieiieiieiie ettt sttt ettt ettt et e st e st e ba e s et e snteenbaenanesnnes 1892

E.95.3.1. Server Operation Changesceeceerverieenieeneenieenieeneesvesseenaeens 1892
E.95.3.2. Performance IMprovementsccccceeverveerieeneenueenieenieesvesveenneens 1893
E.95.3.3. Server Configuration Changesccccceevueevieeneeriieeneeneesieeieeieens 1894
E.95.3.4. QUEry Changes.........cccueevueeruienieniieiieniieeieeieeniee st ereesiee e eveeaee s 1896
E.95.3.5. Object Manipulation Changesccccceevueeveeneeriennieenieenieeeeeiens 1896
E.95.3.6. Utility Command Changes............cccceeveerueeneeneenieenieeneesieseeeneeens 1897
E.95.3.7. Data Type and Function Changesc.ccceveeveerieenienneeniensienneens 1898
E.95.3.8. Server-Side Language Changesccccccovueeveeneeriennenneenieeeeieene 1900
E.95.3.9. pSQL Changesccceoverieienieiinieienieseerenieerete et 1901
E.95.3.10. pg_dump Changes............cccceeuerieieniirieienieieieeeee e 1901
E.95.3.11. libpq Changesc..coceeueeieiiinieiienieiieieneeeete e e 1902
E.95.3.12. IDBC Changes........ccccoueeuereuireruiniinienieteieerenienieneeseeseneesessessessensens 1902
E.95.3.13. Miscellaneous Interface Changesc..cccceceeiveeniiienenenienene 1903
E.95.3.14. Source Code Changesccccoceeveeruirieiieniniieniieeenie e 1903
E.95.3.15. Contrib Changescocccueeveerininienieieeeinene et seeeresnenene 1904

E.96. RElCASE 7.3.21 c.eeeeiieieeieeeee ettt ettt sttt ettt et st be et ene 1905
E.96.1. Migration to Version 7.3.21cccccevieirininenieieieenenienrereeeeeeeresre e 1905
E.90.2. ChANZESeovevitiieieieiieiieiesiestetetet ettt sttt sttt bbb saennen 1905

E.97. RelEaSE 7.3.20 ..ottt ettt ettt et st b et 1906
E.97.1. Migration to Version 7.3.20......cc.ccceeuvirininenieneeinineneniereeeeeeereere e 1906
E.O7.2. CRANEZES ..ottt st ettt sttt 1906

E.98. RelASE 7.3.19 ..ottt st sttt 1906
E.98.1. Migration to Version 7.3.19.....ccccocioviiririiiininienineeteneeteeseee e 1906

XXXVID

E.O8.2. CHANGZES ...eovieuiiiiieiieiie ettt ettt ettt ettt et e st e b e saaesaees 1906

E.99. Release 7.3.18 ..o e 1907
E.99.1. Migration to Version 7.3.18.......ccoceriiriiiiniinieeiieniteeieeie ettt 1907
E.99.2. ChaNGES ...ceoveeeuiiiiieiieiie ettt ettt ettt ettt ettt st e beesaee i 1907

E.100. Release 7.3.17 ..ot 1907
E.100.1. Migration to Version 7.3.17c..cccceoiririininieninieeneeeeeneeeene e 1907
E.100.2. ChanESccueevviriieieiieieeieeieeeere ettt e 1908

E 10T, REICASE 7.3.16 .ttt sttt s 1908
E.101.1. Migration to Version 7.3.16......c..cccccceiiiiiniiniiiinicencceceeece e 1908
E.101.2. Changescc.coouiiuiiieiiieeeee e e 1908

E.102. REIEASE 7.3.15 .ttt ettt s e 1908
E.102.1. Migration to Version 7.3.15......ccccciiiiiiiiiiiiiccceeeece e 1909
E.102.2. Changesc.coouiiiiiiiiiiiciet e e e 1909

E.103. REIEASE 7.3.14 .ottt ettt s e 1910
E.103.1. Migration to Version 7.3.14.......ccccccecirininenenienininenienrereeeeeeeieere e seeneen 1910
E.103.2. ChANEES «...veviviieieieiieiieiertestctctet ettt st s 1910

E.104. ReEIEaSE 7.3.13 .ottt sttt ettt s e 1910
E.104.1. Migration to Version 7.3.13......cccooiiiiiiiiiniieeceeeeeeeeee e 1910
E.104.2. CRANGESveveenierieeiieieeiteeete ettt st sttt st s 1911

E.105. REICASE 7.3.12 .ottt e s s 1911
E.105.1. Migration to Version 7.3.12......ccccoceviiiniininieniinceienceeeeseeeee e 1911
E.105.2. CRANZES ...nveveenieieeiieieeiteteeteeer ettt sttt 1911

E.106. Release 7.3.11 ..ottt s 1912
E.106.1. Migration to Version 7.3.11.....cccccoviriniiiiininiiniineeieneeceseeececeeeee e 1912
E.106.2. CRANEES ..cuveeviiiiieiieiie ettt sttt ettt ettt et e s e st e e baesabessteebeenanesnnes 1912

E.107. Release 7.3.10 ..ottt 1913
E.107.1. Migration to Version 7.3.10......cccceereirienienieeieenieeieeieeiee st 1913
E.107.2. CRANEES .eouveevieeiieeiieiie ettt sttt ettt ettt ettt s et e st e sate e beenaeesanes 1914

E.108. Release 7.3.9 ..o e 1914
E.108.1. Migration to Version 7.3.9.......ccooiriiiiiiniiieeieeteeeeit et 1915
E.108.2. CRANZES .euvieviiiiiieiieiie ettt ettt ettt ettt et e st e b e saeesaees 1915

E.109. Release 7.3.8 ..o s 1915
E.109.1. Migration to VErsion 7.3.8.......ccoutriiiiienieeieeieeriteeteeie ettt 1915
E.109.2. ChanEscceevviriiiieiieiieieeieeeene ettt 1915

E 110, REICASE 7.3.7 .ottt sttt ettt s st 1916
E.110.1. Migration to Version 7.3.7ccccoceviririiininienineerese e 1916
E.TT0.2. ChanEsooueeiiiieieieeieeeeeeet et e 1916

E 11T REICASE 7.3.60 ettt sttt ettt s e 1916
E.111.1. Migration to Version 7.3.6......cc.cccecueirirenenienieinencnienteeeeeeeeresre e neenee 1917
E.TT1.2. Changesco.couiiiiieiiieece et s 1917

E 112 REILASE 7.3.5 .ottt sttt ettt s s 1917
E.112.1. Migration to Version 7.3.5......cccccceeueirininenenieieeneniesrenseeeeeeeresre e seenee 1918
E.112.2. ChANEES «.cveoviiiieieeeiieiieiertestetetet ettt sttt s 1918

E 113, ReICASE 7.3.4 ..ottt sttt et st beeete e eae 1918
E.113.1. Migration to Version 7.3.4......cc.cccccviriminenenieininenesiereneeeeereeie e 1919
E 1132, CRANGES ..uveieenieiieeiieieeieeest ettt st et sttt nae s 1919

E.TT4. REILASE 7.3.3 .ottt ettt s e 1919
E.114.1. Migration to Version 7.3.3c.ccocirviiririiieniinieneneeteseeteesie et 1919

XXXVIii

B 114.2. CRANEES .oouvteiiieieeiieiie ettt ettt ettt et et st e be e s atesate e b e saaesaees 1919

E.T15.REIEASE 7.3.2 .o s 1921
E.115.1. Migration to Version 7.3.2.......ccoveriiiiiienienieeieeniteete ettt 1922

EL 1152, CRANEES .oouvtiiiiiiieiteiie ettt ettt ettt et st be e e i 1922
E.116. Release 7.3.1 ..o s 1923
E.116.1. Migration to Version 7.3.1.....ccccoccoceviniiiiininieiniceencceceseeeee e 1923
E.116.2. Chanescccooviiiieieiiieeieeieeeee ettt 1923
E.T17.REIEASE 7.3 ..ottt ettt sttt st ettt et e ae e 1924
E. 1171 OVEIVIEW ..ottt ettt ettt e 1924
E.117.2. Migration to VErsion 7.3ccccociiiieiiiiiiiiniinieiee e 1925
E.T17.3. Changescccooiiiiiiiiiiieiecee e e e 1925
E.117.3.1. Server Operationccccceevuiiieiicniiiienieniieieie e e 1926

E.117.3.2. PerfOrmancecccoeeeerieeuiesieeeeiesie sttt s 1926

E.117.3.3. PrIVIIEEES....c.eeuveuieiiiiiericicicteceieeteteeeeeeiteie sttt 1926

E.117.3.4. Server Configuration..........cccecceeeuenienieieeeinenenieneeeeeeeseesressennene 1927

E.117.3.5. QUETIES ..cvveeiiieiieeiieeie ettt ete ettt sveete et e sveebeeaeeseseensaenseens 1927

E.117.3.6. Object Manipulationccccccevevevuenieieieinenenieeeieeeesesesvenene 1928

E.117.3.7. Utility COMMANGScoveriireieiiniieieieniieienieeitenie e sieeee s eieenie e 1929

E.117.3.8. Data Types and FUNCtionsccccoeveerieneeiienenieneneeieneeieiene 1930

E.117.3.9. Internationalizationccccceevuinienieieinininenieeeieeee e 1931

E.117.3.10. Server-side Languagescccceeueruerienieneeieniineeneneeieneeeeniene 1932

EolL17. 311 PSQLatiiiiniiriiiienieetereet ettt s 1932

E. 117312, 1IDPQ ettt 1932

E. 1173130 JDBC ..t 1933
E.117.3.14. Miscellaneous INterfaces..........ccocevereevieneeienenecncneenicneneeiene 1933
E.117.3.15. Source Code.......coociriiiiiiiiiiiiiiiiieiciciecse et 1933
E.117.3.16. CONLIID .ceiiiiiiiiiicceccece e 1935

E.T18. ReleaSE 7.2.8 ..o 1936
E.118.1. Migration to VErsion 7.2.8.......ccoceerueriiienienieeieeniieeie et eieestesite e e saee e 1936

B T18.2. CRANEES .eouveeviiiieeieeiie ettt ettt et sttt et e st e beesaeesaees 1936
E.119. REIEASE 7.2.7 .o e 1936
E.119.1. Migration to VErSion 7.2.7cccceevueeiieeiienieeieeieesiteete ettt 1937
E.119.2. CRANEES ..uveiiiiiieeiieite ettt ettt st ettt e 1937
E.120. REIEASE T.2.6 ...ttt ettt st st 1937
E.120.1. Migration to VEersion 7.2.0........ccccoceveririeniineeniineerenieeeereseeeeee e 1937
E.120.2. Chanescc.ceoviiuieieiieieieeieeeeree ettt 1937

E 121 REICASE 7.2.5 .ottt ettt s s 1938
E.121.1. Migration to Version 7.2.5......c.ccccoceiiiiiiiininiiiieeeene e 1938
E.121.2. ChanEsooueeiiiiiieieeeece e e e 1938

E 122 REICASE 7.2.4 .ottt sttt sttt s et 1939
E.122.1. Migration to Version 7.2.4.........ccccceviriminenenieieenenienienseeeeeeeresesaeseennes 1939
E.122.2. Changesc.coouiiiiiiiiiicie e e 1939

E 1230 REIRASE 7.2.3 .ottt sttt et s e 1939
E.123.1. Migration to Version 7.2.3......ccccccccvviririnenieneeininenienreseneeeneeresresae e 1939
E.123.2. ChANEES «.cvooviiiieieiciieiteiertesteceet ettt sttt 1940

E 124, REICASE 7.2.2 .ottt et e 1940
E.124.1. Migration to VErsion 7.2.2.......cccccevererirrieniniene ettt 1940
E.124.2. CRANGES ..uveveenieiieeiieieeiteesteee ettt sttt et 1940

XXXIX

E 125, REIEASE 7. 2.1 «evveieeeeieeiee ettt e et e et e e e eeaare e e e eetnaeeeeeeareaae s 1941

E.125.1. Migration to Version 7.2.1....cccccecueeiieiiienienieeieeniteeteeie ettt 1941
E.125.2. CRANEES .eouveiviiiiieiieiie ettt ettt ettt ettt ettt e e e saees 1941
E.126. RElEaSE 7.2 ..o s 1942
E.126.1. OVEIVIEW ...ooviiiiiiiiiiiiiiiiiiiicccce s 1942
E.126.2. Migration to VEIsion 7.2.......cccccocirviereririieniinieniincerenieeeereseeeesneeeeeae e 1942
E.126.3. Changesc.cooueiiieieiiniieieeieeeee ettt e e 1943
E.126.3.1. Server Operationcccceceecuirieienienieerienieieie e e 1943

E.126.3.2. PerfOrmanceccocueevueerienienieeieenie ettt 1944

E.126.3.3. PrivII@@es.cccuiiuieiiiiiiciieieciee e 1944

E.126.3.4. Client AuthentiCationcocucevueereeneeriernieenee e eeeeieens 1944

E.126.3.5. Server Configuration..........cccecceevuenrerienieeeenenenieneeieeeesesresnennene 1944

E.126.3.6. QUETICS ..cvveeeiieiieeiieeiieeieeeteeeiie et esteesetesveeteeteeseveenseeseessaeenseenseens 1945

E.126.3.7. Schema Manipulationcocceevvevveiereeinenenieneeieeeenesesvennene 1945

E.126.3.8. Utility Commands...........cccccueveririnrenienieieineneneeeeeeeeesnesressennene 1946

E.126.3.9. Data Types and FUnctions............ceceeveeeeeeinenenieneeienenenenesnennene 1946
E.126.3.10. InternationaliZationcccceceeeeruerienienieeienieecenie e sieeeeeneeeae 1947
E.126.3.11. PL/PZSQL ...ttt 1948
E.126.3.12. PL/PEIT ..ottt 1948
E.126.3.13. PLITC ..ottt 1948
E.126.3.14. PL/PYtRON ...vooviiiiiiiiicieiecnteicteeeteee et 1948
E.126.3.15. PSAL.cuiiiiiiiiciiieieeceetc e 1948
E.126.3.16. 1IDPQ wvineiieiieiieiieiiiercceeceeeeeee e 1949
E.126.3.17. JDBC ...ttt 1949
E.126.3.18. ODBC ..ottt 1950
E.126.3.19. ECPGcoiiiiiiiiiiiiiicicietceieeceeese e 1950
E.126.3.20. Misc. INterfaces..........cccccueiririniiiiiniiniiiiiiincniciciciccseccee 1951
E.126.3.21. Build and Install..........cc.coceeviimirniininiiiininienieeencneeieseeeeiee 1951
E.126.3.22. Source Code.........cccovuiiiiiiiiiiiiiiiiciciciece e 1951
E.126.3.23. CONtIID ..o 1952
E.127.Release 7.1.3 ..o e 1952
E.127.1. Migration to Version 7.1.3.......ccoiiiiiiienienieeieerteeeee ettt 1952

B 127.2. CRANEES .ecuviiiieiieeieeite ettt ettt sttt ettt e e e 1952
E.128. ReIEASE T.1.2 ..ottt ettt st 1953
E.128.1. Migration to Version 7.1.2......c.ccccoceiiriiiieniinieinieeeniececeseeeee e 1953
E.128.2. ChanESooveeiiiieiieieeeceeee et 1953
E.129. REIEASE 7. 1.1 ettt ettt sttt ettt s 1953
E.129.1. Migration to Version 7.1.1.....ccccocooiiiiiiiiiiiiieeeceeec e 1953
E.129.2. Changesc.coouiiiiiiiiiiceeiee et 1953
E.130. REIEASE 7.1 ..ottt ettt sttt e 1954
E.130.1. Migration to Version 7.1c..cccceevieirininenienieinenenenresreneeeeeresre e seenee 1955
E.130.2. Changescoouiiiiiiiiiii e e e 1955

E 131, Release 7.0.3 ..ottt sttt s 1958
E.131.1. Migration to Version 7.0.3......cccccccceiriminenenieininenenrcreeeeeeeresre e 1959
E.131.2. CRANEES «.cveviiiieicicieeteereseeet ettt sttt 1959
E.132. ReIEASE 7.0.2 .ottt ettt s e 1960
E.132.1. Migration to Version 7.0.2........cccocereririininienieieeienieeeeesieee e 1960

E 1322, ChanEs ..c..ooueeiiiiieieieeiteeeteee ettt sttt 1960

xl

E.133. REIEASE 7.0.1 .ovveieeieiieeiee ettt et e et eeesaare e e e eeaaaeeeeennreeeees 1960

E.133.1. Migration to Version 7.0.1.......cceceeiiiiriienieniieeieeniteeieeie et 1960
E.133.2. CRANEES .eouveiiiiiiieiieite ettt ettt ettt sttt e e s e i 1960
E.134. Release 7.0 ...cc.ooviiiiiiiiiiiiicicc s 1961
E.134.1. Migration to VErsion 7.0.......ccccevvueriieiiiienienienieeniteeieeie ettt 1962
E.134.2. Changesccccoouiiiiiieiiniieieeieeeee ettt e 1962

E 135 REIEASE 60.5.3 ..ottt ettt s 1968
E.135.1. Migration to Version 6.5.3........ccccoceviiiiiiininiiinteeeeeeeeseeeeee e 1969
E.135.2. Changescccoouiiiiiieiiiecieecee e e 1969
E.136. REICASE 0.5.2 ..ottt ettt sttt s st 1969
E.136.1. Migration to Version 6.5.2........c..cccccviiiiiiiiiniininiceneeeeeeeeeee e 1969
E.136.2. Changescoouiiiiiiiiiieieee et 1969

E 137, ReIEASE 0.5.1 .ottt ettt sttt et st be et ene 1970
E.137.1. Migration to Version 6.5.1......cccccceuririninenenieininenienreeieeeeeiesesae e 1970
E.137.2. CRANEZES «.vevitiieicicieeieeerestetcetet ettt sttt 1970
E.138. REICASE 0.5 ...ttt ettt sttt et bbbt 1971
E.138.1. Migration to VErsion 60.5.........ccccceeieiruiniinenienieinenenienreteieeeneeresresaeseenee 1972
E.138.1.1. Multiversion Concurrency Controlc.ccecevereeneneeneneneenienne 1972

E.138.2. CRANGESveveenieieeiieieeieeete ettt sttt s 1973
E.130. REICASE 6.4.2 ...ttt s e 1976
E.139.1. Migration to Version 6.4.2........ccccocueveririeninienineeienieeeesesieeeesie e 1976
E.139.2. CRANZES ..cuveveenieiieeiieieeiteeetee ettt sttt ettt 1976
E.140. RelEaSE 6.4.1 ..ottt s 1976
E.140.1. Migration to Version 6.4.1........ccccocereririieniniinineiieneneeseneeeeee e 1977
E.140.2. CRANEES .eouveeeiieiiieiieiie ettt sttt ettt sttt teeste st e baesaaesnteebaenaaesnnes 1977

E. 141 REICASE 6.4 ...t e 1977
E.141.1. Migration to VErSION 6.4ccocueeiuerriienieeieeieeniiesre et enieesiseseteenieesieesnnes 1978

B T4T1.2. CRANEES .eouviiiieeiiieiieiie ettt sttt ettt ettt ettt e e st e st ebeenaaesanes 1978
E.142. Release 6.3.2 ...c..oviuiiiiiiiiiiiicicicceeece et 1982
E 1421, CRANEES .eouviiiieiieeieeiie ettt ettt et ettt ettt e be et e st e beesaeesanes 1983
E.143. Release 6.3.1 ..o s 1983
E 1431, CRANEES .eouviiiieiieeiieite ettt ettt ettt e sbe e st e b e saee i 1984
E.144. Release 6.3cc.ooiiiiiiiiiiiiiiicicee e s 1984
E.144.1. Migration to VErsion 6.3........ccccocceviereririieniinieiineeeeneeeeresieeeene e 1986
E.144.2. ChangEscoeeouiiiieieiieiieieeieee ettt e e 1986

E 145 REIEASE 6.2.1 ..ottt sttt ettt 1989
E.145.1. Migration from version 6.2 to version 6.2.1...........ccccooiriiiniiicninenene. 1989
E.145.2. Changesccoouiiiiiiiiiieieece e e 1990
E.146. REIEASE 6.2 ...ttt ettt ettt sttt et e 1990
E.146.1. Migration from version 6.1 to Version 6.2..........ccccecceeeveveneeneerenenenennenes 1990
E.146.2. Migration from version 1.x to Version 6.2cccccevevevrenveneecnenenennenes 1990
E.146.3. CRANEES «....eoviiiieieiciieiieentesteteet ettt ettt s 1990

E. 147, ReIEASE 0. 1.1 .ottt sttt et s be et et eae 1993
E.147.1. Migration from version 6.1 to version 6.1.1........ccccccoivinienennnniinenenenee 1993
E.147.2. CRANEZES «..veviiiieieiciieieerteseteet ettt sttt s 1993
E.1T48. REICASE 0.1 ..ottt sttt s st s beeaae e 1993
E.148.1. Migration to VEersion 6.1cc.ccoccoviereririieniinienienceenieeeeeseee e 1994
E.148.2. CRANGESveveenieiiteiieieeiteeeteee ettt sttt st 1994

xli

E.149. REIEASE 0.0ovvvieiieiieeiee ettt e ee e e et e e eeeaareeeeeeaaaeeeeenareeeees 1996

E.149.1. Migration from version 1.09 to version 6.0........c.cceecevviierienierieeneeneennne. 1996
E.149.2. Migration from pre-1.09 to version 6.0ccccceveevieriiieniieniienieenieeneenne. 1996
E.149.3. CRANEES .eouviiiieiiieieeiie ettt ettt ettt ettt st e b e saaesaees 1997
E.150. Release 1.09 ..o s 1999
E. 151, Release 1.02 ...ttt sttt et s 1999
E.151.1. Migration from version 1.02 to version 1.02.1........cccccccociiiniiiininnnnnne. 1999
E.151.2. Dump/Reload Procedurec..cocooiiiiieiinieniinieenieceeeseeecee e 2000
E.151.3. Changescccooouiiiiieiieiecieee e e e 2000

E 152 ReIEASE 1071 weviiiiiiciiiiiiniitecccee ettt ettt s e 2001
E.152.1. Migration from version 1.0 to version 1.01.........c..ccccoooiiiiiiiiiiiie. 2001
E.152.2. CRANEES .cuveiiiiiieeieeite ettt ettt et sttt 2002

E 1530 REIEASE 1.0 .eeiiiiiiiiiieiieeeet ettt st 2003
E 1531 CRANEES .cuviiiiiiieeiieit ettt et st 2003
E.154. Postgres95 Release 0.03.........coucoieiiiiininenieiiincneeetereeene et 2004
E 1541, CRANGES ..ottt sttt bt nee s 2004
E.155. Postgres95 Release 0.02.......cocuoiiiieriiiiieniieerie ettt 2007
E.155.1. CRANGES ..uveieenieiieeieieee ettt sttt e 2007
E.156. Postgres95 Release 0.01.......couiiiiiiriiiiiiiieieeeeeesteeeetee ettt 2008
F. Additional Supplied MOAUIEScoeeieriiririenientiieeieetet ettt s 2009
FoL QdMINPacK......ooueeiiiiiieieiieie ettt sttt et sttt 2009
F.1.1. Functions implemented.............coceviriereninienienieienceienieeeeiesieeeeeee e 2010

F.2. QUEO_@XPLaANN...ctiiiiiiiiiieiieieieetes ettt e bbbttt 2010
F.2.1. Configuration Parameters.cocerereeruerierienieneenieneeeeniesieensesieessensesseensenues 2010
FL2.2. EXAMPIE ..vvieniiiiiieieeiteite ettt sttt sttt ettt et et e ssteenbeenaaesnnes 2011
F2.30 AUNOT ..o 2012

L B 015 (TSN~ | 1 OO OO OO UTUTRRRRRTI 2012
F.3.1. EXQAMPIE USAZE c..veevveenvieiieiieeieeite sttt ettt e site st st ebeesatesateebeesaeesanes 2012
F3.20 AUNOTS ..o 2012

Fld DLIEE_ISt .eeuiieniieiieeieeeete ettt st ettt et st e bt e bt e st ebe e bt e sabeebeeaeens 2012
Fi4.1. EXQAMPIE USAZE ..eeevveeniieiieiiieieeite sttt et ettt st ebe e st e st beesaaesaees 2013
Fid.2. AUNOTS ... 2013

FLS. CRKPASS. ettt st st et st ae e 2013
FLS 1 AULNOT ot 2014

FLB. CIEEXL 1.ttt et ettt ettt e be e bt st et be e st e b e b 2014
FL6.1. RAtIONALL «...coueiiiiiiiiiiieiic ettt ettt e 2014
FL6.2. HOW 10 USE Lt .cuuiiiiiiiieiiiieeeee ettt 2015
F.6.3. String Comparison Behavior.............cccccooiiiiiiiiiiniiicecceeeeee 2015
F.6.4. LAMILAtIONS .c.uveiiuiiiieeiieiieiieeeeite ettt ettt sttt et et e esaee i 2016
FiB.5. AULNOT ..ttt sttt 2016

L7 CUDC ..ttt ettt st b ettt et s he et e b nte e ene 2016
7.1 SYNEAX <ottt ettt et ettt et ae s 2016

7.2, PLOCISION.ciuiiiiieie ettt ettt et sb e et b et e eneeeaes 2017

B30 USAZE.ccniieiteetee ettt sttt st e 2017

F7.4. DETaULLS ..ottt 2019

FL7.5. INOEES .ttt ettt sttt et 2020

F7.6. CTEAILS ...ttt s 2020

FL8. ADIINK .t 2020

xlii

ADIINK_COMMECT....eiiiiiiiiiieeeitieie e eeereee et eeere e eeetr e e e eetar e e eesaareeeeeenasaeeeeennnreeeeen 2021

ADIINK_CONMMECT_U.euiiiiiiiiiiiiiieeciie ettt et et eette e et e e e e e e sebae e ebeeesseeesssaeeneseeanens 2024
ADINK_dISCONMECEviieiiiieiiiieciie ettt ettt eette et e e e b e e sbee e ebeeesebeeessaeensseaenens 2025
16 10) 1331 USSP PPR PRSPt 2026
ADIINK_EXEC ..vvieiiiieeiiieeiie et eetee et e ettt e ettt e e v e e staeeesbaeeessaeessbeeesssaeensseeessaeensseennnns 2030
ADHNK_OPEN....cuiiiiiiiiiciceee ettt 2032
(6 o) 301 S < () o TRt 2034
16 1) 500 Qo1 (0 11O 2036
AblinK_GEt_CONNECTIONSeeuvieiiiriiieieeite sttt ettt ettt sttt e st st be e e saees 2038
ADIINK_EITOT_IMESSAZEuveeuveeniieriieeieeite sttt ettt ettt s e bt et st e beesaeesaees 2039
ABIINK_SENA_QUETY ...eeuviiiiiiiieiieiieeeete ettt sttt st 2040
ADINK_IS_DUSY ..ttt ettt et e nee e 2041
ADINK_GEt_TESUIL...c.uiitiiiiieieeiteee ettt sttt et 2042
ADINK_CANCEL_QUETY . .eouiiiieiieitieiieeetee ettt 2045
ADINK_ GOt PKEY ...ttt et e 2046
dblink_build_SQI_INSEIT......couiitiiiieiieiieiest ettt 2048
dblink_build_sql_delete.........ccueeuiiiiiriiiiniiiieieeeee e s 2050
dblink_build_sql_Update........cceeieiiiririeriiieeeeee e e 2052
FLO. QACE AN ..ttt et e e et e et e et e e e eate e e areeeeateeeeteaaens 2054
F.O.1. CONfIGUIAtION ...eoutiiiinieiiiieieeieeteste ettt sttt 2054
FLO. 2. TUSAZR. ...ttt ettt sttt sttt et st 2054
FLLO. QIO _XSYI. ittt ettt ettt ettt st et b e ebt et s e e sbe et e s beeanenteene 2054
F.10.1. CONfIGUIALION ..eovviiiiniiiiniieienieetenie ettt sttt e 2055
FiL0.2. USAZE..cnuieiiiiieieeiestteteteett ettt ettt st sttt et sbee e s 2055
Fo11. @artRAiSTANCEcuveieeiieeeiie ettt ettt e e e e e abeeesebeeeeaseseaseeenrneans 2056
F.11.1. Cube-based earth diStanCesccuieevuveiiiiiieeiiieeiieecree et e eevee e 2056
F.11.2. Point-based earth diStanCescccueiiviieiiiieeiiiieeiie e e e 2057
Fo12. fUZZYSIMALCK. ..c..eiiiiiiiieiieeteee et ettt sttt ebeeaee s 2058
Fo12.1. SOUNAEX....iiiiiiieiieicite ettt et stte et e e e e e e sabaeesebaeeeaseeeasaeeneseeanens 2058
Fo12.2. LeVENSNLEIN ...occciiiiiiieciie ettt ettt e sve e e v e eabeeeabaeeneseeenens 2059
Fi12.3. MEtaPRONE. ...ccuviiiieiieiie ittt ettt ettt e 2059
F.12.4. Double Metaphone.........coceevueeriienieriieeiienieeieeie ettt ettt st 2060
L B 1 1] () (SRRSO RRRUURN 2060
F.13.1. hstore External Representationc..coceeeeeeniiniencncneeneneeecnieeceeene 2060
F.13.2. hstore Operators and FUNCHONSccccecueriirieniinienienciiceneeicneeeeee e 2061
Fo13.3. INAEXES ..vveeiieiieeee ettt e et e e eeabe e e e e earaeeeeeeanraeeeas 2062
FoI3.4. EXAMPIESoooiiiiiiiiieiieceeteee e 2062
FL13.5. SATSICS wuveiivieeeeee ettt ettt e e et e e e e et e e eteeeenneeeenneeeeneeeenns 2062
Fo13.6. AUTNOTS....coiiiiiiiee ettt ee et e e e earae e e e eeaaaeeee s 2063
FoTA ANAZE oottt ettt sttt st 2063
Fol4. 1. FUNCHONS ...ttt ete e et e e et e eeaeeeeeaaeeenns 2063
Fo14.2. SamPIe USES....ccouiiuieieiieiieiieieeiestt ettt sttt e nee s 2064
FLLS. ANEAITAY -ttt b ettt et a e st b e st et e enaeseeenbesbeeneeteene 2065
F.15.1. intarray Functions and Operators............ccceeceerereerieneneenienieeienie e 2065
FoI5.2. TNAEX SUPPOIT..ccmiiiiiiieiieiieieeit ettt sttt 2067
FoI5.3 EXAMPIE ..ottt et 2067
F15.4. BeNChMAIKcccooiiiiiiiiiici et et e 2067
FL15.5. AULNOTS ...oiiiiiiiiie ettt e e e et e et e e e eateeeeaaeeeeareeeens 2068

xliii

LB STttt et sttt bbbt 2068
FL16.1. DAta tYPeS.ccueieruiiiiieiieiie ittt sttt ettt ettt et e s ate st e be e st e sateebeesaeesanes 2068
FiI0.2. CaSS ettt ettt ettt ettt st et sttt et 2069
F.16.3. Functions and OPETatorsccceeeveerueerieenieniienieeniteetesieesieesseesiseesseesseesanes 2069
F16.4. EXAMPIES ..ccuuiiiiiiiiiiieiie ettt ettt ettt e 2070
F.16.5. BiDHOZIaPhY....ccviiiiiiiiiiieiiicecccteceeee et 2071
L N TN 11 4 o) TP 2071

S A 1o TR SPRRSRP 2072
F17.1. RAONALEveeeeiieeiieeeiee ettt e et e et eeenseeenseeennseennnns 2072
F17.2. HOW tO USE Tttt et 2072
Fo17.3. LIMItAtIONS ...vieiiiieeiieeciie ettt et eite e e tte et eeeaeeessteeesntaeesnseeennaeensseennnns 2073
FoI17.4. AUNOT ...ttt et nee e 2073

BB IEIE .ottt ettt ettt ettt s et et e bt e st et e e st e naesae e teebeenteteene 2073
Fo18.1. DefiNitiONS ...uceuvievieiieiiecieeieeciteeteete et e stteeteete e teeesaeebeebeesssessseensaessnesnnas 2073
F.18.2. Operators and FUNCHONSc.cocuiriiieriiniieieieeee e 2075
FI8.3. INAEXES ..ottt ettt et e et e et e e nbeeenaee e 2077
FI8.4. EXAMPIE ..ottt e 2078
Fo18.5. AUTNOTS....viiiiiiiieiieteeeie ettt ettt e ae ettt e et e et e ebeessaeesaeenseensnennnes 2080

Fo19. 01d2NAIME ..ottt ettt sttt et sttt ettt 2080
FoI1O.1. OVEIVIBW ..ottt ettt st ettt ettt et 2080
Fo19.2. EXAMPIES ...cuviiiiiiiiiiieieeiteteeieetese ettt sttt st 2081
Fo19.3. LIMITAtIONS «..eveeniiieeiieiieiteiesieeteste sttt sttt et nae e 2084
Fo1O.4. AUNOT ...ttt 2084

F.20. PAZEINSPECT ..ttt ettt ettt et ettt ae et sbesene e ene 2084
F.20.1. FUNCHOMNS ...ttt sttt 2084

FL21. PEDONCH . ..ceiiiiiiiieeeeee ettt sttt st sttt st e beeaee s 2086
F21.1. OVEIVIBW ..ottt ettt sttt et e 2086
F.21.2. What is the “transaction” actually performed in pgbench?........................... 2089
FL21.3. CUSLOM SCTIPLS ..evveeniieiieiiieeieesite sttt ettt ettt ettt ebtesatesateebeesaeesaees 2089
F.21.4. Per-transaction 10Z@INgccccevverieriieriiieniieieeieeniteete ettt 2091
F.21.5. GOOA PractiCescccueruirueeiinieiiniiiieienieeteteeet ettt sae e e 2091

F.22. pg DUfErCaChie.....couveiiiiiiieiecee e 2092
F.22.1. The pg_bufferCache VIEWcccveeeeeiiiieeeeeiireeeeeecreeeeeeeireeeeeeerreeeeeenreeeees 2092
F.22.2. Sample OULPULooveiiiiiriieiiicieiceeeene ettt 2093
FL22.3. AULNOTS.....iiiiiiieie ettt ettt tte et e et e e s ba e e sbeeenseeensaeensseeennns 2093

FL23. PECIYPLO ottt et sttt et st 2093
F.23.1. General hashing functions...........c..ccccoeeriiiiininininieeeeee e 2093

F.23.1.1. Aig@St () teeereereerierieeieeeeie et tete ettt sttt et e sbe st ee e eneeteene 2094
F.23.1.2. BMAC () terverteenieie ettt ettt ettt ettt ettt ettt e ae st e e s beenneseene 2094
F.23.2. Password hashing functionsccceccecererenienieinencneneneneeeeeesesieneenen 2094
Fo23.2. 1. CrYPE () ettt e e et e e et e e e e eera e e e eennaes 2095
F.23.2.2. GeN_SA1E () terririeeiiiiee ettt ettt e et e et e e ar e e e e eeaanes 2095
F.23.3. PGP encryption funCtionsccceeeeeruirenenienneieeneniensesseneeeneeresresaeseenee 2096
F.23.3.1. DOP_SYM_ENCTYDE () tveeeerieeeiiieiiiieeeitieeeiiteeeieeeseieeesteeesareeeneeeesnes 2097
F.23.3.2. pgp_syM_A@CTYPE () tieeeerrieieeietieeeeeciteeeeeeeirreeeeeseteeeeeevreeeeennnnnes 2097
F.23.3.3. DGP_pUDb_eNCIYPE () tieeeeriieeeeiciieeeeeciteeeeeecitreeeeesireeeeeseereseeennnnnes 2098
F.23.3.4. pgp_pub_deCTYPE () ceeeeeieeeeeeeeitieeeeieeeeeaeeeeeaeeeeveeeereeeeaeeeeesveeeans 2098
F.23.3.5. DOP_KeY_ 1A () trrreeiiieeieeeetiee ettt ettt ettt eete e e eareeeetre e 2098

xliv

F.24.

F.25.

F.26.

F27.

F.28.

F.23.3.6. armor (), ACATMOT () teveeeerrrereiieieeeeeeeeeeeessssisisrsrreeeeeeeeeesesssssssnnnnes 2098

F.23.3.7. Options for PGP functionscccceevviiiiiinniiniiiiieeeiesieeeeeene 2099
F.23.3.7.1. CIPREr-al@O ...cccueevuiiriiiiieiieeieeeetee et 2099

F.23.3.7.2. COMPIESS-alZO ...cevvviruiiriiieiienieiiieitente ettt 2099

F.23.3.7.3. compress-1eVelccoceevieriiniiinienieeieeeeeeeeeeeee e 2099

F.23.3.7.4. convert-Crlf.........cccooiiiininiiiieecee e 2100

F.23.3.7.5. disable-mdC........cccceruieieriieieie e 2100

F.23.3.7.6. enable-session-Keycccceverieiieninieniincencicereneeiene 2100

F.23.3.7.7. S2K-MOME......cceiruieiiiieieeeeee et 2100

F.23.3.7.8. s2k-digest-algo.......ccceevueruirieniiieiiicieeeceeeeeee 2100

F.23.3.7.9. s2k-cipher-algoccccoiriiniiiiiiiiiiiiicccceeee 2101
F.23.3.7.10. unicode-mode...........ccceririenerieienieeiee e 2101

F.23.3.8. Generating PGP keys with GNuPG...........ccccceeiiviniiniiieiieeieee 2101
F.23.3.9. Limitations of PGP cOdeccccoociriiiiiiiiiinieiceee e 2102
F.23.4. Raw encryption fUNCLIONSccoirierieniiiieniieiesie et 2102
F.23.5. Random-data fUNCHONScoceeiiriirieieniiiieie et 2103
FL23.0. INOLES ..ttt ettt ettt ettt et sb e st e b bt e b eae et saes 2103
F.23.6.1. Configuration...........ccoeeeerieriienienieieniesiteesieete et 2103
F.23.6.2. NULL handlingc.ccecuererienieniiienienieienieeienie et 2104
F.23.6.3. Security lImitations..........coeeeevieririenenieieneeienieecene e 2104
F.23.6.4. Useful 1readingcccccoerierieniriiiniiienenteiesieetete e 2104
F.23.6.5. Technical referencesceceevuereeienienienienieeieniceeenie e 2105
F23.7. AUTNOT ...ttt 2105
PE_TEESPACEINAP ...coveeniiieiiiiieiteie ettt sttt ettt be et s e e s ean et ene 2106
F.24. 1. FUNCHOMNS ...ttt sttt 2106
F.24.2. SamMPIe OULPUL ...ouveeiieiieiieeieeite ettt ettt sttt e satesete e e e saaesnees 2106
F.24.3. AUTNOT ..ottt e 2107
PEIOWIOCKS ...ttt ettt ettt ettt s e st e bt e st esabeenbeesabesaseenbeesanenaseenne 2107
F25.1. OVEIVIBW ..ouviiiiniiiiiieiecitetettetest ettt ettt et st e 2107
F.25.2. Sample OULPUL ...c.veeeieiieiieeieeteete ettt ettt ettt st e s 2108
F25.3. AUTNOT ..ottt 2108
PE_SEANADY .ttt ettt e b ettt e b e st st e e s aaesane et 2108
FL26. 1. USAZE...ei ittt ettt ettt et sate e e e i 2109
F.26.2. EXAMPIES ..ccuviiiiiiiiiiieiie ettt ettt ettt e 2111
F.26.3. Supported SEIVET VEISIONScecueruirieieniieieiieieetenieerenieeeenesieeeneneeeeenennee 2112
| S N 111 1 o) TR 2113
PE_StAt_STALEIMENLS ... uvvieriieeiiieeeiie et rtee ettt et e et e st eeneeesbeeesnteesenaeesreeeas 2113
F.27.1. The pg_stat_Statements VIEWccccceeeeieeeriieeeiieesieeesreeeseseeesnveeenereesnns 2113
FL27.2. FUNCHONS ..c.uteeiiieieeteitc ettt ettt ettt e 2114
F.27.3. Configuration Parameters..........ceeeeeeruerueeruerueeeeneeneeeeeseeeneeseesseeneeseesneensesnes 2114
F.27.4. Sample OULPUL ...c..eeeuiiiiiiieeeeteeteeeet ettt 2115
F27.5. AUTNOT ...ttt e 2115
PESTALEUPLL ...ttt ettt ettt st b ettt s be et e b eane e ene 2115
F28. 1. FUNCLIONS ...ttt ettt e 2116
FL28.2. AUTNOTS ...ttt ee s 2117
PEtIZIM ittt b e b st bt e bt e st e esbnesaaeeane 2117
F.29.1. Trigram (or Trigraph) CONCEPLS.....ccccevueruirieriirieienieetenieetetesieete e 2118
F.29.2. Functions and OPEIatorscc.eeereerierierienienienienieetenieeieeniesieeseeseesieeneesaes 2118

xlv

F.20.3. INAEX SUPPOTL...eiriiiiiiiiiiiiieieete ettt ettt ettt et e st e b e saeesaees 2119

F.29.4. Text Search INte@rationcoceevieriierriienieeieeieenite ettt 2120
F29.5. REfEreNCEScviviiiiiiiiiiiiiiicccccce e 2120
F29.6. AUNOTS ..ot 2120

L300 S ettt ettt st b e bt st e b e st e b eaee s 2120
F30.1. RAtIONALE ...ttt e 2121
F.30.2. SYNEAX .ottt 2121
FL30.3. PrECISION....coutiiiiiiiieiteite ettt ettt ettt e 2122
Fl30.4. USAZE.....ioeiiiieieee ettt s 2123
FL30.5. INOLES ...ttt ettt ettt sttt sttt be e s neeneen 2123
FL30.6. CTEILS ...oueuiviiiieieeeiieite sttt ettt st 2124

BB L Pttt ettt st ettt be e 2124
F.31.1. refint.c — functions for implementing referential integrity.............ccccceuee.... 2124
F.31.2. timetravel.c — functions for implementing time travel.............ccccccceveeeeenne. 2125
F.31.3. autoinc.c — functions for autoincrementing fields............ccocceveeieniniennnne. 2126
F.31.4. insert_username.c — functions for tracking who changed a table................ 2126
F.31.5. moddatetime.c — functions for tracking last modification time 2126

32, SSINTO. .ttt et sttt 2126
F.32.1. Functions Provided ..o 2127
F32.2. AUNOT ..o 2128
F33.tabIEfUNC ... e 2128
F.33.1. Functions Providedccocooiiiiiiiiiinininieniicicineeceeeeeeeeeeeeae 2128
Fo33.1.1. NOTIMAL TANA ttttttteeeeeee et e e e e e e e e e et eeeaeeeeeeeeeeeaenae 2129

B33, 2. Cr oS ST A (EOKE) tueieeeeeeee et e e e e e e e et eeaeeeeaeeeeeeeaeae 2130

FL33.1.3. CroSStADN (EEXE) eeeeeeeieeeeeeeeeeeeee e e e e e e e e e et eeeeeaeeeeeeeeeeeeanae 2132

F.33.1.4. crosstab (FeXt, TeXE) trriiiiiiiiiiiiieieieeiiiieieieeeeeeeeeeeeeesessssnnnns 2133

F. 331,50, CONNE DY ittt ettt eeetr e e ee e e e e areeeeeeannes 2136

F33.2. AUTNOT ..ot 2138

B34 1St _PATSET ettt ettt ettt et ettt sat et e st e st e st e bt e bt e sat e e be e bt e sabeebeeneens 2138
FiB4 1. USAZE...ei ittt sttt ettt ettt e be e st e st e b e saeesanes 2139
F35.t5€arch2 ..o 2140
F.35.1. POrtability ISSUES ...cccueeruiiiiieiieiieiieeteetesie ettt 2140
F.35.2. Converting a pre-8.3 Installation...........ccovieeieriienieniienieiieieieeeeeee 2141
F.35.3. REfEINCEScveeuiiiieiieiiectece et 2141

FL30. UUIA-08SP ..ttt ettt et st n e s st e ne e 2141
F.36.1. utuid—055p FUNCHONSooeeiiiiiiieeiieeiee ettt 2142
FL36.2. AUNOT ...ttt 2143

FL37. VACUUIMIO. ...ttt ettt sttt e 2143
F37. 1. USAZE .. 2143
F.37.2. MEthOM ...ttt ettt s 2144
FL37.30 ATNOT ..ottt 2144

FL38. XIMIZ ittt ettt e e 2144
F.38.1. Deprecation NMOLICEcc.ee.eeruerieienieeieienteeie sttt ce e te et et sbe e e e enee e 2144
F.38.2. Description Of fUNCHONS........coeeiiriiieieiieeieieeee et 2145
LSRG T T8 T oY= N of s M o= o = R TSRO P PRI 2145
F.38.3.1. Multivalued reSultsccceeieriininieniiieienceiee et 2147

F.38.4. XSLT fUNCHONS ..ottt ettt 2148
F.38.4. 1. XS 1t PIrOCESS cuiieeiiiectieeeettee ettt e et e vt e e et e e et e e eateeeetveeeens 2148

xlvi

F38.5. AUNOT ..ottt e

G. EXEEINAL PrOJECES ..vieiieiiiiitieiieeie ettt ettt sttt ettt ettt e b e st e sateebeesaaesaees
G.1. CHEnt INtEITaCES.coveiirieiiriieieeeieteeeet ettt ettt sttt

G.2. Procedural Languages...........cecueeiierieriieriieiienitesie ettt st siee sttt e st saae e

G.3. EXIENSIONS ...ttt sttt ettt ettt sae st ae et ent e saeennenaee

H. The CVS REPOSITOTY ...couviiieiiiiieiiiiieiietenitetete ettt sttt st n e e
H.1. Getting The Source Via Anonymous CVSccioiiiiiiiiiininiiineecneereneeeeie

H.2. CVS Tree Organizationccccoeeceeruerieieniieeenieeeenieseenesieeeesseeeesaeseeesnessesnneseene

H.3. Getting The SoUrce Via ISYNC......coceociiriiriiiiiniiiiiiieeeie sttt

H.4. Getting The Source Via CVSUP......cccooiiiiiiiiiiiii e
H.4.1. Preparing A CVSup Client SyStem........c.ccocueruieieiiniiieninieieneeeeie e

H.4.2. Running a CVSUP CHENLoouieiiriiiieieeiieieieeee e

L DOCUMENEALION........eetiiiieieetieieett ettt ettt et e sttt e e s bt e et et e eb e et e eae et e sbesseensesbeeneenteeneeneesaes
L1 DOCBOOK .ottt ettt sttt e

L2 TOOL SEES ..ttt ettt ettt b et et e bt s bt et e b e st e bt e st ebeseeenbenbeeneanteene

[.2.1. Linux RPM Installationcccceceriiiineniiienieeee e

[.2.2. FreeBSD INStallationcccoeeeiiriiienieniieienieeecee et

[.2.3. Debian Packages........cocoueeuieiiiniieiiniiiieiesieeeiee et

[.2.4. Manual Installation from SOUICEcccererieriinieninieieneeeeeeeeee e

1.2.4.1. Installing OpenJade...........ccceeieviiririieniiiiieneeieecee et

1.2.4.2. Installing the DocBook DTD Kit.......ccocceierieniniininiencneeienienieiene

1.2.4.3. Installing the DocBook DSSSL Style Sheets.........cccccvvereevenenuenenne

1.2.4.4. Installing JadeTeX.......c..cocueviirirriininienenieieseeteeeeee e

1.2.5. Detection BY CONTigUTE wivvieriirienieeiieeitesiie e et esiteete et erteeseresnaeebeesanesnnes

1.3. Building The DOCUMENTAIONeeiviirieeiieiieeieeieeieesiteeteebeesieesitesbeebeesseesreeseeseens

L3 1 HTML ettt sttt s e

L.3.2. IMIANPAZES .. veeuvieeieeiieeitenite sttt sitesteete et esatesabeeabe e bt e sabesateenbeesatessbeenbaenaeennnas

1.3.3. Print Output via JAdeTeXccccieviiriiiiiiiienieeieeeeeee ettt

1.3.4. Print Output via RTF ...ccccoiiiiiiiiiieeeeeee ettt

1.3.5. Plain Text FIleS ...c..coeeoiiiiiriiiiiieienicctcicnecteeee et

L.3.6. SYNLAX ChECK ...ttt ettt

L4. Documentation AUtROTING.......ccc.eevuiiriiriiiiiieniieeie ettt st ettt e
L4.1. EMAcS/PSGMLooiiiiiiiiiiiiieiet ettt e

[.4.2. Other EMacs MOESc..coceevuimieiiniiiieieniieieeeeete et

L5, SEYIE GUIAC ...ttt et s
L5.1. Reference Pages.........ccccoiviiiiiiiiiniiieccees e
JUACTONYIMIS ...ttt et st s e et esae s e s b e eaneneene

Bibliography

Index

xlvii

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL develop-
ers and other volunteers in parallel to the development of the PostgreSQL software. It describes all the
functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

« Part I is an informal introduction for new users.

« Part IT documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

« Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

« Part IV describes the programming interfaces for PostgreSQL client programs.

« Part V contains information for advanced users about the extensibility capabilities of the server. Topics
include user-defined data types and functions.

« Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

« Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2', developed at the University of California at Berkeley Computer Science Department. POST-
GRES pioneered many concepts that only became available in some commercial database systems much
later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

« complex queries

- foreign keys

. triggers

. views

- transactional integrity

« multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

« data types

1. http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/postgres.html

xlviii

Preface

« functions
 operators
 aggregate functions
« index methods

« procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free of
charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the POST-
GRES package written at the University of California at Berkeley. With over two decades of development
behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in The design of POSTGRES , and the definition of the initial data model appeared
in The POSTGRES data model . The design of the rule system at that time was described in The design
of the POSTGRES rules system. The rationale and architecture of the storage manager were detailed in
The design of the POSTGRES storage system .

POSTGRES has undergone several major releases since then. The first “demoware” system became op-
erational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in The
implementation of POSTGRES , was released to a few external users in June 1989. In response to a critique
of the first rule system (A commentary on the POSTGRES rules system), the rule system was redesigned
(On Rules, Procedures, Caching and Views in Database Systems), and Version 2 was released in June
1990 with the new rule system. Version 3 appeared in 1991 and added support for multiple storage man-
agers, an improved query executor, and a rewritten rule system. For the most part, subsequent releases
until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These in-
clude: a financial data analysis system, a jet engine performance monitoring package, an asteroid tracking
database, a medical information database, and several geographic information systems. POSTGRES has
also been used as an educational tool at several universities. Finally, Illustra Information Technologies
(later merged into Informix?, which is now owned by IBM?) picked up the code and commercialized it.
In late 1992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project®.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have been

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

xlix

Preface

devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project
officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin
Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

+ The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries were
not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with user-defined
SQL functions. Aggregate functions were re-implemented. Support for the GROUP BY query clause was
also added.

« A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

« A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

+ The large-object interface was overhauled. The inversion large objects were the only mechanism for
storing large objects. (The inversion file system was removed.)

+ The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with an
unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent ver-
sions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continues in all areas.

Preface

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

This book uses the following typographical conventions to mark certain portions of text: new terms,
foreign phrases, and other important passages are emphasized in ifalics. Everything that represents in-
put or output of the computer, in particular commands, program code, and screen output, is shown in a
monospaced font (example). Within such passages, italics (example) indicate placeholders; you must
insert an actual value instead of the placeholder. On occasion, parts of program code are emphasized in
bold face (example), if they have been added or changed since the preceding example.

The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. (In the synopsis of a Tcl command, question marks () are used instead, as is usual in Tcl.) Braces
({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. . .) mean that the
preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should
not be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL:

Wiki
The PostgreSQL wiki® contains the project’s FAQ® (Frequently Asked Questions) list, TODO’ list,
and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

PN

http://wiki.postgresql.org
http://wiki.postgresql.org/wiki/Frequently_Asked_Questions
http://wiki.postgresql.org/wiki/Todo
http://www.postgresql.org

li

Preface

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing sup-
port. As you begin to use PostgreSQL, you will rely on others for help, either through the documen-
tation or through the mailing lists. Consider contributing your knowledge back. Read the mailing
lists and answer questions. If you learn something which is not in the documentation, write it up and
contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a newer
version to see if the bug happens there. Or we might decide that the bug cannot be fixed before some
major rewrite we might be planning is done. Or perhaps it is simply too hard and there are more important
things on the agenda. If you need help immediately, consider obtaining a commercial support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that a program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:

« A program terminates with a fatal signal or an operating system error message that would point to a
problem in the program. (A counterexample might be a “disk full” message, since you have to fix that
yourself.)

« A program produces the wrong output for any given input.
+ A program refuses to accept valid input (as defined in the documentation).

+ A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

« PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not necessarily
a bug either, unless compliance for the specific feature is explicitly claimed.

lii

Preface

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what “it seemed to do”, or which part of the program has a fault.
If you are not familiar with the implementation you would probably guess wrong and not help us a bit.
And even if you are, educated explanations are a great supplement to but no substitute for facts. If we are
going to fix the bug we still have to see it happen for ourselves first. Reporting the bare facts is relatively
straightforward (you can probably copy and paste them from the screen) but all too often important details
are left out because someone thought it does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

« The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding CREATE
TABLE and INSERT statements, if the output should depend on the data in the tables. We do not have
the time to reverse-engineer your database schema, and if we are supposed to make up our own data we
would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqglrc start-up file.) An
easy way to create this file is to use pg_dump to dump out the table declarations and data needed to set
the scene, then add the problem query. You are encouraged to minimize the size of your example, but
this is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the offending
queries. We will probably not set up a web server to reproduce your problem. In any case remember
to provide the exact input files; do not guess that the problem happens for “large files” or “midsize
databases”, etc. since this information is too inexact to be of use.

+ The output you got. Please do not say that it “didn’t work™ or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from the
terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the message.
In psqgl, say \set VERBOSITY verbose beforehand. If you are extracting the message from the
server log, set the run-time parameter log_error_verbosity to verbose so that all details are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not keep
your server’s log output, this would be a good time to start doing so.

liii

Preface

- The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the exact
semantics behind your commands. Especially refrain from merely saying that “This is not what SQL
says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking, nor do we all
know how all the other relational databases out there behave. (If your problem is a program crash, you
can obviously omit this item.)

+ Any command line options and other start-up options, including any relevant environment variables or
configuration files that you changed from the default. Again, please provide exact information. If you
are using a prepackaged distribution that starts the database server at boot time, you should try to find
out how that is done.

« Anything you did at all differently from the installation instructions.

+ The PostgreSQL version. You can run the command SELECT version () ; to find out the version of
the server you are connected to. Most executable programs also support a ——version option; at least
postgres —--versionand psgl —--version should work. If the function or the options do not exist
then your version is more than old enough to warrant an upgrade. If you run a prepackaged version,
such as RPMs, say so, including any subversion the package might have. If you are talking about a CVS
snapshot, mention that, including its date and time.

If your version is older than 8.4.1 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered in
an older release of PostgreSQL has already been fixed. We can only provide limited support for sites
using older releases of PostgreSQL; if you require more than we can provide, consider acquiring a
commercial support contract.

+ Platform information. This includes the kernel name and version, C library, processor, memory infor-
mation, and so on. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly “Debian” contains or that everyone runs on i386s. If you have installation
problems then information about the toolchain on your machine (compiler, make, and so on) is also
necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article’
that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This will
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still have time
to find and share your work-around. Also, once again, do not waste your time guessing why the bug exists.
We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the backend server,
mention that, do not just say “PostgreSQL crashes”. A crash of a single backend server process is quite
different from crash of the parent “postgres” process; please don’t say “the server crashed” when you
mean a single backend process went down, nor vice versa. Also, client programs such as the interactive

9. http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

liv

Preface

frontend “psql” are completely separate from the backend. Please try to be specific about whether the
problem is on the client or server side.

5.3. Where to report bugs

In general, send bug reports to the bug report mailing list at <pgsgl-bugs@postgresql.org>. You are
requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project’s web site'®. Entering a bug
report this way causes it to be mailed to the <pgsgl-bugs@postgresql.org> mailing list.

If your bug report has security implications and you’d prefer that it not become immediately visible
in public archives, don’t send it to pgsgl-bugs. Security issues can be reported privately to
<security@postgresqgl.org>.

Do not send bug reports to any of the user mailing lists, such as <pgsgl-sgl@postgresgl.org> or
<pgsgl-general@postgresql.org>. These mailing lists are for answering user questions, and their
subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to fix them.

Also, please do not send reports to the developers’ mailing list <pgsgl-hackers@postgresqgl.org>.
This list is for discussing the development of PostgreSQL, and it would be nice if we could keep the bug
reports separate. We might choose to take up a discussion about your bug report on pgsgl-hackers, if
the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@postgresgl .org>. Please be specific about what part of the documentation you are
unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsgl-hackers@postgresql.org>, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses are
closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it. (You need
not be subscribed to use the bug-report web form, however.) If you would like to send mail but do not
want to receive list traffic, you can subscribe and set your subscription option to nomail. For more
information send mail to <majordomo@postgresql .org> with the single word he1p in the body of the
message.

10. http://www.postgresql.org/

IAY

l. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduc-
tion to PostgreSQL, relational database concepts, and the SQL language to those who are new to any one
of these aspects. We only assume some general knowledge about how to use computers. No particular
Unix or programming experience is required. This part is mainly intended to give you some hands-on
experience with important aspects of the PostgreSQL system. It makes no attempt to be a complete or
thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a more
formal knowledge of the SQL language, or Part IV for information about developing applications for
PostgreSQL. Those who set up and manage their own server should also read Part II1.

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your experimen-
tation then you can install it yourself. Doing so is not hard and it can be a good exercise. PostgreSQL can
be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 15 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT might
also have to be set. The bottom line is this: if you try to start an application program and it complains
that it cannot connect to the database, you should consult your site administrator or, if that is you, the
documentation to make sure that your environment is properly set up. If you did not understand the
preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding how
the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the follow-
ing cooperating processes (programs):

« A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program is
called postgres.

« The user’s client (frontend) application that wants to perform database operations. Client applications
can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a web server
that accesses the database to display web pages, or a specialized database maintenance tool. Some client
applications are supplied with the PostgreSQL distribution; most are developed by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files that
can be accessed on a client machine might not be accessible (or might only be accessible using a different
file name) on the database server machine.

Chapter 1. Getting Started

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this it starts
(“forks”) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original postgres process. Thus, the master server process is
always running, waiting for client connections, whereas client and associated server processes come and
go. (All of this is of course invisible to the user. We only mention it here for completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project or
for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In that case you can omit this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb mydb
If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell’s search path
was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb
The path at your site might be different. Contact your site administrator or check the installation instruc-
tions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such file
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again, check
the installation instructions or consult the administrator.

Another response could be this:
createdb: could not connect to database postgres: FATAL: role "Jjoe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a Post-
greSQL user account for you. (PostgreSQL user accounts are distinct from operating system user ac-
counts.) If you are the administrator, see Chapter 20 for help creating accounts. You will need to become
the operating system user under which PostgreSQL was installed (usually postgres) to create the first
user account. It could also be that you were assigned a PostgreSQL user name that is different from your

Chapter 1. Getting Started

operating system user name; in that case you need to use the —U switch or set the PGUSER environment
variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will see
the following:

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases for
you then the site administrator needs to grant you permission to create databases. Consult your site ad-
ministrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes of
this tutorial under the user account that you started the server as. '

You can also create databases with other names. PostgreSQL allows you to create any number of databases
at a given site. Database names must have an alphabetic first character and are limited to 63 characters in
length. A convenient choice is to create a database with the same name as your current user name. Many
tools assume that database name as the default, so it can save you some typing. To create that database,

simply type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone, so
this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

+ Running the PostgreSQL interactive terminal program, called psql, which allows you to interactively
enter, edit, and execute SQL commands.

- Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC support
to create and manipulate a database. These possibilities are not covered in this tutorial.

- Writing a custom application, using one of the several available language bindings. These possibilities
are discussed further in Part IV.

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you
connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same name
as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the same name
as the operating system user that started the server, and it also happens that that user always has permission to create databases.
Instead of logging in as that user you can also specify the —U option everywhere to select a PostgreSQL user name to connect as.

Chapter 1. Getting Started

You probably want to start up psql to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psql mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

psgl (8.4.1)
Type "help" for help.

mydb=>
The last line could also be:
mydb=#

That would mean you are a database superuser, which is most likely the case if you installed PostgreSQL
yourself. Being a superuser means that you are not subject to access controls. For the purposes of this
tutorial that is not important.

If you encounter problems starting psgl then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that you
can type SQL queries into a work space maintained by psgl. Try out these commands:

mydb=> SELECT version();
version

PostgreSQL 8.4.1 on i586-pc-linux-gnu, compiled by GCC 2.96, 32-bit
(1 row)

mydb=> SELECT current_date;
date

2002-08-31
(1 row)

mydb=> SELECT 2 + 2;
?column?

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. Some of these commands were listed in the welcome message. For example,
you can get help on the syntax of various PostgreSQL SQL commands by typing:

mydb=> \h

Chapter 1. Getting Started

To get out of psql, type:
mydb=> \q

and psgl will quit and return you to your command shell. (For more internal commands, type \? at the
psql prompt.) The full capabilities of psql are documented in psql. If PostgreSQL is installed correctly
you can also type man psqgl at the operating system shell prompt to see the documentation. In this tutorial
we will not use these features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books have
been written on SQL, including Understanding the New SQL and A Guide to the SQL Standard. You
should be aware that some PostgreSQL language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described in the
previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/. To use those files, first change to that directory and run make:

$ ed/src/tutorial
S make

This creates the scripts and compiles the C files containing user-defined functions and types. (If you
installed a pre-packaged version of PostgreSQL rather than building from source, look for a directory
named tutorial within the PostgreSQL distribution. The “make” part should already have been done
for you.) Then, to start the tutorial, do the following:

S ed/tutorial
$ psql -s mydb

mydb=> \i basics.sql

The \i command reads in commands from the specified file. psql’s —s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section are in
the file basics.sql.

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for man-
aging data stored in relations. Relation is essentially a mathematical term for fable. The notion of storing
data in tables is so commonplace today that it might seem inherently obvious, but there are a number of
other ways of organizing databases. Files and directories on Unix-like operating systems form an example
of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although they
can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.

Chapter 2. The SQL Language

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_lo int, -— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)

You can enter this into psgl with the line breaks. psgl will recognize that the command is not terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“--") introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
int is the normal integer type. real is a type for storing single precision floating-point numbers. date
should be self-explanatory. (Yes, the column of type date is also named date. This might be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision, char (N),
varchar (N), date, time, timestamp, and interval, as well as other types of general utility and a
rich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-defined data
types. Consequently, type names are not key words in the syntax, except where required to support special
cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, 71994-11-27");

Chapter 2. The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (), as in the example. The date type is actually quite flexible
in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ' (-194.0, 53.0)");

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, 71994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the precipi-
tation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, 'Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter all the commands shown above so you have some data to work with in the following sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually faster
because the copYy command is optimized for this application while allowing less flexibility than INSERT.
An example would be:

COPY weather FROM ’ /home/user/weather.txt’;

where the file name for the source file must be available to the backend server machine, not the client,
since the backend server reads the file directly. You can read more about the CopY command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the part
that lists the tables from which to retrieve the data), and an optional qualification (the part that specifies
any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;
Here = is a shorthand for “all columns”. ! So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

1. While seLECT = is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column
to the table would change the results.

Chapter 2. The SQL Language

city | temp_lo | temp_hi | prcp | date
777777777777777 B mman s T
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward \ 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

city | temp_avg | date
_______________ o
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT x FROM weather
WHERE city = ’San Francisco’ AND prcp > 0.0;

Result:

San Francisco
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
——————————————— B S
Hayward \ 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in either
order. But you’d always get the results shown above if you do:

Chapter 2. The SQL Language

SELECT » FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward
San Francisco
(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT and
ORDER BY together: 2

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at once, or
access the same table in such a way that multiple rows of the table are being processed at the same time.
A query that accesses multiple rows of the same or different tables at one time is called a join query. As an
example, say you wish to list all the weather records together with the location of the associated city. To
do that, we need to compare the city column of each row of the weather table with the name column
of all rows in the cities table, and select the pairs of rows where these values match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner than
actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:
SELECT =*

FROM weather, cities
WHERE city = name;

city | temp_lo | temp_hi | prcp | date | name | location
777777777777777 B R S S S

San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)

San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(2 rows)

2. Insome database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders the
rows and so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not guarantee
that DISTINCT causes the rows to be ordered.

10

Chapter 2. The SQL Language

Observe two things about the result set:

« There is no result row for the city of Hayward. This is because there is no matching entry in the cities
table for Hayward, so the join ignores the unmatched rows in the weather table. We will see shortly
how this can be fixed.

+ There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using *:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you’d need to gualify the column names to show
which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won’t fail
if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT «
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan the weather table and for each row to find the matching cities row(s). If no matching row is
found we want some “empty values” to be substituted for the cities table’s columns. This kind of query
is called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— Bt E e st e gt e
Hayward \ 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

11

Chapter 2. The SQL Language

This query is called a left outer join because the table mentioned on the left of the join operator will have
each of its rows in the output at least once, whereas the table on the right will only have those rows output
that match some row of the left table. When outputting a left-table row for which there is no right-table
match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to find
all the weather records that are in the temperature range of other weather records. So we need to compare
the temp_1lo and temp_hi columns of each weather row to the temp_1lo and temp_hi columns of all
other weather rows. We can do this with the following query:

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather W1, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

city | low | high | city | low | high
——————————————— Bt T e et e et
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as W1 and w2 to be able to distinguish the left and right side of
the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT =«
FROM weather w, cities c
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to compute
the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try:

12

Chapter 2. The SQL Language

SELECT city FROM weather WHERE temp_lo = max(temp_1lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation; so
obviously it has to be evaluated before aggregate functions are computed.) However, as is often the case
the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather

WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

San Francisco
(1 row)
This is OK because the subquery is an independent computation that computes its own aggregate sepa-
rately from what is happening in the outer query.
Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the

maximum low temperature observed in each city with:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city;

city | max
,,,,,,,,,,,,,,, b
Hayward | 37
San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching

that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

cilty | max
_________ IS
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_10 values below 40. Finally, if we

only care about cities whose names begin with “s”, we might do:

SELECT city, max(temp_lo)
FROM weather
WHERE city LIKE ’'S%'®
GROUP BY city
HAVING max (temp_lo) < 40;

13

Chapter 2. The SQL Language

O The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL’s WHERE and HAVING clauses.
The fundamental difference between WHERE and HAVING is this: WHERE selects input rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVING selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVING clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVING clause that doesn’t use aggregates, but it’s seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature readings
are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > 71994-11-28';

Look at the new state of the data:

SELECT = FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— Bt B s mattt el S
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = ’'Hayward’;

All weather records belonging to Hayward are removed.

14

SELECT x FROM weather;

city | temp_lo | temp_hi
,,,,,,,,,,,,,,, e

San Francisco | 46 | 50

San Francisco | 41 | 55

(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Chapter 2. The SQL Language

| prcp | date
Fm———— Fmm
| 0.25 | 1994-11-27
| 0 | 1994-11-29

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system

will not request confirmation before doing this!

15

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in Post-
greSQL. We will now discuss some more advanced features of SQL that simplify management and prevent
loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will be
useful to have read that chapter. Some examples from this chapter can also be found in advanced. sql in
the tutorial directory. This file also contains some sample data to load, which is not repeated here. (Refer
to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city location
is of particular interest to your application, but you do not want to type the query each time you need it.
You can create a view over the query, which gives a name to the query that you can refer to like an ordinary
table:

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsu-
late the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want to
make sure that no one can insert rows in the weather table that do not have a matching entry in the
cities table. This is called maintaining the referential integrity of your data. In simplistic database
systems this would be implemented (if at all) by first looking at the cities table to check if a matching
record exists, and then inserting or rejecting the new weather records. This approach has a number of
problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

16

Chapter 3. Advanced Features

CREATE TABLE cities (
city varchar (80) primary key,
location point

)i

CREATE TABLE weather (
city varchar (80) references cities(city),
temp_1lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:
INSERT INTO weather VALUES (’'Berkeley’, 45, 53, 0.0, ’1994-11-28");

ERROR: 1insert or update on table "weather" violates foreign key constraint "weather_city_f
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of foreign
keys will definitely improve the quality of your database applications, so you are strongly encouraged to
learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is that
it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between the steps
are not visible to other concurrent transactions, and if some failure occurs that prevents the transaction
from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice’s
account to Bob’s account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several separate
updates involved to accomplish this rather simple operation. Our bank’s officers will want to be assured
that either all these updates happen, or none of them happen. It would certainly not do for a system failure

17

Chapter 3. Advanced Features

to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long remain a happy
customer if she was debited without Bob being credited. We need a guarantee that if something goes
wrong partway through the operation, none of the steps executed so far will take effect. Grouping the
updates into a transaction gives us this guarantee. A transaction is said to be atomic: from the point of
view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database system,
it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly thereafter. For
example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit to
his account will disappear in a crash just after he walks out the bank door. A transactional database
guarantees that all the updates made by a transaction are logged in permanent storage (i.e., on disk) before
the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it would
not do for it to include the debit from Alice’s branch but not the credit to Bob’s branch, nor vice versa.
So transactions must be all-or-nothing not only in terms of their permanent effect on the database, but
also in terms of their visibility as they happen. The updates made so far by an open transaction are in-
visible to other transactions until the transaction completes, whereupon all the updates become visible
simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with BEGIN
and COMMIT commands. So our banking transaction would actually look like:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

-— etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not is-
sue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful) COMMIT
wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes called a trans-
action block.

Note: Some client libraries issue BEGIN and commIT commands automatically, so that you might get
the effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It’s possible to control the statements in a transaction in a more granular fashion through the use of save-
points. Savepoints allow you to selectively discard parts of the transaction, while committing the rest.
After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with ROLLBACK
TO. All the transaction’s database changes between defining the savepoint and rolling back to it are dis-
carded, but changes earlier than the savepoint are kept.

18

Chapter 3. Advanced Features

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won’t need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions. When
and if you commit the transaction block, the committed actions become visible as a unit to other sessions,
while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s ac-
count, only to find later that we should have credited Wally’s account. We could do it using savepoints
like this:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

SAVEPOINT my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;

—-— oops ... forget that and use Wally’s account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = "Wally’;

COMMIT;

This example is, of course, oversimplified, but there’s a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transaction
block that was put in aborted state by the system due to an error, short of rolling it back completely and
starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function. But
unlike regular aggregate functions, use of a window function does not cause rows to become grouped into
a single output row — the rows retain their separate identities. Behind the scenes, the window function is
able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee’s salary with the average salary in his or
her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
——————————— e S
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000

19

Chapter 3. Advanced Features

develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 3900 | 3700.0000000000000000
sales | 3 | 4800 | 4866.6666666666666667
sales | 1] 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the regular avg
aggregate function, but the OVER clause causes it to be treated as a window function and computed across
an appropriate set of rows.)

A window function call always contains an OVER clause following the window function’s name and ar-
gument(s). This is what syntactically distinguishes it from a regular function or aggregate function. The
OVER clause determines exactly how the rows of the query are split up for processing by the window func-
tion. The PARTITION BY list within OVER specifies dividing the rows into groups, or partitions, that share
the same values of the PARTITION BY expression(s). For each row, the window function is computed
across the rows that fall into the same partition as the current row.

Although avg will produce the same result no matter what order it processes the partition’s rows in, this is
not true of all window functions. When needed, you can control that order using ORDER BY within OVER.
Here is an example:

SELECT depname, empno, salary, rank() OVER (PARTITION BY depname ORDER BY salary DESC) FROM

depname | empno | salary | rank
77777777777 B it s
develop | 8 | 6000 | 1
develop | 10 | 5200 | 2
develop | 11 | 5200 | 2
develop | 9 | 4500 | 4
develop | 7 | 4200 | 5
personnel | 2 | 3900 | 1
personnel | 5 | 3500 | 2
sales | 1] 5000 | 1
sales | 4 | 4800 | 2
sales | 3 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank within the current row’s partition for each
distinct ORDER BY value, in the order defined by the ORDER BY clause. rank needs no explicit parameter,
because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query’s FROM
clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row removed
because it does not meet the WHERE condition is not seen by any window function. A query can contain
multiple window functions that slice up the data in different ways by means of different OVER clauses, but
they all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also possible
to omit PARTITION BY, in which case there is just one partition containing all the rows.

20

Chapter 3. Advanced Features

There is another important concept associated with window functions: for each row, there is a set of rows
within its partition called its window frame. Many (but not all) window functions act only on the rows of
the window frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame
consists of all rows from the start of the partition up through the current row, plus any following rows that
are equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the default
frame consists of all rows in the partition. ' Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;

salary | sum
,,,,,,,, b
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100
(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

salary | sum
________ b
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100
(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They are
forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they logically
execute after the processing of those clauses. Also, window functions execute after regular aggregate

1. There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

21

Chapter 3. Advanced Features

functions. This means it is valid to include an aggregate function call in the arguments of a window
function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname, empno, salary, enroll_date
FROM
(SELECT depname, empno, salary, enroll_date,
rank () OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
FROM empsalary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having rank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a WINDOW clause and then referenced in
OVER. For example:

SELECT sum(salary) OVER w, avg(salary) OVER w
FROM empsalary
WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 7.2.4, and the SELECT
reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you’re really clever you might
invent some scheme like this:

CREATE TABLE capitals (

name text,

population real,

altitude int, -—— (in ft)
state char (2)

)i

CREATE TABLE non_capitals (
name text,
population real,
altitude int -—— (in ft)
)i

22

Chapter 3. Advanced Features

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (

name text,

population real,

altitude int -— (in ft)
)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and altitude) from its
parent, cities. The type of the column name is text, a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL, a
table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located at
an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
,,,,,,,,,,, [P
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude of 500 feet or higher:

SELECT name, altitude
FROM ONLY cities

WHERE altitude > 500;

name | altitude

23

Chapter 3. Advanced Features

Mariposa | 1953
(2 rows)

Here the ONLY before cities indicates that the query should be run over only the cities table, and not
tables below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.8 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to more
resources.

2. http://www.postgresql.org

24

Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database, and
how to query it. The middle part lists the available data types and functions for use in SQL commands.
The rest treats several aspects that are important for tuning a database for optimal performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full un-
derstanding of the topics without having to refer forward too many times. The chapters are intended to be
self-contained, so that advanced users can read the chapters individually as they choose. The information
in this part is presented in a narrative fashion in topical units. Readers looking for a complete description
of a particular command should see Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following chapters
which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens, ter-
TRL

minated by a semicolon (*;”). The end of the input stream also terminates a command. Which tokens are
valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT % FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’'hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one command
can be on a line, and commands can usefully be split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
INSERT also requires a VALUES in order to be complete. The precise syntax rules for each command are
described in Part VI.

4.1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that is,
words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of
identifiers. They identify names of tables, columns, or other database objects, depending on the command
they are used in. Therefore they are sometimes simply called “names”. Key words and identifiers have
the same lexical structure, meaning that one cannot know whether a token is an identifier or a key word
without knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according

27

Chapter 4. SQL Syntax

to the letter of the SQL standard, so their use might render applications less portable. The SQL standard
will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
length is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant in

src/include/pg_config_manual.h.

Identifier and key word names are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier,
never a key word. So "select" could be used to refer to a column or table named “select”, whereas an
unquoted select would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code points.
This variant starts with Us (upper or lower case U followed by ampersand) immediately before the opening
double quote, without any spaces in between, for example Us "foo". (Note that this creates an ambiguity
with the operator &. Use spaces around the operator to avoid this problem.) Inside the quotes, Unicode
characters can be specified in escaped form by writing a backslash followed by the four-digit hexadecimal
code point number or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal
code point number. For example, the identifier "data" could be written as

Us"d\0061t\+000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause after
the string, for example:

28

Chapter 4. SQL Syntax
Ug"d!0061t!+000061" UESCAPE 7!’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single quotes,
not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers F0O, foo, and "foo" are considered the same by PostgreSQL, but
"Foo" and "FOO" are different from these three and each other. (The folding of unquoted names to lower
case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the standard. If
you want to write portable applications you are advised to always quote a particular name or never quote
it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers. Con-
stants can also be specified with explicit types, which can enable more accurate representation and more
efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (’), for example
"This is a string’. To include a single-quote character within a string constant, write two adjacent
single quotes, e.g., ' Dianne”s horse’. Note that this is not the same as a double-quote character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated and
effectively treated as if the string had been written as one constant. For example:

SELECT ' foo’
"bar’;

is equivalent to:

SELECT ' foobar’;

but:

SELECT ' foo’ "bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

29

Chapter 4. SQL Syntax

4.1.2.2. String Constants with C-Style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard. An
escape string constant is specified by writing the letter E (upper or lower case) just before the opening
single quote, e.g., E’ foo’. (When continuing an escape string constant across lines, write E only before
the first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash
escape sequence, in which the combination of backslash and following character(s) represent a special
byte value, as shown in Table 4-1.

Table 4-1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (oc=0-7) octal byte value

\xh, \xhh (h=0-9,A-F) hexadecimal byte value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\\). Also, a single quote can be included in an escape string by writing \’, in addition
to the normal way of ”.

It is your responsibility that the byte sequences you create are valid characters in the server character set
encoding. When the server encoding is UTF-8, then the alternative Unicode escape syntax, explained in
Section 4.1.2.3, should be used instead. (The alternative would be doing the UTF-8 encoding by hand and
writing out the bytes, which would be very cumbersome.)

Caution

If the configuration parameter standard_conforming_strings is off, then
PostgreSQL recognizes backslash escapes in both regular and escape
string constants. This is for backward compatibility with the historical
behavior, where backslash escapes were always recognized. Although
standard_conforming_strings currently defaults to off, the default will change
to on in a future release for improved standards compliance. Applications are
therefore encouraged to migrate away from using backslash escapes. If you need
to use a backslash escape to represent a special character, write the string
constant with an E to be sure it will be handled the same way in future releases.

In addition to standard_conforming_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes in
string constants.

The character with the code zero cannot be in a string constant.

30

Chapter 4. SQL Syntax

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary Uni-
code characters by code point. A Unicode escape string constant starts with Us (upper or lower case letter
U followed by ampersand) immediately before the opening quote, without any spaces in between, for ex-
ample Us’ foo’ . (Note that this creates an ambiguity with the operator &. Use spaces around the operator
to avoid this problem.) Inside the quotes, Unicode characters can be specified in escaped form by writing a
backslash followed by the four-digit hexadecimal code point number or alternatively a backslash followed
by a plus sign followed by a six-digit hexadecimal code point number. For example, the string ' data’
could be written as

Us’d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

Us&’\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause after
the string, for example:

U&’d!0061t!+000061” UESCAPE " !’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified.

Also, the Unicode escape syntax for string constants only works when the configuration parameter stan-
dard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients that
parse the SQL statements to the point that it could lead to SQL injections and similar security issues. If
the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to un-
derstand when the desired string contains many single quotes or backslashes, since each of those must
be doubled. To allow more readable queries in such situations, PostgreSQL provides another way, called
“dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($),
an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that
makes up the string content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. For
example, here are two different ways to specify the string “Dianne’s horse” using dollar quoting:

$$Dianne’s horse$s
SSomeTag$Dianne’s horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always written

31

Chapter 4. SQL Syntax

literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This is
most commonly used in writing function definitions. For example:

Sfunction$
BEGIN
RETURN ($1 ~ qg[\t\r\n\v\\]1qg);
END;
Sfunction$

Here, the sequence gs[\t\r\n\v\\]1qg represents a dollar-quoted literal string [\t\r\n\v\\1,
which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delimiter $functions, it is just some more characters within the
constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain a dollar sign. Tags are case sensitive, SO tagString contenttag is correct, but
$TAGSString content$tag$ is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write complicated
string literals than the standard-compliant single quote syntax. It is particularly useful when representing
string constants inside other constants, as is often needed in procedural function definitions. With single-
quote syntax, each backslash in the above example would have to be written as four backslashes, which
would be reduced to two backslashes in parsing the original string constant, and then to one when the
inner string constant is re-parsed during function execution.

4.1.2.5. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B/ 1001’ . The only characters allowed within bit-
string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper or
lower case), e.g., X’ 1FF’. This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string constants.
Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits. [digits] [e[+—-]digits]
[digits] .digits[e[+-]digits]
digitse[+-]digits

32

Chapter 4. SQL Syntax

where digits is one or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925¢-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be type
integer ifits value fits in type integer (32 bits); otherwise it is presumed to be type bigint if its value
fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that contain decimal
points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution algo-
rithms. In most cases the constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force a numeric value to be treated as type real (float4) by writing:

REAL ’1.23" —- string style
1.23::REAL —— PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type ' string’
! string’ ::type
CAST ("string’ AS type)

The string constant’s text is passed to the input conversion routine for the type called type. The result is
a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to the
type the constant must be (for example, when it is assigned directly to a table column), in which case it is
automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string’)

but not all type names can be used in this way; see Section 4.2.9 for details.

33

Chapter 4. SQL Syntax

The ::, CAST (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type ’string’
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type
" string’ syntax is that it does not work for array types; use : : or CAST () to specify the type of an array
constant.

The casT () syntax conforms to SQL. The type ’string’ syntax is a generalization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with : : is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following
list:

+-*/<>=~1@# D &I ?

There are a few restrictions on operator names, however:

+ —-and /x cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

+ A multiple-character operator name cannot end in + or —, unless the name also contains at least one of
these characters:

~l@#DP &I ?

For example, @- is an allowed operator name, but x- is not. This restriction allows PostgreSQL to parse
SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent opera-
tors with spaces to avoid ambiguity. For example, if you have defined a left unary operator named @, you
cannot write X+@Y; you must write X+ @Y to ensure that PostgreSQL reads it as two operator names not
one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This
section only exists to advise the existence and summarize the purposes of these characters.

« A dollar sign (s) followed by digits is used to represent a positional parameter in the body of a function
definition or a prepared statement. In other contexts the dollar sign can be part of an identifier or a
dollar-quoted string constant.

34

Chapter 4. SQL Syntax

« Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets ([1) are used to select the elements of an array. See Section 8.14 for more information on
arrays.

« Commas (,) are used in some syntactical constructs to separate the elements of a list.

« The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command, except
within a string constant or quoted identifier.

« The colon (:) is used to select “slices” from arrays. (See Section 8.14.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

+ The asterisk (+) is used in some contexts to denote all the fields of a table row or composite value. It also
has a special meaning when used as the argument of an aggregate function, namely that the aggregate
does not require any explicit parameter.

» The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments
A comment is a sequence of characters beginning with double dashes and extending to the end of the line,
e.g.

—— This 1is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /% nested block comment =/

*/

where the comment begins with /+ and extends to the matching occurrence of x /. These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced by
whitespace.

4.1.6. Lexical Precedence

Table 4-2 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser. This can lead to non-intuitive behavior; for example the Boolean operators < and >
have a different precedence than the Boolean operators <= and >=. Also, you will sometimes need to add
parentheses when using combinations of binary and unary operators. For instance:

SELECT 5 ! - 6;

35

Chapter 4. SQL Syntax
will be parsed as:
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 4-2. Operator Precedence (decreasing)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast

[] left array element selection

- right unary minus

" left exponentiation

x /% left multiplication, division, modulo

+ - left addition, subtraction

IS IS TRUE, IS FALSE, IS
UNKNOWN, IS NULL

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defined
operators

IN set membership

BETWEEN range containment

OVERLAPS time interval overlap

LIKE ILIKE SIMILAR string pattern matching

<> less than, greater than

= right equality, assignment

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a “+” operator for some custom data
type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:
SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4-2 for “any other” oper-

36

Chapter 4. SQL Syntax

ator. This is true no matter which specific operator appears inside OPERATOR () .

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table ex-
pression (which is a table). Value expressions are therefore also called scalar expressions (or even simply
expressions). The expression syntax allows the calculation of values from primitive parts using arithmetic,
logical, set, and other operations.

A value expression is one of the following:

+ A constant or literal value

» A column reference

« A positional parameter reference, in the body of a function definition or prepared statement
+ A subscripted expression

+ A field selection expression
« An operator invocation
A function call

+ An aggregate expression

« A window function call

« A type cast

« A scalar subquery

- An array constructor

« A row constructor

+ Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and are
explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining op-
tions.

4.2.1. Column References

A column can be referenced in the form:

correlation.columnname

37

Chapter 4. SQL Syntax

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of a FROM clause, or one of the key words NEW or OLD. (NEW and OLD can only appear in
rewrite rules, while other correlation names can be used in any SQL statement.) The correlation name and
separating dot can be omitted if the column name is unique across all the tables being used in the current
query. (See also Chapter 7.)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL statement.
Parameters are used in SQL function definitions and in prepared queries. Some client libraries also support
specifying data values separately from the SQL command string, in which case parameters are used to
refer to the out-of-line data values. The form of a parameter reference is:

Snumber

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT x FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the s1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing

expression|subscript]
or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|lower_subscript:upper_subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which
must yield an integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:
mytable.arraycolumn[4]

mytable.two_d_column[17] [34]

$1[10:42]

(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.14 for more about arrays.

38

Chapter 4. SQL Syntax

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression.fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn

(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An impor-
tant special case is extracting a field from a table column that is of a composite type:

(compositecol) .somefield
(mytable.compositecol) .somefield

The parentheses are required here to show that compositecol is a column name not a table name, or
that mytable is a table name not a schema name in the second case.

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND, OR,
and NOT, or is a qualified operator name in the form:

OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function_name (|[expression [, expression ...]])

For example, the following computes the square root of 2:

39

Chapter 4. SQL Syntax

sqrt (2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected by a
query. An aggregate function reduces multiple inputs to a single output value, such as the sum or average

of the inputs. The syntax of an aggregate expression is one of the following:
aggregate_name (expression [, ... 1)
aggregate_name (ALL expression [, ... 1)
DISTINCT expression)

*)

aggregate_name

(
(
(
aggregate_name (

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name), and
expression is any value expression that does not itself contain an aggregate expression or a window
function call.

The first form of aggregate expression invokes the aggregate across all input rows for which the given
expression(s) yield non-null values. (Actually, it is up to the aggregate function whether to ignore null
values or not — but all the standard ones do.) The second form is the same as the first, since ALL is the
default. The third form invokes the aggregate for all distinct non-null values of the expressions found in
the input rows. The last form invokes the aggregate once for each input row regardless of null or non-null
values; since no particular input value is specified, it is generally only useful for the count (*) aggregate
function.

For example, count (*) yields the total number of input rows; count (£1) yields the number of input
rows in which f£1 is non-null; count (distinct f1) yields the number of distinct non-null values of
£1.

The predefined aggregate functions are described in Section 9.18. Other aggregate functions can be added
by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command. It is
forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the results
of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.10 and Section 9.20), the aggregate
is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s arguments
contain only outer-level variables: the aggregate then belongs to the nearest such outer level, and is eval-
uated over the rows of that query. The aggregate expression as a whole is then an outer reference for the
subquery it appears in, and acts as a constant over any one evaluation of that subquery. The restriction
about appearing only in the result list or HAVING clause applies with respect to the query level that the
aggregate belongs to.

Note: PostgreSQL currently does not support prsTINCcT with more than one input expression.

40

Chapter 4. SQL Syntax

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike regular aggregate function calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function is able to scan all the rows that would be part of the current row’s group according to
the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:

function_name (|[expression [, expression ...]]) OVER (window_definition)
function_name ([expression [, expression ...]]) OVER window_name
function_name (*) OVER (window_definition)

function _name (*) OVER window_name

where window_definition has the syntax

existing_window_name |
PARTITION BY expression [, ...]]
ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST } 1 [,

frame_clause]
and the optional frame clause can be one of

RANGE UNBOUNDED PRECEDING

RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
ROWS UNBOUNDED PRECEDING

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

Here, expressionrepresents any value expression that does not itself contain window function calls. The
PARTITION BY and ORDER BY lists have essentially the same syntax and semantics as GROUP BY and
ORDER BY clauses of the whole query, except that their expressions are always just expressions and cannot
be output-column names or numbers. window_name is a reference to a named window specification
defined in the query’s WINDOW clause. Named window specifications are usually referenced with just OVER
window_name, but it is also possible to write a window name inside the parentheses and then optionally
supply an ordering clause and/or frame clause (the referenced window must lack these clauses, if they are
supplied here). This latter syntax follows the same rules as modifying an existing window name within
the wINDOW clause; see the SELECT reference page for details.

The frame_clause specifies the set of rows constituting the window frame, for those window functions
that act on the frame instead of the whole partition. The default framing option is RANGE UNBOUNDED
PRECEDING, which is the same as RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW; it
selects rows up through the current row’s last peer in the ORDER BY ordering (which means all rows if
there is no ORDER BY). The options RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING and ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING are
also equivalent: they always select all rows in the partition. Lastly, ROWS UNBOUNDED PRECEDING
or its verbose equivalent ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW select all
rows up through the current row (regardless of duplicates). Beware that this option can produce
implementation-dependent results if the ORDER BY ordering does not order the rows uniquely.

41

Chapter 4. SQL Syntax

The built-in window functions are described in Table 9-44. Other window functions can be added by the
user. Also, any built-in or user-defined aggregate function can be used as a window function.

The syntaxes using = are used for calling parameter-less aggregate functions as window functions,
for example count (x) OVER (PARTITION BY x ORDER BY y). x is customarily not used for
non-aggregate window functions. Aggregate window functions, unlike normal aggregate functions, do
not allow DISTINCT to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5 and Section 7.2.4.

4.2.9. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)

expression: :type

The casT syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion. The
cast will succeed only if a suitable type conversion operation has been defined. Notice that this is subtly
different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to an unadorned
string literal represents the initial assignment of a type to a literal constant value, and so it will succeed
for any type (if the contents of the string literal are acceptable input syntax for the data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply
a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example, double
precision cannot be used this way, but the equivalent f1oat8 can. Also, the names interval, time,
and t imestamp can only be used in this fashion if they are double-quoted, because of syntactic conflicts.
Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably be avoided.

Note: The function-like syntax is in fact just a function call. When one of the two standard cast syn-
taxes is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type, and
thus the “function-like syntax” is nothing more than a direct invocation of the underlying conversion
function. Obviously, this is not something that a portable application should rely on. For further details
see CREATE CAST.

42

Chapter 4. SQL Syntax

4.2.10. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that returns
more than one row or more than one column as a scalar subquery. (But if, during a particular execution,
the subquery returns no rows, there is no error; the scalar result is taken to be null.) The subquery can
refer to variables from the surrounding query, which will act as constants during any one evaluation of the
subquery. See also Section 9.20 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max (pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.11. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket 1. For example:

SELECT ARRAY[1,2,3+4];

By default, the array element type is the common type of the member expressions, determined using the
same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];

{1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the
key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2]1,1[3,411;

43

Chapter 4. SQL Syntax

{{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce sub-
arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates automatically
to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(fl intf[], f2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]]1, ARRAY[[5,6],1[7,811);

SELECT ARRAY[fl, f£2, '{{9,10},{11,12}}’::int[]] FROM arr;
array

{4{1,2},(3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it’s impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer(];
array

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE ’'bytea%’);
?column?

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31}
(1 row)

The subquery must return a single column. The resulting one-dimensional array will have an element for
each row in the subquery result, with an element type matching that of the subquery’s output column.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.14.

44

Chapter 4. SQL Syntax

4.2.12. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word ROw, a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally a right parenthesis. For example:

SELECT ROW(1,2.5,"this is a test’);

The key word rROW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue.*, which will be expanded to a list of the elements
of the row value, just as occurs when the . syntax is used at the top level of a SELECT list. For example,
if table t has columns £1 and £2, these are the same:

SELECT ROW (t.x, 42) FROM t;
SELECT ROW(t.fl, t.f2, 42) FROM t;

Note: Before PostgreSQL 8.2, the . » syntax was not expanded, so that writing row (t . =, 42) created
a two-field row whose first field was another row value. The new behavior is usually more useful. If you
need the old behavior of nested row values, write the inner row value without . «, for instance row (t,
42).

By default, the value created by a ROwW expression is of an anonymous record type. If necessary, it can be
cast to a named composite type — either the row type of a table, or a composite type created with CREATE
TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable(fl int, f2 float, £3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS ’/SELECT $1.f1l’ LANGUAGE SQL;

—— No cast needed since only one getfl() exists
SELECT getfl (ROW(1,2.5,"this is a test’));
getfl

1
(1 row)

CREATE TYPE myrowtype AS (f1 int, f2 text, £3 numeric);

CREATE FUNCTION getfl (myrowtype) RETURNS int AS ’SELECT $1.f1’ LANGUAGE SQL;
—-— Now we need a cast to indicate which function to call:

SELECT getfl (ROW(1,2.5,"this is a test’));

ERROR: function getfl (record) is not unique

SELECT getfl (ROW(1,2.5,"this is a test’) ::mytable);
getfl

45

Chapter 4. SQL Syntax

SELECT getfl (CAST(ROW(11l,’this is a test’,2.5) AS myrowtype));
getfl

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
values or test a row with IS NULL or IS NOT NULL, for example:

SELECT ROW(1,2.5,"this is a test’) = ROW(1l, 3, ’"not the same’);
SELECT ROW (table.x) IS NULL FROM table; —— detect all-null rows

For more detail see Section 9.21. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.20.

4.2.13. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or function
are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();
then somefunc () would (probably) not be called at all. The same would be the case if one wrote:
SELECT somefunc () OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found in
some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.16) can be used. For exam-
ple, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But this is safe:

SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

46

Chapter 4. SQL Syntax
A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when

necessary. (In this particular example, it would be better to sidestep the problem by writing y > 1.5*x
instead.)

47

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the tables.
Subsequently, we discuss how tables can be organized into schemas, and how privileges can be assigned
to tables. Finally, we will briefly look at other features that affect the data storage, such as inheritance,
views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The number
and order of the columns is fixed, and each column has a name. The number of rows is variable — it
reflects how much data is stored at a given moment. SQL does not make any guarantees about the order of
the rows in a table. When a table is read, the rows will appear in random order, unless sorting is explicitly
requested. This is covered in Chapter 7. Furthermore, SQL does not assign unique identifiers to rows, so it
is possible to have several completely identical rows in a table. This is a consequence of the mathematical
model that underlies SQL but is usually not desirable. Later in this chapter we will see how to deal with
this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to a
column and assigns semantics to the data stored in the column so that it can be used for computations. For
instance, a column declared to be of a numerical type will not accept arbitrary text strings, and the data
stored in such a column can be used for mathematical computations. By contrast, a column declared to be
of a character string type will accept almost any kind of data but it does not lend itself to mathematical
calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed ex-
planation to Chapter 8. Some of the frequently used data types are integer for whole numbers, numeric
for possibly fractional numbers, text for character strings, date for dates, t ime for time-of-day values,
and timestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)i

This creates a table named my_first_table with two columns. The first column is named
first_column and has a data type of text; the second column has the name second_column and the
type integer. The table and column names follow the identifier syntax explained in Section 4.1.1.
The type names are usually also identifiers, but there are some exceptions. Note that the column list is
comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let’s look at a more realistic example:

48

Chapter 5. Data Definition

CREATE TABLE products (
product_no integer,
name text,
price numeric

)

(The numeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern for the
tables and columns. For instance, there is a choice of using singular or plural nouns for table names,
both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the script
works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS variant to
avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience. If
you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of this
chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, those columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without having to know what
that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

49

Chapter 5. Data Definition

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a timestamp column to have a default of
CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is gen-
erating a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval (' products_product_no_seq’),

)i

where the nextval () function supplies successive values from a sequence object (see Section 9.15). This
arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

)i

The sERIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications, however,
the constraint they provide is too coarse. For example, a column containing a product price should prob-
ably only accept positive values. But there is no standard data type that accepts only positive numbers.
Another issue is that you might want to constrain column data with respect to other columns or rows.
For example, in a table containing product information, there should be only one row for each product
number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that would
violate a constraint, an error is raised. This applies even if the value came from the default value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)

50

Chapter 5. Data Definition

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer to
the constraint when you need to change it. The syntax is:

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive price CHECK (price > 0)
)i

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed by
the constraint definition. (If you don’t specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted price,
and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed to
refer to only the column it is attached to. (PostgreSQL doesn’t enforce that rule, but you should follow it
if you want your table definitions to work with other database systems.) The above example could also be
written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)

or even:

51

Chapter 5. Data Definition

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)
)i

It’s a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-null
constraint described in the next section can be used.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

)i

A not-null constraint is always written as a column constraint. A not-null constraint is functionally equiv-
alent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL creating
an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit names to
not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
)i

52

Chapter 5. Data Definition

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.) Some
users, however, like it because it makes it easy to toggle the constraint in a script file. For example, you
could start with:

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

)

and then insert the NOT key word where desired.

Tip: In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with respect
to all the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

)
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

53

Chapter 5. Data Definition

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)

In general, a unique constraint is violated when there is more than one row in the table where the values of
all of the columns included in the constraint are equal. However, two null values are not considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases might not follow this rule. So be careful when
developing applications that are intended to be portable.

5.3.4. Primary Keys

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null con-
straint. So, the following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)i

A primary key indicates that a column or group of columns can be used as a unique identifier for rows in
the table. (This is a direct consequence of the definition of a primary key. Note that a unique constraint
does not, by itself, provide a unique identifier because it does not exclude null values.) This is useful

54

Chapter 5. Data Definition

both for documentation purposes and for client applications. For example, a GUI application that allows
modifying row values probably needs to know the primary key of a table to be able to identify rows
uniquely.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally the same thing, but only one can be identified as the primary key.) Relational
database theory dictates that every table must have a primary key. This rule is not enforced by PostgreSQL,
but it is usually best to follow it.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between two
related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders table
only contains orders of products that actually exist. So we define a foreign key constraint in the orders
table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i

Now it is impossible to create orders with product_no entries that do not appear in the products table.

We say that in this situation the orders table is the referencing table and the products table is the referenced
table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

)

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE tl (

55

Chapter 5. Data Definition

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other_ table (cl, c2)
)i

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can contain more than one foreign key constraint. This is used to implement many-to-many rela-
tionships between tables. Say you have tables about products and orders, but now you want to allow one
order to contain possibly many products (which the structure above did not allow). You could use this
table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)i

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what if
a product is removed after an order is created that references it? SQL allows you to handle that as well.
Intuitively, we have a few options:

+ Disallow deleting a referenced product
+ Delete the orders as well
« Something else?

To illustrate this, let’s implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (via order_items), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,

56

Chapter 5. Data Definition

price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of a
referenced row. NO ACTION means that if any referencing rows still exist when the constraint is checked,
an error is raised; this is the default behavior if you do not specify anything. (The essential difference
between these two choices is that NO ACTION allows the check to be deferred until later in the transaction,
whereas RESTRICT does not.) CASCADE specifies that when a referenced row is deleted, row(s) referencing
it should be automatically deleted as well. There are two other options: SET NULL and SET DEFAULT.
These cause the referencing columns to be set to nulls or default values, respectively, when the referenced
row is deleted. Note that these do not excuse you from observing any constraints. For example, if an action
specifies SET DEFAULT but the default value would not satisfy the foreign key, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same.

More information about updating and deleting data is in Chapter 6.

Finally, we should mention that a foreign key must reference columns that either are a primary key or
form a unique constraint. If the foreign key references a unique constraint, there are some additional
possibilities regarding how null values are matched. These are explained in the reference documentation
for CREATE TABLE.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these names
cannot be used as names of user-defined columns. (Note that these restrictions are separate from whether
the name is a key word or not; quoting a name will not allow you to escape these restrictions.) You do not
really need to be concerned about these columns; just know they exist.

oid
The object identifier (object ID) of a row. This column is only present if the table was created using

WITH OIDS, or if the default_with_oids configuration variable was set at the time. This column is of
type oid (same name as the column); see Section 8.16 for more information about the type.

57

Chapter 5. Data Definition

tableoid

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies (see Section 5.8), since without it, it’s difficult to tell which individual
table a row came from. The tableoid can be joined against the oid column of pg_class to obtain
the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)

cmin
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

Ccmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ctid can be used to
locate the row version very quickly, a row’s ctid will change if it is updated or moved by vacuuM
FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even better a user-defined
serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs are
unique, unless you take steps to ensure that this is the case. If you need to identify the rows in a table,
using a sequence generator is strongly recommended. However, OIDs can be used as well, provided that
a few additional precautions are taken:

+ A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such a unique constraint (or unique index) exists, the system takes care
not to generate an OID matching an already-existing row. (Of course, this is only possible if the table
contains fewer than 2°? (4 billion) rows, and in practice the table size had better be much less than that,
or performance might suffer.)

« OIDs should never be assumed to be unique across tables; use the combination of tableoid and row
OID if you need a database-wide identifier.

« Of course, the tables in question must be created WITH 0IDS. As of PostgreSQL 8.1, WITHOUT OIDS
is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter 23 for
details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term (more
than one billion transactions).

58

Chapter 5. Data Definition

Command identifiers are also 32-bit quantities. This creates a hard limit of 2** (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, as of PostgreSQL 8.3, only commands that
actually modify the database contents will consume a command identifier.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But this is not a convenient option if the table is
already filled with data, or if the table is referenced by other database objects (for instance a foreign
key constraint). Therefore PostgreSQL provides a family of commands to make modifications to existing
tables. Note that this is conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can:

+ Add columns

+ Remove columns

+ Add constraints

« Remove constraints

« Change default values

« Change column data types
« Rename columns

« Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains details
beyond those given here.

5.5.1. Adding a Column

To add a column, use a command like:
ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a DEFAULT
clause).

You can also define constraints on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> ");

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you’ve filled in the new column correctly.

Tip: Adding a column with a default requires updating each row of the table (to store the new column
value). However, if no default is specified, PostgreSQL is able to avoid the physical update. So if you
intend to fill the column with mostly nondefault values, it's best to add the column with no default,
insert the correct values using uppATE, and then add any desired default as described below.

59

Chapter 5. Data Definition

5.5.2. Removing a Column

To remove a column, use a command like:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not
silently drop that constraint. You can authorize dropping everything that depends on the column by adding
CASCADE:!

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.11 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can be
added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can be
helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don’t forget that you’ll need to double-quote
it to make it a valid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something else
depends on. An example is that a foreign key constraint depends on a unique or primary key constraint on
the referenced column(s).

60

Chapter 5. Data Definition

This works the same for all constraint types except not-null constraints. To drop a not null constraint use:

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column’s Default Value
To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn’t affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:
ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn’t been defined, because the default is implicitly the null value.

5.5.6. Changing a Column’s Data Type
To convert a column to a different data type, use a command like:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If a more complex conversion is needed, you can add a USING clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as any
constraints that involve the column. But these conversions might fail, or might produce surprising results.
It’s often best to drop any constraints on the column before altering its type, and then add back suitably
modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

61

Chapter 5. Data Definition

5.5.8. Renaming a Table
To rename a table:

ALTER TABLE products RENAME TO items;

5.6. Privileges

When you create a database object, you become its owner. By default, only the owner of an object can
do anything with the object. In order to allow other users to use it, privileges must be granted. (However,
users that have the superuser attribute can always access any object.)

There are several different privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES,
TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges applicable to a particular
object vary depending on the object’s type (table, function, etc). For complete information on the different
types of privileges supported by PostgreSQL, refer to the GRANT reference page. The following sections
and chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

Note: To change the owner of a table, index, sequence, or view, use the ALTER TABLE command.
There are corresponding AL.TER commands for other object types.

To assign privileges, the GRANT command is used. For example, if joe is an existing user, and accounts
is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “user” name PUBLIC can be used to grant a privilege to every user on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 20.

To revoke a privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to revoke
his own ordinary privileges, for example to make a table read-only for himself as well as others.

Ordinarily, only the object’s owner (or a superuser) can grant or revoke privileges on an object. However,
it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant it in
turn to others. If the grant option is subsequently revoked then all who received the privilege from that
recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT and
REVOKE reference pages.

62

Chapter 5. Data Definition

5.7. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client connection
to the server can access only the data in a single database, the one specified in the connection request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of user names means that there cannot be different users named, say, joe in two databases in
the same cluster; but the system can be configured to allow joe access to only some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name can
be used in different schemas without conflict; for example, both schemal and myschema can contain
tables named mytable. Unlike databases, schemas are not rigidly separated: a user can access objects in
any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

» To allow many users to use one database without interfering with each other.
« To organize database objects into logical groups to make them more manageable.

« Third-party applications can be put into separate schemas so they do not collide with the names of other
objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be nested.

5.7.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax

database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you write a
database name, it must be the same as the database you are connected to.

63

Chapter 5. Data Definition

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (

)i

To drop a schema if it’s empty (all objects in it have been dropped), use:
DROP SCHEMA myschema;

To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

See Section 5.11 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schemaname AUTHORIZATION username;

You can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.7.6 for how this can be useful.

Schema names beginning with pg__ are reserved for system purposes and cannot be created by users.

5.7.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains such
a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:

CREATE TABLE public.products (...);

5.7.3. The Schema Search Path

Qualified names are tedious to write, and it’s often best not to wire a particular schema name into applica-
tions anyway. Therefore tables are often referred to by unqualified names, which consist of just the table
name. The system determines which table is meant by following a search path, which is a list of schemas
to look in. The first matching table in the search path is taken to be the one wanted. If there is no match in
the search path, an error is reported, even if matching table names exist in other schemas in the database.

64

Chapter 5. Data Definition

The first schema named in the search path is called the current schema. Aside from being the first schema
searched, it is also the schema in which new tables will be created if the CREATE TABLE command does
not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser",public

The first element specifies that a schema with the same name as the current user is to be searched. If no
such schema exists, the entry is ignored. The second element refers to the public schema that we have
seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration, any
unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:
SET search_path TO myschema,public;

(We omit the Suser here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:
SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing special
about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.23 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision: you
must write

OPERATOR (schema.operator)
This is needed to avoid syntactic ambiguity. An example is:

SELECT 3 OPERATOR (pg_catalog.+) 4;

65

Chapter 5. Data Definition

In practice one usually relies on the search path for operators, so as not to have to write anything so ugly
as that.

5.7.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema must grant the USAGE privilege on the schema. To allow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on
the schema public. This allows all users that are able to connect to a given database to create objects in
its public schema. If you do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.7.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema, which
contains the system tables and all the built-in data types, functions, and operators. pg_catalog is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path’s schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_catalog at the end of your search path if you prefer to have user-defined
names override built-in names.

In PostgreSQL versions before 7.3, table names beginning with pg_ were reserved. This is no longer true:
you can create such a table name if you wish, in any non-system schema. However, it’s best to continue to
avoid such names, to ensure that you won’t suffer a conflict if some future version defines a system table
named the same as your table. (With the default search path, an unqualified reference to your table name
would then be resolved as the system table instead.) System tables will continue to follow the convention
of having names beginning with pg_, so that they will not conflict with unqualified user-table names so
long as users avoid the pg__ prefix.

5.7.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are recom-
mended and are easily supported by the default configuration:

« If you do not create any schemas then all users access the public schema implicitly. This simulates the
situation where schemas are not available at all. This setup is mainly recommended when there is only
a single user or a few cooperating users in a database. This setup also allows smooth transition from the
non-schema-aware world.

66

Chapter 5. Data Definition

« You can create a schema for each user with the same name as that user. Recall that the default search
path starts with Suser, which resolves to the user name. Therefore, if each user has a separate schema,
they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it alto-
gether), so users are truly constrained to their own schemas.

« To install shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow the
other users to access them. Users can then refer to these additional objects by qualifying the names with
a schema name, or they can put the additional schemas into their search path, as they choose.

5.7.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations do not allow you to create schemas that have a different name
than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consider
qualified names to really consist of username. tablename. This is how PostgreSQL will effectively behave
if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to the
standard, you should not use (perhaps even remove) the pub1ic schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace sup-
port by allowing (possibly limited) cross-database access. If you need to work with those systems, then
maximum portability would be achieved by not using schemas at all.

5.8. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define a type inheritance feature, which differs in many respects from the features described
here.)

Let’s start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capitals table so that it
inherits from cities:

CREATE TABLE cities (

name text,
population float,
altitude int —— in feet

)i

67

Chapter 5. Data Definition

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals also
have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located at
an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | altitude
,,,,,,,,,,, [T
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude over 500 feet:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953

Here the oNLY keyword indicates that the query should apply only to cities, and not any tables below
cities in the inheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude
7777777777 +77777777777+7777777777

68

Chapter 5. Data Definition

139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities ¢, pg_class p
WHERE c.altitude > 500 AND c.tableoid = p.oid;

which returns:

relname | name | altitude
__________ e
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in the
inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, altitude, state)
VALUES (’New York’, NULL, NULL, ’NY’);

We might hope that the data would somehow be routed to the capitals table, but this does not happen:
INSERT always inserts into exactly the table specified. In some cases it is possible to redirect the insertion
using a rule (see Chapter 36). However that does not help for the above case because the cities table
does not contain the column state, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its children.
Other types of constraints (unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table’s definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child’s definition, then
these columns are “merged” so that there is only one such column in the child table. To be merged,
columns must have the same data types, else an error is raised. The merged column will have copies of
all the check constraints coming from any one of the column definitions it came from, and will be marked
not-null if any of them are.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do this the
new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of the
parent. Similarly an inheritance link can be removed from a child using the NO INHERIT variant of ALTER
TABLE. Dynamically adding and removing inheritance links like this can be useful when the inheritance
relationship is being used for table partitioning (see Section 5.9).

One convenient way to create a compatible table that will later be made a new child is to use the LIKE
clause in CREATE TABLE. This creates a new table with the same columns as the source table. If there are

69

Chapter 5. Data Definition

any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to LIKE should
be specified, as the new child must have constraints matching the parent to be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check con-
straints of child tables be dropped or altered if they are inherited from any parent tables. If you wish to
remove a table and all of its descendants, one easy way is to drop the parent table with the CASCADE
option.

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

5.8.1. Caveats

Table access permissions are not automatically inherited. Therefore, a user attempting to access a parent
table must either have permissions to do the same operation on all its child tables as well, or must use the
ONLY notation. When adding a new child table to an existing inheritance hierarchy, be careful to grant all
the needed permissions on it.

More generally, note that not all SQL commands are able to work on inheritance hierarchies. Com-
mands that are used for data querying, data modification, or schema modification (e.g., SELECT, UPDATE,
DELETE, most variants of ALTER TABLE, but not INSERT and ALTER TABLE ... RENAME) typically de-
fault to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REINDEX, VACUUM) typically only work on individual, physical tables and
do no support recursing over inheritance hierarchies. The respective behavior of each individual command
is documented in the reference part (Reference I, SOQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This is true on both the
referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above example:

« If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would by
default show up in queries from cities. In fact, by default capitals would have no unique constraint
at all, and so could contain multiple rows with the same name. You could add a unique constraint to
capitals, but this would not prevent duplication compared to cities.

- Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint would
not automatically propagate to capitals. In this case you could work around it by manually adding
the same REFERENCES constraint to capitals.

+ Specifying that another table’s column REFERENCES cities (name) would allow the other table to
contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable care is
needed in deciding whether inheritance is useful for your application.

Deprecated: In releases of PostgreSQL prior to 7.1, the default behavior was not to include child
tables in queries. This was found to be error prone and also in violation of the SQL standard. You can
get the pre-7.1 behavior by turning off the sql_inheritance configuration option.

70

Chapter 5. Data Definition

5.9. Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement partition-
ing as part of your database design.

5.9.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

» Query performance can be improved dramatically in certain situations, particularly when most of the
heavily accessed rows of the table are in a single partition or a small number of partitions. The parti-
tioning substitutes for leading columns of indexes, reducing index size and making it more likely that
the heavily-used parts of the indexes fit in memory.

« When queries or updates access a large percentage of a single partition, performance can be improved
by taking advantage of sequential scan of that partition instead of using an index and random access
reads scattered across the whole table.

« Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement is
planned into the partitioning design. ALTER TABLE is far faster than a bulk operation. It also entirely
avoids the vAcuuM overhead caused by a bulk DELETE.

+ Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of thumb
is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent
the entire data set. You should be familiar with inheritance (see Section 5.8) before attempting to set up
partitioning.

The following forms of partitioning can be implemented in PostgreSQL.:

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by date
ranges, or by ranges of identifiers for particular business objects.

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

71

Chapter 5. Data Definition

5.9.2. Implementing Partitioning

To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you intend
them to be applied equally to all partitions. There is no point in defining any indexes or unique
constraints on it, either.

. Create several “child” tables that each inherit from the master table. Normally, these tables will not

add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL tables.

. Add table constraints to the partition tables to define the allowed key values in each partition.

Typical examples would be:

CHECK (x =1)

CHECK (county IN ('Oxfordshire’, ’Buckinghamshire’, ’'Warwickshire’))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)
This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are descrip-
tive only.

. For each partition, create an index on the key column(s), as well as any other indexes you might want.

(The key index is not strictly necessary, but in most scenarios it is helpful. If you intend the key values
to be unique then you should always create a unique or primary-key constraint for each partition.)

. Optionally, define a trigger or rule to redirect data inserted into the master table to the appropriate

partition.

. Ensure that the constraint_exclusion configuration parameter is not disabled in postgresqgl.conf.

If it is, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company mea-

sures peak temperatures every day as well as ice cream sales in each region. Conceptually, we want a table

like:

CREATE TABLE measurement (
city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

)i

We know that most queries will access just the last week’s, month’s or quarter’s data, since the main use
of this table will be to prepare online reports for management. To reduce the amount of old data that needs
to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning of each month
we will remove the oldest month’s data.

72

Chapter 5. Data Definition

In this situation we can use partitioning to help us meet all of our different requirements for the measure-
ments table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the measurement table, declared exactly as above.
2. Next we create one partition for each active month:

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
CREATE TABLE measurement_y2007mll () INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 () INHERITS (measurement);
CREATE TABLE measurement_y2008m0l1 () INHERITS (measurement);

Each of the partitions are complete tables in their own right, but they inherit their definitions from the

measurement table.

This solves one of our problems: deleting old data. Each month, all we will need to do is perform a
DROP TABLE on the oldest child table and create a new child table for the new month’s data.

3. We must provide non-overlapping table constraints. Rather than just creating the partition tables as
above, the table creation script should really be:

CREATE TABLE measurement_y2006m02 (

CHECK (logdate >= DATE ’'2006-02-01’ AND logdate < DATE ’'2006-03-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2006m03 (

CHECK (logdate >= DATE ’2006-03-01" AND logdate < DATE ’2006-04-01")
) INHERITS (measurement);

CREATE TABLE measurement_y2007mll (

CHECK (logdate >= DATE ’'2007-11-01’ AND logdate < DATE ’2007-12-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 (

CHECK (logdate >= DATE ’2007-12-01" AND logdate < DATE ’2008-01-01")
) INHERITS (measurement);
CREATE TABLE measurement_y2008m01 (

CHECK (logdate >= DATE ’2008-01-01" AND logdate < DATE ’2008-02-01")
) INHERITS (measurement);

4. We probably need indexes on the key columns too:

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 (logdate);
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);

CREATE INDEX measurement_y2007mll_logdate ON measurement_y2007mll (logdate);
CREATE INDEX measurement_y2007ml2_logdate ON measurement_y2007ml2 (logdate);
CREATE INDEX measurement_y2008m0l_logdate ON measurement_y2008m0l (logdate);
We choose not to add further indexes at this time.

5. We want our application to be able to say INSERT INTO measurement ... and have the data be
redirected into the appropriate partition table. We can arrange that by attaching a suitable trigger
function to the master table. If data will be added only to the latest partition, we can use a very simple
trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$
BEGIN

73

Chapter 5. Data Definition

INSERT INTO measurement_y2008m0l1 VALUES (NEW.x);
RETURN NULL;

END;

$s

LANGUAGE plpgsql;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger

BEFORE INSERT ON measurement

FOR EACH ROW EXECUTE PROCEDURE measurement_insert_trigger();
We must redefine the trigger function each month so that it always points to the current partition. The
trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the row
should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$
BEGIN
IF (NEW.logdate >= DATE ’2006-02-01" AND
NEW.logdate < DATE ’2006-03-01") THEN
INSERT INTO measurement_y2006m02 VALUES (NEW.x);
ELSIF (NEW.logdate >= DATE '2006-03-01’ AND
NEW.logdate < DATE ’"2006-04-01") THEN
INSERT INTO measurement_y2006m03 VALUES (NEW.x);

ELSIF (NEW.logdate >= DATE ’2008-01-01" AND
NEW.logdate < DATE ’2008-02-01") THEN
INSERT INTO measurement_y2008m0l1 VALUES (NEW.x);
ELSE
RAISE EXCEPTION ’Date out of range. Fix the measurement_insert_trigger () functi
END IF;
RETURN NULL;
END;
$S
LANGUAGE plpgsql;

The trigger definition is the same as before. Note that each IF test must exactly match the CHECK
constraint for its partition.

While this function is more complex than the single-month case, it doesn’t need to be updated as
often, since branches can be added in advance of being needed.

Note: In practice it might be best to check the newest partition first, if most inserts go into that
partition. For simplicity we have shown the trigger’s tests in the same order as in other parts of
this example.

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the above
example we would be creating a new partition each month, so it might be wise to write a script that
generates the required DDL automatically.

74

Chapter 5. Data Definition

5.9.3. Managing Partitions

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions for new
data. One of the most important advantages of partitioning is precisely that it allows this otherwise painful
task to be executed nearly instantaneously by manipulating the partition structure, rather than physically
moving large amounts of data around.

The simplest option for removing old data is simply to drop the partition that is no longer necessary:

DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn’t have to individually delete every record.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

This allows further operations to be performed on the data before it is dropped. For example, this is often
a useful time to back up the data using copY, pg_dump, or similar tools. It might also be a useful time to
aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the parti-
tioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE ’'2008-02-01’ AND logdate < DATE ’2008-03-01")
) INHERITS (measurement);

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it a proper partition later. This allows the data to be loaded, checked, and transformed prior to it
appearing in the partitioned table:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE ’'2008-02-01’ AND logdate < DATE ’'2008-03-01");
\copy measurement_y2008m02 from ’'measurement_y2008m02’
—-— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.9.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned tables
defined in the fashion described above. As an example:

SET constraint_exclusion = on;
SELECT count () FROM measurement WHERE logdate >= DATE ’2008-01-01'";

75

Chapter 5. Data Definition

Without constraint exclusion, the above query would scan each of the partitions of the measurement
table. With constraint exclusion enabled, the planner will examine the constraints of each partition and try
to prove that the partition need not be scanned because it could not contain any rows meeting the query’s
WHERE clause. When the planner can prove this, it excludes the partition from the query plan.

You can use the EXPLAIN command to show the difference between a plan with
constraint_exclusion on and a plan with it off. A typical unoptimized plan for this type of table
setup is:

SET constraint_exclusion = off;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01";

QUERY PLAN
Aggregate (cost=158.66..158.68 rows=1 width=0)
-> Append (cost=0.00..151.88 rows=2715 width=0)
-> Seqg Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)

-> Seqg Scan on measurement_y2006m02 measurement (cost=0.00..30.38 rows=543 width
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2006m03 measurement (cost=0.00..30.38 rows=543 width

Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2007ml2 measurement (cost=0.00..30.38 rows=543 width
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2008m0l measurement (cost=0.00..30.38 rows=543 width

Filter: (logdate >= ’2008-01-01’::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point here
is that there is no need to scan the older partitions at all to answer this query. When we enable constraint
exclusion, we get a significantly cheaper plan that will deliver the same answer:

SET constraint_exclusion = on;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01';
QUERY PLAN

Aggregate (cost=63.47..63.48 rows=1 width=0)
-> Append (cost=0.00..60.75 rows=1086 width=0)
-> Seq Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)
-> Seqg Scan on measurement_y2008m0l measurement (cost=0.00..30.38 rows=543 width
Filter: (logdate >= ’72008-01-01’::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes. There-
fore it isn’t necessary to define indexes on the key columns. Whether an index needs to be created for a
given partition depends on whether you expect that queries that scan the partition will generally scan a
large part of the partition or just a small part. An index will be helpful in the latter case but not the former.

The default (and recommended) setting of constraint_exclusion is actually neither on nor off, but an
intermediate setting called partition, which causes the technique to be applied only to queries that are

76

Chapter 5. Data Definition

likely to be working on partitioned tables. The on setting causes the planner to examine CHECK constraints
in all queries, even simple ones that are unlikely to benefit.

5.9.5. Alternative Partitioning Methods

A different approach to redirecting inserts into the appropriate partition table is to set up rules, instead of
a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’'2006-02-01’ AND logdate < DATE "2006-03-01")
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.x);

CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’2008-01-01" AND logdate < DATE ’'2008-02-01")
DO INSTEAD

INSERT INTO measurement_y2008m01 VALUES (NEW.x);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather than
once per row, so this method might be advantageous for bulk-insert situations. In most cases, however, the
trigger method will offer better performance.

Be aware that copY ignores rules. If you want to use COPY to insert data, you’ll need to copy into the
correct partition table rather than into the master. COPY does fire triggers, so you can use it normally if
you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of rules
doesn’t cover the insertion date; the data will silently go into the master table instead.

Partitioning can also be arranged using a UNION ALL view, instead of table inheritance. For example,

CREATE VIEW measurement AS
SELECT % FROM measurement_y2006m02
UNION ALL SELECT % FROM measurement_y2006m03

UNION ALL SELECT % FROM measurement_y2007mll
UNION ALL SELECT % FROM measurement_y2007ml2
UNION ALL SELECT % FROM measurement_y2008m01;

However, the need to recreate the view adds an extra step to adding and dropping individual partitions of
the data set. In practice this method has little to recommend it compared to using inheritance.

5.9.6. Caveats

The following caveats apply to partitioned tables:

« There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is safer
to create code that generates partitions and creates and/or modifies associated objects than to write each

77

Chapter 5. Data Definition

by hand.

The schemes shown here assume that the partition key column(s) of a row never change, or at least do
not change enough to require it to move to another partition. An UPDATE that attempts to do that will
fail because of the CHECK constraints. If you need to handle such cases, you can put suitable update
triggers on the partition tables, but it makes management of the structure much more complicated.

If you are using manual VACUUM or ANALYZE commands, don’t forget that you need to run them on
each partition individually. A command like:

ANALYZE measurement;
will only process the master table.

The following caveats apply to constraint exclusion:

Constraint exclusion only works when the query’s WHERE clause contains constants. A parameterized
query will not be optimized, since the planner cannot know which partitions the parameter value might
select at run time. For the same reason, “stable” functions such as CURRENT_DATE must be avoided.

Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don’t need to be visited. Use simple equality conditions for list partitioning, or simple range tests
for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that parti-
tioning constraints should contain only comparisons of the partitioning column(s) to constants using
B-tree-indexable operators.

All constraints on all partitions of the master table are examined during constraint exclusion, so large
numbers of partitions are likely to increase query planning time considerably. Partitioning using these
techniques will work well with up to perhaps a hundred partitions; don’t try to use many thousands of
partitions.

5.10. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they are
not the only objects that exist in a database. Many other kinds of objects can be created to make the use
and management of the data more efficient or convenient. They are not discussed in this chapter, but we
give you a list here so that you are aware of what is possible:

Views
Functions and operators
Data types and domains

Triggers and rewrite rules

Detailed information on these topics appears in Part V.

78

Chapter 5. Data Definition

5.11. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had
considered in Section 5.3.5, with the orders table depending on it, would result in an error message such
as this:

DROP TABLE products;

NOTICE: constraint orders_product_no_fkey on table orders depends on table products
ERROR: cannot drop table products because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check what bROP ... cAscaDE will do, run DROP
without CASCADE and read the NOTICE messages.)

All drop commands in PostgreSQL support specifying CASCADE. Of course, the nature of the possible
dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE to get
the default behavior, which is to prevent the dropping of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or cASCADE is required. No database
system actually enforces that rule, but whether the default behavior is RESTRICT or cASCADE varies
across systems.

Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL ver-
sions prior to 7.3 are not maintained or created during the upgrade process. All other dependency
types will be properly created during an upgrade from a pre-7.3 database.

79

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. We also
introduce ways to effect automatic data changes when certain events occur: triggers and rewrite rules. The
chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more than
one row, but there is no way to insert less than one row. Even if you know only some column values, a
complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column values.
For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To avoid
this you can also list the columns explicitly. For example, both of the following commands have the same
effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’'Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns will be
filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

80

Chapter 6. Data Manipulation

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES
(1, "Cheese’, 9.99),
(2, "Bread’, 1.99),
(3, 'Milk’, 2.99);

Tip: When inserting a lot of data at the same time, considering using the COPY command. It is not
as flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information
on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update individual
rows, all the rows in a table, or a subset of all rows. Each column can be updated separately; the other
columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that does
not match any rows.

Let’s look at that command in detail. First is the key word UPDATE followed by the table name. As usual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products by
10% you could use:

UPDATE products SET price = price 1.10;

81

Chapter 6. Data Manipulation

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clause is an
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity. Of
course, the WHERE condition does not have to be an equality test. Many other operators are available (see
Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment in

the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to discuss how
to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can only
remove entire rows from a table. In the previous section we explained that SQL does not provide a way
to directly address individual rows. Therefore, removing rows can only be done by specifying conditions
that the rows to be removed have to match. If you have a primary key in the table then you can specify the
exact row. But you can also remove groups of rows matching a condition, or you can remove all rows in
the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

82

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]

The following sections describe the details of the select list, the table expression, and the sort specification.
WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT » FROM tablel;

Assuming that there is a table called tablel, this command would retrieve all rows and all columns from
tablel. (The method of retrieval depends on the client application. For example, the psql program will
display an ASCII-art table on the screen, while client libraries will offer functions to extract individual
values from the query result.) The select list specification « means all columns that the table expression
happens to provide. A select list can also select a subset of the available columns or make calculations
using the columns. For example, if tablel has columns named a, b, and c (and perhaps others) you can
make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM tablel is a simple kind of table expression: it reads just one table. In general, table expressions
can be complex constructs of base tables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could call
a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally fol-
lowed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table on

83

Chapter 7. Queries

disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of succes-
sive transformations performed on the table derived in the FROM clause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of the

query.

7.2.1. The rroM Clause

The FROM Clause derives a table from one or more other tables given in a comma-separated table refer-
ence list.

FROM table_reference [, table reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a subquery,
a table join, or complex combinations of these. If more than one table reference is listed in the FrROM
clause they are cross-joined (see below) to form the intermediate virtual table that can then be subject to
transformations by the WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall table
expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table reference
produces rows of not only that table but all of its descendant tables, unless the key word ONLY precedes
the table name. However, the reference produces only the columns that appear in the named table — any
columns added in subtables are ignored.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types
Cross join
T1 CROSS JOIN T2

For every possible combination of rows from 71 and T2 (i.e., a Cartesian product), the joined table
will contain a row consisting of all columns in 71 followed by all columns in 72. If the tables have
N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 is equivalent to FROM 11, T2.Itis also equivalent to FROM T1 INNER
JOIN T2 ON TRUE (see below).

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER

Tl NATURAL [INNER] | { LEFT | RIGHT | FULL [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and FULL
imply an outer join.

84

]] } JOIN T2 ON boolean_expression
Tl { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list
{ }

)

Chapter 7. Queries

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL. The
join condition determines which rows from the two source tables are considered to “match”, as
explained in detail below.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from T1 and 72 match if the ON expression
evaluates to true for them.

USING is a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs
of columns. Furthermore, the output of JOIN USING has one column for each of the equated pairs
of input columns, followed by the remaining columns from each table. Thus, USING (a, b, c)
is equivalent to ON (tl.a = t2.a AND tl.b = t2.b AND tl.c = t2.c) with the exception
that if oN is used there will be two columns a, b, and c in the result, whereas with USING there will
be only one of each (and they will appear first if SELECT « is used).

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of all column names
that appear in both input tables. As with USING, these columns appear only once in the output table.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined
table always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

Joins of all types can be chained together or nested: either or both 71 and T2 can be joined tables. Paren-
theses can be used around JOIN clauses to control the join order. In the absence of parentheses, JOIN
clauses nest left-to-right.

To put this together, assume we have tables t1:

85

Chapter 7. Queries

3] ¢
and t£2
num | value
_____ +_______
1] xxx
3 | yyy
5| zzz

then we get the following results for the various joins:

=> SELECT * FROM tl CROSS JOIN t2;

num | name | num | value
77777 e S
11 a | 1 | xxx
11 a \ 3 | yyy
11 a \ 5 | zzz
2 | b | 1 | xxx
2 | b \ 3 1 yyy
2 | b | 5| zzz
3 | ¢ | 1 | xxx
3 | c \ 3 1 yyy
3 1 ¢ \ 5 | zzz
(9 rows)

=> SELECT * FROM tl INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— -t
11 a | 1] xxx
3 1 ¢ \ 3 | yyy
(2 rows)

=> SELECT * FROM tl INNER JOIN t2 USING (num);

num | name | value

_____ e
11 a | xxx
31 c | yyy

(2 rows)

=> SELECT *x FROM tl NATURAL INNER JOIN t2;

num | name | value

_____ e
11 a | xxx
31 c l yyy

(2 rows)

=> SELECT x FROM tl LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e
1] a \ 1 | xxx
2 | b \ |
31 ¢ \ 31 yyy

86

Chapter 7. Queries

(3 rows)

=> SELECT x FROM tl LEFT JOIN t2 USING (num);

num | name | value
_____ e

1 a XXX

2 | b \

31 c | yyy
(3 rows)

=> SELECT » FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num | name | num | value
77777 t————
1] a | 1 | xxx
31 ¢ \ 31 yyy
\ \ 5 | zzz
(3 rows)

=> SELECT x FROM tl FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o
11 a | 1 | xxx
2 | b \ |
31 ¢ \ 31 yyy
| | 5 | zzz
(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join. This
can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num AND t2.value = ’'xxx’;

num | name | num | value
77777 e
11 a | 1 | xxx
2 | b \ |
3| c \ |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num WHERE t2.value = ’'xxx’;
num | name | num | value
77777 Fomm
1] a \ 1 | xxx
(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction placed
in the WHERE clause is processed after the join.

87

Chapter 7. Queries

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table reference AS alias
or

FROM table reference alias

The as key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly_ long_name a ON s.id = a.num;

The alias becomes the new name of the table reference for the current query — it is no longer possible to
refer to the table by the original name. Thus:

SELECT x FROM my_table AS m WHERE my_table.a > 5;

is not valid according to the SQL standard. In PostgreSQL this will draw an error, assuming the
add_missing_from configuration variable is of £ (as it is by default). If it is on, an implicit table reference
will be added to the FROM clause, so the query is processed as if it were written as:

SELECT % FROM my_table AS m, my_table AS my_table WHERE my_table.a > 5;

That will result in a cross join, which is usually not what you want.

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the alias
b to the second instance of my_table, but the second statement assigns the alias to the result of the join:

SELECT » FROM my_table AS a CROSS JOIN my_table AS b
SELECT % FROM (my_table AS a CROSS JOIN my_table) AS b

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table_reference [AS] alias (columnl [, column2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

88

Chapter 7. Queries

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.x FROM my_table AS a JOIN your_table AS b ON
is valid SQL, but:
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table alias
name. (See Section 7.2.1.2.) For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (’anne’, ’smith’), (’bob’, ’Jjones’), (’joe’, ’"blow’))
AS names (first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquery in the FROM clause of
a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE clauses in the
same manner as a table, view, or subquery column.

If a table function returns a base data type, the single result column name matches the function name. If
the function returns a composite type, the result columns get the same names as the individual attributes
of the type.

A table function can be aliased in the FROM clause, but it also can be left unaliased. If a function is used
in the FrROM clause with no alias, the function name is used as the resulting table name.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);
CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$

SELECT * FROM foo WHERE fooid = $1;
S LANGUAGE SQL;

89

Chapter 7. Queries

SELECT * FROM getfoo(l) AS t1;

SELECT » FROM foo
WHERE foosubid IN (
SELECT foosubid
FROM getfoo (foo.fooid) z
WHERE z.fooid = foo.fooid
)i

CREATE VIEW vw_getfoo AS SELECT *x FROM getfoo(l);

SELECT % FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on how
they are invoked. To support this, the table function can be declared as returning the pseudotype record.
When such a function is used in a query, the expected row structure must be specified in the query itself,
so that the system can know how to parse and plan the query. Consider this example:

SELECT =«
FROM dblink (’ dbname=mydb’, ’'SELECT proname, prosrc FROM pg_proc’)
AS tl (proname name, prosrc text)
WHERE proname LIKE ’'bytea$%’;

The dblink function executes a remote query (see contrib/dblink). It is declared to return record
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what « should expand to.

7.2.2. The wHERE Clause
The syntax of the WHERE Clause is

WHERE search_condition

where search_condition is any value expression (see Section 4.2) that returns a value of type

boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one
column of the table generated in the FROM clause; this is not required, but otherwise the WHERE clause will
be fairly useless.

Note: The join condition of an inner join can be written either in the wHERE clause or in the Jo1n clause.
For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

90

FROM a INNER JOIN b ON

or perhaps even:

(a.id

Chapter 7. Queries

= b.id) WHERE b.val > 5

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The Jo1n syntax in the Frowm clause is probably
not as portable to other SQL database management systems, even though it is in the SQL standard.
For outer joins there is no choice: they must be done in the FromM clause. The on or UusiNG clause
of an outer join is not equivalent to a waHeERE condition, because it results in the addition of rows (for
unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT

SELECT

SELECT

SELECT

SELECT

SELECT

FROM

FROM

FROM

FROM

FROM

FROM

fdt

fdt

fdt

fdt

fdt

fdt

WHERE

WHERE

WHERE

WHERE

WHERE

cl

cl

cl

cl

cl

> 5

IN (1, 2, 3)

IN (SELECT cl FROM t2)

IN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10)

BETWEEN (SELECT c¢3 FROM t2 WHERE c2 = fdt.cl + 10)

WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from £dt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced in
the subqueries. Qualifying c1 as fdt . c1 is only necessary if c1 is also the name of a column in the derived
input table of the subquery. But qualifying the column name adds clarity even when it is not needed. This
example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The croupr BY and HAaVING Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP BY
clause, and elimination of group rows using the HAVING clause.

SELECT select_list

FROM
[WHERE

-]

GROUP BY grouping_column_reference [, grouping_column_reference]...

The GROUP BY Clause is used to group together those rows in a table that have the same values in all the
columns listed. The order in which the columns are listed does not matter. The effect is to combine each
set of rows having common values into one group row that represents all rows in the group. This is done

to eliminate redundancy in the output and/or compute aggregates that apply to these groups. For instance:

=> SELECT * FROM testl;

x |y

91

AND 100

Chapter 7. Queries

=> SELECT x FROM testl GROUP BY x;

In the second query, we could not have written SELECT » FROM testl GROUP BY x, because there is
no single value for the column y that could be associated with each group. The grouped-by columns can
be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except in

aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;
x | sum

Q

Here sum is an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.18.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a col-
umn. This can also be achieved using the p1sTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.name, (sum(s.units) =* p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause
since they are referenced in the query select list. (Depending on how the products table is set up, name
and price might be fully dependent on the product ID, so the additional groupings could theoretically be
unnecessary, though this is not implemented.) The column s .units does not have to be in the GROUP BY
list since it is only used in an aggregate expression (sum (. . .)), which represents the sales of a product.
For each product, the query returns a summary row about all sales of the product.

92

Chapter 7. Queries

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this to
also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;
X | sum

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < ’'c’;

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price x s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVING clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is a
single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The same is
true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY clause.

7.2.4. Window Function Processing

If the query contains any window functions (see Section 3.5 and Section 4.2.8), these functions are eval-
uated after any grouping, aggregation, and HAVING filtering is performed. That is, if the query uses any

93

Chapter 7. Queries

aggregates, GROUP BY, or HAVING, then the rows seen by the window functions are the group rows instead
of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated in
a single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY does not
uniquely determine an ordering. However, no guarantees are made about the evaluation of functions hav-
ing different PARTITION BY or ORDER BY specifications. (In such cases a sort step is typically required
between the passes of window function evaluations, and the sort is not guaranteed to preserve ordering of
rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered ac-
cording to one or another of the window functions’ PARTITION BY/ORDER BY clauses. It is not recom-
mendable to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be sure the
results are sorted in a particular way.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an intermediate
virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by the select list. The select list determines which columns of the intermediate
table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is « which emits all columns that the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it could
be a list of column names:

SELECT a, b, c FROM

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in the
select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same as in
the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:
SELECT tbll.a, tbl2.a, tbll.b FROM

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:
SELECT tbll.*, tbl2.a FROM

(See also Section 7.2.2.)

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to the
returned table. The value expression is evaluated once for each result row, with the row’s values substituted

94

Chapter 7. Queries

for any column references. But the expressions in the select list do not have to reference any columns in
the table expression of the FROM clause; they can be constant arithmetic expressions, for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an ORDER
BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM

If no output column name is specified using AS, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The As keyword is optional, but only if the new column name does not match any PostgreSQL keyword
(see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column name.
For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM
but this does:
SELECT a "value", b + ¢ AS sum FROM

For protection against possible future keyword additions, it is recommended that you always either write
as or double-quote the output column name.

Note: The naming of output columns here is different from that done in the rrom clause (see Section
7.2.1.2). It is possible to rename the same column twice, but the name assigned in the select list is
the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DISTINCT ON (expression [, expression ...]) select_list

95

Chapter 7. Queries

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON processing
occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueries in
FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ALL] query2
queryl INTERSECT [ALL] query?2
queryl EXCEPT [ALL] query2

queryl and query2 are queries that can use any of the features discussed up to this point. Set operations
can also be nested and chained, for example

queryl UNION query2 UNION query3
which is executed as:

(queryl UNION query2) UNION query3

UNION effectively appends the result of query2 to the result of query (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of query1 and in the result of query2. Duplicate
rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is sometimes
called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in that

96

Chapter 7. Queries

case will depend on the scan and join plan types and the order on disk, but it must not be relied on. A
particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_list
FROM table expression
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query’s select list. An example is:
SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal according
to the earlier values. Each expression can be followed by an optional AsC or DESC keyword to set the sort
direction to ascending or descending. ASC order is the default. Ascending order puts smaller values first,
where “smaller” is defined in terms of the < operator. Similarly, descending order is determined with the
> operator. '

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before or
after non-null values in the sort ordering. By default, null values sort as if larger than any non-null value;
that is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC, y
DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone, that is,
it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, c¢c FROM tablel ORDER BY sum + cC; —— wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. This would only cause confusion if you use AS to rename an output column
to match some other table column’s name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this case
it is only permitted to sort by output column names or numbers, not by expressions.

1. Actually, PostgreSQL uses the default B-tree operator class for the expression’s data type to determine the sort ordering for
asc and DEscC. Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a
user-defined data type’s designer could choose to do something different.

97

Chapter 7. Queries

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select_1list
FROM table_expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query itself
yields less rows). LIMIT ALL is the same as omitting the LIMIT clause.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as omitting
the OFFSET clause, and LIMIT NULL is the same as omitting the LIMIT clause. If both OFFSET and
LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT rows that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a unique
order. Otherwise you will get an unpredictable subset of the query’s rows. You might be asking for the
tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you give for LIMIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular order
unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. vALUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...]1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same number
of elements (i.e., the number of columns in the table), and corresponding entries in each list must have
compatible data types. The actual data type assigned to each column of the result is determined using the
same rules as for UNION (see Section 10.5).

As an example:
VALUES (1, ’'one’), (2, ’'two’), (3, "three’);

will return a table of two columns and three rows. It’s effectively equivalent to:

98

Chapter 7. Queries

SELECT 1 AS columnl, ’one’ AS column2
UNION ALL

SELECT 2, ’'two’

UNION ALL

SELECT 3, ’three’;

By default, PostgreSQL assigns the names columnl, column2, etc. to the columns of a VALUES table.
The column names are not specified by the SQL standard and different database systems do it differently,
so it’s usually better to override the default names with a table alias list.

Syntactically, VALUES followed by expression lists is treated as equivalent to:
SELECT select_list FROM table expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used as
the data source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. wITH Queries

WITH provides a way to write subqueries for use in a larger SELECT query. The subqueries can be thought
of as defining temporary tables that exist just for this query. One use of this feature is to break down
complicated queries into simpler parts. An example is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
product,
SUM (quantity) AS product_units,
SUM (amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. This example could have been written
without wITH, but we’d have needed two levels of nested sub-SELECTS. It’s a bit easier to follow this
way.

The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature that
accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query can refer
to its own output. A very simple example is this query to sum the integers from 1 through 100:

WITH RECURSIVE t (n) AS (

99

VALUES (1)
UNION ALL
SELECT n+l1 FROM t WHERE n < 100

)
SELECT sum(n) FROM t;

Chapter 7. Queries

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION ALL),
then a recursive term, where only the recursive term can contain a reference to the query’s own output.

Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. Include
all remaining rows in the result of the recursive query, and also place them in a temporary working

table.

2. So long as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For UNION (but not UNION ALL), discard duplicate rows and rows
that duplicate any previous result row. Include all remaining rows in the result of the recur-

sive query, and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then

empty the intermediate table.

Note: Strictly speaking, this process is iteration not recursion, but RECURSIVE is the terminology cho-

sen by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values from
1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause, and

so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example is
this query to find all the direct and indirect sub-parts of a product, given only a table that shows immediate

inclusions:

WITH RECURSIVE included_parts (sub_part, part, quantity)
SELECT sub_part, part, quantity FROM parts WHERE part

UNION ALL
SELECT p.sub_part, p.part, p.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

"our_product’

100

Chapter 7. Queries

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNION instead of
UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However, often
a cycle does not involve output rows that are completely duplicate: it may be necessary to check just one
or a few fields to see if the same point has been reached before. The standard method for handling such
situations is to compute an array of the already-visited values. For example, consider the following query
that searches a table graph using a 1ink field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT = FROM search_graph;

This query will loop if the 1ink relationships contain cycles. Because we require a “depth” output, just
changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again while following a particular path of links. We add two columns path
and cycle to the loop-prone query:

WITH RECURSIVE search_graph(id, 1link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [g.id],
false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,
g.id = ANY (path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array of
rows. For example, if we needed to compare fields £1 and £2:

WITH RECURSIVE search_graph(id, 1link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [ROW (g.f1, g.f2)],

false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || ROW(g.fl, g.f2),
ROW(g.fl, g.f2) = ANY (path)

FROM graph g, search_graph sg

101

Chapter 7. Queries

WHERE g.id = sg.link AND NOT cycle

)
SELECT = FROM search_graph;

Tip: Omit the row () syntax in the common case where only one field needs to be checked to recognize
a cycle. This allows a simple array rather than a composite-type array to be used, gaining efficiency.

Tip: The recursive query evaluation algorithm produces its output in breadth-first search order. You
can display the results in depth-first search order by making the outer query orpER BY a “path” column
constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a LIMIT in the
parent query. For example, this query would loop forever without the LIMIT:

WITH RECURSIVE t (n) AS (
SELECT 1
UNION ALL
SELECT n+l FROM t

)
SELECT n FROM t LIMIT 100;

This works because PostgreSQL’s implementation evaluates only as many rows of a WITH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won’t work if you make the outer query sort the recursive
query’s results or join them to some other table.

A useful property of WITH queries is that they are evaluated only once per execution of the parent query,
even if they are referred to more than once by the parent query or sibling WITH queries. Thus, expensive
calculations that are needed in multiple places can be placed within a WITH query to avoid redundant work.
Another possible application is to prevent unwanted multiple evaluations of functions with side-effects.
However, the other side of this coin is that the optimizer is less able to push restrictions from the parent
query down into a WITH query than an ordinary sub-query. The wITH query will generally be evaluated
as stated, without suppression of rows that the parent query might discard afterwards. (But, as mentioned
above, evaluation might stop early if the reference(s) to the query demand only a limited number of rows.)

102

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to PostgreSQL
using the CREATE TYPE command.

Table 8-1 shows all the built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition, some
internally used or deprecated types are available, but are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character varying [(n) varchar [(n)] variable-length character string

]

character [(n)] char [(n)] fixed-length character string

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month, day)

double precision float$ double precision floating-point
number (8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [fields] [(p) time span

]

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control)
address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

path geometric path on a plane

point geometric point on a plane

polygon closed geometric path on a plane

103

Chapter 8. Data Types

Name Aliases Description

real float4 single precision floating-point
number (4 bytes)

smallint int2 signed two-byte integer

serial seriald autoincrementing four-byte
integer

text variable-length character string

time [(p)] [without time of day (no time zone)

time zone]

time [(p)] with time timetz time of day, including time zone

zone

timestamp [(p) 1 I date and time (no time zone)

without time zone]

timestamp [(p)] with timestamptz date and time, including time

time zone

zone

tsquery

text search query

tsvector

text search document

txid_snapshot

user-level transaction ID

snapshot
uuid universally unique identifier
xml XML data

Compatibility: The following types (or spellings thereof) are specified by SQL: bigint, bit, bit
varying, boolean, char, character varying, character, varchar, date, double precision,
integer, interval, numeric, decimal, real, smallint, time (with or without time zone),
timestamp (With or without time zone), xm1.

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy
when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,

and selectable-precision decimals. Table 8-2 lists the available types.

Table 8-2. Numeric Types

Name

Storage Size

Description

Range

smallint

2 bytes

small-range integer

-32768 to +32767

104

Chapter 8. Data Types

Name Storage Size Description Range
integer 4 bytes typical choice for -2147483648 to
integer +2147483647
bigint 8 bytes large-range integer -9223372036854775808
to
9223372036854775807
decimal variable user-specified precision, | no limit
exact
numeric variable user-specified precision, | no limit
exact
real 4 bytes variable-precision, 6 decimal digits
inexact precision
double precision 8 bytes variable-precision, 15 decimal digits
inexact precision
serial 4 bytes autoincrementing 1 to 2147483647
integer
bigserial 8 bytes large autoincrementing | 1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a full
set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information. The
following sections describe the types in detail.

8.1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint type
should only be used if the integer range is insufficient, because the latter is definitely faster.

On very minimal operating systems the bigint type might not function correctly, because it relies on
compiler support for eight-byte integers. On such machines, bigint acts the same as integer, but still
takes up eight bytes of storage. (We are not aware of any modern platform where this is the case.)

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names int2,
int4, and int8 are extensions, which are also used by some other SQL database systems.

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with up to 1000 digits of precision and perform calculations ex-
actly. It is especially recommended for storing monetary amounts and other quantities where exactness is
required. However, arithmetic on numeric values is very slow compared to the integer types, or to the
floating-point types described in the next section.

105

Chapter 8. Data Types

We use the following terms below: The scale of a numeric is the count of decimal digits in the fractional
part, to the right of the decimal point. The precision of a numeric is the total count of significant digits in
the whole number, that is, the number of digits to both sides of the decimal point. So the number 23.5141
has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To declare
a column of type numeric use the syntax:

NUMERIC (precision, scale)

The precision must be positive, the scale zero or positive. Alternatively:
NUMERIC (precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of this kind will not coerce input values
to any particular scale, whereas numeric columns with a declared scale will coerce input values to that
scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find this a bit
useless. If you’re concerned about portability, always specify the precision and scale explicitly.)

If the scale of a value to be stored is greater than the declared scale of the column, the system will round
the value to the specified number of fractional digits. Then, if the number of digits to the left of the decimal
point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type is
more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each group
of four decimal digits, plus five to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning “not-
a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in an SQL
command, you must put quotes around it, for example UPDATE table SET x = ’NaN’. On input, the
string NaN is recognized in a case-insensitive manner.

Note: In most implementations of the “not-a-number” concept, nan is not considered equal to any
other numeric value (including nan). In order to allow numeric values to be sorted and used in tree-
based indexes, PostgreSQL treats nan values as equal, and greater than all non-nan values.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

8.1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. In practice,
these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arithmetic (sin-
gle and double precision, respectively), to the extent that the underlying processor, operating system, and
compiler support it.

106

Chapter 8. Data Types

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics and
computer science and will not be discussed here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the numeric type
instead.

« If you want to do complicated calculations with these types for anything important, especially if you
rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the implementation
carefully.

« Comparing two floating-point values for equality might not always work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
—Infinity
NaN

CLINNTS

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, respec-
tively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values will prob-
ably not work as expected.) When writing these values as constants in an SQL command, you must put
quotes around them, for example UPDATE table SET x = 'Infinity’. On input, these strings are
recognized in a case-insensitive manner.

Note: IEEE754 specifies that nan should not compare equal to any other floating-point value (including
NaN). In order to allow floating-point values to be sorted and used in tree-based indexes, PostgreSQL
treats Nan values as equal, and greater than all non-nan values.

PostgreSQL also supports the SQL-standard notations float and float (p) for specifying inexact nu-
meric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL accepts
float (1) to float (24) as selecting the real type, while float (25) to float (53) select double
precision. Values of p outside the allowed range draw an error. f1oat with no precision specified is
taken to mean double precision.

Note: Prior to PostgreSQL 7.4, the precision in f1oat (p) was taken to mean so many decimal digits.
This has been corrected to match the SQL standard, which specifies that the precision is measured
in binary digits. The assumption that real and double precision have exactly 24 and 53 bits in
the mantissa respectively is correct for IEEE-standard floating point implementations. On non-IEEE
platforms it might be off a little, but for simplicity the same ranges of p are used on all platforms.

107

Chapter 8. Data Types

8.1.4. Serial Types

The data types serial and bigserial are not true types, but merely a notational convenience for
creating unique identifier columns (similar to the AUTO_INCREMENT property supported by some other
databases). In the current implementation, specifying:

CREATE TABLE tablename (
colname SERIAL

)i
is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename (
colname integer NOT NULL DEFAULT nextval (' tablename_colname_seq’)
)i
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a sequence
generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted. (In most cases
you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate values from
being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as “owned by’ the
column, so that it will be dropped if the column or table is dropped.

Note: Prior to PostgreSQL 7.3, serial implied un1iQuE. This is no longer automatic. If you wish a
serial column to have a unique constraint or be a primary key, it must now be specified, just like any
other data type.

To insert the next value of the sequence into the serial column, specify that the serial column should
be assigned its default value. This can be done either by excluding the column from the list of columns in
the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create a bigint column. bigserial
should be used if you anticipate the use of more than 2*' identifiers over the lifetime of the table.

The sequence created for a serial column is automatically dropped when the owning column is dropped.
You can drop the sequence without dropping the column, but this will force removal of the column default
expression.

8.2. Monetary Types

The money type stores a currency amount with a fixed fractional precision; see Table 8-3. The fractional
precision is determined by the database’s lc_monetary setting. Input is accepted in a variety of formats,
including integer and floating-point literals, as well as typical currency formatting, suchas * $1, 000.00".

108

Chapter 8. Data Types

Output is generally in the latter form but depends on the locale. Non-quoted numeric values can be con-
verted to money by casting the numeric value to text and then money, for example:

SELECT 1234::text::money;

There is no simple way of doing the reverse in a locale-independent manner, namely casting a money
value to a numeric type. If you know the currency symbol and thousands separator you can use

regexp_replace():

SELECT regexp_replace(’52093.89’ ::money::text, ’'[$,]1', ", 'g’)::numeric;

Since the output of this data type is locale-sensitive, it might not work to load money data into a database
that has a different setting of 1c_monetary. To avoid problems, before restoring a dump into a new
database make sure 1c_monetary has the same or equivalent value as in the database that was dumped.

Table 8-3. Monetary Types

Name Storage Size Description Range

money 8 bytes currency amount -
92233720368547758.08
to
+92233720368547758.07

8.3. Character Types

Table 8-4. Character Types

Name Description

character varying(n), varchar (n) variable-length with limit
character (n), char (n) fixed-length, blank padded
text variable unlimited length

Table 8-4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character (n), where nis a
positive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt
to store a longer string into a column of these types will result in an error, unless the excess characters
are all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared length,
values of type character will be space-padded; values of type character varying will simply store
the shorter string.

If one explicitly casts a value to character varying(n) or character (n), then an over-length value
will be truncated to n characters without raising an error. (This too is required by the SQL standard.)

109

Chapter 8. Data Types

The notations varchar (n) and char (n) are aliases for character varying(n) and character (n),
respectively. character without length specifier is equivalent to character(l). If character
varying is used without length specifier, the type accepts strings of any size. The latter is a PostgreSQL
extension.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the type
text is not in the SQL standard, several other SQL database management systems have it as well.

Values of type character are physically padded with spaces to the specified width n, and are stored
and displayed that way. However, the padding spaces are treated as semantically insignificant. Trailing
spaces are disregarded when comparing two values of type character, and they will be removed when
converting a character value to one of the other string types. Note that trailing spaces are semantically
significant in character varying and text values.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which includes
the space padding in the case of character. Longer strings have 4 bytes of overhead instead of 1. Long
strings are compressed by the system automatically, so the physical requirement on disk might be less.
Very long values are also stored in background tables so that they do not interfere with rapid access to
shorter column values. In any case, the longest possible character string that can be stored is about 1 GB.
(The maximum value that will be allowed for n in the data type declaration is less than that. It wouldn’t be
useful to change this because with multibyte character encodings the number of characters and bytes can
be quite different. If you desire to store long strings with no specific upper limit, use text or character
varying without a length specifier, rather than making up an arbitrary length limit.)

Tip: There is no performance difference among these three types, apart from increased storage space
when using the blank-padded type, and a few extra CPU cycles to check the length when storing
into a length-constrained column. While character (n) has performance advantages in some other
database systems, there is no such advantage in PostgreSQL; in fact character (n) is usually the
slowest of the three because of its additional storage costs. In most situations text or character
varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for information
about available operators and functions. The database character set determines the character set used to
store textual values; for more information on character set support, refer to Section 22.2.

Example 8-1. Using the character types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES (’'ok’);

SELECT a, char_length(a) FROM testl; —- ©
a | char_length

______ o

ok | 2

CREATE TABLE test2 (b varchar(5));

INSERT INTO test2 VALUES ('ok’);

INSERT INTO test2 VALUES (’good "y

INSERT INTO test2 VALUES (’'too long’);

ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES (’too long’::varchar(5)); —-- explicit truncation

110

Chapter 8. Data Types

SELECT b, char_length(b) FROM test2;

b | char_length
_______ T,
ok | 2

good |
too 1 | 5

©® The char_length function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8-5. The name type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use by the
general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but should
be referenced using the constant NAMEDATALEN in C source code. The length is set at compile time (and is
therefore adjustable for special uses); the default maximum length might change in a future release. The
type "char" (note the quotes) is different from char (1) in that it only uses one byte of storage. It is
internally used in the system catalogs as a simplistic enumeration type.

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types

The bytea data type allows storage of binary strings; see Table 8-6.

Table 8-6. Binary Data Types

Name Storage Size Description

bytea 1 or 4 bytes plus the actual variable-length binary string
binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
in two ways: First, binary strings specifically allow storing octets of value zero and other “non-printable”
octets (usually, octets outside the range 32 to 126). Character strings disallow zero octets, and also dis-
allow any other octet values and sequences of octet values that are invalid according to the database’s
selected character set encoding. Second, operations on binary strings process the actual bytes, whereas
the processing of character strings depends on locale settings. In short, binary strings are appropriate for
storing data that the programmer thinks of as “raw bytes”, whereas character strings are appropriate for
storing text.

When entering bytea values, octets of certain values must be escaped (but all octet values can be escaped)
when used as part of a string literal in an SQL statement. In general, to escape an octet, convert it into
its three-digit octal value and precede it by two backslashes. Table 8-7 shows the characters that must be
escaped, and gives the alternative escape sequences where applicable.

111

Chapter 8. Data Types

Table 8-7. bytea Literal Escaped Octets

Decimal Octet | Description Escaped Input | Example Output
Value Representation Representation
0 zero octet E’\\00O0’ SELECT \000

E’\\000’ : :bytea);

39 single quote 77 orE'\\047/ SELECT ¢
E’\”::bytea;
92 backslash E’\\\\’ or SELECT \\
E’\\134’ E’'\\\\" : :bytea;
0to 31 and 127 to | “non-printable” E’ \\xxx’ (octal SELECT \001
255 octets value) E’\\001’ : :byteal;

The requirement to escape non-printable octets varies depending on locale settings. In some instances you
can get away with leaving them unescaped. Note that the result in each of the examples in Table §-7 was
exactly one octet in length, even though the output representation is sometimes more than one character.

The reason multiple backslashes are required, as shown in Table 8-7, is that an input string written as a
string literal must pass through two parse phases in the PostgreSQL server. The first backslash of each pair
is interpreted as an escape character by the string-literal parser (assuming escape string syntax is used)
and is therefore consumed, leaving the second backslash of the pair. (Dollar-quoted strings can be used to
avoid this level of escaping.) The remaining backslash is then recognized by the bytea input function as
starting either a three digit octal value or escaping another backslash. For example, a string literal passed
to the server as E’ \\ 001’ becomes \ 001 after passing through the escape string parser. The \ 001 is then
sent to the bytea input function, where it is converted to a single octet with a decimal value of 1. Note
that the single-quote character is not treated specially by bytea, so it follows the normal rules for string
literals. (See also Section 4.1.2.1.)

Bytea octets are sometimes escaped when output. In general, each “non-printable” octet is converted
into its equivalent three-digit octal value and preceded by one backslash. Most “printable” octets are
represented by their standard representation in the client character set. The octet with decimal value 92
(backslash) is doubled in the output. Details are in Table 8-8.

Table 8-8. bytea Output Escaped Octets

Decimal Octet | Description Escaped Output | Example Output Result
Value Representation
92 backslash AN\ SELECT A\

E’\\134’ : :bytea|;

0to 31 and 127 to | “non-printable” \xxx (octal value) |SELECT \001
255 octets E’\\001’ : :byteal;

112

Chapter 8. Data Types

representation

E’\\176’ : :bytea;

Decimal Octet |Description Escaped Output | Example Output Result
Value Representation
32t0 126 “printable” octets | client character set | SELECT ~

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms
of escaping and unescaping bytea strings. For example, you might also have to escape line feeds and

carriage returns if your interface automatically translates these.

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT. The
input format is different from bytea, but the provided functions and operators are mostly the same.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8-9. The operations available
on these data types are described in Section 9.9.

Table 8-9. Date/Time Types

Name Storage Size |Description |Low Value High Value Resolution
timestamp [|8 bytes both date and | 4713 BC 294276 AD 1 microsecond /
(p) 1 I time (no time 14 digits
without zone)
time zone]
timestamp [|8 bytes both date and | 4713 BC 294276 AD 1 microsecond /
(p)] with time, with time 14 digits
time zone zone
date 4 bytes date (no time of |4713 BC 5874897 AD 1 day

day)
time [(p) 8 bytes time of day (no | 00:00:00 24:00:00 1 microsecond /
] [without date) 14 digits
time zone]
time [(p) 12 bytes times of day 00:00:00+1459 |24:00:00-1459 |1 microsecond /
] with time only, with time 14 digits
zone zone
interval [12 bytes time interval -178000000 178000000 1 microsecond /
fields 1 | years years 14 digits
(p)]

Note: Prior to PostgreSQL 7.3, writing just timestamp was equivalent to timestamp with time
zone. This was changed for SQL compliance.

time, timestamp, and interval accept an optional precision value p which specifies the number of

113

Chapter 8. Data Types

fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p is from O to 6 for the t imestamp and interval types.

Note: When timestamp values are stored as eight-byte integers (currently the default), microsecond
precision is available over the full range of values. When t imestamp values are stored as double preci-
sion floating-point numbers instead (a deprecated compile-time option), the effective limit of precision
might be less than 6. timestamp values are stored as seconds before or after midnight 2000-01-
01. When timestamp values are implemented using floating-point numbers, microsecond precision is
achieved for dates within a few years of 2000-01-01, but the precision degrades for dates further away.
Note that using floating-point datetimes allows a larger range of t imestamp values to be represented
than shown above: from 4713 BC up to 5874897 AD.

The same compile-time option also determines whether time and interval values are stored as
floating-point numbers or eight-byte integers. In the floating-point case, large interval values de-
grade in precision as the size of the interval increases.

For the t ime types, the allowed range of p is from 0 to 6 when eight-byte integer storage is used, or from
0 to 10 when floating-point storage is used.

The interval type has an additional option, which is to restrict the set of stored fields by writing one of
these phrases:

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND

Note that if both fields and p are specified, the fields must include SECOND, since the precision
applies only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, time, timestamp
without time zone, and timestamp with time zone should provide a complete range of
date/time functionality required by any application.

The types abst ime and reltime are lower precision types which are used internally. You are discouraged
from using these types in applications; these internal types might disappear in a future release.

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is

114

Chapter 8. Data Types

ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, DMY to select day-month-year interpretation, or
YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days of
the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings. Refer
to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p) 1 '"value’

where p is an optional precision specification giving the number of fractional digits in the seconds field.
Precision can be specified for t ime, t imestamp, and interval types. The allowed values are mentioned
above. If no precision is specified in a constant specification, it defaults to the precision of the literal value.

8.5.1.1. Dates

Table 8-10 shows some possible inputs for the date type.

Table 8-10. Date Input

Example Description

1999-01-08 ISO 8601; January 8 in any mode (recommended
format)

January 8, 1999 unambiguous in any datestyle input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in
pMyY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 year and day of year

J2451187 Julian day

January 8, 99 BC year 99 BC

115

Chapter 8. Data Types

8.5.1.2. Times

The time-of-day types are time [(p)] without time zone and time [(p)] with time
zone. time alone is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8-11
and Table 8-12.) If a time zone is specified in the input for time without time zone, it is silently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name that
involves a daylight-savings rule, such as America/New_York. In this case specifying the date is required
in order to determine whether standard or daylight-savings time applies. The appropriate time zone offset
is recorded in the time with time zone value.

Table 8-11. Time Input

Example Description

04:05:06.789 1SO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12
04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by abbreviation
2003-04-12 04:05:06 America/New_York |time zone specified by full name

Table 8-12. Time Zone Input

Example Description

PST Abbreviation (for Pacific Standard Time)
America/New_York Full time zone name

PST8PDT POSIX-style time zone specification
-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

z Short form of zulu

Refer to Section 8.5.3 for more information on how to specify time zones.

116

Chapter 8. Data Types

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by an
optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the time
zone, but this is not the preferred ordering.) Thus:

1999-01-08 04:05:06

and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:
January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates timestamp without time zone and timestamp with time
zone literals by the presence of a “+” or “-” symbol and time zone offset after the time. Hence, according
to the standard,

TIMESTAMP ’'2004-10-19 10:23:54'

isatimestamp without time zone, while

TIMESTAMP '2004-10-19 10:23:54+02’

is a timestamp with time zone. PostgreSQL never examines the content of a literal string before
determining its type, and therefore will treat both of the above as t imestamp without time zone.To
ensure that a literal is treated as t imestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE ’2004-10-19 10:23:54+02’

In a literal that has been determined to be timestamp without time zone, PostgreSQL will silently
ignore any time zone indication. That is, the resulting value is derived from the date/time fields in the
input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordinated
Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit time zone
specified is converted to UTC using the appropriate offset for that time zone. If no time zone is stated in
the input string, then it is assumed to be in the time zone indicated by the system’s timezone parameter,
and is converted to UTC using the offset for the t imezone zone.

When a timestamp with time zone value is output, it is always converted from UTC to the current
timezone zone, and displayed as local time in that zone. To see the time in another time zone, either
change timezone or use the AT TIME ZONE construct (see Section 9.9.3).

Conversions between t imestamp without time zone and timestamp with time zone normally
assume that the timestamp without time zone value should be taken or given as timezone local
time. A different time zone can be specified for the conversion using AT TIME ZONE.

117

Chapter 8. Data Types

8.5.1.4. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8-13.
The values infinity and —infinity are specially represented inside the system and will be displayed
unchanged; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. (In particular, now and related strings are converted to a specific time value as soon as
they are read.) All of these values need to be enclosed in single quotes when used as constants in SQL
commands.

Table 8-13. Special Date/Time Inputs

Input String Valid Types Description

epoch date, timestamp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date, timestamp later than all other time stamps

—-infinity date, timestamp earlier than all other time stamps

now date, time, timestamp current transaction’s start time

today date, timestamp midnight today

tomorrow date, timestamp midnight tomorrow

yesterday date, timestamp midnight yesterday

allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LocALTIMESTAMP. The latter four accept an optional subsecond precision specification. (See Section
9.9.4.) Note that these are SQL functions and are not recognized in data input strings.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL standard
requires the use of the ISO 8601 format. The name of the “SQL” output format is a historical accident.)
Table 8-14 shows examples of each output style. The output of the date and t ime types is of course only
the date or time part in accordance with the given examples.

Table 8-14. Date/Time Output Styles

Style Specification Description Example

ISO ISO 8601/SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST
POSTGRES original style Wed Dec 17 07:37:16 1997 PST
German regional style 17.12.1997 07:37:16.00 PST

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,

118

Chapter 8. Data Types

otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation of
input values.) Table 8-15 shows an example.

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day/monthlyear 17/12/1997 15:37:16.00 CET
SQL, MDY monthl/daylyear 12/17/1997 07:37:16.00 PST
Postgres, DMY day/monthlyear Wed 17 Dec 07:37:16 1997 PST

The date/time styles can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresqgl.conf configuration file, or the PGDATESTYLE environment variable on
the server or client. The formatting function to_char (see Section 9.8) is also available as a more flexible
way to format date/time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900’s, but continue to be prone
to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the widely-used
zoneinfo time zone database for information about historical time zone rules. For times in the future, the
assumption is that the latest known rules for a given time zone will continue to be observed indefinitely
far into the future.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

+ Although the date type cannot have an associated time zone, the time type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can vary
through the year with daylight-saving time boundaries.

+ The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible to
adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We do not recommend using the type time with time zone (though it is supported
by PostgreSQL for legacy applications and for compliance with the SQL standard). PostgreSQL assumes
your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in the
zone specified by the timezone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

A full time zone name, for example America/New_York. The recognized time zone names are listed
in the pg_timezone_names view (see Section 44.58). PostgreSQL uses the widely-used zoneinfo
time zone data for this purpose, so the same names are also recognized by much other software.

119

Chapter 8. Data Types

« A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition-
date rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view (see
Section 44.57). You cannot set the configuration parameters timezone or log_timezone to a time zone
abbreviation, but you can use abbreviations in date/time input values and with the AT TIME ZONE
operator.

+ In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time zone
specifications of the form STDoffset or STDoffsetDST, where STD is a zone abbreviation, offset
is a numeric offset in hours west from UTC, and DST is an optional daylight-savings zone abbreviation,
assumed to stand for one hour ahead of the given offset. For example, if EST5EDT were not already a
recognized zone name, it would be accepted and would be functionally equivalent to United States East
Coast time. When a daylight-savings zone name is present, it is assumed to be used according to the
same daylight-savings transition rules used in the zoneinfo time zone database’s posixrules entry.
In a standard PostgreSQL installation, posixrules is the same as US/Eastern, so that POSIX-style
time zone specifications follow USA daylight-savings rules. If needed, you can adjust this behavior by
replacing the posixrules file.

In short, this is the difference between abbreviations and full names: abbreviations always represent a
fixed offset from UTC, whereas most of the full names imply a local daylight-savings time rule, and so
have two possible UTC offsets.

One should be wary that the POSIX-style time zone feature can lead to silently accepting bogus input,
since there is no check on the reasonableness of the zone abbreviations. For example, SET TIMEZONE TO
FOOBARO will work, leaving the system effectively using a rather peculiar abbreviation for UTC. Another
issue to keep in mind is that in POSIX time zone names, positive offsets are used for locations west of
Greenwich. Everywhere else, PostgreSQL follows the ISO-8601 convention that positive timezone offsets
are east of Greenwich.

In all cases, timezone names are recognized case-insensitively. (This is a change from PostgreSQL ver-
sions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither full names nor abbreviations are hard-wired into the server; they are obtained from configuration
files stored under . ../share/timezone/ and .../share/timezonesets/ of the installation direc-
tory (see Section B.3).

The timezone configuration parameter can be set in the file postgresqgl.conf, or in any of the other
standard ways described in Chapter 18. There are also several special ways to set it:

« If timezone is not specified in postgresqgl.conf or as a server command-line option, the server
attempts to use the value of the Tz environment variable as the default time zone. If T2 is not defined or
is not any of the time zone names known to PostgreSQL, the server attempts to determine the operating
system’s default time zone by checking the behavior of the C library function localtime (). The
default time zone is selected as the closest match among PostgreSQL’s known time zones. (These rules
are also used to choose the default value of log_timezone, if not specified.)

+ The SQL command SET TIME ZzONE sets the time zone for the session. This is an alternative spelling
of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

« The PGTZ environment variable is used by libpq clients to send a SET TIME ZONE command to the
server upon connection.

120

Chapter 8. Data Types

8.5.4. Interval Input

interval values can be written using the following verbose syntax:
[@Q] quantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit iS microsecond, millisecond, second,
minute, hour, day, week, month, year, decade, century, millennium, or abbreviations or plurals
of these units; direction can be ago or empty. The at sign (@) is optional noise. The amounts of the
different units are implicitly added with appropriate sign accounting. ago negates all the fields. This
syntax is also used for interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For exam-
ple,”1 12:59:10" isread the same as 1 day 12 hours 59 min 10 sec’. Also, a combination of
years and months can be specified with a dash; for example * 200-10" is read the same as ' 200 years
10 months’. (These shorter forms are in fact the only ones allowed by the SQL standard, and are used
for output when IntervalStyleissetto sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designators”
of the standard’s section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with designators
looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8-16. Units may be omitted, and may be specified in any order, but
units smaller than a day must appear after T. In particular, the meaning of M depends on whether it is
before or after T.

Table 8-16. ISO 8601 interval unit abbreviations

Abbreviation Meaning

Years

Months (in the date part)
Weeks
Days

Hours

Minutes (in the time part)

©»iZ| Do |= ||

Seconds

In the alternative format:

P [years—months—days] [T hours:minutes:seconds]

the string must begin with P, and a T separates the date and time parts of the interval. The values are given
as numbers similar to ISO 8601 dates.

When writing an interval constant with a £ields specification, or when assigning a string to an interval
column that was defined with a fields specification, the interpretation of unmarked quantities depends
on the fields. For example INTERVAL ‘1’ YEAR isread as 1 year, whereas INTERVAL ‘1’ means 1
second. Also, field values “to the right” of the least significant field allowed by the fields specification

121

Chapter 8. Data Types

are silently discarded. For example, writing INTERVAL ’1 day 2:03:04’ HOUR TO MINUTE results
in dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading negative
sign applies to all fields; for example the negative sign in the interval literal * -1 2:03:04" applies to both
the days and hour/minute/second parts. PostgreSQL allows the fields to have different signs, and tradition-
ally treats each field in the textual representation as independently signed, so that the hour/minute/second
part is considered positive in this example. If IntervalStyle is set to sgql_standard then a leading
sign is considered to apply to all fields (but only if no additional signs appear). Otherwise the traditional
PostgreSQL interpretation is used. To avoid ambiguity, it’s recommended to attach an explicit sign to each
field if any field is negative.

Internally interval values are stored as months, days, and seconds. This is done because the number
of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment is
involved. The months and days fields are integers while the seconds field can store fractions. Because
intervals are usually created from constant strings or t imestamp subtraction, this storage method works
well in most cases. Functions justify_days and justify_hours are available for adjusting days and
hours that overflow their normal ranges.

In the verbose input format, and in some fields of the more compact input formats, field values can have
fractional parts; for example * 1.5 week’ or*01:02:03.45’. Such input is converted to the appropriate
number of months, days, and seconds for storage. When this would result in a fractional number of months
or days, the fraction is added to the lower-order fields using the conversion factors 1 month = 30 days and
1 day = 24 hours. For example, ' 1.5 month’ becomes 1 month and 15 days. Only seconds will ever be
shown as fractional on output.

Table 8-17 shows some examples of valid interval input.

Table 8-17. Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

1 year 2 months 3 days 4 hours 5 minutes 6 Traditional Postgres format: 1 year 2 months 3

seconds days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators”: same
meaning as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as
above

8.5.5. Interval Output

The output format of the interval type can be set to one of the four styles sql_standard, postgres,
postgres_verbose, Or iso_8601, using the command SET intervalstyle. The default is the
postgres format. Table 8-18 shows examples of each output style.

The sql_standard style produces output that conforms to the SQL standard’s specification for interval

122

Chapter 8. Data Types

literal strings, if the interval value meets the standard’s restrictions (either year-month only or day-time
only, with no mixing of positive and negative components). Otherwise the output looks like a standard
year-month literal string followed by a day-time literal string, with explicit signs added to disambiguate
mixed-sign intervals.

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to ISO.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4 when
the DateStyle parameter was set to non-ISO output.

The output of the iso_8601 style matches the “format with designators” described in section 4.4.3.2 of
the ISO 8601 standard.

Table 8-18. Interval Output Style Examples

Style Specification | Year-Month Interval |Day-Time Interval Mixed Interval
sql_standard 1-2 3 4:05:06 -1-2 43 -4:05:06
postgres 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3 days
-04:05:06
postgres_verbose @ 1 year 2 mons @ 3 days 4 hours 5 mins | @ 1 year 2 mons -3
6 secs days 4 hours 5 mins 6
secs ago
iso_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-
6S

8.5.6. Internals

PostgreSQL uses Julian dates for all date/time calculations. This has the useful property of correctly
calculating dates from 4713 BC to far into the future, using the assumption that the length of the year is
365.2425 days.

Date conventions before the 19th century make for interesting reading, but are not consistent enough to
warrant coding into a date/time handler.

8.6. Boolean Type

PostgreSQL provides the standard SQL type boolean. boolean can have one of only two states: “true”
or “false”. A third state, “unknown”, is represented by the SQL null value.

Valid literal values for the “true” state are:
TRUE

res

"true’

123

Chapter 8. Data Types

s,

y
ryesl
’on’

14 1 14
For the “false” state, the following values can be used:

FALSE
!f!
"false’
Inl
Inol
roff’
IOI

Leading or trailing whitespace is ignored, and case does not matter. The key words TRUE and FALSE are
the preferred (SQL-compliant) usage.

Example 8-2. Using the boolean type

CREATE TABLE testl (a boolean, b text);
INSERT INTO testl VALUES (TRUE, ’sic est’);
INSERT INTO testl VALUES (FALSE, ’'non est’);
SELECT + FROM testl;

a | b

Example 8-2 shows that boolean values are output using the letters t and f.

boolean uses | byte of storage.

8.7. Enumerated Types

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equivalent
to the enum types supported in a number of programming languages. An example of an enum type might
be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types
Enum types are created using the CREATE TYPE command, for example:

CREATE TYPE mood AS ENUM (’sad’, ’'ok’, ’'happy’);

124

Chapter 8. Data Types

Once created, the enum type can be used in table and function definitions much like any other type:

Example 8-3. Basic Enum Usage

CREATE TYPE mood AS ENUM (’sad’, ’'ok’, "happy’):;
CREATE TABLE person (
name text,
current_mood mood
)i
INSERT INTO person VALUES (’'Moe’, ’"happy’);

SELECT * FROM person WHERE current_mood = "happy’;
name | current_mood

______ e

Moe | happy

(1 row)

8.7.2. Ordering

The ordering of the values in an enum type is the order in which the values were listed when the type was
created. All standard comparison operators and related aggregate functions are supported for enums. For
example:

Example 8-4. Enum Ordering

INSERT INTO person VALUES (’'Larry’, ’'sad’);
INSERT INTO person VALUES (’Curly’, ’"ok’);
SELECT x= FROM person WHERE current_mood > ’'sad’;

name | current_mood
_______ o
Moe | happy

Curly | ok

(2 rows)

SELECT x FROM person WHERE current_mood > ’‘sad’ ORDER BY current_mood;

name current_mood

|
_______ o
Curly | ok
Moe | happy
(2 rows)

SELECT name

FROM person

WHERE current_mood = (SELECT MIN (current_mood) FROM person);
name

125

Chapter 8. Data Types

8.7.3. Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types.

Example 8-5. Lack of Casting

CREATE TYPE happiness AS ENUM ('happy’, ’'very happy’, ’ecstatic’);
CREATE TABLE holidays (

num_weeks integer,

happiness happiness
)i
INSERT INTO holidays (num_weeks, happiness) VALUES (4, "happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (6, 'very happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (8, ’'ecstatic’);
INSERT INTO holidays (num_weeks,happiness) VALUES (2, ’'sad’);
ERROR: invalid input value for enum happiness: "sad"
SELECT person.name, holidays.num_weeks FROM person, holidays

WHERE person.current_mood = holidays.happiness;

ERROR: operator does not exist: mood = happiness

If you really need to do something like that, you can either write a custom operator or add explicit casts
to your query:

Example 8-6. Comparing Different Enums by Casting to Text

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood::text = holidays.happiness::text;
name | num_weeks

8.7.4. Implementation Details

An enum value occupies four bytes on disk. The length of an enum value’s textual label is limited by the
NAMEDATALEN setting compiled into PostgreSQL; in standard builds this means at most 63 bytes.

Enum labels are case sensitive, so ' happy’ is not the same as ' HaApPPY’. White space in the labels is
significant too.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum.
Querying this catalog directly can be useful.

8.8. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8-19 shows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other types.

126

Table 8-19. Geometric Types

Chapter 8. Data Types

Name Storage Size Representation Description

point 16 bytes Point on a plane x,y)

line 32 bytes Infinite line (not fully (x1,y1),(x2,y2))
implemented)

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to | ((x1,y1),...)
polygon)

path 16+16n bytes Open path [(xL,y]),...]

polygon 40+16n bytes Polygon (similar to (xLyD),...)
closed path)

circle 24 bytes Circle <(x,y),r> (center point

and radius)

A rich set of functions and operators is available to perform various geometric operations such as scaling,
translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of type point are
specified using the following syntax:

(x, v)
X 5 Y

where x and y are the respective coordinates, as floating-point numbers.

8.8.2. Line Segments

Line segments (1seg) are represented by pairs of points. Values of type 1seg are specified using the

following syntax:

((x1 , yiI
(x1, yl
x1 , yl

)
)

’

14

’

(
(

x2
x2
x2

; y2))
r y2)
, y2

where (x1,y1) and (x2, y2) are the end points of the line segment.

8.8.3. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using the following syntax:

((x1, yi

)

4

(

x2

ry2))

127

Chapter 8. Data Types

(x1, y1) , (x2, y2)
x1 , vyl , x2 4, y2

where (x1,y1) and (x2, y2) are any two opposite corners of the box.

Boxes are output using the first syntax. Any two opposite corners can be supplied on input, but the values
will be reordered as needed to store the upper right and lower left corners.

8.8.4. Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last points in the
list are considered not connected, or closed, where the first and last points are considered connected.

Values of type path are specified using the following syntax:

((x1, y1) , «.. , (xn , yn))
[(x1 , y1) , «.. , (xn , yn)]
(x1 , y1) , .. , (xn , yn)

(x1 , yl PR xn , yn)
x1 , yl PR xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([1) indicate
an open path, while parentheses (()) indicate a closed path.

Paths are output using the first or second syntax, as appropriate.

8.8.5. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Values of type polygon are specified using the following syntax:

((x1, y1) , «.. , (xn , yn))
(x1 , y1) , «o. , (xn , yn)
(x1 , yl P xn , yn)
x1 , vyl PR xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.8.6. Circles

Circles are represented by a center point and radius. Values of type circle are specified using the fol-
lowing syntax:

< | r Y
(;Y)
v
v

NN N N

X
X
(x,
X

I4

128

Chapter 8. Data Types

where (x, y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8-20. It is better
to use these types instead of plain text types to store network addresses, because these types offer input
error checking and specialized operators and functions (see Section 9.12).

Table 8-20. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sorting inet or cidr data types, [Pv4 addresses will always sort before IPv6 addresses, including
IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet

The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The subnet
is represented by the number of network address bits present in the host address (the “netmask”™). If the
netmask is 32 and the address is IPv4, then the value does not indicate a subnet, only a single host. In
IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want to
accept only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the
number of bits in the netmask. If the /y portion is missing, the netmask is 32 for [Pv4 and 128 for IPv6,
so the value represents just a single host. On display, the /y portion is suppressed if the netmask specifies
a single host.

8.9.2. cidr

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networks is address/y where address
is the network represented as an IPv4 or IPv6 address, and y is the number of bits in the netmask. If y
is omitted, it is calculated using assumptions from the older classful network numbering system, except
it will be at least large enough to include all of the octets written in the input. It is an error to specify a
network address that has bits set to the right of the specified netmask.

Table 8-21 shows some examples.

129

Table 8-21. cidr Type Input Examples

Chapter 8. Data Types

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24
128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16
128.1.2 128.1.2.0/24 128.1.2/24
10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8
10.1.2.3/32 10.1.2.3/32 10.1.2.3/32

2001:418:3:ba::/64

2001:4f8:3:ba::/64

2001:4f8:3:ba::/64

2001:418:3:ba:2e0:811f:fe22:d1f1

12801:418:3:ba:2e0:811f:fe22:d1f1

12801:418:3:ba:2e0:811f:fe22:d1f1

:offff:1.2.3.0/120

=ffff:1.2.3.0/120

=ffff:1.2.3/120

=ffff:1.2.3.0/128

=ffff:1.2.3.0/128

=ffff:1.2.3.0/128

8.9.3. inet VS. cidr

The essential difference between inet and cidr data types is that inet accepts values with nonzero bits
to the right of the netmask, whereas cidr does not.

Tip: If you do not like the output format for inet or cidr values, try the functions host, text, and

abbrev.

8.9.4. macaddr

The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following formats:

708:00:2b:01:02:03"
"08-00-2b-01-02-03"
708002b:010203"
708002b-010203"
70800.2b01.0203"

130

Chapter 8. Data Types

7080020102037

These examples would all specify the same address. Upper and lower case is accepted for the digits a
through £. Output is always in the first of the forms shown.

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for MAC
addresses, and specifies the first form (with colons) as the bit-reversed notation, so that 08-00-2b-01-02-
03 = 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is only relevant for obsolete
network protocols (such as Token Ring). PostgreSQL makes no provisions for bit reversal, and all accepted
formats use the canonical LSB order.

The remaining four input formats are not part of any standard.

8.10. Bit String Types

Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two SQL
bit types: bit (n) and bit varying (n), where n is a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bit without a length is equivalent to bit (1), while bit varying without a length
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit (n), it will be truncated or zero-padded on the right
to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value to bit
varying (n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators and
string manipulation functions are available; see Section 9.6.

Example 8-7. Using the bit string types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B’00");

INSERT INTO test VALUES (B’10’, B’"1017);

ERROR: Dbit string length 2 does not match type bit (3)
INSERT INTO test VALUES (B’10’::bit(3), B’101’");
SELECT x FROM test;

a | b
,,,,, I
101 | 00
100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section 8.3
for character strings).

131

Chapter 8. Data Types

8.11. Text Search Types

PostgreSQL provides two data types that are designed to support full text search, which is the activity
of searching through a collection of natural-language documents to locate those that best match a qguery.
The tsvector type represents a document in a form optimized for text search; the t squery type simi-
larly represents a text query. Chapter 12 provides a detailed explanation of this facility, and Section 9.13
summarizes the related functions and operators.

8.11.1. tsvector

A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized to
merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-elimination
are done automatically during input, as shown in this example:

SELECT "a fat cat sat on a mat and ate a fat rat’::tsvector;
tsvector

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT Sthe lexeme ' ’ contains spaces$$::tsvector;
tsvector
! " ’contains’ ’lexeme’ ’spaces’ ’'the’

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having to
double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $$the lexeme ’Joe”s’ contains a quote$$::tsvector;
tsvector

s’ ’"a’ ’'contains’ ’lexeme’ ’'quote’ ’‘the’

Optionally, integer positions can be attached to lexemes:

SELECT "a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12’::tsvector;
tsvector

"a’:1,6,10 "and’ :8 "ate’:9 'cat’:3 ’'fat’:2,11 "mat’:7 ’'on’:5 ’'rat’:12 ’'sat’:4

A position normally indicates the source word’s location in the document. Positional information can be
used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently set to
16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A, B, C, or D. D is the
default and hence is not shown on output:

SELECT "a:1A fat:2B,4C cat:5D’::tsvector;
tsvector

"a’ :1A ’'cat’:5 ’"fat’ :2B,4C

132

Chapter 8. Data Types

Weights are typically used to reflect document structure, for example by marking title words differently
from body words. Text search ranking functions can assign different priorities to the different weight
markers.

It is important to understand that the t svector type itself does not perform any normalization; it assumes
the words it is given are normalized appropriately for the application. For example,

select ’'The Fat Rats’::tsvector;
tsvector

"Fat’ ’'Rats’ ’'The’

For most English-text-searching applications the above words would be considered non-normalized, but
tsvector doesn’t care. Raw document text should usually be passed through to_tsvector to normalize
the words appropriately for searching:

SELECT to_tsvector (’english’, ’'The Fat Rats’);
to_tsvector

Again, see Chapter 12 for more detail.

8.11.2. tsquery

A tsquery value stores lexemes that are to be searched for, and combines them honoring the boolean
operators & (AND), | (OR), and ! (NOT). Parentheses can be used to enforce grouping of the operators:

SELECT ’fat & rat’::tsquery;
tsquery

SELECT "fat & (rat | cat)’::tsquery;
tsquery

SELECT "fat & rat & ! cat’::tsquery;
tsquery

"fat’” & ’'rat’ & !’cat’

In the absence of parentheses, ! (NOT) binds most tightly, and & (AND) binds more tightly than | (OR).

Optionally, lexemes in a t squery can be labeled with one or more weight letters, which restricts them to
match only tsvector lexemes with matching weights:

SELECT ’fat:ab & cat’::tsquery;
tsquery

"fat’ :AB & 'cat’

133

Chapter 8. Data Types

Also, lexemes in a t squery can be labeled with « to specify prefix matching:

SELECT ’super:*’::tsquery;
tsquery

This query will match any word in a t svector that begins with “super”.

Quoting rules for lexemes are the same as described previously for lexemes in tsvector; and, as with
tsvector, any required normalization of words must be done before converting to the tsquery type.
The to_tsquery function is convenient for performing such normalization:

SELECT to_tsquery(’'Fat:ab & Cats’);
to_tsquery

8.12. UUID Type

The data type uuid stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identifier,
or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen to make
it very unlikely that the same identifier will be generated by anyone else in the known universe using the
same algorithm. Therefore, for distributed systems, these identifiers provide a better uniqueness guarantee
than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by hyphens,
specifically a group of 8 digits followed by three groups of 4 digits followed by a group of 12 digits, for a
total of 32 digits representing the 128 bits. An example of a UUID in this standard form is:

aleebc99-9c0b-4ef8-bb6d-6bbo9bd380all

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the standard
format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of four digits.
Examples are:

AQOEEBC99-9COB-4EF8-BB6D-6BB9BD380A11
{aleebc99-9c0b-4ef8-bb6d-6bb9od380all}
aleebc999c0b4ef8bbb6d6bb9bd380all
alee-bc99-9c0b-4ef8-bbb6d-6bb9-bd38-0all
{a0eebc99-9c0b4ef8-bb6d6bb9-bd380all}

Output is always in the standard form.

PostgreSQL provides storage and comparison functions for UUIDs, but the core database does not include
any function for generating UUIDs, because no single algorithm is well suited for every application. The

134

Chapter 8. Data Types

contrib module contrib/uuid-ossp provides functions that implement several standard algorithms.
Alternatively, UUIDs could be generated by client applications or other libraries invoked through a server-
side function.

8.13. XML Type

The xm1 data type can be used to store XML data. Its advantage over storing XML data in a text field is
that it checks the input values for well-formedness, and there are support functions to perform type-safe
operations on it; see Section 9.14. Use of this data type requires the installation to have been built with

configure --with-libxml.

The xm1 type can store well-formed “documents”, as defined by the XML standard, as well as “content”
fragments, which are defined by the production XMLDecl1? content in the XML standard. Roughly, this
means that content fragments can have more than one top-level element or character node. The expression
xmlvalue IS DOCUMENT can be used to evaluate whether a particular xm1 value is a full document or
only a content fragment.

8.13.1. Creating XML Values

To produce a value of type xm1 from character data, use the function xmlparse:
XMLPARSE ({ DOCUMENT | CONTENT } value)
Examples:

XMLPARSE (DOCUMENT ’<?xml version="1.0"?><book><title>Manual</title><chapter>...</chapter><
XMLPARSE (CONTENT ’abc<foo>bar</foo><bar>foo</bar>")

While this is the only way to convert character strings into XML values according to the SQL standard,
the PostgreSQL-specific syntaxes:

xml ’<foo>bar</foo>'
" <foo>bar</foo>’::xml

can also be used.

The xm1 type does not validate input values against a document type declaration (DTD), even when the
input value specifies a DTD.

The inverse operation, producing a character string value from xm1, uses the function xmlserialize:

XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type)

typecanbe character, character varying, or text (or an alias for one of those). Again, according
to the SQL standard, this is the only way to convert between type xm1 and character types, but PostgreSQL
also allows you to simply cast the value.

When a character string value is cast to or from type xml without going through XMLPARSE or
XMLSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML
option” session configuration parameter, which can be set using the standard command:

135

Chapter 8. Data Types

SET XML OPTION { DOCUMENT | CONTENT };

or the more PostgreSQL-like syntax
SET xmloption TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in the XML
data passed through them. When using the text mode to pass queries to the server and query results to the
client (which is the normal mode), PostgreSQL converts all character data passed between the client and
the server and vice versa to the character encoding of the respective end; see Section 22.2. This includes
string representations of XML values, such as in the above examples. This would ordinarily mean that
encoding declarations contained in XML data can become invalid as the character data is converted to
other encodings while travelling between client and server, because the embedded encoding declaration
is not changed. To cope with this behavior, encoding declarations contained in character strings presented
for input to the xm1 type are ignored, and content is assumed to be in the current server encoding. Conse-
quently, for correct processing, character strings of XML data must be sent from the client in the current
client encoding. It is the responsibility of the client to either convert documents to the current client en-
coding before sending them to the server, or to adjust the client encoding appropriately. On output, values
of type xm1 will not have an encoding declaration, and clients should assume all data is in the current
client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
character set conversion is performed, so the situation is different. In this case, an encoding declaration in
the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as required
by the XML standard; note that PostgreSQL does not support UTF-16). On output, data will have an
encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in which case it
will be omitted.

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient if the
XML data encoding, client encoding, and server encoding are the same. Since XML data is internally
processed in UTF-8, computations will be most efficient if the server encoding is also UTF-8.

Caution

Some XML-related functions may not work at all on non-ASCII data when the server
encoding is not UTF-8. This is known to be an issue for xpath () in particular.

8.13.3. Accessing XML Values

The xm1 data type is unusual in that it does not provide any comparison operators. This is because there
is no well-defined and universally useful comparison algorithm for XML data. One consequence of this
is that you cannot retrieve rows by comparing an xm1 column against a search value. XML values should
therefore typically be accompanied by a separate key field such as an ID. An alternative solution for com-

136

Chapter 8. Data Types

paring XML values is to convert them to character strings first, but note that character string comparison
has little to do with a useful XML comparison method.

Since there are no comparison operators for the xm1 data type, it is not possible to create an index directly
on a column of this type. If speedy searches in XML data are desired, possible workarounds include
casting the expression to a character string type and indexing that, or indexing an XPath expression. Of
course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches of XML
data. The necessary preprocessing support is, however, not yet available in the PostgreSQL distribution.

8.14. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Arrays
of any built-in or user-defined base type, enum type, or composite type can be created. Arrays of domains
are not yet supported.

8.14.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (
name text,
pay_by_qgquarter integer|[],
schedule text[][]
)i

As shown, an array data type is named by appending square brackets ([1) to the data type name of the
array elements. The above command will create a table named sal_emp with a column of type text
(name), a one-dimensional array of type integer (pay_by_quarter), which represents the employee’s
salary by quarter, and a two-dimensional array of text (schedule), which represents the employee’s
weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3][3]
)

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the same
as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of a par-
ticular element type are all considered to be of the same type, regardless of size or number of dimensions.
So, declaring the array size or number of dimensions in CREATE TABLE is simply documentation; it does
not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard by using the keyword ARRAY, can be used for
one-dimensional arrays. pay_by_guarter could have been defined as:

137

Chapter 8. Data Types

pay_by_qgquarter integer ARRAY[4],
Or, if no array size is to be specified:
pay_by_quarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.14.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and separate
them by commas. (If you know C, this is not unlike the C syntax for initializing structures.) You can put
double quotes around any element value, and must do so if it contains commas or curly braces. (More
details appear below.) Thus, the general format of an array constant is the following:

"{ vall delim val2 delim ... }'

where delimis the delimiter character for the type, as recorded in its pg_t ype entry. Among the standard
data types provided in the PostgreSQL distribution, all use a comma (,), except for type box which uses
a semicolon (;). Each va1 is either a constant of the array element type, or a subarray. An example of an
array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}’

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or lower-
case variant of NULL will do.) If you want an actual string value “NULL”, you must put double quotes
around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements:

INSERT INTO sal_emp
VALUES (’Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"training", "presentation"}}’);

INSERT INTO sal_emp
VALUES ('Carol’,
{20000, 25000, 25000, 25000}",
"{{"breakfast", "consulting"}, {"meeting", "lunch"}}’);

The result of the previous two inserts looks like this:
SELECT x FROM sal_emp;

name | pay_by_quarter | schedule
7777777 +777777777777777777777777777+777

138

Chapter 8. Data Types

Bill | {10000,10000,10000,10000} | {{meeting,lunch}, {training,presentation}}
Carol | {20000,25000,25000,25000} | {{breakfast,consulting}, {meeting, lunch}}
(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error, for
example:

INSERT INTO sal_emp
VALUES (’'Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"meeting"}}’);
ERROR: multidimensional arrays must have array expressions with matching dimensions

The ARRAY constructor syntax can also be used:

INSERT INTO sal_emp
VALUES (’Bill’,
ARRAY[10000, 10000, 10000, 100007,
ARRAY [['meeting’, ’'lunch’], [’training’, ’presentation’]]);

INSERT INTO sal_emp
VALUES ('Carol’,
ARRAY[20000, 25000, 25000, 250007,
ARRAY [["breakfast’, ’'consulting’], ['meeting’, ’'lunch’]]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals are
single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor syntax
is discussed in more detail in Section 4.2.11.

8.14.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_qgquarter([2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-based
numbering convention for arrays, that is, an array of n elements starts with array[1] and ends with

array[n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

139

Chapter 8. Data Types

pay_by_quarter

10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted by
writing Iower-bound: upper—-bound for one or more array dimensions. For example, this query retrieves
the first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting}, {training}}
(1 row)

If any dimension is written as a slice, i.e., contains a colon, then all dimensions are treated as slices. Any
dimension that has only a single number (no colon) is treated as being from 1 to the number specified. For
example, [2] is treated as [1:2], as in this example:

SELECT schedule[1l:2][2] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting, lunch}, {training, presentation}}
(1 row)

To avoid confusion with the non-slice case, it’s best to use slice syntax for all dimensions, e.g.,
[1:2][1:1],n0t [2][1:1].

An array subscript expression will return null if either the array itself or any of the subscript expressions
are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise an error).
For example, if schedule currently has the dimensions [1:3] [1:2] thenreferencing schedule[3] [3]
yields NULL. Similarly, an array reference with the wrong number of subscripts yields a null rather than
an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slice that is completely outside the current array
bounds, a slice expression yields an empty (zero-dimensional) array instead of null. (This does not match
non-slice behavior and is done for historical reasons.) If the requested slice partially overlaps the array
bounds, then it is silently reduced to just the overlapping region instead of returning null.

The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims (schedule) FROM sal_emp WHERE name = ’'Carol’;

array_dims

140

Chapter 8. Data Types

(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with array_upper and array_lower, which return the
upper and lower bound of a specified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal_emp WHERE name = ’‘Carol’;

array_upper

(1 row)
array_length will return the length of a specified array dimension:
SELECT array_length(schedule, 1) FROM sal_emp WHERE name = ’Carol’;

array_length

8.14.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter ’{25000,25000,27000,27000}"

WHERE name = ’'Carol’;
or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
WHERE name = ’'Carol’;

An array can also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = 'Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[l:2] = ’{27000,27000}"
WHERE name = ’Carol’;

A stored array value can be enlarged by assigning to elements not already present. Any positions between
those previously present and the newly assigned elements will be filled with nulls. For example, if array
myarray currently has 4 elements, it will have six elements after an update that assigns to myarray[6];

141

Chapter 8. Data Types

myarray [5] will contain null. Currently, enlargement in this fashion is only allowed for one-dimensional
arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example one
might assign to myarray [-2:7] to create an array with subscript values from -2 to 7.

New array values can also be constructed using the concatenation operator, | | :

SELECT ARRAY[1,2] || ARRAY[3,4];
?column?

{1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY([[1,2],[3,411;

?column?

{{5,6},{1,2},1{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed onto the beginning or end of a one-
dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-dimensional
array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the result is
an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims (1 || "[0:1]={2,3}" ::int[]);
array_dims

[0:2]
(1 row)

SELECT array_dims (ARRAY[1,2] || 3);
array_dims

[1:3]
(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower bound
subscript of the left-hand operand’s outer dimension. The result is an array comprising every element of
the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

[1:5]
(1 row)

SELECT array_dims (ARRAY[[1,2],[3,41]1 || ARRAY[[5,6],17,81,19,011);
array_dims

142

Chapter 8. Data Types

[1:5][1:2]
(1 row)

When an v-dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the result
is analogous to the element-array case above. Each N-dimensional sub-array is essentially an element of
the N+1-dimensional array’s outer dimension. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[[3,4]1,[5,611);
array_dims

[1:3][1:2]
(1 row)

An array can also be constructed by using the functions array_prepend, array_append,
or array_cat. The first two only support one-dimensional arrays, but array_cat supports
multidimensional arrays. Note that the concatenation operator discussed above is preferred over direct
use of these functions. In fact, these functions primarily exist for use in implementing the concatenation
operator. However, they might be directly useful in the creation of user-defined aggregates. Some
examples:

SELECT array_prepend(l, ARRAY[2,3]);
array_prepend

{1,2,3}
(1 row)

SELECT array_append (ARRAY[1,2], 3);
array_append

{1,2,3}
(1 row)

SELECT array_cat (ARRAY[1,2], ARRAY[3,4]);
array_cat

{1,2,3,4}
(1 row)

SELECT array_cat (ARRAY[[1,2],[3,4]1]1, ARRAY[5,6]);
array_cat

{{1,2},{3,4},{5,6}}
(1 row)

SELECT array_cat (ARRAY[5,6], ARRAY[[1,2],(3,411);
array_cat

{{5,6},{1,2},{3,4}}

143

Chapter 8. Data Types

8.14.5. Searching in Arrays

To search for a value in an array, each value must be checked. This can be done manually, if you know the
size of the array. For example:

SELECT x FROM sal_emp WHERE pay_by_quarter[1l] = 10000 OR
pay_by_quarter[2] = 10000 OR
pay_by_qgquarter[3] = 10000 OR
pay_by_qgquarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.21. The above query could be replaced by:

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);
In addition, you can find rows where the array has all values equal to 10000 with:

SELECT x FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, the generate_subscripts function can be used. For example:

SELECT » FROM
(SELECT pay_by_gquarter,
generate_subscripts (pay_by_quarter, 1) AS s
FROM sal_emp) AS foo
WHERE pay_by_quarter[s] = 10000;

This function is described in Table 9-46.

Tip: Arrays are not sets; searching for specific array elements can be a sign of database misdesign.
Consider using a separate table with a row for each item that would be an array element. This will be
easier to search, and is likely to scale better for a large number of elements.

8.14.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array’s element type, plus decoration that indicates the array structure. The
decoration consists of curly braces ({ and }) around the array value plus delimiter characters between
adjacent items. The delimiter character is usually a comma (,) but can be something else: it is determined
by the typdelim setting for the array’s element type. Among the standard data types provided in the
PostgreSQL distribution, all use a comma, except for type box, which uses a semicolon (;). In a multidi-
mensional array, each dimension (row, plane, cube, etc.) gets its own level of curly braces, and delimiters
must be written between adjacent curly-braced entities of the same level.

144

Chapter 8. Data Types

The array output routine will put double quotes around element values if they are empty strings, contain
curly braces, delimiter characters, double quotes, backslashes, or white space, or match the word NULL.
Double quotes and backslashes embedded in element values will be backslash-escaped. For numeric data
types it is safe to assume that double quotes will never appear, but for textual data types one should be
prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array’s dimensions is set to one. To represent arrays with
other lower bounds, the array subscript ranges can be specified explicitly before writing the array contents.
This decoration consists of square brackets ([1) around each array dimension’s lower and upper bounds,
with a colon (:) delimiter character in between. The array dimension decoration is followed by an equal
sign (=). For example:

SELECT f£f1[1][-2][3] AS el, f1[1][-1][5] AS e2
FROM (SELECT ' [1:1]1[-2:-1]1[3:5]1={{{1,2,3},{4,5,6}}}"::int[] AS fl) AS ss;

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL. The
presence of any quotes or backslashes disables this and allows the literal string value “NULL” to be
entered. Also, for backwards compatibility with pre-8.2 versions of PostgreSQL, the array_nulls configu-
ration parameter can be turned o f £ to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can use double quotes around any individual
array element. You must do so if the element value would otherwise confuse the array-value parser. For
example, elements containing curly braces, commas (or the data type’s delimiter character), double quotes,
backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and strings matching
the word NULL must be quoted, too. To put a double quote or backslash in a quoted array element value,
use escape string syntax and precede it with a backslash. Alternatively, you can avoid quotes and use
backslash-escaping to protect all data characters that would otherwise be taken as array syntax.

You can add whitespace before a left brace or after a right brace. You can also add whitespace before or
after any individual item string. In all of these cases the whitespace will be ignored. However, whitespace
within double-quoted elements, or surrounded on both sides by non-whitespace characters of an element,
is not ignored.

Note: Remember that what you write in an SQL command will first be interpreted as a string literal,
and then as an array. This doubles the number of backslashes you need. For example, to insert a
text array value containing a backslash and a double quote, you'd need to write:

INSERT ... VALUES (E’ {"\\\\","\\""}");

The escape string processor removes one level of backslashes, so that what arrives at the array-value
parser looks like {"\\", "\""}. In turn, the strings fed to the text data type’s input routine become \
and " respectively. (If we were working with a data type whose input routine also treated backslashes
specially, bytea for example, we might need as many as eight backslashes in the command to get one
backslash into the stored array element.) Dollar quoting (see Section 4.1.2.4) can be used to avoid
the need to double backslashes.

145

Chapter 8. Data Types

Tip: The arraY constructor syntax (see Section 4.2.11) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In array, individual element values are
written the same way they would be written when not members of an array.

8.15. Composite Types

A composite type represents the structure of a row or record; it is essentially just a list of field names and
their data types. PostgreSQL allows composite types to be used in many of the same ways that simple
types can be used. For example, a column of a table can be declared to be of a composite type.

8.15.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
r double precision,
i double precision
)i

CREATE TYPE inventory_item AS (

name text,
supplier_id integer,
price numeric

)

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified; no
constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential; without
it, the system will think a different kind of CREATE TYPE command is meant, and you will get odd syntax
erTors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item inventory_item,
count integer

)i
INSERT INTO on_hand VALUES (ROW(’ fuzzy dice’, 42, 1.99), 1000);
or functions:

CREATE FUNCTION price_extension (inventory_item, integer) RETURNS numeric
AS ’'SELECT $l.price * $2’ LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

146

Chapter 8. Data Types

Whenever you create a table, a composite type is also automatically created, with the same name as the
table, to represent the table’s row type. For example, had we said:

CREATE TABLE inventory_item (

name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

)

then the same inventory_item composite type shown above would come into being as a byproduct, and
could be used just as above. Note however an important restriction of the current implementation: since
no constraints are associated with a composite type, the constraints shown in the table definition do not
apply to values of the composite type outside the table. (A partial workaround is to use domain types as
members of composite types.)

8.15.2. Composite Value Input

To write a composite value as a literal constant, enclose the field values within parentheses and separate
them by commas. You can put double quotes around any field value, and must do so if it contains commas
or parentheses. (More details appear below.) Thus, the general format of a composite constant is the
following:

'(vall , valz , ...)’
An example is:
" ("fuzzy dice",42,1.99)'

which would be a valid value of the inventory_item type defined above. To make a field be NULL,
write no characters at all in its position in the list. For example, this constant specifies a NULL third field:

" ("fuzzy dice",42,)’
If you want an empty string rather than NULL, write double quotes:
4 ("ll,42,) ’

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Section 4.1.2.7.
The constant is initially treated as a string and passed to the composite-type input conversion routine. An
explicit type specification might be necessary.)

The ROW expression syntax can also be used to construct composite values. In most cases this is consid-
erably simpler to use than the string-literal syntax since you don’t have to worry about multiple layers of
quoting. We already used this method above:

ROW (' fuzzy dice’, 42, 1.99)
ROW (”, 42, NULL)

147

Chapter 8. Data Types

The ROW keyword is actually optional as long as you have more than one field in the expression, so these
can simplify to:

(" fuzzy dice’, 42, 1.99)
(”, 42, NULL)

The rROW expression syntax is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from a table name. In fact, it’s so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields from
our on_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

This will not work since the name item is taken to be a table name, not a column name of on_hand, per
SQL syntax rules. You must write it like this:

SELECT (item) .name FROM on_hand WHERE (item) .price > 9.99;
or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item) .name FROM on_hand WHERE (on_hand.item) .price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to select
just one field from the result of a function that returns a composite value, you’d need to write something
like:

SELECT (my_func(...)).field FROM

Without the extra parentheses, this will generate a syntax error.

8.15.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First, insert-
ing or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));
UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

The first example omits ROW, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

148

Chapter 8. Data Types

Notice here that we don’t need to (and indeed cannot) put parentheses around the column name appearing
just after SET, but we do need parentheses when referencing the same column in the expression to the
right of the equal sign.

And we can specify subfields as targets for INSERT, too:
INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(l.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have been
filled with null values.

8.15.5. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according to the
I/O conversion rules for the individual field types, plus decoration that indicates the composite structure.
The decoration consists of parentheses ((and)) around the whole value, plus commas (,) between
adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it is considered
part of the field value, and might or might not be significant depending on the input conversion rules for
the field data type. For example, in:

r 42y’

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any individual
field value. You must do so if the field value would otherwise confuse the composite-value parser. In
particular, fields containing parentheses, commas, double quotes, or backslashes must be double-quoted.
To put a double quote or backslash in a quoted composite field value, precede it with a backslash. (Also,
a pair of double quotes within a double-quoted field value is taken to represent a double quote character,
analogously to the rules for single quotes in SQL literal strings.) Alternatively, you can avoid quoting and
use backslash-escaping to protect all data characters that would otherwise be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents a
NULL. To write a value that is an empty string rather than NULL, write "".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space is
not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be doubled.

Note: Remember that what you write in an SQL command will first be interpreted as a string literal,
and then as a composite. This doubles the number of backslashes you need (assuming escape string
syntax is used). For example, to insert a text field containing a double quote and a backslash in a
composite value, you'd need to write:

INSERT ... VALUES (E’ ("\\"\\\\")");

The string-literal processor removes one level of backslashes, so that what arrives at the composite-
value parser looks like ("\"\\"). Inturn, the string fed to the text data type’s input routine becomes
"\. (If we were working with a data type whose input routine also treated backslashes specially, bytea
for example, we might need as many as eight backslashes in the command to get one backslash into
the stored composite field.) Dollar quoting (see Section 4.1.2.4) can be used to avoid the need to
double backslashes.

149

Chapter 8. Data Types

Tip: The row constructor syntax is usually easier to work with than the composite-literal syntax when
writing composite values in SQL commands. In row, individual field values are written the same way
they would be written when not members of a composite.

8.16. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
OIDs are not added to user-created tables, unless WITH 0IDS is specified when the table is created, or
the default_with_oids configuration variable is enabled. Type oid represents an object identifier. There
are also several alias types for oid: regproc, regprocedure, regoper, regoperator, regclass
regtype, regconfig, and regdictionary. Table 8-22 shows an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large enough
to provide database-wide uniqueness in large databases, or even in large individual tables. So, using a
user-created table’s OID column as a primary key is discouraged. OIDs are best used only for references
to system tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and then
manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned confusion
if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for objects.
For example, to examine the pg_attribute rows related to a table mytable, one could write:

SELECT * FROM pg_attribute WHERE attrelid = 'mytable’::regclass;
rather than:

SELECT = FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = ’'mytable’);

While that doesn’t look all that bad by itself, it’s still oversimplified. A far more complicated sub-select
would be needed to select the right OID if there are multiple tables named mytable in different schemas.
The regclass input converter handles the table lookup according to the schema path setting, and so it
does the “right thing” automatically. Similarly, casting a table’s OID to regclass is handy for symbolic
display of a numeric OID.

Table 8-22. Object Identifier Types

Name References Description Value Example

oid any numeric object identifier | 564182

150

Chapter 8. Data Types

Name References Description Value Example
regproc Pg_proc function name sum
regprocedure Pg_proc function with argument | sum(int4)
types
regoper pg_operator operator name +
regoperator pg_operator operator with argument | x (integer, integer)
types or — (NONE, integer)
regclass pg_class relation name pPg_type
regtype pPg_type data type name integer
regconfig pg_ts_config text search configuration | english
regdictionary pg_ts_dict text search dictionary simple

All of the OID alias types accept schema-qualified names, and will display schema-qualified names on
output if the object would not be found in the current search path without being qualified. The regproc
and regoper alias types will only accept input names that are unique (not overloaded), so they are of
limited use; for most uses regprocedure or regoperator are more appropriate. For regoperator,
unary operators are identified by writing NONE for the unused operand.

An additional property of the OID alias types is the creation of dependencies. If a constant of
one of these types appears in a stored expression (such as a column default expression or view),
it creates a dependency on the referenced object. For example, if a column has a default expression
nextval (my_seq’ : :regclass), PostgreSQL understands that the default expression depends on the
sequence my_seq; the system will not let the sequence be dropped without first removing the default
expression.

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is the
data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the system is cid, or command identifier. This is the data type of the system
columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data type
of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that identifies
the physical location of the row within its table.

(The system columns are further explained in Section 5.4.)

8.17. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a func-
tion’s argument or result type. Each of the available pseudo-types is useful in situations where a function’s
behavior does not correspond to simply taking or returning a value of a specific SQL data type. Table 8-23
lists the existing pseudo-types.

Table 8-23. Pseudo-Types

151

Chapter 8. Data Types

Name Description

any Indicates that a function accepts any input data
type.

anyarray Indicates that a function accepts any array data
type (see Section 34.2.5).

anyelement Indicates that a function accepts any data type (see
Section 34.2.5).

anyenum Indicates that a function accepts any enum data
type (see Section 34.2.5 and Section 8.7).

anynonarray Indicates that a function accepts any non-array
data type (see Section 34.2.5).

cstring Indicates that a function accepts or returns a
null-terminated C string.

internal Indicates that a function accepts or returns a
server-internal data type.

language_handler A procedural language call handler is declared to
return language_handler.

record Identifies a function returning an unspecified row
type.

trigger A trigger function is declared to return trigger.

void Indicates that a function returns no value.

opaque An obsolete type name that formerly served all the
above purposes.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any of
these pseudo data types. It is up to the function author to ensure that the function will behave safely when
a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implementation
languages. At present the procedural languages all forbid use of a pseudo-type as argument type, and allow
only void and record as a result type (plus t rigger when the function is used as a trigger). Some also
support polymorphic functions using the types anyarray, anyelement, anyenum, and anynonarray.

The internal pseudo-type is used to declare functions that are meant only to be called internally by the
database system, and not by direct invocation in an SQL query. If a function has at least one internal-
type argument then it cannot be called from SQL. To preserve the type safety of this restriction it is
important to follow this coding rule: do not create any function that is declared to return internal unless
it has at least one internal argument.

152

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can also
define their own functions and operators, as described in Part V. The psql commands \df and \do can be
used to list all available functions and operators, respectively.

If you are concerned about portability then note that most of the functions and operators described in this
chapter, with the exception of the most trivial arithmetic and comparison operators and some explicitly
marked functions, are not specified by the SQL standard. Some of this extended functionality is present in
other SQL database management systems, and in many cases this functionality is compatible and consis-
tent between the various implementations. This chapter is also not exhaustive; additional functions appear
in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued Boolean logic where the null value represents “unknown”. Observe the following

truth tables:
a b a AND b aORb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a
TRUE FALSE
FALSE TRUE
NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.13 for more information about the order of evaluation of subex-
pressions.

153

Chapter 9. Functions and Operators

9.2. Comparison Operators

The usual comparison operators are available, shown in Table 9-1.

Table 9-1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<>or!= not equal

Note: The ' = operator is converted to <> in the parser stage. It is not possible to implement != and
<> operators that do different things.

Comparison operators are available for all relevant data types. All comparison operators are binary oper-
ators that return values of type boolean; expressions like 1 < 2 < 3 are not valid (because there is no
< operator to compare a Boolean value with 3).

In addition to the comparison operators, the special BETWEEN construct is available:
a BETWEEN x AND y

is equivalent to

a >= x AND a <= y

Notice that BETWEEN treats the endpoint values as included in the range. NOT BETWEEN does the opposite
comparison:

a NOT BETWEEN x AND y
is equivalent to
a< x OR a > y

BETWEEN SYMMETRIC is the same as BETWEEN except there is no requirement that the argument to the left
of AND be less than or equal to the argument on the right. If it is not, those two arguments are automatically
swapped, so that a nonempty range is always implied.

To check whether a value is or is not null, use the constructs:

expression IS NULL
expression 1S NOT NULL

or the equivalent, but nonstandard, constructs:

expression ISNULL

154

Chapter 9. Functions and Operators

expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.) This behavior conforms to
the SQL standard.

Tip: Some applications might expect that expression = NULL returns true if expression evaluates
to the null value. It is highly recommended that these applications be modified to comply with the
SQL standard. However, if that cannot be done the transform_null_equals configuration variable is
available. If it is enabled, PostgreSQL will convert x = NULL clauses to x IS NULL.

Note: If the expression is row-valued, then 1s NULL is true when the row expression itself is null or
when all the row’s fields are null, while s noT NULL is true when the row expression itself is non-
null and all the row’s fields are non-null. Because of this behavior, 1s nuLL and 1s NoT NULL do not
always return inverse results for row-valued expressions, i.e., a row-valued expression that contains
both NULL and non-null values will return false for both tests. This definition conforms to the SQL
standard, and is a change from the inconsistent behavior exhibited by PostgreSQL versions prior to
8.2.

Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input
is null. For example, 7 = NULL yields null. When this behavior is not suitable, use the IS [NOT]
DISTINCT FROM constructs:

expression IS DISTINCT FROM expression
expression IS NOT DISTINCT FROM expression

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, if both inputs are
null it returns false, and if only one input is null it returns true. Similarly, IS NOT DISTINCT FROM is
identical to = for non-null inputs, but it returns true when both inputs are null, and false when only one
input is null. Thus, these constructs effectively act as though null were a normal data value, rather than
“unknown”.

Boolean values can also be tested using the constructs

expression IS TRUE
expression 1S NOT TRUE
expression 1S FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null input
is treated as the logical value “unknown”. Notice that IS UNKNOWN and IS NOT UNKNOWN are effec-
tively the same as IS NULL and IS NOT NULL, respectively, except that the input expression must be of
Boolean type.

155

Table 9-2 shows the available mathematical operators.

Table 9-2. Mathematical Operators

Chapter 9. Functions and Operators

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without standard mathemati-
cal conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Operator Description Example Result
+ addition 2 + 3 5
- subtraction 2 -3 -1
* multiplication 2 x 3 6
/ division (integer 4 / 2 2
division truncates the
result)
S modulo (remainder) 5% 4 1
0 exponentiation 2.0 ~ 3.0 8
|/ square root |/ 25.0 5
|1/ cube root [1/ 27.0 3
! factorial 5 ! 120
! factorial (prefix 15 120
operator)
@ absolute value @ -5.0 5
& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift left 1 << 4 16
>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types, whereas the others are available for all numeric
data types. The bitwise operators are also available for the bit string types bit and bit varying, as
shown in Table 9-10.

Table 9-3 shows the available mathematical functions. In the table, dp indicates double precision.
Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions working
with double precision data are mostly implemented on top of the host system’s C library; accuracy
and behavior in boundary cases can therefore vary depending on the host system.

Table 9-3. Mathematical Functions

Function

Return Type

Description

Example

Result

abs (x)

(same as input)

absolute value

abs (-17.4)

17.4

156

Chapter 9. Functions and Operators

Function Return Type Description Example Result
cbrt (dp) dp cube root cbrt (27.0) 3

ceil (dp or (same as input) smallest integer not | ceil (-42.8) -42
numeric) less than argument

ceiling(dp or (same as input) smallest integer not | ceiling (-95.3) |-95

numeric)

less than argument
(alias for ceil)

degrees (dp) dp radians to degrees |degrees (0.5) 28.647889756541
div(y numeric, numeric integer quotient of |div (9, 4) 2

X numeric) y/x

exp (dp or (same as input) exponential exp (1.0) 2.7182818284590
numeric)

floor (dp or

(same as input)

largest integer not

floor (-42.8)

-43

48

numeric) greater than
argument
ln(dp or (same as input) natural logarithm | 1n(2.0) 0.6931471805599
numeric)
log (dp or (same as input) base 10 logarithm |1og(100.0) 2
numeric)
log (b numeric, numeric logarithm to base b | log (2.0, 64.0) |6.0000000000
X numeric)
mod (y, x) (same as argument | remainder of y/x mod (9, 4) 1
types)
pi () dp “m” constant pi() 3.1415926535897
power (a dp, b dp a raised to the power (9.0, 729
dp) power of b 3.0)
power (a numeric a raised to the power (9.0, 729
numeric, b power of b 3.0)
numeric)
radians (dp) dp degrees to radians | radians (45.0) 0.7853981633974
random () dp random value in random ()
the range 0.0 <= x
< 1.0
round (dp or (same as input) round to nearest round (42.4) 42
numeric) integer
round (v numeric round to s decimal | round (42.4382, |42.44

numeric, s int)

places

2)

157

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

setseed (dp)

void

set seed for
subsequent
random () calls
(value between

setseed (0.54823

)

-1.0 and 1.0,

inclusive)
sign (dp or (same as input) sign of the sign(-8.4) -1
numeric) argument (-1, 0,

+1)
sqrt (dp or (same as input) square root sqrt (2.0) 1.4142135623731
numeric)
trunc (dp or (same as input) truncate toward trunc(42.8) 42
numeric) ZEero
trunc (v numeric truncate to s trunc (42.4382, [42.43
numeric, s int) decimal places 2)
width_bucket (op |int return the bucket to | width_bucket (5.3%,
numeric, bl which operand 0.024, 10.06,
numeric, b2 would be assigned | 5)
numeric, count in an equidepth
int) histogram with

count buckets, in

the range b1l to b2
width_bucket (op |int return the bucket to | width_bucket (5.[3%,
dp, bl dp, b2 which operand 0.024, 10.06,
dp, count int) would be assigned | 5)

in an equidepth
histogram with
count buckets, in
the range b1l to b2

Finally, Table 9-4 shows the available trigonometric functions. All trigonometric functions take arguments
and return values of type double precision.

Table 9-4. Trigonometric Functions

Function Description
acos (x) inverse cosine
asin (x) inverse sine
atan (x) inverse tangent

atan2 (y, x)

inverse tangent of y/x

cos (x) cosine
cot (x) cotangent
sin (x) sine

158

Chapter 9. Functions and Operators

Function

Description

tan (x)

tangent

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings in
this context include values of the types character, character varying, and text. Unless otherwise

noted, all of the functions listed below work on all of these types, but be wary of potential effects of
automatic space-padding when using the character type. Some functions also exist natively for the

bit-string types.

SQL defines some string functions that use key words, rather than commas, to separate arguments. De-
tails are in Table 9-5. PostgreSQL also provides versions of these functions that use the regular function
invocation syntax (see Table 9-6).

Note: Before PostgreSQL 8.3, these functions would silently accept values of several non-string data
types as well, due to the presence of implicit coercions from those data types to text. Those coer-
cions have been removed because they frequently caused surprising behaviors. However, the string
concatenation operator (| |) still accepts non-string input, so long as at least one input is of a string
type, as shown in Table 9-5. For other cases, insert an explicit coercion to text if you need to duplicate
the previous behavior.

Table 9-5. SQL String Functions and Operators

string

Function Return Type Description Example Result
string || text String "Post’ || PostgresSQL
string concatenation "greSQL’
string || text String 'Value: ' || Value: 42
non-string Or concatenation with | 42
non-string || one non-string
string input
bit_length (stringlint Number of bits in bit_length (’ josgE3)
string
char_length (stringnt Number of char_length (’ jojsk’)
or characters in string
character_length({string)
lower (string) text Convert string to lower (' TOM') tom
lower case
octet_length (stridalt Number of bytes in | octet_length (’ joke’)

159

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

overlay (string
placing string
from int [for

int])

text

Replace substring

overlay (' Txxxxal
placing "hom’
from 2 for 4)

sThomas

position (substrin

gnt

Location of

position (’om’

uppercase

in string) specified substring |in ’Thomas’)
substring (string|text Extract substring | substring (’ Thomasdm
[from int] from 2 for 3)
[for int])
substring (string|text Extract substring substring (’ Thomasds
from pattern) matching POSIX from "...$")

regular expression.

See Section 9.7 for

more information

on pattern

matching.
substring (string|text Extract substring | substring (’ Thomaania
from pattern matching SQL from
for escape) regular expression. |’ $#"o_a#"_’

See Section 9.7 for | for "#’)

more information

on pattern

matching.
trim([leading |text Remove the trim(both ’x’ Tom
| trailing | longest string from ’xTomxx')
both] containing only the
[characters] characters (a
from string) space by default)

from the

start/end/both ends

of the string
upper (string) text Convert string to upper (" tom’) TOM

Additional string manipulation functions are available and are listed in Table 9-6. Some of them are used
internally to implement the SQL-standard string functions listed in Table 9-5.

Table 9-6. Other String Functions

Function

\ Return Type

‘ Description

Example

Result

160

Chapter 9. Functions and Operators

Function Return Type Description Example Result

ascii (string) int ASCII code of the | ascii ("x’) 120
first character of
the argument. For
UTF8 returns the
Unicode code point
of the character.
For other multibyte
encodings, the
argument must be

an ASCII
character.
btrim(string text Remove the btrim (' xyxtrimylysetim
text [, longest string " xy’)
characters consisting only of
text]) characters in

characters (a
space by default)
from the start and
end of string

chr (int) text Character with the | chr (65) A
given code. For
UTF8 the
argument is treated
as a Unicode code
point. For other
multibyte
encodings the
argument must
designate an
ASCII character.
The NULL (0)
character is not
allowed because
text data types
cannot store such
bytes.

161

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

convert (string
bytea,
src_encoding
name,
dest_encoding

name)

bytea

Convert string to
dest_encoding
The original
encoding is
specified by
src_encoding.
The st ring must
be valid in this
encoding.
Conversions can be
defined by CREATE
CONVERSTION. Also
there are some
predefined
conversions. See
Table 9-7 for
available
conversions.

convert ('text_1
'UTF8’,
"LATINL')

ntesttf8'n_utf8
represented in
Latin-1 encoding
(ISO 8859-1)

convert_from (stri
bytea,
src_encoding

name)

text

Convert string to
the database
encoding. The
original encoding
is specified by
src_encoding.
The st ring must
be valid in this
encoding.

convert_from ('t
"UTF8")

ecex i ni mufi8f §
represented in the
current database
encoding

bytea Convert string to | convert_to (’ somgsome text
convert_to (string dest_encoding. |text’, ’UTF8’) lepreﬁnnedinthe
text, UTF8 encoding
dest_encoding
name)
decode (string bytea Decode binary decode (' MTIZzAAEFY23\000\001
text, type data from string |’base64’)
text) previously encoded

with encode.
Parameter type is
same as in

encode.

162

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

encode (data
bytea, type

text)

text

Encode binary
data to different
representation.
Supported types
are: base64, hex,
escape. Escape
merely outputs null
bytes as \000 and
doubles
backslashes.

encode (E’ 123\\0
"baseb4d’)

QUN\N\LKAF 5

initcap (string)

text

Convert the first
letter of each word
to uppercase and
the rest to
lowercase. Words
are sequences of
alphanumeric
characters
separated by
non-alphanumeric
characters.

initcap(’'hi
THOMAS')

Hi Thomas

length (string)

int

Number of
characters in

string

length (’ jose’)

length (stringbytse

encoding name)

ant

Number of
characters in
stringin the
given encoding.
The string must
be valid in this
encoding.

length (’ jose’,
"UTF8')

lpad (string
text, length
int [, fill

text])

text

Fill up the string
to length length
by prepending the
characters £i11 (a
space by default).
If the stringis
already longer than
length then it is
truncated (on the
right).

lpad("hi’, 5,
'Xy')

xyxhi

163

Chapter 9. Functions and Operators

Function Return Type Description Example Result
ltrim(string text Remove the ltrim(’ zzzytrim/trim
text [, longest string "xyz')
characters containing only
text]) characters from
characters (a
space by default)
from the start of
string
md5 (string) text Calculates the md5 (" abc’) 900150983cd24fh|
MDS5 hash of d6963f£7d28el7£7
string, returning
the result in
hexadecimal
pg_client_encodirqBme Current client pg_client_encodi$@()ASCIT

encoding name

quote_ident (striy

text)

dext

Return the given
string suitably
quoted to be used
as an identifier in
an SQL statement
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or
would be
case-folded).
Embedded quotes
are properly
doubled. See also
Example 38-1.

quote_ident (' Fo

bar’)

o"Foo bar"

164

(@)

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

quote_literal (sty
text)

Trext

Return the given
string suitably
quoted to be used
as a string literal in
an SQL statement
string. Embedded
single-quotes and
backslashes are
properly doubled.
Note that
quote_literal
returns null on null
input; if the
argument might be
null,
quote_nullable
is often more
suitable. See also
Example 38-1.

quote_literal (’

O\O Rl Lk ")

quote_literal (val

anyelement)

Text

Coerce the given
value to text and
then quote it as a
literal. Embedded
single-quotes and
backslashes are
properly doubled.

quote_literal (4

2.5 .57

quote_nullable (st
text)

tiaxt

Return the given
string suitably
quoted to be used
as a string literal in
an SQL statement
string; or, if the
argument is null,
return NULL.
Embedded
single-quotes and
backslashes are
properly doubled.
See also Example
38-1.

quote_nullable (

INNULILT)

165

Chapter 9. Functions and Operators

Function Return Type Description Example Result
quote_nullable (valext Comcetheghwn quote_nullable (4245)5"
anyelement) value to text and

then quote it as a

literal; or, if the

argument is null,

return NULL.

Embedded

single-quotes and

backslashes are

properly doubled.
regexp_matches (sttsitpf text [] Return all regexp_matches (| flombdrbaopiebaz
text, pattern captured substrings |/ (bar) (beque)’)
text [, flags resulting from
text]) matching a POSIX

regular expression

against the

string. See

Section 9.7.3 for

more information.
regexp_replace (sttiaxt Replace regexp_replace (/Tbmas’ ,
text, pattern substring(s) /. [mN]a.’,
text, matching a POSIX |7 M")
replacement regular expression.
text [, flags See Section 9.7.3
text]) for more

information.
regexp_split_to_atmt(btring Split string regexp_split_to| hrerhlo(, i b}
text, pattern using a POSIX world’,
text [, flags regular expression |E’\\s+’)
text 1) as the delimiter.

See Section 9.7.3

for more

information.
regexp_split_to_tasleoEtrend Split string regexp_split_to| hebllewdhkd 1@
text, pattern using a POSIX world’, TOWS)
text [, flags regular expression |E’\\s+’)
text]) as the delimiter.

See Section 9.7.3

for more

information.
repeat (string text Repeat string the | repeat (' Pg’, PgPgPgPg

text,
int)

number

specified number
of times

4)

166

Chapter 9. Functions and Operators

Function Return Type Description Example Result
replace (string |text Replace all replace (' abcde fladdaXieeff gbXXe f
text, from occurrences in red’, TXX')
text, to text) string of

substring from

with substring to
rpad (string text Fill up the string |rpad(*hi’, 5, |hixyx
text, length to length length rxy’)
int [, fill by appending the
text]) characters £fill (a

space by default).

If the stringis

already longer than

length then it is

truncated.
rtrim(string text Remove the rtrim(’ trimxxxxtrim
text [, longest string "x")
characters containing only
text]) characters from

characters (a
space by default)
from the end of

string

split_part (stringtext Split string on split_part (' abcqdeef~@~ghi’,
text, delimiter delimiter and r~@~7, 2)
text, field return the given
int) field (counting
from one)
strpos (string, int Location of strpos ('high’, |2
substring) specified substring |’ ig”’)
(same as
position (substring
in string), but
note the reversed
argument order)
substr (string, text Eanctsubsuing substr (" alphabetdh

from [, count])

(same as
substring (string

from from for

count))

3, 2)

167

Chapter 9. Functions and Operators

Function Return Type Description Example Result
to_ascii (string |text Convert string to_ascii ('Karel|/KRarel
text [, to ASCII from

encoding text])

another encoding
(only supports
conversion from
LATINI, LATINZ,
LATINGO, and
WIN1250
encodings)

to_hex (number text

int or bigint)

Convert number to
its equivalent
hexadecimal
representation

to_hex (214748364THfEEEEE

translate (string
text, from

text, to text)

text

Any character in
string that
matches a
character in the
from set is
replaced by the
corresponding
character in the to
set

translate (' 12344253x5
114!’ IaXI)

Table 9-7. Built-in Conversions

Conversion Name a

Source Encoding

Destination Encoding

ascii_to_mic SQL_ASCII MULE_INTERNAL
ascii_to_utfs SQL_ASCII UTFE8
big5_to_euc_tw BIGS EUC_TW
big5_to_mic BIGS MULE_INTERNAL
big5_to_utf8 BIGS UTF8
euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to_utf8 EUC_CN UTF8
euc_Jjp_to_mic EUC_JP MULE_INTERNAL
euc_Jjp_to_sjis EUC_JP SJIS
euc_Jjp_to_utf8 EUC_JP UTF8
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utf8 EUC_KR UTF8
euc_tw_to_bigh EUC_TW BIGS
euc_tw_to_mic EUC_TW MULE_INTERNAL
euc_tw_to_utf8 EUC_TW UTF8
gb18030_to_utf8 GB18030 UTF8

168

Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

gbk_to_utfs8 GBK UTF8
iso_8859_10_to_utf8 LATING UTFE8
iso0_8859_13_to_utf8 LATIN7 UTFE8
is0_8859_14_to_utf8 LATINS UTF8
iso0_8859_15_to_utfs LATINY UTF8
iso_8859_16_to_utf8 LATINI1O UTF8
is0_8859_1_to_mic LATIN1 MULE_INTERNAL
is0_8859_1_to_utfs8 LATINI UTF8
1is0_8859_2_to_mic LATIN2 MULE_INTERNAL
is0_8859_2_to_utfs LATIN2 UTF8
iso_8859 2 to_windows_1250LATINZ2 WIN1250
is0_8859_3_to_mic LATIN3 MULE_INTERNAL
iso_8859_3 to_utfs8 LATIN3 UTF8
is0_8859_4_to_mic LATIN4 MULE_INTERNAL
iso_8859_4_ to_utfs LATIN4 UTFE8
iso_8859_5_to_koi8_r ISO_8859_5 KOI8R
is0_8859_5_to_mic ISO_8859_5 MULE_INTERNAL
iso_8859_5_to_utfs8 IS0O_8859_5 UTF8
iso_8859_5_ to_windows_125]1IS0O_8859_5 WIN1251
is0_8859_5_to_windows_866|IS0O_8859_5 WIN866
1is0_8859_6_to_utfs ISO_8859_6 UTF8
iso_8859_7_to_utfs IS0_8859_7 UTF8
iso_8859_8_to_utfs8 IS0_8859_8 UTF8
is0_8859_9_to_utfs8 LATINS UTF8
johab_to_utfs8 JOHAB UTF8
koi8_r_to_iso_8859_5 KOI8R I5S0_8859_5
koi8_r_to_mic KOI8R MULE_INTERNAL
koi8_r_to_utf8 KOI8R UTF8

koi8_ r_ to_windows_1251 KOI8R WIN1251
koi8_r_ to_windows_866 KOI8R WIN866
koi8_u_to_utf8 KOI8U UTF8
mic_to_ascii MULE_INTERNAL SQL_ASCII
mic_to_bigs MULE_INTERNAL BIGS
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_jp MULE_INTERNAL EUC_JP
mic_to_euc_kr MULE_INTERNAL EUC_KR

169

Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

mic_to_euc_tw MULE_INTERNAL EUC_TW
mic_to_iso_8859_1 MULE_INTERNAL LATIN1
mic_to_iso_8859_2 MULE_INTERNAL LATIN2
mic_to_iso_8859_3 MULE_INTERNAL LATIN3
mic_to_iso_8859_4 MULE_INTERNAL LATIN4
mic_to_iso_8859_5 MULE_INTERNAL IS0_8859_5
mic_to_koi8_r MULE_INTERNAL KOISR
mic_to_sijis MULE_INTERNAL SJIS
mic_to_windows_1250 MULE_INTERNAL WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN1251
mic_to_windows_866 MULE_INTERNAL WIN866
sjis_to_euc_ijp SJIS EUC_JP
sjis_to_mic SJIS MULE_INTERNAL
sjis_to_utfs8 SJIS UTF8
tcvn_to_utf8 WIN1258 UTFE8
uhc_to_utf8 UHC UTF8
utf8_to_ascii UTF8 SQL_ASCII
utf8_to_bigh UTF8 BIGS
utf8_to_euc_cn UTF8 EUC_CN
utf8_to_euc_jp UTF8 EUC_JpP
utf8_to_euc_kr UTF8 EUC_KR
utf8_to_euc_tw UTF8 EUC_TW
utf8_to_gbl8030 UTF8 GB18030
utf8_to_gbk UTF8 GBK
utf8_to_iso_8859_1 UTF8 LATINI
utf8_to_iso_8859_10 UTF8 LATING
utf8_to_iso_8859_13 UTF8 LATINT7
utf8_to_iso_8859_14 UTF8 LATINS
utf8_to_iso_8859_15 UTF8 LATINO
utf8_to_iso_8859_16 UTF8 LATIN1O
utf8_to_iso_8859_2 UTF8 LATIN2
utf8_to_iso_8859_3 UTF8 LATIN3
utf8_to_iso_8859_4 UTF8 LATIN4
utf8_to_iso_8859_5 UTF8 IS0O_8859_5
utf8_to_iso_8859_6 UTF8 ISO_8859_6
utf8_to_iso_8859_7 UTF8 ISO_8859_7
utf8_to_iso_8859_8 UTF8 IS0_8859_8
utf8_to_iso_8859_9 UTF8 LATINS

170

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
ut£8_to_johab UTFS8 JOHAB
utf8_to_koi8_r UTF8 KOI8R
utf8_to_koi8_u UTF8 KOI8U
utf8_to_sjis UTF8 SJIS
utf8_to_tcvn UTF8 WIN1258
utf8_to_uhc UTF8 UHC
utf8_to_windows_1250 UTF8 WIN1250
utf8_to_windows_1251 UTF8 WIN1251
utf8_to_windows_1252 UTF8 WIN1252
utf8_to_windows_1253 UTF8 WIN1253
utf8_to_windows_1254 UTF8 WIN1254
utf8_to_windows_1255 UTF8 WIN1255
utf8_to_windows_1256 UTF8 WIN1256
utf8_to_windows_1257 UTFS8 WIN1257
utf8_to_windows_866 UTF8 WIN866
utf8_to_windows_874 UTF8 WIN874
windows_1250_to_1iso_8859 PWIN1250 LATINZ2
windows_1250_to_mic WIN1250 MULE_INTERNAL
windows_1250_to_utf8 WIN1250 UTF8
windows_1251_to_iso_8859_bWIN1251 I5S0_8859_5
windows_1251_to_koi8_r WIN1251 KOI8R
windows_1251_to_mic WIN1251 MULE_INTERNAL
windows_1251 to_utf8 WIN1251 UTFS8
windows_1251 to_windows_8¢WIN1251 WIN866
windows_1252_to_utf8 WIN1252 UTF8
windows_1256_to_utf8 WIN1256 UTF8
windows_866_to_iso_8859_5|WIN866 I15S0_8859_5
windows_866_to_koi8_r WIN866 KOI8R
windows_866_to_mic WINS866 MULE_INTERNAL
windows_866_to_utf8 WIN866 UTF8
windows_866_to_windows_12pPWIN866 WIN
windows_874_to_utf8 WIN874 UTFES8
euc_7jis_2004_to_utfs EUC_JIS_2004 UTFE8
ut8_to_euc_Jjis_2004 UTF8 EUC_JIS_2004

171

Chapter 9. Functions and Operators

Conversion Name -
shift_jis_2004_to_utf8

Source Encoding
SHIFT_JIS_2004

Destination Encoding
UTF8

ut8_to_shift_jis_2004 UTF8 SHIFT_JIS_2004

euc_Jjis_2004_to_shift_jis|RUQ4JIS_2004 SHIFT_JIS_2004

shift_jis_2004_to_euc_7jis|3HOBT_JIS_2004 EUC_JIS_2004

Notes:

encoding names.

a. The conversion names follow a standard naming scheme: The official name of the source encoding
with all non-alphanumeric characters replaced by underscores, followed by _to_, followed by the
similarly processed destination encoding name. Therefore, the names might deviate from the customary

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating values of type bytea.

SQL defines some string functions that use key words, rather than commas, to separate arguments. De-
tails are in Table 9-8. PostgreSQL also provides versions of these functions that use the regular function
invocation syntax (see Table 9-9).

Table 9-8. SQL Binary String Functions and Operators

Function Return Type Description Example Result
string || bytea String E’\\\\Post’ : :byfteePost’ gres\000
string concatenation I

E’\\047gres\\000’ : :bytea
get_bit(string, |int Extract bit from get_bit (E' Th\\0[0Domas’ : :bytea,

offset)

string

45)

get_byte(string,
offset)

int

Extract byte from
string

get_byte (E’ Th\\
4)

00@®mas’ : :bytea,

octet_length (strj

dgt

Number of bytes in
binary string

octet_length (E’

J»\\000se’ : :byte

position (substrip

in string)

gant

Location of
specified substring

position (E’\\0O0
in

E’Th\\000omas’

::bytea)

0®m’ : :bytea

set_bit(string,
offset,

newvalue)

bytea

Set bit in string

set_bit (E’ Th\\O
45, 0)

Olow@G0 anksy tea,

172

Chapter 9. Functions and Operators

bytes from

string)

longest string
containing only the
bytes in bytes
from the start and
end of string

Function Return Type Description Example Result
set_byte(string,|bytea Set byte in string | set_byte (E’ Th\ \[(IH\GESkadbytea,
offset, 4, 64)

newvalue)

substring (string |bytea Extract substring | substring (E’ Th\NDOD®@s’ : :bytes
[from int] from 2 for 3)

[for int])

trim([both] bytea Remove the trim(E’\\000"' : :[ckdrea

from
E’\\000Tom\\000

" ::bytea)

Additional binary string manipulation functions are available and are listed in Table 9-9. Some of them
are used internally to implement the SQL-standard string functions listed in Table 9-8.

Table 9-9. Other Binary String Functions

Function Return Type Description Example Result
btrim(string bytea Remove the btrim (E/\\000trim\000"’ : :bytea,
bytea, bytes longest string E’\\000’ : :byteal
bytea) consisting only of
bytes in bytes
from the start and
end of string
decode (string bytea Decode binary decode (E’ 123\ \ 000236000456
text, type string from ’escape’)
text) string previously
encoded with
encode. Parameter
type is same as in
encode.
encode (string text Encodebhwwy encode (E’ 123\\ 00250 xxdyEkea,
bytea, type string to "escape’)
text) ASClII-only
representation.
Supported types
are: base64, hex,
escape.
length (string) int Lengﬂlofbhuuy length (E’ jo\\0O[0se’ : :bytea)
string

173

Chapter 9. Functions and Operators

string, returning
the result in
hexadecimal

Function Return Type Description Example Result
md5 (string) text Calculates the md5 (E’ Th\\000omeSdla2d3te@ 9aafl
MDS5 hash of b4958c334c82d8b

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is values
of the types bit and bit varying. Aside from the usual comparison operators, the operators shown in
Table 9-10 can be used. Bit string operands of &, |, and # must be of equal length. When bit shifting, the
original length of the string is preserved, as shown in the examples.

Table 9-10. Bit String Operators

Operator Description Example Result
| concatenation B’10001” || B"011" |10001011
& bitwise AND B’10001" & 00001
B/01101
bitwise OR B’10001" | 11101
B/01101
bitwise XOR B’10001" # 11100
B/01101'
~ bitwise NOT ~ B’10001' 01110
<< bitwise shift left B’10001’" << 3 01000
>> bitwise shift right B’10001" >> 2 00100

The following SQL-standard functions work on bit strings as well as character strings: length,

bit_length, octet_length, position, substring.

In addition, it is possible to cast integral values to and from type bit. Some examples:

44::pbit (10)
44::pbit (3)

cast (-44 as bit(12))
::integer 14

711107 : :bit (4)

0000101100

100

111111010100

Note that casting to just “bit” means casting to bit (1), and so will deliver only the least significant bit

of the integer.

Note: Prior to PostgreSQL 8.0, casting an integer to bit (n) would copy the leftmost n bits of the
integer, whereas now it copies the rightmost n bits. Also, casting an integer to a bit string width wider

than the integer itself will sign-extend on the left.

174

= o

Chapter 9. Functions and Operators

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL: the traditional SQL
LIKE operator, the more recent SIMILAR TO operator (added in SQL:1999), and POSIX-style regular
expressions. Aside from the basic “does this string match this pattern?” operators, functions are available
to extract or replace matching substrings and to split a string at matching locations.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined function
in Perl or Tcl.

9.7.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The LIKE expression returns true if the st ring matches the supplied pattern. (As expected, the NOT
LIKE expression returns false if LIKE returns true, and vice versa. An equivalent expression is NOT
(string LIKE pattern).)

If pat tern does not contain percent signs or underscores, then the pattern only represents the string itself;
in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for (matches) any
single character; a percent sign (%) matches any sequence of zero or more characters.

Some examples:

"abc’ LIKE ’"abc’ true
"abc’ LIKE ’a%’ true
"abc’ LIKE ’'_b_’ true
"abc’ LIKE ’c’ false

LIKE pattern matching always covers the entire string. Therefore, to match a sequence anywhere within a
string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective character
in pattern must be preceded by the escape character. The default escape character is the backslash but a
different one can be selected by using the ESCAPE clause. To match the escape character itself, write two
escape characters.

Note that the backslash already has a special meaning in string literals, so to write a pattern constant
that contains a backslash you must write two backslashes in an SQL statement (assuming escape string
syntax is used, see Section 4.1.2.1). Thus, writing a pattern that actually matches a literal backslash means
writing four backslashes in the statement. You can avoid this by selecting a different escape character with
ESCAPE; then a backslash is not special to LIKE anymore. (But backslash is still special to the string literal
parser, so you still need two of them to match a backslash.)

175

Chapter 9. Functions and Operators

It’s also possible to select no escape character by writing ESCAPE . This effectively disables the escape
mechanism, which makes it impossible to turn off the special meaning of underscore and percent signs in
the pattern.

The key word ILIKE can be used instead of LIKE to make the match case-insensitive according to the
active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator ~~ is equivalent to LIKE, and ~~* corresponds to ILIKE. There are also !~~ and !~~x
operators that represent NOT LIKE and NOT ILIKE, respectively. All of these operators are PostgreSQL-
specific.

9.7.2. stM1LAR TO Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given string.
It is similar to LIKE, except that it interprets the pattern using the SQL standard’s definition of a regular
expression. SQL regular expressions are a curious cross between LIKE notation and common regular
expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is un-
like common regular expression behavior where the pattern can match any part of the string. Also like
LIKE, SIMILAR TO uses _ and % as wildcard characters denoting any single character and any string,
respectively (these are comparable to . and . » in POSIX regular expressions).

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

« | denotes alternation (either of two alternatives).

« * denotes repetition of the previous item zero or more times.

» + denotes repetition of the previous item one or more times.

+ Parentheses () can be used to group items into a single logical item.

« A bracket expression [. . .] specifies a character class, just as in POSIX regular expressions.

Notice that bounded repetition operators (? and {...}) are not provided, though they exist in POSIX.
Also, the period (.) is not a metacharacter.

As with LIKE, a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified with ESCAPE.

Some examples:

"abc’ SIMILAR TO ’abc’ true
"abc’ SIMILAR TO ’a’ false
"abc’ SIMILAR TO "% (b|d)%’ true
"abc’ SIMILAR TO " (bl|c)%’ false

176

Chapter 9. Functions and Operators

The substring function with three parameters, substring(string from pattern for
escape-character), provides extraction of a substring that matches an SQL regular expression pattern.
As with SIMILAR TO, the specified pattern must match the entire data string, or else the function fails
and returns null. To indicate the part of the pattern that should be returned on success, the pattern must
contain two occurrences of the escape character followed by a double quote ("). The text matching the
portion of the pattern between these markers is returned.

Some examples, with #" delimiting the return string:

substring (' foobar’ from ’$#"o_b#"%’ for ’'#’) oob
substring (' foobar’ from ’"#"o_b#"%’ for ’"#') NULL

9.7.3. POSIX Regular Expressions

Table 9-11 lists the available operators for pattern matching using POSIX regular expressions.

Table 9-11. Regular Expression Match Operators

Operator Description Example
~ Matches regular expression, case |’ thomas’ ~ ’.xthomas.*’
sensitive
~x Matches regular expression, case |’ thomas’ ~x /.xThomas.«’
insensitive
I~ Does not match regular "thomas’ !~ ’.xThomas.x’
expression, case sensitive
[Does not match regular "thomas’ !~* ’.+vadim.«’
expression, case insensitive

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and
SIMILAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a regular
set). A string is said to match a regular expression if it is a member of the regular set described by the
regular expression. As with LIKE, pattern characters match string characters exactly unless they are special
characters in the regular expression language — but regular expressions use different special characters
than LIKE does. Unlike LIKE patterns, a regular expression is allowed to match anywhere within a string,
unless the regular expression is explicitly anchored to the beginning or end of the string.

Some examples:

"abc’ ~ "abc’ true
"abc’ ~ ""a’ true
"abc’ ~ ' (b|d)’ true
rabc’ ~ """ (blc)’ false

177

Chapter 9. Functions and Operators

The POSIX pattern language is described in much greater detail below.

The substring function with two parameters, substring (string from pattern), provides extrac-
tion of a substring that matches a POSIX regular expression pattern. It returns null if there is no match,
otherwise the portion of the text that matched the pattern. But if the pattern contains any parentheses,
the portion of the text that matched the first parenthesized subexpression (the one whose left parenthe-
sis comes first) is returned. You can put parentheses around the whole expression if you want to use
parentheses within it without triggering this exception. If you need parentheses in the pattern before the
subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring (’ foobar’ from "o0.b’) oob
substring (’ foobar’ from ’'o(.)b’) o

The regexp_replace function provides substitution of new text for substrings that match POSIX regu-
lar expression patterns. It has the syntax regexp_replace(source, pattern, replacement [, flags
]). The source string is returned unchanged if there is no match to the pattern. If there is a match,
the source string is returned with the replacement string substituted for the matching substring. The
replacement string can contain \ n, where nis 1 through 9, to indicate that the source substring matching
the n’th parenthesized subexpression of the pattern should be inserted, and it can contain \& to indicate
that the substring matching the entire pattern should be inserted. Write \\ if you need to put a literal
backslash in the replacement text. (As always, remember to double backslashes written in literal constant
strings, assuming escape string syntax is used.) The flags parameter is an optional text string contain-
ing zero or more single-letter flags that change the function’s behavior. Flag i specifies case-insensitive
matching, while flag g specifies replacement of each matching substring rather than only the first one.
Other supported flags are described in Table 9-19.

Some examples:

regexp_replace (' foobarbaz’, ’'b..", "X")

fooXbaz
regexp_replace (' foobarbaz’, 'b..’, X', 'g’)

fooXX
regexp_replace (' foobarbaz’, 'b(..)’, E’X\\1Yy’, 'g’)

fooXarYXazY

The regexp_matches function returns all of the captured substrings resulting from matching a POSIX
regular expression pattern. It has the syntax regexp_matches(string, pattern|[, flags]). If there is
no match to the pattern, the function returns no rows. If there is a match, the function returns a text ar-
ray whose n’th element is the substring matching the n’th parenthesized subexpression of the pattern (not
counting “non-capturing” parentheses; see below for details). If the pattern does not contain any parenthe-
sized subexpressions, then the result is a single-element text array containing the substring matching the
whole pattern. The f1ags parameter is an optional text string containing zero or more single-letter flags
that change the function’s behavior. Flag g causes the function to find each match in the string, not only
the first one, and return a row for each such match. Other supported flags are described in Table 9-19.

Some examples:

178

Chapter 9. Functions and Operators

SELECT regexp_matches (' foobarbequebaz’, ’ (bar) (beque)’);
regexp_matches

{bar, beque}
(1 row)

SELECT regexp_matches (' foobarbequebazilbarfbonk’, ' (b["bl+) (b["b]l+)’", 'g’);
regexp_matches

{bar,beque}
{bazil, barf}
(2 rows)

SELECT regexp_matches (’ foobarbequebaz’, ’"barbeque’);
regexp_matches

{barbeque}
(1 row)

The regexp_split_to_table function splits a string using a POSIX regular expression pattern as a
delimiter. It has the syntax regexp_split_to_table(string, pattern [, flags]). If there is no
match to the pattern, the function returns the string. If there is at least one match, for each match
it returns the text from the end of the last match (or the beginning of the string) to the beginning of the
match. When there are no more matches, it returns the text from the end of the last match to the end of
the string. The rlags parameter is an optional text string containing zero or more single-letter flags that
change the function’s behavior. regexp_split_to_table supports the flags described in Table 9-19.

The regexp_split_to_array function behaves the same as regexp_split_to_table,
except that regexp_split_to_array returns its result as an array of text. It has the syntax
regexp_split_to_array(string, pattern [, flags]). The parameters are the same as for
regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split_to_table(’the quick brown fox jumped over the lazy dog’,

foo

quick
brown
fox
Jjumped
over
the
lazy
dog

(9 rows)

SELECT regexp_split_to_array(’the quick brown fox jumped over the lazy dog’, E’\\s+’)

regexp_split_to_array

{the, quick, brown, fox, jumped, over, the, lazy, dog}

179

E’\\s

Chapter 9. Functions and Operators
(1 row)

SELECT foo FROM regexp_split_to_table(’the quick brown fox’, E’\\sx’) AS foo;
foo

6 rows)

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur at the
start or end of the string or immediately after a previous match. This is contrary to the strict definition of
regexp matching that is implemented by regexp_matches, but is usually the most convenient behavior
in practice. Other software systems such as Perl use similar definitions.

9.7.3.1. Regular Expression Details

PostgreSQL’s regular expressions are implemented using a software package written by Henry Spencer.
Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs
(roughly those of egrep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become widely
used due to their availability in programming languages such as Perl and Tcl. REs using these non-POSIX
extensions are called advanced REs or AREs in this documentation. AREs are almost an exact superset of
EREs, but BREs have several notational incompatibilities (as well as being much more limited). We first
describe the ARE and ERE forms, noting features that apply only to AREs, and then describe how BREs
differ.

Note: The form of regular expressions accepted by PostgreSQL can be chosen by setting the
regex_flavor run-time parameter. The usual setting is advanced, but one might choose extended for
backwards compatibility with pre-7.4 releases of PostgreSQL.

A regular expression is defined as one or more branches, separated by |. It matches anything that matches
one of the branches.

180

Chapter 9. Functions and Operators

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the first,
followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches a
match for the atom. With a quantifier, it can match some number of matches of the atom. An atom can
be any of the possibilities shown in Table 9-12. The possible quantifiers and their meanings are shown in
Table 9-13.

A constraint matches an empty string, but matches only when specific conditions are met. A constraint can
be used where an atom could be used, except it cannot be followed by a quantifier. The simple constraints
are shown in Table 9-14; some more constraints are described later.

Table 9-12. Regular Expression Atoms

Atom Description

(re) (where re is any regular expression) matches a
match for re, with the match noted for possible

reporting

(?:re) as above, but the match is not noted for reporting
(a “non-capturing” set of parentheses) (AREs
only)

matches any single character

[chars] a bracket expression, matching any one of the
chars (see Section 9.7.3.2 for more detail)

\k (where k is a non-alphanumeric character)
matches that character taken as an ordinary
character, e.g., \\ matches a backslash character

\c where c is alphanumeric (possibly followed by
other characters) is an escape, see Section 9.7.3.3
(AREs only; in EREs and BREs, this matches c)

{ when followed by a character other than a digit,
matches the left-brace character {; when followed
by a digit, it is the beginning of a bound (see
below)

x where x is a single character with no other
significance, matches that character

An RE cannot end with \.

Note: Remember that the backslash (\) already has a special meaning in PostgreSQL string literals.
To write a pattern constant that contains a backslash, you must write two backslashes in the statement,
assuming escape string syntax is used (see Section 4.1.2.1).

Table 9-13. Regular Expression Quantifiers

Quantifier Matches

181

Chapter 9. Functions and Operators

Quantifier Matches

* a sequence of 0 or more matches of the atom

+ a sequence of 1 or more matches of the atom

? a sequence of 0 or 1 matches of the atom

{m} a sequence of exactly m matches of the atom

{m, } a sequence of m or more matches of the atom

{m, n} a sequence of m through n (inclusive) matches of

the atom; m cannot exceed n

*? non-greedy version of x

+2 non-greedy version of +

?? non-greedy version of ?

{m}? non-greedy version of {m}

{m, }? non-greedy version of {m, }

{m, n}? non-greedy version of {m, n}

The forms using { . . . } are known as bounds. The numbers m and n within a bound are unsigned decimal

integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their corresponding nor-
mal (greedy) counterparts, but prefer the smallest number rather than the largest number of matches. See
Section 9.7.3.5 for more detail.

Note: A quantifier cannot immediately follow another quantifier, e.g., =« is invalid. A quantifier cannot
begin an expression or subexpression or follow ~ or |.

Table 9-14. Regular Expression Constraints

Constraint Description

~ matches at the beginning of the string

$ matches at the end of the string

(?=re) positive lookahead matches at any point where a

substring matching re begins (AREs only)

(?!re) negative lookahead matches at any point where no
substring matching re begins (AREs only)

Lookahead constraints cannot contain back references (see Section 9.7.3.3), and all parentheses within
them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is a list of characters enclosed in []. It normally matches any single character from
the list (but see below). If the list begins with ~, it matches any single character not from the rest of the list.
If two characters in the list are separated by -, this is shorthand for the full range of characters between

182

Chapter 9. Functions and Operators

those two (inclusive) in the collating sequence, e.g., [0-9] in ASCII matches any decimal digit. It is
illegal for two ranges to share an endpoint, e.g., a—c—e. Ranges are very collating-sequence-dependent,
so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (after ~, if that is used). To include a literal -,
make it the first or last character, or the second endpoint of a range. To use a literal - as the first endpoint
of a range, enclose itin [. and .] to make it a collating element (see below). With the exception of these
characters, some combinations using [(see next paragraphs), and escapes (AREs only), all other special
characters lose their special significance within a bracket expression. In particular, \ is not special when
following ERE or BRE rules, though it is special (as introducing an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that collates
as if it were a single character, or a collating-sequence name for either) enclosed in [. and .] stands
for the sequence of characters of that collating element. The sequence is treated as a single element of
the bracket expression’s list. This allows a bracket expression containing a multiple-character collating
element to match more than one character, e.g., if the collating sequence includes a ch collating element,
then the RE [[.ch.]]+c matches the first five characters of chchcec.

Note: PostgreSQL currently does not support multi-character collating elements. This information
describes possible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there
are no other equivalent collating elements, the treatment is as if the enclosing delimiters were [. and .].)
For example, if o and ~ are the members of an equivalence class, then [[=o=11, [[="=]1, and [o"] are
all synonymous. An equivalence class cannot be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list of
all characters belonging to that class. Standard character class names are: alnum, alpha, blank, cntrl,
digit, graph, lower, print, punct, space, upper, xdigit. These stand for the character classes
defined in ctype. A locale can provide others. A character class cannot be used as an endpoint of a range.

There are two special cases of bracket expressions: the bracket expressions [[:<:]1] and [[:>:]] are
constraints, matching empty strings at the beginning and end of a word respectively. A word is defined as
a sequence of word characters that is neither preceded nor followed by word characters. A word character
is an alnum character (as defined by ctype) or an underscore. This is an extension, compatible with but
not specified by POSIX 1003.2, and should be used with caution in software intended to be portable to
other systems. The constraint escapes described below are usually preferable; they are no more standard,
but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapes are special sequences beginning with \ followed by an alphanumeric character. Escapes come in
several varieties: character entry, class shorthands, constraint escapes, and back references. A \ followed
by an alphanumeric character but not constituting a valid escape is illegal in AREs. In EREs, there are no
escapes: outside a bracket expression, a \ followed by an alphanumeric character merely stands for that
character as an ordinary character, and inside a bracket expression, \ is an ordinary character. (The latter
is the one actual incompatibility between EREs and AREs.)

183

Chapter 9. Functions and Operators
Character-entry escapes exist to make it easier to specify non-printing and other inconvenient characters
in REs. They are shown in Table 9-15.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9-16.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written as an
escape. They are shown in Table 9-17.

A back reference (\n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9-18). For example, ([bc]) \1 matches bb or cc but not bc or cb.
The subexpression must entirely precede the back reference in the RE. Subexpressions are numbered in
the order of their leading parentheses. Non-capturing parentheses do not define subexpressions.

Note: Keep in mind that an escape’s leading \ will need to be doubled when entering the pattern as
an SQL string constant. For example:

71237 ~ E’M\\d{3}’ true

Table 9-15. Regular Expression Character-Entry Escapes

Escape Description

\a alert (bell) character, as in C

\b backspace, as in C

\B synonym for backslash (\) to help reduce the need
for backslash doubling

\cX (where X is any character) the character whose

low-order 5 bits are the same as those of x, and
whose other bits are all zero

\e the character whose collating-sequence name is
ESC, or failing that, the character with octal value
033

\f form feed, as in C

\n newline, as in C

\r carriage return, as in C

\t horizontal tab, as in C

\uwxyz (where wxyz is exactly four hexadecimal digits)

the UTF16 (Unicode, 16-bit) character U+wxyz in
the local byte ordering

\Ustuvwxyz (where stuvwxyz is exactly eight hexadecimal
digits) reserved for a hypothetical Unicode
extension to 32 bits

\v vertical tab, as in C

184

Chapter 9. Functions and Operators

Escape Description

\xhhh (where hhh is any sequence of hexadecimal
digits) the character whose hexadecimal value is
Oxhhh (a single character no matter how many
hexadecimal digits are used)

\O the character whose value is 0 (the null byte)

\xy (where xy is exactly two octal digits, and is not a
back reference) the character whose octal value is
Oxy

\xyz (where xyz is exactly three octal digits, and is not

a back reference) the character whose octal value

is Oxyz

Hexadecimal digits are 0-9, a-f, and A-F. Octal digits are 0-7.

The character-entry escapes are always taken as ordinary characters. For example, \135 is] in ASCII,
but \135 does not terminate a bracket expression.

Table 9-16. Regular Expression Class-Shorthand Escapes

Escape Description

\d [[:digit:]]

\s [[:space:]]

\w [[:alnum:]_] (note underscore is included)
\D [~[:digit:]]

\S [*[:space:]]

\W [~[:alnum:]_] (note underscore is included)

Within bracket expressions, \d, \s, and \w lose their outer brackets, and \D, \S, and \w are illegal.
(So, for example, [a-c\d] is equivalent to [a-c[:digit:]]. Also, [a-c\D], which is equivalent to
[a—c”[:digit:]11],isillegal.)

Table 9-17. Regular Expression Constraint Escapes

Escape Description
\A matches only at the beginning of the string (see
Section 9.7.3.5 for how this differs from *)
\m matches only at the beginning of a word
\M matches only at the end of a word
\y matches only at the beginning or end of a word
\Y matches only at a point that is not the beginning or
end of a word
\Z matches only at the end of the string (see Section
9.7.3.5 for how this differs from $)

185

Chapter 9. Functions and Operators

A word is defined as in the specification of [[:<:]] and [[:>:]] above. Constraint escapes are illegal
within bracket expressions.

Table 9-18. Regular Expression Back References

Escape Description

\m (where m is a nonzero digit) a back reference to
the m’th subexpression

\mnn (where m is a nonzero digit, and nn is some more
digits, and the decimal value mnn is not greater
than the number of closing capturing parentheses
seen so far) a back reference to the mnn’th
subexpression

Note: There is an inherent ambiguity between octal character-entry escapes and back references,
which is resolved by the following heuristics, as hinted at above. A leading zero always indicates an
octal escape. A single non-zero digit, not followed by another digit, is always taken as a back reference.
A multi-digit sequence not starting with a zero is taken as a back reference if it comes after a suitable
subexpression (i.e., the number is in the legal range for a back reference), and otherwise is taken as
octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syntactic
facilities available.

Normally the flavor of RE being used is determined by regex_flavor. However, this can be overridden
by a director prefix. If an RE begins with «««:, the rest of the RE is taken as an ARE regardless of
regex_flavor. If an RE begins with «xx=, the rest of the RE is taken to be a literal string, with all
characters considered ordinary characters.

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously determined
options (including both the RE flavor and case sensitivity). The available option letters are shown in Table
9-19.

Table 9-19. ARE Embedded-Option Letters

Option Description

b rest of RE is a BRE

c case-sensitive matching (overrides operator type)

e rest of RE is an ERE

i case-insensitive matching (see Section 9.7.3.5)
(overrides operator type)

m historical synonym for n

186

Chapter 9. Functions and Operators

Option Description

n newline-sensitive matching (see Section 9.7.3.5)

P partial newline-sensitive matching (see Section
9.7.3.5)

q rest of RE is a literal (“quoted”) string, all
ordinary characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

W inverse partial newline-sensitive (“weird”)

matching (see Section 9.7.3.5)

x expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of an
ARE (after the »»« : director if any).

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters in
the RE are ignored, as are all characters between a # and the following newline (or the end of the RE).
This permits paragraphing and commenting a complex RE. There are three exceptions to that basic rule:

« a white-space character or # preceded by \ is retained
 white space or # within a bracket expression is retained
+ white space and comments cannot appear within multi-character symbols, such as (2:

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (2#ttt) (where ttt is any text not con-
taining a)) is a comment, completely ignored. Again, this is not allowed between the characters of multi-
character symbols, like (2:. Such comments are more a historical artifact than a useful facility, and their
use is deprecated; use the expanded syntax instead.

None of these metasyntax extensions is available if an initial «+»= director has specified that the user’s
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the one
starting earliest in the string. If the RE could match more than one substring starting at that point, either
the longest possible match or the shortest possible match will be taken, depending on whether the RE is
greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

+ Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

+ Adding parentheses around an RE does not change its greediness.

187

Chapter 9. Functions and Operators

« A quantified atom with a fixed-repetition quantifier ({m} or {m}?) has the same greediness (possibly
none) as the atom itself.

« A quantified atom with other normal quantifiers (including {m, n} with m equal to n) is greedy (prefers
longest match).

+ A quantified atom with a non-greedy quantifier (including {m, n}? with m equal to n) is non-greedy
(prefers shortest match).

+ A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

« An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done in
such a way that the branch, or whole RE, matches the longest or shortest possible substring as a whole.
Once the length of the entire match is determined, the part of it that matches any particular subexpression
is determined on the basis of the greediness attribute of that subexpression, with subexpressions starting
earlier in the RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRING (’'XY12347Z’, 'Yx([0-91{1,3})");
Result: 123

SELECT SUBSTRING (’/XY12342’, "Y+2([0-91{1,3})");
Result: 1

In the first case, the RE as a whole is greedy because v+ is greedy. It can match beginning at the v, and it
matches the longest possible string starting there, i.e., Y123. The output is the parenthesized part of that,
or 123. In the second case, the RE as a whole is non-greedy because Y« ? is non-greedy. It can match
beginning at the v, and it matches the shortest possible string starting there, i.e., Y1. The subexpression
[0-9]1{1, 3} is greedy but it cannot change the decision as to the overall match length; so it is forced to
match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE. The
attributes assigned to the subexpressions only affect how much of that match they are allowed to “eat”
relative to each other.

The quantifiers {1, 1} and {1, 1} 2 can be used to force greediness or non-greediness, respectively, on a
subexpression or a whole RE.

Match lengths are measured in characters, not collating elements. An empty string is considered
longer than no match at all. For example: bbx matches the three middle characters of abbbc;
(week |wee) (night |knights) matches all ten characters of weeknights; when (.) .* is matched
against abc the parenthesized subexpression matches all three characters; and when (ax) » is matched
against bc both the whole RE and the parenthesized subexpression match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside a
bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g., x

188

Chapter 9. Functions and Operators

becomes [xX]. When it appears inside a bracket expression, all case counterparts of it are added to the
bracket expression, e.g., [x] becomes [xx] and [~x] becomes [*xX].

If newline-sensitive matching is specified, . and bracket expressions using ~ will never match the newline
character (so that matches will never cross newlines unless the RE explicitly arranges it) and ~and $ will
match the empty string after and before a newline respectively, in addition to matching at beginning and
end of string respectively. But the ARE escapes \2 and \Z continue to match beginning or end of string
only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with newline-
sensitive matching, but not ~ and $.

If inverse partial newline-sensitive matching is specified, this affects ~ and $ as with newline-sensitive
matching, but not . and bracket expressions. This isn’t very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs intended to
be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant implementation
can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is that \ does not lose its
special significance inside bracket expressions. All other ARE features use syntax which is illegal or
has undefined or unspecified effects in POSIX EREs; the «++ syntax of directors likewise is outside the
POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up, and a
few Perl extensions are not present. Incompatibilities of note include \b, \B, the lack of special treatment
for a trailing newline, the addition of complemented bracket expressions to the things affected by newline-
sensitive matching, the restrictions on parentheses and back references in lookahead constraints, and the
longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4 releases
of PostgreSQL:

« In AREs, \ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

« In AREs, \ remains a special character within [], so a literal \ within a bracket expression must be
written \\.

While these differences are unlikely to create a problem for most applications, you can avoid them if
necessary by setting regex_flavor to extended.

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. In BREs, |, +, and ? are ordinary characters and there is no
equivalent for their functionality. The delimiters for bounds are \ { and \ '}, with { and } by themselves
ordinary characters. The parentheses for nested subexpressions are \ (and \), with (and) by themselves
ordinary characters. ~ is an ordinary character except at the beginning of the RE or the beginning of

189

Chapter 9. Functions and Operators

a parenthesized subexpression, $ is an ordinary character except at the end of the RE or the end of a
parenthesized subexpression, and * is an ordinary character if it appears at the beginning of the RE or
the beginning of a parenthesized subexpression (after a possible leading ~). Finally, single-digit back
references are available, and \ < and \ > are synonyms for [[:<:]1] and [[:>:]] respectively; no other
escapes are available in BREs.

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted strings
to specific data types. Table 9-20 lists them. These functions all follow a common calling convention: the
first argument is the value to be formatted and the second argument is a template that defines the output
or input format.

A single-argument to_timestamp function is also available; it accepts a double precision argu-
ment and converts from Unix epoch (seconds since 1970-01-01 00:00:00+00) to t imestamp with time
zone. (Integer Unix epochs are implicitly cast to double precision.)

Table 9-20. Formatting Functions

Function Return Type Description Example

to_char (timestamp, text convert time stamp to to_char (current_timestamp,

text) string "HH12:MI:SS’)

to_char (interval, text convert interval to string | to_char (interval

text) "15h 2m 12s’,
"HH24:MI:SS’)

to_char (int, text) text convert integer to string | to_char (125,
79997)

to_char (double text convert real/double to_char(125.8::reall,

precision, text) precision to string 7999D9")

to_char (numeric, text convert numeric to to_char (-125.8,

text) string 7999D99S")

to_date (text, text) |date convert string to date to_date (05 Dec 2000,

"DD Mon YYYY')

to_number (text, numeric convert String to to_number (’12,454.8~',

text) numeric ’'99G999D9S")

to_timestamp (text, timestamp with convert string to time to_timestamp (/05 Dejc 20007,
text) time zone stamp DD Mon YYYY')

to_timestamp (double |timestamp with convert Unix epoch to to_timestamp (1284352323)
precision) time zone time stamp

In a to_char output template string, there are certain patterns that are recognized and replaced with
appropriately-formatted data based on the given value. Any text that is not a template pattern is simply
copied verbatim. Similarly, in an input template string (for the other functions), template patterns identify

190

the values to be supplied by the input data string.

Chapter 9. Functions and Operators

Table 9-21 shows the template patterns available for formatting date and time values.

Table 9-21. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

MI minute (00-59)

SS second (00-59)

MS millisecond (000-999)

Us microsecond (000000-999999)
SSSS seconds past midnight (0-86399)

AM, am, PM Or pm

meridiem indicator (without periods)

A.M.,a.m.,P.M. Orp.m.

meridiem indicator (with periods)

Y, YYY year (4 and more digits) with comma
YYYY year (4 and more digits)

YYY last 3 digits of year

Yy last 2 digits of year

Y last digit of year

IYYY ISO year (4 and more digits)

IYY last 3 digits of ISO year

1Y last 2 digits of ISO year

I last digit of ISO year

BC, bc, AD or ad

era indicator (without periods)

B.C.,b.c.,A.D.Ora.d.

era indicator (with periods)

MONTH full uppercase month name (blank-padded to 9
chars)

Month full capitalized month name (blank-padded to 9
chars)

month full lowercase month name (blank-padded to 9
chars)

MON abbreviated uppercase month name (3 chars in
English, localized lengths vary)

Mon abbreviated capitalized month name (3 chars in
English, localized lengths vary)

mon abbreviated lowercase month name (3 chars in
English, localized lengths vary)

MM month number (01-12)

DAY full uppercase day name (blank-padded to 9 chars)

191

Chapter 9. Functions and Operators

Pattern Description

Day full capitalized day name (blank-padded to 9
chars)

day full lowercase day name (blank-padded to 9 chars)

DY abbreviated uppercase day name (3 chars in
English, localized lengths vary)

Dy abbreviated capitalized day name (3 chars in
English, localized lengths vary)

dy abbreviated lowercase day name (3 chars in
English, localized lengths vary)

DDD day of year (001-366)

IDDD ISO day of year (001-371; day 1 of the year is
Monday of the first ISO week.)

DD day of month (01-31)

D day of the week, Sunday(1) to Saturday(7)

ID ISO day of the week, Monday(1) to Sunday(7)

W week of month (1-5) (The first week starts on the
first day of the month.)

WwW week number of year (1-53) (The first week starts
on the first day of the year.)

IW ISO week number of year (01 - 53; the first
Thursday of the new year is in week 1.)

cc century (2 digits) (The twenty-first century starts
on 2001-01-01.)

J Julian Day (days since November 24, 4714 BC at
midnight)

0 quarter

RM month in uppercase Roman numerals (I-XII;
I=January)

rm month in lowercase Roman numerals (i-xii;
i=January)

TZ uppercase time-zone name

tz lowercase time-zone name

Modifiers can be applied to any template pattern to alter its behavior. For example, FMMonth is the Month
pattern with the FM modifier. Table 9-22 shows the modifier patterns for date/time formatting.

Table 9-22. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example
FM prefix fill mode (suppress padding FMMonth
blanks and zeroes)
TH suffix uppercase ordinal number suffix |DDTH, e.g., 12TH

192

Chapter 9. Functions and Operators

Modifier Description Example
th suffix lowercase ordinal number suffix |DDth,e.g., 12th
FX prefix fixed format global option (see FX Month DD Day
usage notes)
TM prefix translation mode (print localized | TMMonth
day and month names based on
Ic_time)
SP suffix spell mode (not implemented) DDSP

Usage notes for date/time formatting:

FM suppresses leading zeroes and trailing blanks that would otherwise be added to make the output of a
pattern be fixed-width.

TM™ does not include trailing blanks.

to_timestamp and to_date skip multiple blank spaces in the input string unless the FX
option is used. For example, to_timestamp (’2000 JUN’, ’YYYY MON’) works, but
to_timestamp (2000 JUN’, 'FXYYYY MON’) returns an error because to_timestamp
expects one space only. Fx must be specified as the first item in the template.

Ordinary text is allowed in to_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains pattern key words. For
example, in ' "Hello Year "YvYY’,the YYYY will be replaced by the year data, but the single Y in
Year will not be.

If you want to have a double quote in the output you must precede it with a backslash, for example
E’\\"YYYY Month\\"’. (Two backslashes are necessary because the backslash has special meaning
when using the escape string syntax.)

The YYYY conversion from string to timestamp or date has a restriction when processing years
with more than 4 digits. You must use some non-digit character or template after YYYY, otherwise the
year is always interpreted as 4 digits. For example (with the year 20000): to_date (1200001131’
" yYYyYMMDD’) will be interpreted as a 4-digit year; instead use a non-digit separator after the year, like
to_date (/20000-1131’, ’"YYYY-MMDD’) or to_date ('20000Nov31l’, ’'YYYYMonDD’).

In conversions from string to timestamp or date, the cC (century) field is ignored if there is a YYY,
YYYY orY, YvY field. If cC is used with Yy or Y then the year is computed as (CC-1) x100+YY.

An ISO week date (as distinct from a Gregorian date) can be specified to to_timestamp and to_date
in one of two ways:

- Year, week, and weekday: for example to_date (/1 2006-42-4", ’IYYY-IW-ID’) returns the date
2006-10-19. If you omit the weekday it is assumed to be 1 (Monday).

« Year and day of year: for example to_date(’2006-291’, ’IYYY-IDDD’) also returns
2006-10-109.

Attempting to construct a date using a mixture of ISO week and Gregorian date fields is nonsensical,
and will cause an error. In the context of an ISO year, the concept of a “month” or “day of month”

193

Chapter 9. Functions and Operators

has no meaning. In the context of a Gregorian year, the ISO week has no meaning. Users should avoid
mixing Gregorian and ISO date specifications.

« In a conversion from string to timestamp, millisecond (MS) or microsecond (US) values are used as
the seconds digits after the decimal point. For example to_timestamp (' 12:3’, ’SS:MS’) isnot3
milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds. This means for the format
SS:Ms, the input values 12:3, 12:30, and 12:300 specify the same number of milliseconds. To get
three milliseconds, one must use 12 : 003, which the conversion counts as 12 + 0.003 = 12.003 seconds.

Here is a more complex example: to_timestamp(’15:12:02.020.001230",
"HH:MI:SS.MS.US’) is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 microseconds
=2.021230 seconds.

+ to_char(..., "ID’")’sday of the week numbering matches the extract (' isodow’, ...) func-
tion, but to_char (..., ’D’)’s does not match extract (‘dow’, ...)’sday numbering.

+ to_char (interval) formats HH and HH12 as hours in a single day, while HH24 can output hours
exceeding a single day, e.g., >24.

Table 9-23 shows the template patterns available for formatting numeric values.

Table 9-23. Template Patterns for Numeric Formatting

Pattern Description

9 value with the specified number of digits

0 value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number < 0)
PL plus sign in specified position (if number > 0)
SG plus/minus sign in specified position

RN Roman numeral (input between 1 and 3999)
THoOr th ordinal number suffix

\Y% shift specified number of digits (see notes)
EEEE scientific notation (not implemented)

Usage notes for numeric formatting:

+ A sign formatted using SG, PL, or MI is not anchored to the number; for example, to_char (-12,
"MI9999’) produces '- 12’ but to_char(-12, ’S9999’) produces ’ -12’. The Oracle im-

194

Chapter 9. Functions and Operators

plementation does not allow the use of M1 before 9, but rather requires that 9 precede MI.

+ 9 results in a value with the same number of digits as there are 9s. If a digit is not available it outputs a
space.

« TH does not convert values less than zero and does not convert fractional numbers.
+ PL, SG, and TH are PostgreSQL extensions.

- v effectively multiplies the input values by 10~ n, where n is the number of digits following V. to_char
does not support the use of v combined with a decimal point (e.g., 99.9v99 is not allowed).

Certain modifiers can be applied to any template pattern to alter its behavior. For example, FM9999 is the
9999 pattern with the FM modifier. Table 9-24 shows the modifier patterns for numeric formatting.

Table 9-24. Template Pattern Modifiers for Numeric Formatting

Modifier Description Example

FM prefix fill mode (suppress padding FM9999
blanks and zeroes)

TH suffix uppercase ordinal number suffix | 999TH

th suffix lowercase ordinal number suffix | 999th

Table 9-25 shows some examples of the use of the to_char function.

Table 9-25. to_char Examples

Expression Result

to_char (current_timestamp, "Tuesday , 06 05:39:18’
"Day, DD HH12:MI:SS’)

to_char (current_timestamp, "Tuesday, 6 05:39:18’
'FMDay, FMDD HH12:MI:SS’)

to_char(-0.1, 799.99") T -.107

to_char(-0.1, "FM9.99") r—.1r

to_char (0.1, "0.9") 0.1’

to_char (12, ’9990999.9") ! 0012.0"

to_char (12, 'FM9990999.9") r0012.7

to_char (485, ’79997") ! 4857

to_char (-485, 79997) " -485"

to_char (485, 79 9 9') "4 8 57

to_char (1485, '9,999") ' 1,485

to_char (1485, "9G999') 1 485’
to_char(148.5, 7999.999") ' 148.500'
to_char(148.5, 'FM999.999") 7148.57

to_char(148.5, 'FM999.990") 7148.500"

195

Chapter 9. Functions and Operators

Expression Result
to_char(148.5, 7999D999') ' 148,500
to_char(3148.5, "9G999D999") ' 3 148,500’
to_char (-485, '999s’) "485-1

to_char (-485, "999MI’) "485-"

to_char (485, ’'999MI’) "485 7

to_char (485, 'FM999MI’) "485'

to_char (485, ’'PL999’) "4+4857

to_char (485, ’'SG999') "4+4857

to_char (-485, ’'S5G999') " -485"

to_char (-485, ’9SG99") "4-85"

to_char (-485, "999PR’) ! <485>'

to_char (485, ’'L999") DM 485

to_char (485, ’'RN’) ’ CDLXXXV'
to_char (485, ’"FMRN’) " CDLXXXV'

to_char (5.2, ’'FMRN') T’

to_char (482, ’999th’) " 482nd’

to_char (485, ’"Good number:"999") "Good number: 485’
to_char (485.8, "Pre: 485 Post: .800’
""Pre:"999" Post:" .999')

to_char (12, 799vV999’) " 120007

to_char (12.4, "99vV999') " 124007
to_char(12.45, ’"99V9’) " 1257

9.9. Date/Time Functions and Operators

Table 9-27 shows the available functions for date/time value processing, with details appearing in the
following subsections. Table 9-26 illustrates the behaviors of the basic arithmetic operators (+, *, etc.).
For formatting functions, refer to Section 9.8. You should be familiar with the background information on
date/time data types from Section 8.5.

All the functions and operators described below that take t ime or t imestamp inputs actually come in two
variants: one that takes time with time zone or timestamp with time zone, and one that takes
time without time zone Or timestamp without time zone. For brevity, these variants are not
shown separately. Also, the + and » operators come in commutative pairs (for example both date + integer
and integer + date); we show only one of each such pair.

Table 9-26. Date/Time Operators

Operator Example Result

196

Chapter 9. Functions and Operators

Operator Example Result

+ date ’2001-09-28" + date ’2001-10-05"
integer 7’

+ date ’2001-09-28" + timestamp ’2001-09-28
interval '1 hour’ 01:00:00"

+ date 72001-09-28" + time |timestamp '2001-09-28
703:00" 03:00:00"

+ interval ’1 day’ + interval '1 day
interval ’1 hour’ 01:00:00"

+ timestamp 2001-09-28 timestamp ’2001-09-29
01:00" + interval ’23 00:00:00"
hours’

+ time ’01:00" + interval time "04:00:00"
"3 hours’

- - interval ’23 hours’ interval '-23:00:00"

- date "2001-10-01’ - date |integer ‘3’ (days)
72001-09-28"

- date ’2001-10-01" - date '2001-09-24"
integer 7’

- date ’2001-09-28" - timestamp ’2001-09-27
interval ’1 hour’ 23:00:00"

- time ’05:00" - time interval "02:00:00"
703:00"

- time "05:00” - interval time "03:00:00"
"2 hours’

- timestamp ’2001-09-28 timestamp "2001-09-28
23:00” - interval ’'23 00:00:00"
hours’

- interval ’'1 day’ - interval '1 day
interval ’1 hour’ -01:00:00"

- timestamp ’2001-09-29 interval '1 day
03:00" - timestamp 15:00:00"
72001-09-27 12:00"

* 900 * interval "1 interval "00:15:00"
second’

* 21 % interval ’1 day’ interval ’'21 days’

* double precision ’3.5’ * |interval ’'03:30:00’
interval 1 hour’

/ interval 1 hour’ / interval 700:40:00
double precision ’1.5'

Table 9-27. Date/Time Functions

197

Chapter 9. Functions and Operators

Function Return Type Description Example Result
age (timestamp, interval Subtract age (timestamp |43 years 9
timestamp) arguments, r2001-04-10", mons 27 days
producing a timestamp
“symbolic” result |’1957-06-13")
that uses years and
months
age (timestamp) interval Subtract from age (timestamp |43 years 8

current_date (at

midnight)

71957-06-13")

mons 3 days

clock_timestamp (

timestamp with

time zone

Current date and
time (changes
during statement
execution); see

Section 9.9.4
current_date date Current date; see
Section 9.9.4
current_time time with time |Current time of
zone day; see Section
9.94
current_timestamg timestamp with |Current date and

time zone

time (start of

current
transaction); see
Section 9.9.4
date_part (text, |double Get subfield date_part (' hour|’20
timestamp) precision (equivalent to timestamp
extract); see 72001-02-16
Section 9.9.1 20:38:407)
date_part (text, |double Get subfield date_part ('month3,
interval) precision (equivalent to interval ’2
extract); see years 3
Section 9.9.1 months’)
date_trunc (text, | timestamp Truncate to date_trunc ("houZQ01-02-16
timestamp) specified precision; | t imestamp 20:00:00
see also Section r2001-02-16
99.2 20:38:40")
extract (field double Get subfield; see extract (hour 20
from timestamp) |precision Section 9.9.1 from timestamp
72001-02-16
20:38:40")
extract (field double Get subfield; see extract (month |3
from interval) |precision Section 9.9.1 from interval

"2 years 3

months’)

198

Chapter 9. Functions and Operators

Function Return Type Description Example Result

isfinite (date) boolean Test for finite date |isfinite (date |true
(not +/-infinity) 72001-02-16")

isfinite (timestamppolean Test for finite time |isfinite (timestlampue
stamp (not ’2001-02-16
+/-infinity) 21:28:30")

isfinite (interval

boolean

Test for finite
interval

isfinite (interv

"4 hours'’)

atdrue

Jjustify_days (intg

vl rval

Adjust interval so
30-day time
periods are
represented as
months

Justify_days (in
35 days’)

tem@l 5 days

Jjustify_hours (inf

dmt=dnval

Adjust interval so
24-hour time
periods are
represented as days

justify_hours (i

727 hours’)

It edara103:00: 00

justify_interval

fimtearwad L

Adjust interval
using
justify_days
and
justify_hours,
with additional
sign adjustments

Justify_interval
1l mon -1

hour’)

12(3 ntasyrsra 1
23:00:00

localtime

time

Current time of
day; see Section
994

localtimestamp

timestamp

Current date and
time (start of
current
transaction); see
Section 9.9.4

now ()

timestamp with

time zone

Current date and
time (start of
current
transaction); see
Section 9.9.4

statement_timesta

m@festamp with

time zone

Current date and
time (start of
current statement);
see Section 9.9.4

199

Chapter 9. Functions and Operators

Function Return Type Description Example Result
timeofday () text Current date and
time (like

clock_timestamp|
but as a text
string); see Section
994

transaction_timegttamme(dtamp with | Current date and
time zone time (start of
current
transaction); see
Section 9.9.4

In addition to these functions, the SQL OVERLAPS operator is supported:

(startl, endl) OVERLAPS (start2, end2)
(startl, lengthl) OVERLAPS (start2, length2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when they
do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a date, time,
or time stamp followed by an interval.

SELECT (DATE ’2001-02-16’, DATE '2001-12-21") OVERLAPS
(DATE "2001-10-30", DATE ’2002-10-30");

Result: true

SELECT (DATE ’2001-02-16’, INTERVAL ’100 days’) OVERLAPS
(DATE "2001-10-30’, DATE ’2002-10-30");

Result: false

When adding an interval value to (or subtracting an interval value from) a timestamp with
time zone value, the days component advances (or decrements) the date of the timestamp with
time zone by the indicated number of days. Across daylight saving time changes (with the session time
zone set to a time zone that recognizes DST), this means interval ’1 day’ does not necessarily
equal interval ’24 hours’. For example, with the session time zone set to CST7CDT, timestamp
with time zone ’2005-04-02 12:00-07’ + interval '1 day’ will produce timestamp
with time zone ’2005-04-03 12:00-06’, while adding interval ’24 hours’ to the same
initial timestamp with time zone produces timestamp with time zone ’2005-04-03
13:00-06", as there is a change in daylight saving time at 2005-04-03 02:00 in time zone CST7CDT.

Note there can be ambiguity in the months returned by age because different months have a different
number of days. PostgreSQL’s approach uses the month from the earlier of the two dates when calculating
partial months. For example, age (2004-06-01", ’2004-04-30") uses Apriltoyield1 mon 1 day,
while using May would yield 1 mon 2 days because May has 31 days, while April has only 30.

9.9.1. EXTRACT, date_part

EXTRACT (field FROM source)

200

Chapter 9. Functions and Operators

The extract function retrieves subfields such as year or hour from date/time values. source must
be a value expression of type timestamp, time, or interval. (Expressions of type date are cast to
timestamp and can therefore be used as well.) field is an identifier or string that selects what field to
extract from the source value. The extract function returns values of type double precision. The
following are valid field names:

century

The century

SELECT EXTRACT (CENTURY FROM TIMESTAMP ’'2000-12-16 12:21:13");
Result: 20
SELECT EXTRACT (CENTURY FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 21

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time. This
definition applies to all Gregorian calendar countries. There is no century number 0, you go from
-1 century to 1 century. If you disagree with this, please write your complaint to: Pope, Cathedral
Saint-Peter of Roma, Vatican.

PostgreSQL releases before 8.0 did not follow the conventional numbering of centuries, but just
returned the year field divided by 100.

day
The day (of the month) field (1 - 31)

SELECT EXTRACT (DAY FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 16

decade
The year field divided by 10

SELECT EXTRACT (DECADE FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 200

dow

The day of the week as Sunday(0) to Saturday(6)

SELECT EXTRACT (DOW FROM TIMESTAMP ’2001-02-16 20:38:407);
Result: 5

Note that extract’s day of the week numbering differs from that of the to_char (..., 'D’)
function.

doy
The day of the year (1 - 365/366)

SELECT EXTRACT (DOY FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 47

epoch

For date and timestamp values, the number of seconds since 1970-01-01 00:00:00 UTC (can be
negative); for interval values, the total number of seconds in the interval

SELECT EXTRACT (EPOCH FROM TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40-08");
Result: 982384720

201

Chapter 9. Functions and Operators

SELECT EXTRACT (EPOCH FROM INTERVAL ’'5 days 3 hours’);
Result: 442800

Here is how you can convert an epoch value back to a time stamp:
SELECT TIMESTAMP WITH TIME ZONE ’epoch’ + 982384720 * INTERVAL ’'1 second’;
hour

The hour field (0 - 23)

SELECT EXTRACT (HOUR FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 20

isodow

The day of the week as Monday(1) to Sunday(7)

SELECT EXTRACT (ISODOW FROM TIMESTAMP ’'2001-02-18 20:38:40");
Result: 7

This is identical to dow except for Sunday. This matches the ISO 8601 day of the week numbering.
isoyear
The ISO 8601 year that the date falls in (not applicable to intervals)

SELECT EXTRACT (ISOYEAR FROM DATE ’2006-01-01");
Result: 2005
SELECT EXTRACT (ISOYEAR FROM DATE ’'2006-01-02");
Result: 2006

Each ISO year begins with the Monday of the week containing the 4th of January, so in early January
or late December the ISO year may be different from the Gregorian year. See the week field for more
information.

This field is not available in PostgreSQL releases prior to 8.3.
microseconds

The seconds field, including fractional parts, multiplied by 1 000 000; note that this includes full
seconds

SELECT EXTRACT (MICROSECONDS FROM TIME ’'17:12:28.5");
Result: 28500000

millennium

The millennium

SELECT EXTRACT (MILLENNIUM FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 3

Years in the 1900s are in the second millennium. The third millennium started January 1, 2001.

PostgreSQL releases before 8.0 did not follow the conventional numbering of millennia, but just
returned the year field divided by 1000.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.

SELECT EXTRACT (MILLISECONDS FROM TIME ’17:12:28.5");
Result: 28500

202

Chapter 9. Functions and Operators

minute
The minutes field (0 - 59)

SELECT EXTRACT (MINUTE FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 38

month

For t imestamp values, the number of the month within the year (1 - 12) ; for interval values the
number of months, modulo 12 (0 - 11)

SELECT EXTRACT (MONTH FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 2

SELECT EXTRACT (MONTH FROM INTERVAL ’2 years 3 months’);
Result: 3

SELECT EXTRACT (MONTH FROM INTERVAL ’2 years 13 months’);
Result: 1

quarter
The quarter of the year (1 - 4) that the date is in

SELECT EXTRACT (QUARTER FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 1

second
The seconds field, including fractional parts (0 - 59")
SELECT EXTRACT (SECOND FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 40
SELECT EXTRACT (SECOND FROM TIME ’17:12:28.5');
Result: 28.5

timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones east
of UTC, negative values to zones west of UTC.

timezone_hour

The hour component of the time zone offset
timezone_minute

The minute component of the time zone offset
week

The number of the week of the year that the day is in. By definition (ISO 8601), the first week of a
year contains January 4 of that year. (The ISO-8601 week starts on Monday.) In other words, the first
Thursday of a year is in week 1 of that year.

Because of this, it is possible for early January dates to be part of the 52nd or 53rd week of the
previous year. For example, 2005-01-01 is part of the 53rd week of year 2004, and 2006-01-01 is
part of the 52nd week of year 2005.

60 if leap seconds are implemented by the operating system

203

Chapter 9. Functions and Operators

SELECT EXTRACT (WEEK FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 7

year

The year field. Keep in mind there is no 0 AD, so subtracting BC years from AD years should be done
with care.

SELECT EXTRACT (YEAR FROM TIMESTAMP ’2001-02-16 20:38:407);
Result: 2001

The extract function is primarily intended for computational processing. For formatting date/time val-
ues for display, see Section 9.8.

The date_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract:

date_part (' field’, source)

Note that here the field parameter needs to be a string value, not a name. The valid field names for
date_part are the same as for extract.

SELECT date_part(‘day’, TIMESTAMP ’2001-02-16 20:38:40");
Result: 16

SELECT date_part ('hour’, INTERVAL "4 hours 3 minutes’);
Result: 4

9.9.2. date_trunc

The function date_trunc is conceptually similar to the t runc function for numbers.

date_trunc (’ field’, source)

source is a value expression of type t imestamp or interval. (Values of type date and time are cast
automatically to t imestamp or interval, respectively.) £ield selects to which precision to truncate the
input value. The return value is of type t imestamp or interval with all fields that are less significant
than the selected one set to zero (or one, for day and month).

Valid values for field are:

microseconds
milliseconds
second
minute

hour

day

week

month
quarter

year

204

Chapter 9. Functions and Operators

decade
century

millennium

Examples:

SELECT date_trunc(’hour’, TIMESTAMP ’2001-02-16 20:38:407);
Result: 2001-02-16 20:00:00

SELECT date_trunc(’year’, TIMESTAMP ’'2001-02-16 20:38:407");
Result: 2001-01-01 00:00:00

9.9.3. AT TIME ZONE

The AT TIME ZONE construct allows conversions of time stamps to different time zones. Table 9-28
shows its variants.

Table 9-28. AT TIME ZONE Variants

Expression Return Type Description

timestamp without time zone |timestamp with time zone |Treat given time stamp without
AT TIME ZONE zone time zone as located in the
specified time zone

timestamp with time zone timestamp without time Convert given time stamp with
AT TIME ZONE zone zone time zone to the new time zone,
with no time zone designation

time with time zone AT time with time zone Convmtgh@nthnelvﬂhthne
TIME ZONE zone zone to the new time zone

In these expressions, the desired time zone zone can be specified either as a text string (e.g., " PST’) or
as an interval (e.g., INTERVAL ’'-08:00"). In the text case, a time zone name can be specified in any of
the ways described in Section 8.5.3.

Examples (assuming the local time zone is PST8PDT):

SELECT TIMESTAMP ’2001-02-16 20:38:40" AT TIME ZONE ’MST’;
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40-05" AT TIME ZONE ’'MST’;
Result: 2001-02-16 18:38:40

The first example takes a time stamp without time zone and interprets it as MST time (UTC-7), which
is then converted to PST (UTC-8) for display. The second example takes a time stamp specified in EST
(UTC-5) and converts it to local time in MST (UTC-7).

The function timezone (zone, timestamp) is equivalent to the SQL-conforming construct timestamp
AT TIME ZONE zone.

205

Chapter 9. Functions and Operators

9.9.4. Current Date/Time

PostgreSQL provides a number of functions that return values related to the current date and time. These
SQL-standard functions all return values based on the start time of the current transaction:

CURRENT_DATE

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME (precision)
CURRENT_TIMESTAMP (precision)
LOCALTIME

LOCALTIMESTAMP

LOCALTIME (precision)
LOCALTIMESTAMP (precision)

CURRENT_TIME and CURRENT_TIMESTAMP deliver values with time zone; LOCALTIME and
LOCALTIMESTAMP deliver values without time zone.

CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMP can optionally take a pre-
cision parameter, which causes the result to be rounded to that many fractional digits in the seconds field.
Without a precision parameter, the result is given to the full available precision.

Some examples:

SELECT CURRENT_TIME;
Result: 14:39:53.662522-05

SELECT CURRENT_DATE;
Result: 2001-12-23

SELECT CURRENT_TIMESTAMP;
Result: 2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP (2) ;
Result: 2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
Result: 2001-12-23 14:39:53.662522

Since these functions return the start time of the current transaction, their values do not change during
the transaction. This is considered a feature: the intent is to allow a single transaction to have a consistent
notion of the “current” time, so that multiple modifications within the same transaction bear the same time
stamp.

Note: Other database systems might advance these values more frequently.

PostgreSQL also provides functions that return the start time of the current statement, as well as the actual
current time at the instant the function is called. The complete list of non-SQL-standard time functions is:

206

Chapter 9. Functions and Operators

transaction_timestamp ()
statement_timestamp ()
clock_timestamp ()
timeofday ()

now ()

transaction_timestamp () is equivalent to CURRENT_ TIMESTAMP, but is named to clearly reflect
what it returns. statement_timestamp () returns the start time of the current statement (more specif-
ically, the time of receipt of the latest command message from the client). statement_timestamp ()
and transaction_timestamp () return the same value during the first command of a transaction,
but might differ during subsequent commands. clock_timestamp () returns the actual current time,
and therefore its value changes even within a single SQL command. timeofday () is a historical Post-
greSQL function. Like clock_timestamp (), it returns the actual current time, but as a formatted text
string rather than a timestamp with time zone value. now () is a traditional PostgreSQL equivalent
to transaction_timestamp ().

All the date/time data types also accept the special literal value now to specify the current date and time
(again, interpreted as the transaction start time). Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now () ;
SELECT TIMESTAMP ’'now’; —-- incorrect for use with DEFAULT

Tip: You do not want to use the third form when specifying a pErauLT clause while creating a table.
The system will convert now to a timestamp as soon as the constant is parsed, so that when the
default value is needed, the time of the table creation would be used! The first two forms will not
be evaluated until the default value is used, because they are function calls. Thus they will give the
desired behavior of defaulting to the time of row insertion.

9.9.5. Delaying Execution
The following function is available to delay execution of the server process:

pg_sleep (seconds)

pg_sleep makes the current session’s process sleep until seconds seconds have elapsed. seconds is a
value of type double precision, so fractional-second delays can be specified. For example:

SELECT pg_sleep(1l.5);

Note: The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a common
value. The sleep delay will be at least as long as specified. It might be longer depending on factors
such as server load.

207

Chapter 9.

Functions and Operators

Warning

Make sure that your session does not hold more locks than necessary when calling
pg_sleep. Otherwise other sessions might have to wait for your sleeping process,
slowing down the entire system.

9.10. Enum Support Functions

For enum types (described in Section 8.7), there are several functions that allow cleaner programming
without hard-coding particular values of an enum type. These are listed in Table 9-29. The examples
assume an enum type created as:

CREATE TYPE rainbow AS ENUM

(" red’,

Table 9-29. Enum Support Functions

"orange’,

'yellow’,

"green’,

"blue’,

Function

Description

Example

Example Result

enum_first (anyenum)

Returns the first value of
the input enum type

enum_first (null::rg

dmdabw)

enum_last (anyenum)

Returns the last value of
the input enum type

enum_last (null::rai

moowple

enum_range (anyenum)

Returns all values of the
input enum type in an
ordered array

enum_range (null: :ra

iftbemiy)orange, yellow,

enum_range (anyenum,

anyenum)

Returns the range
between the two given
enum values, as an
ordered array. The
values must be from the
same enum type. If the
first parameter is null,
the result will start with
the first value of the
enum type. If the second
parameter is null, the
result will end with the
last value of the enum

type.

enum_range (' orange’

"green’ : :rainbow)

H{:arairdEw,e 1 1low, gree

enum_range (NULL,

"green’ : :rainbow)

{red, orange, yellow,

enum_range (' orange’
NULL)

H{:areirdEow,e 1 1ow, gree

208

"purple’);

green, blue, pu

green}

n,blue,purple

Chapter 9. Functions and Operators

Notice that except for the two-argument form of enum_range, these functions disregard the specific value
passed to them; they care only about its declared data type. Either null or a specific value of the type can
be passed, with the same result. It is more common to apply these functions to a table column or function
argument than to a hardwired type name as suggested by the examples.

9.11. Geometric Functions and Operators

The geometric types point, box, 1seg, line, path, polygon, and circle have a large set of native
support functions and operators, shown in Table 9-30, Table 9-31, and Table 9-32.

Caution

Note that the “same as” operator, ~=, represents the usual notion of equality for the
point, box, polygon, and circle types. Some of these types also have an = op-
erator, but = compares for equal areas only. The other scalar comparison operators
(<= and so on) likewise compare areas for these types.

Table 9-30. Geometric Operators

Operator Description Example

+ Translation box " ((0,0), (1,1))’ +
point ’(2.0,0)’

- Translation box ' ((0,0),(1,1))" -
point ' (2.0,0)’

* Scaling/rotation box ' ((0,0),(1,1))" =
point ' (2.0,0)’

/ Scaling/rotation box ' ((0,0),(2,2))" /
point ’ (2.0,0)’

Point or box of intersection T((1,-1), (-1,1))"
" ((1,1),(-1,-1))"

Number of points in path or # 7((1,0),(0,1),(-1,0))"
polygon

@-@ Length or circumference @-@ path " ((0,0), (1,0))"

Qe Center @@ circle ' ((0,0),10)"

Closest point to first operand on | point ’ (0,0)’ ## lseg
second operand " ((2,0),(0,2))"

<-> Distance between circle 7 ((0,0),1)" <->

circle ' ((5,0),1)"

&& Overlaps? box ' ((0,0), (1,1))’ &&
box ' ((0,0),(2,2))’

<< Is strictly left of? circle 7 ((0,0),1)" <<
circle " ((5,0),1)’

209

Chapter 9. Functions and Operators

Operator Description Example

>> Is strictly right of? circle 7 ((5,0),1)" >>
circle " ((0,0),1)’

&< Does not extend to the right of? |box ’ ((0,0), (1,1))’ &<
box " ((0,0), (2,2))"

&> Does not extend to the left of? box ’ ((0,0), (3,3))" &>
box " ((0,0), (2,2))"

<< Is strictly below? box ' ((0,0),(3,3))" <<|
box " ((3,4), (5,5))"

[>> Is strictly above? box ' ((3,4),(5,5))" [>>
box " ((0,0), (3,3))’

&< | Does not extend above? box ' ((0,0), (1,1))’ &<|
box " ((0,0), (2,2))"

| &> Does not extend below? box ' ((0,0), (3,3))" |&>
box " ((0,0), (2,2))"

<A Is below (allows touching)? circle 7 ((0,0),1)" <»
circle 7 ((0,5),1)"

>n Is above (allows touching)? circle 7 ((0,5),1)" >"
circle " ((0,0),1)"

24 Intersects? lseg " ((-1,0),(1,0))" 2#
box " ((-2,-2),(2,2))"’

?- Is horizontal? ?— lseg ' ((-1,0), (1,0))"

?- Are horizontally aligned? point ' (1,0)’ 2- point
" (0,0)’

2] Is vertical? ?] lseg ' ((-1,0),(1,0))’

2| Are vertically aligned? point ’ (0,1)’ 2| point
' (0,0)"

?2- Is perpendicular? lseg ' ((0,0),(0,1))" 2-
lseg ' ((0,0),(1,0))"

211 Are parallel? lseg 7 ((=1,0),(1,0))"
?1] lseg
f((=1,2),(1,2))"

@a> Contains? circle 7 ((0,0),2)" @>
point " (1,1)’

<@ Contained in or on? point 7 (1,1)’ <@ circle

" ((0,0),2)"

Same as?

polygon ’ ((0,0), (1,1))’
~= polygon
" ((1,1),(0,0))"

Note: Before PostgreSQL 8.2, the containment operators @¢> and <@ were respectively called ~ and
e. These names are still available, but are deprecated and will eventually be removed.

210

Table 9-31. Geometric Functions

Chapter 9. Functions and Operators

Function Return Type Description Example
area (object) double precision area area (box

" ((0,0),(1,1))")
center (object) point center center (box

" ((0,0),(1,2))")

diameter (circle)

double precision

diameter of circle

diameter (circle
" ((0,0),2.0)")

height (box)

double precision

vertical size of box

height (box
" ((0,0),(1,1))")

isclosed (path) boolean a closed path? isclosed (path
" ((0,0),(1,1),(2,0)
isopen (path) boolean an open path? isopen (path

"1(0,0),(1,1),(2,0)

length (object)

double precision

length

length (path
" ((=1,0),(1,0))")

npoints (path) int number of points npoints (path
"[(0,0),(1,1),(2,0)
npoints (polygon) int number of points npoints (polygon
" ((1,1),(0,0))")
pclose (path) path convert path to closed pclose (path
"[(0,0),(1,1),(2,0)
popen (path) path convert path to open popen (path

"((0,0),(1,1),(2,0)

radius (circle)

double precision

radius of circle

radius (circle
" ((0,0),2.0)")

width (box)

double precision

horizontal size of box

width (box
" ((0,0),(1,1))")

Table 9-32. Geometric Type Conversion Functions

Function Return Type Description Example
box (circle) box circle to box box (circle
7 ((0,0),2.0)")
box (point, point) box points to box box (point 7 (0,0)",

point " (1,1)")

211

Chapter 9. Functions and Operators

Function Return Type Description Example
box (polygon) box polygon to box box (polygon
"((0,0),(1,1),(2,0)
circle (box) circle box to circle circle (box
" ((0,0),(1,1))")
circle (point, double|circle center and radius to circle (point
precision) circle ’(0,0)", 2.0)
circle (polygon) circle polygon to circle circle (polygon
"((0,0),(1,1),(2,0)
lseg (box) lseg box diagonal to line lseqg (box
segment " ((-1,0),(1,0))")
lseg (point, point) lseg points to line segment lseg (point
"(-1,0)’, point
"(1,0)")
path (polygon) point polygon to path path (polygon
"((0,0),(1,1),(2,0)
point (double point construct point point (23.4, -44.5)
precision, double
precision)
point (box) point center of box point (box
" ((=1,0),(1,0))")
point (circle) point center of circle point (circle
"((0,0),2.0)")
point (1lseqg) point center of line segment point (lseg
" ((=1,0),(1,0))")
point (polygon) point center of polygon point (polygon
"((0,0),(1,1),(2,0)
polygon (box) polygon box to 4-point polygon |polygon (box
" ((0,0),(1,1))")
polygon (circle) polygon circle to 12-point polygon (circle
polygon " ((0,0),2.0)")
polygon (npts, polygon circle to npt s-point polygon (12, circle
circle) polygon ’((0,0),2.0)")
polygon (path) polygon path to polygon polygon (path

" ((0,0),(1,1),(2,0)

It is possible to access the two component numbers of a point as though the point were an array with
indexes 0 and 1. For example, if t.p is a point column then SELECT p[0] FROM t retrieves the X
coordinate and UPDATE t SET p[l] =
box or 1seg can be treated as an array of two point values.

. . . changes the Y coordinate. In the same way, a value of type

212

~

~

Chapter 9. Functions and Operators

The area function works for the types box, circle, and path. The area function only
works on the path data type if the points in the path are non-intersecting. For example,
the path 7 ((0,0),(0,1),(2,1),(2,2),(1,2),(1,0), (0,0))"::PATH
will not work; however, the following visually identical path
" ((0,0),(0,1),(1,1),(1,2),(2,2),(2,1),(1,1),(1,0),(0,0))’::PATH

will work. If the concept of an intersecting versus non-intersecting path is confusing, draw both of the
above paths side by side on a piece of graph paper.

9.12. Network Address Functions and Operators

Table 9-33 shows the operators available for the cidr and inet types. The operators <<, <<=, >>, and
>>= test for subnet inclusion. They consider only the network parts of the two addresses (ignoring any
host part) and determine whether one network is identical to or a subnet of the other.

Table 9-33. cidr and inet Operators

Operator Description Example

< is less than inet 7192.168.1.5" <
inet 7192.168.1.6'

<= is less than or equal inet 7192.168.1.5" <=
inet 7192.168.1.5'

= equals inet ’192.168.1.5" =
inet 7192.168.1.5'

>= is greater or equal inet 7192.168.1.5" >=
inet 7192.168.1.5'

> is greater than inet 7192.168.1.5" >
inet 7192.168.1.4'

<> is not equal inet 7192.168.1.5" <>
inet ’192.168.1.4’

<< is contained within inet 7192.168.1.5" <<
inet 7192.168.1/24"

<<= is contained within or equals inet 7192.168.1/24' <<=
inet ’192.168.1/24'

>> contains inet 7192.168.1/24" >>
inet 7192.168.1.5'

>>= contains or equals inet 7192.168.1/24" >>=
inet 7192.168.1/24'

~ bitwise NOT ~ inet ’192.168.1.6'

& bitwise AND inet 7192.168.1.6" &
inet 70.0.0.255’

bitwise OR inet 7192.168.1.6" |

inet 70.0.0.255’

+ addition inet ’192.168.1.6" + 25

213

Chapter 9. Functions and Operators

Operator Description Example

- subtraction inet ’192.168.1.43" - 36

- subtraction inet 7192.168.1.43" -
inet 7192.168.1.19’

Table 9-34 shows the functions available for use with the cidr and inet types. The abbrev, host, and
text functions are primarily intended to offer alternative display formats.

Table 9-34. cidr and inet Functions

Function Return Type Description Example Result

abbrev (inet) text abbreviated display | abbrev (inet 10.1.0.0/16
format as text 710.1.0.0/16")

abbrev (cidr) text abbreviated display | abbrev (cidr 10.1/16
format as text ’10.1.0.0/16")

broadcast (inet) |inet broadcast address |broadcast (7 192.16% 1.6Y2U/)55/2
for network

family (inet) int extract family of family (’::17) 6
address; 4 for
IPv4, 6 for IPv6

host (inet) text extract IP address |host (7192.168.1|.5924768.1.5
as text

hostmask (inet) inet construct host hostmask (1192.1/68..230.29/30")
mask for network

masklen (inet) int extract netmask masklen(’192.168&4.5/24")
length

netmask (inet) inet construct netmask |netmask (/' 192.168.35 5/2%./255.0
for network

network (inet) cidr extract network network (192.168L92. 5/@81’).0/24
part of address

set_masklen (inet, inet set netmask length | set_masklen (’ 192L9%8.48 5/2%/16

int) for inet value 16)

set_masklen (cidr, cidr set netmask length | set_masklen (’ 192L9%8L.68 0020/ 1:G q

int) for cidr value 16)

text (inet) text extract IP address |text (inet 192.168.1.5/32

and netmask length
as text

7192.168.1.5")

Any cidr value can be cast to inet implicitly or explicitly; therefore, the functions shown above as
operating on inet also work on cidr values. (Where there are separate functions for inet and cidr, it
is because the behavior should be different for the two cases.) Also, it is permitted to cast an inet value
to cidr. When this is done, any bits to the right of the netmask are silently zeroed to create a valid cidr
value. In addition, you can cast a text value to inet or cidr using normal casting syntax: for example,

inet (expression) Or colname: :cidr.

Table 9-35 shows the functions available for use with the macaddr type. The function trunc (macaddr)

214

idr,

Chapter 9. Functions and Operators

returns a MAC address with the last 3 bytes set to zero. This can be used to associate the remaining prefix

with a manufacturer.

Table 9-35. macaddr Functions

Function

Return Type Description

Example

Result

trunc (macaddr)

macaddr set last 3 bytes to

Z€10

trunc (macaddr
712:34:56:78:90

12:34:56:00:00:
rab’)

The macaddr type also supports the standard relational operators (>, <=, etc.) for lexicographical order-

ing.

9.13. Text Search Functions and Operators

Table 9-36, Table 9-37 and Table 9-38 summarize the functions and operators that are provided for full
text searching. See Chapter 12 for a detailed explanation of PostgreSQL’s text search facility.

Table 9-36. Text Search Operators

Operator Description Example Result
Q@ t svector matches to_tsvector (' fat t
tsquery ? cats ate rats’) Q@
to_tsquery (’cat &
rat’)
eee deprecated synonym for |to_tsvector (’ fat t
@@ cats ate rats’)
@ee
to_tsquery (’'cat &
rat’)
| concatenate tsvectors |’a:1 ra’:1 "b":2,5
b:2"::tsvector || e’ :3 7d’ 4
fc:l d:2
b:3’::tsvector
&6& AND tsquerys fat | ("fat’ | ’"rat’)
together rat’ ::tsquery && & ’cat’
"cat’ ::tsquery
I OR tsquerys together |’ fat | ("fat’ | ’'rat’)
rat’ ::tsquery || | "cat’
fcat’ ::tsquery
1! negate a t squery 'l 'cat’::tsquery 17 cat’
Q> tsquery contains "cat’ ::tsquery @> |f

another ?

"cat &

rat’ ::tsquery

215

00

Chapter 9. Functions and Operators

Operator

Description

Example

Result

<@

?

tsquery is contained in

'cat &

"cat’ ::tsquery <@

rat’ ::tsquery

t

Note: The tsquery containment operators consider only the lexemes listed in the two queries, ignor-
ing the combining operators.

In addition to the operators shown in the table, the ordinary B-tree comparison operators (=, <, etc) are
defined for types tsvector and tsquery. These are not very useful for text searching but allow, for
example, unique indexes to be built on columns of these types.

Table 9-37. Text Search Functions

Function Return Type Description Example Result
to_tsvector ([tsvector reduce document to_tsvector (/ englfisth” ;2
config text to tsvector "The Fat "rat’ :3
regconfig ,] Rats’)
document text)
length (tsvector) | integer number of lexemes | length (’ fat:2, 4|3
in tsvector cat:3
rat:5A’ : :tsvectlor)
setweight (tsvectgt,svector assign weight to setweight (' fat:[2,dat’ : 3A
"char") each element of cat:3 " fat’ :2A, 4A
tsvector rat :5B’ : :tsvectidmat’ : 5A
3
strip (tsvector) |tsvector remove positions strip(’fat:2,4 |’cat’ ’fat’
and weights from |cat:3 "rat’
tsvector rat:5A’ : :tsvectlor)
to_tsquery ([tsquery normalize words to_tsquery (’ engll'ifsdt’’, & ’rat’
config and convert to 'The & Fat &
regconfig ,] tsquery Rats’)
query text)
plainto_tsquery ([tsquery produce tsquery |plainto_tsquery|(’&aglish’sat”’
config ignoring "The Fat
regconfig , | punctuation Rats’)
query text)
numnode (tsquery) | integer number of lexemes | numnode (’ (fat |5
plus operators in & rat) |
tsquery cat’ ::tsquery)

216

Chapter 9. Functions and Operators

Function Return Type Description Example Result
querytree (query |text get indexable part | querytree (’ foo |’ foo’
tsquery) of a tsquery & !
bar’ ::tsquery)

ts_rank ([float4 rank document for |ts_rank (textsear®h318
weights query query)
floatd],]
vector
tsvector, query
tsquery [,
normalization
integer 1)
ts_rank_cd ([float4 rank document for |ts_rank_cd(’ {0.[13.01317
weights query using cover |0.2, 0.4,
float4[],] density 1.0}/,
vector textsearch,
tsvector, query query)
tsquery [,
normalization
integer 1)
ts_headline ([text display a query ts_headline ('x |x y z
config match y z',
regconfig,] "'z’ ::tsquery)
document text,
query tsquery
[, options text
1)
ts_rewrite (query|tsquery replace target with |ts_rewrite(’a b’ & ('foo’
tsquery, target substitute within & b’ ::tsquery, || 'bar’)
tsquery, query "a’::tsquery,
substitute "foolbar’ ::tsquery)
tsquery)
ts_rewrite (query|tsquery rqﬂaceuﬁng SELECT b’ & ("foo’
tsquery, select targets and ts_rewrite(’a | 'bar’)
text) substitutes froma |& b’ ::tsquery,

SELECT command |’SELECT t,s

FROM aliases’)

get_current_ts_comEgdinfig getddhuhtext get_current_ts_|camdflitsh

search

configuration

tsvector_update_t

tiggd ¥

trigger function for
automatic
tsvector column
update

CREATE TRIGGER

tsvector_update

"pg_catalog.swe

| trigger (tsvcol
dish’,

title, body)

217

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

tsvector_update_{

tiggerolunmn ()

trigger function for
automatic
tsvector column
update

CREATE TRIGGER

tsvector_update
configcol,
title, body)

| trigger_column

tsvcol,

Note: All the text search functions that accept an optional regconfig argument will use the configu-
ration specified by default_text_search_config when that argument is omitted.

The functions in Table 9-38 are listed separately because they are not usually used in everyday text search-
ing operations. They are helpful for development and debugging of new text search configurations.

Table 9-38. Text Search Debugging Functions

Function Return Type Description Example Result
ts_debug ([setof record test a configuration | ts_debug (' englijstdsciiword, "Wor
config "The Brightest |all

regconfig,]
document text,
OUT alias text,
OUT description
OUT token
ouT

text,
text,
dictionaries
regdictionaryl(],
OUT dictionary
regdictionary,
OUT lexemes

text[])

supernovaes’)

ASCII", The, {end

d,

lish_stem}, en

ts_lexize (dict
regdictionary,

token text)

text[]

test a dictionary

ts_lexize ('engl

"stars’)

isdtastem’ ,

ts_parse (parser._
document
OUT tokid
ouT
token text)

text,
text,

integer,

amtof record

test a parser

ts_parse ('defau

"foo - bar’)

1tY,,foo)

ts_parse (parser_(
document
OUT tokid
ouT
token text)

oid,
text,

integer,

s@&tof record

test a parser

ts_parse (3722,

"foo - bar’)

(1, foo)

218

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

ts_token_type (pat
OUT tokid

ouT

ouT

text,
integer,
alias text,
description

text)

set oimeecord

get token types
defined by parser

ts_token_type (’

all ASCII")

ts_token_type (pat
OUT tokid
ouT

ouT

oid,
integer,
alias text,
description

text)

set ofidrecord

get token types
defined by parser

ts_token_type (3

all ASCII")

ts_stat (sglquery
text, [
] OUT

ouT

weights
text,
word text,
ndoc integer,

OUT nentry

integer)

setof record

get statistics of a
tsvector column

ts_stat (" SELECT
vector from

apod’)

(foo,10,15)

9.14. XML Functions

The functions and function-like expressions described in this section operate on values of type xml.
Check Section 8.13 for information about the xm1 type. The function-like expressions xmlparse and
xmlserialize for converting to and from type xml are not repeated here. Use of many of these func-
tions requires the installation to have been built with configure —--with-libxml.

9.14.1. Producing XML Content

A set of functions and function-like expressions are available for producing XML content from SQL data.
As such, they are particularly suitable for formatting query results into XML documents for processing in

client applications.

9.14.1.1. xmlcomment

xmlcomment (text)

The function xmlcomment creates an XML value containing an XML comment with the specified text

as content. The text cannot contain “~-"" or end with a

[Tk

comment. If the argument is null, the result is null.

Example:

SELECT xmlcomment ("hello’);

so that the resulting construct is a valid XML

219

delfaaddai jword, "Word,

7¢r,)asciiword, "Word,

Chapter 9. Functions and Operators

xmlcomment

<!--hello——>

9.14.1.2. xmlconcat

xmlconcat (xml[, ...])

The function xmlconcat concatenates a list of individual XML values to create a single value containing
an XML content fragment. Null values are omitted; the result is only null if there are no nonnull arguments.

Example:

SELECT xmlconcat (’<abc/>’, ’'<bar>foo</bar>');

xmlconcat

<abc/><bar>foo</bar>

XML declarations, if present, are combined as follows. If all argument values have the same XML version
declaration, that version is used in the result, else no version is used. If all argument values have the
standalone declaration value “yes”, then that value is used in the result. If all argument values have a
standalone declaration value and at least one is “no”, then that is used in the result. Else the result will
have no standalone declaration. If the result is determined to require a standalone declaration but no
version declaration, a version declaration with version 1.0 will be used because XML requires an XML
declaration to contain a version declaration. Encoding declarations are ignored and removed in all cases.

Example:

SELECT xmlconcat (’<?xml version="1.1"?><foo/>', ’'<?xml version="1.1" standalone="no"?><bar/
xmlconcat

<?xml version="1.1"?><foo/><bar/>

9.14.1.3. xmlelement

xmlelement (name name [, xmlattributes (value [AS attname] [, ... 1)1 [, content, ...])

The xmlelement expression produces an XML element with the given name, attributes, and content.

Examples:

220

Chapter 9. Functions and Operators

SELECT xmlelement (name foo);

xmlelement

SELECT xmlelement (name foo, xmlattributes(’xyz’ as bar));

xmlelement

<foo bar="xyz"/>
SELECT xmlelement (name foo, xmlattributes (current_date as bar), 'cont’, ’'ent’);

xmlelement

<foo bar="2007-01-26">content</foo>

Element and attribute names that are not valid XML names are escaped by replacing the offending charac-
ters by the sequence _x#HHH_, where HHHH is the character’s Unicode codepoint in hexadecimal notation.
For example:

SELECT xmlelement (name "fooS$bar", xmlattributes (’xyz’ as "a&b"));

xmlelement

<foo_x0024_bar a_x0026_b="xyz"/>

An explicit attribute name need not be specified if the attribute value is a column reference, in which case
the column’s name will be used as the attribute name by default. In other cases, the attribute must be given
an explicit name. So this example is valid:

CREATE TABLE test (a xml, b xml);
SELECT xmlelement (name test, xmlattributes(a, b)) FROM test;

But these are not:

SELECT xmlelement (name test, xmlattributes (’constant’), a, b) FROM test;
SELECT xmlelement (name test, xmlattributes (func(a, b))) FROM test;

Element content, if specified, will be formatted according to its data type. If the content is itself of type
xml, complex XML documents can be constructed. For example:
SELECT xmlelement (name foo, xmlattributes(’xyz’ as bar),

xmlelement (name abc),

xmlcomment (' test’),

xmlelement (name xyz));

xmlelement

221

Chapter 9. Functions and Operators

<foo bar="xyz"><abc/><!--test--><xyz/></foo>

Content of other types will be formatted into valid XML character data. This means in particular that the
characters <, >, and & will be converted to entities. Binary data (data type bytea) will be represented in
base64 or hex encoding, depending on the setting of the configuration parameter xmlbinary. The particular
behavior for individual data types is expected to evolve in order to align the SQL and PostgreSQL data
types with the XML Schema specification, at which point a more precise description will appear.

9.14.1.4. xml1forest

xmlforest (content [AS name] [, ...])

The xm1forest expression produces an XML forest (sequence) of elements using the given names and
content.

Examples:

SELECT xmlforest ("abc’ AS foo, 123 AS bar);

xmlforest

<foo>abc</foo><bar>123</bar>

SELECT xmlforest (table_name, column_name)
FROM information_schema.columns
WHERE table_schema = ’"pg_catalog’;

xmlforest

<table_name>pg_authid</table_name><column_name>rolname</column_name>
<table_name>pg_authid</table_name><column_name>rolsuper</column_name>

As seen in the second example, the element name can be omitted if the content value is a column reference,
in which case the column name is used by default. Otherwise, a name must be specified.

Element names that are not valid XML names are escaped as shown for xmlelement above. Similarly,
content data is escaped to make valid XML content, unless it is already of type xm1.

Note that XML forests are not valid XML documents if they consist of more than one element, so it might
be useful to wrap xmlforest expressions in xmlelement.

9.14.1.5. xmlpi

xmlpi (name target [, content])

222

Chapter 9. Functions and Operators

The xmlpi expression creates an XML processing instruction. The content, if present, must not contain
the character sequence 2>.

Example:

SELECT xmlpi (name php, ’‘echo "hello world";’);

<?php echo "hello world";?>

9.14.1.6. xmlroot

xmlroot (xml, version text | no value [, standalone yes|no|no value])

The xmlroot expression alters the properties of the root node of an XML value. If a version is specified,
it replaces the value in the root node’s version declaration; if a standalone setting is specified, it replaces
the value in the root node’s standalone declaration.

SELECT xmlroot (xmlparse (document ’<?xml version="1.1"?><content>abc</content>’),
version ’1.0’, standalone yes);

xmlroot

<?xml version="1.0" standalone="yes"?>
<content>abc</content>

9.14.1.7. xmlagg

xmlagg (xml)

The function xmlagg is, unlike the other functions described here, an aggregate function. It concatenates
the input values to the aggregate function call, like xmlconcat does. See Section 9.18 for additional
information about aggregate functions.

Example:

CREATE TABLE test (y int, x xml);
INSERT INTO test VALUES (1, ’'<foo>abc</foo>");
INSERT INTO test VALUES (2, ’<bar/>');
SELECT xmlagg(x) FROM test;
xmlagg

<foo>abc</foo><bar/>

223

Chapter 9. Functions and Operators

To determine the order of the concatenation, something like the following approach can be used:

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;
xmlagg

<bar/><foo>abc</foo>

Again, see Section 9.18 for additional information.

9.14.1.8. XML Predicates
xml IS DOCUMENT

The expression IS DOCUMENT returns true if the argument XML value is a proper XML document, false
if it is not (that is, it is a content fragment), or null if the argument is null. See Section 8.13 about the
difference between documents and content fragments.

9.14.2. Processing XML

To process values of data type xml, PostgreSQL offers the function xpath, which evaluates XPath 1.0
expressions.

xpath (xpath, xml[, nsarray])
The function xpath evaluates the XPath expression xpath against the XML value xm1. It returns an array

of XML values corresponding to the node set produced by the XPath expression.

The second argument must be a well formed XML document. In particular, it must have a single root node
element.

The third argument of the function is an array of namespace mappings. This array should be a two-
dimensional array with the length of the second axis being equal to 2 (i.e., it should be an array of arrays,
each of which consists of exactly 2 elements). The first element of each array entry is the namespace
name, the second the namespace URL.

Example:

SELECT xpath(’//my:a/text()’, ’'<my:a xmlns:my="http://example.com">test</my:a>’
ARRAY [ARRAY ['my’, ’'http://example.com’]]);

224

Chapter 9. Functions and Operators

9.14.3. Mapping Tables to XML

The following functions map the contents of relational tables to XML values. They can be thought of as
XML export functionality:

table_to_xml (tbl regclass, nulls boolean, tableforest boolean, targetns text)
query_to_xml (query text, nulls boolean, tableforest boolean, targetns text)
cursor_to_xml (cursor refcursor, count int, nulls boolean,

tableforest boolean, targetns text)

The return type of each function is xm1.

table_to_xml maps the content of the named table, passed as parameter tbl. The regclass type
accepts strings identifying tables using the usual notation, including optional schema qualifications and
double quotes. query_to_xml executes the query whose text is passed as parameter query and maps
the result set. cursor_to_xml fetches the indicated number of rows from the cursor specified by the
parameter cursor. This variant is recommended if large tables have to be mapped, because the result
value is built up in memory by each function.

If tableforest is false, then the resulting XML document looks like this:

<tablename>
<row>
<columnnamel>data</columnnamel>
<columnname2>data</columnname2>
</row>

<row>

</row>

</tablename>
If tableforest is true, the result is an XML content fragment that looks like this:

<tablename>
<columnnamel>data</columnnamel>
<columnname2>data</columnname?2>
</tablename>

<tablename>

</tablename>

If no table name is available, that is, when mapping a query or a cursor, the string table is used in the
first format, row in the second format.

The choice between these formats is up to the user. The first format is a proper XML document, which will
be important in many applications. The second format tends to be more useful in the cursor_to_xml
function if the result values are to be reassembled into one document later on. The functions for producing
XML content discussed above, in particular xmlelement, can be used to alter the results to taste.

225

Chapter 9. Functions and Operators

The data values are mapped in the same way as described for the function xmlelement above.
The parameter nulls determines whether null values should be included in the output. If true, null values
in columns are represented as:

<columnname xsi:nil="true"/>

where xsi is the XML namespace prefix for XML Schema Instance. An appropriate namespace declara-
tion will be added to the result value. If false, columns containing null values are simply omitted from the
output.

The parameter targetns specifies the desired XML namespace of the result. If no particular namespace
is wanted, an empty string should be passed.

The following functions return XML Schema documents describing the mappings performed by the cor-
responding functions above:

table_to_xmlschema (tbl regclass, nulls boolean, tableforest boolean, targetns text)
query_to_xmlschema (query text, nulls boolean, tableforest boolean, targetns text)
cursor_to_xmlschema (cursor refcursor, nulls boolean, tableforest boolean, targetns text)

It is essential that the same parameters are passed in order to obtain matching XML data mappings and
XML Schema documents.

The following functions produce XML data mappings and the corresponding XML Schema in one docu-
ment (or forest), linked together. They can be useful where self-contained and self-describing results are
wanted:

table_to_xml_and_xmlschema (tbl regclass, nulls boolean, tableforest boolean, targetns text)
query_to_xml_and_xmlschema (query text, nulls boolean, tableforest boolean, targetns text)

In addition, the following functions are available to produce analogous mappings of entire schemas or the
entire current database:

schema_to_xml (schema name, nulls boolean, tableforest boolean, targetns text)
schema_to_xmlschema (schema name, nulls boolean, tableforest boolean, targetns text)
schema_to_xml_and_xmlschema (schema name, nulls boolean, tableforest boolean, targetns text)

database_to_xml (nulls boolean, tableforest boolean, targetns text)
database_to_xmlschema (nulls boolean, tableforest boolean, targetns text)

database_to_xml_and_xmlschema (nulls boolean, tableforest boolean, targetns text)

Note that these potentially produce a lot of data, which needs to be built up in memory. When requesting
content mappings of large schemas or databases, it might be worthwhile to consider mapping the tables
separately instead, possibly even through a cursor.

The result of a schema content mapping looks like this:

<schemaname>
tablel-mapping

table2-mapping

226

Chapter 9. Functions and Operators

</schemaname>

where the format of a table mapping depends on the tableforest parameter as explained above.

The result of a database content mapping looks like this:

<dbname>
<schemalname>
</éé£emalname>
<schemaZ2name>

</schema2name>

</dbname>

where the schema mapping is as above.

As an example of using the output produced by these functions, Figure 9-1 shows an XSLT stylesheet that
converts the output of table_to_xml_and_xmlschema to an HTML document containing a tabular
rendition of the table data. In a similar manner, the results from these functions can be converted into
other XML-based formats.

Figure 9-1. XSLT stylesheet for converting SQL/XML output to HTML

<?xml version="1.0"7?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.w3.0rg/1999/xhtml"

<xsl:output method="xml"
doctype-system="http://www.w3.0rg/TR/xhtml1l/DTD/xhtmll-strict.dtd"
doctype-public="-//W3C/DTD XHTML 1.0 Strict//EN"
indent="yes"/>

<xsl:template match="/+">
<xsl:variable name="schema" select="//xsd:schema"/>
<xsl:variable name="tabletypename"
select="$schema/xsd:element [@name=name (current ())]/Qtype"/>
<xsl:variable name="rowtypename"
select="$schema/xsd:complexType [@name=S$tabletypename] /xsd:sequence/xsd:el

<html>

<head>
<title><xsl:value-of select="name (current ())"/></title>

227

Chapter 9. Functions and Operators

</head>
<body>
<table>
<tr>
<xsl:for—-each select="$schema/xsd:complexType[@name=Srowtypename]/xsd:sequence/
<th><xsl:value-of select="."/></th>
</xsl:for-each>
</tr>

<xsl:for-each select="row">
<tr>
<xsl:for—-each select="x%">
<td><xsl:value-of select="."/></td>
</xsl:for-each>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>

</xsl:stylesheet>

9.15. Sequence Manipulation Functions

This section describes PostgreSQL’s functions for operating on sequence objects. Sequence objects (also
called sequence generators or just sequences) are special single-row tables created with CREATE SE-
QUENCE. A sequence object is usually used to generate unique identifiers for rows of a table. The se-
quence functions, listed in Table 9-39, provide simple, multiuser-safe methods for obtaining successive
sequence values from sequence objects.

Table 9-39. Sequence Functions

Function Return Type Description

currval (regclass) bigint Return value most recently
obtained with nextval for
specified sequence

lastval () bigint Return value most recently
obtained with nextval for any
sequence

nextval (regclass) bigint Advance sequence and return
new value

setval (regclass, bigint) bigint Set sequence’s current value

setval (regclass, bigint, bigint Set sequence’s current value and

boolean) is_called flag

228

Chapter 9. Functions and Operators

The sequence to be operated on by a sequence function is specified by a regclass argument, which is
simply the OID of the sequence in the pg_class system catalog. You do not have to look up the OID
by hand, however, since the regclass data type’s input converter will do the work for you. Just write
the sequence name enclosed in single quotes so that it looks like a literal constant. For compatibility with
the handling of ordinary SQL names, the string will be converted to lowercase unless it contains double
quotes around the sequence name. Thus:

nextval (' foo’) operates on sequence foo
nextval (' FOO’) operates on sequence foo
nextval (" "Foo"') operates on sequence Foo

The sequence name can be schema-qualified if necessary:

nextval (myschema.foo’) operates on myschema.foo
nextval (! "myschema".foo’) same as above
nextval (' foo’) searches search path for foo

See Section 8.16 for more information about regclass.

Note: Before PostgreSQL 8.1, the arguments of the sequence functions were of type text, not
regclass, and the above-described conversion from a text string to an OID value would happen
at run time during each call. For backwards compatibility, this facility still exists, but internally it is now
handled as an implicit coercion from text t0 regclass before the function is invoked.

When you write the argument of a sequence function as an unadorned literal string, it becomes a
constant of type regclass. Since this is really just an OID, it will track the originally identified sequence
despite later renaming, schema reassignment, etc. This “early binding” behavior is usually desirable
for sequence references in column defaults and views. But sometimes you might want “late binding”
where the sequence reference is resolved at run time. To get late-binding behavior, force the constant
to be stored as a text constant instead of regclass:

nextval (! foo’ : :text) foo 1is looked up at runtime

Note that late binding was the only behavior supported in PostgreSQL releases before 8.1, so you
might need to do this to preserve the semantics of old applications.

Of course, the argument of a sequence function can be an expression as well as a constant. If it is a
text expression then the implicit coercion will result in a run-time lookup.

The available sequence functions are:

nextval

Advance the sequence object to its next value and return that value. This is done atomically: even if
multiple sessions execute nextval concurrently, each will safely receive a distinct sequence value.

currval

Return the value most recently obtained by nextval for this sequence in the current session. (An
error is reported if nextval has never been called for this sequence in this session.) Because this
is returning a session-local value, it gives a predictable answer whether or not other sessions have
executed nextval since the current session did.

229

Chapter 9. Functions and Operators

lastval

Return the value most recently returned by nextval in the current session. This function is identical
to currval, except that instead of taking the sequence name as an argument it fetches the value of
the last sequence used by nextval in the current session. It is an error to call lastval if nextval
has not yet been called in the current session.

setval

Reset the sequence object’s counter value. The two-parameter form sets the sequence’s last_value
field to the specified value and sets its is_called field to t rue, meaning that the next nextval
will advance the sequence before returning a value. The value reported by currval is also set to the
specified value. In the three-parameter form, is_called can be set to either true or false. true
has the same effect as the two-parameter form. If it is set to false, the next nextval will return
exactly the specified value, and sequence advancement commences with the following nextval.
Furthermore, the value reported by currval is not changed in this case (this is a change from pre-
8.3 behavior). For example,

SELECT setwval (' foo’, 42); Next nextval will return 43
SELECT setval(’foo’, 42, true); Same as above
SELECT setval (' foo’, 42, false); Next nextval will return 42

The result returned by setval is just the value of its second argument.

If a sequence object has been created with default parameters, successive nextval calls will return suc-
cessive values beginning with 1. Other behaviors can be obtained by using special parameters in the
CREATE SEQUENCE command; see its command reference page for more information.

Important: To avoid blocking concurrent transactions that obtain numbers from the same sequence,
anextval operation is never rolled back; that is, once a value has been fetched it is considered used,
even if the transaction that did the nextval later aborts. This means that aborted transactions might
leave unused “holes” in the sequence of assigned values. setval operations are never rolled back,
either.

9.16. Conditional Expressions

This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip: If your needs go beyond the capabilities of these conditional expressions, you might want to
consider writing a stored procedure in a more expressive programming language.

230

Chapter 9. Functions and Operators

9.16.1. cASE

The SQL caASE expression is a generic conditional expression, similar to if/else statements in other pro-
gramming languages:

CASE WHEN condition THEN result
[WHEN ...]
[ELSE result]

END

CASE clauses can be used wherever an expression is valid. Each condition is an expression that returns
a boolean result. If the condition’s result is true, the value of the CASE expression is the result that
follows the condition, and the remainder of the CASE expression is not processed. If the condition’s result
is not true, any subsequent WHEN clauses are examined in the same manner. If no WHEN condition yields
true, the value of the CASE expression is the result of the ELSE clause. If the ELSE clause is omitted and
no condition is true, the result is null.

An example:

SELECT x FROM test;

a
1
2
3
SELECT a,
CASE WHEN a=1 THEN ’one’
WHEN a=2 THEN ’two’
ELSE ’other’
END
FROM test;
a | case
I
1 | one
2 | two
3 | other

The data types of all the result expressions must be convertible to a single output type. See Section 10.5
for more details.

There is a “simple” form of CASE expression that is a variant of the general form above:

CASE expression
WHEN value THEN result
[WHEN ...]
[ELSE result]

END

231

Chapter 9. Functions and Operators

The first expression is computed, then compared to each of the value expressions in the WHEN clauses
until one is found that is equal to it. If no match is found, the result of the ELSE clause (or a null value)
is returned. This is similar to the switch statement in C.

The example above can be written using the simple CASE syntax:

SELECT a,
CASE a WHEN 1 THEN ’one’
WHEN 2 THEN ’two’
ELSE ’other’
END
FROM test;

a | case
.

1 | one

2 | two

3 | other

A cASE expression does not evaluate any subexpressions that are not needed to determine the result. For
example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

9.16.2. COALESCE
COALESCE (value [, ...])

The coaLESCE function returns the first of its arguments that is not null. Null is returned only if all
arguments are null. It is often used to substitute a default value for null values when data is retrieved for
display, for example:

SELECT COALESCE (description, short_description, ’ (none)’)

Like a CASE expression, COALESCE only evaluates the arguments that are needed to determine the result;
that is, arguments to the right of the first non-null argument are not evaluated. This SQL-standard function
provides capabilities similar to NVL and IFNULL, which are used in some other database systems.

9.16.3. NULLIF
NULLIF (valuel, valueZ2)

The NULLIF function returns a null value if valuel equals value2; otherwise it returns valuel. This
can be used to perform the inverse operation of the COALESCE example given above:

232

Chapter 9. Functions and Operators

SELECT NULLIF (value, ' (none)’)

If valuelis (none), return a null, otherwise return valuel.

9.16.4. GREATEST and LEAST
GREATEST (value [, ...])
LEAST (value [, ...])

The GREATEST and LEAST functions select the largest or smallest value from a list of any number of
expressions. The expressions must all be convertible to a common data type, which will be the type of the
result (see Section 10.5 for details). NULL values in the list are ignored. The result will be NULL only if
all the expressions evaluate to NULL.

Note that GREATEST and LEAST are not in the SQL standard, but are a common extension. Some other
databases make them return NULL if any argument is NULL, rather than only when all are NULL.

9.17. Array Functions and Operators

Table 9-40 shows the operators available for array types.

Table 9-40. Array Operators

Operator Description Example Result

= equal ARRAY[1.1,2.1,3.1]:Hnt[]
= ARRAY[1,2,3]

<> not equal ARRAY[1,2,3] <> t
ARRAY[1,2, 4]

< less than ARRAY[1,2,3] < t
ARRAY[1,2,4]

> greater than ARRAY([1,4,3] > t
ARRAY[1,2,4]

<= less than or equal ARRAY[1,2,3] <= t
ARRAY[1,2, 3]

>= greater than or equal ARRAY[1,4,3] >= t
ARRAY[1, 4, 3]

@e> contains ARRAY[1,4,3] @> t
ARRAY[3,1]

<@ is contained by ARRAY[2,7] <@ t

ARRAY([1,7,4,2,6]

233

Chapter 9. Functions and Operators

Operator Description Example Result
&& overlap (have elements |ARRAY[1,4,3] &s& t
in common) ARRAY[2,1]

array-to-array
concatenation

ARRAY[1,2,3] ||
ARRAY [4,5, 6]

{1,2,3,4,5,6}

array-to-array
concatenation

ARRAY[1,2,3] ||
ARRAY[[4,5,6],17,8,

({1,2,3},{4,5,6}, {7

911

| element-to-array 3 || ARRAY[4,5,6] {3,4,5,6}
concatenation
| array—to—element ARRAY [4,5,6] || 7 {4,5,6,7}

concatenation

Array comparisons compare the array contents element-by-element, using the default B-Tree comparison
function for the element data type. In multidimensional arrays the elements are visited in row-major
order (last subscript varies most rapidly). If the contents of two arrays are equal but the dimensionality
is different, the first difference in the dimensionality information determines the sort order. (This is a
change from versions of PostgreSQL prior to 8.2: older versions would claim that two arrays with the
same contents were equal, even if the number of dimensions or subscript ranges were different.)

See Section 8.14 for more details about array operator behavior.

Table 9-41 shows the functions available for use with array types. See Section 8.14 for more information

and examples of the use of these functions.

Table 9-41. Array Functions

Function

Return Type

Description

Example

Result

array_append (anya

anyelement)

anyarray

rray,

append an element
to the end of an
array

array_append (AR
3)

RM’ [1172}} ’

array_cat (anyarra

anyarray)

anyarray

Yr

concatenate two
arrays

array_cat (ARRAY]
ARRAY [4,5])

(,2,33,4,5}

array_ndims (anyaxy

int

ray)

returns the number
of dimensions of
the array

array_ndims (ARR
[4,5,6]1])

rx [[1,2,3],

array_dims (anyary

text
ay)

returns a text
representation of
array’s dimensions

array_dims (ARRA
[4,5,6]1)

Y12 R BI3]

array_fill (anyelsg
int[], [,
int[]])

anyarray

ment,

returns an array
initialized with
supplied value and
dimensions,
optionally with
lower bounds other
than 1

array_fil1l (7,
ARRAY [3],
ARRAY[2])

[2:41={7,7,7}

234

+8,9}}

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

array_length (anya
int)

int

rray,

returns the length
of the requested
array dimension

array_length (ar]
1)

ray[1l,2,3],

array_lower (anyat

int)

int

ray,

returns lower
bound of the
requested array
dimension

array_lower (' [0
1)

@1={1,2,3}" ::1n

array_prepend (any

anyarray)

anyarray

relement,

append an element
to the beginning of
an array

array_prepend (1l
ARRAY[2,3])

A1,2,3}

array_to_string (4

text)

text

nyarray,

concatenates array
elements using
supplied delimiter

array_to_string
2! 3]/ ’NAN’)

(BRREX"1~3

array_upper (anyary

int)

int

ray,

returns upper
bound of the
requested array
dimension

array_upper (ARR
1)

MY [1,2,3,4],

string_to_array (1
text)

text []

ext,

splits string into
array elements
using supplied
delimiter

string_to_array]

)

(= yyazy ~zz" ,

unnest (anyarray)

setof

anyelement

expand an array to
a set of rows

unnest (ARRAY[1,

2112 (2 rows)

See also Section 9.18 about the aggregate function array_agg for use with arrays.

9.18. Aggregate Functions

Aggregate functions compute a single result from a set of input values. The built-in aggregate functions
are listed in Table 9-42 and Table 9-43. The special syntax considerations for aggregate functions are
explained in Section 4.2.7. Consult Section 2.7 for additional introductory information.

Table 9-42. General-Purpose Aggregate Functions

Function

Argument Type

Return Type

Des

cription

array_agg (expression)

any

type

array of the argument

input values
concatenated into an
array

235

Chapter 9.

Functions and Operators

Function

Argument Type

Return Type

Description

avg (expression)

smallint, int,
bigint, real, double
precision, numeric,

or interval

numeric for any
integer-type argument,
double precision
for a floating-point
argument, otherwise the
same as the argument
data type

the average (arithmetic
mean) of all input values

bit_and (expression)

smallint, int,

bigint,orbit

same as argument data
type

the bitwise AND of all
non-null input values, or
null if none

bit_or (expression)

smallint, int,

bigint,orbit

same as argument data
type

the bitwise OR of all
non-null input values, or
null if none

bool bool true if all input values
bool_and (expression) are true, otherwise false
bool bool true if at least one input
bool_or (expression) value is true, otherwise
false
count (*) bigint number of input rows
count (expression) any bigint number of input rows
for which the value of
expression is not null
every (expression) bool bool equivalent to bool_and

max (expression)

any array, numeric,
string, or date/time type

same as argument type

maximum value of
expression across all
input values

min (expression)

any array, numeric,
string, or date/time type

same as argument type

minimum value of
expression across all
input values

sum (expression)

smallint, int,
bigint, real, double
precision, numeric,

or interval

bigint for smallint
or int arguments,
numeric for bigint
arguments, double
precision for
floating-point
arguments, otherwise
the same as the
argument data type

sum of expression
across all input values

xmlagg (expression)

xml

xml

concatenation of XML
values (see also Section
9.14.1.7)

236

Chapter 9. Functions and Operators

It should be noted that except for count, these functions return a null value when no rows are selected. In
particular, sum of no rows returns null, not zero as one might expect, and array_agg returns null rather
than an empty array when there are no input rows. The coalesce function can be used to substitute zero
or an empty array for null when necessary.

Note: Boolean aggregates bool_and and bool_or correspond to standard SQL aggregates every
and any or some. As for any and some, it seems that there is an ambiguity built into the standard
syntax:

SELECT bl = ANY((SELECT b2 FROM t2 ...)) FROM tl ...;

Here any can be considered either as introducing a subquery, or as being an aggregate function, if the
sub-select returns one row with a boolean value. Thus the standard name cannot be given to these
aggregates.

Note: Users accustomed to working with other SQL database management systems might be dis-
appointed by the performance of the count aggregate when it is applied to the entire table. A query
like:

SELECT count () FROM sometable;

will be executed by PostgreSQL using a sequential scan of the entire table.

The aggregate functions array_agg and xmlagg, as well as similar user-defined aggregate functions,
produce meaningfully different result values depending on the order of the input values. In the current
implementation, the order of the input is in principle unspecified. Supplying the input values from a
sorted subquery will usually work, however. For example:

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

But this syntax is not allowed in the SQL standard, and is not portable to other database systems. A future
version of PostgreSQL might provide an additional feature to control the order in a better-defined way
(xmlagg (expr ORDER BY expr, expr, ...)).

Table 9-43 shows aggregate functions typically used in statistical analysis. (These are separated out merely
to avoid cluttering the listing of more-commonly-used aggregates.) Where the description mentions N, it
means the number of input rows for which all the input expressions are non-null. In all cases, null is
returned if the computation is meaningless, for example when » is zero.

Table 9-43. Aggregate Functions for Statistics

Function Argument Type Return Type Description
corr (Y, X) double precision double precision correlation coefficient
covar_pop (Y, X) double precision double precision population covariance
covar_samp (Y, X) double precision double precision sample covariance

237

Chapter 9. Functions and Operators

Function

Argument Type

Return Type

Description

regr_avgx (Y, X)

double precision

double precision

average of the
independent variable
(sum(x) /N)

regr_avgy (Y, X)

double precision

double precision

average of the
dependent variable
(sum (Yy) /N)

regr_count (Y, X)

double precision

bigint

number of input rows in
which both expressions
are nonnull

regr_intercept (Y,
X)

double precision

double precision

y-intercept of the
least-squares-fit linear
equation determined by
the (X, Y) pairs

regr_r2 (Y, X)

double precision

double precision

square of the correlation
coefficient

regr_slope (Y, X)

double precision

double precision

slope of the
least-squares-fit linear
equation determined by
the (x, v) pairs

regr_sxx (Y, X)

double precision

double precision

sum(x"2) -

sum (x) *2/nN (“sum of
squares” of the
independent variable)

regr_sxy (Y, X)

double precision

double precision

sum(X*Y)
* sum(v) /N (“sum of
products” of
independent times
dependent variable)

- sum(X)

regr_syy (Y, X)

double precision

double precision

sum(y~2) -

sum (v) ~2/nN (“sum of
squares” of the
dependent variable)

stddev (expression)

smallint, int,
bigint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

historical alias for

stddev_samp

stddev_pop (expressiq

smallint, int,
Migint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

population standard
deviation of the input
values

stddev_samp (expressi

smallint, int,
dri)gint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

sample standard
deviation of the input
values

238

Chapter 9. Functions and Operators

Function

Argument Type

Return Type

Description

variance(expression

smallint, int,
bigint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

historical alias for

var_samp

var_pop(expression)

smallint, int,
bigint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

population variance of
the input values (square
of the population
standard deviation)

var_samp(expression

smallint, int,
bigint, real, double
precision, or

numeric

double precision
for floating-point
arguments, otherwise

numeric

sample variance of the
input values (square of
the sample standard
deviation)

9.19. Window Functions

Window functions provide the ability to perform calculations across sets of rows that are related to the
current query row. See Section 3.5 for an introduction to this feature.

The built-in window functions are listed in Table 9-44. Note that these functions must be invoked using
window function syntax; that is an OVER clause is required.

In addition to these functions, any built-in or user-defined aggregate function can be used as a window
function (see Section 9.18 for a list of the built-in aggregates). Aggregate functions act as window func-
tions only when an OVER clause follows the call; otherwise they act as regular aggregates.

Table 9-44. General-Purpose Window Functions

Function

Return Type

Description

row_number () bigint number of the current row within
its partition, counting from 1

rank () bigint rank of the current row with
gaps; same as row_number of its
first peer

dense_rank () bigint rank of the current row without

gaps; this function counts peer
groups

percent_rank ()

double precision

relative rank of the current row:
(rank - 1) / (total rows - 1)

cume_dist ()

double precision

relative rank of the current row:
(number of rows preceding or
peer with current row) / (total
TOWS)

239

Chapter 9. Functions and Operators

Function Return Type Description
ntile (num buckets integer integer ranging from 1 to the
integer) argument value, dividing the

partition as equally as possible

lag(value any [, offset same type as value returns value evaluated at the
integer [, default any]]) row that is offset rows before
the current row within the
partition; if there is no such row,
instead return default. Both
offset and default are
evaluated with respect to the
current row. If omitted, offset
defaults to 1 and default to

null
lead(value any [, offset | same type as value returns value evaluated at the
integer [, default any]]) row that is of fset rows after the

current row within the partition;
if there is no such row, instead
return default. Both offset
and default are evaluated with
respect to the current row. If
omitted, offset defaults to 1
and default to null

first_value (value any) same type as value returns value evaluated at the
row that is the first row of the
window frame

last_value (value any) same type as value returns value evaluated at the
row that is the last row of the
window frame

nth_value (value any, nth| same type as value returns value evaluated at the
integer) row that is the nt h row of the
window frame (counting from 1);
null if no such row

All of the functions listed in Table 9-44 depend on the sort ordering specified by the ORDER BY clause
of the associated window definition. Rows that are not distinct in the ORDER BY ordering are said to be
peers; the four ranking functions are defined so that they give the same answer for any two peer rows.

Note that first_value, last_value, and nth_value consider only the rows within the “window
frame”, which by default contains the rows from the start of the partition through the last peer of the
current row. This is likely to give unhelpful results for nth_value and particularly last_value. You
can redefine the frame as being the whole partition by adding ROWS BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING to the OVER clause. See Section 4.2.8 for more information.

When an aggregate function is used as a window function, it aggregates over the rows within the cur-
rent row’s window frame. To obtain aggregation over the whole partition, omit ORDER BY Or use ROWS
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING. An aggregate used with ORDER BY
and the default window frame definition produces a “running sum” type of behavior, which may or may

240

Chapter 9. Functions and Operators

not be what’s wanted.

Note: The SQL standard defines a RESPECT NULLS Or IGNORE NULLS option for lead, lag,
first_value, last_value, and nth_value. This is not implemented in PostgreSQL: the behavior is
always the same as the standard’s default, namely rRespeEcT NuLLs. Likewise, the standard’s rrom
FIRST Of FROM LAST option for nth_value is not implemented: only the default From FIRST behavior
is supported. (You can achieve the result of FroM LasT by reversing the orDER BY ordering.)

9.20. Subquery Expressions

This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the ex-
pression forms documented in this section return Boolean (true/false) results.

9.20.1. EXISTS
EXISTS (subguery)

The argument of EXISTS is an arbitrary SELECT statement, or subquery. The subquery is evaluated to
determine whether it returns any rows. If it returns at least one row, the result of EXISTS is “true”; if the
subquery returns no rows, the result of EXISTS is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery.

The subquery will generally only be executed long enough to determine whether at least one row is
returned, not all the way to completion. It is unwise to write a subquery that has side effects (such as
calling sequence functions); whether the side effects occur might be unpredictable.

Since the result depends only on whether any rows are returned, and not on the contents of those rows, the
output list of the subquery is normally unimportant. A common coding convention is to write all EXISTS
tests in the form EXISTS (SELECT 1 WHERE ...). There are exceptions to this rule however, such as
subqueries that use INTERSECT.

This simple example is like an inner join on col2, but it produces at most one output row for each tabl
row, even if there are several matching tab2 rows:

SELECT coll
FROM tabl
WHERE EXISTS (SELECT 1 FROM tab2 WHERE col2 = tabl.col2);

9.20.2. IN

expression IN (subquery)

241

Chapter 9. Functions and Operators

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of IN is “true” if any
equal subquery row is found. The result is “false” if no equal row is found (including the case where the
subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of the IN construct will be null, not false. This is in accordance with
SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.
row_constructor IN (subquery)

The left-hand side of this form of IN is a row constructor, as described in Section 4.2.12. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result. The result of 1IN is “true” if any equal subquery row is found. The result is “false” if no
equal row is found (including the case where the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is
unknown (null). If all the per-row results are either unequal or null, with at least one null, then the result
of IN is null.

9.20.3. NOT IN

expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of NOT IN is “true”
if only unequal subquery rows are found (including the case where the subquery returns no rows). The
result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of the NOT IN construct will be null, not true. This is in accordance
with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor NOT IN (subquery)

The left-hand side of this form of NOT IN is a row constructor, as described in Section 4.2.12. The right-
hand side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result. The result of NOT 1IN is “true” if only unequal subquery rows are found (including the
case where the subquery returns no rows). The result is “false” if any equal row is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is

242

Chapter 9. Functions and Operators

unknown (null). If all the per-row results are either unequal or null, with at least one null, then the result
of NOT 1IN is null.

9.20.4. ANY/SOME

expression operator ANY (subquery)

expression operator SOME (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result is
“false” if no true result is found (including the case where the subquery returns no rows).

SOME is a synonym for ANY. IN is equivalent to = ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator’s result,
the result of the ANY construct will be null, not false. This is in accordance with SQL’s normal rules for
Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor operator ANY (subquery)

row_constructor operator SOME (subquery)

The left-hand side of this form of ANY is a row constructor, as described in Section 4.2.12. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. The result of ANY is “true” if the comparison returns true for
any subquery row. The result is “false” if the comparison returns false for every subquery row (including
the case where the subquery returns no rows). The result is NULL if the comparison does not return true
for any row, and it returns NULL for at least one row.

See Section 9.21.5 for details about the meaning of a row-wise comparison.

9.20.5. ALL

expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ALL is “true” if all rows yield true (including the case
where the subquery returns no rows). The result is “false” if any false result is found. The result is NULL
if the comparison does not return false for any row, and it returns NULL for at least one row.

NOT IN isequivalentto <> ALL.

As with EXTSTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor operator ALL (subquery)

243

Chapter 9. Functions and Operators

The left-hand side of this form of ALL is a row constructor, as described in Section 4.2.12. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. The result of ALL is “true” if the comparison returns true
for all subquery rows (including the case where the subquery returns no rows). The result is “false” if the
comparison returns false for any subquery row. The result is NULL if the comparison does not return false
for any subquery row, and it returns NULL for at least one row.

See Section 9.21.5 for details about the meaning of a row-wise comparison.

9.20.6. Row-wise Comparison

row_constructor operator (subquery)

The left-hand side is a row constructor, as described in Section 4.2.12. The right-hand side is a parenthe-
sized subquery, which must return exactly as many columns as there are expressions in the left-hand row.
Furthermore, the subquery cannot return more than one row. (If it returns zero rows, the result is taken to
be null.) The left-hand side is evaluated and compared row-wise to the single subquery result row.

See Section 9.21.5 for details about the meaning of a row-wise comparison.

9.21. Row and Array Comparisons

This section describes several specialized constructs for making multiple comparisons between groups
of values. These forms are syntactically related to the subquery forms of the previous section, but do
not involve subqueries. The forms involving array subexpressions are PostgreSQL extensions; the rest are
SQL-compliant. All of the expression forms documented in this section return Boolean (true/false) results.

9.21.1. IN

expression IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand ex-
pression’s result is equal to any of the right-hand expressions. This is a shorthand notation for

expression = valuel
OR
expression = value2
OR

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of the IN construct will be null, not false. This is in accordance
with SQL’s normal rules for Boolean combinations of null values.

244

Chapter 9. Functions and Operators

9.21.2. NOT IN

expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand ex-
pression’s result is unequal to all of the right-hand expressions. This is a shorthand notation for

expression <> valuel
AND
expression <> value2
AND

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of the NOT IN construct will be null, not true as one might
naively expect. This is in accordance with SQL’s normal rules for Boolean combinations of null values.

Tip: x NOT IN y is equivalent to NOT (x IN y) in all cases. However, null values are much more
likely to trip up the novice when working with noT 1N than when working with 1n. It is best to express
your condition positively if possible.

9.21.3. ANY/SOME (array)

expression operator ANY (array expression)

expression operator SOME (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand expres-
sion is evaluated and compared to each element of the array using the given operator, which must yield
a Boolean result. The result of ANY is “true” if any true result is obtained. The result is “false” if no true
result is found (including the case where the array has zero elements).

If the array expression yields a null array, the result of ANY will be null. If the left-hand expression yields
null, the result of ANY is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null elements and no true comparison result is
obtained, the result of ANY will be null, not false (again, assuming a strict comparison operator). This is
in accordance with SQL’s normal rules for Boolean combinations of null values.

SOME is a synonym for ANY.

9.21.4. aLL (array)

expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand expres-
sion is evaluated and compared to each element of the array using the given operator, which must yield

245

Chapter 9. Functions and Operators

a Boolean result. The result of ALL is “true” if all comparisons yield true (including the case where the
array has zero elements). The result is “false” if any false result is found.

If the array expression yields a null array, the result of ALL will be null. If the left-hand expression yields
null, the result of ALL is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null elements and no false comparison result is
obtained, the result of ALL will be null, not true (again, assuming a strict comparison operator). This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

9.21.5. Row-wise Comparison

row_constructor operator row_constructor

Each side is a row constructor, as described in Section 4.2.12. The two row values must have the same
number of fields. Each side is evaluated and they are compared row-wise. Row comparisons are allowed
when the operatoris =, <>, <, <=, > or >=, or has semantics similar to one of these. (To be specific,
an operator can be a row comparison operator if it is a member of a B-Tree operator class, or is the negator
of the = member of a B-Tree operator class.)

The = and <> cases work slightly differently from the others. Two rows are considered equal if all their
corresponding members are non-null and equal; the rows are unequal if any corresponding members are
non-null and unequal; otherwise the result of the row comparison is unknown (null).

For the <, <=, > and >= cases, the row elements are compared left-to-right, stopping as soon as an
unequal or null pair of elements is found. If either of this pair of elements is null, the result of the row
comparison is unknown (null); otherwise comparison of this pair of elements determines the result. For
example, ROW (1,2, NULL) < ROW(1,3,0) yields true, not null, because the third pair of elements are
not considered.

Note: Prior to PostgreSQL 8.2, the <, <=, > and >= cases were not handled per SQL specification. A
comparison like Row (a, b) < ROW(c,d) wasimplementedasa < ¢ anD b < dwhereas the correct
behavior is equivalenttoa < ¢ OR (a = ¢ AND b < d).

row_constructor IS DISTINCT FROM row_constructor

This construct is similar to a <> row comparison, but it does not yield null for null inputs. Instead, any
null value is considered unequal to (distinct from) any non-null value, and any two nulls are considered
equal (not distinct). Thus the result will either be true or false, never null.

row_constructor IS NOT DISTINCT FROM row_constructor

This construct is similar to a = row comparison, but it does not yield null for null inputs. Instead, any null
value is considered unequal to (distinct from) any non-null value, and any two nulls are considered equal
(not distinct). Thus the result will always be either true or false, never null.

Note: The SQL specification requires row-wise comparison to return NULL if the result depends on
comparing two NULL values or a NULL and a non-NULL. PostgreSQL does this only when comparing
the results of two row constructors or comparing a row constructor to the output of a subquery (as
in Section 9.20). In other contexts where two composite-type values are compared, two NULL field

246

Chapter 9. Functions and Operators

values are considered equal, and a NULL is considered larger than a non-NULL. This is necessary in

order to have consistent sorting and indexing behavior for composite types.

9.22. Set Returning Functions

This section describes functions that possibly return more than one row. Currently the only functions in
this class are series generating functions, as detailed in Table 9-45 and Table 9-46.

Table 9-45. Series Generating Functions

Function

Argument Type

Return Type

Description

generate_series(start

stop)

,Ant Oor bigint

setof int Or setof
bigint (same as
argument type)

Generate a series of
values, from start to
stop with a step size of
one

generate_series (start

stop, step)

,Ant or bigint

setof int Or setof
bigint (same as
argument type)

Generate a series of
values, from start to
stop with a step size of
step

generate_series(start
stop, step

interval)

,fimestamp or
timestamp with

time zone

setof timestamp Or
setof timestamp
with time zone

(same as argument type)

Generate a series of
values, from start to
stop with a step size of
step

When step is positive, zero rows are returned if start is greater than stop. Conversely, when step is
negative, zero rows are returned if start is less than stop. Zero rows are also returned for NULL inputs.
It is an error for step to be zero. Some examples follow:

SELECT * FROM generate_series(2,4);

generate_series

(3 rows)

SELECT x= FROM generate_series(5,1,-2);

generate_series

(3 rows)

247

Chapter 9. Functions and Operators

SELECT % FROM generate_series (4, 3);
generate_series

—— this example relies on the date-plus-integer operator
SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS s(a);
dates
2004-02-05
2004-02-12
2004-02-19
(3 rows)

SELECT % FROM generate_series(/2008-03-01 00:00’ ::timestamp,
72008-03-04 12:00’, ’'10 hours’);
generate_series
2008-03-01 00:00:00
2008-03-01 10:00:00
2008-03-01 20:00:00
2008-03-02 06:00:00
2008-03-02 16:00:00
2008-03-03 02:00:00
2008-03-03 12:00:00
2008-03-03 22:00:00
2008-03-04 08:00:00
(9 rows)

Table 9-46. Subscript Generating Functions

Function Return Type Description
generate_subscripts (array setof int Generate a series comprising the
anyarray, dim int) given array’s subscripts.
generate_subscripts (array setof int Generate a series comprising the
anyarray, dim int, reverse given array’s subscripts. When
boolean) reverse 18 true, the series is
returned in reverse order.

generate_subscripts is a convenience function that generates the set of valid subscripts for the spec-
ified dimension of the given array. Zero rows are returned for arrays that do not have the requested dimen-
sion, or for NULL arrays (but valid subscripts are returned for NULL array elements). Some examples
follow:

-— basic usage
select generate_subscripts(’ {NULL,1,NULL,2}"::int[], 1) as s;

248

Chapter 9. Functions and Operators

(4 rows)

—-— presenting an array, the subscript and the subscripted
—-— value requires a subquery
select * from arrays;

{-1,-2}
{100,200}
(2 rows)

select a as array, s as subscript, als] as value
from (select generate_subscripts(a, 1) as s, a from arrays) foo;

array | subscript | value
,,,,,,,,,,, I
{-1,-2} | 1] -1
{-1,-2} | 2 -2
{100,200} | 1| 100
{100,200} | 2 200
(4 rows)

—— unnest a 2D array
create or replace function unnest2 (anyarray)
returns setof anyelement as $$
select $1[1]1[7]
from generate_subscripts($1,1) gl (i),
generate_subscripts ($1,2) g2(J);
$$ language sgl immutable;
CREATE FUNCTION
postgres=# select * from unnest2(array[I[1,2]1,1[3,411);
unnest?2

9.23. System Information Functions

Table 9-47 shows several functions that extract session and system information.

In addition to the functions listed in this section, there are a number of functions related to the statistics
system that also provide system information. See Section 26.2.2 for more information.

249

Table 9-47. Session Information Functions

Chapter 9. Functions and Operators

Name Return Type Description

current_catalog name name of current database (called
“catalog” in the SQL standard)

current_database () name name of current database

current_schema[()] name name of current schema

current_schemas (boolean) name [] names of schemas in search path
optionally including implicit
schemas

current_user name user name of current execution
context

current_query text text of the currently executing
query, as submitted by the client
(might contain more than one
statement)

pg_backend_pid () int Process ID of the server process
attached to the current session

inet_client_addr () inet address of the remote connection

inet_client_port () int port of the remote connection

inet_server_addr () inet address of the local connection

inet_server_port () int port of the local connection

pg_my_temp_schema () oid OID of session’s temporary
schema, or O if none

pg_is_other_temp_schema (0id)| boolean is schema another session’s

temporary schema?

pg_postmaster_start_time ()

timestamp with time zone

server start time

pg_conf_load_time ()

timestamp with time zone

configuration load time

session user name

session_user name
user name equivalent to current_user
version () text PostgreSQL version information

The session_user is normally the user who initiated the current database connection; but superusers
can change this setting with SET SESSION AUTHORIZATION. The current_user is the user identifier
that is applicable for permission checking. Normally it is equal to the session user, but it can be changed
with SET ROLE. It also changes during the execution of functions with the attribute SECURITY DEFINER.
In Unix parlance, the session user is the “real user” and the current user is the “effective user”.

Note: current_catalog, current_schema, current_user, session_user, and user have special
syntactic status in SQL: they must be called without trailing parentheses (optional in PostgreSQL in

the case of current_schema).

current_schema returns the name of the schema that is first in the search path (or a null value if the
search path is empty). This is the schema that will be used for any tables or other named objects that are

250

Chapter 9. Functions and Operators

created without specifying a target schema. current_schemas (boolean) returns an array of the names
of all schemas presently in the search path. The Boolean option determines whether or not implicitly
included system schemas such as pg_catalog are included in the returned search path.

Note: The search path can be altered at run time. The command is:

SET search_path TO schema [, schema, ...]

inet_client_addr returns the IP address of the current client, and inet_client_port returns the
port number. inet_server_addr returns the IP address on which the server accepted the current con-
nection, and inet_server_port returns the port number. All these functions return NULL if the current
connection is via a Unix-domain socket.

pg_my_temp_schema returns the OID of the current session’s temporary schema, or zero if it has none
(because it has not created any temporary tables). pg_is_other_temp_schema returns true if the given
OID is the OID of another session’s temporary schema. (This can be useful, for example, to exclude other
sessions’ temporary tables from a catalog display.)

pPg_postmaster_start_time returns the timestamp with time zone when the server started.

pg_conf_load_time returns the timestamp with time zone when the server configuration files
were last loaded. (If the current session was alive at the time, this will be the time when the session itself
re-read the configuration files, so the reading will vary a little in different sessions. Otherwise it is the time
when the postmaster process re-read the configuration files.)

version returns a string describing the PostgreSQL server’s version.

Table 9-48 lists functions that allow the user to query object access privileges programmatically. See
Section 5.6 for more information about privileges.

Table 9-48. Access Privilege Inquiry Functions

Name Return Type Description
has_any_column_privilege (usefpoolean does user have privilege for any
table, privilege) column of table
has_any_column_privilege (tabflepolean does current user have privilege
privilege) for any column of table
has_column_privilege (user, |boolean does user have privilege for
table, column, privilege) column
has_column_privilege (table, |boolean does current user have privilege
column, privilege) for column
has_database_privilege (user,|boolean does user have privilege for
database, privilege) database
has_database_privilege (databplseplean does current user have privilege
privilege) for database
has_foreign_data_wrapper_priyhbdbedearser, does user have privilege for
fdw, privilege) foreign-data wrapper

251

Chapter 9. Functions and Operators

Name Return Type Description
has_foreign_data_wrapper_priyhdedebfidw, does current user have privilege
privilege) for foreign-data wrapper
has_function_privilege (user,|boolean does user have privilege for
function, privilege) function
has_function_privilege (functfibaplean does current user have privilege
privilege) for function
has_language_privilege (user,|boolean does user have privilege for
language, privilege) language
has_language_privilege (langugleplean does current user have privilege
privilege) for language
has_schema_privilege (user, boolean does user have privilege for
schema, privilege) schema
has_schema_privilege (schema,|boolean does current user have privilege
privilege) for schema
has_server_privilege (user, |boolean does user have privilege for
server, privilege) foreign server
has_server_privilege (server,|boolean does current user have privilege
privilege) for foreign server
has_table_privilege (user, boolean does user have privilege for table
table, privilege)

has_table_privilege (table, |boolean does current user have privilege
privilege) for table
has_tablespace_privilege (userpoolean does user have privilege for
tablespace, privilege) tablespace
has_tablespace_privilege (tabllespdesn does current user have privilege
privilege) for tablespace

pg_has_role (user, role, boolean does user have privilege for role
privilege)

pg_has_role (role, boolean does current user have privilege
privilege) for role

has_table_privilege checks whether a user can access a table in a particular way. The user can
be specified by name or by OID (pg_authid.oid), or if the argument is omitted current_user
is assumed. The table can be specified by name or by OID. (Thus, there are actually six variants of
has_table_privilege, which can be distinguished by the number and types of their arguments.)
When specifying by name, the name can be schema-qualified if necessary. The desired access privilege
type is specified by a text string, which must evaluate to one of the values SELECT, INSERT, UPDATE,
DELETE, TRUNCATE, REFERENCES, or TRIGGER. Optionally, WITH GRANT OPTION can be added to a
privilege type to test whether the privilege is held with grant option. Also, multiple privilege types can be
listed separated by commas, in which case the result will be t rue if any of the listed privileges is held.
(Case of the privilege string is not significant, and extra whitespace is allowed between but not within
privilege names.) Some examples:

SELECT has_table_privilege ('myschema.mytable’, ’'select’);

252

Chapter 9. Functions and Operators

SELECT has_table_privilege(’ joe’, ’'mytable’, ’'INSERT, SELECT WITH GRANT OPTION’);

has_any_column_privilege checks whether a user can access any column of a table in a particular
way. Its argument possibilities are analogous to has_table_privilege, except that the desired access
privilege type must evaluate to some combination of SELECT, INSERT, UPDATE, or REFERENCES. Note
that having any of these privileges at the table level implicitly grants it for each column of the table, so
has_any_column_privilege will always return true if has_table_privilege does for the same
arguments. But has_any_column_privilege also succeeds if there is a column-level grant of the priv-
ilege for at least one column.

has_column_privilege checks whether a user can access a column in a particular way. Its argument
possibilities are analogous to has_table_privilege, with the addition that the column can be specified
either by name or attribute number. The desired access privilege type must evaluate to some combination
of SELECT, INSERT, UPDATE, or REFERENCES. Note that having any of these privileges at the table level
implicitly grants it for each column of the table.

has_database_privilege checks whether a user can access a database in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type must
evaluate to some combination of CREATE, CONNECT, TEMPORARY, or TEMP (which is equivalent to
TEMPORARY).

has_function_privilege checks whether a user can access a function in a particular way. Its argument
possibilities are analogous to has_table_privilege. When specifying a function by a text string rather
than by OID, the allowed input is the same as for the regprocedure data type (see Section 8.16). The
desired access privilege type must evaluate to EXECUTE. An example is:

SELECT has_function_privilege (' joeuser’, ’'myfunc(int, text)’, ’execute’);

has_foreign_data_wrapper_privilege checks whether a user can access a foreign-data wrapper in
a particular way. Its argument possibilities are analogous to has_table_privilege. The desired access
privilege type must evaluate to USAGE.

has_language_privilege checks whether a user can access a procedural language in a particular way.
Its argument possibilities are analogous to has_table_privilege. The desired access privilege type
must evaluate to USAGE.

has_schema_privilege checks whether a user can access a schema in a particular way. Its argument
possibilities are analogous to has_table_privilege. The desired access privilege type must evaluate
to some combination of CREATE or USAGE.

has_server_privilege checks whether a user can access a foreign server in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type must
evaluate to USAGE.

has_tablespace_privilege checks whether a user can access a tablespace in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type must
evaluate to CREATE.

pg_has_role checks whether a user can access a role in a particular way. Its argument possibilities are
analogous to has_table_privilege. The desired access privilege type must evaluate to some combi-
nation of MEMBER or USAGE. MEMBER denotes direct or indirect membership in the role (that is, the right to

253

Chapter 9. Functions and Operators

do SET ROLE), while USAGE denotes whether the privileges of the role are immediately available without
doing SET ROLE.

Table 9-49 shows functions that determine whether a certain object is visible in the current schema search
path. For example, a table is said to be visible if its containing schema is in the search path and no table
of the same name appears earlier in the search path. This is equivalent to the statement that the table can
be referenced by name without explicit schema qualification. To list the names of all visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible (oid);

Table 9-49. Schema Visibility Inquiry Functions

Name Return Type Description

pg_conversion_is_visible (conyeasieamid) is conversion visible in search
path

pg_function_is_visible (functlibonodadn is function visible in search path

pg_operator_is_visible (operatooodedn is operator visible in search path

pg_opclass_is_visible (opclasiboddkan is operator class visible in search
path

pg_table_is_visible (table_oiddoolean is table visible in search path

pg_ts_config_is_visible (confligoolérn is text search configuration

visible in search path

pg_ts_dict_is_visible (dict_ofilddolean is text search dictionary visible
in search path

pg_ts_parser_is_visible (parsghoolégn is text search parser visible in
search path

pPg_ts_template_is_visible (teplpdaieanid) is text search template visible in
search path

Pg_type_is_visible (type_oid)|boolean is type (or domain) visible in
search path

Each function performs the visibility check for one type of database object. Note that
pg_table_is_visible can also be used with views, indexes and sequences; pg_type_is_visible
can also be used with domains. For functions and operators, an object in the search path is visible if there
is no object of the same name and argument data type(s) earlier in the path. For operator classes, both
name and associated index access method are considered.

All these functions require object OIDs to identify the object to be checked. If you want to test an object by
name, it is convenient to use the OID alias types (regclass, regtype, regprocedure, regoperator,
regconfig, or regdictionary), for example:

SELECT pg_type_is_visible ('myschema.widget’ ::regtype);

254

Chapter 9. Functions and Operators

Note that it would not make much sense to test a non-schema-qualified type name in this way — if the
name can be recognized at all, it must be visible.

Table 9-50 lists functions that extract information from the system catalogs.

Table 9-50. System Catalog Infor

mation Functions

Name

Return Type

Description

format_type (type_oid,
typemod)

text

get SQL name of a data type

pg_get_keywords ()

setof record

get list of SQL keywords and
their categories

pg_get_constraintdef (constra

ihexbtid)

get definition of a constraint

pg_get_constraintdef (constra

pretty_bool)

inexaid,

get definition of a constraint

Pg_get_expr (expr_text, text decompile internal form of an

relation_oid) expression, assuming that any
Vars in it refer to the relation
indicated by the second
parameter

Pg_get_expr (expr_text, text decompile internal form of an

relation_oid, pretty_bool) expression, assuming that any
Vars in it refer to the relation
indicated by the second
parameter

pPg_get_functiondef (func_oid)| text get definition of a function

pg_get_function_arguments (fuptextd) get argument list of function’s

definition (with default values)

pg_get_function_identity_arg

himemts (func_oid)

get argument list to identify a
function (without default values)

pretty_bool)

pg_get_function_result (func_ptidxt get RETURNS clause for function

pg_get_indexdef (index_oid) text get CREATE INDEX command
for index

pg_get_indexdef (index_oid, text get CREATE INDEX command

column_no, pretty_bool) for index, or definition of just
one index column when
column_no is not zero

pg_get_ruledef (rule_oid) text get CREATE RULE command for
rule

pg_get_ruledef (rule_oid, text get CREATE RULE command for

rule

255

Chapter 9. Functions and Operators

Name Return Type Description
pg_get_serial_sequence (table| hem&, get name of the sequence that a
column_name) serial or bigserial column
uses
pg_get_triggerdef(trigger_|dikdt get CREATE [CONSTRAINT]
TRIGGER command for trigger
pg_get_userbyid (role_oid) name get role name with given OID
pg_get_viewdef (view_name) text get underlying SELECT
command for view (deprecated)
pg_get_viewdef (view_name, text get underlying SELECT
pretty_bool) command for view (deprecated)
pg_get_viewdef (view_oid) text get underlying SELECT
command for view
pg_get_viewdef (view_oid, text get underlying SELECT
pretty_bool) command for view
pg_tablespace_databases (tablesptod amiidd get the set of database OIDs that

have objects in the tablespace

pg_typeof (any) regtype get the data type of any value

format_type returns the SQL name of a data type that is identified by its type OID and possibly a type
modifier. Pass NULL for the type modifier if no specific modifier is known.

pg_get_keywords returns a set of records describing the SQL keywords recognized by the server. The
word column contains the keyword. The catcode column contains a category code: U for unreserved,
¢ for column name, T for type or function name, or R for reserved. The catdesc column contains a
possibly-localized string describing the category.

pg_get_constraintdef,pg_get_indexdef, pg_get_ruledef, and pg_get_triggerdef, respec-
tively reconstruct the creating command for a constraint, index, rule, or trigger. (Note that this is a decom-
piled reconstruction, not the original text of the command.) pg_get_expr decompiles the internal form
of an individual expression, such as the default value for a column. It can be useful when examining the
contents of system catalogs. If the expression might contain Vars, specify the OID of the relation they refer
to as the second parameter; if no Vars are expected, zero is sufficient. pg_get_viewdef reconstructs the
SELECT query that defines a view. Most of these functions come in two variants, one of which can option-
ally “pretty-print” the result. The pretty-printed format is more readable, but the default format is more
likely to be interpreted the same way by future versions of PostgreSQL; avoid using pretty-printed output
for dump purposes. Passing false for the pretty-print parameter yields the same result as the variant that
does not have the parameter at all.

pg_get_functiondef returns a complete CREATE OR REPLACE FUNCTION statement for a function.
pg_get_function_arguments returns the argument list of a function, in the form it would need to
appear in within CREATE FUNCTION. pg_get_function_result similarly returns the appropriate
RETURNS clause for the function. pg_get_function_identity_arguments returns the argument list
necessary to identify a function, in the form it would need to appear in within ALTER FUNCTION, for
instance. This form omits default values.

pg_get_serial_sequence returns the name of the sequence associated with a column, or NULL if no
sequence is associated with the column. The first input parameter is a table name with optional schema,

256

Chapter 9. Functions and Operators

and the second parameter is a column name. Because the first parameter is potentially a schema and
table, it is not treated as a double-quoted identifier, meaning it is lowercased by default, while the second
parameter, being just a column name, is treated as double-quoted and has its case preserved. The function
returns a value suitably formatted for passing to sequence functions (see Section 9.15). This association
can be modified or removed with ALTER SEQUENCE OWNED BY. (The function probably should have
been called pg_get_owned_sequence; its current name reflects the fact that it’s typically used with
serial or bigserial columns.)

pPg_get_userbyid extracts a role’s name given its OID.

pg_tablespace_databases allows a tablespace to be examined. It returns the set of OIDs of databases
that have objects stored in the tablespace. If this function returns any rows, the tablespace is not empty
and cannot be dropped. To display the specific objects populating the tablespace, you will need to connect
to the databases identified by pg_tablespace_databases and query their pg_class catalogs.

pg_typeof returns the OID of the data type of the value that is passed to it. This can be helpful for
troubleshooting or dynamically constructing SQL queries. The function is declared as returning regtype,
which is an OID alias type (see Section 8.16); this means that it is the same as an OID for comparison
purposes but displays as a type name. For example:

SELECT pg_typeof (33);

pg_typeof

integer
(1 row)

SELECT typlen FROM pg_type WHERE oid = pg_typeof (33);
typlen

The functions shown in Table 9-51 extract comments previously stored with the COMMENT command.
A null value is returned if no comment could be found for the specified parameters.

Table 9-51. Comment Information Functions

Name Return Type Description

col_description (table_oid, |text get comment for a table column

column_number)

obj_description (object_oid, |text get comment for a database

catalog_name) (ﬂﬁect

obj_description (object_oid) |text get comment for a database
object (deprecated)

shobj_description (object_oid,text get comment for a shared

catalog_name) database object

col_description returns the comment for a table column, which is specified by the OID of its table

257

Chapter 9. Functions and Operators

and its column number. obj_description cannot be used for table columns since columns do not have
OIDs of their own.

The two-parameter form of obj_description returns the comment for a database
object specified by its OID and the name of the containing system catalog. For example,
obj_description (123456, 'pg_class’) would retrieve the comment for the table with OID
123456. The one-parameter form of obj_description requires only the object OID. It is deprecated
since there is no guarantee that OIDs are unique across different system catalogs; therefore, the wrong
comment might be returned.

shobj_description is used just like obj_description except it is used for retrieving comments on
shared objects. Some system catalogs are global to all databases within each cluster and their descriptions
are stored globally as well.

The functions shown in Table 9-52 provide server transaction information in an exportable form. The main
use of these functions is to determine which transactions were committed between two snapshots.

Table 9-52. Transaction IDs and snapshots

Name Return Type Description
txid_current () bigint get current transaction ID
txid_current_snapshot () txid_snapshot get current snapshot
txid_snapshot_xmin (txid_snapghaglint get xmin of snapshot
txid_snapshot_xmax (txid_snapgshogint get xmax of snapshot
txid_snapshot_xip (txid_snapshsetof bigint get in-progress transaction IDs in
snapshot
txid_visible_in_snapshot (biglihtplean is transaction ID visible in
txid_snapshot) snapshot? (do not use with
subtransaction ids)

The internal transaction ID type (xid) is 32 bits wide and wraps around every 4 billion transactions.
However, these functions export a 64-bit format that is extended with an “epoch” counter so it will not
wrap around during the life of an installation. The data type used by these functions, txid_snapshot,
stores information about transaction ID visibility at a particular moment in time. Its components are
described in Table 9-53.

Table 9-53. Snapshot components

Name Description

xmin Earliest transaction ID (txid) that is still active.
All earlier transactions will either be committed
and visible, or rolled back and dead.

xmax First as-yet-unassigned txid. All txids greater than
or equal to this are not yet started as of the time of
the snapshot, and thus invisible.

258

Chapter 9. Functions and Operators

Name Description

xip_list Active txids at the time of the snapshot. The list
includes only those active txids between xmin and
xmax; there might be active txids higher than
xmax. A txid that is xmin <= txid < xmax and
not in this list was already completed at the time of
the snapshot, and thus either visible or dead
according to its commit status. The list does not
include txids of subtransactions.

txid_snapshot’s textual representation iS xmin:xmax:xip_list. For example 10:20:10,14,15
means xmin=10, xmax=20, xip_list=10, 14, 15.

9.24. System Administration Functions

Table 9-54 shows the functions available to query and alter run-time configuration parameters.

Table 9-54. Configuration Settings Functions

Name Return Type Description

text get current value of setting

current_setting (setting_name|

set_config (setting_name, text set parameter and return new
new_value, is_local) value

The function current_setting yields the current value of the setting setting_name. It corresponds
to the SQL command sHOW. An example:

SELECT current_setting(’datestyle’);

current_setting

IsO, MDY
(1 row)

set_config sets the parameter setting_name to new_value. If is_local is true, the new value
will only apply to the current transaction. If you want the new value to apply for the current session, use
false instead. The function corresponds to the SQL command SET. An example:

SELECT set_config(’log_statement_stats’, ’'off’, false);

set_config

off
(1 row)

259

Chapter 9. Functions and Operators

The functions shown in Table 9-55 send control signals to other server processes. Use of these functions

is restricted to superusers.

Table 9-55. Server Signalling Functions

Name Return Type Description

pg_cancel_backend (pid int) |boolean Cancel a backend’s current query

pg_terminate_backend (pid boolean Terminate a backend

int)

pg_reload_conf () boolean Cause server processes to reload
their configuration files

pg_rotate_logfile () boolean Rotate server’s log file

Each of these functions returns t rue if successful and false otherwise.

pg_cancel_backend and pg_terminate_backend send signals (SIGINT or SIGTERM respectively)
to backend processes identified by process ID. The process ID of an active backend can be found from the
procpid column of the pg_stat_activity view, or by listing the postgres processes on the server

(using ps on Unix or the Task Manager on Windows).

pg_reload_conf sends a SIGHUP signal to the server, causing configuration files to be reloaded by all

SETVEr processes.

pg_rotate_logfile signals the log-file manager to switch to a new output file immediately. This works
only when the built-in log collector is running, since otherwise there is no log-file manager subprocess.

The functions shown in Table 9-56 assist in making on-line backups. Use of the first three functions is

restricted to superusers.

Table 9-56. Backup Control Functions

Name Return Type Description

pg_start_backup (label text |text Prepare for performing on-line

[, fast boolean]) backup

pg_stop_backup () text Finish performing on-line
backup

pg_switch_xlog () text Force switch to a new transaction
log file

pg_current_xlog_location () |text Get current transaction log write
location

text Get current transaction log insert

pg_current_xlog_insert_locat

ion ()

location

pg_xlogfile_name_offset (loca

text)

text, integer

tion

Convert transaction log location
string to file name and decimal
byte offset within file

260

Chapter 9. Functions and Operators

Name Return Type Description
pg_xlogfile_name (location |text Convert transaction log location
text) string to file name

pg_start_backup accepts an arbitrary user-defined label for the backup. (Typically this would be
the name under which the backup dump file will be stored.) The function writes a backup label file
(backup_label) into the database cluster’s data directory, performs a checkpoint, and then returns the
backup’s starting transaction log location as text. The user can ignore this result value, but it is provided
in case it is useful.

postgres=# select pg_start_backup(’label_goes_here’);
pg_start_backup

0/D4445B8
(1 row)

There is an optional boolean second parameter. If true, it specifies executing pg_start_backup as
quickly as possible. This forces an immediate checkpoint which will cause a spike in I/O operations,
slowing any concurrently executing queries.

pg_stop_backup removes the label file created by pg_start_backup, and creates a backup history
file in the transaction log archive area. The history file includes the label given to pg_start_backup,
the starting and ending transaction log locations for the backup, and the starting and ending times of the
backup. The return value is the backup’s ending transaction log location (which again can be ignored).
After recording the ending location, the current transaction log insertion point is automatically advanced
to the next transaction log file, so that the ending transaction log file can be archived immediately to
complete the backup.

pg_switch_x1log moves to the next transaction log file, allowing the current file to be archived (assum-
ing you are using continuous archiving). The return value is the ending transaction log location + 1 within
the just-completed transaction log file. If there has been no transaction log activity since the last transac-
tion log switch, pg_switch_xlog does nothing and returns the start location of the transaction log file
currently in use.

pg_current_xlog_location displays the current transaction log write location in the same format
used by the above functions. Similarly, pg_current_xlog_insert_location displays the current
transaction log insertion point. The insertion point is the “logical” end of the transaction log at any instant,
while the write location is the end of what has actually been written out from the server’s internal buffers.
The write location is the end of what can be examined from outside the server, and is usually what you
want if you are interested in archiving partially-complete transaction log files. The insertion point is made
available primarily for server debugging purposes. These are both read-only operations and do not require
superuser permissions.

You can use pg_xlogfile_name_offset to extract the corresponding transaction log file name and
byte offset from the results of any of the above functions. For example:

postgres=# SELECT * FROM pg_xlogfile_name_offset (pg_stop_backup());
file_name | file_offset
__________________________ o
00000001000000000000000D | 4039624
(1 row)

261

Chapter 9. Functions and Operators

Similarly, pg_x1logfile_name extracts just the transaction log file name. When the given transaction log
location is exactly at a transaction log file boundary, both these functions return the name of the preceding
transaction log file. This is usually the desired behavior for managing transaction log archiving behavior,
since the preceding file is the last one that currently needs to be archived.

For details about proper usage of these functions, see Section 24.3.

The functions shown in Table 9-57 calculate the disk space usage of database objects.

Table 9-57. Database Object Size Functions

Name Return Type Description

pg_column_size (any) int Number of bytes used to store a
particular value (possibly
compressed)

pg_database_size (oid) bigint Disk space used by the database
with the specified OID

pg_database_size (name) bigint Disk Space used by the database
with the specified name

pg_relation_size (relation |bigint Disk space used by the specified

regclass, fork text) fork ("main’, ’ fsm’ or vm’)

of the table or index with the
specified OID or name

pg_relation_size (relation bigint Shorthand for

regclass) pg_relation_size (...,
"main’)

pg_size_pretty (bigint) text Converts a size in bytes into a
human-readable format with size
units

pg_tablespace_size (oid) bigint Disk space used by the
tablespace with the specified
OID

pg_tablespace_size (name) bigint Disk Space used by the
tablespace with the specified
name

bigint Total disk space used by the

pg_total_relation_size (regcliss) table with the speciﬁed OID or
name, including indexes and
TOAST data

pg_column_size shows the space used to store any individual data value.

pg_database_size and pg_tablespace_size accept the OID or name of a database or tablespace,
and return the total disk space used therein.

pg_relation_size accepts the OID or name of a table, index or toast table, and returns the size in
bytes. Specifying "main’ or leaving out the second argument returns the size of the main data fork of
the relation. Specifying ’ £sm’ returns the size of the Free Space Map (see Section 53.3) associated with
the relation. Specifying ’ vm’ returns the size of the Visibility Map (see Section 53.4) associated with the

262

Chapter 9. Functions and Operators

relation.

pg_size_pretty can be used to format the result of one of the other functions in a human-readable way,
using kB, MB, GB or TB as appropriate.

pg_total_relation_size accepts the OID or name of a table or toast table, and returns the size in
bytes of the data and all associated indexes and toast tables.

The functions shown in Table 9-58 provide native access to files on the machine hosting the server. Only
files within the database cluster directory and the 1og_directory can be accessed. Use a relative path
for files in the cluster directory, and a path matching the 1og_directory configuration setting for log
files. Use of these functions is restricted to superusers.

Table 9-58. Generic File Access Functions

Name Return Type Description

pg_ls_dir (dirname text) setof text List the contents of a directory
pg_read_file (filename text Return the contents of a text file
text, offset bigint, length

bigint)

pg_stat_file (filename record Return information about a file
text)

pg_1s_dir returns all the names in the specified directory, except the special entries “.” and “. .”.

pg_read_file returns part of a text file, starting at the given of fset, returning at most length bytes
(less if the end of file is reached first). If of£set is negative, it is relative to the end of the file.

pg_stat_file returns a record containing the file size, last accessed time stamp, last modified time
stamp, last file status change time stamp (Unix platforms only), file creation time stamp (Windows only),
and a boolean indicating if it is a directory. Typical usages include:

SELECT * FROM pg_stat_file(’ filename’);
SELECT (pg_stat_file(’filename’)) .modification;

The functions shown in Table 9-59 manage advisory locks. For details about proper use of these functions,
see Section 13.3.4.

Table 9-59. Advisory Lock Functions

Name Return Type Description
pg_advisory_lock (key void Obtain exclusive advisory lock
bigint)
pg_advisory_lock (keyl int, |void Obtain exclusive advisory lock
key2 int)

void Obtain shared advisory lock
pg_advisory_lock_shared (key
bigint)

263

Chapter 9. Functions and Operators

Name Return Type Description

void Obtain shared advisory lock
pg_advisory_lock_shared (keyl
int, key2 int)

pg_try_advisory_lock (key boolean Obtain exclusive advisory lock if
bigint) available
pg_try_advisory_lock (keyl boolean Obtain exclusive advisory lock if
int, key2 int) available

boolean Obtain shared advisory lock if
pg_try_advisory_lock_shared (key available
bigint)

boolean Obtain shared advisory lock if
pg_try_advisory_lock_shared (keyl available
int, key2 int)
pg_advisory_unlock (key boolean Release an exclusive advisory
bigint) lock
pg_advisory_unlock (keyl boolean Release an exclusive advisory
int, key2 int) lock

boolean Release a shared advisory lock

pg_advisory_unlock_shared (kely
bigint)

boolean Release a shared advisory lock
pg_advisory_unlock_shared (keyl
int, key2 int)

pg_advisory_unlock_all () void Release all advisory locks held
by the current session

pg_advisory_lock locks an application-defined resource, which can be identified either by a single
64-bit key value or two 32-bit key values (note that these two key spaces do not overlap). The key type is
specified in pg_locks.objid. If another session already holds a lock on the same resource, the function
will wait until the resource becomes available. The lock is exclusive. Multiple lock requests stack, so that
if the same resource is locked three times it must be also unlocked three times to be released for other
sessions’ use.

pg_advisory_lock_shared works the same as pg_advisory_lock, except the lock can be shared
with other sessions requesting shared locks. Only would-be exclusive lockers are locked out.

pg_try_advisory_lock is similar to pg_advisory_lock, except the function will not wait for the
lock to become available. It will either obtain the lock immediately and return t rue, or return false if
the lock cannot be acquired immediately.

pg_try_advisory_lock_shared works the same as pg_try_advisory_lock, except it attempts to
acquire a shared rather than an exclusive lock.

pg_advisory_unlock will release a previously-acquired exclusive advisory lock. It returns t rue if the
lock is successfully released. If the lock was not held, it will return false, and in addition, an SQL
warning will be raised by the server.

pg_advisory_unlock_shared works the same as pg_advisory_unlock, except it releases a shared

264

Chapter 9. Functions and Operators

advisory lock.

pg_advisory_unlock_all will release all advisory locks held by the current session. (This function is
implicitly invoked at session end, even if the client disconnects ungracefully.)

9.25. Trigger Functions

Currently PostgreSQL provides one built in trigger function,
suppress_redundant_updates_trigger, which will prevent any update that
does not actually change the data in the row from taking place, in contrast to the normal behaviour which
always performs the update regardless of whether or not the data has changed. (This normal behaviour
makes updates run faster, since no checking is required, and is also useful in certain cases.)

Ideally, you should normally avoid running updates that don’t actually change the data in the record.
Redundant updates can cost considerable unnecessary time, especially if there are lots of indexes to alter,
and space in dead rows that will eventually have to be vacuumed. However, detecting such situations in
client code is not always easy, or even possible, and writing expressions to detect them can be error-prone.
An alternative is to use suppress_redundant_updates_trigger, which will skip updates that don’t
change the data. You should use this with care, however. The trigger takes a small but non-trivial time for
each record, so if most of the records affected by an update are actually changed, use of this trigger will
actually make the update run slower.

The suppress_redundant_updates_trigger function can be added to a table like this:

CREATE TRIGGER z_min_update
BEFORE UPDATE ON tablename
FOR EACH ROW EXECUTE PROCEDURE suppress_redundant_updates_trigger();

In most cases, you would want to fire this trigger last for each row. Bearing in mind that triggers fire in
name order, you would then choose a trigger name that comes after the name of any other trigger you
might have on the table.

For more information about creating triggers, see CREATE TRIGGER.

265

Chapter 10. Type Conversion

SQL statements can, intentionally or not, require the mixing of different data types in the same expression.
PostgreSQL has extensive facilities for evaluating mixed-type expressions.

In many cases a user does not need to understand the details of the type conversion mechanism. However,
implicit conversions done by PostgreSQL can affect the results of a query. When necessary, these results
can be tailored by using explicit type conversion.

This chapter introduces the PostgreSQL type conversion mechanisms and conventions. Refer to the rele-
vant sections in Chapter 8 and Chapter 9 for more information on specific data types and allowed functions
and operators.

10.1. Overview

SQL is a strongly typed language. That is, every data item has an associated data type which determines its
behavior and allowed usage. PostgreSQL has an extensible type system that is more general and flexible
than other SQL implementations. Hence, most type conversion behavior in PostgreSQL is governed by
general rules rather than by ad hoc heuristics. This allows the use of mixed-type expressions even with
user-defined types.

The PostgreSQL scanner/parser divides lexical elements into five fundamental categories: integers, non-
integer numbers, strings, identifiers, and key words. Constants of most non-numeric types are first classi-
fied as strings. The SQL language definition allows specifying type names with strings, and this mecha-
nism can be used in PostgreSQL to start the parser down the correct path. For example, the query:

SELECT text ’Origin’ AS "label", point ’ (0,0)’ AS "value";

label | value

________ b
Origin | (0,0)

(1 row)

has two literal constants, of type text and point. If a type is not specified for a string literal, then the
placeholder type unknown is assigned initially, to be resolved in later stages as described below.

There are four fundamental SQL constructs requiring distinct type conversion rules in the PostgreSQL
parser:
Function calls

Much of the PostgreSQL type system is built around a rich set of functions. Functions can have one
or more arguments. Since PostgreSQL permits function overloading, the function name alone does
not uniquely identify the function to be called; the parser must select the right function based on the
data types of the supplied arguments.

Operators

PostgreSQL allows expressions with prefix and postfix unary (one-argument) operators, as well as
binary (two-argument) operators. Like functions, operators can be overloaded, so the same problem
of selecting the right operator exists.

266

Chapter 10. Type Conversion

Value Storage

SQL INSERT and UPDATE statements place the results of expressions into a table. The expressions
in the statement must be matched up with, and perhaps converted to, the types of the target columns.

UNION, CASE, and related constructs

Since all query results from a unionized SELECT statement must appear in a single set of columns,
the types of the results of each SELECT clause must be matched up and converted to a uniform set.
Similarly, the result expressions of a CASE construct must be converted to a common type so that the
CASE expression as a whole has a known output type. The same holds for ARRAY constructs, and for
the GREATEST and LEAST functions.

The system catalogs store information about which conversions, or casts, exist between which data types,
and how to perform those conversions. Additional casts can be added by the user with the CREATE CAST
command. (This is usually done in conjunction with defining new data types. The set of casts between
built-in types has been carefully crafted and is best not altered.)

An additional heuristic provided by the parser allows improved determination of the proper casting be-
havior among groups of types that have implicit casts. Data types are divided into several basic fype
categories, including boolean, numeric, string, bitstring, datetime, timespan, geometric,
network, and user-defined. (For a list see Table 44-43; but note it is also possible to create custom type
categories.) Within each category there can be one or more preferred types, which are preferred when
there is a choice of possible types. With careful selection of preferred types and available implicit casts, it
is possible to ensure that ambiguous expressions (those with multiple candidate parsing solutions) can be
resolved in a useful way.

All type conversion rules are designed with several principles in mind:

« Implicit conversions should never have surprising or unpredictable outcomes.

+ There should be no extra overhead in the parser or executor if a query does not need implicit type
conversion. That is, if a query is well-formed and the types already match, then the query should execute
without spending extra time in the parser and without introducing unnecessary implicit conversion calls
in the query.

Additionally, if a query usually requires an implicit conversion for a function, and if then the user
defines a new function with the correct argument types, the parser should use this new function and no
longer do implicit conversion to use the old function.

10.2. Operators

The specific operator that is referenced by an operator expression is determined using the following pro-
cedure. Note that this procedure is indirectly affected by the precedence of the involved operators, since
that will determine which sub-expressions are taken to be the inputs of which operators. See Section 4.1.6
for more information.

267

Chapter 10. Type Conversion

Operator Type Resolution

1.

Select the operators to be considered from the pg_operator system catalog. If a non-schema-
qualified operator name was used (the usual case), the operators considered are those with the match-
ing name and argument count that are visible in the current search path (see Section 5.7.3). If a
qualified operator name was given, only operators in the specified schema are considered.

a. If the search path finds multiple operators with identical argument types, only the one ap-
pearing earliest in the path is considered. Operators with different argument types are con-
sidered on an equal footing regardless of search path position.

Check for an operator accepting exactly the input argument types. If one exists (there can be only one
exact match in the set of operators considered), use it.

a. If one argument of a binary operator invocation is of the unknown type, then assume it is the
same type as the other argument for this check. Invocations involving two unknown inputs,
or a unary operator with an unknown input, will never find a match at this step.

Look for the best match.

a. Discard candidate operators for which the input types do not match and cannot be converted
(using an implicit conversion) to match. unknown literals are assumed to be convertible to
anything for this purpose. If only one candidate remains, use it; else continue to the next
step.

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candidates
if none have exact matches. If only one candidate remains, use it; else continue to the next
step.

c. Run through all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments are unknown, check the type categories accepted at those argument
positions by the remaining candidates. At each position, select the st ring category if any
candidate accepts that category. (This bias towards string is appropriate since an unknown-
type literal looks like a string.) Otherwise, if all the remaining candidates accept the same
type category, select that category; otherwise fail because the correct choice cannot be de-
duced without more clues. Now discard candidates that do not accept the selected type
category. Furthermore, if any candidate accepts a preferred type in that category, discard
candidates that accept non-preferred types for that argument.

e. If only one candidate remains, use it. If no candidate or more than one candidate remains,
then fail.

Some examples follow.

268

Chapter 10. Type Conversion
Example 10-1. Factorial Operator Type Resolution

There is only one factorial operator (postfix !) defined in the standard catalog, and it takes an argument
of type bigint. The scanner assigns an initial type of integer to the argument in this query expression:

SELECT 40 ! AS "40 factorial";

40 factorial

815915283247897734345611269596115894272000000000

(1 row)
So the parser does a type conversion on the operand and the query is equivalent to:
SELECT CAST (40 AS bigint) ! AS "40 factorial";

Example 10-2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types and for working with complex extension types.
Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:

SELECT text ’"abc’ || ’'def’ AS "text and unknown";

text and unknown

abcdef
(1 row)

In this case the parser looks to see if there is an operator taking text for both arguments. Since there is,
it assumes that the second argument should be interpreted as type text.

Here is a concatenation on unspecified types:

SELECT "abc’ || 'def’” AS "unspecified";

unspecified

abcdef
(1 row)

In this case there is no initial hint for which type to use, since no types are specified in the query. So, the
parser looks for all candidate operators and finds that there are candidates accepting both string-category
and bit-string-category inputs. Since string category is preferred when available, that category is selected,
and then the preferred type for strings, text, is used as the specific type to resolve the unknown literals
as.

Example 10-3. Absolute-Value and Negation Operator Type Resolution

The PostgreSQL operator catalog has several entries for the prefix operator @, all of which implement
absolute-value operations for various numeric data types. One of these entries is for type f1oat8, which

269

Chapter 10. Type Conversion

is the preferred type in the numeric category. Therefore, PostgreSQL will use that entry when faced with
an unknown input:

SELECT @ "-4.5" AS "abs";
abs

4.5
(1 row)
Here the system has implicitly resolved the unknown-type literal as type £loat8 before applying the
chosen operator. We can verify that f1oat 8 and not some other type was used:
SELECT @ ’'-4.5e500" AS "abs";

ERROR: "-4.5e500" is out of range for type double precision

On the other hand, the prefix operator ~ (bitwise negation) is defined only for integer data types, not for
float8. So, if we try a similar case with ~, we get:

SELECT ~ 720’ AS "negation";

ERROR: operator is not unique: ~ "unknown"
HINT: Could not choose a best candidate operator. You might need to add
explicit type casts.

This happens because the system cannot decide which of the several possible ~ operators should be pre-
ferred. We can help it out with an explicit cast:
SELECT ~ CAST(’20" AS int8) AS "negation";

negation

=21
(1 row)

10.3. Functions

The specific function that is referenced by a function call is determined using the following procedure.

Function Type Resolution

1. Select the functions to be considered from the pg_proc system catalog. If a non-schema-qualified
function name was used, the functions considered are those with the matching name and argument
count that are visible in the current search path (see Section 5.7.3). If a qualified function name was
given, only functions in the specified schema are considered.

a. If the search path finds multiple functions of identical argument types, only the one appear-
ing earliest in the path is considered. Functions of different argument types are considered
on an equal footing regardless of search path position.

b. If a function is declared with a VARTIADIC array parameter, and the call does not use the
VARIADIC keyword, then the function is treated as if the array parameter were replaced
by one or more occurrences of its element type, as needed to match the call. After such

270

Chapter 10. Type Conversion

expansion the function might have effective argument types identical to some non-variadic
function. In that case the function appearing earlier in the search path is used, or if the two
functions are in the same schema, the non-variadic one is preferred.

c. Functions that have default values for parameters are considered to match any call that omits
zero or more of the defaultable parameter positions. If more than one such function matches
a call, the one appearing earliest in the search path is used. If there are two or more such
functions in the same schema with identical parameter types in the non-defaulted positions
(which is possible if they have different sets of defaultable parameters), the system will not
be able to determine which to prefer, and so an “ambiguous function call” error will result
if no better match to the call can be found.

2. Check for a function accepting exactly the input argument types. If one exists (there can be only one
exact match in the set of functions considered), use it. (Cases involving unknown will never find a
match at this step.)

3. Ifno exact match is found, see if the function call appears to be a special type conversion request. This
happens if the function call has just one argument and the function name is the same as the (internal)
name of some data type. Furthermore, the function argument must be either an unknown-type literal,
or a type that is binary-coercible to the named data type, or a type that could be converted to the
named data type by applying that type’s I/O functions (that is, the conversion is either to or from one
of the standard string types). When these conditions are met, the function call is treated as a form of
CAST specification. '

4. Look for the best match.

a. Discard candidate functions for which the input types do not match and cannot be converted
(using an implicit conversion) to match. unknown literals are assumed to be convertible to
anything for this purpose. If only one candidate remains, use it; else continue to the next
step.

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candidates
if none have exact matches. If only one candidate remains, use it; else continue to the next
step.

c. Run through all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments are unknown, check the type categories accepted at those argument
positions by the remaining candidates. At each position, select the string category if any
candidate accepts that category. (This bias towards string is appropriate since an unknown-
type literal looks like a string.) Otherwise, if all the remaining candidates accept the same
type category, select that category; otherwise fail because the correct choice cannot be de-
duced without more clues. Now discard candidates that do not accept the selected type
category. Furthermore, if any candidate accepts a preferred type in that category, discard
candidates that accept non-preferred types for that argument.

1. The reason for this step is to support function-style cast specifications in cases where there is not an actual cast function. If
there is a cast function, it is conventionally named after its output type, and so there is no need to have a special case. See CREATE
CAST for additional commentary.

271

Chapter 10. Type Conversion

e. If only one candidate remains, use it. If no candidate or more than one candidate remains,
then fail.

Note that the “best match” rules are identical for operator and function type resolution. Some examples
follow.

Example 10-4. Rounding Function Argument Type Resolution

There is only one round function that takes two arguments; it takes a first argument of type numeric and
a second argument of type integer. So the following query automatically converts the first argument of

type integer to numeric:

SELECT round (4, 4);

(1 row)
That query is actually transformed by the parser to:
SELECT round(CAST (4 AS numeric), 4);

Since numeric constants with decimal points are initially assigned the type numeric, the following query
will require no type conversion and therefore might be slightly more efficient:

SELECT round (4.0, 4);

Example 10-5. Substring Function Type Resolution

There are several substr functions, one of which takes types text and integer. If called with a string
constant of unspecified type, the system chooses the candidate function that accepts an argument of the
preferred category st ring (namely of type text).

SELECT substr (’1234’, 3);

substr

34
(1 row)

If the string is declared to be of type varchar, as might be the case if it comes from a table, then the
parser will try to convert it to become text:

SELECT substr (varchar ’1234’, 3);

substr

34
(1 row)

This is transformed by the parser to effectively become:
SELECT substr (CAST (varchar ’1234’ AS text), 3);

272

Chapter 10. Type Conversion

Note: The parser learns from the pg_cast catalog that text and varchar are binary-compatible,
meaning that one can be passed to a function that accepts the other without doing any physical
conversion. Therefore, no type conversion call is really inserted in this case.

And, if the function is called with an argument of type integer, the parser will try to convert that to
text:

SELECT substr (1234, 3);

ERROR: function substr(integer, integer) does not exist

HINT: No function matches the given name and argument types. You might need
to add explicit type casts.

This does not work because integer does not have an implicit cast to text. An explicit cast will work,

however:
SELECT substr (CAST (1234 AS text), 3);

substr

10.4. Value Storage

Values to be inserted into a table are converted to the destination column’s data type according to the
following steps.

Value Storage Type Conversion

1. Check for an exact match with the target.

2. Otherwise, try to convert the expression to the target type. This will succeed if there is a registered
cast between the two types. If the expression is an unknown-type literal, the contents of the literal
string will be fed to the input conversion routine for the target type.

3. Check to see if there is a sizing cast for the target type. A sizing cast is a cast from that type to itself.
If one is found in the pg_cast catalog, apply it to the expression before storing into the destina-
tion column. The implementation function for such a cast always takes an extra parameter of type
integer, which receives the destination column’s declared length (actually, its atttypmod value;
the interpretation of atttypmod varies for different data types). The cast function is responsible for
applying any length-dependent semantics such as size checking or truncation.

273

Chapter 10. Type Conversion

Example 10-6. character Storage Type Conversion

For a target column declared as character (20) the following statement ensures that the stored value is
sized correctly:

CREATE TABLE vv (v character(20));
INSERT INTO vv SELECT ’abc’ || 'def’;
SELECT v, length(v) FROM vv;

abcdef | 20
(1 row)

What has really happened here is that the two unknown literals are resolved to text by default, allowing
the | | operator to be resolved as text concatenation. Then the text result of the operator is converted to
bpchar (“blank-padded char”, the internal name of the character data type) to match the target column
type. (Since the conversion from text to bpchar is binary-coercible, this conversion does not insert
any real function call.) Finally, the sizing function bpchar (bpchar, integer) is found in the system
catalog and applied to the operator’s result and the stored column length. This type-specific function
performs the required length check and addition of padding spaces.

10.5. uNn1ION, cASE, and Related Constructs

SQL UNION constructs must match up possibly dissimilar types to become a single result set. The resolu-
tion algorithm is applied separately to each output column of a union query. The INTERSECT and EXCEPT
constructs resolve dissimilar types in the same way as UNION. The CASE, ARRAY, VALUES, GREATEST and
LEAST constructs use the identical algorithm to match up their component expressions and select a result
data type.

Type Resolution for UNION, CASE, and Related Constructs
1. If all inputs are of the same type, and it is not unknown, resolve as that type. Otherwise, replace any
domain types in the list with their underlying base types.

2. If all inputs are of type unknown, resolve as type text (the preferred type of the string category).
Otherwise, unknown inputs are ignored.

3. If the non-unknown inputs are not all of the same type category, fail.
4. Choose the first non-unknown input type which is a preferred type in that category, if there is one.

5. Otherwise, choose the last non-unknown input type that allows all the preceding non-unknown inputs
to be implicitly converted to it. (There always is such a type, since at least the first type in the list
must satisfy this condition.)

6. Convert all inputs to the selected type. Fail if there is not a conversion from a given input to the
selected type.

Some examples follow.

274

Chapter 10. Type Conversion

Example 10-7. Type Resolution with Underspecified Types in a Union

SELECT text ’"a’ AS "text" UNION SELECT ’'b’;

(2 rows)
Here, the unknown-type literal ' b’ will be resolved to type text.

Example 10-8. Type Resolution in a Simple Union

SELECT 1.2 AS "numeric" UNION SELECT 1;

numeric

1.2
(2 rows)
The literal 1.2 is of type numeric, and the integer value 1 can be cast implicitly to numeric, so that
type is used.

Example 10-9. Type Resolution in a Transposed Union

SELECT 1 AS "real" UNION SELECT CAST('2.2’ AS REAL);

2.2
(2 rows)
Here, since type real cannot be implicitly cast to integer, but integer can be implicitly cast to real,
the union result type is resolved as real.

275

Chapter 11. Indexes

Indexes are a common way to enhance database performance. An index allows the database server to find
and retrieve specific rows much faster than it could do without an index. But indexes also add overhead to
the database system as a whole, so they should be used sensibly.

11.1. Introduction

Suppose we have a table similar to this:

CREATE TABLE testl (
id integer,
content wvarchar

)i
and the application issues many queries of the form:

SELECT content FROM testl WHERE id = constant;

With no advance preparation, the system would have to scan the entire test 1 table, row by row, to find all
matching entries. If there are many rows in test1 and only a few rows (perhaps zero or one) that would
be returned by such a query, this is clearly an inefficient method. But if the system has been instructed to
maintain an index on the id column, it can use a more efficient method for locating matching rows. For
instance, it might only have to walk a few levels deep into a search tree.

A similar approach is used in most non-fiction books: terms and concepts that are frequently looked up
by readers are collected in an alphabetic index at the end of the book. The interested reader can scan the
index relatively quickly and flip to the appropriate page(s), rather than having to read the entire book to
find the material of interest. Just as it is the task of the author to anticipate the items that readers are likely
to look up, it is the task of the database programmer to foresee which indexes will be useful.

The following command can be used to create an index on the id column, as discussed:
CREATE INDEX testl_id_index ON testl (id);

The name test1_id_index can be chosen freely, but you should pick something that enables you to
remember later what the index was for.

To remove an index, use the DROP INDEX command. Indexes can be added to and removed from tables at
any time.

Once an index is created, no further intervention is required: the system will update the index when the
table is modified, and it will use the index in queries when it thinks doing so would be more efficient than
a sequential table scan. But you might have to run the ANALYZE command regularly to update statistics
to allow the query planner to make educated decisions. See Chapter 14 for information about how to find
out whether an index is used and when and why the planner might choose nof to use an index.

Indexes can also benefit UPDATE and DELETE commands with search conditions. Indexes can moreover
be used in join searches. Thus, an index defined on a column that is part of a join condition can also
significantly speed up queries with joins.

276

Chapter 11. Indexes

Creating an index on a large table can take a long time. By default, PostgreSQL allows reads (selects) to
occur on the table in parallel with index creation, but writes (INSERTs, UPDATEs, DELETE:s) are blocked
until the index build is finished. In production environments this is often unacceptable. It is possible to
allow writes to occur in parallel with index creation, but there are several caveats to be aware of — for
more information see Building Indexes Concurrently.

After an index is created, the system has to keep it synchronized with the table. This adds overhead to data
manipulation operations. Therefore indexes that are seldom or never used in queries should be removed.

11.2. Index Types

PostgreSQL provides several index types: B-tree, Hash, GiST and GIN. Each index type uses a different
algorithm that is best suited to different types of queries. By default, the CREATE INDEX command creates
B-tree indexes, which fit the most common situations.

B-trees can handle equality and range queries on data that can be sorted into some ordering. In particular,
the PostgreSQL query planner will consider using a B-tree index whenever an indexed column is involved
in a comparison using one of these operators:

Constructs equivalent to combinations of these operators, such as BETWEEN and IN, can also be imple-
mented with a B-tree index search. Also, an IS NULL condition on an index column can be used with a
B-tree index.

The optimizer can also use a B-tree index for queries involving the pattern matching operators LIKE and
~ if the pattern is a constant and is anchored to the beginning of the string — for example, col LIKE
" foo%’ or col ~ ’"~foo’, but not col LIKE ’$bar’. However, if your database does not use the
C locale you will need to create the index with a special operator class to support indexing of pattern-
matching queries; see Section 11.9 below. It is also possible to use B-tree indexes for ILIKE and ~«, but
only if the pattern starts with non-alphabetic characters, i.e., characters that are not affected by upper/lower
case conversion.

Hash indexes can only handle simple equality comparisons. The query planner will consider using a hash
index whenever an indexed column is involved in a comparison using the = operator. (Hash indexes do
not support IS NULL searches.) The following command is used to create a hash index:

CREATE INDEX name ON table USING hash (column);

Note: Hash index operations are not presently WAL-logged, so hash indexes might need to be rebuilt
with REINDEX after a database crash. For this reason, hash index use is presently discouraged.

277

Chapter 11. Indexes

GiST indexes are not a single kind of index, but rather an infrastructure within which many different
indexing strategies can be implemented. Accordingly, the particular operators with which a GiST index
can be used vary depending on the indexing strategy (the operator class). As an example, the standard
distribution of PostgreSQL includes GiST operator classes for several two-dimensional geometric data
types, which support indexed queries using these operators:

<<
&<
&>
>>
<<
&<
| &>
[>>
@>
<@

&&

(See Section 9.11 for the meaning of these operators.) Many other GiST operator classes are available in
the cont rib collection or as separate projects. For more information see Chapter 51.

GIN indexes are inverted indexes which can handle values that contain more than one key, arrays for
example. Like GiST, GIN can support many different user-defined indexing strategies and the particular
operators with which a GIN index can be used vary depending on the indexing strategy. As an example,
the standard distribution of PostgreSQL includes GIN operator classes for one-dimensional arrays, which
support indexed queries using these operators:

<@
@>

&&

(See Section 9.17 for the meaning of these operators.) Many other GIN operator classes are available in
the contrib collection or as separate projects. For more information see Chapter 52.

11.3. Multicolumn Indexes

An index can be defined on more than one column of a table. For example, if you have a table of this
form:

CREATE TABLE test2 (
major int,
minor int,
name varchar

)

(say, you keep your /dev directory in a database...) and you frequently issue queries like:

278

Chapter 11. Indexes
SELECT name FROM test2 WHERE major = constant AND minor = constant;

then it might be appropriate to define an index on the columns major and minor together, e.g.:

CREATE INDEX test2_mm_idx ON test2 (major, minor);

Currently, only the B-tree, GiST and GIN index types support multicolumn indexes. Up to 32 columns can
be specified. (This limit can be altered when building PostgreSQL; see the file pg_config_manual.h.)

A multicolumn B-tree index can be used with query conditions that involve any subset of the index’s
columns, but the index is most efficient when there are constraints on the leading (leftmost) columns.
The exact rule is that equality constraints on leading columns, plus any inequality constraints on the first
column that does not have an equality constraint, will be used to limit the portion of the index that is
scanned. Constraints on columns to the right of these columns are checked in the index, so they save visits
to the table proper, but they do not reduce the portion of the index that has to be scanned. For example,
given an index on (a, b, c) and a query condition WHERE a = 5 AND b >= 42 AND c < 77,the
index would have to be scanned from the first entry with a = 5 and b = 42 up through the last entry with a
= 5. Index entries with ¢ >= 77 would be skipped, but they’d still have to be scanned through. This index
could in principle be used for queries that have constraints on b and/or ¢ with no constraint on a — but
the entire index would have to be scanned, so in most cases the planner would prefer a sequential table
scan over using the index.

A multicolumn GiST index can be used with query conditions that involve any subset of the index’s
columns. Conditions on additional columns restrict the entries returned by the index, but the condition on
the first column is the most important one for determining how much of the index needs to be scanned. A
GiST index will be relatively ineffective if its first column has only a few distinct values, even if there are
many distinct values in additional columns.

A multicolumn GIN index can be used with query conditions that involve any subset of the index’s
columns. Unlike B-tree or GiST, index search effectiveness is the same regardless of which index col-
umn(s) the query conditions use.

Of course, each column must be used with operators appropriate to the index type; clauses that involve
other operators will not be considered.

Multicolumn indexes should be used sparingly. In most situations, an index on a single column is sufficient
and saves space and time. Indexes with more than three columns are unlikely to be helpful unless the usage
of the table is extremely stylized. See also Section 11.5 for some discussion of the merits of different index
configurations.

11.4. Indexes and ORDER BY

In addition to simply finding the rows to be returned by a query, an index may be able to deliver them
in a specific sorted order. This allows a query’s ORDER BY specification to be honored without a separate
sorting step. Of the index types currently supported by PostgreSQL, only B-tree can produce sorted output
— the other index types return matching rows in an unspecified, implementation-dependent order.

The planner will consider satisfying an ORDER BY specification either by scanning an available index
that matches the specification, or by scanning the table in physical order and doing an explicit sort. For a

279

Chapter 11. Indexes

query that requires scanning a large fraction of the table, an explicit sort is likely to be faster than using
an index because it requires less disk I/O due to following a sequential access pattern. Indexes are more
useful when only a few rows need be fetched. An important special case is ORDER BY in combination
with LIMIT n: an explicit sort will have to process all the data to identify the first n rows, but if there is an
index matching the ORDER BY, the first n rows can be retrieved directly, without scanning the remainder
at all.

By default, B-tree indexes store their entries in ascending order with nulls last. This means that a forward
scan of an index on column x produces output satisfying ORDER BY x (or more verbosely, ORDER BY
x ASC NULLS LAST). The index can also be scanned backward, producing output satisfying ORDER BY
x DESC (or more verbosely, ORDER BY x DESC NULLS FIRST, since NULLS FIRST is the default for
ORDER BY DESC).

You can adjust the ordering of a B-tree index by including the options ASC, DESC, NULLS FIRST, and/or
NULLS LAST when creating the index; for example:

CREATE INDEX test2_info_nulls_low ON test2 (info NULLS FIRST);
CREATE INDEX test3_desc_index ON test3 (id DESC NULLS LAST);

An index stored in ascending order with nulls first can satisfy either ORDER BY x ASC NULLS FIRST
or ORDER BY x DESC NULLS LAST depending on which direction it is scanned in.

You might wonder why bother providing all four options, when two options together with the possibility of
backward scan would cover all the variants of ORDER BY. In single-column indexes the options are indeed
redundant, but in multicolumn indexes they can be useful. Consider a two-column index on (x, y): this
can satisfy ORDER BY x, vy if we scan forward, or ORDER BY x DESC, y DESC if we scan backward.
But it might be that the application frequently needs to use ORDER BY x ASC, y DESC. There is no way
to get that ordering from a plain index, but it is possible if the index is defined as (x ASC, y DESC) or
(x DESC, y ASC).

Obviously, indexes with non-default sort orderings are a fairly specialized feature, but sometimes they can
produce tremendous speedups for certain queries. Whether it’s worth maintaining such an index depends
on how often you use queries that require a special sort ordering.

11.5. Combining Multiple Indexes

A single index scan can only use query clauses that use the index’s columns with operators of its operator
class and are joined with AND. For example, given an index on (a, b) a query condition like WHERE a
= 5 AND b = 6 could use the index, but a query like WHERE a = 5 OR b = 6 could not directly use
the index.

Fortunately, PostgreSQL has the ability to combine multiple indexes (including multiple uses of the same
index) to handle cases that cannot be implemented by single index scans. The system can form AND and OR
conditions across several index scans. For example, a query like WHERE x = 42 OR x = 47 OR x =
53 OR x = 99 could be broken down into four separate scans of an index on x, each scan using one of the
query clauses. The results of these scans are then ORed together to produce the result. Another example
is that if we have separate indexes on x and y, one possible implementation of a query like WHERE x =
5 AND y = 6 is to use each index with the appropriate query clause and then AND together the index
results to identify the result rows.

280

Chapter 11. Indexes

To combine multiple indexes, the system scans each needed index and prepares a bitmap in memory
giving the locations of table rows that are reported as matching that index’s conditions. The bitmaps are
then ANDed and ORed together as needed by the query. Finally, the actual table rows are visited and
returned. The table rows are visited in physical order, because that is how the bitmap is laid out; this
means that any ordering of the original indexes is lost, and so a separate sort step will be needed if the
query has an ORDER BY clause. For this reason, and because each additional index scan adds extra time,
the planner will sometimes choose to use a simple index scan even though additional indexes are available
that could have been used as well.

In all but the simplest applications, there are various combinations of indexes that might be useful, and
the database developer must make trade-offs to decide which indexes to provide. Sometimes multicolumn
indexes are best, but sometimes it’s better to create separate indexes and rely on the index-combination
feature. For example, if your workload includes a mix of queries that sometimes involve only column
x, sometimes only column y, and sometimes both columns, you might choose to create two separate
indexes on x and vy, relying on index combination to process the queries that use both columns. You
could also create a multicolumn index on (x, y). This index would typically be more efficient than
index combination for queries involving both columns, but as discussed in Section 11.3, it would be
almost useless for queries involving only y, so it should not be the only index. A combination of the
multicolumn index and a separate index on y would serve reasonably well. For queries involving only
%, the multicolumn index could be used, though it would be larger and hence slower than an index on x
alone. The last alternative is to create all three indexes, but this is probably only reasonable if the table is
searched much more often than it is updated and all three types of query are common. If one of the types
of query is much less common than the others, you’d probably settle for creating just the two indexes that
best match the common types.

11.6. Unique Indexes

Indexes can also be used to enforce uniqueness of a column’s value, or the uniqueness of the combined
values of more than one column.

CREATE UNIQUE INDEX name ON table (column [, ...]);

Currently, only B-tree indexes can be declared unique.

When an index is declared unique, multiple table rows with equal indexed values are not allowed. Null
values are not considered equal. A multicolumn unique index will only reject cases where all indexed
columns are equal in multiple rows.

PostgreSQL automatically creates a unique index when a unique constraint or primary key is defined for
a table. The index covers the columns that make up the primary key or unique constraint (a multicolumn
index, if appropriate), and is the mechanism that enforces the constraint.

Note: The preferred way to add a unique constraint to a table is ALTER TABLE ... ADD CONSTRAINT.
The use of indexes to enforce unique constraints could be considered an implementation detail that
should not be accessed directly. One should, however, be aware that there’s no need to manually
create indexes on unique columns; doing so would just duplicate the automatically-created index.

281

Chapter 11. Indexes

11.7. Indexes on Expressions

An index column need not be just a column of the underlying table, but can be a function or scalar
expression computed from one or more columns of the table. This feature is useful to obtain fast access
to tables based on the results of computations.

For example, a common way to do case-insensitive comparisons is to use the lower function:
SELECT = FROM testl WHERE lower (coll) = ’'value’;
This query can use an index if one has been defined on the result of the lower (col1) function:

CREATE INDEX testl_lower_coll_idx ON testl (lower(coll));

If we were to declare this index UNTIQUE, it would prevent creation of rows whose col1 values differ only
in case, as well as rows whose col1 values are actually identical. Thus, indexes on expressions can be
used to enforce constraints that are not definable as simple unique constraints.

As another example, if one often does queries like:
SELECT x= FROM people WHERE (first_name || ' ' || last_name) = ’John Smith’;
then it might be worth creating an index like this:

CREATE INDEX people_names ON people ((first_name || ' ' || last_name));

The syntax of the CREATE INDExX command normally requires writing parentheses around index expres-
sions, as shown in the second example. The parentheses can be omitted when the expression is just a
function call, as in the first example.

Index expressions are relatively expensive to maintain, because the derived expression(s) must be com-
puted for each row upon insertion and whenever it is updated. However, the index expressions are not
recomputed during an indexed search, since they are already stored in the index. In both examples above,
the system sees the query as just WHERE indexedcolumn = ’constant’ and so the speed of the search
is equivalent to any other simple index query. Thus, indexes on expressions are useful when retrieval speed
is more important than insertion and update speed.

11.8. Partial Indexes

A partial index is an index built over a subset of a table; the subset is defined by a conditional expression
(called the predicate of the partial index). The index contains entries only for those table rows that satisfy
the predicate. Partial indexes are a specialized feature, but there are several situations in which they are
useful.

One major reason for using a partial index is to avoid indexing common values. Since a query searching
for a common value (one that accounts for more than a few percent of all the table rows) will not use the
index anyway, there is no point in keeping those rows in the index at all. This reduces the size of the index,
which will speed up those queries that do use the index. It will also speed up many table update operations

282

Chapter 11. Indexes

because the index does not need to be updated in all cases. Example 11-1 shows a possible application of
this idea.

Example 11-1. Setting up a Partial Index to Exclude Common Values

Suppose you are storing web server access logs in a database. Most accesses originate from the IP address
range of your organization but some are from elsewhere (say, employees on dial-up connections). If your
searches by IP are primarily for outside accesses, you probably do not need to index the IP range that
corresponds to your organization’s subnet.

Assume a table like this:

CREATE TABLE access_log (
url varchar,
client_ip inet,

)i
To create a partial index that suits our example, use a command such as this:

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)
WHERE NOT (client_ip > inet ’192.168.100.0" AND
client_ip < inet 7192.168.100.255");

A typical query that can use this index would be:

SELECT «

FROM access_log

WHERE url = ’/index.html’ AND client_ip = inet ’212.78.10.32'";
A query that cannot use this index is:

SELECT =«

FROM access_log

WHERE client_ip = inet 7192.168.100.23’;

Observe that this kind of partial index requires that the common values be predetermined, so such partial
indexes are best used for data distributions that do not change. The indexes can be recreated occasionally
to adjust for new data distributions, but this adds maintenance effort.

Another possible use for a partial index is to exclude values from the index that the typical query workload
is not interested in; this is shown in Example 11-2. This results in the same advantages as listed above,
but it prevents the “uninteresting” values from being accessed via that index, even if an index scan might
be profitable in that case. Obviously, setting up partial indexes for this kind of scenario will require a lot
of care and experimentation.

Example 11-2. Setting up a Partial Index to Exclude Uninteresting Values

If you have a table that contains both billed and unbilled orders, where the unbilled orders take up a small
fraction of the total table and yet those are the most-accessed rows, you can improve performance by
creating an index on just the unbilled rows. The command to create the index would look like this:

CREATE INDEX orders_unbilled_index ON orders (order_nr)
WHERE billed is not true;

A possible query to use this index would be:

283

Chapter 11. Indexes

SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;

However, the index can also be used in queries that do not involve order_nr at all, e.g.:
SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;

This is not as efficient as a partial index on the amount column would be, since the system has to scan the
entire index. Yet, if there are relatively few unbilled orders, using this partial index just to find the unbilled
orders could be a win.

Note that this query cannot use this index:

SELECT = FROM orders WHERE order_nr = 3501;
The order 3501 might be among the billed or unbilled orders.

Example 11-2 also illustrates that the indexed column and the column used in the predicate do not need
to match. PostgreSQL supports partial indexes with arbitrary predicates, so long as only columns of the
table being indexed are involved. However, keep in mind that the predicate must match the conditions
used in the queries that are supposed to benefit from the index. To be precise, a partial index can be
used in a query only if the system can recognize that the WHERE condition of the query mathematically
implies the predicate of the index. PostgreSQL does not have a sophisticated theorem prover that can
recognize mathematically equivalent expressions that are written in different forms. (Not only is such
a general theorem prover extremely difficult to create, it would probably be too slow to be of any real
use.) The system can recognize simple inequality implications, for example “x < 17 implies “x < 27;
otherwise the predicate condition must exactly match part of the query’s WHERE condition or the index
will not be recognized as usable. Matching takes place at query planning time, not at run time. As a
result, parameterized query clauses do not work with a partial index. For example a prepared query with a
parameter might specify “x < ?”” which will never imply “x < 2” for all possible values of the parameter.

A third possible use for partial indexes does not require the index to be used in queries at all. The idea
here is to create a unique index over a subset of a table, as in Example 11-3. This enforces uniqueness
among the rows that satisfy the index predicate, without constraining those that do not.

Example 11-3. Setting up a Partial Unique Index

Suppose that we have a table describing test outcomes. We wish to ensure that there is only one “success-
ful” entry for a given subject and target combination, but there might be any number of “unsuccessful”
entries. Here is one way to do it:

CREATE TABLE tests (
subject text,
target text,
success boolean,

)

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
WHERE success;
This is a particularly efficient approach when there are few successful tests and many unsuccessful ones.

Finally, a partial index can also be used to override the system’s query plan choices. Also, data sets
with peculiar distributions might cause the system to use an index when it really should not. In that case

284

Chapter 11. Indexes

the index can be set up so that it is not available for the offending query. Normally, PostgreSQL makes
reasonable choices about index usage (e.g., it avoids them when retrieving common values, so the earlier
example really only saves index size, it is not required to avoid index usage), and grossly incorrect plan
choices are cause for a bug report.

Keep in mind that setting up a partial index indicates that you know at least as much as the query planner
knows, in particular you know when an index might be profitable. Forming this knowledge requires ex-
perience and understanding of how indexes in PostgreSQL work. In most cases, the advantage of a partial
index over a regular index will be minimal.

More information about partial indexes can be found in The case for partial indexes , Partial indexing in
POSTGRES: research project, and Generalized Partial Indexes (cached version) .

11.9. Operator Classes and Operator Families

An index definition can specify an operator class for each column of an index.

CREATE INDEX name ON table (column opclass [sort options] [, ...1);

The operator class identifies the operators to be used by the index for that column. For example, a B-
tree index on the type int4 would use the int4_ops class; this operator class includes comparison
functions for values of type int4. In practice the default operator class for the column’s data type is
usually sufficient. The main reason for having operator classes is that for some data types, there could be
more than one meaningful index behavior. For example, we might want to sort a complex-number data
type either by absolute value or by real part. We could do this by defining two operator classes for the data
type and then selecting the proper class when making an index. The operator class determines the basic
sort ordering (which can then be modified by adding sort options ASC/DESC and/or NULLS FIRST/NULLS
LAST).

There are also some built-in operator classes besides the default ones:

« The operator classes text_pattern_ops, varchar_pattern_ops, and bpchar_pattern_ops
support B-tree indexes on the types text, varchar, and char respectively. The difference from the
default operator classes is that the values are compared strictly character by character rather than
according to the locale-specific collation rules. This makes these operator classes suitable for use
by queries involving pattern matching expressions (LIKE or POSIX regular expressions) when the
database does not use the standard “C” locale. As an example, you might index a varchar column
like this:

CREATE INDEX test_index ON test_table (col varchar_pattern_ops);

Note that you should also create an index with the default operator class if you want queries involving
ordinary <, <=, >, or >= comparisons to use an index. Such queries cannot use the xxx_pattern_ops
operator classes. (Ordinary equality comparisons can use these operator classes, however.) It is possible
to create multiple indexes on the same column with different operator classes. If you do use the C locale,
you do not need the xxx_pattern_ops operator classes, because an index with the default operator
class is usable for pattern-matching queries in the C locale.

The following query shows all defined operator classes:

285

Chapter 11. Indexes

SELECT am.amname AS index_method,
opc.opcname AS opclass_name
FROM pg_am am, pg_opclass opc
WHERE opc.opcmethod = am.oid
ORDER BY index_method, opclass_name;

An operator class is actually just a subset of a larger structure called an operator family. In cases where
several data types have similar behaviors, it is frequently useful to define cross-data-type operators and
allow these to work with indexes. To do this, the operator classes for each of the types must be grouped
into the same operator family. The cross-type operators are members of the family, but are not associated
with any single class within the family.

This query shows all defined operator families and all the operators included in each family:

SELECT am.amname AS index_method,
opf.opfname AS opfamily_ name,
amop.amopopr: :regoperator AS opfamily_operator
FROM pg_am am, pg_opfamily opf, pg_amop amop
WHERE opf.opfmethod = am.oid AND
amop.amopfamily = opf.oid
ORDER BY index_method, opfamily_name, opfamily_operator;

11.10. Examining Index Usage

Although indexes in PostgreSQL do not need maintenance or tuning, it is still important to check which
indexes are actually used by the real-life query workload. Examining index usage for an individual query
is done with the EXPLAIN command; its application for this purpose is illustrated in Section 14.1. It is
also possible to gather overall statistics about index usage in a running server, as described in Section
26.2.

It is difficult to formulate a general procedure for determining which indexes to create. There are a number
of typical cases that have been shown in the examples throughout the previous sections. A good deal of
experimentation is often necessary. The rest of this section gives some tips for that:

« Always run ANALYZE first. This command collects statistics about the distribution of the values in the
table. This information is required to estimate the number of rows returned by a query, which is needed
by the planner to assign realistic costs to each possible query plan. In absence of any real statistics,
some default values are assumed, which are almost certain to be inaccurate. Examining an application’s
index usage without having run ANALYZE is therefore a lost cause. See Updating Planner Statistics and
The Autovacuum Daemon for more information.

+ Use real data for experimentation. Using test data for setting up indexes will tell you what indexes you
need for the test data, but that is all.

It is especially fatal to use very small test data sets. While selecting 1000 out of 100000 rows could be
a candidate for an index, selecting 1 out of 100 rows will hardly be, because the 100 rows probably fit
within a single disk page, and there is no plan that can beat sequentially fetching 1 disk page.

286

Chapter 11. Indexes

Also be careful when making up test data, which is often unavoidable when the application is not yet in
production. Values that are very similar, completely random, or inserted in sorted order will skew the
statistics away from the distribution that real data would have.

When indexes are not used, it can be useful for testing to force their use. There are run-time parameters
that can turn off various plan types (see Section 18.6.1). For instance, turning off sequential scans
(enable_segscan) and nested-loop joins (enable_nestloop), which are the most basic plans, will
force the system to use a different plan. If the system still chooses a sequential scan or nested-loop join
then there is probably a more fundamental reason why the index is not being used; for example, the
query condition does not match the index. (What kind of query can use what kind of index is explained
in the previous sections.)

If forcing index usage does use the index, then there are two possibilities: Either the system is right
and using the index is indeed not appropriate, or the cost estimates of the query plans are not reflecting
reality. So you should time your query with and without indexes. The EXPLAIN ANALYZE command
can be useful here.

If it turns out that the cost estimates are wrong, there are, again, two possibilities. The total cost is
computed from the per-row costs of each plan node times the selectivity estimate of the plan node. The
costs estimated for the plan nodes can be adjusted via run-time parameters (described in Section 18.6.2).
An inaccurate selectivity estimate is due to insufficient statistics. It might be possible to improve this
by tuning the statistics-gathering parameters (see ALTER TABLE).

If you do not succeed in adjusting the costs to be more appropriate, then you might have to resort to
forcing index usage explicitly. You might also want to contact the PostgreSQL developers to examine
the issue.

287

Chapter 12. Full Text Search

12.1. Introduction

Full Text Searching (or just text search) provides the capability to identify natural-language documents
that satisfy a query, and optionally to sort them by relevance to the query. The most common type of
search is to find all documents containing given guery terms and return them in order of their similarity
to the query. Notions of query and similarity are very flexible and depend on the specific application.
The simplest search considers query as a set of words and similarity as the frequency of query words
in the document.

Textual search operators have existed in databases for years. PostgreSQL has ~, ~x, LIKE, and ILIKE
operators for textual data types, but they lack many essential properties required by modern information
systems:

+ There is no linguistic support, even for English. Regular expressions are not sufficient because they
cannot easily handle derived words, e.g., satisfies and satisfy. You might miss documents that
contain satisfies, although you probably would like to find them when searching for satisfy. Itis
possible to use OR to search for multiple derived forms, but this is tedious and error-prone (some words
can have several thousand derivatives).

+ They provide no ordering (ranking) of search results, which makes them ineffective when thousands of
matching documents are found.

« They tend to be slow because there is no index support, so they must process all documents for every
search.

Full text indexing allows documents to be preprocessed and an index saved for later rapid searching.
Preprocessing includes:

Parsing documents into tokens. It is useful to identify various classes of tokens, e.g., numbers, words,
complex words, email addresses, so that they can be processed differently. In principle token classes
depend on the specific application, but for most purposes it is adequate to use a predefined set of classes.
PostgreSQL uses a parser to perform this step. A standard parser is provided, and custom parsers can
be created for specific needs.

Converting tokens into lexemes. A lexeme is a string, just like a token, but it has been normalized so that
different forms of the same word are made alike. For example, normalization almost always includes
folding upper-case letters to lower-case, and often involves removal of suffixes (such as s or es in
English). This allows searches to find variant forms of the same word, without tediously entering all the
possible variants. Also, this step typically eliminates sfop words, which are words that are so common
that they are useless for searching. (In short, then, tokens are raw fragments of the document text, while
lexemes are words that are believed useful for indexing and searching.) PostgreSQL uses dictionaries
to perform this step. Various standard dictionaries are provided, and custom ones can be created for
specific needs.

Storing preprocessed documents optimized for searching. For example, each document can be repre-
sented as a sorted array of normalized lexemes. Along with the lexemes it is often desirable to store
positional information to use for proximity ranking, so that a document that contains a more “dense”
region of query words is assigned a higher rank than one with scattered query words.

288

Chapter 12. Full Text Search

Dictionaries allow fine-grained control over how tokens are normalized. With appropriate dictionaries,
you can:

« Define stop words that should not be indexed.

+ Map synonyms to a single word using Ispell.

« Map phrases to a single word using a thesaurus.

» Map different variations of a word to a canonical form using an Ispell dictionary.

« Map different variations of a word to a canonical form using Snowball stemmer rules.

A data type tsvector is provided for storing preprocessed documents, along with a type tsquery for
representing processed queries (Section 8.11). There are many functions and operators available for these
data types (Section 9.13), the most important of which is the match operator @@, which we introduce in
Section 12.1.2. Full text searches can be accelerated using indexes (Section 12.9).

12.1.1. What Is a Document?

A document is the unit of searching in a full text search system; for example, a magazine article or email
message. The text search engine must be able to parse documents and store associations of lexemes (key
words) with their parent document. Later, these associations are used to search for documents that contain
query words.

For searches within PostgreSQL, a document is normally a textual field within a row of a database table,
or possibly a combination (concatenation) of such fields, perhaps stored in several tables or obtained
dynamically. In other words, a document can be constructed from different parts for indexing and it might
not be stored anywhere as a whole. For example:

SELECT title || " " || author || 7 7 || abstract || 7 ' || body AS document
FROM messages
WHERE mid = 12;

SELECT m.title || * ’ || m.author || * ' || m.abstract || * 7 || d.body AS document
FROM messages m, docs d
WHERE mid = did AND mid = 12;

Note: Actually, in these example queries, coalesce should be used to prevent a single nuLL attribute
from causing a NuULL result for the whole document.

Another possibility is to store the documents as simple text files in the file system. In this case, the database
can be used to store the full text index and to execute searches, and some unique identifier can be used to
retrieve the document from the file system. However, retrieving files from outside the database requires
superuser permissions or special function support, so this is usually less convenient than keeping all the
data inside PostgreSQL. Also, keeping everything inside the database allows easy access to document
metadata to assist in indexing and display.

For text search purposes, each document must be reduced to the preprocessed t svector format. Search-
ing and ranking are performed entirely on the tsvector representation of a document — the original
text need only be retrieved when the document has been selected for display to a user. We therefore often

289

Chapter 12. Full Text Search

speak of the tsvector as being the document, but of course it is only a compact representation of the
full document.

12.1.2. Basic Text Matching

Full text searching in PostgreSQL is based on the match operator @@, which returns true if a tsvector
(document) matches a t squery (query). It doesn’t matter which data type is written first:

SELECT "a fat cat sat on a mat and ate a fat rat’::tsvector @@ ’'cat & rat’::tsquery;
?column?

SELECT ’fat & cow’::tsquery @@ 'a fat cat sat on a mat and ate a fat rat’::tsvector;
?column?

As the above example suggests, a t squery is not just raw text, any more than a t svector is. A tsquery
contains search terms, which must be already-normalized lexemes, and may combine multiple terms using
AND, OR, and NOT operators. (For details see Section 8.11.) There are functions to_tsquery and
plainto_tsquery that are helpful in converting user-written text into a proper tsquery, for example
by normalizing words appearing in the text. Similarly, to_tsvector is used to parse and normalize a
document string. So in practice a text search match would look more like this:

SELECT to_tsvector (' fat cats ate fat rats’) @@ to_tsquery(’fat & rat’);
?column?

Observe that this match would not succeed if written as

SELECT ' fat cats ate fat rats’::tsvector @@ to_tsquery(’fat & rat’);
?column?

since here no normalization of the word rat s will occur. The elements of a t svector are lexemes, which
are assumed already normalized, so rats does not match rat.

The @@ operator also supports text input, allowing explicit conversion of a text string to tsvector or
tsquery to be skipped in simple cases. The variants available are:

tsvector @@ tsquery
tsquery @@ tsvector
text Q@ tsquery

text Q@ text

290

Chapter 12. Full Text Search

The first two of these we saw already. The form text @@ tsquery is equivalent to to_tsvector (x)
@@ y. The form text @@ text is equivalent to to_tsvector (x) @R plainto_tsquery(y).

12.1.3. Configurations

The above are all simple text search examples. As mentioned before, full text search functionality includes
the ability to do many more things: skip indexing certain words (stop words), process synonyms, and use
sophisticated parsing, e.g., parse based on more than just white space. This functionality is controlled by
text search configurations. PostgreSQL comes with predefined configurations for many languages, and
you can easily create your own configurations. (psql’s \dF command shows all available configurations.)

During installation an appropriate configuration is selected and default_text_search_config is set accord-
ingly in postgresqgl.conf. If you are using the same text search configuration for the entire cluster you
can use the value in postgresqgl.conf. To use different configurations throughout the cluster but the
same configuration within any one database, use ALTER DATABASE ... SET. Otherwise, you can set
default_text_search_config in each session.

Each text search function that depends on a configuration has an optional regconfig argument, so that
the configuration to use can be specified explicitly. default_text_search_config is used only when
this argument is omitted.

To make it easier to build custom text search configurations, a configuration is built up from simpler
database objects. PostgreSQL’s text search facility provides four types of configuration-related database
objects:

+ Text search parsers break documents into tokens and classify each token (for example, as words or
numbers).

« Text search dictionaries convert tokens to normalized form and reject stop words.

 Text search templates provide the functions underlying dictionaries. (A dictionary simply specifies a
template and a set of parameters for the template.)

« Text search configurations select a parser and a set of dictionaries to use to normalize the tokens pro-
duced by the parser.

Text search parsers and templates are built from low-level C functions; therefore it requires C program-
ming ability to develop new ones, and superuser privileges to install one into a database. (There are
examples of add-on parsers and templates in the contrib/ area of the PostgreSQL distribution.) Since
dictionaries and configurations just parameterize and connect together some underlying parsers and tem-
plates, no special privilege is needed to create a new dictionary or configuration. Examples of creating
custom dictionaries and configurations appear later in this chapter.

12.2. Tables and Indexes

The examples in the previous section illustrated full text matching using simple constant strings. This
section shows how to search table data, optionally using indexes.

291

Chapter 12. Full Text Search

12.2.1. Searching a Table

It is possible to do a full text search without an index. A simple query to print the title of each row that
contains the word friend in its body field is:

SELECT title
FROM pgweb
WHERE to_tsvector (’english’, body) @@ to_tsquery(’english’, ’friend’);

This will also find related words such as friends and friendly, since all these are reduced to the same
normalized lexeme.

The query above specifies that the english configuration is to be used to parse and normalize the strings.
Alternatively we could omit the configuration parameters:

SELECT title
FROM pgweb
WHERE to_tsvector (body) @Q@ to_tsquery(’friend’);

This query will use the configuration set by default_text_search_config.

A more complex example is to select the ten most recent documents that contain create and table in
the title or body:

SELECT title

FROM pgweb

WHERE to_tsvector(title || 7 ' || body) @@ to_tsquery(’create & table’)
ORDER BY last_mod_date DESC

LIMIT 10;

For clarity we omitted the coalesce function calls which would be needed to find rows that contain NULL
in one of the two fields.

Although these queries will work without an index, most applications will find this approach too slow,
except perhaps for occasional ad-hoc searches. Practical use of text searching usually requires creating an
index.

12.2.2. Creating Indexes

We can create a GIN index (Section 12.9) to speed up text searches:
CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector (’english’, body));

Notice that the 2-argument version of to_tsvector is used. Only text search functions that specify a
configuration name can be used in expression indexes (Section 11.7). This is because the index contents
must be unaffected by default_text_search_config. If they were affected, the index contents might be
inconsistent because different entries could contain t svectors that were created with different text search
configurations, and there would be no way to guess which was which. It would be impossible to dump
and restore such an index correctly.

Because the two-argument version of to_tsvector was used in the index above, only a query reference
that uses the 2-argument version of to_tsvector with the same configuration name will use that in-
dex. That is, WHERE to_tsvector (english’, body) @@ ’a & b’ can use the index, but WHERE

292

Chapter 12. Full Text Search

to_tsvector (body) @@ ’a & b’ cannot. This ensures that an index will be used only with the same
configuration used to create the index entries.

It is possible to set up more complex expression indexes wherein the configuration name is specified by
another column, e.g.:

CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector (config_name, body));

where config_name is a column in the pgweb table. This allows mixed configurations in the same index
while recording which configuration was used for each index entry. This would be useful, for example,
if the document collection contained documents in different languages. Again, queries that are meant to
use the index must be phrased to match, e.g., WHERE to_tsvector (config_name, body) QR ’'a &
b’.

Indexes can even concatenate columns:

CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector (’english’, title || " 7 || body));

Another approach is to create a separate tsvector column to hold the output of to_tsvector. This
example is a concatenation of title and body, using coalesce to ensure that one field will still be
indexed when the other is NULL:

ALTER TABLE pgweb ADD COLUMN textsearchable_index_col tsvector;
UPDATE pgweb SET textsearchable_index_col =
to_tsvector (’english’, coalesce(title,”) || * ' || coalesce(body,”));

Then we create a GIN index to speed up the search:

CREATE INDEX textsearch_idx ON pgweb USING gin(textsearchable_index_col);

Now we are ready to perform a fast full text search:

SELECT title

FROM pgweb

WHERE textsearchable_index_col @@ to_tsquery(’create & table’)
ORDER BY last_mod_date DESC

LIMIT 10;

When using a separate column to store the t svector representation, it is necessary to create a trigger to
keep the tsvector column current anytime title or body changes. Section 12.4.3 explains how to do
that.

One advantage of the separate-column approach over an expression index is that it is not necessary to
explicitly specify the text search configuration in queries in order to make use of the index. As shown
in the example above, the query can depend on default_text_search_config. Another advantage
is that searches will be faster, since it will not be necessary to redo the to_tsvector calls to verify
index matches. (This is more important when using a GiST index than a GIN index; see Section 12.9.)
The expression-index approach is simpler to set up, however, and it requires less disk space since the
tsvector representation is not stored explicitly.

293

Chapter 12. Full Text Search

12.3. Controlling Text Search

To implement full text searching there must be a function to create a t svector from a document and a
tsquery from a user query. Also, we need to return results in a useful order, so we need a function that
compares documents with respect to their relevance to the query. It’s also important to be able to display
the results nicely. PostgreSQL provides support for all of these functions.

12.3.1. Parsing Documents

PostgreSQL provides the function to_tsvector for converting a document to the t svector data type.

to_tsvector ([config regconfig,] document text) returns tsvector

to_tsvector parses a textual document into tokens, reduces the tokens to lexemes, and returns a
tsvector which lists the lexemes together with their positions in the document. The document is
processed according to the specified or default text search configuration. Here is a simple example:

SELECT to_tsvector (’english’, ’a fat «cat sat on a mat - it ate a fat rats’);
to_tsvector

"ate’:9 'cat’:3 ’"fat’:2,11 "mat’:7 ’'rat’:12 ’'sat’:4

In the example above we see that the resulting tsvector does not contain the words a, on, or it, the
word rats became rat, and the punctuation sign - was ignored.

The to_tsvector function internally calls a parser which breaks the document text into tokens and
assigns a type to each token. For each token, a list of dictionaries (Section 12.6) is consulted, where
the list can vary depending on the token type. The first dictionary that recognizes the token emits one
or more normalized lexemes to represent the token. For example, rats became rat because one of the
dictionaries recognized that the word rats is a plural form of rat. Some words are recognized as stop
words (Section 12.6.1), which causes them to be ignored since they occur too frequently to be useful in
searching. In our example these are a, on, and it. If no dictionary in the list recognizes the token then
it is also ignored. In this example that happened to the punctuation sign — because there are in fact no
dictionaries assigned for its token type (Space symbols), meaning space tokens will never be indexed.
The choices of parser, dictionaries and which types of tokens to index are determined by the selected
text search configuration (Section 12.7). It is possible to have many different configurations in the same
database, and predefined configurations are available for various languages. In our example we used the
default configuration english for the English language.

The function setweight can be used to label the entries of a tsvector with a given weight, where a
weight is one of the letters A, B, C, or D. This is typically used to mark entries coming from different parts
of a document, such as title versus body. Later, this information can be used for ranking of search results.

Because to_tsvector(NULL) will return NULL, it is recommended to use coalesce whenever a field
might be null. Here is the recommended method for creating a t svector from a structured document:

UPDATE tt SET ti =
setweight (to_tsvector (coalesce(title,”)), 'A") |
setweight (to_tsvector (coalesce (keyword,”)), ’'B’) ||

294

Chapter 12. Full Text Search

setweight (to_tsvector (coalesce (abstract,”)), 'C") ||
setweight (to_tsvector (coalesce (body,”)), 'D’);

Here we have used setweight to label the source of each lexeme in the finished tsvector, and then
merged the labeled tsvector values using the tsvector concatenation operator | |. (Section 12.4.1
gives details about these operations.)

12.3.2. Parsing Queries

PostgreSQL provides the functions to_tsquery and plainto_tsquery for converting a query to the
tsquery data type. to_tsquery offers access to more features than plainto_tsquery, but is less
forgiving about its input.

to_tsquery ([config regconfig,] querytext text) returns tsquery

to_tsquery creates a tsquery value from querytext, which must consist of single tokens separated
by the Boolean operators &« (AND), | (OR) and ! (NOT). These operators can be grouped using parenthe-
ses. In other words, the input to to_t squery must already follow the general rules for t squery input, as
described in Section 8.11. The difference is that while basic t squery input takes the tokens at face value,
to_tsquery normalizes each token to a lexeme using the specified or default configuration, and discards
any tokens that are stop words according to the configuration. For example:

SELECT to_tsquery(’english’, ’'The & Fat & Rats’);
to_tsquery

Asin basic t squery input, weight(s) can be attached to each lexeme to restrict it to match only tsvector
lexemes of those weight(s). For example:

SELECT to_tsquery(’english’, ’'Fat | Rats:AB’);
to_tsquery

Also, = can be attached to a lexeme to specify prefix matching:

SELECT to_tsquery (' supern:*A & star:AxB’);
to_tsquery

Such a lexeme will match any word in a t svector that begins with the given string.

to_tsquery can also accept single-quoted phrases. This is primarily useful when the configuration in-
cludes a thesaurus dictionary that may trigger on such phrases. In the example below, a thesaurus contains

the rule supernovae stars : sn:

SELECT to_tsquery (”’supernovae stars” & !crab’);
to_tsquery

295

Chapter 12. Full Text Search

Without quotes, to_tsquery will generate a syntax error for tokens that are not separated by an AND or
OR operator.

plainto_tsquery ([config regconfig,] querytext text) returns tsquery

plainto_tsquery transforms unformatted text querytext to tsquery. The text is parsed and nor-
malized much as for to_tsvector, then the &« (AND) Boolean operator is inserted between surviving
words.

Example:

SELECT plainto_tsquery (’english’, ’'The Fat Rats’);
plainto_tsquery

Note that plainto_tsquery cannot recognize Boolean operators, weight labels, or prefix-match labels
in its input:

SELECT plainto_tsquery (’english’, ’The Fat & Rats:C’);
plainto_tsquery

"fat’ & ’'rat’ & ’c’

Here, all the input punctuation was discarded as being space symbols.

12.3.3. Ranking Search Results

Ranking attempts to measure how relevant documents are to a particular query, so that when there are
many matches the most relevant ones can be shown first. PostgreSQL provides two predefined ranking
functions, which take into account lexical, proximity, and structural information; that is, they consider
how often the query terms appear in the document, how close together the terms are in the document, and
how important is the part of the document where they occur. However, the concept of relevancy is vague
and very application-specific. Different applications might require additional information for ranking, e.g.,
document modification time. The built-in ranking functions are only examples. You can write your own
ranking functions and/or combine their results with additional factors to fit your specific needs.

The two ranking functions currently available are:

ts_rank ([weights float4[],] vector tsvector,
query tsquery [, normalization integer]) returns float4

Standard ranking function.

296

Chapter 12. Full Text Search

ts_rank_cd ([weights float4[],] vector tsvector,

query tsquery [, normalization integer]) returns float4d

This function computes the cover density ranking for the given document vector and query, as de-
scribed in Clarke, Cormack, and Tudhope’s "Relevance Ranking for One to Three Term Queries" in
the journal "Information Processing and Management", 1999.

This function requires positional information in its input. Therefore it will not work on “stripped”
tsvector values — it will always return zero.

For both these functions, the optional weight s argument offers the ability to weigh word instances more
or less heavily depending on how they are labeled. The weight arrays specify how heavily to weigh each
category of word, in the order:

{D-weight, C-weight, B-weight, A-weight}
If no weights are provided, then these defaults are used:
{0.1, 0.2, 0.4, 1.0}

Typically weights are used to mark words from special areas of the document, like the title or an initial
abstract, so they can be treated with more or less importance than words in the document body.

Since a longer document has a greater chance of containing a query term it is reasonable to take into
account document size, e.g., a hundred-word document with five instances of a search word is probably
more relevant than a thousand-word document with five instances. Both ranking functions take an integer
normalization option that specifies whether and how a document’s length should impact its rank. The
integer option controls several behaviors, so it is a bit mask: you can specify one or more behaviors using
| (for example, 2 | 4).

« 0 (the default) ignores the document length

« 1 divides the rank by 1 + the logarithm of the document length

2 divides the rank by the document length

+ 4 divides the rank by the mean harmonic distance between extents (this is implemented only by
ts_rank_cd)

8 divides the rank by the number of unique words in document

16 divides the rank by 1 + the logarithm of the number of unique words in document

+ 32 divides the rank by itself + 1

If more than one flag bit is specified, the transformations are applied in the order listed.

It is important to note that the ranking functions do not use any global information, so it is impos-
sible to produce a fair normalization to 1% or 100% as sometimes desired. Normalization option 32
(rank/ (rank+1)) can be applied to scale all ranks into the range zero to one, but of course this is just a
cosmetic change; it will not affect the ordering of the search results.

Here is an example that selects only the ten highest-ranked matches:

SELECT title, ts_rank_cd(textsearch, query) AS rank
FROM apod, to_tsquery(’neutrino| (dark & matter)’) query
WHERE query @@ textsearch

297

ORDER BY rank DESC
LIMIT 10;

Neutrinos in the Sun

The Sudbury Neutrino Detector

A MACHO View of Galactic Dark Matter

Hot Gas and Dark Matter

The Virgo Cluster: Hot Plasma and Dark Matter
Rafting for Solar Neutrinos

NGC 4650A: Strange Galaxy and Dark Matter

Hot Gas and Dark Matter

Ice Fishing for Cosmic Neutrinos

Weak Lensing Distorts the Universe

This is the same example using normalized ranking:

SELECT title, ts_rank_cd(textsearch, query, 32

FROM apod, to_tsquery(’'neutrino| (dark & matter)

WHERE query Q@ textsearch
ORDER BY rank DESC
LIMIT 10;

Neutrinos in the Sun

The Sudbury Neutrino Detector

A MACHO View of Galactic Dark Matter

Hot Gas and Dark Matter

The Virgo Cluster: Hot Plasma and Dark Matter
Rafting for Solar Neutrinos

NGC 4650A: Strange Galaxy and Dark Matter

Hot Gas and Dark Matter

Ice Fishing for Cosmic Neutrinos

Weak Lensing Distorts the Universe

Chapter 12. Full Text Search

1.6

/* rank/ (rank+1l) =*/
") query

0.756097569485493
0.705882361190954
0.668123210574724
0.65655958650282
.656301290640973
.655172410958162
.650072921219637
.617195790024749
.615384618911517
.450010798361481

- - - - - - - - - 4 —

O O O O O O

) AS rank

Ranking can be expensive since it requires consulting the t svector of each matching document, which
can be I/0 bound and therefore slow. Unfortunately, it is almost impossible to avoid since practical queries

often result in large numbers of matches.

12.3.4. Highlighting Results

To present search results it is ideal to show a part of each document and how it is related to the query.
Usually, search engines show fragments of the document with marked search terms. PostgreSQL provides

a function ts_headline that implements this functionality.

ts_headline ([config regconfig,] document text, query tsquery [,

options text

298

1)

returns te

Chapter 12. Full Text Search

ts_headline accepts a document along with a query, and returns an excerpt from the document in which
terms from the query are highlighted. The configuration to be used to parse the document can be specified
by config;if config is omitted, the default_text_search_config configuration is used

If an options string is specified it must consist of a comma-separated list of one or more option=value
pairs. The available options are:

+ StartsSel, StopSel: the strings with which to delimit query words appearing in the document, to dis-
tinguish them from other excerpted words. You must double-quote these strings if they contain spaces
or commas.

+ MaxWords, MinWords: these numbers determine the longest and shortest headlines to output.

« ShortWord: words of this length or less will be dropped at the start and end of a headline. The default
value of three eliminates common English articles.

+ HighlightAll: Boolean flag; if t rue the whole document will be used as the headline, ignoring the
preceding three parameters.

+ MaxFragments: maximum number of text excerpts or fragments to display. The default value of zero
selects a non-fragment-oriented headline generation method. A value greater than zero selects fragment-
based headline generation. This method finds text fragments with as many query words as possible and
stretches those fragments around the query words. As a result query words are close to the middle of
each fragment and have words on each side. Each fragment will be of at most MaxWords and words of
length shortwWord or less are dropped at the start and end of each fragment. If not all query words are
found in the document, then a single fragment of the first MinWords in the document will be displayed.

+ FragmentDelimiter: When more than one fragment is displayed, the fragments will be separated by
this string.

Any unspecified options receive these defaults:

StartSel=, StopSel=,
MaxWords=35, MinWords=15, ShortWord=3, HighlightAll=FALSE,
MaxFragments=0, FragmentDelimiter=" ... "

For example:

SELECT ts_headline (’english’,
"The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.’,
to_tsquery ('query & similarity’));
ts_headline
containing given query terms
and return them in order of their similarity to the
query.

SELECT ts_headline (’english’,

"The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the

query.’,

299

Chapter 12. Full Text Search

to_tsquery (’query & similarity’),
"StartSel = <, StopSel = >');
ts_headline

containing given <query> terms
and return them in order of their <similarity> to the
<query>.

ts_headline uses the original document, not a tsvector summary, so it can be slow and should be
used with care. A typical mistake is to call ts_headline for every matching document when only ten
documents are to be shown. SQL subqueries can help; here is an example:

SELECT id, ts_headline (body, qg), rank
FROM (SELECT id, body, g, ts_rank_cd(ti, g) AS rank
FROM apod, to_tsquery(’stars’) g
WHERE ti @@ g
ORDER BY rank DESC
LIMIT 10) AS foo;

12.4. Additional Features

This section describes additional functions and operators that are useful in connection with text search.

12.4.1. Manipulating Documents

Section 12.3.1 showed how raw textual documents can be converted into t svector values. PostgreSQL
also provides functions and operators that can be used to manipulate documents that are already in
tsvector form.

tsvector || tsvector

The tsvector concatenation operator returns a vector which combines the lexemes and positional
information of the two vectors given as arguments. Positions and weight labels are retained during
the concatenation. Positions appearing in the right-hand vector are offset by the largest position
mentioned in the left-hand vector, so that the result is nearly equivalent to the result of performing
to_tsvector on the concatenation of the two original document strings. (The equivalence is not
exact, because any stop-words removed from the end of the left-hand argument will not affect the
result, whereas they would have affected the positions of the lexemes in the right-hand argument if
textual concatenation were used.)

One advantage of using concatenation in the vector form, rather than concatenating text before ap-
plying to_tsvector, is that you can use different configurations to parse different sections of the
document. Also, because the setweight function marks all lexemes of the given vector the same

300

Chapter 12. Full Text Search

way, it is necessary to parse the text and do setweight before concatenating if you want to label
different parts of the document with different weights.

setweight (vector tsvector, weight "char") returns tsvector

setweight returns a copy of the input vector in which every position has been labeled with the
given weight, either A, B, C, or D. (D is the default for new vectors and as such is not displayed on
output.) These labels are retained when vectors are concatenated, allowing words from different parts
of a document to be weighted differently by ranking functions.

Note that weight labels apply to positions, not lexemes. If the input vector has been stripped of
positions then setweight does nothing.

length (vector tsvector) returns integer

Returns the number of lexemes stored in the vector.

strip(vector tsvector) returns tsvector

Returns a vector which lists the same lexemes as the given vector, but which lacks any position
or weight information. While the returned vector is much less useful than an unstripped vector for
relevance ranking, it will usually be much smaller.

12.4.2. Manipulating Queries

Section 12.3.2 showed how raw textual queries can be converted into t squery values. PostgreSQL also
provides functions and operators that can be used to manipulate queries that are already in t squery form.

tsquery && tsquery

Returns the AND-combination of the two given queries.

tsquery || tsquery

Returns the OR-combination of the two given queries.

'l tsquery

Returns the negation (NOT) of the given query.

numnode (query tsquery) returns integer

Returns the number of nodes (lexemes plus operators) in a t squery. This function is useful to de-
termine if the query is meaningful (returns > 0), or contains only stop words (returns 0). Examples:

SELECT numnode (plainto_tsquery (’the any’));
NOTICE: query contains only stopword(s) or doesn’t contain lexeme(s), ignored
numnode

301

Chapter 12. Full Text Search

SELECT numnode (' foo & bar’::tsquery);
numnode

querytree (query tsquery) returns text

Returns the portion of a t squery that can be used for searching an index. This function is useful for
detecting unindexable queries, for example those containing only stop words or only negated terms.
For example:

SELECT querytree (to_tsquery ('’ !defined’));
querytree

12.4.2.1. Query Rewriting

The ts_rewrite family of functions search a given tsquery for occurrences of a target subquery, and
replace each occurrence with a substitute subquery. In essence this operation is a t squery-specific version
of substring replacement. A target and substitute combination can be thought of as a query rewrite rule.
A collection of such rewrite rules can be a powerful search aid. For example, you can expand the search
using synonyms (e.g., new york, big apple, nyc, gotham) or narrow the search to direct the user to
some hot topic. There is some overlap in functionality between this feature and thesaurus dictionaries
(Section 12.6.4). However, you can modify a set of rewrite rules on-the-fly without reindexing, whereas
updating a thesaurus requires reindexing to be effective.

ts_rewrite (query tsquery, target tsquery, substitute tsquery) returns tsquery

This form of ts_rewrite simply applies a single rewrite rule: target is replaced by su